Table Of Contents

� TOC \o \h \z \t "Heading 3,3" �A Little Advice Before We Start	� PAGEREF _Toc513579927 \h ��2�

Scratching The Surface	� PAGEREF _Toc513579928 \h ��2�

End Users: Don’t Let It Daunt You	� PAGEREF _Toc513579929 \h ��3�

Developers: Don’t Let Macho Get In Your Way	� PAGEREF _Toc513579930 \h ��4�

This Is Not Rocket Science	� PAGEREF _Toc513579931 \h ��5�

A Very Brief Introduction to Object-Oriented Software	� PAGEREF _Toc513579932 \h ��6�

What is OOP?	� PAGEREF _Toc513579933 \h ��6�

OOP Into The Breech	� PAGEREF _Toc513579934 \h ��6�

What Is An Object?	� PAGEREF _Toc513579935 \h ��7�

Properties	� PAGEREF _Toc513579936 \h ��8�

Property Vs. Value	� PAGEREF _Toc513579937 \h ��9�

Why Are Properties Important To Me?	� PAGEREF _Toc513579938 \h ��10�

Methods	� PAGEREF _Toc513579939 \h ��11�

How Are Methods Linked To Objects?	� PAGEREF _Toc513579940 \h ��12�

Events	� PAGEREF _Toc513579941 \h ��13�

Where Do Objects Come From? Classes!	� PAGEREF _Toc513579942 \h ��14�

How Do You Create Classes?	� PAGEREF _Toc513579943 \h ��15�

Instances	� PAGEREF _Toc513579944 \h ��16�

Containers	� PAGEREF _Toc513579945 \h ��19�

Inheritance	� PAGEREF _Toc513579946 \h ��20�

Just The Changes Please	� PAGEREF _Toc513579947 \h ��23�

Reliability	� PAGEREF _Toc513579948 \h ��23�

DEO - Deploying With Inheritance	� PAGEREF _Toc513579949 \h ��24�

Building A Library	� PAGEREF _Toc513579950 \h ��26�

Inheritance For The End-User	� PAGEREF _Toc513579951 \h ��27�

How To Subclass Using Code	� PAGEREF _Toc513579952 \h ��32�

How to Subclass Visually	� PAGEREF _Toc513579953 \h ��33�

When To Inherit. Instance or Class?	� PAGEREF _Toc513579954 \h ��34�

��A Little Advice Before We Start

My purpose in writing this book is to introduce you to the power, productivity and elegance of dB2K. It was certainly never my intention to turn this into an abstract exploration of database and object theory. I prefer to leave that to others who are better versed than I.

Nonetheless, that’s exactly what I’m about to do.

I’ve always found theory to be boring, if not painful. Give me a new piece of software and I dive in, mouse in hand, clicking through menus, forms and dialogs, relying on the online help to get me through the worst bottlenecks. Of course, if I don’t get immediate gratification, I blame it on a counter-intuitive user-interface or an unnecessarily complex design.

Sometimes I get lucky and everything falls into place. But, more often than not, I end up back in the manual, learning why instead of how so that I can stop wasting time flailing about trying to get results through trial-and-error.

Adobe Photoshop™ is a perfect example. It’s an application I use extensively almost every day. Photoshop is truly great software, packed with so many terrific features that I’m not sure anyone knows how to use them all. I certainly don’t. Well, after about a year of messing around, achieving great results occasionally (less successful results most of the time), I bit the bullet and actually started reading the manuals.

The tips and tricks I discovered improved my productivity overnight. But the most dramatic improvement came when I read the sections on color theory. ‘Improvement’ is not the appropriate word. ‘Revelation’ might be more apt. The tips and tricks I learned helped me automate and simplify the repetitive tasks that make up so much of digital graphics. But the theory I learned actually changed the quality of my content.

Learning the mechanics made me a more proficient user. Learning the core structures that underlie my images made me a better artist. Learning keystrokes and mouse clicks made my work faster. Learning theory made my work better.

Scratching The Surface

I see dB2K in much the same way. dB2K is a palette on which you’ll paint an image of your business, your career, your possessions, your time, your information.

Like Photoshop, it’s deceptively easy to use. Even without a manual, you can click through dQuery/Web’s EasyStart menu and get some pretty impressive data, applications and reports. That’s what was intended, and I think it succeeds admirably.

But if that’s all you do, you’ll just be scratching the surface of dB2K. Until you use inheritance to produce virtually unlimited variations with just a few mouse clicks, you’ll be missing a wealth of possibilities. Until you start thinking of your data as objects, instead of tables and rows and columns, you’ll be limited to a flat view of data instead of the multi-dimensional, rich view of meaningful information.

Therefore, I’ve elected to begin this book with a brief overview of the concepts that drive dB2K. I’d feel guilty if I didn’t give you the opportunity to get the most out of this powerful product. On the other hand, I know I run the risk of boring you to death before you even get a taste of the fun stuff.

So, please humor me. If you’re like me, I’m sure you really want to jump right into the good parts and indulge your (understandable) desire to explore the possibilities of dB2K. Instead, please take a few minutes to at least review these opening sections. You don’t have to learn it all. In fact, you don’t even have to understand it all. But I’m confident that even a quick scan of the ‘conceptual’ topics that follow will provide a foundation that will make the process of exploring and learning dB2K easier, faster and infinitely more enjoyable.

dB2K is not an easy topic for a book. It caters to users with such a wide range of skills and experience that it’s extremely difficult to find a middle ground meaningful to all of them.

Nonetheless, that’s what I’ve tried to do – to cater both to the end-user seeking fast, meaningful information and to developers out to build powerful feature-rich applications.

I suspect neither will be entirely happy with the result. Some of what I write will be too complex for the end-user, whom I wish, devoutly, to encourage to use the unique interactive capabilities of dB2K. Other topics will strike the experienced developer as too elementary and, perhaps, redundant.

I’ve tried, as best I can, to distinguish material important to developers and material that’s unnecessary to end-users. I’ll often use sidebars, in an end-user topic, to point out detail of interest to developers. I’ll include a comment like “if you’re an end-user you don’t have to know…” to signal end-users that they can skip that section if they desire.

However, it’s worth pointing out that, sometimes, even the most sophisticated, experienced programmer can benefit from an insight or perspective on issues they’ve mastered long ago. Nor will it hurt an interactive end-user to explore some of the more powerful developer-oriented features of dB2K. Keep in mind that many of the best dB2K developers started out as end-users with no intention whatever of writing a single line of code. I speak from personal experience. I’m one of them.

End Users: Don’t Let It Daunt You

The great risk to an end-user, in reading this book, is that you let yourself get intimidated by subjects and syntax beyond your current skills and knowledge and come to believe that dB2K is simply too hard to master.

Not true. You really don’t have to know any programming whatever to use dB2K successfully. But, believe me, the time will come when you’ll want to push the envelope just a bit. As powerful and easy as the dB2K tools are, there will be something you’ll want to do, some calculation that’s too complex for visual designers, some action that isn’t already automated, some cool new operation that you can’t do with a mouse. That’s when you’ll want to write a line or two of code. For truly, you can do anything you want to do in dB2K. If you can’t do it with the tools, you can do it with the dBL language. Your only limitation is your imagination.

For that reason, I’ve included code snippets (short sections of dBL code) to illustrate concepts even in topics targeted squarely at end-users. Feel free to ignore them. But, even better, at least take a glance at the code. Even if you don’t understand the syntax or implementation, the snippets were designed to illuminate a concept. They’re clearly commented (‘//’ is the ‘comment’ or ‘remark’ symbol in dBL) and you’ve nothing to lose by taking a quick look at them. Unless you let them daunt you.

Even the most expert programmers sometimes don’t ‘get it’ the first time. If you don’t ‘get it’, you’re in good company. It’s been my experience that I often learn complex concepts through continued exposure. Sometimes the definition of the concept doesn’t do it – I need to see it in context or implemented in a real-world solution. But I wouldn’t even know to look for it if I hadn’t encountered it the first time, even though I didn’t have a clue what I was reading.

Let me give you an example. The dBL language has a wonderful class called AssocArray. Randy Solton, the original Architect of dBASE on Windows told me what a cool feature it was. No matter what he said, I just didn’t ‘get it’. It seemed to me to have limited uses whose value was far outweighed by what appeared to be, at first, a nasty, unintuitive syntax. I couldn’t even imagine what he was so excited about. But I kept my mind open and my eyes peeled and, months later, found a suitable application for an AssocArray. Wow! When I finally used one in context, it blew me away. That class became so important to me that I’ve used it as the cornerstone of the best work I’ve ever done. The architecture of dQuery/Web is based, in large part, on the AssocArray. The Web Wizards and Web Classes are totally based on AssocArrays.

If I had allowed my first exposure to the AssocArray class daunt me, I never would have enjoyed the amazing benefits of this incredible class. Don’t let this happen to you. Ignore the code snippets and ‘developer’ topics, if you like, or scan them quickly just to get the ‘sense’ of them. Or read them fully. It’s your choice. Just keep in the back of your mind that sometime, someday, you may really want to push your limits and this stuff could come in handy.

But, most important, don’t let what you don’t understand stop you. You may not need it now, you may not need it later, and if you do, you can always come back and read it again.

Developers: Don’t Let Macho Get In Your Way

Developers run a very different risk. Accustomed to triumphantly hand-coding the hardest, most impossible applications, many programmers derive a sort of macho satisfaction from ‘beating the beast’. I know, I’ve been there and done that more times than I’d like to admit.

However, the job of the developer is to provide functionality, improve performance and deliver real cost and revenue benefits to the businesses and institutions that use your software. As satisfying as it might be to write a thousand lines of really pretty code, it’s ultimately better and more productive to let dB2K write it for you. You save time, avoid endless potential bugs and, let’s face it, hand-coding a pushbutton can be a truly trivial and boring pursuit. Especially after your hundredth one.

So, although you may consider our upcoming discussions of visual tools, in some ways, beneath you; although you may see dQuery/Web or the Form Designer or the Web Wizards as ‘training wheels’, I need to warn you that there may be enormous productivity benefits lurking under the hood of even the simplest dialogs.

This Is Not Rocket Science

Neither using dB2K’s interactive features nor developing applications in dB2K requires a degree in Computer Science. There’s nothing overwhelming here except for the wealth of options. dB2K is notable as one of the truly ‘common sense’ products around. It really works the way you expect it to - as long as you know what to expect and where to find the solution.

But please keep in mind that dB2K is nothing more than software. Great software, I believe, but just software all the same. Don’t let it frustrate you. Don’t let the learning curve sour you. I’ll try to make the process as clear and enjoyable as I can. Do your part by sitting back and enjoying your exploration of dB2K. Experiment with the actual program as much as possible. Remember, almost anything can be ‘Undone’ onscreen and there’s nothing I know of that you can do in dB2K to cause a fire or explosion in your computer. Therefore, you have little risk , and much to gain.

If you get really stuck and just can’t get past a given point, don’t spend more than an hour on it. Instead, log in to the dB2K Newsgroups (see www.dBASE.com for detailed instructions) and let your fellow dB2K users help you get past the bottleneck. These are some of the friendliest and most helpful people in the world. There are no dumb questions except the ones not asked. You’ll find that the dBASE community really believes that. And practices it.

That’s where I learned most of what I know.

�A Very Brief Introduction to Object-Oriented Software

Whether you’re an expert programmer or a first-time user, you need to know about Object-Oriented Programming (OOP). After all, dB2K is built on objects, All its tools, applications, its language, compiler – even its live data – spring from the well of objects, classes, properties and methods. Ignore OOP and you’ll miss out on 75% of the power and flexibility of dB2K. You’ll probably still get by, but what a waste!

Of course, the advanced developer needs to know a lot more about OOP than the casual user. You’ll find a chapter later in this book that goes into Object-Oriented Programming in excruciating detail. But for the moment, and by way of introduction, let’s consider only the basic whys and wherefores of OOP. Don’t worry about the details or implementations - dB2K takes care of most of those for you automatically. Just get the rough outlines and a few of the terms down so that you’ll be confident and comfortable when we discuss objects throughout the rest of this book.

What is OOP?

Good question. To get a good answer we have to take a look back at life before OOP, the good old days of ‘procedural’ , ‘hierarchical’ or ‘structured’ programming. Those of you who are old enough to remember the time before MS Windows will recall that most DOS applications were single-threaded, tightly-controlled, linear exercises in control-by-programmer. Press <enter> to go forward, <esc> to go back. Type the number of a menu option to go to the next screen where the same boring process repeats again and again. The path from start to finish was rigidly enforced, pre-defined, and sadly lacking in options and alternatives.

The advent of the GUI (Graphic User Interface) changed all that. Suddenly you could have three customer screens, fourteen invoices, hundreds of fields, dozens of graphics, uncounted pushbuttons, all on the same screen at the same time. Press <Enter> to go forward? No way. Now you’ve got the <Tab> key and the mouse. To make matters even worse (or truthfully, much better), the user is now in total control! He or she can click anywhere he or she wants, any time he or she wants on any window he or she want to click on! Forget the old procedural, hierarchical menu-driven paradigm. It’s definitely not going to work in a multi-tasking environment with users clicking all over the place, in sequences that never even entered the developer’s mind.

OOP Into The Breech

That’s where OOP comes in. By treating each element of a program: forms, reports, buttons, fields, graphics, business logic and data as objects, each one separate and protected from every other one, each one with its own values and settings locked behind an impregnable wall, five hundred customer forms can co-exist at the same time on the same screen.

Or five hundred entryfields on the same form. Or six copies of your query, each one filtered differently, each one independent of the others. Great stuff. If the obvious advantages of encapsulated objects are not enough to convince you, wait till you see the benefits that come from the remarkable propensity of objects to reproduce. You can’t imagine how much time and energy you’ll save using dB2K (and even more, programming in dB2K) by spawning new copies of objects instead of creating them from scratch. The reusability of objects is truly amazing.

Not only can you create multiple copies of the same object, in true OOP languages you can create whole new classes of objects from existing ones. From this, we get a paradoxical effect: the more objects you create, the fewer objects you need to create. Your work and the applications you develop become an exercise in stringing objects together instead of the onerous tasks of typing, clicking or writing untold numbers of instructions in umpteen thousands of lines of code

Note: True Object-Oriented Languages support Inheritance. A number of languages and products supply objects (such as Microsoft Access, Visual Basic 6 and Corel Paradox) but don’t allow new classes to be inherited from existing ones or created from scratch. These languages and products are said to be Object-Based, not Object-Oriented, and they don’t offer near the productivity benefits of a true OOP product. dB2K is, of course, fully Object-Oriented.

What Is An Object?

OK, now that we’ve sung the praises of OOP, let’s get a few crucial definitions out of the way. Since we’re talking about Object-Oriented issues, ‘Object’ seems like the obvious place to start.

An object is an encapsulated entity that contains its own data and behaviors.

Too abstract, right? Let’s simplify by example. You are an object. You have certain data : your height, your weight, your hair color, the number of arms, legs, eyes, etc. You also exhibit certain built-in behaviors: you walk, see, talk, think, eat, reproduce, etc. And you are encapsulated. You cannot see through someone else’s eyes. Their thoughts do not enter your brain (at least as far as we know). You are contained within your skin and thereby totally distinct from every other person on the planet.

Let’s look at a slightly less esoteric example. Each pushbutton object has certain data: size, position, color, text. And certain behaviors: it can be clicked in and clicked out, it knows how to open itself when the form opens, it knows how to destroy itself when the form closes.

This is a deceptively simple definition of an object. Accurate, as far as it goes, it nonetheless doesn’t even touch upon the subtleties of implementing self-contained, self-sufficient objects that build, one upon the other, into huge, dependable architectures. In a good OOP program everything is an object. All knowledge of what the user does or what data has been saved or gathered, all the feedback you need to automate operations is contained as data within objects. All responses, all validation, all output is accomplished through the behavior of objects.

Properties

The ‘data’ of an object is stored in its properties. Think of properties as the attributes of an object, attributes that describe each object and its contents.

To use the ‘human’ metaphor again, your properties are your height, weight, age, eye color, shoe size, gender and all the other attributes that define the similarities and differences between human beings.

The Pushbutton’s properties are its position, dimensions, text, bitmap (image), color, font, etc.

The Query’s properties are the SQL statement used to gather data, updateWhere to tell it how to update the server, rowset and session, among others.

Since properties are data, they can be of any data type supported by dB2K, including links to other objects. Let’s look at some of the common types of properties:

Text properties – usually represent the text to be displayed by an object (such as ‘OK’ on a pushbutton or ‘Customer Data Entry’ on the title bar of a form).

Boolean properties are logical properties. They are properties that set a state, and they allow only two possible operative values: true or false. For example, a Query’s ‘Active’ property defines whether the Query is turned on (true) or off (false).

�

Figure � SEQ Figure * ARABIC �1� Inspecting a Pushbutton Object

Numeric properties are commonplace throughout objects. Position and size properties, such as Height, Top, left and Width. are always numeric,

Tip: dB2K provides a global tool, called the Inspector, that allows you to peer within any object and review or change its properties. To get at the Inspector from any design surface, you can right-click on any object and select ‘Inspect’. You can also bring up the Inspector from the View option on the Main Menu or press <F11> to toggle the Inspector open or closed. The illustrations in this topic show the Inspector displaying the properties of the ‘current’ or ‘selected’ object. For more information on the Inspector, see the Global Tools section later in this book.

Value properties often represent the main data within an object. For example, the Value property of a field object contains the actual data stored in the field. The Value of a Checkbox tells you whether it’s checked (true) or unchecked (false).

Enumerated properties provide multiple-choice options. For example, the BorderStyle property of the pushbutton allows you select any one of ten different border designs, from 3-D Raised to Drop Shadow,

Properties may also be links to other objects. The Rowset property of a Query object is a link to the object that contains the actual rows of data. Forms usually include a property for each pushbutton or entryfield on it.

In dB2K, properties may also be user-defined. You may add properties to existing objects or define brand new objects, from scratch, by defining your own custom properties.

Property Vs. Value

For the sake of simplicity, I’ve been fairly casual in distinguishing a property from its value. Perhaps this is a good place to clarify the distinction between the two.

The property itself is the ‘bucket’, the ‘placeholder’, the ‘variable’ in which the value of the attribute it represents is stored, not the value itself.

For example, ‘Hair Color’ would be the property. ‘Brown’ is the value. The value may change for each object, and it may even be changed after the object has been created. But the property is usually built right into the object when each class of object is defined.

The reason why this distinction may be more important than it appears, at first glance, is that dB2K is one of the only language products that supports true dynamic properties. In dBL, a property can be added to any object on-the-fly at runtime. So, if you decide you want to store some transient information in an object that doesn’t normally carry such information, you may add a custom property on-the-fly for this one instance of the object.

this.pushbutton1.hasBeenClickedOnce = false

In the example above, we’ve added a ‘hasBeenClickedOnce’ property, on-the-fly to pushbutton1. If you planned to use this type of thing over and over again, you’d create a new class of pushbutton. But it’s awfully handy to have this dynamic ability when you want to implement some one-time quick-and-dirty information to an existing object.

Note: If you’re using the Inspector to set a property value, you won’t have to worry about property vs. value. The Inspector doesn’t let you change properties, only values.

Developer Tip: One of the mistakes I see time and again is a syntax error that results in data being stored to an object instead of to a property. If you do that, you’ll probably destroy the object and get all kinds of error messages.

For example:

form.entryfield = ‘Alan’ (Errors

In the code above, you’ve overwritten the entryfield itself with a character string, ‘Alan’. It isn’t an entryfield any more, it’s now a string. That can be embarrassing when you go to retrieve the value of the entryfield. The code should have been:

form.entryfield.value = ‘Alan’

So, if you see the error ‘Expecting Object’, you’ve probably overwritten an object by forgetting to specify the property you wanted to update.

Why Are Properties Important To Me?

Properties define not only the similarities between objects, but the differences, as well.

The difference between an OK button and a Cancel button is the value that’s assigned to their Text properties.

The difference between a Customer query and an Invoice query is the setting of their SQL properties.

The importance of properties to developers should be fairly obvious – without them you can’t create or modify objects in programs. But the importance of properties to end-users may not be quite so obvious.

dB2K is a very rich environment, with lots of classes of objects, and hundreds upon hundreds of built-in properties. To make the environment (particularly dQuery/Web) as easy to use as possible, dB2K surfaces a great number of dialogs that let you set and change the attributes and behavior of objects.

Take Parent/Child links between queries. You can drag a field from one query to another and dB2K will automatically connect them as parent and child. dQuery/Web executes this very simple drag-and-drop interface by setting the Rowset’s MasterRowset and MasterFields properties for you, automatically. Many of the dialogs in dQuery/Web and dB2K work the same way.

But no toolset can provide a dialog, Wizard or drag-and-drop interface for every property of every object it supports. dB2K tries to give you easy access to the most common properties. But there will come a time when there’s a property you want to set that’s not supported directly in any tool. For example, the updateWhere property of the Query allows you to tell your remote database engine (such as Oracle, SQL Server or DB2) how you want the engine to update your changes when you save them. That’s not a commonly used property, but it may be just the property you need to wring the last ounce of performance out of dB2K. Well, there’s still one tool you can always use to access that property or any other property that doesn’t have a specific tool to support it, and that’s the Inspector.

For new dB2K users, I recommend that you take a few minutes to explore the properties of a Query object in dQuery/Web. Just drag one of dB2K’s sample tables from the Navigator to the Design Surface. Right-click and select ‘Inspect Query’ from the menu that pops up. Put your mouse cursor on any property whose purpose you may not understand. Press <F1> for context-sensitive help to explain the usage and options of the selected property. Repeat the process, only this time select ‘Inspect Rowset’ from the popup menu. You’ll find any number of potentially useful properties lurking in the Inspector.

Methods

Just as properties define the attributes of objects, methods define their behavior.

Let’s go back to our ‘Human’ example. The act of walking is comprised of hundreds of neural commands sent to a variety of different muscles. Of course, you don’t have to think of each of these discrete instructions or muscles in order to walk. Your brain just thinks ‘Walk’ and the body does. Walking is a ‘behavior’ built from a complex series of instructions.

Object methods work exactly the same way. Methods are comprised of coded instructions that explicitly describe series of actions to be taken by the object to which they’re attached.

Consider the form’s Open method.

When you call the Open method of a form, it goes through a number of steps:

Find the file that defines this form.

Create a new object in memory to represent this form.

Create any components contained within this form.

Display and activate this form.

Not quite as complex (or miraculous) as walking, perhaps, but nonetheless terribly important. The Open() method of a form defines all the behaviors the form will execute when the Open method is ‘called’.

Developer Tip: Methods are executed, in dBL, by appending parentheses to the back end of the method name. The code to invoke the Open method of a form would look something like this:

	myform.open()

In earlier languages, these reusable instructions were called functions. In fact, that’s still the syntax that dBL uses to define a method:

function reCalculate.

What makes a method different from a function or procedure is that it’s built into, and encapsulated within an object.

The object’s ability to ‘walk’ or to ‘open’ or ‘close’ is part of the object itself and can be called only from within the object. This is an important part of encapsulation. You can’t have a pushbutton with a ‘click’ method that clicks every pushbutton on every form all at the same time. Nor do you want your Customer query to close your Invoices query and every other query on your dQuery/Web desktop!

This brings us to a very subtle, but important attribute of objects. Unlike older software models, things do not happen to objects. Objects make things happen to themselves. For instance, you might have opened a table in the old dBASE language with the USE command:

Use Customers.dbf

You applied the USE command to the Customers table. However, in today’s software, you may have a hundred or a thousand objects representing the same customers open at the same time. Therefore, each instance of ‘Customers’ needs to know how to open itself and close itself. It must have the behaviors built into it that do all the dirty work necessary to activate, deactivate, navigate, append, filter, order, delete and destroy itself. Think of it this way.

In the old model, you’d say:

 Close This Table

The OOP model is more like:

 Please, Mr. Data Object, would you close yourself?

This may sound just a bit like splitting hairs, but it’s not. It’s an essential concept of OOP. Keep this in mind and you’ll find it a lot easier to avoid errors when you create and use objects in dB2K

Some methods are pre-built into objects (like the ‘form.open’ method discussed earlier or the navigation methods of the Rowset), others are created by you. In fact, methods are how you customize the functionality of your objects. Have a data-entry form? Want to check the date and CustomerID fields to make sure they’re not empty? Write a ‘Save’ method of the form. Call it when the user clicks the ‘OK’ button.

How Are Methods Linked To Objects?

Methods are linked to their objects through properties. dB2K has this wonderful built-in data type called the function pointer. We don’t need to dwell on this at the moment (see the dBL language sections of this book for more detail) except to say that function pointers are a way of turning flat, dull functions into something much more powerful and accessible.

Each function in a program has an address in memory. That address can be stored. In the case of methods, the address is generally stored in a property. By doing this, the method is tied inextricably to the parent. It is encapsulated within the object.

Let’s create a new method:

function updateCheckingAccount

 // Subtract this check from account balance

 this.accountBalance -= this.check.value

 return true

dBL automatically creates a new property of the form and stores in it the address of the code you created for this method. The name of the property is the same as the name of the method. In the previous example, dBL automatically creates a property called ‘updateCheckingAccount’ of the form to which this method is attached. Assume the form is called ‘CustomerForm’ and you wanted to execute this method. Just add parentheses to the property:

CustomerForm.updateCheckingAccount()

Developer Tip: All functions, procedures and methods in dBL and dB2K are function pointers.

Developer Note: My earlier statement that methods are tied “inextricably” to their objects is not entirely true. DBL allows you to call a method from within a class, as opposed to an object (see the sections that follow for more on classes). Some people love this capability. I don’t. Many methods have dependencies and if the method is not called from where you planned to call it, all kinds of errors may result.

Events

You probably noted that, when I described methods, I repeatedly used the phrases ‘calling them’ and ‘invoking them’. Both terms mean ‘executing’. When you invoke or call a method, dB2K ‘runs’ the code within it.

There are many occasions when you’ll want a method to be invoked automatically. After all, a programmer isn’t standing over the user’s shoulder when he or she clicks a button. You can’t tell the program ‘The OK button was clicked, now run my ‘Save’ method to make sure all the data is right!’. You need to have a way to invoke Save() automatically when the user clicks the button.

That’s where events come in handy. Each pushbutton object has a built-in ‘onClick’ event. Every time the user clicks on any pushbutton, dB2K looks to see “has any method been assigned to this onClick event?” If it has, dB2K executes the assigned method automatically.

Events are the cornerstone of Event-Driven Applications like Windows and dB2K. Events allow you to design programs that respond directly to users’ actions, applications that say “what if…” instead of imprisoning the user in a rigid, programmer-enforced interface that never works the way the user does.

Most dB2K objects offer a large assortment of events that allow you to respond to even the smallest cues from the user, such as ‘onLeftMouseUp’ and ‘onRightDoubleClick’. Other events can be triggered by actions that occur within a program. OnOpen, for instance, is fired automatically whenever a form opens. To see the list of events built into any dB2K object, highlight the object and click on the ‘Events’ tab of the Inspector.

How do you specify which method to run when an event is triggered? By assigning the function pointer of the desired method to the event property you want to fire it.

Let’s use the same example we started with, the onClick event of the pushbutton.

Let’s also use the same method we described earlier, the one that updates the checking account.

To make this pushbutton recalculate your account balance:

Form.saveButton.onClick = updateCheckingAccount

It’s as simple as that. The event is a property. The method is a function pointer. Just assign one to the other. Now, every time the user clicks the ‘Save’ button, the code that updates your checking account will be executed.

Developer Tip: A common error of developers new to dBL is to execute a method instead of assigning it. Remember, a method is a function pointer. It represents an address in memory. All you need to do to enable an event is to assign the function pointer to the event - to tell the event what address to use to locate the code it needs to execute.

This is incorrect:

form.pushbutton1.onClick = validateAndSave() (executes!

Don’t include the parentheses, which will execute the Save method immediately – while the object is being built! That’s not what you want. Just assign the function pointer and let dB2K execute it for you:

This is correct:

form.pushbutton1.onClick = validateAndSave // no parens

End-users need not be overly concerned with the arcana of methods, events and function pointers. If you wish to, you may browse all the built-in methods and events of dB2K objects by bringing up the Inspector. However, most of the tools, and especially dQuery/Web, invoke these methods and events for you automatically. On the other hand, if you ever want to customize an application or object, you’ll need to at least understand what methods and events are and where they can be found.

Where Do Objects Come From? Classes!

Neither you, nor the pushbutton, nor any object in dB2K (or anywhere else) simply appears spontaneously from the ether! Each was created according to some kind of blueprint in which the attributes and behaviors of each class of object were defined.

The class is the instrument that defines objects. ‘Human’ is the class that defines you and me. ‘Pushbutton’ is the class that defines both the OK button and the Cancel button. ‘Query’ is the class that defines data from tables.

Your ‘human’ class blueprint - the description of all the properties that define the specie - is expressed as genes. The human genome is the ‘Class’ for humans. In software, the class is defined through its members. The members of a class are the internal elements – properties, methods and events – that describe, in great detail, what objects derived from the class will look like, what values they contain, what states they’re in, the behaviors they’re empowered to perform, and the triggers that initiate those behaviors. This is done in source code similar to the following:

 // Define a new class

class Calendar

 // set its properties

 this.height = 204

 this.width = 324

 this.color = “Gray”

// End Class Definition

endClass

Note: Don’t worry about code or syntax at this point. Code is being used only for purposes of illustration. You don’t need to know how to write it unless, of course, you want to!

How Do You Create Classes?

Like everything else in dB2K, there’s a number of ways of creating classes:

�	You create classes by deriving them from other classes using the drag-and-drop tools that support Visual Inheritance, such as dQuery/Web, the Form Designer and the Report Designer..

�	You create classes automatically each time you save a new Form, Report, Menu, DataModule or use any other of the Visual Development tools that abound in dB2K.

�	You create classes automatically each time you save a component or group of components as a ‘custom class’ in the Form or Report designers.

�	You create classes from scratch, or derive new classes from existing ones by hand-writing code in the dB2K dBL language.

Whether they represent visual entities (a Form or Report Class), business abstractions (a Checkbook or Invoice Class), data (a Query or Database Class) every single dB2K class is based on language - the dBL language. Unless you discard your work, every class you modify or create is saved to your disk as a source file consisting of the dBL code that defines the class.

The fact that dB2K is entirely language-based is fairly unique. Its predecessor, dBASE for Windows 5.0 was the first development environment ever to sport ‘Round-Trip Tools’, tools that allow you to work visually or by writing code and switch back and forth at will. That’s only possible because all of the Visual Development and end-user tools stream out source code automatically.

Even better, you don’t have to know how to write source code or classes to use the tools. You don’t even have to understand them. Open the Form Designer, Report Designer, Menu Designer. Work onscreen. Save your changes, dB2K writes source to disk in the form of a Class. Open a file, it reads it back in.

dQuery/Web uses this very effectively. You can play with your data interactively, dragging and dropping Queries around the design surface with abandon. That alone is cool. What’s even better is that, when you click on ‘Save’, dB2K streams out a full-blown class that you can reuse over and over again, saving your interactive results and reproducing them any time you wish. As if that weren’t enough, the DataModule Class that memorializes your work can be used with other tools to create reports, applications and even Web sites. The Class is a killer concept!

Tip: To help you organize your Class files, dB2K uses dedicated extensions to identify the disk files for some of the more commonly-used built-in Classes.

.wfm, .cfm�Form Classes��.mnu�Menu Classes��.pop�Popup (right-click menu) Classes��.dmd, .cdm�DataModule Classes��.rep, .crp�Report Classes��.lab�Label Classes��.cc�All Other Classes��

Classes come, in dB2K, in many flavors. There are built-in visual classes (built-in classes are called base classes), such as Form, Report, and Menu. There are language-level base classes, such as String, Date and Array. There are data-access classes, such as Database, Session, Query and StoredProc. There’s a whole bunch of classes written in dBL code and shipped with dB2K as Open Source, including dQuery/Web, the Web Classes, Splitter Classes and a growing number of others. Just for your information – Classes created in dBL by our team, Open Source contributors or yourselves are just as powerful and run just as fast as the ones built into dB2K at the factory! A class is a class is a class. There’s no such thing as a second-class class.

Instances

The Class is a pretty abstract thing - as abstract as a blueprint is compared to a house. The blueprint expresses the concept of the house, the dimensions of the house, instructions as to how the house should be built and operate when built. It’s the specification for a house, but it is not a house.

If you want to end up with a real house in which real people live, you’ve got to build one. The same applies to objects. If you want a pushbutton on a form, a form in an application or a query in dQuery/Web, you’ve got to create an instance of the class Pushbutton, Form or Query.

You are an instance of class Human

Customers1 is an instance of class Query

OKButton is an instance of class Pushbutton

To put it another way, you might say “this OKbutton object is an instance of the Class Pushbutton”.

The instance represents the real object, the real operating entity that exists and functions through time, unlike the Class, which is the abstract definition which persists forever (unless of course, you clear it off your hard disk!) and can be reused eternally.

I suppose you could actually use the two words, ‘instance’ and ‘object’, interchangeably. They both represent the final, lowest level of OOP at which all the work gets done. But there is a very slight nuance between them. You usually use the word ‘instance’ specifically when referring to the relation of an object to its class, the word ‘object’ more generically.

Example:

“How many objects do you have on that form?”

�

Figure � SEQ Figure * ARABIC �2� Classes And Instances

“How many instances of Pushbutton do you have on that form?”How Do You Build An Instance?

As usual, there’s more than one way to create an instance in dB2K:

�	Drop a component on a Visual Designer. Drag and drop a pushbutton to a form, a text control to a report or a table to dQuery/Web and dB2K will automatically create instances of the Form, Text or Query Class.

�	Create a new instance programmatically.

�	Create a new, live instance by typing instructions into the Command Window.

�	Double-click on a Report, Form or DataModule Class in the Navigator (a file with one of the following extensions: .wfm, .rep, .dmd, .cdm).

�	Right-click on a Class in the Navigator and select ‘run…’

When you create an instance of a class in dB2K, the result is an object that resides in your computer’s memory. Click the ‘X’ to close dQuery/Web and all the current instances of the DataModule and any queries it might contain are gone, vaporized, history. Because objects are not persistent (they don’t sit on your hard disk like classes do), you’ve got to be a little more aware of timing.

For example, in the first option on our preceding list (Drop a component on a Visual Designer), the object bursts into life as soon as you lift your finger from the mouse button. And dies as soon as you close the designer.

The second option (Create a new instance programmatically) doesn’t come into existence until you run the program you wrote.

The Command Window (the third option above) is instantaneous, as well. As soon as you type the command to create a new instance, it springs to life in memory – even if you can’t see it onscreen.

Just for fun, even if you’re not a programmer, type the following lines in the Command Window (if it’s not open, go to the dB2K Main menu, click on View/Command Window). Press <enter> after you type each line. Watch what happens:

f = new form(‘MyForm’)

f.open()

f.blueButton = new pushbutton(f)

f.blueButton.width = 30

f.colorNormal = ‘white/blue’

f.blueButton.text = ‘Seriously Live Object!’

See how the Form object popped into existence when you pressed <enter> on Line 1? The pushbutton appears, as if by magic when you pressed <enter> in the Command Window. Press the ‘X’ on the Form to close it when done.

For Developers: And what is the command that allow you to create instances from classes? The ‘New’ command:

form.pushbutton1 = new pushButton()

The code above creates a new instance of the pushButton Class and stores its address in ‘form.pushbutton1’. Whenever you wish to reference that same button again (like, I want to change text to red), use the ‘reference’ on the left:

form.pushbutton1.colorNormal = ‘red/silver’

The place where you store the address of this brand new object is called the object reference or just reference. Think of the object reference as the object’s ‘handle’ or ‘phone number’ or ‘address’. It’s what you use to talk to that particular, real live object as opposed to the three hundred other pushbuttons on this form and all the others!

Containers

There is a special type of class of particular note. It’s built specifically to contain other objects. Appropriately enough, this type of Class is called a container class.

Why is this so important? Because almost every application, tool and interactive surface in dB2K and dQuery/Web is based on a container class. Containers allow you to group multiple objects together, preserve the relationships between them, present them as a single entity and edit them simultaneously.

A Form is a container class, that encapsulates within itself all of its entryfields, comboboxes, pushbuttons and the methods that drive them.

A DataModule is a container whose purpose is to enclose data objects, such as Database, Query and StoredProc objects. The design surface of dQuery/Web represents a DataModule container class. Each time you drag a table to the design surface, it adds that object to the DataModule.

�

Figure � SEQ Figure * ARABIC �3� DataModule Container Class And Objects

Containers are special because they control the objects within them. When a form opens, it has to open all the pushbuttons and entryfields within it. When a DataModule opens, it needs to log in to all the databases represented by its Database Objects and execute all the queries represented by its Query objects. When any container object closes, it must close and release all of its objects. Because of the need to closely integrate the functionality of parent containers and their child objects, container classes are usually base classes, built into dB2K.

Containers may contain containers. Sounds strange, I know, but it’s a crucial concept. Notebook controls, for example, contain pushbuttons, entryfields, comboboxes and checkboxes, but are, in turn, contained within forms.

The Query is an object that may be contained within a DataModule, but it’s also a container for the Rowset within it. The Rowset, in turn, is a container for its Field objects.

Let’s not get too deeply into containers yet. There’s much more to be said about them, but most of that will be at the language level. You’ll find much more detail in the dBL chapters that follow. But before we leave this topic, let me just list a few of the most commonly used containers in dB2K, In most cases, the container class is created automatically when you save your work in one of dB2K’s visual designers:

Container Class�Where to Create/Edit��Form�Form Designer��Notebook�Form Designer��Container�Form Designer��Report�Report Designer��Label�Report Designer��DataModule�dQuery/Web��Query�dQuery/Web or the Form Designer��Rowset�Within Queries/Inspector��Menu�Form Designer��Toolbar�Source Editor��

Tip: One of the coolest unique features of dB2K is its ability to create new container classes visually. Create a new form. Drag a container object from the Component Palette to the Form Designer. Then add a bunch of pushbuttons and entryfields. Click on the container to highlight it and then click on the File/Save As Custom main menu option. dB2K will write a brand new class for you based on the objects you selected and add it to the Component Palette. From there, you can drag and drop these components, as a single unit, onto any form you design. I love this feature. It’s added immeasurably to my productivity over the years. Early-on, I laid out typical ‘person’ objects: name, address, city, state, zip, etc., and saved them as a container. Now, whenever I need a vendor, customer, subscriber, distributor, patient or employee form, I just drop my ‘Person’ container class on the form and save myself hours of layout and hand coding.

Inheritance

This is where OOP shines - where OOP technology provides productivity benefits that are almost unimaginable. Before I get too carried away extolling its glories, let’s define inheritance:

Inheritance is the ability to derive a new class from an existing one. Any class derived from another class is called a subclass. The class it was derived from is called it’s superclass.

Inheritance (or subclassing) doesn’t mean copying the code or properties or methods from the superclass. Nor does it mean using a template to generate new forms, reports or dataModules. What it does mean is creating objects, on-the-fly, in memory, from the entire hierarchy of classes that define it. It means building an actual object from multiple classes, each of which is inherited from the class above it.

Think of it this way. Each time dB2K creates an object from a class, it checks to see if the current class is built upon another one. It keeps checking all the way up the line until it gets to the very first class in the family tree. Then it builds the object in reverse order, from the highest-level class to the lowest. Each time it encounters new objects, it builds them. Each time it encounters a new value for a property, it updates that property in the current object. Each time an existing property or method is overridden, it replaces the previous one with the new one. In that fashion, the object morphs from its very first iteration, way up at the top of the inheritance ladder, all the way down to the final class in the chain.

I know this can be a really hard concept to grasp. All of us have a little trouble visualizing the subtleties of inheritance from time to time - usually because we forget just how elegant and simple it is. Let me share a quick story with you. While designing the Ad-Hoc Query feature of dQuery/Web, our development team spent hours discussing what we’d have to do to deploy DataModules to your Web Site. Big stumbling block: each DataModule might be inherited from one, or even a hundred classes! So I spent hours trying to architect an elegant way to traverse the object hierarchy so that we’d be sure not to miss any classes needed to build the real live DataModule on the Web server. Now keep in mind, I’m supposed to be the expert; I’m supposed to be Mr. OOP. But it took Ed Hoskins to remind me that each DataModule already has every object, property and method it inherited all the way back to its base class within it. We didn’t have to traverse the class hierarchy at all. All we needed to do was read out the end result. I forgot that inheritance wasn’t about code and source files and classes and all the other stuff you use to define and build objects. Inheritance is about a real object, at runtime. Nothing is inherited until you build an instance of a class. That’s not true of all languages, but it’s certainly true of dB2K, with its dynamic object model. Objects are built or modified and classes are inherited on-the-fly, not when the program is compiled, but when the program or object is ‘run’.

Hopefully, the next two figures will help you visualize how inherited objects are built, as opposed to the way simple instances are created from base classes.

Figure 4 illustrates a simple object (a pushbutton) created from a base class:

�

Figure � SEQ Figure * ARABIC �4� Creating Objects From Base Class (No Inheritance)

Figure 5 demonstrates how objects are created by subclassing:

�

Figure � SEQ Figure * ARABIC �5� Inherited Custom Pushbutton

The first class in the illustration above is the built-in base class, Pushbutton. Note that it produces a default pushbutton. Default means that it uses built-in property settings for a ‘generic’ instance of pushbutton. In real life, you’d be expected to change the default property values to match your purpose for each pushbutton.

The second class, BigButton, is inherited from Pushbutton. The only thing it adds to the original base class is a new size.

The third class, StopButton, is inherited from BigButton. It’s endowed with all the properties, events and methods of BigButton, which, in turn, inherited its properties and methods from Pushbutton. What StopButton adds to BigButton is the text ‘STOP!’ and new colors - white on red.

Developer Tip: This figure was purposely designed to bring attention to a very important facet of inheritance – the usability of all the classes in an object hierarchy. Note that each of the classes that went into making up StopButton can be used on its own to create new objects at that particular level (as illustrated by the buttons on the right). The BigButton class, for example, can be used as the superclass for StopButton, but it can also be used to create BigButtons.This is called granularity, the ability to break big architectures down into tiny pieces each of which delivers functionality in its own right.

These abstract concepts – inheritance, subclass, superclass - have to lead somewhere. And they do indeed. Mostly to dramatic improvements in reliability, deployment, total-cost-of-ownership and design productivity. Let’s take a look at a few of the advantages that inheritance delivers.

Just The Changes Please

When you subclass, you specify only the differences between the subclass and the class immediately above it. You don’t duplicate the code, keystrokes, mouse clicks or any other work you did to create any of the original classes. Let’s go back to figure 5. Because the only differences between BigButton and Pushbutton are the values of their width and height properties, the BigButton class consists of only two changes :

	this.width := 34

	this.height := 34

Write two lines of code or set two properties in the Inspector and you’ve created a brand new class that can be used whenever you need a large, square button or whenever you wish to subclass that large square button into yet another custom button. We’re talking building a whole new generation button in about ten seconds. Remarkable!

This is pure leverage. Assume that you need 100 EntryFields on each of ten forms used across a half-dozen applications. That’s 1000 Entryfields. In order to fit everything on your forms and maintain a consistent look-and-feel, you want to use 9-point fonts instead of the default 10, and a height of 19 pixels instead of the default 21.

You have two choices: use objects generated from the built-in EntryField class and change both properties 1000 times; or create a subclass (myCustomField, perhaps) and change the font and height properties only once. The better option is obvious. Whether you’re a developer or end-user, the time and effort you save through inheritance is mind-boggling. Pity those who use languages that don’t support it.

Reliability

If my experience is any gauge, debugging applications usually takes about as long as writing them. Sometimes longer. Not when you use inheritance. Because you only code changes, you never touch the classes above the class you’re working on. If you test each class carefully, you never need to revisit them. You only debug the changes in the current class

When you create StopButton, you know that BigButton (from which it was inherited) already works. It clicks, fires events, opens and closes appropriately. Banish it from your mind. Once you’ve locked a class down, it’s set. Nothing you do in the subclass touches the superclasses in any way.

One of the most annoying time-wasters in application development is the regression. A regression is code that used to run perfectly but got broken since the last time you tested it. The curse of regressions is that they’re sometimes hideously difficult to pin down. They can be caused by code dependencies – a change in some entirely different area of your application that causes the current code to fail. If you engineer your subclasses well, you can avoid regressions almost entirely.

It’s been my long-standing rule to never touch a finished class. I never go back and ‘rethink’ my original class once it’s been tested and debugged. If I need the class to behave in a different way, I subclass the original to implement the change. Why? Because who remembers, two years later, how many forms, datamodules, reports and applications depend on the original class? Why risk it? By the way, this applies to end-users using dQuery/Web as well as it does developers. Instead of creating one huge datamodule with 300 tables and 200 filters, break it down into subclasses. Inherit a simple datamodule into a more complex one. That way, you won’t break reports and applications and Web-deployed datamodules you generated six months ago - or even last week.

DEO - Deploying With Inheritance

Do you want your customers, your company and yourself to enjoy the lowest total-cost-of ownership in the industry? Would you like to be able to upgrade and update applications, datamodules and reports across an unlimited number of users in a just a second or two?

Combine DEO (Dynamic External Objects) with inheritance and you’ve got it.

DEO is dB2K’s distributed object model. Instead of deploying huge monolithic applications to each workstation or server, DEO allows you to copy individual objects to one or more central locations and access them from any application running on any workstation or server.

Subclassing enhances the benefits of DEO by orders of magnitude. If you use inheritance for every object in all of your applications, you’ll be able to make huge global changes by dragging a single object to a single server. We’re talking major changes in business rules, visual appearance, data relationships and reports, implemented in seconds.

And we’re not talking about making changes in just a form or two. If you design your classes cleverly, you’ll use them not just across forms, but across applications, Wiindows and the Web.

�

Figure � SEQ Figure * ARABIC �6� Using Subclasses For DEO

Take a look at Figures 6 and 7. They demonstrate how to design and implement global changes using subclasses.

The form shown at the top of Figure 6 represents the built-in base class, Form.

The next one down (MainForm) is inherited from ‘Form’, acquiring all the properties of ‘Form’, including top, left, height, width, text and color, all its methods, such as Open() and Close(), and all its events such as onOpen and onLeftMouseDown. What defines MainForm as a new class, distinct from ‘Form”, is that it adds objects to what it inherited: a graphic, a rectangle, a couple of pushbuttons and a large text object on the top.

Tip: MainForm is a special type of form class that’s not designed to run on its own (it has no working controls, so it has nothing to do) but instead serves as a superclass for all your other forms. Though this illustration adds mostly visual elements, such as the logo, for purposes of achieving a uniform look across forms and applications, it could include special methods or properties for operations you wish to include in every form. Perhaps you want to manage security on a form-by-form basis. Or enforce rules such as preventing the user from closing the form while the data is in ‘edit’ mode. Forms, like MainForm, that are designed exclusively for purposes of inheritance are called ‘Custom Forms’ in dB2K and usually use the .cfm extension when saved to disk.

The third class down (CustForm) represents a form subclassed from MainForm. Note that it’s inherited the same visual objects and the two pushbuttons,’OK’ and ‘Save’. What it has gained over MainForm is the container object “Person” that we discussed in an earlier section. Once the ‘Person” container is datalinked to a Customer query, this becomes your customer form.

Now the bad news. The company has changed its logo, graphics and product name. Theoretically, we have to change the appearance of three hundred forms in twenty different applications. Not if we use inheritance.

�

Figure � SEQ Figure * ARABIC �7� Global Changes Using Inheritance

Just change the appearance of ‘MainForm’. Compile it and drag it to your server. The next time anyone accesses any form derived from this one, the changes will be visible immediately. You’ve just changed three hundred forms in about three minutes without rebuilding or redeploying a single application.

The idea of global updates applies to every class, not just Forms. For instance, you may have certain business rules (terms of sale, the way late fees are calculated, etc.) that are occasionally subject to change. If you define these rules as custom subclasses, you can drag the new object to the Server and instantaneously change the way applications enforce the rules.

Building A Library

The best thing you can do for yourself, as a dB2K user or developer, is to build an Class library.

Reusability is one of the most important benefit of inheritance. Instead of reinventing the wheel every time you need an ‘OK ‘button or an entryfield using 9-point Arial, create a library of pre-defined components already customized to your particular preferences.

The same goes for data. Your company probably has one single set of customers and one single set of invoices. Which usually means that you’ll be using those two queries over and over again interactively, in applications and in reports. So, instead of defining these queries every time they’re needed, create a ‘custom’ dataModule that includes those two queries and their associated database objects. You can drag-and-drop this ‘custom dataModule’ to new forms and reports or use it to inherit more and more complex dataModules. A perfect candidate for your Class library.

Developer Tip: I use multiple libraries. Some classes are global (like entryfields, forms, dataModules) and I want to reuse them across applications and on both Windows and the Web. Other classes are very specific, unique to one application. For instance, the ‘check’ class is probably only useful in a checkbook application, while my ‘calendar’ class may be used anywhere. So, I keep a global library and then a separate library for each application. This is really easy in dB2K. Source Aliasing lets you define libraries by associating a folder with a name. For instance, I use ‘GlobalLib’ as a Source Alias that points to my global library. I define a new one for each application, such as ‘CheckbookLib”. Source Aliases let you specify an object not by physical location, but by name. For instance, if I want to create a local class from a global class, I’ll use syntax like:

Class checkingAccountButton of BigButton ;� 	 	from “:GlobalLib:BigButton.wfm”

Inheritance For The End-User

Up to this point, our discussion has been pretty technical. This seems like an appropriate place to talk about some real-world uses for inheritance, uses from which the dB2K end-user may gain some serious benefit.

In dB2K, all data is expressed as objects. Remote databases are opened, logged into and controlled by Database objects. Tables and SQL result sets are gathered and manipulated through Query objects. Session objects represent each user. StoredProc objects grant access to programs on remote servers.

The typical dB2K end-user will spend most of his or her time in the dQuery/Web tool, which is where data is defined, generated, entered, filtered, manipulated, organized and reported. This highly interactive tool is essentially a drag-and-drop graphic interface to a dataModule object. The dataModule is the container class designed to encapsulate multiple data objects.

DataModules are critical. They are the class that allows you to turn raw data into information – to define meaningful relationships between tables, queries, filters and output. Like all other classes, the Datamodule class is persistent. It memorializes data relationships and thereby applies all the benefits of OOP - encapsulation, reusability and inheritance – to data. As far as I can ascertain, dQuery/Web is the only database tool that treats live interactive data as classes and objects.

How does dQuery/Web use OOP to enhance your experience working with data? By letting you easily create almost unlimited views of your data without writing a single line of code.

Let’s use a simple real-world example: customers and invoices. A list of customers and a list of invoices provides very little meaningful information. The data needs to be sorted in some way, perhaps by customer number, customer name or customer type. Without imposing a sequence on the data, your customer table is nothing more than a chaotic collection of names and addresses. It’s data, not information.

The same holds true for your invoices. Until they’re listed by date or linked to their customers or filtered by their balance due, they’re just a random collection of documents stored in a table.

What dQuery/Web does is provide a drag-and-drop environment in which you may define the relationships between data, organize your data and specify the output format that imposes meaning upon it. Inheritance provides the ease-of-use and the speed that makes this process easy, fast, powerful and economical.

Note: There are certain functions in every program I use that I seem to avoid like the plague. Sometimes, the interface is simply not intuitive. Other times it just takes too many keystrokes to accomplish my task. Still other times, the operation requires too many steps or produces unreliable results. The key to elegant software, at least to me, is the ability to easily change my working document or data so that I can experiment with different results. The easier it is to experiment, the more times I’ll try it and, invariably, the better the outcome. Creating meaningful information is a particularly ‘experimental’ process, which is why spreadsheets have become the primary ‘data information’ tool. Spreadsheets allow you to experiment in a simple and easy to use environment, to apply ‘what if’ modeling to the raw data embedded in its cells. dQuery/Web brings the same kind of modeling to the database world, where your data may be in hundreds of thousands of records in hundreds of tables – quantities of data that would bring even the most powerful spreadsheet to its knees.

Ever created a ‘pivot’ spreadsheet that lets you drill down from each row on the first page to a related detail spreadsheet? Well, if you have 1000 rows in your top page, you’ll need a total of 1001 spreadsheets to display the rows and the detail for each. Not something you’re likely to do. dB2K, on the other hand, handles such one-to-many relationships with aplomb, courtesy of its data objects. Drag a field from one Query object to another and they’re linked. Done. One inheritable dataModule instead of 1001 spreadsheets.

We can see just how fast and easy inheritance is in dQuery/Web by playing around with our real-world customers/invoices example. We’ll start out with a simple dataModule (Fig. 8). The first step is to build a base class that we can build all our subclasses on.

Make sure dQuery/Web is open. Click on View/Navigator and then on the Navigator’s Table tab. Pick your database from the drop-down list on top, and then drag your customers table to dQuery/Web’s design surface. Keep in mind that dragging to the design surface automatically adds a Query object to the current dataModule. Do the same with any Invoices table.

You’ll note that dQuery/Web automatically generates a single Database object. It only needs one if both tables come from the same database. If you used two different types of tables (such as SQL Server and dBASE, as shown in our illustrations), you’ll get a database object for each.

Click on either of the Query objects and you’ll note that the data displayed below is in no particular order. This is called ‘natural order’ and is the order in which the rows were created. Natural order can be useful if you want to find ‘the last four customers entered’ or ‘someone who was entered this morning’. Beyond that, you’ll want to establish more meaningful orders when you subclass. This generic ‘natural order’ is perfect for our base class.

�

Figure � SEQ Figure * ARABIC �8� Base Class dataModule - Sales.dmd

That’s it. We’re done with the base class. We don’t want to define any views or reports right now. We’ll do that when we subclass, which gives us the opportunity to define unlimited views and reports based on these two queries.

Save the file as Sales.dmd.

Let’s try our first subclass. Go to the dQuery/Web main menu and click on File/Inherit From. Pick ‘Sales.dmd’ from the ‘Open File’ dialog. dQuery/Web will display what appears to be the same dataModule. In reality, it’s not. It’s a subclass of sales.dmd. We just haven’t made any changes yet, so it looks just like the base class.

Let’s make three small changes, changes that will dramatically impact the nature and purpose of this new dataModule subclass.

1. Right-Click on Invoices. From the menu that pops up, select ‘Set Index (Keys)’. Set the key to ‘CustNo’ when the ‘Set Index’ dialog pops up. What that does is to change the value of the ‘IndexName’ property of the rowset in Invoices1. IndexName dtermines the order in which the data in the Query is displayed. In this case, it will now be in Customer No. (CustNo) order. We’ve just built our first information by ordering our Invoices in the sequence of their Customer numbers.

2. The second change we’re going to do is to drag the CustNo field on the Customers1 Query object and drop it anywhere on the list of fields displayed our Invoices1 Query object. Note the arrow that now connects the two (fig. 9).When you dropped the field on Invoices1, dQuery/Web automatically changed the masterSource or MasterRowset and MasterFields properties of the Query object.

�

Figure � SEQ Figure * ARABIC �9� First Subclass – Customers And Invoices Drill-Down

The result? A persistent one-to-many, parent-child relationship between customers and invoices. Much more serious information! When you navigate through the Customers1 Query, the Invoices1 Query will display only invoices associated with the current customer. This is terrific for drill-down.

3. The last change is to click on the ‘Custom View’ tab in the data area of dQuery/Web. Drag a few fields from Customers1 down onto the ‘Custom View’ area.

Save the dataModule as ‘CustomerInvoices.dmd’

We’ve now got our first subclass: CustomersInvoices.dmd. What’s in the .dmd file? Just the three changes we made since we saved the base class. Easy, isn’t it? Yet we’ve created huge amounts of usable live information from unconstructed data. CustomerInvoices.dmd is a one-to-many, customers-to-invoices drill-down lookup. And it took less than a minute to create.

Let’s take this one step further with another subclass of Sales.dmd. Using the same Query objects and view, we’re going to generate a totally different perspective on our data. This one also has only three mouse-driven changes:

1) Right click on the Invoices1 Query object. Select ‘Set Index (Keys)’ from the popup menu and this, time, set the order to ‘Date’.

2) Drag the CustNo field from the Invoices1 Query and drop it on the Customers1 Query.

3) On the ‘Custom View’ page, change the Navigation Query to ‘Invoices1’.

We’re done. Save this dataModule as ‘InvoicesByDate.dmd’

�

Figure � SEQ Figure * ARABIC �10� InvoicesByDate

�What have we got now? A view of invoices, by date, with a link to the customers table (fig. 10). Every time you move through the invoices, it will find the corresponding customer information in the Customers1 query. Note that the data in the Custom View is entirely different now, driven by invoices instead of customers.

What have we accomplished? With about three minutes’ work, a dozen or so mouse clicks and a little imagination, we’ve created three completely different views of the data in our customers and invoices tables. We’ve built information from data. To be completely accurate, we’ve built three dataModule classes, any of which can be loaded and viewed and edited at any time.

And there’s no practical limit to the number of useful views you can generate from those two humble queries. Create a subclass of InvoicesByDate. Set a filter to “date=this week”. Voila! You’ve got a weekly sales report. This one’s just four more mouse clicks.

For more information on using dQuery/Web and the data classes, see the chapters ‘Using dQuery/Web’ and ‘OODML’

How To Subclass Using Code

This being only an introduction to OOP, I won’t discuss coding classes in much detail. You’ll find this topic covered extensively in the dBL chapter.

The class file is a very special version of a dBL source file. Unlike almost all other source files, the class has certain clearly delineated sections. It starts with a class declaration, followed by the constructor, the area of the file in which the properties of the class are set and any contained objects are instantiated.

Section�Sample Code��Declaration�Class CustomersForm of SalesForm from “SalesForm.cfm”��Constructor� with (this)

Height = 255

Width = 740

 endWith

 this.pushButton1 = new pushButton(this)

 with (this.pushButton1)

onClick = CLASS::saveChanges

 endWith��Methods Area� function saveChanges

if msgBox(‘Save Changes. Are You Sure?,16,16) # 6

 return false

endif

form.rowset.save()

return true��Close�endClass��

Figure � SEQ Figure * ARABIC �12� Sections of a Class File

The Methods Area follows the constructor and consists of all the methods of the class, be they stand-alone methods or event handlers

Take a look at the class declaration line in Figure 12. That’s the line that defines the inheritance of this class. The classname following the ‘Of’ keyword indicates the superclass from which this class was inherited. The “From” keyword identifies the source code file in which the superclass code can be found.

So, Class CustomersForm of SalesForm from “SalesForm.cfm” means:

This class is called CustomersForm.

It is inherited from the class SalesForm.

Which can be found in SalesForm.cfm.

How to Subclass Visually

Several of the visual designer tools in dB2K supply menu options or dialogs that allow you to create new subclasses automatically.

Some subclass by setting a Custom Form Class, A Custom Form Class is a ‘superclass’ set up as the default for the design tool. In other words, every time you open or edit a class using the visual design tool, it will open as a subclass of your Custom Form Class.

The Form Designer is one such tool. When you first run dB2K, the base class ‘Form’ is used as the default Custom Form Class. Therefore, unless you change the Custom Form Class, each new form you create in the Form Designer will be a generic empty form.

However, it’s almost always advisable to base your forms on your own Custom Form Class. As shown in fig.6 and 7, a superclass allows you to impose consistent styles and functionality across all forms in an application, or across all your applications.

To create your own Custom Form Class, lay out your superclass in the Form Designer and save it with a .cfm extension. dB2K will know that you’re saving your work as a superclass, not a regular form class, and will write the appropriate code automatically.

Once you’ve designed and saved your Custom Form Class, start a new form. Click on the Form Designer’s ‘File/Set Custom Form Class’ menu option. When the dialog appears, type in or browse for the .cfm file in which your superclass is stored. dB2K will search the file for all appropriate classes (you may have more than one class in a source file) and display all available classes in the drop down labelled ‘Class Name’. Pick the class you want to use and click OK.

The Form Designer will refresh your form, only now it will show all the objects and properties inherited from its new superclass. You’ve just subclassed with a mouse. This is called ‘Visual Inheritance’, which is supported in very few development environments.

�

Figure � SEQ Figure * ARABIC �13� Changing The Custom Form Class In The Form Designer

Warning: The ‘Set Custom Form Class’ option only looks for .cfm files, the default extension for base classes. You can inherit from any file that contains a form-based class, but if it’s not stored in a .cfm file, you’ll have to do it in the Source Editor manually. The visual tool only supports .cfm files.

Another way to create a class, visually, is to use the ‘Save As Custom’ option available in many of the dB2K design tools. Just highlight the component you want to save as a class, select ‘File/Save As Custom’ from the main menu, indicate the filename in which you wish to store it and the name you wish to assign to it. Click OK. dB2K will take whatever components you highlighted (you can select multiple components) and write a new class with all the properties of the selected objects. This is the best way to develop visual component classes, such as pushbuttons, entryfields, text and images.

When To Inherit. Instance or Class?

The glib answer, and the one I usually give, is always subclass. Always. But that’s a bit of overkill. In general, I truly believe that everything you do should be done with a subclass. Why? So you can reuse the class.

Instances are not reusable. If you do all your customization on the object itself, you can never apply those changes to any other object. And how do you know, when you first design the object, whether you’ll ever need it again?

Certain cases are fairly obvious. If you need an object that’s clearly a one-time use – an object so customized that it will only work in this particular case, then go ahead and set the properties of the object manually using the Inspector or the Source Editor.

But if there’s ever any possibility that you’ll use this object again, or even an object similar to this one (remember, you can subclass again to define the differences), by all means use a subclass.

This is the power of OOP, - the ability to define entire classes of objects and apply the design and behaviors of the class to individual objects or other classes.

That’s probably as far as we should go for now. After all, this was supposed to be a brief introduction to OOP. There’s much more to object-oriented development, and we’ll deal with the rest of it throughout the remainder of this book. My intention was to provide only a basic understanding of OOP to serve as a foundation for the chapters that follow.

Once again, let me assure you that you don’t have to know every detail of everything written here. If you don’t feel you have even a vague handle on what OOP is and how it works, you might want to go back and review a few of the topics. It’s been my experience that difficult concepts often get a lot easier to grasp the second time around.

��dB2K The Information Toolset 	 Introduction

�PAGE �35�

��dB2K The Information Toolset 	 A Brief Introduction To OOP

Figure � SEQ Figure * ARABIC �11� Second Subclass, Invoices By Date

