
Language Reference

dBASE Inc. € Vestal, NY € Santa Cruz, CA
http://www.dbase2000.com € news://news.dbase2000.com

Visual dBASE®

dBASE Inc. or Borland International may have patents and/or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1984,1995 Borland International, 1999 dBASE Inc. All rights reserved. All dBASE product names are
trademarks or registered trademarks of dBASE Inc. All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their
respective holders.

Printed in the U.S.A.

i

Introduction 1
How this book is organized 1
Typographical conventions 2

Chapter 1
Language definition 3
 Language elements 3

Commands .3
Functions. .4

Built-in functions. 4
User-defined functions (UDFs) 4

System memory variables4
Preprocessor directives 5
Classes .5

Standard classes 6
Custom classes 6

dBASE statements 6
Syntax .7
Arguments. .7

Names . 8
Table and file names. 8
Aliases . 9
Database names 9
Field names . 10
Memory variables 10
Arrays . 11
Name skeletons. 11
Scope options 11

Expressions . 12
Data types . 12

Character data. 13
Date data. . 14
Numeric data . 14
Logical data . 14
Memo data. . 15
Binary and OLE data. 15
Bookmark data 15
NULL data type. 16
Function-pointer data 17
Codeblock data 17

Statement codeblock. 18
Expression codeblocks 18

Object-reference data. 19
Operators. . 19

Assignment operators 20
Numeric operators 20
Relational operators 20
Logical operators 21
String operators 22

Object operators 22
NEW operator. 22
Index operator 22
Dot operator. 23

Function operators. 23
Call operator 23
Member call operator 24
Index call operator 24

Scope resolution operator 25
Precedence of operators. 26

Chapter 2
Syntax conventions 27
Syntax notation 27
Guidelines to interpreting the syntax 28

Chapter 3
Language elements by category 31

Commands and functions 39

Chapter 4
Commands and functions 41
!. . 41
&&. . 41
* . 42
? . 43
?? . 46
??? . 46
@...CLEAR . 47
@...FILL . 47
@...SAY...GET . 47
@...SCROLL . 47
@...TO . 48
ABS() . 48
ACCEPT . 48
ACCESS() . 49
ACOPY(). . 49
ACOS() . 50
ACTIVATE MENU 51
ACTIVATE POPUP. 51
ACTIVATE SCREEN. 52
ACTIVATE WINDOW. 52
ADEL() . 52
ADIR() . 55

Contents

ii

AELEMENT(). 57
AFIELDS(). . 59
AFILL() . 60
AGROW() . 61
AINS() . 64
ALEN(). . 67
ALIAS() . 68
ANSI() . 69
APPEND . 70
APPEND AUTOMEM. 72
APPEND FROM 73
APPEND FROM ARRAY 75
APPEND MEMO 77
ARESIZE(). . 78
ASC(). . 81
ASCAN() . 82
ASIN() . 84
ASORT() . 84
ASUBSCRIPT() 87
AT(). . 89
ATAN() . 90
ATN2(). . 91
AVERAGE . 92
BAR(). . 93
BARCOUNT() 93
BARPROMPT(). 94
BEGINTRANS() 94
BINTYPE(). . 96
BITAND() . 97
BITLSHIFT() . 98
BITOR() . 99
BITRSHIFT() . 99
BITSET() . 100
BITXOR() . 101
BLANK . 102
BOF() . 103
BOOKMARK() 104
BROWSE . 105
BUILD . 110
CALCULATE 111
CANCEL . 113
CATALOG() 114
CD. 115
CDOW() . 116
CEILING(). 117
CENTER() . 118
CERROR() . 120

CHANGE. 121
CHANGE() . 122
CHARSET() . 123
CHOOSEPRINTER(). 123
CHR(). 124
CLASS...ENDCLASS 125
CLEAR . 128
CLEAR AUTOMEM 129
CLEAR FIELDS 131
CLEAR GETS 131
CLEAR MEMORY 131
CLEAR MENUS. 132
CLEAR POPUPS 133
CLEAR PROGRAM 133
CLEAR SCREENS. 134
CLEAR TYPEAHEAD 134
CLEAR WINDOWS 134
CLOSE... . 135
CMONTH() . 137
COL() . 137
COMMIT(). 138
COMPILE . 139
CONTINUE . 140
CONVERT . 141
COPY . 143
COPY BINARY 145
COPY FILE. 146
COPY INDEXES. 147
COPY MEMO 148
COPY STRUCTURE 150
COPY TABLE 151
COPY TAG. 152
COPY TO ARRAY 153
COPY TO...STRUCTURE EXTENDED 155
COS() . 157
COUNT. 159
CREATE . 160
CREATE APPLICATION 161
CREATE CATALOG 162
CREATE COMMAND. 164
CREATE FILE 165
CREATE FORM 165
CREATE LABEL 167
CREATE MENU 168
CREATE POPUP 168
CREATE QUERY 169
CREATE REPORT 169

iii

CREATE SCREEN 171
CREATE SESSION 171
CREATE VIEW 174
CREATE VIEW...FROM ENVIRONMENT . 174
CREATE...FROM 175
CREATE...STRUCTURE EXTENDED. 177
CTOD() . 179
DATABASE() 180
DATE(). 181
DAY() . 181
DBERROR() . 182
DBF() . 183
DBMESSAGE() 184
DEACTIVATE MENU. 184
DEACTIVATE POPUP 185
DEACTIVATE WINDOW 185
DEBUG . 185
DECLARE . 187
DEFINE. 189
DEFINE BAR 193
DEFINE BOX 193
DEFINE COLOR 194
DEFINE MENU. 195
DEFINE PAD 195
DEFINE POPUP 196
DEFINE WINDOW 196
DELETE . 196
DELETE FILE 198
DELETE TABLE 198
DELETE TAG 199
DELETED() . 200
DESCENDING() 201
DIFFERENCE(). 202
DIR/DIRECTORY 203
DISKSPACE(). 205
DISPLAY. 206
DISPLAY COVERAGE 208
DISPLAY FILES. 209
DISPLAY MEMORY 211
DISPLAY STATUS 212
DISPLAY STRUCTURE 214
DMY() . 216
DO. 217
DO CASE. 219
DO WHILE . 220
DO...UNTIL . 222
DOS . 223

DOW() . 224
DTOC(). 225
DTOR(). 226
DTOS() . 227
EDIT. 228
EJECT . 233
EJECT PAGE. 234
ELAPSED() . 235
EMPTY() . 237
EOF() . 238
ERASE . 239
ERROR() . 240
EXP() . 241
EXTERN . 242
FACCESSDATE(). 247
FCLOSE() . 247
FCREATE() . 248
FCREATEDATE() 250
FCREATETIME() 250
FDATE() . 251
FDECIMAL() 252
FEOF() . 253
FERROR() . 254
FFLUSH() . 255
FGETS() . 256
FIELD(). 258
FILE() . 259
FIND . 259
FKLABEL() . 261
FKMAX() . 262
FLDCOUNT(). 262
FLDLIST() . 263
FLENGTH() . 264
FLOCK() . 265
FLOOR() . 267
FLUSH . 268
FNAMEMAX() 269
FOPEN() . 269
FOR() . 271
FOR...NEXT . 272
FOUND() . 274
FPUTS() . 275
FREAD() . 277
FSEEK() . 278
FSHORTNAME(). 279
FSIZE() . 280
FTIME() . 281

iv

FUNCTION . 282
FUNIQUE() . 283
FV() . 284
FWRITE() . 286
GENERATE . 288
GETCOLOR(). 288
GETDIRECTORY() 289
GETENV(). 290
GETEXPR() . 291
GETFILE() . 292
GETFONT() . 294
GO. 294
HELP . 296
HOME() . 297
HTOI() . 297
ID() . 298
IF. 299
IIF() . 301
IMPORT . 302
INDEX . 303
INKEY() . 306
INPUT . 307
INSERT. 309
INSERT AUTOMEM. 310
INSPECT(). 312
INT() . 313
ISALPHA() . 314
ISBLANK() . 316
ISCOLOR() . 317
ISLOWER() . 317
ISMOUSE() . 318
ISTABLE() . 319
ISUPPER() . 320
ITOH() . 320
JOIN. 321
KEY() . 323
KEYBOARD . 324
KEYMATCH() 324
LABEL FORM. 325
LASTKEY() . 327
LDRIVER() . 327
LEFT() . 328
LEN(). 330
LENNUM() . 331
LIKE() . 331
LINENO() . 333
LIST . 334

LISTCOUNT(). 335
LISTSELECTED(). 337
LKSYS() . 338
LOAD DLL. 340
LOCAL . 341
LOCATE . 342
LOCK(). 344
LOG(). 344
LOG10() . 345
LOGOUT . 346
LOOKUP(). 346
LOWER() . 348
LTRIM() . 349
LUPDATE() . 350
MAX() . 350
MCOL() . 351
MD. 352
MDOWN(). 352
MDX() . 352
MDY() . 353
MEMLINES() 354
MEMORY() . 356
MENU() . 356
MESSAGE() . 357
MIN() . 357
MKDIR . 359
MLINE() . 360
MOD() . 360
MODIFY... 361
MODIFY STRUCTURE 362
MONTH() . 364
MOVE WINDOW. 365
MROW() . 365
MSGBOX(). 365
NDX() . 368
NETWORK() 369
NEXTKEY() . 369
ON BAR . 371
ON ERROR. 371
ON ESCAPE . 372
ON EXIT BAR 374
ON EXIT MENU 374
ON EXIT PAD 374
ON EXIT POPUP 374
ON KEY . 375
ON MENU . 377
ON MOUSE . 378

v

ON NETERROR 378
ON PAD . 379
ON PAGE . 379
ON POPUP . 381
ON READERROR 381
ON SELECTION BAR 382
ON SELECTION FORM. 383
ON SELECTION MENU 384
ON SELECTION PAD 384
ON SELECTION POPUP 384
OPEN DATABASE. 385
OPEN FORM 386
ORDER(). 387
OS() . 388
PACK . 389
PAD() . 390
PADPROMPT() 390
PARAMETERS 391
PAYMENT() 391
PCOL() . 393
PCOUNT() . 394
PI() . 394
PLAY SOUND 395
POPUP() . 397
PRINTJOB...ENDPRINTJOB 397
PRINTSTATUS() 398
PRIVATE. 399
PROCEDURE 401
PROGRAM() 406
PROMPT(). 407
PROPER() . 408
PROTECT . 409
PROW() . 411
PUBLIC. 412
PUTFILE() . 414
PV(). 415
QUIT . 417
RANDOM() . 417
RAT(). 419
READ . 421
READKEY(). 421
READMODAL() 421
RECALL . 423
RECCOUNT() 424
RECNO() . 425
RECSIZE() . 426
REDEFINE. 427

REFRESH. 428
REINDEX. 429
RELATION() 430
RELEASE. 431
RELEASE AUTOMEM. 433
RELEASE DLL. 434
RELEASE MENUS 435
RELEASE OBJECT 435
RELEASE POPUPS 436
RELEASE SCREENS 436
RELEASE WINDOWS 437
RENAME. 437
RENAME TABLE. 438
REPLACE . 439
REPLACE AUTOMEM 441
REPLACE BINARY. 443
REPLACE FROM ARRAY. 445
REPLACE MEMO 447
REPLACE MEMO...FROM 448
REPLACE OLE 449
REPLICATE() 450
REPORT FORM 451
RESOURCE() 452
RESTORE. 453
RESTORE IMAGE 454
RESTORE SCREEN. 456
RESTORE WINDOW. 456
RESUME . 456
RETRY . 457
RETURN . 458
RIGHT() . 460
RLOCK() . 461
ROLLBACK() 463
ROUND() . 464
ROW() . 465
RTOD(). 465
RTRIM() . 466
RUN. 467
RUN() . 467
SAVE . 469
SAVE SCREEN 470
SAVE WINDOW 470
SCAN . 470
SECONDS() . 472
SEEK . 473
SEEK() . 475
SELECT . 476

vi

SELECT() . 477
SET . 478
SET ALTERNATE 479
SET AUTOSAVE 481
SET BELL. 482
SET BLOCKSIZE 483
SET BORDER 484
SET CARRY . 484
SET CATALOG 485
SET CENTURY 487
SET COLOR OF. 488
SET COLOR TO. 488
SET CONFIRM 489
SET CONSOLE 489
SET COVERAGE 490
SET CUAENTER 492
SET CURRENCY 493
SET CURSOR 494
SET DATABASE 495
SET DATE . 496
SET DATE TO. 497
SET DBTYPE. 499
SET DECIMALS 500
SET DEFAULT 501
SET DELETED 501
SET DELIMITERS 502
SET DESIGN. 502
SET DEVELOPMENT 503
SET DEVICE. 504
SET DIRECTORY 504
SET DISPLAY 506
SET ECHO . 506
SET EDITOR. 506
SET ENCRYPTION. 508
SET ERROR . 509
SET ESCAPE. 510
SET EXACT . 511
SET EXCLUSIVE 513
SET FIELDS . 514
SET FILTER . 516
SET FORMAT 518
SET FULLPATH 518
SET FUNCTION 519
SET HEADINGS 520
SET HELP . 521
SET IBLOCK. 522
SET INDEX . 524

SET INTENSITY. 526
SET KEY . 526
SET KEY TO . 527
SET LDCHECK 529
SET LDCONVERT 530
SET LIBRARY 531
SET LOCK . 532
SET MARGIN 534
SET MARK. 535
SET MBLOCK 536
SET MEMOWIDTH 538
SET MESSAGE 539
SET MOUSE . 539
SET NEAR . 539
SET ODOMETER 540
SET ORDER . 541
SET PATH . 542
SET PCOL . 543
SET POINT. 545
SET PRECISION. 546
SET PRINTER 547
SET PROCEDURE 549
SET PROW . 551
SET REFRESH 552
SET RELATION 553
SET REPROCESS 557
SET SAFETY . 558
SET SEPARATOR. 559
SET SKIP . 560
SET SPACE. 561
SET STEP . 562
SET TALK . 562
SET TIME. 563
SET TITLE . 564
SET TOPIC . 565
SET TYPEAHEAD 566
SET UNIQUE 566
SET VIEW . 567
SET WINDOW OF MEMO 568
SET() . 569
SETTO() . 571
SHELL() . 573
SHOW MENU. 574
SHOW OBJECT 575
SHOW POPUP 576
SIGN() . 576
SIN() . 577

vii

SKIP. 578
SLEEP. 580
SORT . 581
SOUNDEX() 584
SPACE() . 586
SQLERROR() 587
SQLEXEC() . 588
SQLMESSAGE() 589
SQRT() . 590
STATIC . 591
STORE . 593
STORE AUTOMEM 595
STORE MEMO 596
STR() . 598
STUFF() . 599
SUBSTR() . 601
SUM. 602
SUSPEND . 603
TAG() . 605
TAGCOUNT() 606
TAGNO() . 607
TAN() . 608
TARGET() . 609
TEXT . 610
TIME() . 610
TOTAL . 611
TRANSFORM(). 612
TRIM() . 613
TYPE . 614
TYPE() . 615
UNIQUE() . 617
UNLOCK . 618
UPDATE . 619
UPDATED(). 620
UPPER() . 620
USE . 621
USER() . 625
VAL(). 625
VALIDDRIVE(). 626
VARREAD() 627
VERSION() . 627
WAIT . 628
WINDOW() . 629
WORKAREA() 629
YEAR(). 630
ZAP . 630

System memory variables 633

Chapter 5
System memory variables 635
_alignment . 635
_app . 636
_box . 638
_curobj . 639
_dbwinhome. 640
_indent . 640
_lmargin . 642
_padvance . 643
_pageno. 644
_pbpage. 645
_pcolno . 646
_pcopies. 647
_pdriver. 648
_peject. 649
_pepage . 650
_pform . 651
_plength . 653
_plineno. 654
_ploffset. 656
_porientation. 656
_ppitch . 657
_pquality . 658
_pspacing. 659
_rmargin . 661
_tabs . 662
_wrap . 663

Preprocessor directives 665

Chapter 6
Preprocessor directives 667
#define . 667
#if . 670
#ifdef . 671
#ifndef. 672
#include. 674
#pragma . 675
#undef. 676

viii

Classes 677

Chapter 7
Classes 679
CLASS ARRAY 679
CLASS ASSOCARRAY 681
CLASS BROWSE 682
CLASS CHECKBOX 686
CLASS COMBOBOX. 690
CLASS DDELINK 693
CLASS DDETOPIC. 694
CLASS EDITOR. 697
CLASS ENTRYFIELD 700
CLASS FORM 704
CLASS IMAGE 708
CLASS LINE. 710
CLASS LISTBOX 712
CLASS MENU 716
CLASS MENUBAR. 719
CLASS OBJECT 721
CLASS OLE . 721
CLASS OLEAUTOCLIENT. 725
CLASS PAINTBOX. 726
CLASS POPUP 729
CLASS PUSHBUTTON 731
CLASS RADIOBUTTON 735
CLASS RECTANGLE 739
CLASS SCROLLBAR. 742
CLASS SHAPE 745
CLASS SPINBOX 746
CLASS TABBOX 749
CLASS TEXT 752

Properties 755

Chapter 8
Properties 757
AbandonRecord() 757
ActiveControl 757
Add() . 759
Advise() . 760
Alias. 760
Alignment . 761
Anchor . 763
Append. 763
AutoSize . 764

Before . 765
BeginAppend() 766
Border. 770
BorderStyle. 771
Bottom . 772
CanClose . 773
Checked. 774
ClassName . 775
Close() . 776
ColorHighlight 777
ColorNormal. 777
Copy() . 779
Count() . 782
CUATab . 783
CurSel . 784
Cut() . 785
DataLink . 785
DataSource . 786
Default . 788
Delete . 789
Delete() . 790
DesignView . 791
Dimensions. 792
Dir(). 793
DirExt(). 794
DisabledBitmap 795
DoVerb() . 796
DownBitmap. 798
DropDownHeight. 799
EditCopyMenu 800
EditCutMenu 801
EditPasteMenu 801
EditUndoMenu 802
Element(). 803
Enabled . 804
EscExit . 805
Execute() . 806
Fields . 807
Fields() . 808
FieldWidth . 809
Fill() . 810
First . 811
FirstIndex. 812
FocusBitmap . 813
Follow. 814
FontBold . 815
FontItalic . 815

ix

FontName . 816
FontSize . 817
FontStrikeOut 818
FontUnderline. 819
Function . 820
GetTextExtent(). 821
Group. 822
Grow() . 823
Header3D . 824
Height . 826
HelpFile . 827
HelpID . 828
hWnd . 828
Icon . 829
ID . 830
Initiate() . 831
Insert() . 832
IsIndex() . 833
IsRecordChanged() 833
Key . 834
Keyboard() . 835
Left . 836
LineNo . 837
LinkFileName 837
Maximize. 839
MaxLength. 840
MDI . 841
MenuFile . 842
Minimize . 843
Mode . 844
Modify . 845
MousePointer 846
Move() . 847
Moveable. 848
Multiple . 849
Name . 850
NextCol() . 851
NextIndex() . 852
NextObj. 852
NextRow(). 853
Notify(). 854
OldStyle . 855
OleType . 855
OnAdvise . 856
OnAppend. 857
OnChange . 858
OnChar . 859

OnClick . 861
OnClose. 862
OnExecute . 863
OnFormSize . 864
OnGotFocus . 865
OnHelp . 866
OnInitMenu . 867
OnKeyDown. 868
OnKeyUp. 869
OnLeftDblClick 869
OnLeftMouseDown 871
OnLeftMouseUp 873
OnLostFocus . 875
OnMiddleDblClick 876
OnMiddleMouseDown 878
OnMiddleMouseUp 880
OnMouseMove 882
OnMove . 884
OnNavigate . 885
OnNewValue 886
OnOpen. 887
OnPaint . 888
OnPeek . 889
OnPoke . 890
OnRightDblClick 891
OnRightMouseDown. 893
OnRightMouseUp 895
OnSelChange 897
OnSelection. 898
OnSize. 899
OnUnadvise . 901
Open() . 901
PageCount() . 902
PageNo . 903
Parent . 905
Paste() . 906
PatternStyle . 906
Peek() . 907
Pen. 908
PenStyle. 909
PenWidth. 910
Picture. 911
Poke(). 912
PopupMenu . 913
Print(). 914
RangeMax . 915
RangeMin . 916

x

RangeRequired 917
ReadModal() 918
Reconnect() . 919
Refresh() . 919
Release() . 921
RemoveAll(). 922
RemoveKey() 922
Resize(). 923
Right . 924
SaveRecord() 925
ScaleFontName 925
ScaleFontSize 926
Scan(). 927
ScrollBar . 929
SelectAll . 930
Selected() . 931
Separator . 931
Server . 932
ServerName . 933
SetFocus() . 934
ShapeStyle . 935
ShortCut . 936
ShowDeleted 936
ShowHeading 937
ShowRecNo . 938
ShowSpeedTip 939
Size . 940
Sizeable . 940
Sort() . 941
Sorted . 942
SpeedBar . 943
SpeedTip . 944
SpinOnly . 945
StatusMessage. 945
Step . 946
Style . 947
Subscript() . 948
SysMenu . 949
TabStop. 950
Terminate() . 951
Text . 952
TimeOut . 953
Toggle. 953
Top . 954
Topic . 955
TopMost . 956

TrackRight . 958
Unadvise() . 958
Undo() . 959
UpBitmap . 960
Valid. 961
ValidErrorMsg. 962
ValidRequired 963
Value . 964
Vertical . 965
View. 965
Visible . 967
When . 968
Width . 969
WindowMenu 970
WindowState 971
Wrap . 972

SQL 975

Chapter 9
Local SQL 977

Memory variable substitution in SQL queries.977
Naming conventions 977

Table names977
Column names 978

ALTER TABLE 978
CREATE INDEX 979
CREATE TABLE 979
DELETE FROM 981
DROP INDEX 982
DROP TABLE 982
INSERT INTO 983
SELECT . 984
UPDATE . 985

Appendixes 987

Appendix A
Changes since dBASE IV 2.0 989
New language elements 989
Enhanced language elements 994
Unsupported language elements 998

xi

Appendix B
Visual dBASE specifications 1001

.DBF tables. 1001
Indexes . 1001
Fields . 1002
Multiuser. 1002
Procedures. 1002
Files . 1003
Miscellaneous 1003

Appendix C
File structures 1005
Table header and records 1005

Table header structure 1005
Table records 1006

Binary, memo, and OLE fields and .DBT files1007

Appendix D
INKEY() and READKEY() values 1009

Appendix E
ASCII character chart
(code page 437) 1013

1014

Appendix F
Error codes 1015

Index 1031

xii

I n t r o d u c t i o n 1

I n t r o d u c t i o n

The Language Reference describes the dBASE language as it's implemented in Visual
dBASE. It contains specification-level documentation for the commands, functions,
system memory variables, preprocessor directives, and classes.

Use this manual to look up how a particular command or function works, what syntax
is required, and for examples on how to use it. You can obtain the same information in
online Help.

How this book is organized
• Chapter 1, “Language definition,” describes the basic concepts—components of the

dBASE language, statement elements, data types, expressions, and operators.

• Chapter 2, “Syntax conventions,” describes the symbols and conventions used in
presenting the syntax of language elements, and provides guidelines for interpreting
the syntax notation.

• Chapter 3, “Language elements by category,” lists all the commands, functions, and
other language elements categorically by the type of operation they perform.

• Chapter 4, “Commands and functions,” provides an alphabetical listing and
description of commands and functions.

• Chapter 5, “System memory variables,” provides an alphabetical listing and
description of the system memory variables available to control various printer and
environmental settings.

• Chapter 6, “Preprocessor Directives,” provides an alphabetical listing and
description of the preprocessor directives which allow you to control program
compilation.

• Chapter 7, “Classes,” provides an alphabetical listing and description of the standard
classes that Visual dBASE provides.

• Chapter 8, “Properties,” provides an alphabetical listing and description of the
standard class properties.

2 L a n g u a g e R e f e r e n c e

• Chapter 9, “Local SQL,” describes the syntax of SQL commands that can be used
within dBASE when working with non-database server data (i.e. dBASE and
Paradox tables).

• Appendix A, “Changes since dBASE IV,” summarizes the changes to the dBASE
language since dBASE IV; it lists the new, changed, and discontinued commands and
functions.

• Appendix B, ”Visual dBASE specifications,” provides specifications of Visual dBASE
capacities and limits.

• Appendix C, “File structures,” describes the structure of Visual dBASE table and
memo files.

• Appendix D, “INKEY() and READKEY() values,” lists the values returned by the
INKEY() and READKEY() functions.

• Appendix E, “ASCII character chart,” lists the character codes in code page 437.

• Appendix F, “Error codes,” lists Visual dBASE error codes and messages.

Typographical conventions
The Language Reference uses specific typographical conventions to help you distinguish
among the various language and syntax elements. These conventions are used to make
the manual more readable.

In addition to the typographical conventions listed in this table, Chapter 2 provides
specific information for interpreting the symbols used in the syntax of commands,
functions, and other language elements.

Convention Applies to Examples

Italic Variable names, array names, arguments The cNames variable, array aCosts,
<filename> argument

ALL CAPS Command and function names and
keywords, DOS files and directories

BROWSE, EOF(), INDEX ...TAG
CUSTOMER.DBF

Initial caps Procedures, applications, table names, field
names, menu commands.

Accounts application, Price field

Camel caps Property names OnLeftDblClk
Monospaced
font

Code examples USE Names

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 3

C h a p t e r

1
Chapter 1Language definition

The dBASE language is a structured programming language designed primarily for
developing database applications. It consists of a collection of standard commands,
functions, and classes that you use to create applications to store, manage, and process
data.

This chapter defines the standard language elements in dBASE and describes the basic
items needed to construct statements that you can enter in the Command window or in a
program. A statement is a complete instruction that directs dBASE to perfom a specific
task.

 Language elements
The standard language elements in Visual dBASE are

• Commands

• Functions

• System memory variables

• Preprocessor directives

• Classes

Commands
Commands tell dBASE to perform certain actions. A statement often starts with a
command (statements are sometimes called command statements). Although a statement
can contain another language element, such as a function, it can contain only one
command.

The following statement, for example, uses the ? command and the DATE() function to
display the current date:

4 L a n g u a g e R e f e r e n c e

? DATE()

Most commands consist of options (sometimes called clauses) that you can use to tailor
the command’s operation to accomplish specific tasks. With the USE command, for
example, you can simply open a table, or add the EXCLUSIVE option to open the table
exclusively.

USE mytable && opens mytable.dbf
USE mytable EXCLUSIVE && opens mytable.dbf exclusively

A statement can begin with either a command keyword or with one of several different
implicit commands. Implicit commands include

• A memory variable assignment, which is an implicit STORE command:

x=45 && same as STORE 45 TO x

• A record number, which is an implicit GO command:

23 && same as GO 23

Functions
dBASE recognizes two kinds of functions: built-in and user-defined. A function returns
a value and consists of a keyword followed by left and right parentheses. The
parentheses can contain arguments that are passed to the function for processing. In the
following statement, for example, the SQRT() function returns the square root of 36:

? SQRT(36)

Built-in functions
dBASE built-in functions generally perform arithmetic, text, date, logical, or conversion
operations. Some functions, such as RLOCK() and SEEK(), perform an action and
return a value. Some functions are useful for querying purposes; RECNO(), for
example, returns the number of the current record, and DBF() returns the name of the
table in the current work area.

User-defined functions (UDFs)
UDFs are functions you create and call in a program just as you would call a built-in
function. To define a UDF, use the FUNCTION command followed by the name of the
UDF, an optional parameter list, and the sequence of commands to execute when the
UDF is called. For more information about creating UDFs, see the FUNCTION
command in Chapter 4 of this manual and Chapter 4 in the Programmer’s Guide.

System memory variables
System memory variables are memory variables that dBASE maintains automatically.
These variables are typically used to specify environmental and printer settings, and to
control the format of printed and screen output.

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 5

At start-up, dBASE initializes system memory variables to their defaults. The defaults
for some system memory variables that control printer settings, such as _pdriver and
_porientation, are determined by the Windows printer setup defaults.

To distinguish them from user-defined memory variables, system memory variables
begin with the underscore (_) character.

Like memory variables that you define, system memory variables follow the same
scoping rules. When a program that contains privately declared system memory
variables has finished running, the variables automatically revert to their original
settings.

Unlike user-defined memory variables, however, system memory variables cannot be
released from memory. You can only change and query their values.

Preprocessor directives
Preprocessor directives are statements you insert in your dBASE programs to instruct
the compiler how to compile the program. You can use them to replace text in a
program, set up conditional compilation, or specify compiler options.

With these capabilities, you can, for example, maintain one code base and compile
different portions of your code depending on the platform it runs on.

Preprocessor directives begin with a number sign (#). For more information about using
preprocessor directives, see Chapter 7 in the Programmer’s Guide.

Classes
Classes are specifications, or templates, for creating objects. Visual dBASE provides
many standard classes that you can use to create common Windows objects, such as
radio buttons, pushbuttons, and entry fields.

When you create an object, you create an instance of that object’s class. The object will
have the predefined attributes specified in the class. These attributes are called properties.
Once you create an object, you can customize its characteristics by assigning values to
the properties. Some object properties have code associated with them, and perform
operations on the object. These properties are called methods.

As a programmer, you work with objects as collections of memory variables, where
each property and method is a memory variable. This makes it easy for you to
dynamically add properties to and change the properties of an object.

The following example shows how to create an entry field from the Entryfield class, and
shows some of the properties you can set:

DEFINE ENTRYFIELD CustomerName OF CustomerForm;
PROPERTY;

Width 20.00,;
Height 2.00,;
Top 7,;
Left 18,;
FontSize 10.00,;

6 L a n g u a g e R e f e r e n c e

DataLink "Customer->CustName"
...

As the example illustrates, it would be a simple matter to change the size of the entry
field—just assign different values to the Width and Height properties.

Standard classes
Most of the standard classes that Visual dBASE provides are specifications for standard
Windows objects (also called controls) that you create and place on user-defined
windows called forms. To create your own objects, you need to create the corresponding
classes first (see the next section).

Custom classes
You can create new classes from scratch, or derive them from the standard classes. To
do so, use the CLASS...ENDCLASS command. A class that is derived from another class
is called a subclass; it inherits the properties and methods of the class it is based on. You
can then customize the attributes of the subclass by adding, deleting, or changing
properties.

The following example shows how to create a new class, Quitbutton, based on the
standard Pushbutton class:

CLASS Quitbutton(f) OF PUSHBUTTON(f)
this.text = "Quit"
this.FontName = "Arial"
this.FontBold = .T.
this.FontSize = 12
this.OnClick = {;QUIT}
...

ENDCLASS

Once you’ve defined a new class, you can create objects from it. The following example
creates a button from the Quitbutton class and places it on the CustomerForm form:

DEFINE QUITBUTTON Quit OF CustomerForm;
PROPERTY;

Width 10.00,;
Top 18.00,;
Height 2.00,;
...

For more information about classes and objects, and programming with them, see
chapters 9 through 12 in the Programmer’s Guide.

dBASE statements
You write statements to tell dBASE the operations you want to perform. Statements
have a general structure—most begin with a command keyword and usually contain
options and arguments.

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 7

Syntax
The structure of a statement is called its syntax. The following example shows the syntax
for the REPLACE command:

REPLACE <field 1> WITH<exp 1> [ADDITIVE]
[, <field 2> with <exp 2> [ADDITIVE]...]
[ALL | REST | NEXT <expN> | RECORD <expN>]
[FOR <condition 1>]
[WHILE <condition 2>]
[REINDEX]

The following table identifies the syntax elements of the REPLACE command:

This manual uses special typographical conventions in command syntax to indicate the
rules for constructing a statement. Chapter 2 describes the syntax conventions in detail.
The following table shows some of the key syntax symbols:

Note dBASE allows you to abbreviate the names of commands, functions, and command
options to the first four characters when creating a dBASE statement. You can, for
example, abbreviate MODIFY COMMAND to MODI COMM. This, however, is not
recommended; abbreviating statements decreases their readability, and you don’t
obtain any increase in performance (since statements are compiled before execution).

Furthermore, because dBASE supports custom classes and properties, you can’t
abbreviate those names. The Pushbutton class, for example, can’t be abbreviated to Push
because dBASE will assume that Push is another class.

Arguments
An argument is a word or sequence of words enclosed in angle brackets (< >) that
identifies a part of the syntax you need to supply, such as <scope>, <memvar>, <field>,
<filename> or <exp>. When entering an argument in a statement, don’t enter the angle
brackets.

Syntax element Items in the REPLACE command

Command keyword REPLACE
Options ADDITIVE, ALL, REST, NEXT, RECORD, FOR, WHILE, REINDEX
Arguments <field 1>, <field 2>, <exp 1>, <exp 2>, <expN>, <condition 1>, <condition 2>

Symbol Description

[] Indicates an optional part of the syntax.
< > Indicates an argument that you must supply; for example, <expN> indicates that you

must enter a numeric expression.
| Indicates two or more mutually exclusive options for example, ON | OFF.

... Indicates an item that can be repeated any number of times; for example, [, <field 2>
WITH <exp 2> [ADDITIVE]...] indicates that you can specify more than one field to
replace.

8 L a n g u a g e R e f e r e n c e

You can specify either a literal value or an expression in place of any argument. The
following shows part of the REPLACE command syntax, then an example of the values
or expressions (shown in bold) you can use with the command:

Syntax:

REPLACE <field 1> WITH<exp 1> [ADDITIVE]
[, <field 2> with <exp 2> [ADDITIVE]...]
[ALL | REST | NEXT <expN> | RECORD <expN>]
[FOR <condition 1>]
...

Example of statement:

REPLACE ZipCode WITH "54261" FOR ZipCode = "54260"

The following sections describe some of the common types of arguments you use in
statements.

Names
Some commands and functions require you to supply a name, such as a file name, table
name, field name, memory variable, and so on. Names can be up to 32 characters in
length and are made up of any combination of letters, digits, and the underscore (_)
character with the following exceptions:

• DOS file names have an 8-character limit (with a file extension of up to 3 characters)
and must follow DOS naming conventions.

• You can also specify a table, field, or memory variable name that includes spaces by
delimiting the name with colon characters, for example, :new name:

• Variable and field names must start with an alphabetic character.

The following sections, “Table and file names,” “Aliases,” “Database names,” “Memory
variables,” and “Field names” describe in more detail rules for specifying the different
types of names.

Table and file names
Note Earlier versions of dBASE referred to .DBF files as database files. Visual dBASE refers to

.DBF files as tables and uses the term database for a collection of tables. Database also
refers to SQL databases that you access through the Borland SQL Link.

You can specify a file name as a literal or as a character expression that evaluates to a file
name. You can also use the & macro substitution operator to specify the name of a file at
run time.

In Visual dBASE (and also in dBASE IV), you should use the more efficient method of
indirect reference wherever you are asked to provide a file name. For example:

Mfile = "Client" && Name of existing table
USE (Mfile)

A full file name consists of the drive and path where a file resides on disk, the file’s root
name, and the file’s extension, that is,

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 9

[<drive>] [<path>] <root name> [<file extension>]

For example, you could enter

C:\VISUALDB\SAMPLES\ANIMALS.DBF

The full directory and file name can be up to 79 characters. The drive, path, and file-
name extension portion of the full file name are optional. All file-name restrictions
follow DOS conventions.

When you know a file’s location relative to the current directory, you can use the DOS
current (.) and parent (..) directory notation to specify a file’s location. For example,

USE ..\clients

You can use wildcard characters ? or * in file names to specify a file-name skeleton for
referencing any file names that match a given pattern. In most cases, dBASE displays the
Open File dialog box to let you choose the particular table you want to open.

Aliases
An alias is an alternative name for an open table or an open table’s work area. When you
access a table in Visual dBASE, a work area (in memory) is used to open the table and
any associated files such as an index file. Only one work area can be current at a time.

You use the alias in a statement to identify a work area and to access a table open in that
work area. You can identify the work area by number (1 through 225), by letter (A
through J), or by alias name. Visual dBASE lets you open up to 225 tables at a time by
allotting each open table its own unique work area.

When you open a table with USE, Visual dBASE automatically establishes the table's
name as an alias for the table. (You can use the ALIAS() function to identify the alias for
any open table.) If you prefer, you can specify your own alias, by providing a name of
up to 32 characters, for example,

USE Clients ALIAS Contacts

Just as you can with file names, you can specify an alias as a literal or an expression.
When a literal alias name might be confused with another name or command option,
use a work area expression. The result of a work area expression identifies a work area
containing the table you want to access. To avoid mistaking the name of a memory
variable that contains a work area with a literal value, enclose the variable name in
parentheses as shown in the following example:

cAliasName = "Contacts"
SELECT(cAliasName)

Database names
Visual dBASE uses database names or aliases (assigned with BDE Configuration Utility
BDECFG.EXE) to specify a drive and directory location from which to access tables and
files that are all related to the same application. (Refer to Appendix B in Getting Started
for more information on using the BDECFG.EXE utility.)

10 L a n g u a g e R e f e r e n c e

You can also define database names to specify the location from which to access tables
on a database server. To access database servers, you need to install the Borland SQL
Link.

Using Visual dBASE, you can have only one database active at a time (although multiple
databases can be open at the same time). Like tables and work areas, you can specify a
database name as a literal or an expression. For example, to use a memory variable to
specify the name of a database to open a database, you could enter

cDatabaseName = "MktgSqlServer"
OPEN DATABASE (cDatabaseName)

After opening databases, you can specify one of them as the current database using the
SET DATABASE command.

Field names
A field name is the name of one field, or item of information, contained in a record of a
table. For example, LASTNAME might be the name of a field that contains clients’ last
names. In each record in the table, a client's last name would be entered in the
LASTNAME field.

When you specify a field name as an argument in a command or function (for example,
TRIM(LASTNAME)), dBASE assumes you are referring to a field in a table in the
current work area. If the field you want to access isn’t in the table in the current work
area, you need to qualify the field name with an alias. A qualified field name includes a
reference to an alias (designating the work area) and the field name in that aliased table.
To qualify a field name, use the alias symbol (->) between the alias name and the field
name, as shown in the following example:

Client->Lastname

In the preceding example, the expression specifies the LASTNAME field in the Client
table.

Note When fields and memory variables have the same name, fields take precedence over
memory variables. To distinguish the memory variable, prefix it with m->, for example
m->Lastname.

Memory variables
Memory variables are named locations in memory where you store data values: strings,
numbers, dates, logical values, codeblocks, object references, or function pointers. You
assign each of these values a name so that you can later retrieve them.

You can use these values to store user input, perform calculations, do comparisons, or
define values that are used as arguments for other dBASE commands and functions.
You can create a memory variable by assigning it a value using the = operator or the
STORE command. The statements in the following example are equivalent:

cProduct = "Visual dBASE"
STORE "Visual dBASE" TO cProduct

The scope of memory variables is usually limited to the dBASE program or procedure
file in which it is declared or defined. To explicitly define the scope, you can use the

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 11

PUBLIC, PRIVATE, LOCAL, or STATIC commands. For more information, refer to the
command descriptions in Chapter 4 of this manual and Chapter 5 in the Programmer’s
Guide.

Arrays
Visual dBASE also lets you create a special set of memory variables called an array. An
array is an n-dimensional table of values stored in memory. Each entry in the array is
called an element, and each element in an array can be treated like a memory variable
and can also be included in an expression.

To create an array, you can use the DECLARE command, or you can create an array as
an object. When you use arrays in an expression, follow the same rules as those for
memory variables. You can use an array element in any expression that accepts a
memory variable, and you can store the same types of data in an array element as you
can in a memory variable.

Name skeletons
Name skeleton arguments let you specify wildcard characters ? and * as part of a
character string to qualify field, file, or index names or to define a search string. For
example, you could enter the following command to select all fields that begin with the c
character:

SET FIELDS TO ALL LIKE c*

The * specifies that zero or more characters can appear in the position; the ? specifies that
any single character can appear in the position within the string where the ? is located. A
dBASE skeleton differs from a DOS skeleton in that the wildcard characters can appear
anywhere and in any order, for example:

SET FIELDS TO ALL LIKE *name?

Scope options
In commands that process records in a table, you can use a scope keyword to specify the
number of records to process. All commands that include a <scope> option have a
default scope, usually ALL or NEXT 1. The following table describes the keywords you
can use for the scope argument.

In addition, many commands that process records allow you to specify FOR and
WHILE conditions, which further qualify the records to be processed. Records are
processed in natural order or by the order specified by a master index, if one is in use.
Also, records are qualified by any filter condition or query file in use.

Keyword Description

ALL Processes all records in the table starting with the first.
REST Starting with the current record, processes all subsequent records to the

end of the table.
NEXT <expN> Starting with the current record in the table, processes the next <expN>

number of records.
RECORD <expN> Processes only the record specified with <expN>.

12 L a n g u a g e R e f e r e n c e

Expressions
You use expressions to provide values for arguments in a command statement. A
simple expression might be a single data item, such as a field name, a constant, or a
memory variable name. For example, the implicit STORE command requires an
expression for its argument:

Name = "Peter"

In that example, “Peter” is a character expression.

More complex expressions are formed by combining several data items with operators.
You can create expressions with one or more of the following elements:

• Field names

• Memory variables, including system memory variables and array elements

• Constants

• Functions

• Operators

The following illustration shows an example of a complex expression,
STR(DATE() - Newdate, 5, 0) + " Day(s)", in a statement:

Operators (described in a later section) link each of these elements so that dBASE can
evaluate the entire expression as a single unit.

When you combine fields, memory variables, constants, and a function’s returned value
in an expression, they must be the same data type (except for dates, which can be added
to a number). If necessary, you can use functions to convert elements of differing data
types to one common type, usually character. The example in the previous illustration
uses the STR() function to convert a number to a character value before concatenating it
with a character string.

The following sections describe all the Visual dBASE data types and operators that you
can use to form expressions.

Data types
In dBASE, all data items are identified by type. The basic data items—fields, memory
variables, constants, and functions—are assigned data types depending on how the item

Command to
print result Memory variableFunctions

Operators

Literal character string

? STR(DATE() - Newdate,5,0) + "Days(s)"

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 13

is created. For example, the type of expression you assign to a memory variable
determines the variable’s data type, and a function’s return value defines its data type.

Note To find out an item’s data type, use the TYPE() function.

The following table lists the data types that Visual dBASE supports and the value that
the TYPE() function returns for each:

The following sections describe each of the supported data types.

For information about working with the various data types, see Chapter 6 in the
Programmer’s Guide.

Character data
Character data consists of any combination of letters, digits, spaces, and special symbols.
In .DBF tables, a character field can contain up to 254 characters; a character memory
variable or expression can contain up to 32,766 characters.

Character constants or literal character strings must be enclosed in matching single or
double quotation marks or brackets, as shown in the following examples:

a = 'text'
b = "text"
c = [text]

You can also store an ASCII decimal value to a character string with the CHR()
function. The following statements both create a character memory variable containing
the letter A:

STORE "A" TO cLetter
STORE CHR(65) TO cLetter

You can nest character strings in a literal character string by enclosing the nested string
in a different pair of delimiters. The following example shows a statement and its result:

? "This is a 'character' string"
This is a 'character' string

Data type TYPE() returns

Character C
Date D
Numeric N

Float F
Logical L
Memo M
Binary B
OLE G
Bookmark BM
Function-pointer FP
Codeblock CB
Object-reference O

14 L a n g u a g e R e f e r e n c e

Note A literal character string can’t contain the null character (ASCII 0), the EOF character
(ASCII 26), or the LF character (ASCII 10).

Date data
Date data provides a way to store a calendar date that is represented in a format such as
mm/dd/yy. Internally, however, date data is always stored in the format yyyymmdd.

The size of a date variable or field is always eight bytes. Visual dBASE validates date
information whenever it is entered or changed. By default, the format for dates is set by
the International option of the Windows Control Panel. You can override this format
with the SET DATE command or with the DATE setting in the DBASEWIN.INI file.

You specify a literal date value by enclosing it within braces ({ }). You can also specify a
date as a character string and convert it to a date type by using the CTOD() function.
For example, {12/20/59} is the same as CTOD(“12/20/59”).

To specify a blank date, specify { }, { / / }, or CTOD(“ / / “).

You can subtract a date from another date. The result is a number that represents the
number of days between the dates. You can also add or subtract a number (representing
a number of days) from a date. The result will also be a date.

Numeric data
The numeric data type lets you perform mathematical operations (additions,
multiplications, and other mathematical functions) on data.

When designing the structure of a table, you can specify numeric or float types for
numeric fields. You can specify up to 20 digits with up to 18 decimal places for both
numeric and float types.

Unlike dBASE IV, however, there is no difference in the way Visual dBASE processes
numeric or float data. In mathematical operations, Visual dBASE provides the same
precision level (19 digits) for both types. In dBASE IV, numeric and float data are
processed differently—numeric type numbers can have precision of up to 20 digits and
float numbers have precision of 15. In Visual dBASE, the float type is maintained for
backward compatibility with dBASE IV.

If you assign a number to a memory variable, the TYPE() function always returns N.
The TYPE() function returns F for float fields only.

If you use very large or very small numbers, Visual dBASE displays numbers in
exponential scientific notation, such as .6E + 23.

Logical data
Logical fields and memory variables store either a true (.T.) or false (.F.) value. Logical
fields or variables accept T, t, Y, or y for true and F, f, N, or n for false. In statements or
expressions, you must delimit logical values with periods (for example, STORE .T. to
Mlogic).

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 15

Memo data
Memo data is any data stored in memo fields. A memo field is a variable-length field
used to hold large blocks of characters (its size is limited only by available memory).
Memo fields are typically used for text manipulation, although you can also store the
contents of OLE fields, bitmaps, images, sound, or any other binary data in a memo
field. (Visual dBASE adds two new data types to specifically store OLE and binary data
respectively.)

dBASE stores the actual memo data in an associated memo file, which has a .DBT file-
name extension.

Binary and OLE data
Visual dBASE provides two new data types, binary and OLE, to store binary and OLE
data in table fields. It supports the standard binary type files including .BMP, .PCX, and
.WAV files.

dBASE stores the actual binary or OLE data in the associated .DBT file.

Bookmark data
A bookmark is a reference to a specific record in a table. It is similar to the record pointer
in dBASE.

dBASE supports bookmarks primarily for Paradox and SQL tables, which don’t have
record numbers. Because Paradox and SQL tables don’t identify records by record
number, you can’t, for example, use GO 23 to go to record 23, or use RLOCK("1, 2, 3") to
lock records 1, 2, and 3.

Bookmarks let you earmark records so that you can navigate to and perform operations
on them. To mark the current record, use BOOKMARK() to store the bookmark value
to a memory variable.

The following example shows how to use bookmarks to access records in a Paradox
table:

USE Contact.db && Open a Paradox table
bMark1= BOOKMARK() && Mark the first record
SKIP 2 && Advance 2 records
bMark2 = BOOKMARK() && Mark the record
? RLOCK("bMark1, bMark2", 1) && Lock 1st and 3rd records in work area 1
GO bMark1 && Go back to the first record

The bookmark value is a special unprintable data type. You can’t query a bookmark; if
you assign a bookmark value to a memory variable, then query the value of the variable,
dBASE simply displays “BookMark.” The following example illustrates this:

Record_a = BOOKMARK()
? Record_a && displays "BookMark"

16 L a n g u a g e R e f e r e n c e

You can, however, compare bookmark values in a table. Using operators, such as >, =,
or <, you can compare BOOKMARK() values to determine the relative positions of two
records in a table. The following example illustrates this:

USE Contact.db
Record_a = BOOKMARK()
GO BOTTOM && Go to the last record
Record_b = BOOKMARK()
? Record_a < Record_b && Returns .T. because Record_a appears before Record_b

All commands and functions, such as RLOCK() and EDIT, that accept a record pointer
argument also accept a bookmark.

NULL data type
Visual dBASE supports the concept of a null value. NULL is a constant representing the
absence of a value, as opposed to a value of 0 for a numeric or an empty string for a
character variable. NULL is not supported in fields of .DBF files, but may be supported
by other database file formats which Visual dBASE can access.

When Visual dBASE is used to access tables which support null values, NULL can be
used to set a field to a null value or to retrieve a null value from a field. Therefore, each
of the following would be legal statements:

REPLACE TABLE->FIELD WITH NULL
SET FILTER TO TABLE->FIELD <> NULL
SEEK NULL

Null can be used as a value in an expression. In general, if the expression needs to
manipulate the value passed to it, and that value is null, the expression will return
NULL. For example:

? SIN(0) && Returns 0.00
? SIN(NULL) && Returns NULL
? UPPER(““) && Returns an empty character string
? UPPER(NULL) && Returns NULL
? 4 + 0 && Returns 4
? 4 + NULL && Returns NULL

If a function does not need to manipulate the value passed, the NULL will be converted
to its default value for the type of argument the function expects. For example:

? TIME() && Returns the time to whole second
? TIME(0) && Returns the time to hundredths of a second
? TIME(NULL) && Returns the time to hundredths of a second, NULL treated as 0

Table 1.1 shows the internal default values for NULL that dBASE supports.

Table 1.1

Type Default value

Bookmark ““ (empty character string)
Character blank character(s)
Date {//} (empty date)

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 17

The default data type of NULL is unknown. NULL can be assigned a data type by using
it in an expression expecting a certain type, although it retains the value NULL:

x = NULL && x assigned NULL of unknown type
? TYPE(“x”) && Returns “U”
? UPPER(x) && Returns NULL of character type, x still unknown type
x = SIN(NULL) && Returns NULL of numeric type and assigns to x
? TYPE(“x”) && Returns “N”, x is numeric but still has NULL as value
? UPPER(x) && Data type mismatch error, UPPER() expects a character type parameter

Function-pointer data
As its name suggests, the function pointer is a reference to a function or procedure.
Function pointers make it easy for you to define functions and procedures, then call
them when needed.

All event properties, such as OnClick and OnOpen, in the standard objects are variables
of either function pointer type or codeblock type (codeblocks are described in the next
section). With a function pointer, you can assign a constant or variable reference that
points to a function or procedure.

The following example shows how to specify a reference to the Go_Next procedure for
the OnClick event property:

DEFINE PUSHBUTTON Nextbutton OF CustomerForm;
Property;

OnClick Go_Next
...

PROCEDURE Go_Next
IF .NOT. EOF()

SKIP
ELSE

GO TOP
ENDIF

Codeblock data
A codeblock is a logical grouping of one or more dBASE statements, or a dBASE
expression. Like the function pointer, it is a means of executing dBASE statements, and
is particularly useful when used with an object’s event property.

Unlike the function pointer, however, codeblocks are literal statements that you assign
to the event property. A codeblock is a data type that contains dBASE code. Like other
data types, you can assign a codeblock to a memory variable or pass it as a parameter.

Logical .F.
Numeric 0
Unknown 0, ““, .F., or {//}

Table 1.1

Type Default value

18 L a n g u a g e R e f e r e n c e

Visual dBASE provides two types of codeblocks: statement and expression. Statement
codeblocks can contain one or more dBASE statements, while expression codeblocks
can contain only dBASE expressions.

Statement codeblock
The syntax and rules for writing a statement codeblock follow:

{[|<parameters>|]; <statement> [; <statement> ...]}

• The braces, { }, are required.

• If you pass parameters, they must be delimited by | |.

• Precede each statement with a semicolon (;).

The following example shows how to assign a statement codeblock to the OnClick event
property:

DEFINE PUSHBUTTON Quitbutton OF CustomerForm;
Property;

OnClick {;QUIT}
...

The following example shows how to assign a statement codeblock with parameters to a
memory variable:

AddNum = {|a,b|; ? a+b}

To execute the codeblock, use the following:

AddNum(10,10) && Returns 20

Expression codeblocks
The syntax and rules for writing an expression codeblock follow:

{[|<parameters>|] <expression>}

• The braces, { }, are required.

• If you pass parameters, they must be delimited by | |.

The following example shows how to assign an expression codeblock to the Valid event
property:

DEFINE ENTRYFIELD Salary OF EmployeeForm;
PROPERTY;

Valid {Salary >= 10000}
...

The following example shows how to assign an expression codeblock with parameters
to a memory variable; unlike the statement codeblock, a semicolon is not required after
the parameter declaration:

AddNum = {|a,b| a+b}

To execute the codeblock, use the following:

AddNum(10,10) && Returns 20

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 19

For information about techniques for using codeblocks, see Chapter 4 in the
Programmer’s Guide.

Object-reference data
The object-reference data type provides a way to reference Visual dBASE objects and the
collection of variables (properties and methods) they contain.

When you create an object, Visual dBASE creates an object reference variable that refers to
the object. Unlike other memory variables that actually contain a value, such as a
character string, object reference variables contain a reference to the object, not the object
itself.

When you assign one object reference variable to another, you don’t duplicate the object;
you simply have another reference to the same object.

The following example shows how you use the NEW operator to create a form object
from the Form class (there are two ways to create objects; you can use the NEW operator
or the DEFINE command):

CustomerForm = NEW Form() && CustomerForm is the object reference variable

Once you’ve created the form, you can set its properties by referencing the property
variables. As discussed earlier, an object is a collection of variables, and each property is
a variable.

The following example shows how you use the dot (.) operator (described in the next
section on operators) to reference an object’s property:

CustomerForm.Text = "Customer Data"
CustomerForm.Width = 80.00
CustomerForm.Top = 2.00
CustomerForm.Left = 2.00
CustomerForm.Height = 24.75

As the example illustrates, you reference an object’s properties by specifying the object
reference variable and the property variable.

For information about objects and object-oriented programming, see chapters 9 through
12 in the Programmer’s Guide.

Operators
An operator is a symbol or keyword that performs an operation on data or expressions.
Visual dBASE provides the following types of operators:
• Assignment
• Numeric
• Relational
• Logical
• String
• Object

20 L a n g u a g e R e f e r e n c e

• Function
• Scope resolution

Note dBASE provides another operator, & (the macro substitution operator), which is not
described in this section. Refer to Chapter 5 in the Programmer’s Guide for more
information on its use.

All operators require either one or two arguments, called operands. Those that require a
single operand are called unary operators; those requiring two operands are called binary
operators.

The following is an example of a unary operator, .NOT.:

lTrue = .T.
? .NOT. lTrue && returns .F.

The following is an example of a binary operator, * :

? 7 * 7

Assignment operators
dBASE provides the equals (=) operator to assign values of expressions to memory
variables. For example, you can use the equals operator to store a character string:

x = "Store this string in x"

The assignment operator can be used with expressions of any data type.

Numeric operators
Numeric operators perform calculations and generate numeric results. Here are the
numeric operators that Visual dBASE provides:

Numeric operators are used with numeric expressions. You can also use numeric
operators with date expressions to subtract one date from another date, and to add or
subtract a number from a date (where the number represents a number of days).

Relational operators
Relational operators are used to compare two expressions of the same data type. The
comparison results in a logical true (.T.) or false (.F.) value. The operators can be used

Operator Description

+ Addition/unary positive
- Subtraction/unary negative
* Multiplication
/ Division
** or ^ Exponentiation
() Parentheses for grouping (to explicitly specify the order

in which expressions are evaluated)

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 21

with character, numeric, date, and logical expressions. Here are the relational operators
that Visual dBASE supports.

Character string comparisons are case-sensitive and are affected by the current language
driver and the setting of the SET EXACT command. When SET EXACT is OFF,
character strings match if all characters in the string on the right of the equal (=) sign
match the beginning characters in the string on the left; the string on the right can be
shorter, but not longer, than the string on the left.

When SET EXACT is ON, the characters in both strings must be identical. Trailing
blanks, however, are ignored. The following example shows how the SET EXACT
setting works:

SET EXACT OFF
? "abcde" = "abcd" && Returns .T.
? "abc" = "" && Returns .T.
? "abc" = "abcd" && Returns .F.
SET EXACT ON
? "abcde" = "abcd" && Returns .F.
? "abc" = "abc " && Returns .T. (trailing blanks ignored)

To impose an exact comparison whether SET EXACT is ON or OFF, use == instead of =.

The $ (contained in) string comparison operator compares two character strings to
determine if the character string on the left is contained in the character string on the
right. For example, A$B returns true if character string A is either identical to character
string B or contained within B. You can specify a substring as a literal character string, a
character memory variable, a character or memo field.

Logical operators
Logical operators are used to compare two logical expressions and generate a logical
true (.T.) or logical false (.F.) result. The operators Visual dBASE supports are the
following:

Operator Description

< Less than
> Greater than
= Equal to
== Exactly equal to
<> or # Not equal to
<= or =< Less than or equal to
>= or => Greater than or equal to
$ Substring comparison

Operator Description

.AND. Logical AND; returns true if both expressions are true.

.OR. Logical OR; returns true if either of the expressions is true.

22 L a n g u a g e R e f e r e n c e

String operators
String operators concatenate two or more character strings into a single character string.
Visual dBASE supports the following string operators:

Object operators
Object operators are used to create and reference objects, properties, and methods.
Visual dBASE supports the following object operators:

NEW operator
The NEW operator creates an object of a specified class.

The following is the syntax for the NEW operator:

<object name> = NEW <class name>([<parameters>])

The following example shows how to use the NEW operator to create a form object from
the Form class. By default, dBASE creates an object reference variable with the same
name you give the form (CustomerForm in this example).

CustomerForm = NEW Form()

The object exists as long as there are references to it.

Note The DEFINE command is another way to create an object.

Index operator
The index operator, [], accesses an object’s properties or methods through a value,
which is usually a number. The following shows the syntax for using the index operator
(often called the array index operator):

.NOT. Logical NOT; returns false if expression is true, true if expression is false.

() Parentheses for grouping (to explicitly specify the order in which expressions are
evaluated).

Operator Description

Operator Description

+ Concatenates two strings, leaving trailing spaces between the strings intact when the
strings are joined

- Concatenates two strings, moving trailing spaces in the first string to the end of the last
string

() Parentheses for grouping (to explicitly specify the order in which expressions are
evaluated)

Operator Description

NEW Creates a new instance of an object
[] Index operator, which accesses the contents of an object through a numeric value
. (period) Dot operator, which accesses the contents of an object through an identifier name

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 23

<object reference>[<expN>]

You typically use the index operator to reference elements of array objects, as shown in
the following example:

TArray = NEW Array(20) && Create a new array object with 20 elements
TArray[1] = 10 && Change the value of the 1st element to 10
? TArray[1] && Returns 10

Dot operator
The dot operator, (“.”), accesses an object’s properties or methods through a name. The
following shows the syntax for using the dot operator:

<object reference>.[<object reference>.]<property name>

The dot operator is the most common way to refer to an object’s properties or methods.
The following statements illustrate how you use it to assign values:

DEFINE FORM CustFrm && Create a new form object
CustFrm.Text = "Customers" && Set the Text property of CustFrm
CustFrm.OnOpen = OpenProc && Set the OnOpen event property of CustFrm

If an object contains another object, you can access the child object’s properties by
building a path of object references leading to the property, as the following statements
illustrate:

DEFINE ENTRYFIELD NameField OF CustFrm && Create an entry field in the CustFrm form
CustFrm.NameField.Width = 20 && Set the Width property of NameField in CustFrm

Function operators
Function operators are used to call functions and procedures. Visual dBASE supports
the following function operators:

Call operator
The call operator, (), calls a procedure or codeblock associated with a specified function-
pointer or codeblock variable. It also passes any specified parameters to the procedure
or codeblock. The following is the syntax for the call operator:

<function pointer|codeblock variable>([parameters])

The following statements are examples of how you use the call operator to call a
procedure associated with a function pointer:

? Square(10) && Calls procedure Square; returns 100
? TYPE("Square") && Returns FP; Square is a constant of type function pointer

Operator Description

<fp>([params]) Call operator; calls a function or procedure associated with a
function pointer <fp>.

<obj-ref>.<variable name>([params]) Member call operator; calls the function, procedure, or codeblock
associated with a specified code-reference variable.

<obj-ref>[<exp>](<params>) Index call operator; similar to member call operator but calls the
function or codeblock with an index

24 L a n g u a g e R e f e r e n c e

Calc = Square && Creates a variable of type function pointer
? Calc(7) && Calls procedure Square; returns 49

PROCEDURE Square
PARAMETERS n
RETURN n*n

The following statements show how you use the call operator to call a codeblock:

x = {|z| z + 1} && Creates a variable of type codeblock
? x(6) && Calls the codeblock stored in the variable

Member call operator
Like the call operator, the member call operator calls the procedure or codeblock
associated with a specified function-pointer or codeblock variable. The difference is that
the function-pointer or codeblock variable is contained within an object.

In addition, when you call the procedure or codeblock, dBASE creates a special object
reference variable called this. The this variable refers to the object that contains the
function-pointer or codeblock variable. The following is the syntax for the member call
operator:

<object reference>.<function pointer|codeblock variable>([parameters])

The following example shows how to use the member call operator:

x = NEW OBJECT() && Creates a new object
x.Proc = DisplayVal && Assigns the procedure to a variable of function pointer type
x.Val = 7 && Assigns a number to the Val variable
? x.Proc() && Calls the procedure in the fp variable in x; returns 7

PROCEDURE DisplayVal
RETURN this.val

As the example illustrates, the this variable (like the object reference variable x)
references the object. In fact, in the procedure declaration, using RETURN x.val gives the
same results as RETURN this.val. The difference is that using x hard codes the object
reference; you would be able to return val only to object x. With this, you can reuse the
procedure as-is in any other object.

Index call operator
The index call operator works the same way as the member call operator but calls the
procedure or codeblock with an index value. As with the member call operator, dBASE
creates a special object reference variable called this when the procedure or codeblock is
called.The following is the syntax for the index call operator:

<function pointer|codeblock variable>[expN]([parameters])

You can access unnamed members of a class using the index, just as you would refer to
array elements:

x = NEW ARRAY() && Creates a new array object
x[1] = MyProc && Assigns the procedure to array element 1
x.val = 10 && Assigns a number to the Val variable
? x[1]() && Calls the procedure stored in element 1; returns 10

C h a p t e r 1 , L a n g u a g e d e f i n i t i o n 25

PROCEDURE MyProc
RETURN this.val

Scope resolution operator
The scope resolution operator (::) lets you reference methods in a class. This is useful if
you’ve built a hierarchy of classes and you want to call a method from a superclass. You
can, for example, modify an inherited method in a subclass by calling the method
directly from the superclass, then adding to its behavior in the subclass. For more
information about this subject, see Chapter 11 in the Programmer’s Guide.

The following is the syntax for using the scope resolution operator:

<class name> | class | super :: <method name>

As the syntax indicates, you can refer to the superclass by its class name, or one of the
keywords, class or super. The class keyword references the current class (the class being
declared); super references the superclass of the current class.

The following example shows how the BeepMove pushbutton accesses the BeepProc
procedure from its superclass, BeepButton, then adds new functionality to it:

CLASS BeepButton(form) OF MyButton(form)
this.text = "Beep"
this.Onclick = BeepProc

PROCEDURE BeepProc
? CHR(7)

RETURN
ENDCLASS

CLASS BeepMove(form) OF BeepButton(form)
this.text = "Beep and Move" && Overrides Text property of superclass

PROCEDURE OnClick
super::BeepProc() && References the BeepProc method of superclass
this.Left = this.Left+1 && Adds functionality to the OnClick method

RETURN
ENDCLASS

Note The super::BeepProc() statement is the same as BeepButton::BeepProc().

With the scope resolution operator, you can also call a method from a class. As with any
procedure, the class declaration must be in the same program file as the call statement,
or be loaded as a procedure file with SET PROCEDURE. The following example
illustrates how you use the scope resolution operator to call a method in a class:

? MyClass::SayHello() && Calls the method in MyClass; prints "Hello"

CLASS MyClass
PROCEDURE SayHello

? "Hello"

26 L a n g u a g e R e f e r e n c e

RETURN .T.
ENDCLASS

Precedence of operators
You can combine several different operators in a single expression. The way in which
Visual dBASE will evaluate an expression is determined by the order in which different
operators are evaluated. The following table lists the precedence in which Visual dBASE
evaluates operators.

You can use parentheses to group expressions and explicitly specify the order in which
you want expressions evaluated. If you nest parentheses, expressions in the innermost
parentheses are evaluated first.

Operator Description

() Parentheses grouping, all expressions
[] Field name, character memory variable,

and array indexing
-> Alias symbol
. (period) Dot operator
NEW New object operator

+, - Unary plus (+) and minus (-) signs
**, ^ Exponentiation
*, / Multiplication and division
+, - Addition and subtraction
=, <>, <, <=, >, >=, $ Relational operators
.NOT., .AND, .OR. Logical operators

C h a p t e r 2 , S y n t a x c o n v e n t i o n s 27

C h a p t e r

2
Chapter 2Syntax conventions

The Language Reference uses specific symbols and conventions in presenting the syntax
of dBASE language elements.This chapter describes the symbols used in syntax and
provides information on interpreting the syntax conventions.

Syntax notation
The following table describes the symbols used in syntax:

Symbol Description

[] Indicates an optional item
< > Indicates an argument that you must supply; for example, <expN> indicates that you must

enter a numeric expression
{ } Indicates a codeblock

| | Indicates a codeblock parameter list
| Indicates two or more mutually exclusive options for example, ON | OFF
... Indicates an item that may be repeated any number of times; for example, [, <field 2> WITH

<exp 2> [ADDITIVE]...] indicates that you can specify more than one field to replace

, List item separator
; In a codeblock, separates each command statement

In a command line, indicates that the command statement continues on the next line

28 L a n g u a g e R e f e r e n c e

The following illustration shows the syntax for a typical command.

Unlike dBASE command and function keywords, which are shown in uppercase letters,
property names are capitalized differently. Property names are camel-capped, that is,
they contain both uppercase and lowercase letters if the name consists of more than one
word. If the property is a method, the name is followed by parentheses. Examples of
properties include OnAppend, OnRightMouseDown, Checked, and Close().

These conventions help you differentiate the language elements; for example,

• DELETE is a command

• Delete is a property

• DELETED() is a function

• Delete() is a method

These typographical conventions are for readability only. When writing code, you can
use any combination of uppercase and lowercase letters.

Note You can abbreviate most keywords in the dBASE language to the first four characters;
however, for clarity, this is not recommended. You must refer to classes and properties
by their full name, since you can define your own custom classes and properties, and
Visual dBASE needs the full name to identify the correct one to use.

Guidelines to interpreting the syntax
This section tells you how to interpret some of the more complex syntax conventions.

• Options are shown in alphabetical order except in cases where it is logical or required
to provide them in another order, for example:

DEFINE <class name> <object name>
 [OF <container object>]
 [FROM <row, col> ...]

Command Keywords
shown in uppercase

Indentation is used to show separate
options or alternate option choices

Individual option selections are
separated by the pipe (|) symbol

Each option is listed on a separate line;
optional arguments are enclosed in
square brackets

Arguments shown in italics
(enclosed in angle brackets)

DISPLAY
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[[FIELDS] <exp list>]
[OFF]
[TO FILE <filename>|?] | [TO PRINTER]

C h a p t e r 2 , S y n t a x c o n v e n t i o n s 29

When creating a dBASE statement, you can usually include the options in any order.

• The pipe symbol (|) separates mutually exclusive options. If there are more options
that can fit on a single line, additional options appear indented following the pipe
symbol ending the first line, as shown in the following example:

MONO | COLOR | EGA25 | EGA43 | MONO43 |
VGA25 | VGA43 | VGA50

• If a keyword precedes one of many alternate option keywords, each alternate
keyword is shown on its own line indented from the keyword with which it is used:

PROMPT
 ARRAY <array> |
 FIELD <field> |
 FILES [LIKE <filename skeleton>] |
 STRUCTURE [IN <alias expC>]

In this example, you could select any of four options, PROMPT ARRAY..., PROMPT
FIELD..., PROMPT FILES..., or PROMPT STRUCTURE...

• The bracket, [], indicates that the item is optional; sometimes, optional items appear
nested in other optional items, as shown in the following example:

ACOPY(<source array name>, <target array name>
[, <starting element expN> [, <elements expN> [, <target element expN>]]])

With ACOPY(), you specify a list of arguments, each delimited with a comma. The
third, fourth, and fifth arguments are optional. Notice that the third and fourth
arguments do not have right brackets immediately after the argument. This means
that in order to specify a value for the fourth argument, you must specify a value for
the third argument. Similarly, in order to specify a value for the fifth argument, you
must specify values for the previous two arguments. Contrast this syntax notation
with the next one.

• Sometimes, optional items appear nested in other optional items, but are
independent of each other, as shown in the following example:

 SET COLOR TO
[<standard text>][,[<enhanced text>][,[<perimeter>][,[<background>]]]]

Like the previous ACOPY() example, SET COLOR TO takes a list of optional
arguments, each delimited with a comma. Notice, however, that each argument is
contained within its own pair of square brackets. This means that you can specify any
one of those arguments independently of the others. If you omit an argument from
the list, mark its position in the list with a comma. For example, SET COLOR TO , , B
means that the perimeter is set to the color blue.

• Arguments for which you substitute a particular value or expression are shown in
italics enclosed in angle brackets. In many cases, instead of just specifying the type of
data required (for example, <expC> or <expN>), the syntax provides a more
descriptive argument name, such as:

<target element expN>

30 L a n g u a g e R e f e r e n c e

C h a p t e r 3 , L a n g u a g e e l e m e n t s b y c a t e g o r y 31

C h a p t e r

3
Chapter 3Language elements by category

dBASE contains over 600 commands, functions, standard classes, system memory
variables, and preprocessor directives. If you’re not familiar with the dBASE language,
this chapter will help you learn what language elements are available to perform
programming tasks. It groups commands and functions into categories based on their
purpose.

Note The category name appears to the right of each language element listed in this book.

Programs

&& CREATE COMMAND IF QUIT
* DO IIF() RETURN
BUILD DO CASE MODIFY COMMAND SCAN
CANCEL DO WHILE NOTE SET DEVELOPMENT
CLEAR PROGRAM DO...UNTIL PARAMETERS SET LIBRARY
CLOSE PROCEDURE FOR...NEXT PCOUNT() SET PROCEDURE
COMPILE FUNCTION PROCEDURE SLEEP

Memory variables

ACOPY() AGROW() ASUBSCRIPT() RELEASE
ADEL() AINS() CLEAR MEMORY RESTORE
ADIR() ALEN() DECLARE SAVE
AELEMENT() ARESIZE() LOCAL STATIC

AFIELDS() ASCAN() PRIVATE STORE
AFILL() ASORT() PUBLIC

32 L a n g u a g e R e f e r e n c e

Error handling and debugging

CERROR() GENERATE PROGRAM() SET STEP

DBERROR() LINENO() RESUME SQLERROR()
DBMESSAGE() LIST COVERAGE RETRY SQLMESSAGE()
DEBUG MESSAGE() SET COVERAGE SUSPEND
DISPLAY COVERAGE ON ERROR SET ECHO
ERROR() ON READERROR SET ERROR

String Data

ANSI() LEFT() RAT() STUFF()
AT() LEN() REPLICATE() SUBSTR()
CENTER() LIKE() RIGHT() TRANSFORM()
DIFFERENCE() LOWER() RTRIM() TRIM()
ISALPHA() LTRIM() SET EXACT UPPER()
ISLOWER() OEM() SOUNDEX()
ISUPPER() PROPER() SPACE()

Numeric data

ABS() EXP() PAYMENT() SET POINT

ACOS() FLOOR() PI() SET PRECISION
ASIN() FV() PV() SET SEPARATOR
ATAN() INT() RANDOM() SIGN()
ATN2() LENNUM() ROUND() SIN()
CEILING() LOG() RTOD() SQRT()
COS() LOG10() SET CURRENCY TAN()
DTOR() MOD() SET DECIMALS

Date and time data

CDOW() DOW() SECONDS() SET MARK
CMONTH() ELAPSED() SET CENTURY SET TIME
DATE() MDY() SET DATE TIME()
DAY() MONTH() SET DATE TO YEAR()
DMY()

Expressions and type conversions

ASC() DTOS() ITOH() STR()

CHR() EMPTY() MAX() TYPE()
CTOD() GETEXPR() MIN() VAL()
DTOC() HTOI()

C h a p t e r 3 , L a n g u a g e e l e m e n t s b y c a t e g o r y 33

Table basics

ALIAS() COPY TO...STRUCTURE
EXTENDED

IMPORT SELECT()

APPEND FROM CREATE ISTABLE() SET CATALOG
CATALOG() CREATE CATALOG LIST STRUCTURE SET DATABASE
CLOSE ALL CREATE...FROM MODIFY CATALOG SET DBTYPE
CLOSE DATABASES CREATE...STRUCTURE

EXTENDED
MODIFY STRUCTURE SET TITLE

CLOSE TABLES DATABASE() OPEN DATABASE SQLEXEC()
COPY DBF() REFRESH USE
COPY STRUCTURE DELETE TABLE RENAME TABLE WORKAREA()

COPY TABLE DISPLAY STRUCTURE SELECT

Fields and records

APPEND COUNT LUPDATE() REPLACE OLE
APPEND AUTOMEM DELETE MEMLINES() SET AUTOSAVE
APPEND FROM ARRAY DELETED() MLINE() SET BLOCKSIZE
APPEND MEMO EDIT PACK SET CARRY
BINTYPE() EOF() RECALL SET DELETED
BLANK FDECIMAL() RECCOUNT() SET FIELDS
BOF() FIELD() RECNO() SET MBLOCK
BOOKMARK() FLDCOUNT() RECSIZE() SET MEMOWIDTH
BROWSE FLDLIST() RELEASE AUTOMEM SET WINDOW OF MEMO
CHANGE FLENGTH() REPLACE SKIP
CLEAR AUTOMEM FLUSH REPLACE AUTOMEM STORE AUTOMEM
CLEAR FIELDS GO REPLACE BINARY STORE MEMO

COPY BINARY INSERT REPLACE FROM
ARRAY

ZAP

COPY MEMO INSERT AUTOMEM REPLACE MEMO
COPY TO ARRAY ISBLANK() REPLACE MEMO...

FROM

34 L a n g u a g e R e f e r e n c e

Table organization

AVERAGE FOR() ORDER() SET UNIQUE

CALCULATE FOUND() REINDEX SET VIEW
CLOSE INDEXES INDEX RELATION() SORT
CONTINUE JOIN SEEK SUM
COPY INDEXES KEY() SEEK() TAG()
COPY TAG KEYMATCH() SET FILTER TAGCOUNT()
CREATE QUERY LIST SET IBLOCK TAGNO()
CREATE VIEW LOCATE SET INDEX TARGET()
CREATE VIEW...
FROM ENVIRONMENT

LOOKUP() SET KEY TO TOTAL

DELETE TAG MDX() SET NEAR UNIQUE()
DESCENDING() MODIFY QUERY SET ORDER UPDATE
DISPLAY MODIFY VIEW SET RELATION SET UNIQUE
FIND NDX() SET SKIP

Printing

??? _pdriver _pspacing PCOL()
_alignment _peject _rmargin PRINTJOB
_box _pepage _tabs PRINTSTATUS()
_indent _pform _wrap PROW()
_lmargin _plength CHOOSEPRINTER() SET MARGIN
_padvance _plineno CLOSE PRINTER SET PCOL
_pageno _ploffset DEFINE BOX SET PRINTER
_pbpage _porientation EJECT SET PROW
_pcolno _ppitch EJECT PAGE

_pcopies _pquality ON PAGE

Input/Output

? CLEAR GETS MODIFY LABEL SET DELIMITERS
?? CLEAR SCREENS MODIFY REPORT SET DEVICE
@...CLEAR CLOSE ALTERNATE READ SET FORMAT
@...FILL CLOSE FORMAT RELEASE SCREENS SET HEADINGS
@...SAY...GET COL() REPORT FORM SET SPACE
@...SCROLL CREATE LABEL RESTORE SCREENS TEXT
@...TO CREATE REPORT ROW() UPDATED()
ACCEPT INPUT SAVE SCREEN VARREAD()
ACTIVATE SCREEN LABEL FORM SET ALTERNATE WAIT

dBASE IV Windows

ACTIVATE WINDOW DEFINE WINDOW RELEASE WINDOWS SAVE WINDOW
CLEAR WINDOWS MOVE WINDOW RESTORE WINDOW WINDOW()
DEACTIVATE WINDOW

C h a p t e r 3 , L a n g u a g e e l e m e n t s b y c a t e g o r y 35

dBASE IV Menus

ACTIVATE MENU DEFINE BAR ON EXIT POPUP PADPROMPT()

ACTIVATE POPUP DEFINE MENU ON MENU POPUP()
BAR() DEFINE PAD ON PAD PROMPT()
BARCOUNT() DEFINE POPUP ON POPUP RELEASE MENUS
BARPROMPT() MENU() ON SELECTION BAR RELEASE POPUPS
CLEAR MENUS ON BAR ON SELECTION MENU SHOW MENU
CLEAR POPUPS ON EXIT BAR ON SELECTION PAD SHOW POPUP
DEACTIVATE MENU ON EXIT MENU ON SELECTION POPUP
DEACTIVATE POPUP ON EXIT PAD PAD()

Forms

_curobj CREATE MENU MODIFY FORM ON SELECTION
FORM

CLOSE FORMS CREATE POPUP MODIFY MENU OPEN FORM
CREATE APPLICATION CREATE SCREEN MODIFY SCREEN READMODAL()
CREATE FORM MODIFY APPLICATION MSGBOX() SET CUAENTER

Objects

_app INSPECT() PLAY SOUND RESTORE IMAGE
CLASS...ENDCLASS LISTCOUNT() REDEFINE SHOW OBJECT
DEFINE LISTSELECTED() RELEASE OBJECT

Keyboard and mouse

CLEAR TYPEAHEAD LASTKEY() ON ESCAPE SET ESCAPE
FKLABEL() MCOL() ON KEY SET FUNCTION
FKMAX() MDOWN() ON MOUSE SET KEY
INKEY() MROW() READKEY() SET MOUSE
ISMOUSE() NEXTKEY() SET CURSOR SET TYPEAHEAD
KEYBOARD

Colors and fonts

DEFINE COLOR GETFONT() SET COLOR OF SET COLOR TO
GETCOLOR() ISCOLOR()

Environment

CHARSET() LIST STATUS SET EDITOR SET TALK

CLEAR MEMORY() SET FULLPATH SET
CLEAR ALL SET BELL SET INTENSITY SET()
CREATE SESSION SET BORDER SET LDCHECK SETTO()
DISPLAY MEMORY SET CONFIRM SET LDCONVERT SHELL()
DISPLAY STATUS SET CONSOLE SET MESSAGE VERSION()

36 L a n g u a g e R e f e r e n c e

LDRIVER() SET DESIGN SET ODOMETER

LIST MEMORY SET DISPLAY SET SAFETY

Disk and file utilities

! ERASE FUNIQUE() PUTFILE()
_dbwinhome FACCESSDATE() GETDIRECTORY() RENAME
CD FCREATEDATE() GETENV() RUN
COPY FILE FCREATETIME() GETFILE() RUN()
CREATE FILE FDATE() HOME() SET DEFAULT
DELETE FILE FILE() LIST FILES SET DIRECTORY
DIR FNAMEMAX() MD SET PATH
DISKSPACE() FSHORTNAME() MKDIR TYPE
DISPLAY FILES FSIZE() MODIFY FILE VALIDDRIVE()
DOS FTIME() OS()

Low level access

FCLOSE() FERROR() FOPEN() FSEEK()
FCREATE() FFLUSH() FPUTS() FWRITE()

FEOF() FGETS() FREAD()

Preprocessor

#define #ifdef #include #undef
#if #ifndef #pragma

Security

ACCESS() PROTECT SET ENCRYPTION USER()
LOGOUT

Shared data

BEGINTRANS() ID() ON NETERROR SET LOCK
CHANGE() LKSYS() RLOCK() SET REFRESH
COMMIT() LOCK() ROLLBACK() SET REPROCESS
CONVERT NETWORK() SET EXCLUSIVE UNLOCK
FLOCK()

Windows programming

BITAND() BITSET() HELP RESOURCE()
BITLSHIFT() BITXOR() LOAD DLL SET HELP
BITOR() EXTERN RELEASE DLL SET TOPIC
BITRSHIFT()

Environment

C h a p t e r 3 , L a n g u a g e e l e m e n t s b y c a t e g o r y 37

Classes

ARRAY EDITOR MENUBAR RADIOBUTTON

ASSOCARRAY ENTRYFIELD OBJECT RECTANGLE
BROWSE FORM OLE SCROLLBAR
CHECKBOX IMAGE OLEAUTOCLIENT SHAPE
COMBOBOX LINE PAINTBOX SPINBOX
DDELINK LISTBOX POPUP TABBOX
DDETOPIC MENU PUSHBUTTON TEXT

Windows 95

FACCESSDATE() FCREATETIME() FNAMEMAX FSHORTNAME
FCREATEDATE()

38 L a n g u a g e R e f e r e n c e

C o m m a n d s a n d f u n c t i o n s 39

Part 0Commands and functions

40 L a n g u a g e R e f e r e n c e

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 41

C h a p t e r

4
Chapter 4Commands and functions

! Disk and file utilities

Executes a single DOS command or program from within dBASE.

Syntax
! <DOS command>

<DOS command> A command recognized by your DOS operating system.

Description
! and RUN are equivalent commands. See the description of RUN.

Example
The following examples use ! or RUN to issue the DOS COPY command to copy
Clients.DBF and Clients.MDX to a floppy diskette in an external drive:

! COPY C:\VISUALDB\SAMPLES\Clients.DBF B:
RUN COPY C:\VISUALDB\SAMPLES\Clients.MDX B:

See Also
DOS, RUN, RUN()

&& Programs

Marks the characters to the right as a comment rather than as executable code.

Syntax
&& <comment>

42 L a n g u a g e R e f e r e n c e

*

<comment> Any sequence of characters on the same line as and following &&. If the last
character is a semicolon, dBASE recognizes the following line as a comment.

Description
Use the double ampersand (&&) to make a short comment to the right of a command
line. You can use && for a single-line comment; however, programmers generally use
the asterisk (*) or NOTE command for single-line comments.

Use comment lines in a program to document the function or logic of a series of
commands. If you want to modify the program at a later date, comment lines can
identify the sections to be changed.

You can use && after a semicolon that continues a statement to the next line, and you
can put a semicolon at the end of a comment to make it continue on the next line. If
dBASE finds a semicolon before && on a line, it assumes the next line is a continuation
of the command statement. If it finds a semicolon after &&, it assumes the next line is a
continuation of the comment.

Example
The following example uses && for adding notes to program files to enhance
portability:

SET TALK OFF && Suppresses echoing
CLEAR && Clears results pane
SELECT 1 && Selects work area 1
USE Contact ORDER CompCode && Open table with .MDX tag order
SELECT 2 && Work area 2 active
USE Company ORDER CompCode
SET RELATION TO CompCode INTO A && Links work areas A and B (1 and 2)
SET FIELDS TO Company, State_Prov,;

A->Contact && Fields in current work area do not;
&& need alias names.

LIST TO PRINT OFF && OFF suppresses record numbers.
RETURN

See Also
*, NOTE

* Programs

Marks an entire program line as a comment rather than an executable line.

Syntax
* <comment>

<comment> A sequence of up to 1023 characters on the same line. If the last character is a
semicolon, dBASE recognizes the following line as a comment.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 43

?

Description
Use the asterisk (*) to make an entire program line a comment rather than an executable
line. The * must be the first nonblank character on the line. When you execute the
program, dBASE ignores the line.

Use comment lines in a program to provide useful notes concerning the function or
logic of a series of commands. If you want to alter the program at a later date, comment
lines can identify the sections to change. You can also use * in front of a command line to
make it a comment temporarily when debugging a program.

To put a comment on the same line as a program statement, use &&.

The * and NOTE are identical in function.

Example
The following example uses an * to add comments in program code:

** CLINTRPT.PRG **
USE Clients ORDER Client_ID
* Table ordered by Client_ID .MDX index Tag
SET FIELDS TO Company, Contact
* Creates a view comprised of just two fields
LIST OFF TO PRINT
* Directs output of the selected fields for the entire table to the printer.
* OFF suppresses the printing of Record numbers.
CLOSE DATABASES

See Also
&&, NOTE

? Input/Output

Evaluates 0 or more expressions and displays or prints the result on a new line.

Syntax
?
[<exp 1>

[PICTURE <format expC>]
[FUNCTION <function expC>]
[AT <column expN>]
[STYLE [<fontstyle expN>] [<fontstyle expC>]]

[,<exp 2>…]
[,]

<exp 1>[,<exp 2> ...] An expression or expressions of any data type to evaluate.

PICTURE <format expC> Formats <exp 1>, or a specified portion of it, with the picture
template <format expC>, a character expression consisting of one of the following:

• Template characters.

44 L a n g u a g e R e f e r e n c e

?

• Function symbols preceded by @. (You can also use the FUNCTION option,
discussed below.)

• Literal characters.

• A combination of template characters, function symbols, and literal characters.

• A variable containing the character expression.

You can use all the template character and function symbols except A, M, R, and S. For
more information about template characters, see Picture in Chapter 8.

FUNCTION <function expC> Formats all characters in <exp 1> with the function template
<function expC>, which must contain one or more function symbols. When you specify
function symbols with the FUNCTION option, you don't have to precede them with @.
For more information about function symbols, see Function in Chapter 8.

AT <column expN> Specifies a character column, <column expN>, at which the ? command
starts displaying or printing <exp 1>. The <column expN> argument must be between 0
and 255.

STYLE [<fontstyle expN>] [<fontstyle expC>] Specifies an optional font or style option. Fonts
(<fontstyle expN>) are specified in the [Fonts] section of DBASEWIN.INI, in a format like
the following:

[Fonts]
1=Times New Roman,12,ROMAN
2=Courier New,10,MODERN

The first argument is the face name of the font; the second argument is the point size;
and the third argument is the font family. You can define up to 32,766 font styles. (When
assigning numbers greater than 999, don't use whole-number separators.)

If you want to add a font to DBASEWIN.INI but don't know its exact name or family,
use GETFONT(). Then add the information GETFONT() returns into DBASEWIN.INI.
In addition, the string that GETFONT() returns may be used for <fontstyleexpC>.

The following table lists the codes you can use for <fontstyle expC>:

, The trailing comma is optional and has no effect; it is included for backward
compatibility with dBASE IV.

<fontstyle expC> Result

"B" Bold
"I" Italic
“S” Strikeout
"U" Underline
"R" Superscript
"L" Subscript

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 45

?

Description
Use ? to display or print (to a file or a printer) the value of valid expressions of any type.
Use it like DISPLAY (for example, to display the contents of the current record). In
programs, use ? with no expression to skip a line in output.

The ? command differs from ?? only in that ? skips a line before displaying a value,
while ?? doesn't.

If SET PRINTER is ON, output from the ? command prints either to the default printer
or to the printer or file you've specified with SET PRINTER TO. If SET ALTERNATE is
ON, dBASE stores output from the ? command to the file you've specified with
SET ALTERNATE TO.

Use the STYLE option with ? or ?? to change the font styles of individual items.

To overstrike a line of text from a program file in printed output, use the AT option with
_wrap set to false (.F.). To overwrite rather than overstrike text in printed output, use the
AT option with _wrap set to true (.T.), which causes only the second line to print.

To override both an overall _alignment setting and individual paragraph alignments in
a memo field, use the B, I, or J functions.

Issue SET SPACE ON (the default) to control whether dBASE inserts a space between
expressions in the list when it displays or prints them.

Example
This example uses ? and ?? to display a first and last name in various formats:

Firstname="Sally "
Lastname ="Stephens "
? Firstname,Lastname
* simple display, no formatting or positioning
* Sally Stephens

? Firstname PICTURE "@T"
?? " "
?? Lastname PICTURE "@!"
* trim Firstname, make lastname uppercase
* Sally STEPHENS

? Lastname STYLE "B"
?? Firstname AT 20
* display in fixed columns.
* Lastname will print in boldface
* Stephens Sally

This example formats –3273.68 four different ways:

N=–3273.68
? N PICTURE "9,999,999.99" && insert commas
* –3,273.68
? N PICTURE "9,999,999" && no decimals
* –3,274
? N PICTURE "@L 9,999,999" && zero fill
* –0003,274
? N PICTURE "@(BT" && use () for negative number, left-align, and trim

46 L a n g u a g e R e f e r e n c e

? ?

* (3273.68)

Portability
The AT, PICTURE, FUNCTION, STYLE, and trailing comma options aren't supported
in dBASE III PLUS.

See Also
??, _alignment, _wrap, DISPLAY, GETFONT(), LIST, PRINTJOB, SET MEMOWIDTH,
SET ALTERNATE, SET PRINTER, SET SPACE, TEXT

?? Input/Output

Evaluates 0 or more expressions and displays or prints the result on the current line.

Syntax
??
[<exp 1>

[PICTURE <format expC>]
[FUNCTION <function expC>]
[AT <column expN>]
[STYLE [<fontstyle expN>] [<fontstyle expC>]]

[,<exp 2>…]
[,]

Description
The ?? command is identical to the ? command, except it displays or prints on the
current line rather than on a new line. See the ? command for a description of the
options of both the ? and ?? commands.

Example
See the example of the ? command, which also contains an example of ??.

See Also
?

??? Printing

Sends output directly to the printer, bypassing the installed printer driver. This
command is provided for compatibility with dBASE IV but isn't recommended in
Visual dBASE.

For complete information on ???, see online Help.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 47

@ . . . C L E A R

@...CLEAR Input/Output

Clears a portion of the results pane of the Command window or the current dBASE IV
window. This command is supported primarily for compatibility with dBASE IV. In
Visual dBASE, use DEFINE to create forms, which are used instead of dBASE IV
windows.

For complete syntax information on @...CLEAR, see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

@...FILL Input/Output

Specifies the colors for a rectangular portion of the results pane of the Command
window or the current dBASE IV window. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use DEFINE to create forms, which are
used instead of dBASE IV windows.

For complete syntax information on @...FILL, see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

@...SAY...GET Input/Output

Displays or accepts information in a specified format at a specified location in the results
pane of the Command window or the current dBASE IV window. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE
with the Text and EntryField classes for displaying and accepting information on a
form.

For complete syntax information on @...SAY...GET, see online Help. For more
information about working with Visual dBASE forms, see the Forms chapters in the
User's Guide.

@...SCROLL Input/Output

Shifts the contents of a specified region of the results pane of the Command window or
the current dBASE IV-style window left, right, up, or down. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, forms have
scroll bars the user can use to scroll through a form.

For complete syntax information on @...SCROLL, see online Help. For more information
about working with Visual dBASE forms, see DEFINE and the Forms chapters in the
User's Guide.

48 L a n g u a g e R e f e r e n c e

@ . . . T O

@...TO Input/Output

Draws a box in the results pane of the Command window or the current dBASE IV
window. This command is supported primarily for compatibility with dBASE IV. In
Visual dBASE, use DEFINE to create forms, which are used instead of dBASE IV
windows.

For complete syntax information on @...TO, see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

ABS() Numeric data

Returns the absolute value of a specified number.

Syntax
ABS(<expN>)

<expN> The numeric or float data type number whose absolute value to return.

Description
ABS() returns the absolute value of a numeric or float data type number. ABS() returns
a numeric or float data type according to the data type of the number you supply. The
absolute value of a number represents its magnitude. Magnitude is always expressed as
a positive value, so the absolute value of a negative number is its positive equivalent.

Example
The following example uses ABS() to take the positive value of a number whatever its
sign:

? abs(0.2) && 0.2
? abs(–5) && 5
? abs(0.2)<1 && true because .2 is less than 1
? abs(–5)<1 && false because 5 is greater than 1

See Also
CEILING(), FLOOR(), INT(), ROUND()

ACCEPT Input/Output

Accepts a user-entered character string and stores it to a memory variable. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use DEFINE with the Text and EntryField classes for displaying and accepting
information on a form.

For complete syntax information on ACCEPT, see online Help. For more information
about working with Visual dBASE forms, see the Forms chapters in the User's Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 49

A C C E S S ()A
ACCESS() Security

Returns the access level of the current user, as assigned with the PROTECT command.

Syntax
ACCESS()

Description
Use ACCESS() to build security into an application. The access level returned can be
used to test privileges assigned with PROTECT. If a user is not logged in to the
application, ACCESS() returns 0 (zero).

If you write programs that use encrypted files, check the user's access level early in the
program. If ACCESS() returns zero, your program might prompt the user to log in, or to
contact the system administrator for assistance.

For more information, see PROTECT.

See Also
LOGOUT, PROTECT, SET ENCRYPTION, USER()

ACOPY() Memory variables

Copies elements from one declared array to another and returns the number of elements
copied.

Syntax
ACOPY(<source array name>, <target array name>
[, <starting element expN> [, <elements expN> [, <target element expN>]]])

<source array name> The name of the declared array from which to copy elements.

<target array name> The name of the declared array that elements from
<source array name> are copied to.

<starting element expN> The position of the element in <source array name> from which
ACOPY() starts copying. Without <starting element expN>, ACOPY() copies all the
elements in <source array name> to <target array name>.

<elements expN> The number of elements in <source array name> to copy. Without
<elements expN>, ACOPY() copies all the elements in <source array name> from <starting
element expN> to the end of the array. If you want to specify a value for <elements expN>,
you must also specify a value for <starting element expN>.

<target element expN> The position in <target array name> to which ACOPY() starts
copying. Without <target element expN>, ACOPY() copies elements to
<target array name> starting at the first position. If you want to specify a value for
<target element expN>, you must also specify values for <starting element expN> and
<elements expN>.

50 L a n g u a g e R e f e r e n c e

A C O S ()

Description
ACOPY() copies elements from a source array to a target array without regard to the
current data types of target positions. If the data type of an element in the source array is
different from the data type of the associated element in the target array, ACOPY()
overwrites the target value and data type with the source value and data type.

If the target array isn't big enough to contain all the elements being copied from the
source array, dBASE displays an error message and does not copy any elements.

Example
The following example uses ACOPY() to create a second array, Ato from the first array,
Afrom. The later portion of the example, consisting of a counting loop and the DISPLAY
(?) command, sends the results to the Command window results pane for confirmation:

PUBLIC Afrom, Ato, Copied
SET TALK OFF
DECLARE Afrom[4],Ato[4]
Afrom[1] = 1
Afrom[2] = "Two"
Afrom[3] = .t.
Afrom[4] = 4
Cnt=1
Copied=ACOPY(Afrom,Ato)
DO WHILE Cnt<=4

? Ato[Cnt]
Cnt=Cnt+1

ENDDO
? "Elements Copied ",Copied
SET TALK ON

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
AFIELDS(), ALEN(), APPEND FROM ARRAY, COPY TO ARRAY, DECLARE,
REPLACE FROM ARRAY

ACOS() Numeric data

Returns the inverse cosine (arccosine) of a number.

Syntax
ACOS(<expN>)

<expN> The cosine of an angle, from –1 to +1.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 51

A C T I V A T E M E N UA
Description
ACOS() returns the radian value of the angle whose cosine is <expN>. ACOS() returns
a float from 0 to pi radians. ACOS() returns zero when <expN> is 1. For values of x
from 0 to pi, ACOS(Y) returns x if COS(X) returns y.

To convert the returned radian value to degrees, use RTOD(). For example, if the
default number of decimal places is 2, ACOS(.5) returns 1.05 radians while
RTOD(ACOS(.5)) returns 60.00 degrees.

Use SET DECIMALS to set the number of decimal places ACOS() displays.

To find the arcsecant of a value, use 1 divided by the arccosine of the value. For
example, the arcsecant of pi is ACOS(1/PI()), or 1.25 radians.

Example
The following example uses ACOS() to find the arc cosine of a set of cosine values:

? ACOS(–1) && 3.14
? ACOS(0) && 1.57
? ACOS(1) && 0.00
? RTOD(ACOS(–1)) && 180.00
? RTOD(ACOS(0)) && 90.00
? RTOD(ACOS(1)) && 0.00

RTOD() converts radians to degrees.

Portability
Not supported in dBASE III PLUS.

See Also
ASIN(), ATAN(), ATN2(), COS(), DTOR(), RTOD(), SET DECIMALS

ACTIVATE MENU dBASE IV menus

Displays and enables a defined dBASE IV menu bar. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN
FORM, and READMODAL() to create and activate menus associated with forms.

For complete syntax information on ACTIVATE MENU, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

ACTIVATE POPUP dBASE IV menus

Displays and enables a dBASE IV pop-up menu. This command is supported primarily
for compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN FORM, and
READMODAL() to create and activate menus associated with forms.

For complete syntax information on ACTIVATE POPUP, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

52 L a n g u a g e R e f e r e n c e

A C T I V A T E S C R E E N

ACTIVATE SCREEN Input/Output

Sends output to the results pane of the Command window rather than to the current
dBASE IV window. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, use DEFINE, OPEN FORM, and READMODAL() to create
and activate forms.

For complete syntax information on ACTIVATE WINDOW, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

ACTIVATE WINDOW dBASE IV windows

Opens dBASE IV-style windows and directs subsequent screen input and output to the
last window opened. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, use DEFINE, OPEN FORM, and READMODAL() to create
and activate forms.

For complete syntax information on ACTIVATE WINDOW, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

ADEL() Memory variables

Deletes an element from a one-dimensional array, or deletes a row or column of
elements from a two-dimensional array. Returns 1 if successful, an error if unsuccessful.

Syntax
ADEL(<array name>, <position expN> [, <row/column expN>])

<array name> The name of the declared one- or two-dimensional array from which to
delete data.

<position expN> When <array name> is a one-dimensional array, <position expN> specifies
the number of the element to delete.

When <array name> is a two-dimensional array, <position expN> specifies the number of
the row or column whose elements you want to delete. The third argument (discussed
in the next paragraph) specifies whether <position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is deleted
from a two-dimensional array. If you specify 2, a column is deleted. dBASE returns an
error if you use <row/column expN> with a one-dimensional array.

Description
Use ADEL() to delete selected elements from an array without changing the size of the
array. ADEL() does the following:

• Deletes an element from a one-dimensional array, or deletes a row or column from a
two-dimensional array

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 53

A D E L ()A
• Moves all remaining elements toward the beginning of the array (up if a row is

deleted, to the left if an element or column is deleted)

• Inserts .F. values in the last position(s)

For information about deleting elements by inserting .F. values and moving remaining
elements toward the end of the array, see AINS(). For information about replacing
elements without moving remaining elements at all, see AFILL(). To change the size of
an array, use AGROW() or ARESIZE().

One-dimensional arrays
When you issue ADEL() for a one-dimensional array, the element in the specified
position is deleted, and the remaining elements move one position toward the
beginning of the array. The logical value .F. is stored to the element in the last position.

For example, if you define a one-dimensional array with DECLARE aArray[3] and
STORE "A," "B," and "C" to the array, the array has one row and can be illustrated as
follows:

A B C

Issuing ADEL(aArray, 2) deletes element number 2, whose value is "B," moves the value
in aArray[3] to aArray[2], and stores .F. to aArray[3] so that the array now contains these
values:

A C .F.

Two-dimensional arrays
When you issue ADEL() for a two-dimensional array, the elements in the specified row
or column are deleted, and the elements in the remaining rows or columns move one
position toward the beginning of the array. The logical value .F. is stored to the elements
in the last row or column.

For example, suppose you define a two-dimensional array with DECLARE aArray[3,4]
and store letters to the array. The following illustration shows how the array is changed
by ADEL(aArray, 2, 2).

54 L a n g u a g e R e f e r e n c e

A D E L ()

Figure 4.1 Using ADEL() with a two-dimensional array

Example
The following example uses ADEL() and AGROW() to dynamically add and delete to
an array which is being edited with @ GET commands:

DECLARE aTest[3]
AFILL(aTest, space(10))
@0,10 SAY " ALT+A = Add Element ;

ALT+D = Delete Element"
ON KEY LABEL ALT+A GrowArray()
ON KEY LABEL ALT+D DelArray()
DO WHILE READKEY() <> 12 .and. aTest.size > 0

ADEL (aARRAY,2,2)

Original array created as:

DECLARE aArray[3,4]
STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]

ƒ
STORE “L” TO aArray[3,4]

ADEL(aArray,2,2)
deletes the elements in the
second column...

Shifts the elements in the
remaining columns towards the
beginning of the array...

Contents of the array after issuing
ADEL(aArray,2,2)

1 2 3 4

A C D .F.
1,1 1,2 1,3 1,4

5 6 7 8

E G H .F.
2,1 2,2 2,3 2,4

9 10 11 12

I K L .F.
3,1 3,2 3,3 3,4

1

3

.

1 2 3 4

A C D
1,1 1,2 1,3 1,4

5 6 7 8

E G H
2,1 2,2 2,3 2,4

9 10 11 12

I K L
3,1 3,2 3,3 3,4

2

Initial contents of the array aArray

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

1 2 3 4

A C D
1,1 1,2 1,3 1,4

5 6 7 8

E G H
2,1 2,2 2,3 2,4

9 10 11 12

I K L
3,1 3,2 3,3 3,4

And inserts logical .F. values as
elements in the last column,
resulting in this array:

4

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 55

A D I R ()A
@1,1 CLEAR TO aTest.size, 30
FOR i = 1 to aTest.size

@i, 1 SAY i GET aTest[i]
NEXT
READ

ENDDO
ON KEY LABEL ALT+A
ON KEY LABEL ALT+D
RETURN

FUNCTION DelArray
ADEL(aTest, aTest.size)
KEYBOARD CHR(3)
RETURN .T.

FUNCTION GrowArray
AGROW(aTest, 1)
aTest[aTest.size] = SPACE(10)
KEYBOARD CHR(3)
RETURN .T.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
AFILL(), AGROW(), AINS(), ARESIZE(), DECLARE

ADIR() Memory variables

Stores to a declared array five characteristics of specified files: name, size, date stamp,
time stamp, and DOS attribute(s). Returns the number of files whose characteristics are
stored.

Syntax
ADIR(<array name>
[, <filename skeleton expC> [, <DOS file attribute list expC>]])

<array name> The name of the declared array of one or more dimensions to which to
store the file information. ADIR() dynamically sizes <array name> so the number of
rows in the array is equal to the number of files that match <DOS file attribute expC>, and
the number of columns is five.

<filename skeleton expC> The file-name pattern (using wildcards) describing the files
whose information to store to <array name>.

<DOS file attribute list expC> The letter or letters D, H, S, and/or V representing one or
more DOS file attributes.

If you want to specify a value for <DOS file attribute expC>, you must also specify a value
or "*.*" for <filename skeleton expC>.

56 L a n g u a g e R e f e r e n c e

A D I R ()

The meaning of each attribute is as follows:

If you supply more than one letter for <DOS file attribute expC>, include all the letters
between one set of quotation marks, for example, ADIR(aArray, "*.PRG", "HS").

Description
Use ADIR() to store information about files to a declared array, which is dynamically
resized so all returned information fits in the array.

Without <filename skeleton expC>, ADIR() stores information about all files in the current
directory that are neither hidden nor system files. For example, if you want to return
information only on tables, use "*.DBF" as <filename skeleton expC>.

If you want to include directories, hidden files, or system files in the array, use
<DOS file attribute expC>. When D, H, or S is included in <DOS file attribute expC>,
all directories, hidden files, and/or system files (respectively) that match
<filename skeleton expC> are added to the array.

When V is included in <DOS file attribute expC>, ADIR() ignores
<filename skeleton expC> as well as other characters in the attribute list, and stores the
volume label to a one-element array.

ADIR() stores the following information for each file into one row of the array. The data
type for each is shown in parentheses:

The last column (DOS attribute) can contain one or more of the following DOS
attributes:

For example, a file with none of the attributes would have the following string in
column 5:

.....

Character Meaning

D Directories
H Hidden files
S System files
V Volume label

Column 1 Column 2 Column 3 Column 4 Column 5

File name
(character)

Size (numeric) Date
(date)

Time (character) DOS attribute(s)
(character)

Attribute Meaning

R Read-only file
A Archive file (modified since it was last backed up)

S System file
H Hidden file
D Directory

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 57

A E L E M E N T ()A
A read-only, hidden file would have the following string in column 5:

R..H.

Example
The following example uses ADIR() to store the file name, file size, date of update and
time of update for all .DBF files on the current directory to the array Dir_Arr. The
counting DO WHILE loop displays the results to the Command window results pane:

DECLARE Dir_Arr[1]
Num_Files=ADIR(Dir_Arr,"*.DBF")
Cnt=1
DO WHILE Cnt<=Num_Files

? Dir_Arr[Cnt,1], Dir_Arr[Cnt,2] AT 20,;
Dir_Arr[Cnt,3] AT 35, Dir_Arr[Cnt,4] AT 45,;
Dir_Arr[Cnt,5] AT 55
Cnt=Cnt+1

ENDDO
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ACOPY(), AFIELDS(), ASORT(), CD, DIR, DECLARE, FDATE(), FSIZE(), FTIME()

AELEMENT() Memory variables

Returns the number of a specified element in a one- or two-dimensional array.

Syntax
AELEMENT(<array name>, <subscript1 expN>
[, <subscript2 expN>])

<array name> A declared one- or two-dimensional array.

<subscript1 expN> The first subscript of the element. In a one-dimensional array, this is
the same as the element number. In a two-dimensional array, this is the row.

<subscript2 expN> When <array name> is a two-dimensional array, <subscript2 expN>
specifies the second subscript, or column, of the element.

If <array name> is a two-dimensional array and you do not specify a value for
<subscript2 expN>, dBASE assumes the value 1. dBASE returns an error if you use
<subscript2 expN> with a one-dimensional array.

Description
Use AELEMENT() when you know the subscripts of an element in a two-dimensional
array and need the element number for use with another function, such as ACOPY() or
ASCAN().

58 L a n g u a g e R e f e r e n c e

A E L E M E N T ()

In one-dimensional arrays, the number of an element is the same as its subscript, so
there is no need to use AELEMENT(). That is, AELEMENT(aOneArray,3) returns 3,
AELEMENT(aOneArray,5) returns 5, and so on.

AELEMENT() is the inverse of ASUBSCRIPT(), which returns an element's row or
column subscript number when you specify the element number.

Example
The first section of this example initializes a one-dimensional array and a two-
dimensional array:

DECLARE aTeacher[4]
DECLARE aStudent[3,4]
DISPLAY MEMORY

Values held in memory are initialized to logical type and contain the value .F. Note the
ordering sequence of the subscripts for the two-dimensional array ASTUDENT:

*ATEACHER
* [1] L .F.
* [2] L .F.
* [3] L .F.
* [4] L .F.
*ASTUDENT
* [1, 1] L .F.
* [1, 2] L .F.
* [1, 3] L .F.
* [1, 4] L .F.
* [2, 1] L .F.
* [2, 2] L .F.
* [2, 3] L .F.
* [2, 4] L .F.
* [3, 1] L .F.
* [3, 2] L .F.
* [3, 3] L .F.
* [3, 4] L .F.

The following statements use AELEMENT() to return the number of the element
specified by subscripts:

? AELEMENT(aTeacher, 3) && Returns 3
? AELEMENT(aStudent, 1, 2) && Returns 2
? AELEMENT(aStudent, 2, 2) && Returns 6
? AELEMENT(aStudent, 3, 4) && Returns 12
? AELEMENT(aStudent, 3) && Returns 9

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ACOPY(), ADEL(), AFIELDS(), AINS(), ALEN(), ASCAN(), ASORT(),
ASUBSCRIPT(), DECLARE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 59

A F I E L D S ()A
AFIELDS() Memory variables

Stores the current table's structural information to a declared array and returns the
number of fields whose characteristics are stored.

Syntax
AFIELDS(<array name>)

<array name> The name of a declared array of one or more dimensions.

Description
Use AFIELDS() to store information about the current table structure in a declared
array. You can then reference the elements in the array to return information such as a
field name and type for use with other functions or for producing reports. Each row in
the array contains information on a single field in the current table.

AFIELDS() dynamically sizes <array name> so the number of rows in the array is at least
equal to the number of fields in the current table, and the number of columns is at least
four. If you declared an array of greater size than required, the rows may not equal the
number of fields and the number of columns do not necessarily equal four.

The following table shows which field characteristics AFIELDS() stores, and in which
column the information is placed:

dBASE uses the following codes for field types: B-dBASE or Paradox binary field
(BLOB), C-character, D-date, G-OLE (general), L-logical, M-memo, N-numeric, F-float.

AFIELDS() stores the same information into an array that COPY TO...STRUCTURE
EXTENDED stores into a table, except AFIELDS() doesn't create a row containing
FIELD_IDX information.

Example
The following example uses AFIELDS() to initialize the array Stru_Arr to the structure
of the Company table. The resulting two-dimensional array has four columns
containing field name, field type, field length and decimal places and as many rows as
the table has fields. The subsequent DO WHILE loop displays the first column only,
thus listing the field names of the current table:

USE COMPANY
DECLARE Stru_Arr[1]
Num_Fields=AFIELDS(Stru_Arr)
Cnt1=1
DO WHILE Cnt1<=Num_Fields

? Stru_Arr[Cnt1,1]
Cnt1=Cnt1+1

ENDDO
RETURN

Column 1 Column 2 Column 3 Column 4

Field name
(character data type)

Field type
(character data type)

Field length (numeric
data type)

Decimal places
(numeric data type)

60 L a n g u a g e R e f e r e n c e

A F I L L ()

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
COPY TO ARRAY, COPY TO...STRUCTURE EXTENDED, DECLARE, FDATE(),
FSIZE(), FTIME()

AFILL() Memory variables

Inserts a specified value into one or more locations in a declared array, and returns the
number of elements inserted.

Syntax
AFILL(<array name>, <exp>
[, <start expN>[, <count expN>]])

<array name> The name of a declared one- or two-dimensional array to fill with the
specified value <exp>.

<exp> An expression of character, date, logical, numeric, or float data type to insert in
the specified array.

<start expN> The element number at which to begin inserting <exp>. If you do not
specify <start expN>, dBASE begins at the first element in the array.

<count expN> The number of elements in which to insert <exp>, starting at element
<start expN>. If you do not specify <count expN>, dBASE inserts <exp> from
<start expN> to the last element in the array. If you want to specify a value for
<count expN>, you must also specify a value for <start expN>.

If you do not specify <start expN> or <count expN>, dBASE fills all elements in the array
with <exp>.

Description
Use AFILL() to insert a value into all or some elements of a declared array. For example,
if you are going to use elements of an array to calculate totals, you can use AFILL() to
initialize all values in the array to 0.

AFILL() inserts values into the array sequentially. Starting at the first element in the
array or at <start expN>, AFILL() inserts values in each element in a row, then moves to
the first element in the next row, continuing to insert values until the array is filled or
until it has inserted <count expN> elements. AFILL() overwrites any existing data in the
array.

If you know an elements subscripts, you can use AELEMENT() to determine its
element number for use as <start expN>.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 61

A G R O W ()A
Example
The following example uses AFILL() to replace the current YTD_Sales value held in the
10th column of array Com_Arr. ASCAN() returns the element number for the desired
Company name which is used by AFILL() as a reference point:

SET TALK OFF
CLEAR
USE Company
Lookup="InterSafe"
Sales=143325552.20
Cnt=RECCOUNT()
Flds=FLDCOUNT()
DECLARE Com_Arr[Cnt,Flds]
COPY TO ARRAY Com_Arr
Element=ASCAN(Com_Arr,Lookup)
IF Element>0

Rplc=AFILL(Com_Arr,Sales,Element+9,1)
ENDIF
Count=1
DO WHILE Count<=Cnt

? Com_Arr[Count,1], Com_Arr[Count,10]
Count=Count+1

ENDDO

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ADEL(), AELEMENT(), AINS(), DECLARE

AGROW() Memory variables

Adds an element, row, or column to an array and returns a numeric value representing
the number of added elements.

Syntax
AGROW (<array name>, <expN>)

<array name> The name of a declared one- or two-dimensional array you want to add
elements to.

<expN> Either 1 or 2. When you specify 1, AGROW() adds a single element to a one-
dimensional array or a row to a two-dimensional array. When you specify 2, AGROW()
adds a column to the array.

Description
Use AGROW() to insert an element, row, or column into an array and change the size of
the array to reflect the added elements. AGROW() can make a one-dimensional array
two-dimensional. All added elements are initialized to .F. values.

62 L a n g u a g e R e f e r e n c e

A G R O W ()

To insert .F. values without changing the size of the array, use AINS().

One-dimensional arrays
When you specify 1 for <expN>, AGROW() adds a single element to the array. When
you specify 2, AGROW() makes the array two-dimensional, and existing elements are
moved into the first column. This is shown in the following figure:

Figure 4.2 Adding a column to a one-dimensional array using AGROW(bARRAY,2)

Two-dimensional arrays
When you specify 1 for <expN>, AGROW() adds a row to the array and adds the row at
the end of the array. This is shown in the following figure:

AGROW(bARRAY,2)

Original array created as:

DECLARE bArray[4]
STORE “A” TO bArray[1]
STORE “B” TO bArray[2]
STORE “C” TO bArray[3]
STORE “D” TO bArray[4]

AGROW(bARRAY,2) adds a new column to the a
makes it a two dimensional array with dimensions
and copies the old values into the first column.

1

.

Contents of the array after issuing
AGROW(bArray,2)

1 2

A .F.
1,1 1,2

3 4

B .F.
2,1 2,2

5 6

C .F.
3,1 3,2

7 8

D .F.
4,1 4,2

Initial contents of the array bArray.

1 2 3 4

A B C D
1 2 3 4

2

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 63

A G R O W ()A
Figure 4.3 Adding a row to a two-dimensional array using AGROW(aARRAY,1)

When you specify 2 for <expN>, AGROW() adds a column to the array and places .F.
into each element in the column.

Example
The following example initially declares an array of three elements, and then uses
AGROW() to add a fourth element, a second column and finally, to add a row to the
two dimensional array. DISPLAY MEMORY is used to show the values in the array
after each AGROW() operation:

RELEASE ALL
DECLARE A[3]
A[1]="x"
A[2]="y"
A[3]="z"
DISPLAY MEMORY
N=AGROW(A,1) && adds an element to A
DISPLAY MEMORY
N=AGROW(A,2) && adds a column to A
DISPLAY MEMORY
N=AGROW(A,1) && adds a new row to A
DISPLAY MEMORY

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
AINS(), ALEN(), DECLARE

AGROW (aARRAY,1)

Original array created as:

DECLARE aArray[3,4]
STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]

ƒ
STORE “L” TO aArray[3,4]

AGROW(aARRAY,1) adds a new row to the array1

.

Contents of the array after issuing
AGROW(aArray,1)

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

13 14 15 16

.F. .F. .F. .F.
4,1 4,2 4,3 4,4

2

Initial contents of the array aArray.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

64 L a n g u a g e R e f e r e n c e

A I N S ()

AINS() Memory variables

Inserts an element with the value .F. into a one-dimensional array, or inserts a row or
column of elements with the value .F. into a two-dimensional array. Returns 1 if
successful, an error if unsuccessful.

Syntax
AINS(<array name>, <position expN> [, <row/column expN>])

<array name> The name of a declared one- or two-dimensional array in which to insert
data.

<position expN> When <array name> is a one-dimensional array, <position expN> specifies
the number of the element in which to insert an .F. value.

When <array name> is a two-dimensional array, <position expN> specifies the number of
a row or column in which to insert .F. values. The third argument (discussed in the next
paragraph) specifies whether <position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is inserted
into a two-dimensional array. If you specify 2, a column is inserted. dBASE returns an
error if you use <row/column expN> with a one-dimensional array.

Description
Use AINS() to insert .F. values into selected elements in an array without changing the
size of the array. AINS() does the following:

• Inserts an element in a one-dimensional array, or inserts a row or column in a two-
dimensional array

• Moves all remaining elements toward the end of the array (down if a row is inserted,
to the right if an element or column is inserted)

• Inserts .F. values in the newly created position(s)

For information about inserting elements by moving remaining elements toward the
beginning of the array and inserting .F. values at the end of the array, see ADEL(). For
information about replacing elements without moving remaining elements at all, see
AFILL(). To change a one-dimensional array to two-dimensional, use AGROW() or
ARESIZE().

One-dimensional arrays
When you issue AINS() for a one-dimensional array, the logical value .F. is inserted into
the position of the specified element. The remaining element(s) are moved one place
toward the end of the array. The element that had been in the last position is deleted.

For example, if you define a one-dimensional array with DECLARE aArray[3] and
STORE "A," "B," and "C" to the array, the array has one row and can be illustrated as
follows:

A B C

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 65

A I N S ()A
Issuing AINS(aArray, 2) inserts aArray[2] with the value .F., moves aArray[2], whose
value is "B," to aArray[3], and deletes "C" in aArray[3] so that the array now contains
these values:

A .F. B

Two-dimensional arrays
When you issue AINS() for a two-dimensional array, a logical value .F. is inserted into
the position of each element in the specified row or column. The elements in the
remaining columns or rows are moved one place toward the end of the array. The
elements that had been in the last row or column are deleted.

For example, suppose you define a two-dimensional array with DECLARE aArr[3,4]
and store letters to the array. The following figure shows how the array is changed by
issuing AINS(aArray, 2,2):

66 L a n g u a g e R e f e r e n c e

A I N S ()

Figure 4.4 Using AINS() with a two-dimensional array

Example
The following example uses a two-dimensional array created as follows:

PUBLIC aAlpha
DECLARE aAlpha[2,3]
STORE "one" TO aAlpha[1,1]
STORE "two" TO aAlpha[1,2]
STORE "three" TO aAlpha[1,3]
STORE "four" TO aAlpha[2,1]
STORE "five" TO aAlpha[2,2]
STORE "six" TO aAlpha[2,3]

The array aAlpha now contains the following:

AINS (aARRAY, 2,2)

Original array created as:

DECLARE aArray[3,4]
STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]

ƒ
STORE “L” TO aArray[3,4]

AINS(aArray,2,2)
inserts logical .F. values as
elements in the second column...

Shifts the elements in the
remaining columns towards the
end of the array, and deletes the
elements from the last column.

Contents of the array after issuing
AINS(aArray,2,2)

1 2 3 4

A .F. B C
1,1 1,2 1,3 1,4

5 6 7 8

E .F. F G
2,1 2,2 2,3 2,4

9 10 11 12

I .F. J K
3,1 3,2 3,3 3,4

1

3

.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

2

Initial contents of the array aArray

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

1 2 3 4

A .F. B C
1,1 1,2 1,3 1,4

5 6 7 8

E .F. F G
2,1 2,2 2,3 2,4

9 10 11 12

I .F. J K
3,1 3,2 3,3 3,4

Resulting in this array:4

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 67

A L E N ()A
*aAlpha
* [1,1] C "one"
* [1,2] C "two"
* [1,3] C "three"
* [2,1] C "four"
* [2,2] C "five"
* [2,3] C "six"

AINS() is now used to change the first column to .F. and move the remaining elements
toward the end of the array:

? AINS(aAlpha,1,2) && Returns 1 if successful

aAlpha now contains the following:

*aAlpha
* [1,1] C .F.
* [1,2] C "one"
* [1,3] C "two"
* [2,1] C .F.
* [2,2] C "four"
* [2,3] C "five"

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ADEL(), AFILL(), AGROW(), ARESIZE(), DECLARE

ALEN() Memory variables

Returns the number of elements, rows, or columns of an array.

Syntax
ALEN(<array name> [, <expN>])

<array name> The name of a declared one- or two-dimensional array.

<expN> The number 0, 1, or 2, indicating which array information to return: elements,
rows, or columns. dBASE returns an error if you specify <expN> for an array that
contains more than two dimensions.

The following table describes what ALEN() returns for different <expN> values:

If <expN> is... ALEN() returns...

not supplied Number of elements in the array
0 Number of elements in the array
1 For a one-dimensional array, the number of elements

For a two-dimensional array, the number of rows (the first subscript of the array)
2 For a one-dimensional array, 0 (zero)

68 L a n g u a g e R e f e r e n c e

A L I A S ()

Description
Use ALEN() to determine the dimensions of a declared array—either the number of
elements it contains, or the number of rows or columns it contains.

If you need to determine both the number of rows and the number of columns a two-
dimensional array contains, issue ALEN() twice, once with a value of 1 for < expN> and
once with a value of 2 for <expN>. For example, issue the following to determine the
number of rows and columns contained in aArray:

? ALEN(aArray,1) && returns number of rows
? ALEN(aArray,2) && returns number of columns

Example
The following example uses ALEN() in a FOR...NEXT loop to print out the contents of
an array:

USE Clients
DECLARE acContact[RECCOUNT(),1]
COPY TO ARRAY acContact
USE
ShowArray(acContact)
RETURN

FUNCTION ShowArray
PARAMETER avArray
FOR i = 1 to ALEN(avArray)

? avArray[i]
NEXT
RETURN .T.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ADEL(), AELEMENT(), AFIELDS(), AGROW(), AINS(), ARESIZE(), ASCAN(),
ASUBSCRIPT(), DECLARE

ALIAS() Table basics

Returns the alias name of the current or a specified work area. If no table is open in a
work area, ALIAS() returns an empty string ("").

Syntax
ALIAS([<alias>])

For a two-dimensional array, the number of columns (the second subscript of the
array)

any other value 0 (zero)

If <expN> is... ALEN() returns...

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 69

A N S I ()A
<alias> The work area you want to return the alias name of. You can enter a work area
number (1 through 225), letter (A through J), or work area name. The work area name
can be a table name or an alias name specified with the USE command. The work area
letter or alias name must be enclosed in quotes.

Description
ALIAS() returns the alias name of any work area within the current session (if Sessions
is checked in the Desktop Properties dialog box). If you do not specify a work area, the
current work area is assumed. If no table is opened in the specified work area, ALIAS()
returns an empty string ("").

Example
The following example uses ALIAS() to return the name (or alias) of the table currently
in use in work area 20:

USE Clients ALIAS Customers IN 20
? ALIAS(20) && Returns CUSTOMERS
? ALIAS("Customers") && Returns CUSTOMERS
SELECT 20
? ALIAS() && Returns CUSTOMERS
CLOSE DATABASES

Portability
Not supported in dBASE III PLUS.

See Also
DBF(), SELECT(), USE, WORKAREA()

ANSI() String data

Returns a character string that is the American National Standards Institute (ANSI)
value of a specified Original Equipment Manufacturer (OEM) character expression.

Syntax
ANSI(<expC>)

<expC> The OEM character expression to convert to ANSI characters.

Description
Use ANSI() and OEM() to convert characters between an ANSI character set and an
OEM character set. ANSI() accepts an OEM character expression and converts its
characters to ones in the current ANSI character set, while OEM() accepts an ANSI
character expression and converts its characters to ones in the current OEM character
set. For more information on character sets, see Appendix C in the Programmer's Guide.

dBASE uses an OEM character set, while other Windows applications use an ANSI
character set. OEM character sets match the ANSI set for most alphabetic and numeric
characters but usually differ for high-order characters, those with ASCII values from 128

70 L a n g u a g e R e f e r e n c e

A P P E N D

to 255. You might need to use ANSI() before sending a character string from dBASE to
another Windows application, for example, if you are using the EXTERN command.

If you need to export a string with different ANSI and OEM values, use ANSI().
Similarly, if you receive a string from a Windows application, use OEM() to convert it
into the format used by dBASE.

The following example shows how you can determine if two characters have the same
or different ANSI and OEM values.

Example
The following example displays the 255 characters that are possible with ASCII, ANSI,
and OEM formats:

FOR i=1 to 255
ASCII=CHR(i)
? i,ASCII,ANSI(ASCII),OEM(ASCII)
* The next 3 commands cause a pause every 10 lines
IF MOD(i,10)=0

WAIT
ENDIF

NEXT i

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CHR(), EXTERN, OEM()

APPEND Fields and records

Adds new records to a table.

Syntax
APPEND
[BLANK]
[NOWAIT]

BLANK Adds a blank record to the end of the table and makes the blank record the
current record.

NOWAIT Invokes the form to edit a new record but does not move focus there. If used in
a program, execution continues to statement following the APPEND NOWAIT
command.

Description
APPEND displays the Table Records window in Form layout. Through this window,
you can navigate, view, and edit existing records as well as add new records. For more
information on editing data and navigating in the Table Records window, see the User's
Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 71

A P P E N DA
If you use SET FORMAT to select a format file, APPEND displays record entries as
directed by the format file. If no format is specified, Visual dBASE displays a default
form. The default form displays a single record at a time, with each field displayed left
to right.

The APPEND BLANK command adds a blank record to the current table and positions
the record pointer on the new record, but it doesn't display a window to edit the data.
When accessing SQL tables, some database servers do not allow you to enter blank
records. Also, constraints on tables created with non-null fields prevent entering records
with fields left blank. For more information, refer to the Borland SQL Link
documentation for your particular database server.

Entering data into an appended record and then moving the record pointer past the end
of the record causes APPEND to add another record (but not APPEND BLANK). Each
new appended record is displayed with blank fields if SET CARRY is OFF. If SET
CARRY is ON, each new appended record contains a copy of the data that is in the
previous record.

The APPEND command includes only the fields specified in a SET FIELDS TO
command, if one is used. If dBASE tables are linked with the SET RELATION
command, the CONSTRAIN and INTEGRITY options control operations that add new
records to child and parent tables. For more information, see the SET RELATION
command.

APPEND automatically updates any open index files while you append records.
APPEND displays records in a table with a master index in indexed order and adds the
new record to the end of the table.

Example
The following example uses APPEND BLANK to add a blank record at the end of the
natural order table:

USE Clients
? RECCOUNT() && Returns number of records in table
APPEND BLANK && Appends new blank record
? RECCOUNT() && Returns previous number plus 1
EDIT && Opens new record for data entry

The next example uses APPEND to add a blank record at the end of the current table
and open the editing window without having to use the EDIT command, as in the
previous example:

USE Clients
APPEND

See Also
APPEND AUTOMEM, APPEND FROM, BROWSE, CLASS BROWSE, EDIT, SET
CARRY, SET FORMAT, SET RELATION, SET WINDOW OF MEMO

72 L a n g u a g e R e f e r e n c e

A P P E N D A U T O M E M

APPEND AUTOMEM Fields and records

Adds a new record to a table using the values stored in automem variables.

Syntax
APPEND AUTOMEM

Description
APPEND AUTOMEM adds a new record to a table and then replaces the value of fields
in the table with the contents of corresponding automem variables. Automem variables
are variables that have the same names and data types as the fields in the current table.

While the APPEND command presents a display for adding records to a table
interactively, APPEND AUTOMEM provides control over data entry in a program. You
can customize the editing display and validate data before adding it to a table. APPEND
AUTOMEM is also a more efficient way to add new records to a table than using
APPEND BLANK and REPLACE.

To use APPEND AUTOMEM to add records to a table, first create a set of automem
variables. The USE...AUTOMEM command opens a table and creates the corresponding
empty automem variables for that table. CLEAR AUTOMEM creates a set of empty
automem variables for the current table or reinitializes existing automem variables to
empty values.

When specifying automem variables in commands that allow them (for example, the
@...SAY...GET command), you need to prefix the name of an automem variable with
m-> to distinguish the variable from fields that may have the same name. For example,
@ 0,0 GET Price displays the value in the current record's Price field while @ 0,0 GET
m->Price displays the value of the automem variable named Price.

Example
The following example uses APPEND AUTOMEM to add a new record to the Clients
table, replacing the value of fields in the table with values held in automem variables. In
this case, the new record will be blank because CLEAR AUTOMEM is issued just prior
to APPEND AUTOMEM:

SET TALK OFF
STORE " " TO Answer
USE Clients
? RECCOUNT()
DO WHILE UPPER(Answer) <> "Q"

CLEAR AUTOMEM
APPEND AUTOMEM
ACCEPT "Press Q to Quit, Enter to Continue " to Answer
? RECCOUNT()

ENDDO

Portability
Not supported in dBASE IV or dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 73

A P P E N D F R O MA
See Also
APPEND, CLEAR AUTOMEM, INSERT AUTOMEM, REPLACE AUTOMEM, STORE
AUTOMEM, USE

APPEND FROM Table basics

Copies records from an existing table to the end of the current table.

Syntax
APPEND FROM <filename> | ? | <filename skeleton>
[FOR <condition>]
[[TYPE] SDF | PARADOX | DBASE |

DELIMITED [WITH
<char> | BLANK]]

[NOVERIFY]
[POSITION]
[REINDEX]

<filename> | ? | <filename skeleton> The name of the table whose records you want to
append to the current table. APPEND FROM ? and APPEND FROM <filename skeleton>
display a dialog box, from which you can select a file. If you specify a file without
including its path, Visual dBASE first looks for the file in the current directory, then in
the path you specify with SET PATH. If you specify a file without including its
extension, Visual dBASE assumes the default table type specified with the SET DBTYPE
command.

You can also append records from a table in a database (defined using the BDE
Configuration Utility) by specifying the database as a prefix (enclosed in colons) to the
name of the table, that is, :database name:table name. If the database is not already open,
Visual dBASE displays a dialog box in which you specify the parameters, such as a login
name and password, necessary to establish a connection to that database.

FOR <condition> Restricts APPEND FROM to records in <filename> that meet
<condition>. You can specify a FOR <condition> only for fields that exist in the current
table.

[TYPE] SDF | PARADOX | DBASE |
DELIMITED [WITH <char> | BLANK] Specifies the format of data you are appending. The
TYPE keyword is included for readability only; it has no effect on the operation of the
command. The following table provides a description of the different file formats that
are supported:

Type Description

SDF A System Data Format file. Records in an SDF file are fixed-length, and the
end of a record is marked with a carriage return and a linefeed. In the table
receiving SDF data, unused portions of fields are padded with spaces. If you
don't specify an extension, Visual dBASE assumes .TXT.

PARADOX A Paradox table (with a .DB extension). Paradox rows are copied to dBASE
records, and each Paradox column is copied to a dBASE field.

74 L a n g u a g e R e f e r e n c e

A P P E N D F R O M

NOVERIFY Disables data validation during APPEND FROM of SDF type files to speed
up processing. If you use NOVERIFY, the source data is copied as is into the target
fields. Without data validation, Visual dBASE doesn't check or convert source data to fit
the data type of target fields.

POSITION Appends fields based on their relative position in the table instead of by
matching field names.

REINDEX Rebuilds all open index files after APPEND FROM finishes executing.
Without REINDEX, dBASE updates all open indexes after appending each record from
<filename>. When the current table has multiple open indexes or contains many records,
APPEND FROM executes faster with the REINDEX option.

Description
Use the APPEND FROM command to add data from another file or table to the end of
the current table. You can append data from dBASE tables or files in other formats. Data
is appended to the current table in the order in which it is stored in the file you specify.

When you specify a dBASE table as the source of data, only the contents of fields whose
names and types are the same as the current table are appended. However, Visual
dBASE does append date data to a character field with the same name, and appends
character data in date format to a date field with the same name.

If the fields common to the current and source tables don't have the same widths, Visual
dBASE does one of the following:

• If the field of the current table is longer than the matching source data, Visual dBASE
pads the data with spaces.

• If the field of the current table is shorter than the matching field of the source table,
Visual dBASE truncates the data.

DBASE A dBASE table. If you don't include an extension for <filename>, Visual dBASE
assumes a .DBF extension.

DELIMITED A text format file. Data in the following formats will be translated by Visual
dBASE into the current table as follows:
Data delimited with quotation marks or the character you specify with WITH
<char> is appended to character fields.
Data in YYYYMMDD format is appended to date fields.
Data consisting solely of the character T or F is appended to logical fields
Numbers are appended to numeric fields.
Each carriage return and linefeed indicates a new record
WITH <char>
Indicates that <filename> character data is delimited with the character <char>
instead of with quotation marks.
WITH BLANK
Indicates that <filename> data is separated with spaces instead of commas or
any other delimiters. If you specify DELIMITED without including WITH
BLANK, Visual dBASE assumes that data items in <filename> are separated
with commas.

Type Description

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 75

A P P E N D F R O M A R R A YA
If SET DELETED is OFF, dBASE adds records from a source dBASE table that are
marked for deletion and doesn't mark them for deletion in the current table. If SET
DELETED is ON, dBASE doesn't add records from a source dBASE table that are
marked for deletion.

When importing data from other files, remove column headings and leading blank rows
and columns; otherwise, this data is also appended.

Example
The following example uses APPEND FROM to add records to an empty table from an
SDF formatted text (.TXT) file:

USE Contact ORDER CompCode IN SELECT()
USE Company IN SELECT()
SELECT COMPANY
SET RELATION TO CompCode INTO Contact
COPY STRUCTURE TO CntctLst;

FIELDS Company->Company, ;
Contact->CompCode, Contact->Contact, ;
Company->Street1, Company->Street2, ;
Company->City, Company->State_Prov,;
Company->Zip_P_Code

COPY TO CntctLst.TXT TYPE SDF;
FIELDS Company->Company, ;
Contact->CompCode, Contact->Contact, ;
Company->Street1, Company->Street2, ;
Company->City, Company->State_Prov,;
Company->Zip_P_Code

CLOSE ALL
USE CntctLst
APPEND FROM CntctLst.TXT TYPE SDF
CLOSE ALL

The following example uses APPEND FROM to add records to Clients table from a text
file delimited with " (MAILLIST.TXT fields are in the same order as Clients):

USE Clients
COPY TO MailList.TXT TYPE DELIMITED
APPEND FROM MailList.TXT TYPE DELIMITED

See Also
APPEND, APPEND AUTOMEM, COPY, IMPORT, REINDEX, SET DELETED

APPEND FROM ARRAY Fields and records

Adds to the current table one or more records containing data stored in a specified
array.

76 L a n g u a g e R e f e r e n c e

A P P E N D F R O M A R R A Y

Syntax
APPEND FROM ARRAY <array name>
[FIELDS <field list>]
[FOR <condition>]
[REINDEX]

<array name> The array containing the data to store in the current table as records.

FIELDS <field list> Appends <array name> data only to the fields in <field list>. Without
FIELDS <field list>, APPEND FROM ARRAY appends to each field an element from the
specified row of <array name>, in the order that the data is stored in the array.

FOR <condition> Restricts APPEND FROM ARRAY to array rows in <array name> that
meet <condition>. The FOR <condition> statement can reference a field; Visual dBASE
recognizes which array element corresponds to which field and evaluates whether to
append a given array row as if the array element were the named field.

REINDEX Rebuilds open indexes after all records have been changed.

Description
APPEND FROM ARRAY treats one- and two-dimensional arrays as tables, with
columns corresponding to fields and rows corresponding to records. A one-dimensional
array works as a table with only one row; therefore, you can append only one record
from a one-dimensional array. A two-dimensional array works as a table with multiple
rows; therefore, you can append as many records from a two-dimensional array as it has
rows. With arrays of more than two dimensions, the last dimension subscript indicates
the number of fields to which to add an array row, and the next-to-last dimension
subscript indicates the number of records to append. Array subscripts previous to the
last two are ignored.

When you append data from an array to the current table, Visual dBASE appends each
array row as a single record. If the table has more fields than the array has columns, the
excess fields are left empty. If the array has more columns than the table has fields, the
excess columns are disregarded. The data in the first column is added to the first field's
contents, the data in the second column to the second field's contents, and so on.

The data types of the array must match those of corresponding fields in the table you are
appending. If the data type of an array element and a corresponding field don't match,
Visual dBASE returns an error.

If the current table has a memo field, Visual dBASE ignores this field. For example, if the
second field is a memo field, Visual dBASE adds the data in the array's first column to
the first field's contents, and the data in the array's second column to the third field's
contents.

Use APPEND FROM ARRAY as an alternative to automem variables when you need to
transfer data between tables where the structures are similar but the field names are
different.

Example
The following example copies selected fields from the Company table to an array, and
uses APPEND FROM ARRAY to move a subset of records for State_Prov = California to
Temp.DBF:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 77

A P P E N D M E M OA
CLOSE ALL
SET SAFETY OFF
USE Company EXCLUSIVE
INDEX ON CompCode TAG CompCode
DECLARE Dup[RECCOUNT(),3]
COPY FIELDS Company, Compcode,State_Prov TO ARRAY Dup
COPY STRUCTURE TO TEMP.DBF WITH PRODUCTION
USE TEMP IN SELECT()
SELECT TEMP
APPEND FROM ARRAY Dup ;

FIELDS Company, Compcode, State_Prov ;
FOR State_Prov = "CA" REINDEX

SET FIELDS TO Company, Compcode, State_Prov
GO TOP
BROWSE
RETURN

See Also
APPEND AUTOMEM, COPY TO ARRAY, DECLARE, REPLACE FROM ARRAY,
STORE AUTOMEM

APPEND MEMO Fields and records

Copies a text file to a memo field.

Syntax
APPEND MEMO <memo field>
FROM <filename> | ? | <filename skeleton>
[OVERWRITE]

<memo field> The memo field of the current table to which the contents of <filename> are
appended.

FROM <filename> | ? | <filename skeleton> Specifies the file to append to the memo field in
the current record. APPEND MEMO ? and APPEND MEMO <filename skeleton> display
a dialog box from which you can select a file. If you specify a file without including its
path, Visual dBASE looks for the file in the current directory, then in the path you
specify with SET PATH. If you specify a file without including its extension, Visual
dBASE assumes a .TXT extension.

OVERWRITE Erases the contents of the current record memo field before copying the
contents of <filename>.

Description
Use APPEND MEMO to copy a text file to the current record memo field. You can copy
one text file to each memo field of each record in a table. To overwrite the contents of a
memo field in the current record, use OVERWRITE.

While dBASE memo fields can contain types of information other than text, binary fields
are recommended for storing images, sound, and other user-defined binary
information. For more information, see the REPLACE BINARY command.

78 L a n g u a g e R e f e r e n c e

A R E S I Z E ()

Example
The following example appends a new, empty record to Clients table, uses APPEND
MEMO to place the contents of a text tile in the memo field Notes and takes the user to
the record in a Table Editor to edit other fields or review the memo field contents:

USE Clients
APPEND BLANK
APPEND MEMO Notes FROM C:\VISUALDB\Readme.TXT
BROWSE

Portability
Not supported in dBASE III PLUS.

See Also
COPY MEMO, REPLACE BINARY, REPLACE MEMO, REPLACE MEMO...FROM,
REPLACE OLE

ARESIZE() Memory variables

Increases or decreases the size of an array according to the specified dimensions and
returns a numeric value representing the number of elements in the modified array.

Syntax
ARESIZE(<array name>, <new rows expN>
[,<new cols expN> [, <retain values expN>]])

<array name> The name of a declared one- or two-dimensional array whose size you
want to increase or decrease.

<new rows expN> The number of rows the resized array should have. <new rows expN>
must always be a positive, nonzero value.

<new cols expN> The number of columns the resized array should have. <new cols expN>
must always be 0 or a positive value. If you omit this option, ARESIZE() changes the
number of rows in the array and leaves the number of columns the same.

<retain values expN> Determines what happens to the values of the array when rows are
added or removed. If you want to specify a value for <retain values expN>, you must also
specify a value for <new cols expN>.

Description
Use ARESIZE() to change the size of a declared array, making it larger or smaller. To
determine the number of rows or columns in an existing array, use ALEN().

If you add or remove columns from the array, you can use <retain values expN> to
specify how you want existing elements to be placed in the new array. If
<retain values expN> is zero or isn’t specified, ARESIZE() rearranges the elements, filling
in the new rows or columns or adjusting for deleted elements, and adding or removing
elements at the end of the array, as needed. This is shown in the following two figures.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 79

A R E S I Z E ()A
You are most likely to want to do this if you don't need to refer to existing items in the
array; that is, you plan to update the array with new values.

Figure 4.5 Adding a row and a column to a 3x4 array, rearranging elements

Figure 4.6 Adding a column to a one-dimensional array, rearranging elements

When you use ARESIZE() on a one-dimensional array, you might want the original row
to become the first column of the new array. Similarly, when you use ARESIZE() on a
two-dimensional array, you might want existing two-dimensional array elements to
remain in their original positions. You are most likely to want to do this if you need to

ARESIZE (aARRAY,4,5)

Original array created as:

DECLARE aArray[3,4]
STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]

ƒ
STORE “L” TO aArray[3,4]

ARESIZE(aARRAY,4,5) adds a new row and column to
the array and rearranges the values of the elements.

1

.

Contents of the array after issuing
ARESIZE(aArray,4,5)

1 2 3 4 5

A B C D E
1,1 1,2 1,3 1,4 1,5

6 7 8 9 10

F G H I J
2,1 2,2 2,3 2,4 2,5

11 12 13 14 15

K L .F. .F. .F.
3,1 3,2 3,3 3,4 3,5

16 17 18 19 20

.F. .F. .F. .F. .F.
4,1 4,2 4,3 4,4 4,5

2

Initial contents of the array aArray.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

ARESIZE (bARRAY,4,2)

Original array created as:

DECLARE bArray[4]
STORE “A” TO bArray[1]
STORE “B” TO bArray[2]
STORE “C” TO bArray[3]
STORE “D” TO bArray[4]

ARESIZE(bARRAY,4,2) adds a new column to the array,
makes it a two dimensional array with dimensions [4,2],
and reassigns the values of the elements.

1

.

Contents of the array after issuing
ARESIZE(bArray,4,2)

1 2

A B
1,1 1,2

3 4

C D
2,1 2,2

5 6

.F. .F.
3,1 3,2

7 8

.F. .F.
4,1 4,2

2

Initial contents of the array bArray.

1 2 3 4

A B C D
1 2 3 4

80 L a n g u a g e R e f e r e n c e

A R E S I Z E ()

refer to existing items in the array by their subscripts; that is, you plan to add new
values to the array while continuing to work with existing values.

If <retain values expN> is a nonzero value, ARESIZE() ensures that elements retain their
original values. The following two figures repeat the statements shown in the previous
two figures, with the addition of a value of 1 for <retain values expN >.

Figure 4.7 Adding a row and a column to a 3x4 array, “preserving elements”

Figure 4.8 Adding a column to a one-dimensional array, “preserving elements”

ARESIZE (aARRAY,4,5,1)

Original array created as:

DECLARE aArray[3,4]
STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]

ƒ
STORE “L” TO aArray[3,4]

ARESIZE(aARRAY,4,5,1) adds a new row and co
the array and maintains the values of the elemen

1

.

Contents of the array after issuing
ARESIZE(aArray,4,5,1)

1 2 3 4 5

A B C D .F.
1,1 1,2 1,3 1,4 1,5

6 7 8 9 10

E F G H .F.
2,1 2,2 2,3 2,4 2,5

11 12 13 14 15

I J K L .F.
3,1 3,2 3,3 3,4 3,5

16 17 18 19 20

.F. .F. .F. .F. .F.
4,1 4,2 4,3 4,4 4,5

2

Initial contents of the array aArray.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

ARESIZE (bARRAY,4,2,1)

Original array created as:

DECLARE bArray[4]
STORE “A” TO bArray[1]
STORE “B” TO bArray[2]
STORE “C” TO bArray[3]
STORE “D” TO bArray[4]

ARESIZE(bARRAY,4,2,1) adds a new column to
and makes it a two-dimensional array with dimen
Each existing element is now the first element in

1

.

Contents of the array after issuing
ARESIZE(bArray,4,2,1)

1 2

A .F.
1,1 1,2

3 4

B .F.
2,1 2,2

5 6

C .F.
3,1 3,2

7 8

D .F.
4,1 4,2

2

Initial contents of the array bArray.

1 2 3 4

A B C D
1 2 3 4

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 81

A S C ()A
Example
The following example initially declares an array of three elements, and then uses
ARESIZE() to resize the array to A[5], A[5,2] and finally back to A[3]. DISPLAY
MEMORY is used to show the values in the array after each ARESIZE() operation:

RELEASE ALL
DECLARE A[3]
A[1]="x"
A[2]="y"
A[3]="z"
DISPLAY MEMORY
N=ARESIZE(A,5) && A now has 5 elements
A[4]="new1"
A[5]="new2"
DISPLAY MEMORY
N=ARESIZE(A,5,2,1)
* A now has 5 rows and 2 columns.
* The new cols are all set to .t.
* Old values are retained
DISPLAY MEMORY
N=ARESIZE(A,3,1,1)
* A now is back to the original 3 elements
* use:
DISPLAY MEMORY
* N=ARESIZE(A,3,1,0)
* if you don't need the original values
DISPLAY MEMORY
WAIT

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ADEL(), AINS(), ALEN(), DECLARE

ASC() Expressions and type conversion

Returns the numeric ASCII value of a specified character.

Syntax
ASC(<expC>)

<expC> The character whose ASCII value to return. You can specify more than one
character, but dBASE uses only the first one.

Description
ASC() is the inverse function of CHR(). ASC() accepts a character and returns its ASCII
value—a number from 0 to 255, inclusive. CHR() accepts an ASCII value and returns its
character.

82 L a n g u a g e R e f e r e n c e

A S C A N ()

You can use ASC() to manipulate the returned ASCII values of characters with
mathematical operators. See the ASCII table in Appendix E for a listing of ASCII values
and their corresponding characters.

Example
The following example uses ASC() to determine the ASCII value of a specified
character:

SET TALK OFF
plus_minus = CHR(241)
? "The ASCII value of " + plus_minus + " is "
?? + LTRIM(STR(ASC(plus_minus),3,0))

See Also
ANSI(), CHR(), OEM()

ASCAN() Memory variables

Searches an array for an expression. Returns the number of the first element that
matches the expression if the search is successful, or 0 if the search is unsuccessful.

Syntax
ASCAN(<array name>, <exp>
[, <starting element expN> [, <elements expN>]])

<array name> A declared one- or two-dimensional array.

<exp> The expression to search for in <array name>.

<starting element expN> The element number in <array name> at which to start searching.
Without <starting element expN>, ASCAN() starts searching at the first element.

<elements expN> The number of elements in <array name> that ASCAN() searches.
Without <elements expN>, ASCAN() searches <array name> from <starting
element expN> to the end of the array. If you want to specify a value for <elements expN>,
you must also specify a value for <starting element expN>.

Description
Use ASCAN() to search an array for the value contained in <exp>. For example, if an
array contains customer names, you can use ASCAN() to find the location in which a
particular name appears.

ASCAN() returns the element number of the first element in the array that matches
<exp>. If you want to determine the subscripts of this element, use ASUBSCRIPT().

When <exp> contains string data, ASCAN() is case-sensitive; you may want to use
UPPER(), LOWER(), or PROPER() to match the case of <exp> with the case of the data
stored in the array.

When <exp> contains string data, ASCAN() searches for an expression following the
rules established by SET EXACT. If SET EXACT is ON, dBASE returns 0 if the value in

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 83

A S C A N ()A
<exp> is not identical to the data in an element of the array. If SET EXACT is OFF,
dBASE returns 0 if the characters in <expN> do not match the beginning characters in
the data in an element of the array. The following code example illustrates this more
clearly. For more information, see SET EXACT.

DECLARE aArray[3,4] && 3 rows,4 columns
? AFILL(aArray,"abcd",6,1) && place "abcd" in the 6th element
SET EXACT OFF
? ASCAN(aArray,"abcd") && returns 6
? ASCAN(aArray,"abc") && returns 6
? ASCAN(aArray,"bcd") && returns 0
SET EXACT ON
? ASCAN(aArray,"abcd") && returns 6
? ASCAN(aArray,"abc") && returns 0
? ASCAN(aArray,"abc") && returns 0

Example
The following example uses ASCAN() to return an element number for a desired string
within an array and ASUBSCRIPT() to return the row and column coordinates within
the array:

CLEAR
DECLARE A_Dir[1]
FileName="CLIENTS.DBF"
Files=ADIR(A_Dir,"*.*") && Initializes array to directory contents
Asort=ASORT(A_Dir) && Orders array
Element=ASCAN(A_Dir,FileName) && Returns filename location
IF Element > 0 && ASCAN() returns 1 if successful

Row=ASUBSCRIPT(A_Dir,Element,1)
Col=ASUBSCRIPT(A_Dir,Element,2)
? "Name" AT 15, "Bytes" AT 30, "Date" AT 39,;

"Time" AT 48
?
? "File Info: " + A_Dir[Row,Col];

+" "+STR(A_Dir[Row,Col+1]);
+" "+DTOC(A_Dir[Row,Col+2])+" "+A_Dir[Row,Col+3]

ENDIF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ACOPY(), AFIELDS(), AFILL(), ASORT(), ASUBSCRIPT(), DECLARE, LOWER(),
PROPER(), SET EXACT, UPPER()

84 L a n g u a g e R e f e r e n c e

A S I N ()

ASIN() Numeric data

Returns the inverse sine (arcsine) of a number.

Syntax
ASIN(<expN>)

<expN> The sine of an angle, from –1 to +1.

Description
ASIN() returns the radian value of the angle whose sine is <expN>. ASIN() returns a
float from –pi/2 to pi/2 radians. ASIN() returns zero when <expN> is 0. For values of x
from –pi/2 to pi/2, ASIN(Y) returns x if SIN(X) returns y.

To convert the returned radian value to degrees, use RTOD(). For example, if the
default number of decimal places is 2, ASIN(.5) returns .52 radians while
RTOD(ASIN(.5)) returns 30.00 degrees.

Use SET DECIMALS to set the number of decimal places ASIN() displays.

To find the arccosecant of a value, use 1 divided by the arcsine of the value. For
example, the arccosecant of 1.54 is ASIN(1/1.54), or .71 radians.

Example
The following example uses ASIN() to return the arcsine of a set of sine values:

CLEAR
? "ArcSine" AT 20
?
? "Sine" AT 9, "Radians" AT 20,"Degrees" AT 33
SET DECIMALS TO 2
FOR sine = –1 TO 1 STEP .25

? sine AT 0, ASIN(sine) AT 13, RTOD(ASIN(sine)) AT 26
NEXT

Portability
Not supported in dBASE III PLUS.

See Also
ACOS(), ATAN(), ATN2(), DTOR(), RTOD(), SET DECIMALS, SIN()

ASORT() Memory variables

Sorts the elements in a one-dimensional array or the rows in a two-dimensional array,
returning 1 if successful or an error if unsuccessful.

Syntax
ASORT(<array name>
[, <starting element expN> [,<elements to sort expN> [, <sort order expN>]]])

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 85

A S O R T ()A
<array name> A declared one- or two-dimensional array.

<starting element expN> In a one-dimensional array, the number of the element in <array
name> at which to start sorting. In a two-dimensional array, the number (subscript) of
the column on which to sort. Without <starting element expN>, ASORT() starts sorting at
the first element or column in the array.

<elements to sort expN> In a one-dimensional array, the number of elements to sort. In a
two-dimensional array, the number of rows to sort. Without <elements to sort expN>,
ASORT() sorts the rows starting at the row containing element <starting element expN>
to the last row. If you want to specify a value for <elements to sort expN>, you must also
specify a value for <starting element expN>.

<sort order expN> The sort order:
• 0 specifies ascending order (the default)
• 1 specifies descending order

If you want to specify a value for <sort order expN>, you must also specify values for
<elements to sort expN> and <starting element expN>.

Description
ASORT() succeeds in sorting when all elements you specify to be sorted are of the same
data type. The elements to sort in a one-dimensional array must be of the same data
type, and the elements of the column by which rows are to be sorted in a two-
dimensional array must be of the same data type.

ASORT() arranges elements in alphabetical, numerical, chronological, or logical order,
depending on the data type of <starting element expN>. (For character data, the current
language driver determines the sort order.)

One-dimensional arrays
Suppose you issue DECLARE aNums[8] and store numbers to the array so that the
array elements are in this order:

 5 7 3 9 4 1 2 8

If you issue ASORT(aNums, 1, 5), dBASE sorts the first five elements so that the array
elements are in this order:

 3 4 5 7 9 1 2 8

If you then issue ASORT(aNums, 5, 2), dBASE sorts two elements starting at the fifth
element so that the array elements are now in this order:

 3 4 5 7 1 9 2 8

Two-dimensional arrays
Using ASORT() with a two-dimensional array is similar to using the SORT command
with a table. In this comparison, array rows correspond to records, and array columns
correspond to fields.

When you sort a two-dimensional array, whole rows are sorted, not just the elements in
the column where <starting element expN>) is located.

86 L a n g u a g e R e f e r e n c e

A S O R T ()

For example, suppose you issue DECLARE aInfo[4, 3] and fill the array with the
following data:

{09/15/65} 7 A
{12/31/65} 4 D
{01/19/45} 8 C
{05/02/72} 2 B

If you issue ASORT(aInfo, 1), dBASE sorts all rows in the array beginning with element
number 1. The rows are sorted by the dates in the first column because element 1 is a
date. The following figure shows the results.

Figure 4.9 ASORT (aInfo,1)

If you then issue ASORT(aInfo, 5, 2), dBASE sorts two rows in the array starting with
element number 5, whose value is 7. ASORT() sorts the second and the third rows
based on the numbers in the second column. The following figure shows the results.

ASORT (aInfo,1)

All the rows are to be sorted...

starting with the row
containing element 1.

Element 1 is a date, so the
rows are sorted by the dates
in the first column.

1

.

Contents of the array after issuing
ASORT(aInfo,1)

1 2 3

{01/19/45} 8 C

4 5 6

{09/15/65} 7 A

7 8 9

{05/02/72} 2 B

10 11 12

{12/31/74} 4 D

2

Initial contents of the array aInfo.

1 2 3

{09/15/65} 7 A

4 5 6

{12/31/74} 4 D

7 8 9

{01/19/45} 8 C

10 11 12

{05/02/72} 2 B

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 87

A S U B S C R I P T ()A
Figure 4.10 Using ASORT() with a two-dimensional array

Example
See ASCAN() for an example of ASORT().

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
AELEMENT(), ALEN(), ASCAN(), ASUBSCRIPT(), DECLARE

ASUBSCRIPT() Memory variables

Returns the row number or the column number of a specified element in an array.

Syntax
ASUBSCRIPT(<array name>, <element expN>, <row/column expN>)

<array name> A declared one- or two-dimensional array.

<element expN> The element number.

<row/column expN> A number, either 1 or 2, that determines whether you want to return
the row or column subscript of an array. If <row/column expN> is 1, ASUBSCRIPT()
returns the number of the row subscript. If <row/column expN> is 2, ASUBSCRIPT()
returns the number of the column subscript.

ASORT(aINFO,5,2)

Two rows are to be sorted
(ASORT(aInfo,5,2))
starting with the row containing
element 5 (ASORT(aInfo,5,2)).

Element 5 contains a number, so
the rows are sorted by the
numbers in the second column.

1 2

Initial contents of the array aInfo.

1 2 3

{01/19/45} 8 C

4 5 6

{09/15/65} 7 A

7 8 9

{05/02/72} 2 B

10 11 12

{12/31/74} 4 D

Contents of the array after issuing
ASORT(aInfo,5, 2)

1 2 3

{01/19/45} 8 C

4 5 6

{05/02/72} 2 B

7 8 9

{09/15/65} 7 A

10 11 12

{12/31/74} 4 D

88 L a n g u a g e R e f e r e n c e

A S U B S C R I P T ()

If <array name> is a one-dimensional array, dBASE returns an error if <row/
column expN> is a value other than 1.

Description
Use ASUBSCRIPT() when you know the number of an element in a two-dimensional
array and want to reference the element by using its subscripts.

If you need to determine both the row and column number of an element in a two-
dimensional array, issue ASUBSCRIPT() twice, once with a value of 1 for <row/
column expN> and once with a value of 2 for <row/column expN>. For example, if the
element number is 13, issue the following to return its subscripts:

? ASUBSCRIPT(aArray,13,1) && returns row subscript
? ASUBSCRIPT(aArray,13,2) && returns column subscript

In one-dimensional arrays, the number of an element is the same as its subscript, so
there is no need to use ASUBSCRIPT(). That is, ASUBSCRIPT(aOneArray,3,1) returns 3,
ASUBSCRIPT(aOneArray,5,1) returns 5, and so on.

ASUBSCRIPT() is the inverse of AELEMENT(), which returns an element number
when you specify the element subscripts.

Example
The following example uses ASCAN() to return an element number for a desired string
within an array and ASUBSCRIPT() to return the row and column coordinates within
the array:

CLEAR
DECLARE A_Dir[1]
FileName="CLIENTS.DBF"
Files=ADIR(A_Dir,"*.*") && Initializes array to;

directory contents
Asort=ASORT(A_Dir) && Orders array
Element=ASCAN(A_Dir,FileName)&& Returns filename;

location
IF Element > 0 && ASCAN() returns 1;

if successful
Row=ASUBSCRIPT(A_Dir,Element,1)
Col=ASUBSCRIPT(A_Dir,Element,2)
? "Name" AT 15, "Bytes" AT 30, "Date" AT 39,;

"Time" AT 48
?
? "File Info: " + A_Dir[Row,Col];

+" "+STR(A_Dir[Row,Col+1]);
+" "+A_Dir[Row,Col+2]+" "+A_Dir[Row,Col+3]

ENDIF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ACOPY(), ADEL(), AELEMENT(), AFIELDS(), AINS(), ALEN(), ASCAN(),
ASORT(), DECLARE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 89

A T ()A
AT() String data

Returns a number that represents the position of a string within another string or memo
field.

Syntax
AT(<search expC>, <target expC> | <target memo field>
[, <nth occurrence expN>])

<search expC> The string to search for in <target expC> or <target memo field>.

<target expC> | <target memo field> The string or memo field in which to search for
<search expC>.

<nth occurrence expN> Which occurrence of the string to find. By default, dBASE searches
for the first occurrence. You can search for other occurrences by specifying the number,
which must be greater than zero.

Description
AT() returns the numeric position where a search string begins in a target string or target
memo field. AT() searches, one character at a time, from the first character of the string
or memo field, searching left to right, beginning to end.

The search is case-sensitive. Use UPPER() or LOWER() to make the search case-
insensitive.

You can specify which occurrence of the search string to find by specifying a number for
<nth occurrence expN>. If you omit this argument, AT() returns the starting position of
the first occurrence of the search string.

AT() returns 0 when

• The search string isn't found.
• The search string, target string, or target memo field is empty.
• The search string is longer than the target string.
• The <nth occurrence expN> occurrence doesn't exist.

If < nth occurrence expN> is less than 1, dBASE returns an error.

When AT() counts characters in a memo field, it counts two characters for each
carriage-return and linefeed combination (CR/LF) in the memo field.

Use RAT() to find the starting position of <search expC>, searching from right to left, end
to beginning. Use the substring operator ($) to learn if one string exists within another.
See Chapter 1 for information about operators.

Example
The following example uses AT() to determine the starting point of a passed text string
in a second string:

? AT("B","ABC") && Returns 2
? AT("ss","Mississippi") && Returns 3
? AT("ss","Mississippi",2) && Returns 6

90 L a n g u a g e R e f e r e n c e

A T A N ()

? AT("Z","ABC") && Returns 0
? AT("a","ABC") && Returns 0
? AT("ABC","AB") && Returns 0
? AT("","ABC") && Returns 0
? AT("a","abc",2) && Returns 0

The following example uses AT() to display or print a listing of all records in the Client
table that contain a string in the Notes memo field and the position of the first
occurrence.

USE Clients
String="Special Handling"
LIST Company, Notes FOR AT(String, Notes)>0
CLOSE ALL

Portability
dBASE IV limits a memo field search to the first 64K of data, and the <memo field> and
<nth occurrence expN> arguments aren't supported in dBASE III PLUS.

See Also
RAT(), STUFF(), SUBSTR()

ATAN() Numeric data

Returns the inverse tangent (arctangent) of a number.

Syntax
ATAN(<expN>)

<expN> Any positive or negative number representing the tangent of an angle.

Description
ATAN() returns the radian value of the angle whose tangent is <expN>. ATAN()
returns a float from –pi/2 to pi/2 radians. ATAN() returns 0 when <expN> is 0. For
values of x from –pi/2 to pi/2, ATAN(Y) returns x if TAN(X) returns y.

To convert the returned radian value to degrees, use RTOD(). For example, if the
default number of decimal places is 2, ATAN(1) returns 0.79 radians, while
RTOD(ATAN(1)) returns 45.00 degrees.

Use SET DECIMALS to set the number of decimal places ATAN() displays.

ATAN() differs from ATN2() in that ATAN() takes the tangent as the argument while
ATN2() takes the sine and cosine as the arguments.

To find the arccotangent of a value, subtract pi/2 from the arctangent of the value. For
example, the arccotangent of pi/3 is pi/2-ATAN(pi/3), or .76.

Example
The following example uses ATAN() to find the arctangent of a set of tangent values:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 91

A T N 2 ()A
CLEAR
SET DECIMALS TO 5
? "Arc Tangent" AT 18
? "Tangent" AT 6, "Radians" AT 20, "Degrees" AT 33
FOR tang = -100 TO 1000 STEP 100

? tang AT 0, ATAN(tang) AT 12, ;
LTRIM(STR(RTOD(ATAN(tang)),8,5)) AT 33

NEXT

Portability
Not supported in dBASE III PLUS.

See Also
ACOS(), ASIN(), ATN2(), RTOD(), SET DECIMALS, TAN()

ATN2() Numeric data

Returns the inverse tangent (arctangent) of a given point.

Syntax
ATN2(<sine expN>, <cosine expN>)

<sine expN> The sine of an angle. If <sine expN> is 0, <cosine expN> can't also be 0.

<cosine expN> The cosine of an angle. If <cosine expN> is 0, <sine expN> can't also be 0.
When <cosine expN> is 0 and <sine expN> is a positive or negative (nonzero) number,
ATN2() returns +pi/2 or –pi/2, respectively.

Description
ATN2() returns the angle size in radians when you specify the sine and cosine of the
angle. ATN2() returns a float from –pi to +pi radians. ATN2() returns 0 when
<sine expN> is 0. When you specify 0 for both arguments, dBASE returns an error.

To convert the returned radian value to degrees, use RTOD(). For example, if the
default number of decimal places is 2, ATN2(1,0) returns 1.57 radians while
RTOD(ATN2(1,0)) returns 90.00 degrees.

Use SET DECIMALS to set the number of decimal places ATN2() displays.

ATN2() differs from ATAN() in that ATN2() takes the sine and cosine as the
arguments while ATAN() takes the tangent as the argument. See ATAN() for
instructions on finding the arccotangent.

Example
The following example shows some ways to use ATN2():

? ATN2(2.79,–3.2) && Returns 2.42
? ATN2(–3,3) && Returns –0.79
? RTOD(ATN2(–3,3)) && Returns –45
? RTOD(ATN2(–1,–SQRT(3))) && Returns –150
x=SIN(DTOR(30))

92 L a n g u a g e R e f e r e n c e

A V E R A G E

y=COS(DTOR(30))
? RTOD(ATN2(x,y)) && Returns 30

Portability
Not supported in dBASE III PLUS.

See Also
ACOS(), ASIN(), ATAN(), COS(), RTOD(), SET DECIMALS, SIN(), TAN()

AVERAGE Table organization

Computes the arithmetic mean (average) of specified numeric or float type fields in the
current table.

Syntax
AVERAGE
[<exp list>]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar list> | TO ARRAY <array name>]

<exp list> The numeric or float fields, or expressions involving numeric or float fields, to
average.

<scope> The range of records to average. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by AVERAGE. FOR restricts
AVERAGE to records that meet <condition 1>, starting at the first record of the table or
view. WHILE starts processing with the current record and continues with each
subsequent record as long as <condition 2> is true.

TO <memvar list> | TO ARRAY <array name> Initializes and stores averages to the memory
variables of <memvar list> or stores averages to the existing array <array name>. If you
specify an array, each field average is stored to elements in the order in which you
specify the fields in <exp list>. If you don't specify <exp list>, each field average is stored
in field number order. <array name> can be a single- or multidimensional array. You can
store averages to an array without the ARRAY keyword if you explicitly reference the
array subscripts.

Description
The AVERAGE command computes the arithmetic means (averages) of numeric
expressions and stores the results in specified memory variables or array elements. If
you store the values in memory variables, the number of memory variables must be
exactly the same as the number of fields or expressions averaged. If you store the values

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 93

B A R ()+
B

in an array, the array must already exist, and the array must contain at least as many
elements as the number of averaged expressions.

If SET TALK is ON, AVERAGE also displays its results in the results pane of the
Command window. The SET DECIMALS setting determines the number of decimal
places that AVERAGE displays. Numeric fields in blank records are evaluated as zero.
To exclude blank records, use the ISBLANK() function in defining a FOR condition.
EMPTY() excludes records in which a specified expression is either 0 or blank.

Example
The following example uses AVERAGE to calculate the average year to date sales for all
companies in the Company table:

USE Company
AVERAGE Ytd_sales TO Ytd_Av
? "The average Ytd Sale was $", Ytd_av PICTURE "99,999,999.99"

Portability
Not supported in dBASE III PLUS.

See Also
CALCULATE, COUNT, SUM, TOTAL

BAR() dBASE IV menus

Returns the number of the currently selected (highlighted) or most recently chosen bar
in a dBASE IV pop-up menu. This command is supported primarily for compatibility
with dBASE IV. In Visual dBASE, use INSPECT() to return information associated with
objects in forms.

For complete syntax information on BAR(), see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

BARCOUNT() dBASE IV menus

Returns the number of bars in a dBASE IV pop-up menu. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use INSPECT() to return
information associated with objects in forms.

For complete syntax information on BARCOUNT(), see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

94 L a n g u a g e R e f e r e n c e

B A R P R O M P T ()

BARPROMPT() dBASE IV menus

Returns the prompt of a bar in a dBASE IV pop-up menu. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use INSPECT() to return
information associated with objects in forms.

For complete syntax information on BARPROMPT(), see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

BEGINTRANS() Shared data

Starts a transaction and returns .T. if the transaction started successfully.

Syntax
BEGINTRANS([<database name expC>] [<isolation level expN>])

<database name expC> The name of the SQL database in which to begin the transaction.

• If <database name expC> is omitted but a SET DATABASE statement has been issued,
BEGINTRANS() refers to the database in the SET DATABASE statement.

• If <database name expC> is omitted and no SET DATABASE statement has been
issued, BEGINTRANS() refers to the database opened after issuing BEGINTRANS().

<isolation level expN> Specifies a pre-defined server-level transaction isolation scheme.

• Valid values for <isolation level> are:

• <isolation level> is not supported for local tables.

• If an invalid value is given for <isolation level>, a dBASE "Value out of range" error is
generated.

• The <isolation level> is server-specific; a "Not supported" error will result from the
database engine if an unsupported level is specified.

Note If you include <database name expC> when you issue BEGINTRANS(), you must also
include it in subsequent COMMIT() or ROLLBACK() statements within that
transaction. If you don't, dBASE ignores the COMMIT() or ROLLBACK() statement.

Description
Use BEGINTRANS() to initiate a transaction during which the user might make changes
to a table or tables in an SQL database that supports transaction processing. Within a

expN Description

0 Server's default isolation level
1 Uncommitted changes read (dirty read)

2 Committed changes read (read committed)
3 Full read repeatability (repeatable read)

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 95

B E G I N T R A N S ()+
B

transaction initiated with BEGINTRANS(), you can work in only one database. Also,
you can't nest transactions.

If you issue BEGINTRANS() against an SQL database that does not support
transactions, or if a server error occurs, BEGINTRANS() returns .F. Otherwise, it returns
.T. If BEGINTRANS() returns .F., use SQLERROR() or SQLMESSAGE() to determine
the nature of the server error that might have occurred.

To close a transaction, use COMMIT() or ROLLBACK().COMMIT() saves changes
made during the transaction, and ROLLBACK() discards changes and returns tables to
the state they were in before BEGINTRANS() was issued.

BEGINTRANS() applies to the following commands:

The following commands are not allowed in transactions. dBASE returns an error if you
try to issue them from within a transaction.

Example
The following example begins a transaction with BEGINTRANS(). It opens a multi-user
version of Company.dbf and attempts to make all YTD_SALES 0. ON ERROR detects
any error which might occur. In particular, it will detect if another user has locked any
record in Company.dbf. If an error occurs, ROLLBACK() resets all values. Otherwise
COMMIT() writes the changes to disk:

CLOSE ALL
SET PROCEDURE TO PROGRAM(1) ADDITIVE
SET EXCLUSIVE OFF

BEGINTRANS()

TransErr=.f.

@...SAY...GET DELETE REPLACE

APPEND EDIT REPLACE MEMO/BINARY/OLE

APPEND BLANK FLOCK() RLOCK()

APPEND MEMO INSERT

BROWSE RECALL

BEGINTRANS()
(nested transactions are not allowed)

DELETE TAG

CLEAR ALL INDEX

CLOSE ALL/DATABASE/INDEX
(any command that closes open tables
or indexes)

MODIFY STRUCTURE

CONVERT PACK

CREATE FROM a USE that would close an open table,
or open a table in another database

ZAP

96 L a n g u a g e R e f e r e n c e

B I N T Y P E ()

ON ERROR DO TransErr && Activates ON ERROR trap

USE L:\MultiUse\Company
REPLACE ALL Ytd_Sales WITH 0
ON ERROR && Disables ON ERROR

IF TransErr
? "Rollback"
ROLLBACK() && restore data

ELSE
? "Commit"
COMMIT() && save changes

ENDIF

PROC TransErr
WAIT "Warning: Transaction Fails"
TransErr=.t.

Portability
Not supported in dBASE IV or dBASE III PLUS. BEGINTRANS() replaces the BEGIN
TRANSACTION and END TRANSACTION commands in dBASE IV.

See Also
COMMIT(), FLOCK(), RLOCK(), ROLLBACK(), SET EXCLUSIVE, SQLERROR(),
SQLMESSAGE()

BINTYPE() Fields and records

Returns the predefined type number of a specified binary field.

Syntax
BINTYPE([<field name>])

<field name> The name of a field in the current table.

Description
BINTYPE() returns the predefined binary type number of a binary field in the current
table. Using this command, you can determine the type of data stored in the field. The
values returned by BINTYPE() are the following:

BINTYPE() returns an error if a non-binary field is specified. It returns a value of 0 if the
binary field is empty.

Predefined binary type numbers Description

1 to 32K – 1 (1 to 32,767) User-defined file types
32K (32,768) .WAV files
32K + 1 (32,769) .BMP and .PCX files

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 97

B I T A N D ()+
B

Example
The following example uses BINTYPE() to return the binary type code for the BMP field
of the Animals table:

USE Animals
GO 5
? BINTYPE(BMP) && Returns 32769

See Also
COPY BINARY, PLAY SOUND REPLACE BINARY, RESTORE IMAGE

BITAND() Windows programming

Performs a bitwise AND operation on two numeric values and returns the result.

Syntax
BITAND(<expN1>, <expN2>)

Description
BITAND() is used by advanced programmers to make binary interpretations of
numeric values. These values are often returned by functions prototyped with EXTERN
to access resources in Windows API or other DLL files. Interpreting such values often
requires analysis and manipulation of individual bits.

BITAND() compares bits in the numeric value <expN1> with corresponding bits in the
numeric value <expN2>. When two bits in the same position are on (set to 1), the
corresponding bit in the returned value is on. In any other case, the bit is off (set to 0).

Example
The following procedure gets information from the Windows function GetVersion(),
which returns the major and minor DOS and Windows versions as a CLONG. The
"High Byte of the High Word" contains the major DOS version, the "Low Byte of the
High Word" contains the minor DOS version. The "High Byte of the Low Word"
specifies the minor version of Windows and the "Low byte of the Low Word" specifies
the major Windows version. The Bit functions BITAND() and BITRSHIFT() are used to
extract the proper values.

FUNCTION GVer
PARAMETER VerType
#define HiWord(x) (BITRSHIFT(BITAND;

(x,4294901760),16))
#define LoWord(x) (BITAND(x,65535))
#define HiByte(x) (LTRIM(STR(BITRSHIFT(BITAND;

(x,65280), 8))))

Bit 1 = 1 Bit 1 = 0

Bit 2 = 1 1 0
Bit 2 = 0 0 0

98 L a n g u a g e R e f e r e n c e

B I T L S H I F T ()

#define LoByte(x) (LTRIM(STR(BITAND(x,255))))
EXTERN CLONG GetVersion() krnl386.exe
z=GetVersion()
IF UPPER(verType)="DOS"

RETURN HiByte(HiWord(z))+"."+LoByte(HiWord(z))
ENDIF
IF LEFT(UPPER(verType),3)="WIN"

RETURN LoByte(LoWord(z))+"."+HiByte(LoWord(z))
ENDIF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
BITLSHIFT(), BITOR(), BITRSHIFT(), BITSET(), BITXOR(), EXTERN, HTOI(),
ITOH()

BITLSHIFT() Windows programming

Returns a number generated by shifting another number's bits to the left.

Syntax
BITLSHIFT(<expN1>, <expN2>)

Description
BITLSHIFT() is used by advanced programmers to make binary interpretations of
numeric values. These values are often returned by functions prototyped with EXTERN
to access resources in Windows API or other DLL files. Interpreting such values often
requires analysis and manipulation of individual bits.

BITLSHIFT() moves each bit in the numeric value <expN1> to the left the number of
times you specify in <expN2>. Each time the bits are shifted, the least significant digit
(the bit farthest to the right) is set to 0, and the most significant digit (the bit farthest to
the left) is lost.

Example
The following example uses BITLSHIFT() to move the binary value of the decimal
number 15 (00001111 binary) 4 bits left, resulting in the binary number 11110000, which
equals 240 decimal:

? BITLSHIFT(15,4) && Returns 240

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
BITAND(), BITOR(), BITRSHIFT(), BITSET(), BITXOR(), EXTERN, HTOI(), ITOH()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 99

B I T O R ()+
BBITOR() Windows programming

Performs a bitwise OR operation on two numeric values and returns the result.

Syntax
BITOR(<expN1>, <expN2>)

Description
BITOR() is used by advanced programmers to make binary interpretations of numeric
values. These values are often returned by functions prototyped with EXTERN to access
resources in Windows API or other DLL files. Interpreting such values often requires
analysis and manipulation of individual bits.

BITOR() compares bits in the numeric value <expN1> with corresponding bits in the
numeric value <expN2>. When either or both bits in the same position are on (set to 1),
the corresponding bit in the returned value is on. When neither element is on, the bit is
off (set to 0).

Example
The following example uses BITOR() to make bit comparisons of the binary equivalents
of the numbers 64 (1000000 binary) and 48 (110000 binary). The result of 112 has a binary
value of 1110000:

? BITOR(64,48) && Returns decimal 112

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
BITAND(), BITLSHIFT(), BITRSHIFT(), BITSET(), BITXOR(), EXTERN, HTOI(),
ITOH()

BITRSHIFT() Windows programming

Returns a number generated by shifting another number's bits to the right.

Syntax
BITRSHIFT(<expN1>, <expN2>)

Description
BITRSHIFT() is used by advanced programmers to make binary interpretations of
numeric values. These values are often returned by functions prototyped with EXTERN

Bit 1 = 1 Bit 1 = 0

Bit 2 = 1 1 1
Bit 2 = 0 1 0

100 L a n g u a g e R e f e r e n c e

B I T S E T ()

to access resources in Windows API or other DLL files. Interpreting such values often
requires analysis and manipulation of individual bits.

BITRSHIFT() moves each bit in the numeric value <expN1> to the right the number of
times you specify in <expN2>. Each time the bits are shifted, the most significant digit
(the bit farthest to the left) is set to 0, and the least significant digit (the bit farthest to the
right) is lost.

Example
The following example uses BITRSHIFT() to move the binary value of the decimal
number 80 (1010000 binary) 4 bits right, resulting in the binary number 00000101, which
equals 5 decimal:

? BITRSHIFT(80,4) && Returns 5

For another example of using BITRSHIFT(), see BITAND().

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
BITAND(), BITLSHIFT(), BITOR(), BITSET(), BITXOR(), EXTERN, HTOI(), ITOH()

BITSET() Windows programming

Returns .T. if a specified bit in a numeric value is on.

Syntax
BITSET (<expN1>, <expN2>)

<expN1> A numeric value to evaluate.

<expN2> A decimal integer from 0 to 31 representing a position starting from the right
end of <expN1>. For example, the binary representation of 3 is 00000011; bit number 0 is
on, bit number 2 is off.

Description
BITSET() is used by advanced programmers to make binary interpretations of numeric
values. These values are often returned by functions prototyped with EXTERN to access
resources in Windows API or other DLL files. Interpreting such values often requires
analysis and manipulation of individual bits.

BITSET() evaluates the number <expN1> and returns .T. if the bit in position <expN2> is
on (set to 1), or .F. if it is off (set to 0).

Example
The following examples use BITSET() to return a setting of On (.T.) or Off (.F.) for
various binary bits of the number 229 (11100101 binary):

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 101

B I T X O R ()+
B

mNum=229
? BITSET(mNum,0) && Returns .T.
? BITSET(mNum,1) && Returns .F.
? BITSET(mNum,6) && Returns .T.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
BITAND(), BITLSHIFT(), BITOR(), BITRSHIFT(), BITXOR(), EXTERN

BITXOR() Windows programming

Performs a bitwise exclusive OR operation on two numeric values and returns the
result.

Syntax
BITXOR(<expN1>, <expN2>)

Description
BITXOR() is used by advanced programmers to make binary interpretations of numeric
values. These values are often returned by functions prototyped with EXTERN to access
resources in Windows API or other DLL files. Interpreting such values often requires
analysis and manipulation of individual bits.

BITXOR() compares bits in a numeric value <expN1> with corresponding bits in the
numeric value <expN2>. When one (and only one) of two bits in the same position are
on (set to 1), the corresponding bit in the returned value is on. In any other case, the bit is
off (set to 0).

This operation is known as exclusive OR, since one bit (and only one bit) must be set on
for the corresponding bit in the returned value to be set on.

Example
The following example uses BITXOR() to compare the binary bit makeup of 90
(01011010) to 214 (11010110) and return the number 140 (10001100):

mNum1=90
mNum2=214
? BITXOR(mNum1,mNum2) && Returns 140

Portability
Not supported in dBASE IV or dBASE III PLUS.

Bit 1 = 1 Bit 1 = 0

Bit 2 = 1 0 1
Bit 2 = 0 1 0

102 L a n g u a g e R e f e r e n c e

B L A N K

See Also
BITAND(), BITLSHIFT(), BITOR(), BITSET(), BITRSHIFT(), HTOI(), ITOH()

BLANK Fields and records

Fills fields in records with blanks.

Syntax
BLANK
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS

<field list> | [LIKE <skeleton 1>] [EXCEPT <skeleton 2>]]
[REINDEX]

<scope> The number of records to blank. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by BLANK. FOR restricts
BLANK to records that meet <condition 1>. WHILE starts with the current record and
continues with each subsequent record as long as <condition 2> is true.

FIELDS <field list> | LIKE <skeleton 1> | EXCEPT <skeleton 2> The fields to blank. Without
FIELDS, BLANK replaces all field values. If you specify FIELDS LIKE <skeleton 1>, the
BLANK command restricts the fields that dBASE makes blank to the fields that match
<skeleton 1>. Conversely, if you specify FIELDS EXCEPT <skeleton 2>, the BLANK
command makes all fields blank except those whose names match <skeleton 2>.

REINDEX Rebuilds all open indexes after BLANK finishes executing. Without
REINDEX, BLANK updates all open indexes after each record is made blank.

Description
Use BLANK to replace fields in the current table with blanks. EMPTY() and
ISBLANK() return .T. for a field whose value has been replaced using BLANK. BLANK
fills an existing record with the same values as APPEND BLANK. Updates to open
indexes are performed after each record or a set of records is blanked.

The following table shows the blank values that are displayed for fields of each data
type:

Data type Displayed value

Character Spaces

Date " / / "
Float Empty (nonzero) value
Logical .F.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 103

B O F ()+
B

Use BLANK to replace logical, float, and numeric fields with true blank values, which
REPLACE can't do. When you use REPLACE to replace a numeric or float field with 0,
dBASE treats it as a zero value rather than a blank value. The distinction between empty
and zero values in numeric and float fields can be significant when you use commands
such as AVERAGE and CALCULATE.

Example
The following example uses BLANK to reuse records that have been marked for
deletion in the natural order file, by blanking the record, removing the deletion mark
and entering EDIT:

USE Clients
? Reuse()
EDIT

FUNCTION Reuse
SET DELETED OFF
LOCATE FOR DELETED()

IF .NOT. FOUND()
APPEND BLANK

ELSE
BLANK && blanks field values
RecNum=RECNO()
RECALL RECNO()
GOTO RecNum

ENDIF
RETURN .T.

Portability
Not supported in dBASE III PLUS.

See Also
APPEND, ISBLANK(), EMPTY(), REPLACE

BOF() Fields and records

Indicates if the record pointer in a table is at the beginning of the file.

Syntax
BOF([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Numeric Empty (nonzero) value

Binary, Memo, and OLE No text or graphic

Data type Displayed value

104 L a n g u a g e R e f e r e n c e

B O O K M A R K ()

Description
BOF() returns .T. when the record pointer is before the first logical record of the table in
the specified work area; otherwise, it returns .F. For example, if you issue SKIP -1 when
the record pointer is on the first record, BOF() returns .T.

If no table is open in the specified work area, BOF() also returns .F.

Example
The following example defines a form and two pushbuttons for moving the record
pointer. BOF() and EOF() are used to avoid a BOF() or EOF () error alert at either end
of the table:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
USE Clients
DEFINE FORM F1
DEFINE PUSHBUTTON Pb1 OF F1 AT 10,10;

PROPERTY Text "Previous", Width 8, OnClick Back
DEFINE PUSHBUTTON Pb2 OF F1 AT 10,22;

PROPERTY Text "Next", Width 8, OnClick Forward
OPEN FORM F1

FUNCTION Back
IF .NOT. BOF()

SKIP-1
ENDIF
RETURN .T.

FUNCTION Forward
IF .NOT. EOF()

SKIP
ENDIF
RETURN .T.

See Also
EOF(), RECNO(), SKIP

BOOKMARK() Fields and records

Returns a bookmark for the current record. Bookmarks are used in place of record
number for tables that don't support record pointers (for example, Paradox and SQL
tables).

Syntax
BOOKMARK()

Description
BOOKMARK() returns a value for the current record in tables that don't support record
pointers. When used with the GO command, bookmarks let you navigate to particular
marked records.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 105

B R O W S E+
B

The value returned by BOOKMARK() is of a special unprintable data type called
bookmark. BOOKMARK() returns an empty bookmark if no table is open in the current
work area.

Bookmark values can be used in all commands and functions that can otherwise use a
record number, and with all the relational operators, =, <, <=, >, and >=, for
comparisons.

Example
The following example lets the user press F9 while in a browse to mark a record to edit
after continuing to browse and leaving the Table Editor window:

SET DBTYPE TO PARADOX
SET TALK OFF
PUBLIC Srch1
USE Customer
ON KEY LABEL F9 DO GoBack
BROWSE
GOTO Srch1
EDIT
RETURN

PROCEDURE GoBack
Srch1=BOOKMARK()
RETURN

Portability
Not supported in dBASE IV or in dBASE III PLUS.

See Also
GO, RECNO()

BROWSE Fields and records

Provides display and editing of records in a table format.

Syntax
BROWSE
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[COLOR [<standard text>]

[, [<enhanced text>]
[, [<perimeter color>]

[, [<background color>]]]]]
[FIELDS <field 1> [<field option list 1>] |

<calculated field 1> = <exp 1> [<calculated field option list 1>]
[, <field 2> [<field option list 2>] |
<calculated field 2> = <exp 2> [<calculated field option list 2>]...]]

[FORMAT]

106 L a n g u a g e R e f e r e n c e

B R O W S E

[FREEZE <field 3>]
[KEY <exp 3> [, <exp 4>] [EXCLUDE]]
[LOCK <expN 2>]
[NOAPPEND]
[NODELETE]
[NOEDIT | NOMODIFY]
[NOFOLLOW]
[NOINIT]
[NOORGANIZE]
[NORMAL]
[NOTOGGLE]
[NOWAIT]
[TITLE <expC 1>]
[WIDTH <expN 3>]
[WINDOW <window name>]

<scope> The number of records to browse. ALL specifies all records. REST specifies all
records from the current record to the end of the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by BROWSE. FOR restricts
BROWSE to records that meet <condition 1>. WHILE starts processing with the current
record and continues with each subsequent record as long as <condition 2> is true.

COLOR [<standard text>] [, [<enhanced text>] [, [<perimeter color>] [, [<background color>]]]]
Specifies the colors of standard text, enhanced text, and the perimeter of the Table
Records window. To specify the colors of these elements separately, use the
<standard text>, <enhanced text>, and <perimeter> options. You can also use the
<background> option if you have a monitor with a uniform background.

The <standard text> and <enhanced text> attributes include three settings: a foreground
color, a background color, and an optional color for creating blended (hatched)
backgrounds. Separate each setting with a forward slash (/).

For more information about color settings, see SET COLOR TO and SET COLOR OF.

<standard text> Color attributes of command messages and screen output.
For example, the output of the ? and @ ... SAY commands
appear in standard text.

<enhanced text> Color attributes of enhanced text areas, such as @...GET
fields and highlighted BROWSE data cells.

<perimeter> Color attributes of the perimeter that borders the area
displaying text onscreen.

<background> Color attributes of the background for display systems
(such as monochrome) with uniform backgrounds.
<background> includes two parameters: a background
color and an attribute.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 107

B R O W S E+
B

FIELDS <field 1> [<field option list 1>] |
<calculated field 1> = <exp 1> [<calculated field option list 1>]
[, <field 2> [<field option list 2>] |
<calculated field 2> = <exp 2> [<calculated field option list 2>] ...]] Displays the specified fields, in
the order they're listed, in the Table Records window. Options for <field option list 1>,
<field option list 2>, which apply to <field 1>, <field 2>, and so on, affect the way these
fields are displayed. These options are as follows:

Note You may also use the "/" character when specifying only a single option in a field
option list.

Read-only calculated fields are composed of an assigned field name and an expression
that results in the calculated field value, as with Commission = Rate * Saleprice. Options

\<column width> The width of the column within which <field 1>
appears when <field 1> is character type

\B = <exp 1>, <exp 2> [\F] RANGE option; forces any value entered in <field 1> to
fall within <exp 1> and <exp 2>, inclusive.

RANGE REQUIRED option; the \F option prevents the
cursor from leaving <field 1> and the editing session
from ending until the value falls between <exp 1> and
<exp 2>, inclusive

\C=<color> COLOR option; sets the foreground and/or
background colors of the column according to the
values specified in <color>

\H = <expC> HEADER option; causes <expC> to appear above the
field column in the Table Records window, replacing
the field name

\P = <expC> PICTURE option; displays <field 1> according to the
PICTURE or FUNCTION clause <expC>

\R READ-ONLY option; specifies that <field 1> is read-
only and can't be edited

\V = <condition> [\F]
[\E = <expC>]

VALID option; allows a new <field 1> value to be
entered only when <condition> evaluates to .T.

VALID REQUIRED option; the \F option prevents the
cursor from leaving <field 1> and the editing session
from ending until <condition> evaluates to .T.

ERROR MESSAGE option; \E = <expC> causes <expC>
to appear when <condition> evaluates to .F.

\W = <condition> WHEN option; allows <field 1> to be edited only when
<condition> evaluates to .T.

108 L a n g u a g e R e f e r e n c e

B R O W S E

for calculated fields affect the way these fields are displayed. These options are as
follows:

FORMAT Causes BROWSE to accept and display input according to the specifications of
a format file opened with SET FORMAT. Data entered must conform to any PICTURE,
FUNCTION, RANGE, and VALID clauses in the format file.

FREEZE <field 3> Restricts editing to <field 3>, although other fields are visible.

KEY <exp 3> [,<exp 4>] [EXCLUDE] When the table has a master index, displays records
whose key field value matches or comes after <exp 3>, or falls between <exp 3> and <exp
4>. EXCLUDE specifies that the range of values is non-inclusive.

LOCK <expN 2> Keeps the first <expN 2> fields in place onscreen as you move the cursor
to fields on the right.

NOAPPEND Prevents you from adding records from the Table Records window.

NODELETE Prevents the marking of records for deletion from within the Table Records
window.

NOEDIT | NOMODIFY Prevents you from modifying records from the Table Records
window.

NOFOLLOW When the current table has a master index, causes the cursor to remain in
place when you change the key field in a record, rather than follow the record to its new
location in the indexing order. Otherwise, the record pointer follows the record to its
new location.

NOINIT Causes BROWSE to execute the options specified with the previous BROWSE
command. Use NOINIT if a program calls BROWSE several times or if you issue
BROWSE several times from the Command window, and you want the same options.
Specify the command options the first time you use BROWSE, and issue BROWSE
NOINIT for subsequent use in the same session.

NOORGANIZE Disables options to index, sort, and remove records.

NORMAL When BROWSE is issued from an active window, displays the Table Records
window in normal, full-screen mode with default or defined colors set, ignoring the
defined colors of the window. When you leave BROWSE, Visual dBASE returns you to
the active window. Without NORMAL, the table records appears in the active window.

NOTOGGLE Prevents toggling from browse mode to edit mode.

NOWAIT Continues execution of a program after a Table Records window is displayed;
otherwise, program execution is suspended until after the Table Records window is
closed.

TITLE <expC 1> Causes <expC 1> to appear as the title of the Table Records window.

\<column width> The width of the column within which <calculated field 1> is
displayed

\H = <expC> Causes <expC> to appear above the calculated field column in
the Table Records window, replacing the calculated field
name

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 109

B R O W S E+
B

WIDTH <expN 3> Specifies the display width for character fields in the Table Records
window. If a field is wider than the specified width, you can scroll the field within the
specified width. The <expN 3> argument must evaluate to a positive number.

WINDOW <window name> Activates the window <window name> and displays the table
records in the window.

Description
The BROWSE command provides an interactive window-oriented environment for
displaying and editing more than one record at a time. Use SET RELATION command
to view fields from records in linked tables. While BROWSE is in effect and unless you
specify NOTOGGLE, you can press F2 or choose View|Edit to toggle to edit mode, to
display a single record.

To move between records in the BROWSE display, you can press the Up and Down
arrows to move one record at a time, and PgUp and PgDn to move one window frame at a
time. You can also use the window controls and the mouse, and choose from various
menu options to control operations performed with BROWSE. See the User's Guide for
more information on editing data and navigating in the Table Records window.

When you're through editing a table, press Ctrl+W to exit and save changes to the current
record or choose the File|Save and Close option. To exit without saving changes to the
current record, press Ctrl+Q, choose File|Abandon and Close, or double-click the
Control menu. If you're using BROWSE or EDIT in a program, exiting returns program
control to the command line immediately following the BROWSE or EDIT command
line.

Example
The following example uses BROWSE to view selected fields from two related tables, to
add custom field headers and to specify read-only fields:

USE Contact ORDER CompCode IN SELECT()
USE Company IN SELECT()
SELECT Company
SET RELATION TO CompCode INTO Contact
BROWSE FIELDS ;

Contact->CompCode /R /H="Company Code", ;
Company->Company /R, ;
Contact->Contact /R /H="Contact Person", ;
Company->Street1 /R, Company->Street2 /R, ;
Company->City /R, Company->State_Prov /R

CLOSE ALL

See Also
APPEND, EDIT, SET FIELDS, SET FORMAT, SET MEMOWIDTH, SET RELATION.
SET WINDOW OF MEMO

110 L a n g u a g e R e f e r e n c e

B U I L D

BUILD Programs

Links object code files (.PRO, .WFO) and resources into a Windows executable
file (.EXE) if the optional Visual dBASE Compiler is installed.

Syntax
BUILD <filename list> | FROM <reponse filename>
[ICON <icon filename>]
[SPLASH <bitmap format filename>]
[TO <executable filename>]
<filename list>

List of filenames, separated by commas, to be linked into the executable. Unless
otherwise specified, the filename extensions are assumed to be .PRO.

FROM <response filename> Build the executable from the list of files listed in <response
filename>. Unless otherwise specified, the extension of the response file is assumed to
be .RSP. See the online help for details on the format of the response file.

ICON <icon filename> The optional icon (.ICO) file which is displayed when the executable
is minimized. The icon file is also the default icon when the executable is represented in
Program Manager.

SPLASH <bmp format filename>

The optional graphics (.BMP) file that displays as the executable is loading.

TO <executable filename> The name of the Windows executable file (.EXE) produced by
BUILD. If not specified, the executable filename defaults to the name of the first file
listed in the <filename list> or the <response file>.

Description
Use the BUILD command to link previously compiled dBASE program (.PRO, .WFO)
files, Windows resource files (such as .BMP and .ICO files), and other files needed to
support an application into a Windows executable (.EXE) file. See the online help for the
Visual dBASE compiler for details on creating executable files from dBASE programs.

Portability
Not supported in dBASE IV or dBASE III PLUS. Very similar in functionality to the
BDL.EXE linker utility in the dBASE Compiler for DOS.

See Also
COMPILE, DO, SET FORMAT, SET PROCEDURE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 111

C A L C U L A T E+
+
C

CALCULATE Table organization

Performs financial and statistical operations for values of records in the current table.

Syntax
CALCULATE <function list>
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar list> | TO ARRAY <array name>]

<function list> You can use one or more of the following functions:

<scope> The number of records to calculate. RECORD <n> identifies a single record by
its record number. NEXT <n> identifies n records, beginning with the current record.
ALL specifies all records. REST specifies all records from the current record to the end of
the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by CALCULATE. FOR
restricts CALCULATE to records that meet <condition 1>, starting with the first record of
the table or view and continuing until reaching the end of file. WHILE starts processing
with the current record and continues with each subsequent record as long as <condition
2> is true.

TO <memvar list> | TO ARRAY <array name> The TO <memvar list> option initializes the
memory variables in <memvar list> and stores the results of CALCULATE in the
variables. The TO ARRAY <array name> stores the results of CALCULATE in the
existing array <array name>.

Function Purpose Return value

AVG(<expN>) Calculates the average of the specified
numeric or float expression.

CALCULATE AVG() returns a
float value.

CNT() Counts the number of records of the current
table.

CALCULATE CNT() returns a
numeric value.

MAX(<expC> |
<expN> |
<expD>)

Calculates the maximum value of the
specified numeric, float, character, or date
expression.

CALCULATE MAX() returns the
same data type as the expression
specified.

MIN(<expC> |
<expN> |
<expD>)

Calculates the minimum value of the
specified numeric, float, character, or date
expression.

CALCULATE MIN() returns the
same data type as the expression
specified.

NPV(<expN 1>,
<expN 2>
[, <expN 3>])

Calculates the net present value of the
numeric or float values in <expN 2>; <expN
1> is the periodic interest rate, expressed as
a decimal; <expN 3> is the initial investment
and is generally a negative number.

CALCULATE NPV() returns a
float value.

STD(<expN>) Calculates the standard deviation of the
specified numeric or float expression.

CALCULATE STD() returns a
float value.

SUM(<expN>) Calculates the sum of the specified numeric
or float expression.

CALCULATE SUM() returns a
float value.

VAR(<expN>) Calculates the variance of the specified
numeric field.

CALCULATE VAR() returns a
float value.

112 L a n g u a g e R e f e r e n c e

C A L C U L A T E

Description
CALCULATE uses one or more of the eight associated functions listed in the previous
table to calculate and store sums, maximums, minimums, averages, variances, standard
deviations, or net present values of specified expressions of the current table.
CALCULATE can also return the count or number of records in the current table. These
special functions (with the exception of the MAX() function) can be used only with
CALCULATE.

If SET TALK is ON, CALCULATE displays the results in the result pane.

CALCULATE can use the same function on different expressions or different functions
on the same expression. For instance, if your table contains a Salary field and a Bonus
field, you can issue the command, CALCULATE SUM(Salary), SUM(Bonus),
AVG(Salary), AVG(12*(Salary + Bonus)).

You can calculate values in a work area other than the current work area if you set a
relation between the work areas.

CALCULATE stores results to memory variables or to an existing array in the order of
the listed functions. If you store the results to memory variables, specify the same
number of memory variables as the number of functions in the CALCULATE command
line.

When you use CALCULATE TO ARRAY <array name>, Visual dBASE stores each result
to one array element. CALCULATE can store results to a multidimensional array. For
example, if you use DECLARE test[3,2], CALCULATE can store values returned by up
to six functions in test[1,1], test[1,2], test[2,1], test[2,2], test[3,1], test[3,2], in that order.

You can store to an array without the ARRAY keyword if you explicitly reference the
array subscript(s). For example, the command line CALCULATE AVG(Salary),
MAX(Salary) TO test[2], test[3] stores the average and maximum of the salary field to
two array elements.

If you use CALCULATE...TO ARRAY, declare an array with at least as many elements
as there are functions in the command line. Do not include the subscripts of the array in
the CALCULATE command line. For instance, if the current table contains a numeric
field, Numfield, and you want to store its minimum and maximum to an array minmax,
you can issue the command DECLARE minmax[2] and then specify CALCULATE
MIN(Numfield), MAX(Numfield) TO ARRAY minmax.

CALCULATE treats a blank numeric or float field as containing 0 and includes the field
in its calculations. For example, if you calculate the average of a numeric field in a table
containing ten records, five of which are blank, CALCULATE divides the sum by 10 to
find the average. Furthermore, if you calculate the minimum of the same table field and
five records contain numeric data and the five others are blank in the same fields,
CALCULATE returns 0 as the minimum. If you want to exclude blank fields when
using CALCULATE, be sure to specify a condition such as FOR .NOT.
ISBLANK(numfield).

Although you can use the SUM or AVERAGE commands to find sums and averages,
CALCULATE is faster because it runs through the table just once while making all
specified calculations.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 113

C A N C E L+
+
C

Example
The following example uses CALCULATE to place results in memory variables:

USE Company
PUBLIC AV,CN,MX,MN,VR,ST
CALCULATE AVG(Ytd_Sales),CNT(),MAX(Ytd_sales),;

MIN(Ytd_sales),SUM(Ytd_sales),VAR(Ytd_sales),;
STD(Ytd_sales);
TO AV,CN,MX,MN,VR,ST

? AV,CN,MX,MN,VR,ST
WAIT
* Display Average, Record Count, Maximum,
* Minimum, Sum, Variance and Standard Deviation

The following example uses CALCULATE to place the results in an array:

USE Company
PUBLIC ARRAY Results[10]
CALCULATE AVG(Ytd_Sales),CNT(),MAX(Ytd_sales),;

MIN(Ytd_sales),SUM(Ytd_sales),VAR(Ytd_sales),;
STD(Ytd_sales);
TO ARRAY Results

FOR i=1 TO 7
? i,Results[i]

NEXT i
* Display the results

Portability
Not supported in dBASE III PLUS.

See Also
AVERAGE, DECLARE, MAX(), MIN(), SET FIELDS, SET RELATION, SUM

CANCEL Programs

Halts program execution, closes program files, clears private memory variables, and
returns control to the Command window.

Syntax
CANCEL

Description
Use CANCEL to cancel program execution. When dBASE encounters CANCEL in a
program file, it ignores any text on lines following CANCEL, halting program
execution. You can also issue CANCEL in the Command window when a program is
suspended (such as with SUSPEND) to cancel execution of the suspended program.
When dBASE halts program execution, it clears all private memory variables for that
program and returns control to the Command window.

114 L a n g u a g e R e f e r e n c e

C A T A L O G ()

Example
The following example uses CANCEL to halt program execution when the Exit
pushbutton within a form is clicked with the mouse:

DEFINE FORM Main FROM 2,2 TO 20,30;
PROPERTY MDI .F.

DEFINE PUSHBUTTON Exit OF Main AT 13,10;
PROPERTY;

TEXT "Exit",;
OnClick {;Cancel}

READMODAL(Main.Exit)

See Also
DO, QUIT, RESUME, RETRY, RETURN, SUSPEND

CATALOG() Table basics

Returns the name of the current catalog file.

Syntax
CATALOG()

Description
CATALOG() returns the name of the current catalog opened with the SET CATALOG
TO command or the Navigator. If no catalog is currently open, CATALOG() returns an
empty string ("").

Example
The following example uses CATALOG() to determine the name of the currently open
catalog:

SET CATALOG TO Learn
catname = CATALOG()
USE (catname) IN SELECT() NOUPDATE AGAIN

Portability
Not supported in dBASE IV or in dBASE III PLUS.

See Also
CREATE CATALOG, SELECT, SET(), SET CATALOG, SET TITLE, USE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 115

C D+
+
C

CD Disk and File Utilities

Changes the current default drive or directory.

Syntax
CD
[<path>]

<path> A character expression indicating the default path. To specify a root path, start
<path> with a backslash (\) or the root directory (as with C:\). If <path> doesn't begin
with \, .. (two periods), or the root directory, dBASE begins the path with the current
directory.

Description
CD works like the DOS commands CD and CHDIR. It lets you change the current
working drive and directory without exiting to DOS. Use CD to change the current
working directory to any valid drive and path. If you're unsure whether a drive is valid,
use VALIDDRIVE() before issuing CD. The current directory appears in the File Viewer
window.

CD .. (two periods) changes the directory to the directory one level above the current
directory. CD without the option <path> displays the current drive and directory path.

Another way to access files on different directories is with the command SET PATH.
You can specify one or more search paths, and dBASE uses these paths to locate files not
on the current directory. Use SET PATH when an application's files are in several
directories.

CD works like SET DIRECTORY, except SET DIRECTORY TO (with no argument)
returns you to the default working directory, instead of displaying the current directory.
See SET DIRECTORY for more information.

Example
The following example saves the current directory, then changes directory several
times, and finally returns to the original directory:

* This example assumes that
* directories were created by:
MD D:\Project
MD D:\Project\Programs
MD D:\Project\Data
MD D:\Project\Backup
CD D:\Project\Programs
MD C:\Editor

Olddir=SET("DIRECTORY")
? SET("DIRECTORY") && D:\Project\PROGRAMS
CD ..
? SET("DIRECTORY") && D:\Project
CD Data
? SET("DIRECTORY") && D:\Project\Data
CD ..\BACKUP

116 L a n g u a g e R e f e r e n c e

C D O W ()

? SET("DIRECTORY") && D:\Project\BACKUP
CD C:\Editor
? SET("DIRECTORY") && C: changes to C:\Editor
CD &Olddir
? SET("DIRECTORY") && D:\Project\Programs

Portability
Not supported in dBASE IV or dBASE III PLUS, but SET DIRECTORY is supported in
dBASE IV.

See Also
MKDIR, SET DEFAULT, SET DIRECTORY, SET PATH, VALIDDRIVE()

CDOW() Date and time data

Returns the day of the week corresponding to a specified date expression as a character
string.

Syntax
CDOW(<expD>)

<expD> The date expression whose corresponding weekday name to return.

Description
CDOW() returns a character string containing the name of the day of the week on
which a date falls. To return the day of the week as a number from 1 to 7, use DOW().

Enter <expD> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expD> matches the date format
in use when your program runs.

If you pass an invalid date to CDOW(), dBASE converts the date to a valid one and
returns the weekday name of that date. If you pass an empty or non-date expression
delimited with braces ({ }) to CDOW(), it returns "Unknown". If you pass a non-date
expression or an expression that isn't delimited with braces to CDOW(), it returns an
error.

Example
The following example uses CDOW() to return the day of the week for a date type
memory variable.

CLEAR
SET TALK OFF
Turncen={12/31/1999}
? CENTER("Welcome in the new century on")
? CENTER(CDOW(Turncen)+ " night,")
? CENTER(CMONTH(Turncen)+ " " +;

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 117

C E I L I N G ()+
+
C

LTRIM(STR(DAY(Turncen)))+ "st " +;
LTRIM(STR(YEAR(Turncen))))

This code returns:

* Welcome in the new century on
* Friday night,
* December 31st 1999

CDOW() is useful for filtering or manipulating data by the day of the week. For
example, if you wanted to determine the number of transactions that occurred on
weekends, the following example would apply.

USE Flights
SET EXACT OFF
COUNT FOR CDOW(Date) = "S" TO Weekend
? Weekend && Returns the number of weekend flights

To list all Wednesday flights from the Flights table.

SET FILTER TO CDOW(Date)="Wednesday"
LIST OFF && "OFF" suppresses record numbers

See Also
CMONTH(), DATE(), DAY(), DOW(), SET CENTURY, SET DATE, YEAR()

CEILING() Numeric data

Returns the nearest integer that is greater than or equal to a specified number.

Syntax
CEILING(<expN>)

<expN> A numeric or float number, from which to determine and return the integer that
is greater than or equal to it.

Description
CEILING() returns the nearest integer that is greater than or equal to <expN>. If you
pass a number with any digits other than 0 as decimal digits, CEILING() returns the
nearest integer that is greater than the number. If you pass an integer to CEILING(), or a
number with only 0s for decimal digits, it returns the integer equal to the number.

For example, if the default number of decimal places is 2,

• CEILING(2.10) returns 3.00
• CEILING(–2.10) returns –2.00
• CEILING(2.00) returns 2.00
• CEILING(2) returns 2
• CEILING(–2.00) returns –2.00

See the table in the description of INT() that compares INT(), FLOOR(), CEILING(),
and ROUND().

118 L a n g u a g e R e f e r e n c e

C E N T E R ()

The value returned by CEILING() has the same data type as <expN>.

Example
The following example uses CEILING() to return the passed value, rounded up to the
next whole number:

SET TALK OFF
msrp = 79.95
cost = 45.50
percent = cost/msrp * 100
? "The cost is " + STR(CEILING(percent),2,0) + "% of the retail price."
SET TALK ON

See INT() for another example of CEILING().

Portability
Not supported in dBASE III PLUS. In dBASE IV, CEILING() doesn't display any
decimal places, regardless of the value of SET DECIMALS.

See Also
FLOOR(), INT(), ROUND()

CENTER() String data

Returns a character string that contains a string centered in a line of specified length.

Syntax
CENTER(<expC> | <memo field> [, <length expN> [, <pad expC>]])

<expC> | <memo field> The text to center.

<length expN> The length of the resulting line of text, which must be less than 32766, the
maximum length of a string. If <length expN> isn't specified, CENTER() assumes a line
length of 80 characters.

<pad expC> The single character to pad the string with if <length expN> is greater than
the number of characters in <expC> | <memo field>. If <length expN> is equal to or less
than the number of characters in <expC> | <memo field>, <pad expC> is ignored.

If <pad expC> is more than one character, CENTER() uses only the first character. If
<pad expC> isn't specified, CENTER() pads with spaces.

Description
CENTER() returns a character expression or a memo field with the requisite number of
leading and trailing spaces to center it in a line that is a specified number of characters
wide. If you specify a memo field, CENTER() centers the full text of the field, not each
line of text.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 119

C E N T E R ()+
+
C

If you specify a padding character, CENTER() pads either side of the character
expression or memo field with that character (or with the first character, if you specify
more than one) rather than with spaces.

To create the resulting string, CENTER() performs the following steps.

• Subtracts the length of <expC> or <memo field> from <length expN>

• Divides the result in half and rounds up if necessary

• Pads <expC> or <memo field> on either side with that number of spaces or the first
character in <pad expC>

If the length of <expC> or <memo field> is greater than <length expN>, CENTER() does
the following:

• Subtracts <length expN> from the length of <expC> or <memo field>
• Divides the result in half and rounds up if necessary
• Truncates both sides of <expC> or <memo field> by that many characters

When the result of subtracting the length of <expC> or <memo field> from <length expN>
is an odd number, CENTER() pads one less space on the left if the difference is positive,
or truncates one less character on the left if the difference is negative.

Example
The following example uses CENTER() to position header text displayed above a listing
of the Company table. Nested counting loops display 8 records at a time with header
information in the results pane of the Command window:

SET TALK OFF
USE Clients
CLEAR
DO WHILE .NOT. EOF()

? CENTER("Clients Database Report",80)
?
? CENTER("Run on " + CDOW(DATE()) + ;

" " + DTOC(DATE()),80,"–")
? "Company" AT 2,"Phone" AT 40,"Balance Date" AT 60
? "*******" AT 2,"*****" AT 40,"************" AT 60
Cnt=1
DO WHILE Cnt<9 .AND. .NOT. EOF()

? Company AT 2, Phone AT 40, CDOW(Baldate)+",";
+ DTOC(Baldate) AT 60

SKIP
Cnt=cnt+1

ENDDO
?

WAIT
CLEAR
ENDDO
CLOSE ALL

Portability
Not supported in dBASE IV or dBASE III PLUS.

120 L a n g u a g e R e f e r e n c e

C E R R O R ()

See Also
LEN(), REPLICATE(), SET MEMOWIDTH, TRANSFORM()

CERROR() Error handling and debugging

Returns the number of the last compiler error.

Syntax
CERROR()

Description
Use CERROR() before executing a new program to test whether the source code
compiles successfully. If no compiler error occurs, CERROR() returns 0. CERROR() is
updated each time you or dBASE compile a program or format file. CERROR() isn't
affected by warning messages generated by compiling.

Use CERROR() in a program file. If you issue ? CERROR() in the Command window, it
returns 0. (This is because dBASE is compiling the "? CERROR()" command itself,
which does not cause a compiler error.)

See the table in the description of ERROR() that compares ERROR(), MESSAGE(),
DBERROR(), DBMESSAGE(), SQLERROR(), SQLMESSAGE(), and CERROR().

See online Help for a listing of all error messages.

Example
The following program segment uses CERROR() in a DO WHILE loop to make the user
edit the program until it compiles successfully:

DO WHILE .T.
Clear

MODIFY COMMAND USER.PRG
ON ERROR ? ERROR(), MESSAGE(), CERROR()
COMPILE USER.PRG
IF CERROR()>0

?
WAIT "Your program didn't compile. Press a key to edit your .PRG."
LOOP

ELSE
EXIT

ENDIF
ENDDO

Portability
Not supported in dBASE III PLUS.

See Also
COMPILE, DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), ON ERROR

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 121

C H A N G E+
+
C

CHANGE Fields and records

Provides display and editing of data in the current table, one record at a time.

Syntax
CHANGE
[<starting record expN 1> | <bookmark>]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[COLOR [<standard text>]

[, [<enhanced text>]
[, [<perimeter color>]

[, <background color>]]]]
[COLUMNAR]
[COMPRESS]
[FIELDS <field 1> [<field option list 1>] |

<calculated field 1> = <exp 1> [<calculated field option list 1>]
[, <field 2> [<field option list 2>] |
<calculated field 2> = <exp 2> [<calculated field option list 2>]...]]

[FORMAT]
[FREEZE <field 3>]
[KEY <exp 3> [, <exp 4>]]
[LOCK <expN 2>]
[NOAPPEND]
[NODELETE]
[NOEDIT | NOMODIFY]
[NOFOLLOW]
[NOINIT]
[NORMAL]
[NOTOGGLE]
[NOWAIT]
[TITLE <expC 1>]
[WIDTH <expN 3>]
[WINDOW <window name>]

Description
CHANGE and EDIT are equivalent commands. See EDIT for a complete discussion of
these commands. CHANGE without the FIELDS option displays all fields of the current
record.

Example
See EDIT for an example of CHANGE, substituting CHANGE for EDIT in the example.

See Also
BROWSE, EDIT

122 L a n g u a g e R e f e r e n c e

C H A N G E ()

CHANGE() Shared data

Returns .T. if another user has changed a record since it was read from a table file.

Syntax
CHANGE([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes. If you don't include <alias>,
CHANGE() returns information on the current table.

Description
Use CHANGE() to determine if another user has made changes to a record since it was
read from the table file. If the record has been changed, you might want to display a
message to the user before allowing the user to continue.

For CHANGE() to return information, the current or specified alias table must have a
_dbaselock field. Use CONVERT to add a _dbaselock field to a table. If the table doesn't
contain a _dbaselock field, CHANGE() returns .F.

CHANGE() compares the counter in the workstation's memory image of _dbaselock to
the counter stored on disk. If they are different, the record has changed, and
CHANGE() returns .T.

You can reset the value of CHANGE() to .F. by moving the record pointer. GOTO
RECNO() rereads the current record's _dbaselock field, and a subsequent CHANGE()
returns .F., unless another user has changed the record in the interim between moving
to it and issuing CHANGE().

Note CHANGE() doesn't test SQL databases or Paradox tables.

Example
The following example opens the Company table, takes the user to a selected record,
and opens a form to review the year to date data. Within the form, ReviewYtd, the user
can reset that value. (The ReviewYtd form definition is not shown). On leaving the form,
the program uses CHANGE() to determine if another user has changed the current
record. If not, REPLACE updates the value of the YTD_Sales field:

USE COMPANY
SEEK mCompany
OPEN FORM ReviewYtd
IF .NOT. CHANGE()
* Has another user changed this record?

REPLACE YTD_Sales WITH mYSales
ELSE

GOTO RECNO() && Re-read this record
ENDIF

Portability
Not supported in dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 123

C H A R S E T ()+
+
C

See Also
CONVERT, FLOCK(), LKSYS(), RLOCK(), SET EXCLUSIVE, SET REFRESH

CHARSET() Environment

Returns the name of the character set the current table or a specified table is using. If no
table is open and you issue CHARSET() without an argument, it returns the global
character set in use.

Syntax
CHARSET([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
Use CHARSET() to learn which character set the current table or a specified table is
using. If you don't pass CHARSET() an argument, it returns the name of the character
set of the current table or, if no tables are open, the global character set in use.
CHARSET() also returns information on Paradox and SQL databases.

The character set a table's data is stored in depends on the language driver setting that
was in effect when the table was created. With Visual dBASE, you can choose the
language driver that applies to your dBASE data in the [CommandSettings] section in
the DBASEWIN.INI file. For more information on character sets and language drivers,
see PG_CHARLANG.

The value CHRSET() returns is a subset of the value LDRIVER() returns. For more
information, see LDRIVER().

Example
This example shows the CHARSET() function and a sample response:

? CHARSET() && Returns DOS:437

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ANSI(), LDRIVER(), OEM(), SET LDCHECK

CHOOSEPRINTER() Printing

Opens the Print Setup dialog box for choosing a printer or specifying print options, and
resets the appropriate system memory variables for the printer or print options you
specify. Returns true (.T.) if you exit the dialog box by choosing OK, and false (.F.) if you
choose Cancel.

124 L a n g u a g e R e f e r e n c e

C H R ()

Syntax
CHOOSEPRINTER(<title expC>)

<title expC> Specifies a title to display in the Print Setup dialog box.

Description
Use CHOOSEPRINTER() to select a new printer or change printer options using the
Print Setup dialog box. You can also open the Print Setup dialog box by choosing File|
Print Setup. In the Print Setup dialog box, you can select a new installed printer or select
options such as paper size, paper source, and orientation (portrait or landscape).

CHOOSEPRINTER() modifies the value of the SET PRINTER TO setting, and of the
_pdriver, _plength, and _porientation memory variables.

For a printer to appear in the Specific Printer list, you must have installed it previously
through the Windows Print Manager. You can also change printer drivers in Windows
with the Printers program of the Windows Control Panel.

To activate a specific printer driver, you can also use _pdriver.

Example
CHOOSEPRINTER() opens the print setup dialog box. Newprinter returns true if the
printer was reset:

Newprinter=CHOOSEPRINTER()
Newprinter=CHOOSEPRINTER("Choose a dot matrix"+ " printer")

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
_pdriver, CLOSE..., SET DEVICE, SET PRINTER

CHR() Expressions and type conversion

Returns the character equivalent of a specified ASCII value.

Syntax
CHR(<expN>)

<expN> The numeric ASCII value, from 0 to 255, inclusive, whose character equivalent
to return.

Description
CHR() is the inverse function of ASC(). CHR() accepts an ASCII value and returns its
character, while ASC() accepts a character and returns its ASCII value.

You can use CHR() with ASC() to convert an ASCII value to its character equivalent.
See the ASCII table in Appendix E for a listing of ASCII values and their corresponding
characters.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 125

C L A S S . . . E N D C L A S S+
+
C

CHR(7) returns a tone, or beep. Use SET BELL TO [<frequency expN>, <duration expN>]
to set the frequency and duration of the tone CHR(7) returns.

Example
The following example uses CHR() to display a special character on screen. Special
characters are not available on the keyboard but can be printed or displayed with the
CHR() function (example assumes default OEM character set).

? "The total is 50" + CHR(241) + "2"
* The ASCII value 241 displays a plus/minus symbol

Printer control codes can be sent to a printer with the ?? command and CHR() as
follows.

SET PRINT ON
?? CHR(27) + "E"
* Resets an HP LaserJet to default mode by
* sending ESCAPE (CHR(27)) plus a control code.
* Could also be sent ?? CHR(27) + CHR(69).

See Also
ANSI(), ASC(), OEM(), SET BELL

CLASS...ENDCLASS Objects

Declares a custom class and specifies the member variables and functions for that class.

Syntax
CLASS <class name> [(<parameters>)] [CUSTOM]
[PARAMETERS <parameters>]
[FROM <filename>]
[OF <superclass name> [(<parameters>)]]
[PROTECT <propertyList>]
[<constructor code>]
[<member functions>]
ENDCLASS

CUSTOM Specifies that the new object is a custom control. For information on custom
controls, see Chapter 15 of the Programmer's Guide.

<class name> The name you give to the new class.

OF <superclass name> Specifies that the class you create inherits the properties and
methods of <superclass name>. For example, you can give your new class all the
properties and methods of the listbox class or another class you create with
CLASS...ENDCLASS.

FROM <filename> <filename> specifies the file containing the definition code for the
<superclass>, if the <superclass> is not defined in the same file as the class.

126 L a n g u a g e R e f e r e n c e

C L A S S . . . E N D C L A S S

PROTECT <propertyList> <propertyList> is a list of properties and/or methods of the class
which are to be accessible only by other members of the class, and by classes derived
from the class.

<constructor code> Code that is executed when you create an object of class <class name>.
Constructor code includes all commands between the CLASS and ENDCLASS
keywords except code in <member functions>.

<member functions> Procedures and functions that you declare between the CLASS and
ENDCLASS keywords. These subroutines make up the methods of the new class.

Description
Use CLASS...ENDCLASS to create a new class.

A class is a specification, or template, for a type of object. Visual dBASE provides many
standard classes, such as Form and Entryfield; for example, when you create a form, you
are creating a new form object that has the standard properties and methods from the
Form class. However, when you declare a custom class with CLASS...ENDCLASS, you
specify the properties and methods that objects derived from the new class will have.

You create properties for the new class with <constructor code>. Constructor code
executes when you create an object of the class. Although constructor code can contain
any dBASE commands, it usually contains only property and method assignment
statements.

Properties and methods can be protected to prevent the user of the class from reading or
changing the protected property values, or calling the protected methods from outside
of the class.

When you create a new property in a class declaration, preface the property name with
the This keyword. This references the object you create. For example, the following code
sample includes a class declaration. The declaration uses This to specify that TagName,
a new property, is a member of the new class TableFile.

xFile = NEW TableFile()
? xFile.TagName
? xFile.FileNameId()

CLASS TableFile
This.TagName = "XORDER"
FUNCTION FileNameId&& Custom method.
RETURN DBF()

ENDCLASS

You create custom methods for the class with <member functions>, which can consist of
procedure declarations or user-defined function declarations. FUNCTION FileNameId
is an example of a custom method.

Example
The following example uses CLASS...ENDCLASS to define a class of objects within a
form that displays pictures from the Pictures table in the SAMPLES directory. This
example is an extract from PICTURES.WFM in the SAMPLES directory:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 127

C L A S S . . . E N D C L A S S+
+
C

** END HEADER -- do not remove this line*
* Generated on 06/27/94
*
LOCAL f
f = NEW PFORM()
f.Open()

CLASS PFORM OF FORM
PROTECT HelpFile, HelpId

this.HelpFile = ""
this.Width = 97.00
this.Maximize = .F.
this.Minimize = .F.
this.Height = 24.82
this.Left = 19.40
this.Text = "Pictures Form"
this.Top = 0.53
this.ColorNormal = "BG/B"
this.OnOpen = {;create session}
this.View = "PICTURES.QBE"
this.HelpId = ""

DEFINE PUSHBUTTON SOUND OF THIS;
PROPERTY;

Width 18.00,;
Default .T.,;
OnClick {;play sound binary pictures->sound},;
Height 3.00,;
Left 4.00,;
Text "Sound",;
Top 8.00,;
ColorNormal "N/W",;
FontName "Courier",;
FontSize 16.00

DEFINE LISTBOX THINGS OF THIS;
PROPERTY;

Width 18.40,;
DataSource "FIELD NAME",;
ColorHighLight "W+/B",;
Height 5.47,;
Left 3.60,;
Top 13.41,;
ColorNormal "bg+/b",;
FontName "Fixedsys",;
FontSize 11.25,;
ID 800

DEFINE IMAGE PICTURE OF THIS;
PROPERTY;

Width 62.00,;
DataSource "BINARY PICTURES->BITMAPOLE",;
Height 18.00,;
Left 25.00,;
Top 5.00,;
ID 88

128 L a n g u a g e R e f e r e n c e

C L E A R

DEFINE TEXT TITLE OF THIS;
PROPERTY;

Width 70.00,;
Height 4.30,;
Left 20.00,;
Text "Sights and Sounds",;
Top 0.00,;
ColorNormal "gr+/b",;
FontName "Serif",;
Border .F.,;
FontSize 32.00

* Provide methods to get and set the HelpFile
* and HelpID properties, since the user can't
* access them directly
FUNCTION GetHelpFile
RETURN This.HelpFile
FUNCTION GetHelpID
RETURN This.HelpID
FUNCTION SetHelpFile(cHelpFile)

IF TYPE("cHelpFile") = "C"
... This.HelpFile = cHelpFile

ENDIF
RETURN This.HelpFile
FUNCTION SetHelpID(cHelpID)

IF TYPE("cHelpID") = "C"
This.HelpID = cHelpID

ENDIF
RETURN This.HelpID

ENDCLASS

PROCEDURE Sound_OnClick
PLAY SOUND Binary Pictures->Sound

PROCEDURE ClosePictures
USE IN Pictures
FORM.CLOSE()

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DEFINE, REDEFINE

CLEAR Environment

Erases the contents of the results pane of the Command window or the current
dBASE IV window, and clears pending @...GETs.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 129

C L E A R A U T O M E M+
+
C

Syntax
CLEAR
[CHARACTER <expC>]

CHARACTER <expC> Fills the results pane of the Command window or the current
dBASE IV window with the first character of the expression <expC>. If you do not
specify a character, CLEAR fills the window with the last character specified by <expC>,
if any, or else with space characters.

Description
Use CLEAR to remove the contents of the results pane of the Command window or the
current dBASE IV window. Use the option CHARACTER <expC> with CLEAR to
specify a character for dBASE to repeat when clearing the window. To clear only parts of
the window, use @...CLEAR.

If you use CLEAR without an option after issuing CLEAR CHARACTER <expC>,
CLEAR uses <expC> again. To reset CLEAR, issue CLEAR CHARACTER " " (with a
space character or empty string as <expC>).

If you don't want to close and remove open GETs from the display, issue READ SAVE
before CLEAR.

Portability
Not supported in dBASE III PLUS.

See Also
CLEAR PROGRAM, CLOSE..., RELEASE, SET PROCEDURE, SET LIBRARY

CLEAR AUTOMEM Fields and records

Initializes automem variables with empty values for the current table.

Syntax
CLEAR AUTOMEM

Description
Use CLEAR AUTOMEM to initialize a set of automem variables containing empty
values for the current table. CLEAR AUTOMEM creates any automem variables that
don't exist already. If the variables exist, CLEAR AUTOMEM reinitializes them. If no
table is in use, CLEAR AUTOMEM doesn't create any variables.

Automem variables have the same names and data types as the fields in an active table.
You can create empty automem variables automatically for the current table by using
CLEAR AUTOMEM or USE...AUTOMEM, or manually by using STORE.

Use CLEAR AUTOMEM if automem variables are used more than once within a
program, so that automem variables are reset with empty values and don't carry over
into a subsequent form display or record. For example, use CLEAR AUTOMEM within
a loop that adds data by means of a form, automem variables, and APPEND

Chapter 4Co
mma

nds
and

functi
ons

130 L a n g u a g e R e f e r e n c e

C L E A R A U T O M E M

AUTOMEM, so that the values entered on one pass of the loop don't appear in the entry
form on the next pass.

You can also use CLEAR AUTOMEM to create automem variables if you didn't create
them with USE...AUTOMEM. For example, you can create automem variables from the
Command window for a table already in use.

Example
The following example uses CLEAR AUTOMEM to enable the user to edit AUTOMEM
variables for a new record. A new record will be added only if the user confirms that the
data held in automem variables is correct:

SET TALK OFF
CLEAR
USE Clients
AddMoreData()
RETURN

FUNCTION AddMoreData
@0,0 to 8, 70
@10,20 to 12,45
CLEAR AUTOMEM
DO WHILE .T.

lConfirm = .f.
@11,22 CLEAR TO 11,39
@1,1 SAY 'ID' GET m->CLIENT_ID
@1,10 SAY 'COMPANY' GET m->COMPANY
@3,1 SAY 'Contact' GET m->CONTACT
@4,1 SAY 'Address' GET m->ADDRESS
@6,1 SAY 'City' GET m->CITY
@6,23 SAY 'State/Province' GET STATE_PROV
@6,54 SAY 'Zip' GET ZIP_P_CODE
READ

IF READKEY() = 12
EXIT

ELSE
@ 11,22 SAY "Data Correct, Y-N?";
GET lConfirm picture 'Y'
READ
IF lConfirm

APPEND AUTOMEM
CLEAR AUTOMEM

ENDIF
ENDIF

ENDDO
RETURN .T.

See Also
APPEND, STORE, USE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 131

C L E A R F I E L D S+
+
C

CLEAR FIELDS Fields and records

Removes the fields list defined with the SET FIELDS TO command.

Syntax
CLEAR FIELDS

Description
Use CLEAR FIELDS to remove the SET FIELDS TO <field list> setting in all work areas
and automatically turn SET FIELDS to OFF, thus making all fields in all open tables
accessible. You can use CLEAR FIELDS prior to specifying a new fields list with SET
FIELDS TO. You might also want to use CLEAR FIELDS at the end of a program.
CLEAR FIELDS has the same effect as SET FIELDS TO with no options.

Example
See SET FIELDS for examples of CLEAR FIELDS.

See Also
SET FIELDS

CLEAR GETS Input/Output

Clears all current @...GET fields. This command is supported primarily for compatibility
with dBASE IV. In Visual dBASE, use DEFINE with the Text and EntryField classes for
displaying and accepting information on a form.

For complete syntax information on CLEAR GETS, see online Help. For more
information about working with Visual dBASE forms, see the Forms chapters in the
User's Guide.

CLEAR MEMORY Memory variables

Clears all user-defined memory variables.

Syntax
CLEAR MEMORY

Description
Use CLEAR MEMORY to release all memory variables (except system memory
variables) in all currently active sessions, including those declared PUBLIC and STATIC
and those initialized in higher-level subroutines. CLEAR MEMORY has no effect on
system memory variables.

Note CLEAR MEMORY does not normally release objects. However, if the only reference to
an object is in a memory variable, CLEAR MEMORY releases the object.

132 L a n g u a g e R e f e r e n c e

C L E A R M E N U S

CLEAR MEMORY, whether issued in a program or in the Command window, has the
same effect as issuing RELEASE ALL in the Command window. However, CLEAR
MEMORY in a program is different from RELEASE ALL in a program. RELEASE ALL
in a program clears only memory variables created at the same program level as the
RELEASE ALL statement. Unlike CLEAR MEMORY, it has no effect on higher-level,
public, or static variables.

CLEAR MEMORY is also different from RELEASE AUTOMEM. In a program or in the
Command window, RELEASE AUTOMEM erases only automem variables associated
with the current table. (For information about AUTOMEM variables, see USE, CLEAR
AUTOMEM, and RELEASE AUTOMEM.)

To clear only selected memory variables, use RELEASE.

Example
The following example uses CLEAR MEMORY to release variables held in an array
after they have been saved to a .DBF file used for backup purposes:

SET SAFETY OFF
USE Clients EXCLUSIVE
INDEX ON Client_ID TAG Client_ID
DECLARE StbyInfo[RECCOUNT(),FLDCOUNT()]
COPY TO ARRAY StbyInfo
*
* Perform various file operations...
*
COPY STRUCTURE TO Backup.DBF WITH PRODUCTION
USE Backup
APPEND FROM ARRAY StbyInfo
CLEAR MEMORY && Releases values held in StbyInfo array
* Subsequent operations that require additional memory...
CLOSE ALL

See Also
CLEAR AUTOMEM, PRIVATE, PUBLIC, RELEASE, RELEASE AUTOMEM, STATIC,
USE

CLEAR MENUS dBASE IV menus

Clears all dBASE IV bar menus from the screen and their definitions from memory. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use RELEASE OBJECT to clear an object from a form.

For complete syntax information on CLEAR MENUS, see online Help. For information
about defining forms, see the Forms chapters in the User’s Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 133

C L E A R P O P U P S+
+
C

CLEAR POPUPS dBASE IV menus

Clears all dBASE IV pop-up menus from the screen and their definitions from memory.
This command is supported primarily for compatibility with dBASE IV. In Visual
dBASE, use RELEASE OBJECT to clear an object from a form.

For complete syntax information on CLEAR POPUPS, see online Help. For information
about defining forms, see the Forms chapters in the User’s Guide.

CLEAR PROGRAM Programs

Clears from memory all compiled program files that aren't currently executing and
aren't currently open with SET FORMAT, SET PROCEDURE, or SET LIBRARY.

Syntax
CLEAR PROGRAM

Description
When you run a program with DO, dBASE loads into memory the compiled program
and all compiled programs, procedures, user-defined functions (UDFs), and format files
the program calls with DO, SET FORMAT, SET PROCEDURE, and SET LIBRARY.
These files remain in memory until you issue CLEAR PROGRAM or until dBASE needs
more memory—for example, when you open a large table. dBASE's internal dynamic
memory management can also make more memory available by clearing from memory
any programs that haven't been active for a while.

CLEAR PROGRAM clears all inactive compiled programs from memory. The
command doesn't clear programs that are currently executing or files the current
program opens with SET FORMAT, SET PROCEDURE or SET LIBRARY. However, if
you close a called file (for example, with CLOSE PROCEDURE or CLOSE FORMAT), a
subsequent CLEAR PROGRAM clears the closed file from memory.

Use CLEAR PROGRAM to clear memory before executing tasks that require a lot of
memory. For example, use CLEAR PROGRAM before you run a memory-intensive
DOS command, before using an external text editor, or before you open a large number
of tables.

Don't use CLEAR PROGRAM frequently, because dBASE keeps programs in memory
to speed execution. Repeatedly loading called files into memory slows program
execution.

Example
The following example uses CLEAR PROGRAM to release memory occupied by
unused programs, procedures, or format files:

** Main.PRG **
CLEAR
DO Set_Main && External PRG
DO Get_Mov && Internal Proc

134 L a n g u a g e R e f e r e n c e

C L E A R S C R E E N S

CLEAR PROGRAM && Release memory;
by clearing programs

DO Mov_Rpt

PROCEDURE Get_Mov
USE Movies
INDEX ON Director TAG Mov_Dir
GOTO rec_no
DO WHILE Director = Mov_Dir

? Title
SKIP

ENDDO WHILE Director = Mov_Dir
GOTO rec_no
CLOSE DATABASES
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DO, CLEAR ALL, CLOSE..., SET FORMAT, SET LIBRARY, SET PROCEDURE

CLEAR SCREENS Input/Output

Removes from memory all variables created by SAVE SCREEN, and clears the
Command window buffer. This command is supported primarily for compatibility with
dBASE IV.

For complete syntax information on CLEAR SCREENS, see online Help.

CLEAR TYPEAHEAD Keyboard and mouse events

Clears the typeahead buffer, where keystrokes are stored while dBASE is busy
processing other data. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, forms do not use the typeahead buffer.

For complete syntax information on CLEAR TYPEAHEAD, see online Help. For
information about working with forms, see the Forms chapters in the User's Guide.

CLEAR WINDOWS dBASE IV windows

Clears all dBASE IV-style windows from the screen and removes their definitions from
memory. This command is supported primarily for compatibility with dBASE IV. In
Visual dBASE, use CLOSE FORMS or RELEASE OBJECT to close or release a form.

For complete syntax information on CLEAR WINDOWS, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 135

C L O S E . . .+
+
C

CLOSE...
Closes various file types.

CLOSE ALL Closes tables, databases, and files of all type (including low-level files) and
reselects work area 1. However, files opened by SET DEVICE TO <filename> or SET
PRINTER TO <filename> and SQL databases remain open. To close SQL databases, use
CLOSE DATABASES.

CLOSE ALTERNATE Closes text (.TXT) files opened with the SET ALTERNATE command.

CLOSE DATABASES [<database name list>] Closes a specified list of databases (separated by
commas) or all open databases, including all tables, and associated index (.MDX and
.NDX) files, memo (.DBT) files, and format (.FMT) files for each database.

CLOSE FORMAT Closes format (.FMT) files open in the current work area.

CLOSE FORMS [<form name list>] Closes the specified forms and executes the standard
close routines for the forms and the objects that are contained in them.

CLOSE INDEXES Closes index (.MDX and .NDX) files open in the current work area. This
option does not close the production .MDX file.

CLOSE PRINTER Closes a file opened with the SET PRINTER command.

CLOSE PROCEDURE <filename> Closes an open procedure file.

CLOSE TABLES Closes all tables in all work areas or all tables in the current database, if
one is selected.

Description
If you use the CREATE SESSION command, the CLOSE commands affect only the files
in the current session. A session is similar to a user session in a multi-user environment—
each session manages its own set of work areas, and a file opened as exclusive cannot be
accessed by other sessions.

CLOSE ALL Table basics
CLOSE ALTERNATE Input/Output
CLOSE DATABASES [<database name list>] Table basics
CLOSE FORMAT Input/Output
CLOSE FORMS [<form name list>] Forms
CLOSE INDEXES Table organization
CLOSE PRINTER Printing
CLOSE PROCEDURE <filename> Programs
CLOSE TABLES Table basics

136 L a n g u a g e R e f e r e n c e

C L O S E . . .

By default, the Visual dBASE interactive environment operates with CREATE SESSION.
For example, if you open tables through the user interface (for example, by double-
clicking the file icon), dBASE opens each table in its own session (observe the Command
window and you'll notice that a CREATE SESSION command is executed each time you
open a table). If you then type CLOSE TABLES in the Command window, the tables
remain open because they are protected by their sessions. As in a multi-user
environment, a user can't close another user's open files.

The Command window itself runs in an independent session; that's another reason why
the CLOSE commands issued there have no effect on files opened through the user
interface. If, however, you open tables by using the USE and BROWSE commands in the
Command window, those tables are in the Command window session. Therefore, when
you type CLOSE TABLES in the Command window, those tables are closed.

For more information about sessions, see CREATE SESSION.

Example
The following example uses CLOSE ALL to close all open tables upon completion of a
report:

SET SAFETY OFF
SET TALK OFF
USE Contact EXCLUSIVE IN SELECT()
INDEX ON COMPCODE TAG COMPCODE
USE Company IN SELECT()
SELECT Company
SET RELATION TO CompCode INTO Contact
GO TOP
DO ListComp
CLOSE ALL

PROCEDURE ListComp
SET ALTERNATE TO CompList
SET ALTERNATE ON
CLEAR
? "Company" AT 5, "Contact Person" AT 45
?
DO WHILE .NOT. EOF()

? Company->Company AT 5, Contact->Contact AT 45
? "In " + REPLICATE("- ",7) + "->" AT 5,;

TRIM(Company->City) +", " +;
TRIM(Company->State_Prov) AT 25
SKIP

ENDDO
RETURN

See Also
CLEAR ALL, CREATE SESSION

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 137

C M O N T H ()+
+
C

CMONTH() Date and time data

Returns the name of the month in which a specified date expression falls.

Syntax
CMONTH(<expD>)

<expD> The date expression, in the current date format, whose corresponding month
name to return.

Description
CMONTH() returns a character string containing the name of the month in which a
date falls.

Enter <expD> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expD> matches the date format
in use when your program runs.

If you pass an invalid date to CMONTH(), dBASE converts the date to a valid one and
returns the month name of that date. If you pass an empty or non-date expression
delimited with braces ({ }) to CMONTH(), it returns "Unknown". If you pass a non-date
expression or an expression that isn't delimited with braces to CMONTH(), it returns an
error.

Example
The following example uses CMONTH(), DAY(), and YEAR() to return the literal day
of week, month, date and year in a character string.

SET TALK OFF
SET CENTURY ON
date = {04/01/94}
? FullDate(date) && Function is called returns "Friday, April 1, 1994"

FUNCTION FullDate
PARAMETERS date
full_date = CDOW(date) + ", " + CMONTH(date) + ;

" " + LTRIM(STR(DAY(date))) + ;
", " + LTRIM(STR(YEAR(date)))

RETURN full_date

See Also
CDOW(), DAY(), MONTH(), SET DATE, YEAR()

COL() Input/Output

Returns the number of the current column position in the results pane of the Command
window or the current dBASE IV window. This command is supported primarily for

138 L a n g u a g e R e f e r e n c e

C O M M I T ()

compatibility with dBASE IV. In Visual dBASE, use the Left property of a class to
determine its horizontal position on a form.

For complete syntax information on COL(), see online Help. For more information
about working with Visual dBASE forms, see the Forms chapters in the User's Guide.

COMMIT() Shared data

Ends a transaction initiated by BEGINTRANS() and writes to the open files any changes
made during the transaction. Returns .T. if the data was committed successfully.

Syntax
COMMIT([<database name expC>])

<database name expC> The name of the database in which to complete the transaction.

• If you began the transaction with BEGINTRANS(<database name expC>), you must
issue COMMIT(<database name expC>). If instead you issue COMMIT(), dBASE
ignores the COMMIT() statement.

• If you began the transaction with BEGINTRANS(), <database name expC> is an
optional COMMIT() argument. If you include it, it must refer to the same database as
the SET DATABASE TO statement that preceded BEGINTRANS().

Description
Use COMMIT() to end the open transaction and write changes to any open files. To end
a transaction without writing changes to the file, use ROLLBACK(). For more
information on transactions, see BEGINTRANS().

Example
The following example begins a transaction with BEGINTRANS(). It opens a multi-user
version of Company.dbf and attempts to set all values in the Ytd_Sales field to 0. ON
ERROR detects any error which might occur. In particular, it will detect if another user
has locked any record in Company.dbf. If an error occurs, ROLLBACK() resets all
values. Otherwise COMMIT() writes the changes to disk:

CLOSE ALL
SET PROCEDURE TO PROGRAM(1) ADDITIVE
SET EXCLUSIVE OFF

BEGINTRANS()

TransErr=.f.
ON ERROR DO TransErr && Activates ON ERROR trap

USE L:\MultiUse\Company
REPLACE ALL Ytd_Sales WITH 0
ON ERROR && Disables ON ERROR

IF TransErr
? "Rollback"

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 139

C O M P I L E+
+
C

ROLLBACK() && Restore data
ELSE

? "Commit"
COMMIT() && Save changes

ENDIF

PROC TransErr
WAIT "Warning: Transaction Fails"
TransErr=.t.

Portability
Not supported in dBASE IV or dBASE III PLUS. COMMIT() replaces the COMMIT
command in dBASE IV.

See Also
BEGINTRANS(), ROLLBACK(), SET EXCLUSIVE

COMPILE Programs

Compiles program files (.PRG, .WFM), creating object code files (.PRO, .WFO).

Syntax
COMPILE <filename> <filename skeleton>
[AUTO]
[LOG <filename>]
[TO <response filename>]

<filename> <filename skeleton> The file to compile. The <filename skeleton> options display a
dialog box from which you can select a file. If you specify a file without including its
path, dBASE looks for the file in the current directory. If you specify a file without
including its extension, dBASE assumes .PRG.

AUTO The optional AUTO clause causes the compiler to detect automatically which
files are
called by your program, and to compile those that have changed since the last compile.
All .PRG and associated files must be in the current directory to use this option.

LOG <filename> LOG causes the compiler to write any error or warning messages to
<filename>.

TO <response filename> The TO clause causes the compiler to create a response file
containing the names of the
files output by the compiler (the object code files). If a specified source file cannot be
successfully compiled, its name is included in the response file marked with an asterisk.
The response file can be used by the BUILD command in the Visual dBASE compiler to
link the object code files into an executable file.

Description
Use COMPILE to create compiled program files without executing or opening the files,
or to compile only certain files. You can't run a program until it's been compiled.

140 L a n g u a g e R e f e r e n c e

C O N T I N U E

Because a compiled file can't be read or modified, compiling a program protects your
source code from modification by users of the program. By default, dBASE creates
compiled object files in the same directory as the source code files.

COMPILE has several advantages over compiling files with DO, SET PROCEDURE, or
SET FORMAT:

• COMPILE doesn't execute or open the specified files.

• If you write an application that contains many program files, you can use COMPILE
to compile only those program files you change rather than all the program files of
the application. To specify a date and time range for the programs to be compiled,
use FDATE() and FTIME().

• COMPILE <filename skeleton> lets you compile groups of unrelated or related files.

When you compile a program, dBASE detects any syntax errors in the source file and
displays an error message corresponding to the error in a dialog box that contains three
buttons:

• Cancel cancels compilation (equivalent to pressing Esc).

• Ignore cancels compilation of the program containing the syntax error but continues
compilation of the rest of the files that match <filename skeleton> if you specified a
skeleton.

• Fix lets you fix the error by opening the source code in an editing window,
positioning the insertion point at the point where the error occurred.

See the on-line help for information about compiling dBASE programs into standalone
executable files.

Portability
By default, both dBASE IV and dBASE III PLUS create compiled object files in the
current directory rather than in the same directory as the source code files.

See Also
CLEAR PROGRAM, DO, FDATE(), FTIME(), SET COVERAGE, SET DEVELOPMENT,
SET FORMAT, SET PROCEDURE

CONTINUE Table organization

Continues a search for the next record that meets the conditions specified in a
previously issued LOCATE command.

Syntax
CONTINUE

Description
CONTINUE continues the search of the last LOCATE issued in the selected work area.
After you issue the LOCATE command, the current table is searched sequentially for the

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 141

C O N V E R T+
+
C

first record that matches the search criteria. Unless a WHILE <condition> is included, or
<scope> is NEXT or REST, the search begins with the first record.

If a record is found, dBASE moves the record pointer to the matching record and
displays the message Record = <n> (if SET TALK is ON). To continue the search, issue
the CONTINUE command. If another match is found, CONTINUE displays the
message Record = <n>, and FOUND() returns .T. If another match is not found, it
displays the message End of LOCATE scope and positions the record pointer at the last
record of the LOCATE scope or at end-of -file. Also, FOUND() returns .F.

If you issue CONTINUE without first issuing a LOCATE command for the current
table, Visual dBASE returns an error message.

Example
The following example uses CONTINUE to find the next Company that is not in
California. It relies on the LOCATE command:

USE Company
LOCATE FOR Company <> "CA"
* After LOCATE, CONTINUE can be used
IF EOF()
* IF .NOT. FOUND() can also be used to test LOCATE/CONTINUE

? "No companies found"
ENDIF
DO WHILE .NOT. EOF()

? Company, State_Prov
CONTINUE

ENDDO

See Also
EOF(), FIND, FOUND(), LOCATE, SEEK, SEEK()

CONVERT Shared data

Adds a _dbaselock field to a table for storing multiuser lock information.

Syntax
CONVERT
[TO <expN>]

TO <expN> Specifies the length of the multiuser information field to add to the current
table. The <expN> argument can be a number from 8 to 24, inclusive. The default is 16.

Description
Use CONVERT to add a character field, _dbaselock, to the structure of the current table.
Use the option TO <expN> to specify the length of the field. If you issue CONVERT
without the TO <expN> option, the width of the field is 16. If you want to change the
length of the _dbaselock field after using CONVERT, you can issue CONVERT again on
the same table. To view the contents of the _dbaselock field, use LKSYS().

142 L a n g u a g e R e f e r e n c e

C O N V E R T

Note You must use the table exclusively (USE...EXCLUSIVE) before issuing CONVERT. You
must also turn SET DELETED OFF before issuing CONVERT or reindex the table
(REINDEX) after issuing CONVERT.

When you issue CONVERT, dBASE copies the current table to a new file with extension
.CVT, then creates a new .DBF file containing the _dbaselock field. The .CVT table
contains the original file structure before CONVERT.

The _dbaselock field contains the following values:

The count, time, and date portions of the _dbaselock field always make up its first 8
characters. If you accept the default 16-character width of the _dbaselock field, the login
name is truncated to 8 characters. If you set the field width to fewer than 16 characters,
the login name is truncated the necessary amount. If you set the width of <expN> to 8
characters, the login name doesn't appear at all.

Every time a record is updated, dBASE rewrites the count portion of _dbaselock. If you
issue CHANGE(), dBASE reads the count portion from disk and compares it to the
previous value it stored in memory when the record was initially read. If the values are
different, another user has changed the record, and CHANGE() returns .T. For more
information, see CHANGE().

LKSYS() returns the login name, date, and time portions of the _dbaselock field. If you
place a file lock on the table containing the _dbaselock field, the value in the _dbaselock
field of the first record contains the information used by CHANGE() and LKSYS(). For
more information, see LKSYS().

Note CONVERT doesn't affect SQL databases or Paradox tables.

Example
The following series of commands issued at the Command window add a field to the
active table to track multiuser change information:

SET DELETED OFF
USE Company EXCLUSIVE
DISPLAY STRUCTURE && Note structure
CONVERT TO 24
DISPLAY STRUCTURE && Note added _dbaselock field with 24 byte size

Portability
Not supported in dBASE III PLUS.

See Also
CHANGE(), FLOCK(), LKSYS(), LOCK(), NETWORK(), REINDEX, RLOCK(), SET
DELETED, SET EXCLUSIVE, SET LOCK, SET REPROCESS, UNLOCK, USE

Count A 2-byte hexadecimal number used by CHANGE()

Time A 3-byte hexadecimal number that records the time a lock was placed

Date A 3-byte hexadecimal number that records the date a lock was placed

Name A 0- to 16-character representation of the login name of the user who
placed a lock, if a lock is active

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 143

C O P Y+
+
C

COPY Table basics

Creates a new table and copies records to it from the current table. COPY also allows
you to export data to non-dBASE files.

Syntax
COPY TO <filename> | ?
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]
[[TYPE] SDF | DBMEMO3 | PARADOX | DBASE |

 DELIMITED [WITH
 <char> | BLANK]] |

[[WITH] PRODUCTION]

TO <filename> | ? Specifies the name of the table or file you want to create. COPY TO ?
displays a dialog box, in which you can specify a new destination file. If you specify a
file without including its path, Visual dBASE saves the file to the current drive and
directory. If you specify a file without including an extension, defining a default table
type with SET DBTYPE, or using one of the TYPE options, Visual dBASE assigns a .DBF
extension.

You can also copy records to a table in a database (defined using the BDE Configuration
Utility) by specifying the database as a prefix (enclosed in colons) to the name of the
table, that is, :database name:table name. If the database is not already open, Visual dBASE
displays a dialog box in which you specify the parameters, such as a login name and
password, necessary to establish a connection to that database.

<scope> The number of records to copy to <filename>. RECORD <n> identifies a single
record by its record number. NEXT <n> identifies n records, beginning with the current
record. ALL specifies all records. REST specifies all records from the current record to
the end of the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by COPY. FOR restricts
COPY to records that meet <condition 1>. WHILE starts processing with the current
record and continues with each subsequent record as long as <condition 2> is true.

FIELDS <field list> Specifies which fields to copy to the new table.

[TYPE] SDF | DBMEMO3 | PARADOX | DBASE |
DELIMITED [WITH <char> | BLANK] Specifies the format of the file to which you want to copy
data. The TYPE keyword is included for readability only; it has no effect on the
operation of the command. The following table provides a description of the different
file formats that are supported:

Type Description

SDF A System Data Format file. Records are fixed-length in the SDF file, and the end
of a record is marked with a carriage return and a linefeed. If you don't include
an extension for<filename>, Visual dBASE assigns a .TXT extension.

DBMEMO3 A table (.DBF) and memo (.DBT) files in dBASE III PLUS format.

144 L a n g u a g e R e f e r e n c e

C O P Y

[WITH] PRODUCTION Specifies copying the production .MDX file along with the
associated table. This option can be used only when copying to another dBASE table.

Description
Use COPY to copy all or part of a table to a file of the same or a different type. If an index
is active, COPY arranges the records of the new table or file according to the indexed
order. The COPY command does not copy a _dbaselock field in a table that you've
created with CONVERT.

If you COPY a table containing a memo field to another dBASE table, Visual dBASE
creates another file with the same name as the table but having a .DBT extension, and
copies the contents of the memo field to it. If, however, you use the SDF or DELIMITED
options and COPY to an ASCII text file, Visual dBASE doesn't copy the memo field .DBT
file.

Deleted records are copied to the target file (if it's a dBASE table) unless a FOR or
WHILE condition excludes them or unless SET DELETED is ON. Deleted records
remain marked for deletion in the target dBASE table.

You can use COPY to create a file containing fields from more than one table. To do that,
open the source tables in different work areas and define a relation between the tables.
Use SET FIELDS TO to select the fields from each table that you want to copy to a new
file. Before you issue the COPY command, SET FIELDS must be ON and you must be in
the work area in which the parent table resides.

The COPY command does not verify that the files you build are compatible with other
software programs. You may specify field lengths, record lengths, number of fields, or
number of records that are incompatible with other software. Check the file limitations
of your other software program before exporting tables using COPY.

PARADOX A Paradox table. Records are Paradox rows, and fields are Paradox columns.
Visual dBASE assigns a .DB extension.

DBASE A dBASE table (the default). If you don't include an extension for <filename>,
Visual dBASE assigns a .DBF extension.

DELIMITED A text in which
• Character fields are delimited with quotation marks or with <char> if you use

WITH <char>.
• Logical fields are characters T or F.
• Numeric fields are numbers.
• Each carriage return and linefeed indicates a new record.
If you don't include an extension for <filename>, Visual dBASE assigns a .TXT
extension.
WITH <char>
Delimits character fields in a delimited text file with the character <char>
instead of with quotation marks.
WITH BLANK
Separates delimited text file data with spaces instead of commas. Character
fields aren't delimited with quotes or other delimiters.

Type Description

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 145

C O P Y B I N A R Y+
+
C

Example
The following example uses COPY to copy selected fields from two related tables to a
new Paradox table:

SET SAFETY OFF
USE Contact Exclusive
INDEX ON CompCode TAG CompCode
USE Company IN SELECT()
SELECT Company
SET RELATION TO CompCode INTO Contact
COPY TO CntctLst FOR Company->State_Prov = "CA";

FIELDS Company->Company,;
Contact->CompCode, Contact->Contact, ;
Company->Street1, Company->Street2, ;
Company->City, Company->State_Prov,;
Company->Zip_P_Code TYPE PARADOX

CLOSE DATABASES
SET DBTYPE TO PARADOX
USE CntctLst
BROWSE
CLOSE DATABASES
SET DBTYPE TO

See Also
APPEND FROM, CONVERT, COPY FILE, COPY STRUCTURE, COPY TABLE, COPY
TO...STRUCTURE EXTENDED, IMPORT, SET DELETED, SET FIELDS

COPY BINARY Fields and records

Copies the contents of the specified binary field to a file.

Syntax
COPY BINARY <field name> TO <filename>
[ADDITIVE]

<field name> Specifies the binary field to copy.

TO <filename> | ? Specifies the name of the file where the contents of the binary field are
copied. For predefined binary file types, Visual dBASE assigns the appropriate
extension, for example, .BMP, .WAV, and so on. For user-defined binary type fields,
dBASE assigns a .TXT extension by default.

ADDITIVE Appends the contents of the binary field to the end of an existing file. Without
the ADDITIVE option, Visual dBASE overwrites the previous contents of the file.

Description
Use COPY BINARY to export data from a binary field in the current record to a file. You
can use binary fields to store text, images, sound, video, and other user-defined binary
data.

146 L a n g u a g e R e f e r e n c e

C O P Y F I L E

If you specify the ADDITIVE option, Visual dBASE appends the contents of the binary
field to the end of the named file, which lets you combine the contents of binary fields
from more than one record. When you don't use ADDITIVE, Visual dBASE displays a
warning message before overwriting an existing file if SET SAFETY is ON. Note that
you can't combine the data from more than one field for many of the predefined binary
data types. For example, you can store only a single image in a binary field or file, so do
not use the ADDITIVE option of COPY BINARY when copying an image to a file.

Example
The following example uses COPY BINARY to copy bitmapped pictures and sound
data stored in binary fields to external files. The newly created files are given a name
comprised of the Name field contents, the digit 2 to distinguish the new file from old
files and a .BMP or .WAV file extension:

USE Pictures
DO WHILE .NOT. EOF()

bmp_file = TRIM(Name) + "2.BMP"
wav_file = TRIM(Name) + "2.WAV"
COPY BINARY Bitmap TO &bmp_file
COPY BINARY Sound TO &wav_file
SKIP

ENDDO
CLOSE ALL

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
APPEND MEMO, BINTYPE(), CLASS IMAGE, COPY, COPY FILE, COPY MEMO,
PLAY SOUND, REPLACE BINARY, RESTORE IMAGE

COPY FILE Disk and file utilities

Duplicates a file.

Syntax
COPY FILE <filename 1> | ? | <filename skeleton 1>
TO <filename 2> | ? | <filename skeleton 2>

<filename 1> | ? | <filename skeleton 1> Identifies the file to duplicate (also known as the
source file). ? and <filename skeleton> display a dialog box from which you can select a
file to duplicate.

If you specify a source file without including its path, dBASE looks for the file in the
current directory, then in the path(s) you specified with SET PATH. If you specify a
source file without including its extension, dBASE assumes no extension.

TO <filename 2> | ? | <filename skeleton 2> Identifies the target file that will be created or
overwritten by COPY FILE. The ? and <filename skeleton> options display a dialog box in
which you specify the name of the target file and its directory.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 147

C O P Y I N D E X E S+
+
C

Description
COPY FILE is a dBASE utility command that lets you duplicate an existing file at the
operating system level. COPY FILE duplicates a single file of any type.

COPY FILE differs from the COPY command in DOS in that wildcards do not let you
copy more than one file at a time. To copy more than one file at a time using wildcards,
use !, RUN, or DOS, and execute the DOS COPY command.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE
displays a dialog box asking if you want to overwrite the file. If SET SAFETY is OFF, any
existing file with the same name is overwritten without warning.

COPY FILE does not automatically copy a .DBT or .MDX file associated with a .DBF file.
If, for example, you copy a table file that has memo fields and you do not copy the
associated .DBT file, an error message displays when you try to use the file. In such
cases, it is best to use COPY instead of COPY FILE. Also, you must close a dBASE file
before you can use COPY FILE on it.

Example
The following examples use COPY FILE:

COPY FILE Temp.prg TO B:Temp.prg
* Copies Temp.prg
COPY FILE *.DBF TO B:*.DBF
* Displays the open source dialog box

Portability
The ? and <filename skeleton> options are not supported in dBASE IV or dBASE III PLUS.

See Also
COPY, COPY INDEXES, COPY MEMO, COPY STRUCTURE, COPY TO ARRAY,
COPY TO...STRUCTURE EXTENDED, RENAME, SET FULLPATH, SET PATH

COPY INDEXES Table organization

Copies a list of .NDX files to index tags within a single .MDX file. (Applicable only to
.NDX indexes created on dBASE tables.)

Syntax
COPY INDEXES <.ndx filename list>
[TO <.mdx filename> | ?]

<.ndx filename list> Specifies a list of .NDX files (up to ten) that you want to create index
tags for.

TO <.mdx filename> | ? Specifies the name of the .MDX file to add index tags to. By default,
Visual dBASE assigns the index file the same name as the current table with an .MDX
extension and saves the file in the current directory. The ? option displays a dialog box,
in which you specify the name and location of the .MDX file.

148 L a n g u a g e R e f e r e n c e

C O P Y M E M O

Description
The COPY INDEXES command converts a list of .NDX files into index tags in a single
.MDX file. If you do not specify an .MDX file with the TO <.mdx filename> option, index
tags are created in the production .MDX file, which has the same name as the table (and
which is opened automatically when you open the associated table). If a production
.MDX file does not exist, it is created with the same name as the table, and, for dBASE
tables, the table header is updated to indicate the presence of the production index. If
you use the TO <.mdx filename> option, the index tags are written to the specified .MDX
file. You can create up to 47 individual index tags in a single .MDX file.

The .NDX files you want to copy and the associated table must already be open before
you issue the COPY INDEXES command. In a multiuser environment, the table
associated with the indexes you want to copy must be opened in exclusive mode.

Example
The following example first creates two .NDX indexes for the Company table. It then
uses COPY INDEXES to create tags for the current table using these two existing .NDX
files as the source:

USE Company EXCLUSIVE
INDEX ON Company TO Company && create .ndx
INDEX ON Compcode TO Compcode && create .ndx
* There are now two .NDX indexes
SET INDEX TO Company, Compcode
COPY INDEXES Company, Compcode
SET ORDER TO TAG Company
BROWSE FIELDS Company, Compcode

Portability
Not supported in dBASE III PLUS.

See Also
COPY TAG, DELETE TAG, INDEX, MDX(), NDX(), SET INDEX, SET ORDER, TAG(),
TAGNO(), TAGCOUNT(), USE

COPY MEMO Fields and records

Copies the contents of the specified memo field to a file.

Syntax
COPY MEMO <memo field> TO <filename> | ?
[ADDITIVE]

<memo field> Specifies the memo field to copy.

TO <filename> | ? Specifies the name of the text file where text will be copied. By default,
Visual dBASE assigns a .TXT extension and saves the file in the current directory. The ?
option displays a dialog box, in which you specify the name of the target file and the
directory to save it in.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 149

C O P Y M E M O+
+
C

ADDITIVE Appends the contents of the memo field to the end of an existing text file.
Without the ADDITIVE option, Visual dBASE overwrites any previous text in the text
file.

Description
Use COPY MEMO to export memo file text in the current record to a text file. You can
also use COPY MEMO to copy images or other binary-type data to a file; however,
binary fields are recommended for storing images, sound, and other user-defined
binary information.

If you specify the ADDITIVE option, Visual dBASE appends the contents of the memo
field to the end of the named file, which lets you combine the contents of memo fields
from more than one record. When you don't use ADDITIVE, dBASE displays a warning
message before overwriting an existing file if SET SAFETY is ON. You can store only a
single image in either a memo field or in a file, so do not use the ADDITIVE option of
COPY MEMO when copying an image to a file. (RESTORE IMAGE can display an
image stored in either a memo field or a text file.)

Example
The following example uses COPY MEMO to create a text file that holds the
unformatted contents of all Notes memo fields in the Company table:

USE Company
IF .NOT. FILE("Test.Txt")

COPY MEMO Notes TO Test.Txt
SKIP

ENDIF
DO WHILE .NOT. EOF()

COPY MEMO Notes TO Test.TXT ADDITIVE
SKIP

ENDDO
MODI COMM Test.TXT && Note all memos in .TXT file
RETURN

Portability
Not supported in dBASE III PLUS.

See Also
APPEND MEMO, COPY, COPY BINARY, COPY FILE, REPLACE BINARY, REPLACE
OLE

150 L a n g u a g e R e f e r e n c e

C O P Y S T R U C T U R E

COPY STRUCTURE Table basics

Creates an empty table with the same structure as the current table.

Syntax
COPY STRUCTURE TO <filename> | ?| <filename skeleton>
[[TYPE] PARADOX | DBASE]
[FIELDS <field list>]
[[WITH] PRODUCTION]

<filename> | ? | <filename skeleton> The name of the table you want to create. COPY
STRUCTURE TO ? and COPY STRUCTURE TO <filename skeleton> display a dialog box,
in which you can specify the name of the destination table. If you specify a table name
without including its path, Visual dBASE saves the table to the current drive and
directory. If you specify a table name without including an extension, defining a default
table type with SET DBTYPE, or using one of the TYPE options, Visual dBASE assigns a
.DBF extension.

You can also copy a structure to a table in a database (defined using the BDE
Configuration Utility) by specifying the database as a prefix (enclosed in colons) to the
name of the table, that is, :database name:table name. If the database is not already open,
Visual dBASE displays a dialog box in which you specify the parameters, such as a login
name and password, necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table to create, overriding the current
setting of DBTYPE. The TYPE keyword is included for readability only; it has no affect
on the operation of the command.

Specifying PARADOX creates a Paradox table. with a .DB extension.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, Visual dBASE assigns a .DBF extension.

FIELDS <field list> Determines which fields Visual dBASE includes in the structure of the
new table. The fields appear in the order specified by <field list>.

[WITH] PRODUCTION Creates a production .MDX file for the new table. The new index file
has the same index tags as the production index file associated with the original table.

Description
The COPY STRUCTURE command copies the structure of the current table but does not
copy any records. If SET SAFETY is OFF, Visual dBASE overwrites any existing tables of
the same name without issuing a warning message.

The COPY STRUCTURE command copies the entire table structure unless limited by
the FIELDS option or the SET FIELDS command. When you issue COPY STRUCTURE
without the FIELDS <field list> option, Visual dBASE copies the fields in the SET FIELDS
TO list to the new table. The _dbaselock field created with the CONVERT command is
not copied to new tables.

You can use COPY STRUCTURE to create an empty table structure with fields from
more than one table. To do so,

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 151

C O P Y T A B L E+
+
C

1 Open the source tables in different work areas.

2 Use the FIELDS <field list> option, including the table alias for each field name not in
the current table.

You can also set a relationship between the tables using the SET RELATION command,
and then use COPY STRUCTURE to copy fields from the related tables.

Example
The following example uses COPY STRUCTURE to copy selected fields from two open
tables to a new table:

USE Contact
USE Company IN SELECT()
COPY STRUCTURE TO CntctLst ;

FIELDS Company->Company,;
Contact->CompCode, Contact->Contact, ;
Company->Street1, Company->Street2, ;
Company->City, Company->State_Prov, ;
Company->Zip_P_Code

USE CntctLst
APPEND
CLOSE ALL

See Also
APPEND, APPEND FROM, COPY, COPY TO...STRUCTURE EXTENDED, DISPLAY
STRUCTURE, MODIFY STRUCTURE, SET FIELDS, SET SAFETY

COPY TABLE Table basics

Copies a specified table.

Syntax
COPY TABLE <source tablename> TO <target tablename>
[[TYPE] DBASE | PARADOX]

<source table name> The name of the table that you want to copy. You can also copy a
table in a database (defined using the BDE Configuration Utility) by specifying the
database as a prefix (enclosed in colons) to the name of the table, that is, :database
name:table name. If the database is not already open, Visual dBASE displays a dialog box
in which you specify the parameters, such as a login name and password, necessary to
establish a connection to that database.

<target table name> The name of the table you want to create. The table type is the same as
the source table. If you copy a table in a database, you must specify the same database as
the destination of the target table.

[TYPE] PARADOX | DBASE Specifies the type of table to copy, which can include either
Paradox or dBASE tables. Overrides the current setting of DBTYPE.

152 L a n g u a g e R e f e r e n c e

C O P Y T A G

Description
Use the COPY TABLE command to copy tables and their associated .NDX and .MDX
index files. For Paradox tables, COPY TABLE copies associated indexes, BLOB and
.VAL files. Make sure the table is not in use before you attempt to copy it.

Example
The following example uses COPY TABLE to create a duplicate table without first
opening Clients.DBF:

COPY TABLE Clients TO Region1

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
COPY, COPY FILE, DELETE FILE, DELETE TABLE, ERASE

COPY TAG Table organization

Copies .MDX index tags to .NDX files. (This command is only applicable for dBASE
tables.)

Syntax
COPY TAG <tag name>
[OF .mdx filename]
TO <.ndx filename>

<tag name> Specifies a .MDX index tag you want to copy.

OF <.mdx filename> The .MDX file that contains the specified index tag. If you specify a
file without including its path, Visual dBASE looks for the file in the current directory,
then in the path you specify with SET PATH. If you specify a file without including its
extension, Visual dBASE assumes an .MDX extension.

TO <.ndx filename> The name of an .NDX file that you want to copy the index tag to. If
you specify a file without including its path, Visual dBASE creates the file in the current
directory. If you specify a file without including its extension, Visual dBASE assigns an
.NDX extension.

Description
COPY TAG creates individual .NDX files from the index tags in the production index or
a specified .MDX file. You might use this command if tables and indexes you create
might be accessed by previous versions of dBASE.

Before issuing the COPY TAG command, the .MDX file and its associated table must
already be open. Only one tag can be copied at a time. A FOR clause of an .MDX file tag
is ignored, since .NDX files do not support them.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 153

C O P Y T O A R R A Y+
+
C

Example
The following example uses COPY TAG to create an .NDX index file from an open tag
index:

DELETE FILE Company.ndx && remove any existing index
USE Company EXCLUSIVE
INDEX ON Company TAG Company
* now there is a TAG index
COPY TAG Company TO Company
* COPY TAG creates a .NDX index
SET INDEX TO Company
BROWSE FIELDS Company, Compcode

Portability
Not supported in dBASE III PLUS.

See Also
COPY INDEXES, FOR(), INDEX, MDX(), NDX(), SET INDEX, SET ORDER, TAG(),
TAGCOUNT(), TAGNO()

COPY TO ARRAY Fields and records

Copies data from non-memo fields of the current table, overwrites elements of an
existing array, and moves the record pointer to the last record copied.

Syntax
COPY TO ARRAY <array name>
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]

<scope> The number of records to copy to the specified array. RECORD <n> identifies a
single record by its record number. (You can also specify a bookmark for tables that do
not provide record numbers.) NEXT <n> identifies n records, beginning with the
current record. ALL specifies all records. REST specifies all records from the current
record to the end of the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by COPY TO ARRAY. FOR
restricts COPY TO ARRAY to records that meet <condition 1>. WHILE starts processing
with the current record and continues with each subsequent record as long as <condition
2> is true.

FIELDS <field list> Copies data from the fields in <field list> in the order of <field list>.
Without FIELDS, dBASE copies all the fields the array can hold in the order they occur
in the current table.

154 L a n g u a g e R e f e r e n c e

C O P Y T O A R R A Y

Description
Use COPY TO ARRAY to copy records from the current table to an existing array. To
copy specified records and fields, use DECLARE Sample[<memvar 1>,<memvar 2>],
where <memvar 1> is the maximum number of records to copy and <memvar 2> is the
maximum number of fields to copy. If you use DECLARE Sample[2,3], you can copy a
maximum of three fields from a maximum of two records. To copy data from all fields
in all records in a table without memo fields, use DECLARE sample[RECCOUNT(),
FCOUNT()].

Using a two-dimensional array, the first subscript is the number of records to copy, and
the second subscript is the number of fields to copy. For example, if you DECLARE
Test[2,3], COPY TO ARRAY Test can copy three fields from two records.

COPY TO ARRAY can copy to arrays that have more than two dimensions (multi-
dimensional), but it uses only the last two subscripts. The next-to-last subscript in
<array name> determines how many records the array can hold, and the last subscript
determines how many fields from each record the array can hold. For example,
DECLARE Test[4,5,2,3] and DECLARE Test[2,3] both create an array to which COPY
TO ARRAY copies three fields from two records.

If the array is one-dimensional, COPY TO ARRAY can copy only one record; in this
case, the number of elements determines the number of fields to copy. For example, if
you use DECLARE Test[5], COPY TO ARRAY copies the first five fields from the
current record.

COPY TO ARRAY copies in record number or index order and, within each record, in
field number order unless you use the FIELDS option to specify the order of the fields to
copy.

If the number specified by the last subscript in the array is larger than the number of
fields copied from the table, the additional array elements remain initialized to .F. or to a
previously stored value. Similarly, if the number specified by the next-to-last subscript
of the array is larger than the number of records copied from the table, the additional
array elements remain initialized to .F. or to a previously stored value.

Example
The following example uses COPY TO ARRAY to copy 5 records of a view created with
SET RELATION to an array of 5 rows and 3 columns for further manipulation:

CLEAR
SET TALK OFF
USE Contact ORDER Compcode IN SELECT()
USE Company IN SELECT()
SELECT Company
SET RELATION TO CompCode INTO Contact && Set a relation on CompCode
get_rec = 5
DECLARE CompCtc[get_rec,3] && Create an array 5 records long with 3 fields
COPY TO ARRAY CompCtc ;

NEXT get_rec FIELDS Company->Company, ;
Contact->Contact, Company->YTD_Sales

Record = 1
? "Company" AT 10, "Contact" AT 40, ;

"Sales" AT 60

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 155

C O P Y T O . . . S T R U C T U R E E X T E N D E D+
+
C

?
DO WHILE Record <= get_rec
? CompCtc[Record,1] AT 10, CompCtc[Record,2] AT 40,;

LTRIM(STR(CompCtc[Record,3])) AT 60
Record = Record + 1

ENDDO
CLOSE ALL

See Also
APPEND FROM ARRAY, DECLARE, REPLACE FROM ARRAY, SET FIELDS, STORE
MEMO

COPY TO...STRUCTURE EXTENDED Table basics

Creates a new table whose records contain the structure of the current table.

Syntax
COPY TO <filename> | ?
STRUCTURE EXTENDED
[[TYPE] PARADOX | DBASE]

or

COPY STRUCTURE EXTENDED TO <filename> | ?
[[TYPE] PARADOX | DBASE]

<filename> | ? The name of the table that you want to create to contain the structure of
the current table. COPY TO ? and COPY STRUCTURE EXTENDED TO ? display a
dialog box in which you can specify the name of the destination table. If you specify a
table name without including its path, Visual dBASE saves the table to the current drive
and directory. If you specify a table name without including an extension, defining a
default table type with SET DBTYPE, or using one of the TYPE options, Visual dBASE
assigns a .DBF extension.

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table to create. The TYPE keyword is
included for readability only; it has no effect on the operation of the command.

Specifying PARADOX creates a Paradox table with a .DB file extension.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, Visual dBASE assigns a .DBF extension.

Description
COPY TO...STRUCTURE EXTENDED copies the structure of the current table to
records in a new table.

156 L a n g u a g e R e f e r e n c e

C O P Y T O . . . S T R U C T U R E E X T E N D E D

COPY TO...STRUCTURE EXTENDED first defines a table, called a structure-extended
table, containing five fields of fixed names, types, and lengths. Once the structure-
extended table is defined, COPY TO...STRUCTURE EXTENDED appends records that
provide information about each field in the current table. The fields in the structure-
extended table store the following information about fields in the current table:

When the process is complete, the structure-extended table contains as many records as
there are fields in the current table. You can then use CREATE...FROM to create a new
table from the information provided by the structure-extended table.

The _dbaselock field created with the CONVERT command is not copied to structure-
extended tables.

Example
The following example uses COPY TO ... STRUCTURE EXTENDED to create the table
Names that contains the structure of Clients as its records. The structure is then altered
by deleting those records beyond the Zip field. CREATE is then used to create a new
table with the abbreviated structure, and records from Clients are appended. Creating a
new table via COPY TO ... STRUCTURE EXTENDED is also a useful tool for correcting
.DBF file corruption:

SET TALK OFF
SET SAFETY OFF
USE Clients
COPY TO Names STRUCTURE EXTENDED
USE Names EXCLUSIVE
DELETE FOR RECNO()>7 && Excludes fields beyond Zip
PACK
CREATE Names2 FROM Names
DISPLAY STRUCTURE && Names2 currently in use
? ALIAS()+" has " + LTRIM(STR(RECCOUNT())) + " records at this point."
WAIT
APPEND FROM Clients
?
? ALIAS()+" has " + LTRIM(STR(RECCOUNT())) + " records now."
WAIT
GO TOP
BROWSE

See Also
COPY, COPY STRUCTURE, CREATE, CREATE...FROM, CREATE...STRUCTURE
EXTENDED, DISPLAY STRUCTURE, LIST STRUCTURE, MODIFY STRUCTURE, SET
SAFETY

Field Contents

FIELD_NAME Character field that contains the name of the field.
FIELD_TYPE Character field that contains the field's data type.
FIELD_LEN Numeric field that contains the field length.
FIELD_DEC Numeric field that contains the number of decimal places for numeric and float data.
FIELD_IDX Character field (not created in dBASE III PLUS) that indicates if index tags were

created on particular fields when the current table was created.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 157

C O S ()+
+
C

COS() Numeric data

Returns the trigonometric cosine of an angle.

Syntax
COS(<expN>)

<expN> The size of the angle in radians. To convert an angle's degree value to radians,
use DTOR(). For example, to find the cosine of a 30-degree angle, use COS(DTOR(30)).

Description
COS() calculates the ratio between the side adjacent to an angle and the hypotenuse in a
right triangle. COS() returns a float from –1 to +1. COS() returns 0 when <expN> is pi/2
or 3*pi/2 radians.

Use SET DECIMALS to set the number of decimal places COS() displays.

The secant of an angle is the reciprocal of the cosine of the angle. To return the secant of
an angle, use 1/COS().

Example
The following example uses COS() to compute the length of a rafter after room width
and roof angle have been entered by the user:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
LOCAL f
f = NEW PFORM()
f.Open()

CLASS PFORM OF FORM
this.HelpFile = ""
this.Width = 43.00
this.Height = 10.47
this.Left = 46.60
this.Text = "Rafter Computer"
this.Top = 6.94
this.HelpId = ""

DEFINE ENTRYFIELD ROOM OF THIS;
PROPERTY;

Width 4.00,;
Picture "999",;
Height 1.00,;
Left 32.00,;
Top 2.00,;
Border .T.,;
Value 0

DEFINE ENTRYFIELD ANGLE OF THIS;
PROPERTY;

Width 4.00,;
Picture "99",;
Height 1.00,;

158 L a n g u a g e R e f e r e n c e

C O S ()

Left 32.00,;
Top 4.00,;
Border .T.,;
Value 0

DEFINE ENTRYFIELD RAFTLENGTH OF THIS;
PROPERTY;

Width 6.00,;
Height 1.00,;
Left 33.00,;
Top 6.00,;
Border .T.,;
Value 0.00,;
OnGotFocus RESULTS

DEFINE TEXT LN1 OF THIS;
PROPERTY;

Width 26.00,;
Height 1.00,;
Left 3.00,;
Text "Enter Width of Room:",;
ColorNormal "N/W",;
Border .F.

DEFINE TEXT LN2 OF THIS;
PROPERTY;

Width 27.00,;
Height 1.00,;
Left 3.00,;
Text "Enter Angle of Rise:",;
Top 4.00,;
ColorNormal "N/W",;
Border .F.

DEFINE TEXT LN3 OF THIS;
PROPERTY;

Width 29.00,;
Height 1.00,;
Left 3.00,;
Text "Cut Rafter to this length:",;
Top 6.00,;
ColorNormal "R/W",;
Border .F.

DEFINE PUSHBUTTON EXIT OF THIS;
PROPERTY;

Width 15.60,;
Default .T.,;
OnClick {;Form.Close()},;
Height 1.12,;
Left 14.00,;
Text "Exit",;
Top 8.00,;
ColorNormal "N/W"

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 159

C O U N T+
+
C

ENDCLASS

FUNCTION Results
Form.RaftLength.Value=LTRIM(STR((Form.Room.Value/2);

/COS(DTOR(Form.Angle.Value)),6,2))
RETURN .T.

Portability
Not supported in dBASE III PLUS.

See Also
ACOS(), DTOR(), PI(), RTOD(), SET DECIMALS, SIN(), TAN()

COUNT Fields and records

Counts the number of table records that match specified conditions.

Syntax
COUNT
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar>]

<scope> The number of records to count. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by COUNT. FOR restricts
COUNT to records that meet <condition 1>, starting at the first record of the table or
scope and continuing to the end of the table or scope. WHILE starts processing with the
current record and continues with each subsequent record as long as <condition 2> is
true.

TO <memvar> Stores the result of COUNT, a number, to the specified memory variable.

Description
Use COUNT to total the number of records that meet a specified criterion. If SET TALK
is ON, the COUNT command also displays the total. If SET DELETED is ON, records
marked for deletion are not included in the count.

In a multi-user environment, COUNT automatically locks the table during its operation
if SET LOCK is ON (the default), and unlocks it after the count is finished. If SET LOCK
is OFF, you can still perform a count; however the result may change if another user
changes the table.

160 L a n g u a g e R e f e r e n c e

C R E A T E

You can also count the total number of records in a table using the RECCOUNT()
function. However, unlike COUNT, RECCOUNT() does not let you specify conditions
to qualify the records it counts.

Example
The following example uses COUNT to determine the number of records for companies
from California with a value entered for YTD_Sales in the Company table. This number
is then used to calculate an average sales figure for all California companies with a
current YTD_Sales entry:

SET TALK OFF
CLEAR
USE Company
Condition = "State_Prov = 'CA'"
CALCULATE SUM(YTD_Sales) TO Sales FOR &Condition
COUNT TO Num FOR &condition .AND. YTD_SALES<>0
? "Average California Sales: $"+LTRIM(STR(Sales/Num))
CLOSE ALL

See Also
AVERAGE, CALCULATE, RECCOUNT(), SUM, TOTAL

CREATE Table basics

Opens the Table Designer to create or modify a table interactively.

Syntax
CREATE
[<filename> | ? | <filename skeleton>
[[TYPE] PARADOX | DBASE]
[EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The name of the table you want to create. CREATE ? and
CREATE <filename skeleton> display a dialog box, in which you can specify the name of a
new table. If you specify a table name without including its path, Visual dBASE saves
the table to the current drive and directory. If you specify a table name without
including an extension, Visual dBASE assigns a .DBF extension or the file extension of
the table type you specified with SET DBTYPE. If you don't specify a name, the table
remains untitled until you save the file. If you specify an existing table name, Visual
dBASE asks whether you want to modify the existing table or overwrite it.

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table to create. The TYPE keyword is
included for readability only; it has no effect on the operation of the command.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 161

C R E A T E A P P L I C A T I O N+
+
C

Specifying PARADOX creates a Paradox table with a .DB extension.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, dBASE assigns a .DBF extension.

Description
CREATE opens the Table Designer, an interactive environment in which you can create
or modify the structure of a table, or the Table Expert, a tool which guides you through
the process of creating tables. The type of table you create or modify depends on your
selection of the table type specified with the CREATE command, or with SET DBTYPE.

Create a table by defining the name, type, and size of each field. For more information
on using the Table Designer, see the User's Guide.

Example
The following examples show several ways to use CREATE to design a table from the
Command window:

CREATE MailList && Opens table designer -.DBF table
CREATE MailList TYPE PARADOX

&& Opens table designer - .DB table
CREATE ? && Opens dialog box for naming file

See Also
APPEND, APPEND MEMO, COPY STRUCTURE, DISPLAY STRUCTURE, LIST
STRUCTURE, MODIFY STRUCTURE, REPLACE

CREATE APPLICATION Forms

Opens the Form Designer to create or modify a form interactively.

Syntax
CREATE APPLICATION
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The form to create or modify. CREATE APPLICATION
? and CREATE APPLICATION <filename skeleton> display a dialog box, from which you
can select a file. If you specify a file without including its path, dBASE looks for the file
in the current directory, then in the path you specify with SET PATH. If you specify a
file without including its extension, dBASE assumes .WFM.

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you want to
use the Form Designer or the Form Expert. You can then invoke either the designer or
the expert. The EXPERT clause without PROMPT causes the Form Expert to be invoked.

Description
CREATE SCREEN, CREATE APPLICATION, and CREATE FORM are identical; all
launch the Form Designer. See the description of CREATE FORM for more information.

162 L a n g u a g e R e f e r e n c e

C R E A T E C A T A L O G

Example
See the example of CREATE FORM. In this example, CREATE APPLICATION works
the same as CREATE FORM.

Portability
Not supported in dBASE III PLUS. In dBASE IV, CREATE APPLICATION launches the
dBASE IV Applications Generator.

See Also
CREATE FORM, CREATE SCREEN, MODIFY APPLICATION, MODIFY FORM,
MODIFY SCREEN, OPEN FORM

CREATE CATALOG Table basics

Creates a catalog file.

Syntax
CREATE CATALOG
[<filename> | ? | <filename skeleton>

<filename> | ? | <filename skeleton> The catalog file you want to create. CREATE CATALOG
? and CREATE CATALOG <filename skeleton> display a dialog box, in which you can
specify the name of a catalog file.

Description
Use CREATE CATALOG to create a new catalog. Catalog file names are limited to eight
characters, following rules for naming DOS files. Visual dBASE always assigns the
extension (.CAT) to catalog file names.

If you set TITLE ON when you create a new catalog, Visual dBASE prompts you to enter
a one-line description of the catalog file. A master catalog, CATALOG.CAT, stores
catalog file names along with catalog title descriptions. The description you enter for
each catalog entry is displayed later in the catalog window when you use the SET
CATALOG TO ? command to select a catalog name.

Catalogs are dBASE tables which have a predefined table structure. When you create or
select a catalog file, it is automatically opened in its own work area buffer and SET
CATALOG is set ON. From then on, all tables and associated files such as index, query,
format, report, and label files you use or new files you create are added to the catalog.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 163

C R E A T E C A T A L O G+
+
C

Catalog structure
All catalogs have the same structure. The following table describes the fields contained
in a catalog.

With the exception of the Title and Tag fields, Visual dBASE automatically fills in the
field contents whenever a new file is entered in the catalog.

If you want to modify the contents of the catalog table, first open it in a user-accessible
work area, and then use EDIT or BROWSE. For more information, see SET CATALOG.

Example
The following example uses CREATE CATALOG to make a CATALOG for your files.

CREATE CATALOG Mail && Creates a Catalog called Mail. Prompts you ;
to enter a description of this Catalog

CREATE CATALOG ? && Displays Open Catalog dialog box

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CATALOG(), SELECT(), SET(), SET CATALOG, SET TITLE, USE

Field Field name Type Width Description

1 Path Character 70 Contains the full path name of the table or file if it is not in
the current directory.

2 File_name Character 12 This is the name of the file, including its extension.
3 Alias Character 8 Assigned table alias. If you do not assign an alias name,

Visual dBASE uses the table name as the alias name. This
field is left blank for all other file types.

4 Type Character 3 This field contains the default file-name extension that
identifies the type of file. Even if you specified a different
extension when creating the file, the default extension is
entered in the Type field. However, the extension that you
specified is included in the File_name field.

5 Title Character 80 This is an optional field. If SET TITLE is ON, Visual
dBASE prompts you to add a description of up to 80
characters when you create the catalog.

6 Code Numeric 3 When you have a catalog open, Code is the number
assigned to each table in use. Program files are assigned a
value of 0. A table is assigned a number when it is created.
Each new table is assigned the next available number
higher than the previous table. Files associated with a
table, such as an index, format, label, query, report form,
screen, and view files, are assigned the same code number
as the table they reference.

7 Tag Character 4 Field not currently used.

164 L a n g u a g e R e f e r e n c e

C R E A T E C O M M A N D

CREATE COMMAND Programs

Displays a specified program file for editing, or displays an empty editing window.

Syntax
CREATE COMMAND
[<filename> | ? | <filename skeleton>]
[WINDOW <window name>]

<filename> | ? | <filename skeleton> The file to display and edit. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file
without including its path, dBASE looks for the file in the current directory, then in the
path you specify with SET PATH. If you specify a file without including its extension,
dBASE assumes .PRG. If you issue CREATE COMMAND without an option, dBASE
displays an empty editing window.

[WINDOW <window name>] Included for compatibility with dBASE IV. Displays the file in
<window name>, previously opened with ACTIVATE WINDOW.

Default
By default, CREATE COMMAND launches the dBASE internal Text Editor. You can
specify an alternate editor by changing the EDITOR setting in DBASEWIN.INI. To do
so, either use the SET command to specify the setting interactively, or enter the EDITOR
parameter directly in DBASEWIN.INI.

Description
Use CREATE COMMAND to create new or edit existing program files. Use DO to
execute program files.

Note dBASE compiles programs before running them, and assigns the compiled files the
same name as the original, but with the letter "O" as the last letter. For example, the
compiled version of SALESRPT.PRG would be SALESRPT.PRO. If SALESPRT.PRO
already exists, it is overwritten. For this reason, avoid using file names ending in "O" in
directories containing compiled programs.

If you're creating a new program file, CREATE COMMAND displays an editing
window with no file. If you specify an existing file, CREATE COMMAND displays the
program in an editing window, with the cursor at the beginning of line 1.

The dBASE menu changes when an editing window is active. See the User's Guide for
information on the internal Text Editor, including its menu and shortcut keys.

Portability
Not supported in dBASE IV, but MODIFY COMMAND is supported in dBASE IV.

See Also
DO, CREATE FILE, SET DEVELOPMENT, SET EDITOR

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 165

C R E A T E F I L E+
+
C

CREATE FILE Disk and file utilities

Displays a specified text file for editing, or displays an empty editing window.

Syntax
CREATE FILE
[<filename> | ? | <filename skeleton>]
[WINDOW <window name>]

<filename> | ? | <filename skeleton> The text file to display and edit. The ? and <filename
skeleton> options display a dialog box from which you can select a file. If you specify a
file without including its path, dBASE looks for the file in the current directory, then in
the path you specify with SET PATH. If you specify a file without including its
extension, dBASE assumes .PRG. If you issue CREATE FILE without an option, dBASE
displays an empty editing window.

[WINDOW <window name>] Included for compatibility with dBASE IV. Displays the file in
<window name>, previously opened with ACTIVATE WINDOW.

Description
Use CREATE FILE to create and edit text files using the Visual dBASE internal text
editor, or the editor specified in SET EDITOR.

CREATE FILE is identical to CREATE COMMAND, MODIFY COMMAND and
MODIFY FILE. See CREATE COMMAND for more information.

Portability
Not supported in dBASE IV, but MODIFY FILE is supported in dBASE IV.

See Also
CREATE COMMAND, SET EDITOR

CREATE FORM Forms

Opens the Form Designer to create or modify a form.

Syntax
CREATE FORM
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The form to create or modify. CREATE FORM ? and
CREATE FORM <filename skeleton> display a dialog box, from which you can select a
file. If you specify a file without including its path, dBASE looks for the file in the
current directory, then in the path you specify with SET PATH. If you specify a file
without including its extension, dBASE assumes .WFM.

166 L a n g u a g e R e f e r e n c e

C R E A T E F O R M

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you want to
use the Form Designer or the Form Expert. You can then invoke either the designer or
the expert. The EXPERT clause without PROMPT causes the Form Expert to be invoked.

Description
Use CREATE FORM to open the Form Designer or Form Expert and create or modify a
form interactively. The Form Designer automatically generates dBASE program code
that defines the contents and format of a form, and stores this code in an editable text file
(.WFM).

CREATE SCREEN, CREATE APPLICATION and CREATE FORM are identical. For all
these commands, the presence of a form file determines whether a create or modify
operation occurs. If the .WFM file exists, the commands let you modify it in the Form
Designer. If the file doesn't exist, the commands create a new file.

Since a .WFM file is a program file, you can edit it with MODIFY COMMAND.

See the Forms chapters in the User's Guide for instructions on using the Form Designer.

Note The Forms Designer is a two-way tool. You can open a form in the Form Designer even
if you've edited the code in the .WFM file.

Example
The following examples open the Save File dialog box with the cursor positioned at the
File Name block to name a new form. The picklist of .WFM files on the current directory
is available if you desire to use an existing form name to create a new form. By contrast,
MODIFY FORM ? would edit an existing form:

CREATE FORM ?
CREATE FORM *.WFM

CREATE FORM issued alone in the Command window will open an unnamed form
design surface:

CREATE FORM

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CREATE APPLICATION, CREATE SCREEN, MODIFY APPLICATION, MODIFY
FORM, MODIFY SCREEN, OPEN FORM

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 167

C R E A T E L A B E L+
+
C

CREATE LABEL Input/Output

Opens the Report Designer to create or modify a label file.

Syntax
CREATE LABEL
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The label file to create or modify. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH. If you specify a file without including its
extension, dBASE assumes .RPL.

If dBASE can't find <filename>, it creates the file. By default, dBASE assigns an .RPL
extension to <filename> and saves the file in the current directory.

CREATE LABEL without an option opens the empty Report Designer to create a new
label file.

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you want to
use the Report Designer or the Report Expert. You can then invoke either the designer or
the expert. The EXPERT clause without PROMPT causes the Report Expert to be
invoked.

Description
Use CREATE LABEL to open the Report Designer and create or modify a label file. A
label file contains the information that formats labels. For information about using the
Report Designer, see the Crystal Reports documentation. CREATE LABEL and
MODIFY LABEL are identical commands.

Before issuing CREATE LABEL, you must have a default printer selected. After you
create or modify the label file, use LABEL FORM to print the labels.

Example
This example opens a database table and then issues CREATE LABEL to construct a
label form:

CLOSE DATABASE
USE Company
CREATE LABEL COMPLBL1
* If COMPLBL1.LBL already exists then it will be modified.
* Otherwise, a new label form will be created.

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS. In
dBASE IV and dBASE III PLUS, the default label file extension is .LBL.

See Also
CREATE REPORT, LABEL FORM

168 L a n g u a g e R e f e r e n c e

C R E A T E M E N U

CREATE MENU Forms

Opens the Menu Designer to create or modify a menu file.

Syntax
CREATE MENU
[<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The menu file to create or modify. CREATE MENU?
and CREATE MENU <filename skeleton> display a dialog box, from which you can select
a file. If you specify a file without including its path, dBASE looks for the file in the
current directory, then in the path you specify with SET PATH. If you specify a file
without including its extension, dBASE assumes .MNU.

Description
Use CREATE MENU to design a menu for a form.

The menu you design is stored in a menu definition file (.MNU), which contains dBASE
program code. You attach this program to a form via the form's Menu property.

For information on using the Menu Designer, see the User's Guide.

See Also
CLASS MENU

CREATE POPUP Forms

Opens the Menu Designer to create or modify a popup menu file.

Syntax

CREATE POPUP
[<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The popup menu file to create or modify. CREATE
POPUP ? and CREATE POPUP <filename skeleton> display a dialog box, from which
you can select a file. If you specify a file without including its path, dBASE looks for the
file in the current directory, then in the path you specify with SET PATH. If you specify
a file without including its extension, dBASE assumes .POP.

Description
Use CREATE POPUP to design a popup menu for a form. The menu you design is
stored in a popup definition file (.POP), which contains dBASE program code. For
information on using the Menu Designer, see UG_MENU.

See Also
CLASS MENU, CLASS POPUP

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 169

C R E A T E Q U E R Y+
+
C

CREATE QUERY Table organization

Opens the Query Designer to create or modify a query file.

Syntax
CREATE QUERY
[<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> Specifies the name of the file you want to create or
modify. CREATE QUERY ? and CREATE QUERY <filename skeleton> display a dialog
box, in which you can specify the name of a query file. If you specify a file without
including its path, Visual dBASE saves the file to the current drive and directory. If you
specify a file without including an extension, Visual dBASE assumes a .QBE extension.

Description
CREATE QUERY performs the same operation as CREATE VIEW. Use either command
to invoke the Query Designer, an interactive environment in which you can create or
modify a query. The Query Designer creates a .QBE file that displays only the fields and
records that meet specified conditions. To activate a query (.QBE) file, you can use the
SET VIEW command. For more information on using the Query Designer, see the User's
Guide.

Example
CREATE QUERY or CREATE VIEW with no arguments opens the Query Designer and
generates an untitled query, which the user will name later:

CREATE QUERY

CREATE QUERY followed by a file name creates a file of that name when the file is
saved:

CREATE QUERY Myquery

If MYQUERY.QBE already exists, you are asked if you want to overwrite it.

See Also
MODIFY, SET VIEW

CREATE REPORT Input/Output

Opens the Report Designer to create or modify a report file.

Syntax
CREATE REPORT
[CROSSTAB]
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

CROSSTAB Opens the Report Designer with the Cross-Tab dialog box displayed.

170 L a n g u a g e R e f e r e n c e

C R E A T E R E P O R T

<filename> | ? | <filename skeleton> The report file to create or modify. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH.

If you specify a file without including its extension, dBASE assumes .RPT if you haven't
specified CROSSTAB, and .RPC if you have. If dBASE can't find <filename>, it creates a
file with the appropriate extension and saves it in the current directory.

CREATE REPORT without any options opens the empty Report Designer to create a
new report.

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you want to
use the Report Designer or the Report Expert. You can then invoke either the designer or
the expert. The EXPERT clause without PROMPT causes the Report Expert to be
invoked.

Description
Use CREATE REPORT to open the Report Designer and create or modify a report file. A
report file contains the information that formats a report. For information about using
the Report Designer, see the Crystal Reports documentation. CREATE REPORT and
MODIFY REPORT are identical commands.

Before issuing CREATE REPORT, you must have a default printer selected. After you
create or modify the report file, use REPORT FORM to print the report.

Example
This example opens a database table and then issues CREATE REPORT to construct a
report form:

CLOSE DATABASE
USE COMPANY
CREATE REPORT Comprep1
* If Comprep1 already exists then it will be modified.
* Otherwise, a new report form will be created.

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS. In
dBASE IV and dBASE III PLUS, the default report file extension is .FRM.

See Also
REPORT FORM

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 171

C R E A T E S C R E E N+
+
C

CREATE SCREEN Forms

Opens the Form Designer to create or modify a form.

Syntax
CREATE SCREEN
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The form to create or modify. CREATE SCREEN ? and
CREATE SCREEN <filename skeleton> display the Save File dialog box, from which you
can select a file. If you specify a file without including its path, dBASE looks for the file
in the current directory, then in the path you specify with SET PATH. If you specify a
file without including its extension, dBASE assumes .WFM.

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you want to
use the Form Designer or the Form Expert. You can then invoke either the designer or
the expert. The EXPERT clause without PROMPT causes the Form Expert to be invoked.

Description
CREATE SCREEN, CREATE APPLICATION, and CREATE FORM are identical; all
launch the Form Designer. See the description of CREATE FORM for more information.

Example
See the example of CREATE FORM. In this example, CREATE SCREEN works the same
as CREATE FORM.

Portability
In dBASE III PLUS and dBASE IV, CREATE SCREEN opens the dBASE III PLUS or
dBASE IV Form Designer. These Form Designers create two files, .SCR and .FMT. You
can use .FMT files in Visual dBASE; however, you can't modify them with the Visual
dBASE Form Designer.

See Also
CREATE APPLICATION, CREATE FORM, MODIFY APPLICATION, MODIFY
FORM, MODIFY SCREEN, OPEN FORM

CREATE SESSION Environment

Creates a new session and immediately selects it. Subsequent commands that are
session-based apply to the new session.

Syntax
CREATE SESSION

172 L a n g u a g e R e f e r e n c e

C R E A T E S E S S I O N

Description
Use CREATE SESSION to initiate a clean work session within dBASE. A session can be
compared to a multi-user environment; each session manages its own set of work areas.
Associating a form or application with a session ensures that no other form or
application can interfere with the environment in the session. For example, if an
application running in another session issues CLOSE ALL, the files in the current
session are not affected.

In particular, CREATE SESSION does the following:

• Makes all work areas available, even if other running programs have tables open. As
in a multi-user environment, the same table can be opened in different sessions, but
the record pointer actions are independent in each session. When updates to a table
are performed in one session, however, the changes are reflected in the same table
opened in another session.

• Resets the value of most SET commands to their default value (a complete list is
included later in this section)

Note CREATE SESSION does not release or remove access to memory variables. Access to
variables is controlled only by their scope (public, private, local, or static), not by the
session in which they are declared.

You might want to issue CREATE SESSION at the following times in an application:

• At the beginning of any program or procedure that needs to start in the default
environment, or that needs to be protected from commands issued in another
session.

• At the beginning of the first program in a sequence of related programs; this ensures
that your program starts in a known environment, and is protected from actions in
other sessions.

• At the beginning of the code (.PRG or .WFM) defining a form that is linked to a table;
this ensures that the form has access to the table, even if the table is in use in another
session.

• Before opening a table you want to open and display in a BROWSE or EDIT window;
this makes it possible for you to set filters, indexes, and other conditions relevant to
the current view, even if the table is in use in another session.

• Before beginning a series of transactions with BEGINTRANS(); this ensures the
transaction can be started, even if another BEGINTRANS() is active in another
session.

You can't issue a command to select or end a particular session. A session is selected in
one of the following ways:

• When you issue CREATE SESSION, that session is selected.

• When a form is activated, the session in effect when the form was created is selected.

• When you open a Browse or Query window, the session in effect when the Browse or
Query was created is selected.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 173

C R E A T E S E S S I O N+
+
C

A session ends automatically when all windows or forms associated with the session
cease to exist.

The following SET commands affect only the current session:

For more information on sessions, see Chapter 21 in the Programmer's Guide.

Example
The following example sets up two BROWSEs with different indexes in different
sessions:

SET EXCLUSIVE Off
CLOSE ALL
USE Company ORDER Company
BROWSE
CREATE SESSION
USE COMPANY ORDER CompCode
BROWSE

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DO, DEFINE, LOCAL, PRIVATE, PUBLIC, STATIC

SET AUTOSAVE SET BLOCKSIZE SET CARRY

SET CENTURY SET CONFIRM SET CUAENTER

SET CURRENCY SET DATABASE SET DATE

SET DBTYPE SET DECIMALS SET DEFAULT

SET DELETED SET DELIMITERS SET DIRECTORY

SET EXACT SET EXCLUSIVE SET FIELDS

SET FILTER SET IBLOCK SET INDEX

SET KEY TO SET LOCK SET MARK

SET MBLOCK SET MEMOWIDTH SET NEAR

SET ORDER SET PATH SET POINT

SET PRECISION SET REFRESH SET RELATION

SET REPROCESS SET SAFETY SET SEPARATOR

SET SKIP SET TALK SET UNIQUE

174 L a n g u a g e R e f e r e n c e

C R E A T E V I E W

CREATE VIEW Table organization

Opens the Query Designer to create or modify a query file.

Syntax
CREATE VIEW <filename> | ? | <filename skeleton>

<filename> | ? | <filename skeleton> Specifies the name of the file you want to create.
CREATE VIEW ? and CREATE VIEW <filename skeleton> display a dialog box, in which
you can specify the name of a new query file. If you specify a file without including its
path, Visual dBASE saves the file to the current drive and directory. If you specify a file
without including an extension, Visual dBASE assumes a .QBE extension.

Description
CREATE VIEW performs the same operation as CREATE QUERY. Use either command
to invoke the Query Designer, an interactive environment in which you can create or
modify a query. The Query Designer creates a .QBE file that displays only the fields and
records that meet specified conditions. To activate a query (.QBE) file, you can use the
SET VIEW command. For more information on using the Query Designer, see the User's
Guide.

Example
CREATE VIEW or CREATE QUERY with no arguments opens the query designer and
generates an untitled query which the user will name later:

CREATE VIEW

CREATE VIEW followed by a file name will create a file of that name when the file is
saved.

CREATE FILE Myquery

If MYQUERY.QBE already exists, you will be asked if you wish to overwrite it.

See Also
SET VIEW

CREATE VIEW...FROM ENVIRONMENT Table organization

Creates a dBASE III PLUS-compatible view file based on the current working
environment.

Syntax
CREATE VIEW <filename> FROM ENVIRONMENT

<filename> The view file to contain the current working environment specifications. By
default, Visual dBASE assigns a .VUE extension to <filename> and saves the file in the
current directory.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 175

C R E A T E . . . F R O M+
+
C

Description
This command saves the current working environment to a view (.VUE) file; you can
open the file later with the SET VIEW TO <filename> command to restore the captured
environment settings. The current working environment includes all open tables and
index files, as well as their work area numbers, all relations, the active fields list, filter
conditions, and any open format file. It does not, however, include SET
RELATION...INTEGRITY or SET KEY options.

Example
The following example opens two tables, sets a relationship, filters, and field statements.
It then issues CREATE VIEW which creates the .VUE file. CRT_VFE.VUE contains all
these statements. SET VIEW TO reproduces them:

CLOSE DATABASE
USE Company EXCLUSIVE
SELECT 2
USE CONTACT EXCLUSIVE
INDEX ON Compcode TAG Compcode
SET FIELDS TO Contact
SELECT Company
SET RELATION TO Compcode INTO Contact
SET FIELDS TO Company, State_Prov
SET FILTER TO State_Prov="CA"
CREATE VIEW Crt_vfe FROM ENVIRONMENT

All these commands are reproduced when the user issues:

SET VIEW TO Crt_vfe

See Also
CREATE QUERY, CREATE VIEW, SET FIELDS, SET FILTER, SET FORMAT, SET
INDEX, SET RELATION, SET VIEW, USE

CREATE...FROM Table basics

Creates a table with the structure defined by using the COPY TO...STRUCTURE
EXTENDED or CREATE...STRUCTURE EXTENDED commands.

Syntax
CREATE <filename 1> | ? | <filename skeleton 1>
[[TYPE] PARADOX | DBASE]
FROM <filename 2> | ? | <filename skeleton 2>

 [[TYPE] PARADOX | DBASE]

<filename 1> | ? | <filename skeleton 1> The name of the table you want to create. CREATE ?
and CREATE <filename skeleton> display a dialog box, in which you can specify the
name of the destination table. If you specify a table without including its path, Visual
dBASE saves the table to the current drive and directory. If you specify a table name
without including an extension, defining a default table type with SET DBTYPE, or
using one of the TYPE options, Visual dBASE assigns a .DBF extension. If you don't

176 L a n g u a g e R e f e r e n c e

C R E A T E . . . F R O M

specify a table name, the table remains untitled until you save it. If you specify an
existing table name, Visual dBASE displays a dialog box, in which you can indicate
whether you want to modify the existing table.

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table to create. The TYPE keyword is
included for readability only; it has no effect on the operation of the command.

Specifying PARADOX creates a Paradox table with the .DB extension.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, Visual dBASE assigns a .DBF extension.

FROM <filename 2> | ? | <filename skeleton 2>
[TYPE] PARADOX | DBASE Identifies the table whose structure you want to store in a new
table. FROM ? and FROM <filename skeleton> display a dialog box, from which you can
select the name of an existing table. If you specify a table without including its path,
Visual dBASE looks for the table in the current directory, then in the path you specify
with SET PATH. The Type and Database options are the same as those described in the
previous paragraph.

You can also copy the structure of a table in a database (defined using the BDE
Configuration Utility) by specifying the database as a prefix (enclosed in colons) to the
name of the table, that is, :database name:table name. If the database is not already open,
Visual dBASE displays a dialog box, in which you specify the parameters, such as a
login name and password, necessary to establish a connection to that database.

Description
The CREATE...FROM command is most often used with the COPY TO...STRUCTURE
EXTENDED command in a program to create a new table from another table that
defines its structure, instead of using the interactive CREATE or MODIFY STRUCTURE
commands. To do this, you can

1 Use COPY TO...STRUCTURE EXTENDED to create a table whose records provide
information on each field of the original table.

2 Optionally, modify the structural data in the new table with any dBASE command
used to manipulate data, such as REPLACE.

3 Use CREATE...FROM to create a new table from the structural information in the
structure extended file. The new table is active when you exit CREATE...FROM.

The table created with CREATE...FROM becomes the current table in the currently
selected work area. If the CREATE...FROM operation fails for any reason, no table
remains open in the current work area.

If any fields in the table created with COPY TO...STRUCTURE EXTENDED have index
flag fields set, CREATE...FROM also creates a production .MDX file with the specified
index tags.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 177

C R E A T E . . . S T R U C T U R E E X T E N D E D+
+
C

Example
The following example uses COPY TO ... STRUCTURE EXTENDED to create a
temporary table containing the structure of Clients table that can be modified.
CREATE...FROM is then used to create a new table with an altered structure:

SET SAFETY OFF
USE Clients
COPY TO Clients2 STRUCTURE EXTENDED
* Clients2.DBF now contains records that
* define Clients' structure.
USE Clients2 EXCLUSIVE
REPLACE Field_Name WITH "TELEPHONE" FOR RECNO()=9
CREATE NewClnt FROM Clients2
APPEND
CLOSE ALL

See COPY TO ... STRUCTURE EXTENDED for an additional example of using
CREATE ... FROM.

See Also
COPY STRUCTURE, COPY TO...STRUCTURE EXTENDED, CREATE, DISPLAY
STRUCTURE, LIST STRUCTURE, MODIFY STRUCTURE

CREATE...STRUCTURE EXTENDED Table basics

Creates and opens a table that you can use to design the structure of a new table.

Syntax
CREATE <tablename> | ?
STRUCTURE EXTENDED
[[TYPE] PARADOX | DBASE]

<tablename> | ? The name of the table you want to create. CREATE ? STRUCTURE
EXTENDED displays a dialog box, in which you can specify the name of the destination
table. If you specify a table without including its path, Visual dBASE saves the table to
the current drive and directory. If you specify a table name without including an
extension, defining a default table type with SET DBTYPE, or using one of the TYPE
options, Visual dBASE assigns a .DBF extension.

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table to create. The TYPE keyword is
included for readability only; it has no effect on the operation of the command.

Specifying PARADOX creates a Paradox table with a .DB extension.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, Visual dBASE assigns a .DBF extension.

178 L a n g u a g e R e f e r e n c e

C R E A T E . . . S T R U C T U R E E X T E N D E D

Description
CREATE...STRUCTURE EXTENDED creates an empty table, called a structure-extended
table, containing five fields of fixed names, types, and lengths. The fields correspond to
attributes that describe fields in the table you want to create:

The CREATE...STRUCTURE EXTENDED command is similar to the COPY
TO...STRUCTURE EXTENDED command. However, unlike COPY TO...STRUCTURE
EXTENDED, which creates a table with records providing information on fields in the
current table, CREATE...STRUCTURE creates an empty table. After using
CREATE...STRUCTURE EXTENDED to create a new table, add records to define the
structure of a new table. Then use the CREATE...FROM command to create a new table
from the field definitions stored in the structure-extended table.

Example
The following example shows how CREATE ... STRUCTURE EXTENDED is used to
create a table with fields representing table design values. After creating an empty file,
the example appends blank records and places structure values within the fields.
DBFrame is then used to create a new dBASE table called Names:

SET SAFETY OFF
CLOSE ALL
CLEAR ALL
CREATE DBFrame STRUCTURE EXTENDED
APPEND BLANK
REPLACE Field_Name WITH "FNAME"
REPLACE Field_Type WITH "C"
REPLACE Field_Len WITH 15
REPLACE Field_IDX WITH "N"
APPEND BLANK
REPLACE Field_Name WITH "LNAME"
REPLACE Field_Type WITH "C"
REPLACE Field_Len WITH 15
REPLACE Field_IDX WITH "N"
APPEND BLANK
REPLACE Field_Name WITH "ADDRESS"
REPLACE Field_Type WITH "C"
REPLACE Field_Len WITH 20
REPLACE Field_IDX WITH "N"
CREATE Names FROM DBFRAME TYPE DBASE
APPEND

Field Contents

FIELD_NAME Character field that contains the name of the field.
FIELD_TYPE Character field that contains the field's data type.

FIELD_LEN Numeric field that contains the field length.
FIELD_DEC Numeric field that contains the number of decimal places for numeric and

float data.
FIELD_IDX Character field (not created in dBASE III PLUS) that indicates if index tags

were created on particular fields when the current table was created.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 179

C T O D ()+
+
C

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
COPY TO...STRUCTURE EXTENDED, CREATE, CREATE...FROM

CTOD() Expressions and type conversion

Returns a specified character expression as a date expression.

Syntax
CTOD(<expC>)

<expC> The character expression, in the current date format, to return as a date
expression.

Description
Use CTOD() to convert a character expression to a date expression. Once you convert
character data to date data, you can manipulate it with date functions and date
arithmetic.

You must enter <expC> in the current date format as determined by SET DATE,
DBASEWIN.INI, or the Windows Control Panel (in that order). That is, SET DATE
settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI override
those in the Windows Control Panel. Be sure <expC> matches the date format in use
when your program runs.

CTOD() returns a date in the current date format.

If you pass an invalid date to CTOD(), it converts the date to a valid one and returns
that date as a date expression. If you pass an empty or non-date string to CTOD(), it
returns an empty date expression in the current format. For example, if the SET DATE
format is AMERICAN, CTOD("") returns / /.

You can substitute the separator in <expC>with any character except a number. For
example, <expC> can be "MM*DD*YY" or "MM!DD!YY". CTOD() returns the date with
the current default separator.

You can specify a B.C. date by typing "bc" in uppercase or lowercase after the date and a
space—for example, CTOD("4/4/92 BC").

Example
The following examples uses CTOD() to change character data to a date format:

SET DATE AMERICAN
? CTOD("4/1/94") && Returns 04/01/94
? CTOD("14/1/94") && Returns 01/01/94
? CTOD("4/32/94") && Returns 05/02/94
? CTOD("00/00/00") && Returns / /
? CTOD("") && Returns / /

180 L a n g u a g e R e f e r e n c e

D A T A B A S E ()

? CTOD("X/X/X") && Returns / /
? CTOD(4/1/94) && Returns an error
x = "4/1/94"
? CTOD(x) && Returns 04/01/94
? CTOD("1/1/91 BC") && Returns 01/01/91 BC

See Also
DTOC(), DTOS(), SET DATE, SET CENTURY, SET MARK

DATABASE() Table basics

Returns the name of the current database from which tables are accessed.

Syntax
DATABASE()

Description
DATABASE() returns the name of the current default database selected with the SET
DATABASE command. (Databases are defined with the BDE Configuration Utility; see
Getting Started for more information.) If no database is open, the DATABASE() function
returns an empty string ("").

Example
The following example uses OPEN DATABASE and SET DATABASE TO to connect to
databases on a database server and DATABASE() to confirm which database is open:

CLEAR
SET DBTYPE TO && Default is DBASE
OPEN DATABASE CAClients ;
LOGIN guest/guest && Establish connection with database server;

and enter user name / password
OPEN DATABASE FLClients
LOGIN guest/guest && Establish connection with database server;

and enter user name / password
SET DATABASE TO CAClients && Makes it current database
USE admin.Oakland
? DATABASE() && Returns CACLIENTS
? ALIAS() && Returns 1
? DBF() && Returns ADMIN.OAKLAND
? WORKAREA() && Returns 1
SET DATABASE TO FLClients && Makes it Current database
? DATABASE() && Returns FLCLIENTS
CLOSE DATABASES CAClients, FLClients ; && Disconnect from database server

Portability
Not supported in dBASE IV or in dBASE III PLUS.

See Also
CLOSE..., OPEN DATABASE, SET DATABASE, SET DBTYPE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 181

D A T E ()+
+
+
D

DATE() Date and time data

Returns the system date.

Syntax
DATE()

Description
DATE() returns a date expression that is your computer system's current date.

dBASE uses the value set by SET DATE, DBASEWIN.INI, or the International option of
the Windows Control Panel (in that order) to determine the current date format. That is,
SET DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. DATE() returns a date in the current date
format.

If SET CENTURY is ON, DATE() returns the date with a 4-digit year.

To change the system date, use SET DATE TO. To express the date as a character string,
use DTOC() or DTOS().

Example
The following example uses DATE() to compute the number of days between a date
field's contents and the current system date, and to derive a due date 30 days in the
future.

USE Clients
? DTOC(Baldate) + ", " + ;

LTRIM(STR(DATE() - Baldate)) + ;
" days have passed since this account was balanced."

CLOSE DATABASE
?
? "Your account is due in thirty (30) days - "
?? DATE() + 30

See Also
DTOC(), DTOS(), SET CENTURY, SET DATE, SET DATE TO, SET MARK

DAY() Date and time data

Returns the numeric value of the day of the month for a specified date expression.

Syntax
DAY(<expD>)

<expD> The date expression whose corresponding day-of-the-month number to return.

Description
DAY() returns a date's day of the month number—a value from 1 to 31.

182 L a n g u a g e R e f e r e n c e

D B E R R O R ()

Enter <expD> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expD> matches the date format
in use when your program runs.

If you pass an invalid date to DAY(), dBASE converts the date to a valid one and
returns the month-day number of that date. If you pass an empty or non-date
expression delimited with braces ({ }) to DAY(), it returns 0. If you pass a non-date
expression or an expression that isn't delimited with braces to DAY(), it returns an
error.

Example
The following examples use DAY() to return the numeric day of the month from date
type data.

SET DATE AMERICAN
? DAY({4/1/94}) && Returns 1
? DAY({4/32/93}) && Returns 2 because April has 30 days
? DAY({00/00/00}) && Returns 0
? DAY({}) && Returns 0
? DAY(X) && Returns error message
? DAY(4/1/94) && Returns error message
X = {4/1/94}
? DAY(X) && Returns 1

For additional examples of DAY() see CMONTH() and CDOW().

See Also
DOW(), MONTH(), SET CENTURY, SET DATE

DBERROR() Error handling and debugging

Returns the number of the last IDAPI error.

Syntax
DBERROR()

Description
DBERROR() returns the IDAPI error number of the last IDAPI error generated by the
current table. To learn the IDAPI error message itself, use DBMESSAGE().

See the table in the description of ERROR() that compares ERROR(), MESSAGE(),
DBERROR(), DBMESSAGE(), SQLERROR(), SQLMESSAGE(), and CERROR().

See online Help for a listing of all error messages.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 183

D B F ()+
+
+
D

Example
The following example uses ON ERROR to branch to an error procedure that uses
DBERROR() to return what IDAPI error has occurred during the BROWSE and
DBMESSAGE() to return what it means:

USE Clients
ON ERROR DO Recovery
COPY TO TEMP
USE TEMP
BROWSE

PROCEDURE Recovery
CLOSE DATABASES
CLEAR
IF ERROR()=239

? "The IDAPI error was error number: " + STR(DBERROR())
? "Which means: " + DBMESSAGE()

ELSE
? "No IDAPI error encountered"

ENDIF
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CERROR(), DBMESSAGE(), ERROR(), MESSAGE(), SQLERROR(), SQLMESSAGE()

DBF() Table basics

Returns the name of a table open in the current or a specified work area.

Syntax
DBF([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
DBF() returns the name of the table open in a specified work area. If SET FULLPATH is
ON, the DBF() function also returns the drive and directory location of the table in
addition to the table name. If you do not specify a work area, the current work area is
assumed.

If no table is in use in the current or specified work area, DBF() returns an empty string
("").

184 L a n g u a g e R e f e r e n c e

D B M E S S A G E ()

Example
The following example demonstrates the relationship between DBF(), SELECT() and
WORKAREA() when multiple tables are open in more than one work area:

CLOSE ALL
USE Flights IN 1
USE Aircrdb IN 2
USE Company IN 3
SELECT 3
? DBF() && Returns C:COMPANY.DBF
? SELECT() && Returns 4
? WORKAREA() && Returns 3

See Also
ALIAS(), MDX(), NDX(), SET FULLPATH, TAG(), WORKAREA(), USE

DBMESSAGE() Error handling and debugging

Returns the error message of the last IDAPI error.

Syntax
DBMESSAGE()

Description
DBMESSAGE() returns the error message of the most recent IDAPI error.

See the table in the description of ERROR() that compares ERROR(), MESSAGE(),
DBERROR(), DBMESSAGE(), CERROR(), SQLERROR(), and SQLMESSAGE().

See online Help for a listing of all error messages.

Example
See DBERROR() for an example of using DBMESSAGE().

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CERROR(), DBERROR(), ERROR(), MESSAGE(), SQLERROR(), SQLMESSAGE()

DEACTIVATE MENU dBASE IV menus

Erases and disables an active dBASE IV menu bar without removing its definition from
memory. This command is supported primarily for compatibility with dBASE IV. In
Visual dBASE, use RELEASE OBJECT to clear an object from a form.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 185

D E A C T I V A T E P O P U P+
+
+
D

For complete syntax information on DEACTIVATE MENU, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

DEACTIVATE POPUP dBASE IV menus

Erases and disables an active dBASE IV pop-up menu without removing its definition
from memory. This command is supported primarily for compatibility with dBASE IV.
In Visual dBASE, use RELEASE OBJECT to clear an object from a form.

For complete syntax information on DEACTIVATE POPUP, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

DEACTIVATE WINDOW dBASE IV windows

Clears from the screen windows that were displayed and enabled with the dBASE IV
command ACTIVATE WINDOW, without releasing their definitions from memory.
This command is supported primarily for compatibility with dBASE IV. In Visual
dBASE, use CLOSE FORMS or RELEASE OBJECT to close or release a form.

For complete syntax information on DEACTIVATE WINDOW, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

DEBUG Error handling and debugging

Opens the dBASE Debugger.

Syntax
DEBUG
[<filename> | ? | <filename skeleton> |
<procedure name> | <UDF name>
[WITH <parameter list>]]

<filename> | ? | <filename skeleton> The file to debug. DEBUG ? and DEBUG <filename
skeleton> display the Open Source File dialog box, from which you can select a file. If
you specify a file without including its path, dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including its extension, dBASE assumes .PRG.

<procedure name> | <UDF name> The procedure or user-defined function (UDF) in an open
program file to debug. The procedure or UDF must be in the program file containing the
DEBUG command that calls it, or in a separate open procedure file on the search path.
(You can open a procedure file with SET PROCEDURE TO.) See the description of DO
for an explanation of the search path and order dBASE follows when it encounters a call
to a program, procedure, or UDF.

WITH <parameter list> Specifies expressions to pass as parameters to a program,
procedure, or UDF that contains PARAMETERS <parameter list> as its first executable

186 L a n g u a g e R e f e r e n c e

D E B U G

command line. For information about parameter passing, see the description of
PARAMETERS.

You can debug a UDF without DEBUG...WITH by calling the UDF directly in an
expression; in which case, you enclose parameters to pass to it in parentheses after the
UDF name. For more information, see the last paragraph of the next section.

If you want to specify a parameter list, you must also specify one of the preceding
options. That is, issuing DEBUG WITH <parameter list> returns an error.

Description
Use DEBUG to turn on the Debugger and view or control program execution
interactively. The Debugger displays information about the state of a program,
procedure, or UDF—and any procedure files that the program or subroutine opens—
during execution. For more information, see the Programmer's Guide, which describes
the Debugger in detail.

You can issue DEBUG without any options from the Command window or from within
a program file. If you issue DEBUG without any options in the Command window,
dBASE opens the Debugger without loading a program or subroutine. (You can load a
file to debug from the Debugger.) If you issue DEBUG without any options in a
program file, dBASE loads the current program file in the Debugger. If you issue
DEBUG <filename> from a program file, <filename> should be a program file other than
the one containing the command; otherwise, you get an error.

You can issue DEBUG <procedure name> and DEBUG <UDF name> from within the
program file that calls the procedure or UDF. You can also issue both of these
commands from the Command window or from within a program file other than the
one containing the procedure or UDF, but the file must be on the search path.

You can run a program line by line in the Debugger and control which lines to stop at. If
you don't want to stop execution within a subroutine, you can step over the command
line that calls the subroutine. The call to the subroutine is still made, and the subroutine
still executes; you just don't see the line-by-line execution of the subroutine. The
Debugger stops at the first command line following the subroutine.

When you debug a UDF with DEBUG <UDF name> WITH <parameter list>, dBASE
ignores the return value of the UDF. If you want to call a UDF in the context of an
expression so that you can see if the UDF returns the right value and the right data type,
you can, in a program file, issue DEBUG with no parameters and then the
command-line expression containing the call to the UDF. DEBUG will open the
program file in the Debugger, in which you can then step to the next line containing the
UDF call.

In the Debugger, step over a command line that calls a subroutine by doing one of the
following:
• Click the Step Over icon on the Debugger SpeedBar
• Choose Run|Step Over from the Debugger menu
• Press F8

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 187

D E C L A R E+
+
+
D

Example
The following examples demonstrate three options for calling the Debugger. Type in the
Command window:

DEBUG ? && Opens "Open Source File" dialog box
DEBUG *.WFM && Opens "Open Source File" dialog box with .WFM files selectable
DEBUG ANIMALS && Enters Debugger with Animals.PRG source code in the upper-left window

Including the following code line in your program automatically takes you to the
Debugger. SET ECHO ON is another way to accomplish the same thing:

ON ERROR DEBUG PROGRAM()

See Also
DISPLAY COVERAGE, GENERATE, ON ERROR, RESUME, SET COVERAGE, SET
PATH, SUSPEND

DECLARE Memory variables

Defines one or more fixed arrays.

Syntax
DECLARE <array name 1>"["<expN list 1>"]"
[,<array name 2>"["<expN list 2>"]"...]

Brackets ([]) in quotation marks are required syntax components.

<array name 1>[,<array name 2>...] The memory variable(s) that are the name(s) of the
array(s).

"["<expN list 1>"]"[,..."["<expN list 2>"]"][,...] Numeric or float expressions (from 1 to 254
inclusive). The number of expressions you specify determines the number of
dimensions of the array. Each one of the expressions specifies how many values (data
elements) that dimension has. For example, if [<expN list 1>] is [3,4], dBASE defines a
two-dimensional array with three rows and four columns.

Description
Use DECLARE to define an array of a specified size as a memory variable. Array
elements can be of any data type. (An array element can also specify the name of
another array.) A single array can contain multiple data types. When you use
DECLARE, all array elements are initialized to a logical data type with a value of .F.

The array can hold as many elements as memory allows. You can create arrays that
contain more than two dimensions, but most dBASE array functions work only on one-
or two-dimensional arrays.

There are two ways to refer to individual elements in an array; you can use either the
element subscripts or the element number. Element subscripts indicate the row and
column in which an element is located. Element numbers indicate the sequential
position of the element in the array, starting at the first row and first column of the array.
To determine the number of elements, rows, or columns in an array, use ALEN().

188 L a n g u a g e R e f e r e n c e

D E C L A R E

Certain dBASE functions require the element number, and others require the subscripts.
If you are using one- or two-dimensional arrays, you can use AELEMENT() to
determine the element number if you know the subscripts, and ASUBSCRIPT() to
determine the subscripts if you know the element number.

After you create an array, you can place values in cells of the array using STORE, or you
can use =. You can also use AFILL() to place the same value in a range of cells in the
array. To add or delete elements from an array, use ADEL() and AINS(). To resize an
array, or make a one-dimensional array two-dimensional, use AGROW() or
ARESIZE(). For more information on using arrays, see Chapter 5 in the Programmer's
Guide.

You can pass array elements as parameters, and you can pass a complete array as a
parameter to a program or procedure by specifying the array name without a subscript.
For more information on passing arrays as parameters, see Chapter 4 in the
Programmer's Guide.

Example
The following example relates two tables to create a view consisting of two fields from
each table, then uses DECLARE to create an array Compsumm and copies the selected
data to the array. The counting DO WHILE loop displays the contents of the array to the
results pane of the Command window:

CLOSE ALL
CLEAR
USE Contact IN SELECT() ORDER CompCode
USE Company IN SELECT()
SELECT Company
SET RELATION TO CompCode INTO Contact

DECLARE Compsumm[5,4] && Create an array of 5 rows and 4 columns
COPY TO ARRAY Compsumm NEXT 5;

FIELDS Company->Company, ;
Company->City, Contact->CompCode, ;
Contact->Contact

Cnt=1
DO WHILE Cnt<=5

? Compsumm[Cnt,1], Compsumm[Cnt,2]
?? Compsumm[Cnt,3], Compsumm[Cnt,4]
Cnt=Cnt+1

ENDDO
CLOSE ALL

Portability
Not supported in dBASE III PLUS.

See Also
ADEL(), AELEMENT(), AFILL(), AGROW(), AINS(), ALEN(), APPEND FROM
ARRAY, ARESIZE(), ASUBSCRIPT(), COPY TO ARRAY, REPLACE FROM ARRAY,
STORE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 189

D E F I N E+
+
+
D

DEFINE Objects

Creates an object from a class.

Syntax
DEFINE <class name> <object name>
[OF <container object>]
[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <stock property list>]
[CUSTOM <custom property list>]
[WITH <parameter list>]

<class name> The class of the object you create. DEFINE can create objects from twenty
standard classes:

You can also specify a custom class, which you define with the CLASS...ENDCLASS
command.

<object name> The identifier for the object you create. <object name> is the object
reference variable, through which you can access and change the object properties.
For information on using object reference variables, see Chapter 10 in the Programmer's
Guide.

OF <container object> Identifies the object that contains the object you define. (For most UI
objects the container object is a form.) OF <container object> is required if you identify the
object using <index operator expN>.

FROM <row>, <col> TO <row>, <col> | AT <row>, <col> Specifies the initial location and size of
the object within its parent form. FROM and TO specify the upper left and lower right
coordinates of the object, respectively. AT specifies the position of the upper left corner.

PROPERTY <stock property list> Specifies values you assign to the built-in properties of the
object.

CUSTOM <custom property list> Specifies new properties you create for the object and the
values you assign to them. For information on custom properties, see Chapter 10 in the
Programmer's Guide.

WITH <parameter list> Specifies the parameters you pass to the object. Declare these
parameters with the PARAMETERS clause of the CLASS...ENDCLASS command.

Browse Checkbox Combobox

DDELink DDETopic Editor

Entryfield Form Image

Line Listbox Menu

Object Ole Pushbutton

Radiobutton Rectangle Scrollbar

Spinbox Text

190 L a n g u a g e R e f e r e n c e

D E F I N E

Description
Use DEFINE to create an object definition in memory.

An object contains memory variables called properties. Some properties hold data values
that modify the object itself, while others reference subroutines that are executed in
response to events. For example, a pushbutton responds to a mouse click by triggering
its OnClick subroutine and the OnSelection subroutine of its parent form.

Every object belongs to a class. A class is a specification, or template, for a type of object.
Visual dBASE provides many built-in classes that you can use to create common
Windows objects (also called controls), such as radio buttons, pushbuttons, and entry
fields. For example, each time you create a form with DEFINE FORM, you make a new
form object that has the built-in specifications from the Form class.

You can design your own custom class with the CLASS...ENDCLASS command.
CLASS...ENDCLASS lets you use regular dBASE code to declare the properties and
methods that objects of the class will have. For information on classes, see Chapter 11 in
the Programmer's Guide.

Example
The following example uses DEFINE to create a custom DIALOG BOX class, with
several useful functions:

rDialog = NEW Dialog()
rDialog.alert("This is an alert box")
? rDialog.YesNo("Do you like it?")
? rDialog.GetString("What is your name?",;

SPACE(20),"@!", "Last Name first")
RETURN

CLASS Dialog
this.Top = 20
this.Left = 12
this.Height = 7
this.Width = 12
this.Value = .f.
this.Color = 'n/w'
SET CUAENTER OFF

FUNCTION Alert
PARAMETER cString, cTitle
PRIVATE nButtonCol

this.Height = 8
this.Value = ""
this.Left = 39 - (this.Width/2)

IF TYPE('cTitle') <> 'C'
this.Text = ""
this.Height = 7

ELSE
this.Text = cTitle
this.Height = 9

ENDIF
this.Width = MAX(LEN(cString),LEN(this.Text))+7

DEFINE FORM F1;

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 191

D E F I N E+
+
+
D

PROPERTY Top this.Top,;
Left this.Left, ;
Height this.Height, ;
Width this.Width, ;
MDI .F., ;
Text this.Text

DEFINE TEXT T1 of F1;
PROPERTY Top 1, Left 3, ;

Width LEN(cString), ;
Text cString
nButtonCol = (this.width/2)-5

DEFINE PUSHBUTTON B1 of F1;
PROPERTY Top 4, Left nButtonCol, ;

Text "OK", OnClick {; Form.CLOSE()}
F1.READMODAL()
F1.RELEASE()
RETURN .T.

FUNCTION GetString
PARAMETER cPrompt, cString, cPicture, cTitle
RETURN this.GetValue(cPrompt,cString,LEN(cString),;

cPicture, cTitle)

FUNCTION GetNumber
PARAMETER cPrompt, nNumber, cPicture, cTitle
RETURN this.GetValue(cPrompt,nNumber,;

LEN(STR(nNumber)), cPicture, cTitle)

FUNCTION GetDate
PARAMETER cPrompt, dDate, cPicture, cTitle
RETURN CTOD(this.GetValue(cPrompt,DTOC(dDate),8,;

cPicture, cTitle))

FUNCTION YesNo
PARAMETER cString, cTitle, lInitValue
PRIVATE nButtonCol1, lRetval

this.Height = 8
lRetval = lInitValue
this.Value = .t.
this.Left = 39 - (this.width/2)
IF TYPE('cTitle') <> 'C'

this.Text = ""
this.Height = 7

ELSE
this.Text = cTitle
this.Height = 9

ENDIF
this.Width=MAX(18,MAX(LEN(cString),;
LEN(this.Text))+ 7)

DEFINE FORM F1;
PROPERTY Top this.Top, ;

Left this.Left, ;
Height this.Height, ;
Width this.Width, ;
MDI .F., ;

192 L a n g u a g e R e f e r e n c e

D E F I N E

Text this.Text
DEFINE TEXT T1 OF F1;

PROPERTY Top 1, left 3, ;
Width LEN(cString), ;
Text cString
nButtonCol1 = (this.width/2) - 9

DEFINE PUSHBUTTON Yes OF F1;
PROPERTY Top 4, Left nButtonCol1, ;

Width 5, Text "Yes", OnClick this.SetYes
DEFINE PUSHBUTTON No OF F1;

PROPERTY Top 4, Left nButtonCol1 + 12,;
Width 5, Text "No", OnClick this.SetNo

F1.READMODAL()
F1.RELEASE()
RETURN lRetval

FUNCTION GetValue
PARAMETER cPrompt, cString, nLen, cPicture, cTitle
PRIVATE nButtonCol

this.Width = nLen + 8 + LEN(cPrompt)
this.Value = ""
this.Left = 39 - (this.width/2)

IF TYPE('cTitle') <> 'C'
this.Text = ""
this.Height = 8

ELSE
this.Text = cTitle
this.Height = 10

ENDIF
this.Width=MAX(LEN(cString)+nLen,;
LEN(this.Text)) + 8

DEFINE FORM F1;
PROPERTY Top this.Top, ;

Left this.Left, ;
Height this.Height, ;
Width this.Width, ;
MDI .F., ;
Text this.Text, ;
ColorNormal this.Color

DEFINE TEXT T1 OF F1;
PROPERTY Top 1, Left 3, ;

WIDTH LEN(cPrompt), ;
Text cPrompt
IF TYPE('cPicture') = 'C'

DEFINE ENTRYFIELD E1 OF F1;
PROPERTY Top 1, Left 4+LEN(cPrompt),;

Width nLen, ;
Value cString, ;
Datalink "cString", ;
Picture cPicture

ELSE
DEFINE ENTRYFIELD E1 OF F1;

PROPERTY Top 1, Left 4 + LEN(cPrompt), ;
Width nLen, ;

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 193

D E F I N E B A R+
+
+
D

Value cString, ;
Datalink "cString"

ENDIF
nButtonCol = (this.width/2) - 5

DEFINE PUSHBUTTON B1 OF F1;
PROPERTY Top 4, Left nButtonCol, ;

Text "OK", OnClick {; Form.Close()}
F1.READMODAL()
F1.RELEASE()
RETURN cString

FUNCTION SetYes
lRetval = .T.
Form.CLOSE()
RETURN .T.

FUNCTION SetNo
lRetval = .F.
Form.CLOSE()
RETURN .T.
ENDCLASS

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLASS...ENDCLASS, REDEFINE

DEFINE BAR dBASE IV menus

Creates a bar and its prompt in a dBASE IV pop-up menu. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN
FORM, and READMODAL() to create and activate menus associated with forms.

For complete syntax information on DEFINE BAR, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

DEFINE BOX Printing

Defines a character-mode box to draw around ? command output. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE to
create and place rectangles on forms.

For complete syntax information on DEFINE BOX, see online Help. For information
about creating rectangles and forms, see the Forms chapters in the User’s Guide.

194 L a n g u a g e R e f e r e n c e

D E F I N E C O L O R

DEFINE COLOR Colors and fonts

Creates and names a customized color.

Syntax
DEFINE COLOR <color name>
<red expN>, <green expN>, <blue expN>

<red expN>, <green expN>, <blue expN> Specifies the proportions of red, green, and blue that
make up the defined color. Each number determines the intensity of the color it
represents, and can range from 0 (least intensity) to 255 (greatest intensity).

Description
Use DEFINE COLOR to create a customized color combination. Once you have defined
<color name>, you can use it instead of one of the standard colors such as R, W, BG, and
so on.

The color you create with DEFINE COLOR is based on three numbers, <red expN>,
<green expN>, and<blue expN>. Adjusting these numbers alters the color you create.
For example, increasing or decreasing <green expN> increases or decreases the amount
of green contained in the customized color.

Use the GETCOLOR() function to open a dialog box in which you create a custom color
or choose from a palette of available colors. After exiting GETCOLOR(), issue DEFINE
COLOR with the values it returns to define the desired color.

You can't use standard color names (such as blue, red, white or black) as <color name>.
If you do, dBASE returns an error when you later issue SET COLOR TO <color name>.
Also, you can't redefine a dBASE color with a command such as DEFINE COLOR R
<red expN> , <green expN> , <blue expN>. If you later use R in a SET COLOR TO
statement, dBASE uses its internal value for R, which is red, rather than the color you
defined.

Example
The following example defines white, black, red, green, blue, and yellow using DEFINE
COLOR and then uses them with SET COLOR TO:

Oldcolors=SET("ATTRIBUTE")
DEFINE COLOR Col_white 255, 255, 255
* Equivalent to W
DEFINE COLOR Col_black 0, 0, 0
* Equivalent to N
DEFINE COLOR Col_red 255, 0, 0
* Equivalent to R
DEFINE COLOR Col_green 0, 255, 0
* Equivalent to G
DEFINE COLOR Col_blue 0, 0, 255
* Equivalent to B
DEFINE COLOR Col_yellow 255, 255, 0
*
SET COLOR TO Col_white/Col_green
? "Now is the time"

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 195

D E F I N E M E N U+
+
+
D

?? "Col_white/Col_green" AT 40
SET COLOR TO Col_red/Col_blue
? " for all good"
?? "Col_red/Col_blue" AT 40
SET COLOR TO Col_blue/Col_red
? " men and women"
?? "Col_blue/Col_red" AT 40
SET COLOR TO Col_blue/Col_green
? " to come to "
?? "Col_blue/Col_green" AT 40
SET COLOR TO Col_red/Col_blue
? " as soon as"
?? "Col_red/Col_blue" AT 40
SET COLOR TO Col_yellow/Col_green
? " they possibly can"
?? "Col_yellow/Col_green" AT 40
WAIT
SET COLOR TO &Oldcolors && Reset colors
CLEAR

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ColorHighlight, ColorNormal, GETCOLOR(), SET COLOR TO, SET COLOR OF

DEFINE MENU dBASE IV menus

Names a dBASE IV menu bar and begins its definition in memory. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE,
OPEN FORM, and READMODAL() to create and activate menus associated with
forms.

For complete syntax information on DEFINE MENU, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

DEFINE PAD dBASE IV menus

Creates and names a pad in an existing dBASE IV menu bar. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE,
OPEN FORM, and READMODAL() to create and activate menus associated with
forms.

For complete syntax information on DEFINE PAD, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

196 L a n g u a g e R e f e r e n c e

D E F I N E P O P U P

DEFINE POPUP dBASE IV menus

Creates a dBASE IV popup menu and stores the definition in memory. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE,
OPEN FORM, and READMODAL() to create and activate menus associated with
forms.

For complete syntax information on DEFINE POPUP, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

DEFINE WINDOW dBASE IV windows

Creates a dBASE IV-style window, a rectangular area in which menus and input areas
can be displayed and enabled. This command is supported primarily for compatibility
with dBASE IV. In Visual dBASE, use DEFINE to create forms, which are used instead of
dBASE IV windows.

For complete syntax information on DEFINE WINDOW, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

DELETE Fields and records

For dBASE tables, marks records for deletion. When accessing Paradox or SQL tables,
DELETE removes records from the table.

Syntax
DELETE
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]

<scope> The number of records to delete. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by DELETE. FOR restricts
DELETE to records that meet <condition 1>. WHILE starts processing with the current
record and continues with each subsequent record as long as <condition 2> is true.

Description
When you use DELETE to mark records for deletion in a dBASE table, Visual dBASE
doesn't actually remove them from the table. It removes records marked for deletion
when you issue PACK. DELETE with no options marks only the current record. When
using a Paradox or SQL table, the DELETE command removes records from the table
immediately (similar to issuing a PACK command with a dBASE table).

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 197

D E L E T E+
+
+
D

The mark that appears next to deleted records in a list or display is an asterisk.

To work with a table as if you have issued PACK, but without deleting marked records
irrevocably, turn SET DELETED ON (the default). To undelete records, issue the
RECALL command. However, use ZAP to remove all records.

Example
The following example uses DELETE to mark all records with StartBal less than $750
and SET DELETED ON to exclude those marked records from the subsequent
BROWSE:

USE Clients
DELETE FOR StartBal < 750
SET DELETED ON
GO TOP
BROWSE FIELDS Company, City, State_Prov, Zip_P_Code,;

StartBal NOMODIFY NOAPPEND NODELETE
RECALL ALL && Removes deletion marks
CLOSE ALL

The following example uses DELETE to mark five randomly selected contest winners
and list them to the screen. You can also use LABEL FORM in a similar way to print
labels:

SET TALK OFF
SET DELETED OFF
USE Company
RECALL ALL
SET DECIMALS TO 0
Cnt=1
DO WHILE Cnt<=5

STORE (INT(RAND()*RECCOUNT())+1) TO Mark
GOTO Mark
IF .NOT. DELETED()

DELETE
Cnt=Cnt+1

ENDIF
ENDDO
SCAN FOR DELETED()

? Company
ENDSCAN

The same concept applies if you want to create a new table from these randomly
selected records:

SET SAFETY OFF
COPY TO Winners FOR DELETED()
RECALL ALL
USE Winners
BROWSE

See Also
PACK, RECALL, SET DELETED, ZAP

198 L a n g u a g e R e f e r e n c e

D E L E T E F I L E

DELETE FILE Disk and file utilities

Removes a file from a disk.

Syntax
DELETE FILE <filename> | ? | <filename skeleton>

<filename> | ? | <filename skeleton> Identifies the file to remove. ? and <filename skeleton>
display a dialog box from which you can select a file.

If you specify a file without including its path, dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including its extension, dBASE does not assume an extension.

Description
DELETE FILE and ERASE are equivalent commands. See ERASE for more information.

Example
The following examples use DELETE FILE:

DELETE FILE Temp.prg
DELETE FILE ?
* Displays the open source dialog box

Portability
Not supported in dBASE III PLUS, but ERASE is. The <filename skeleton> argument is
not supported in dBASE IV.

See Also
ERASE, RENAME, SET PATH

DELETE TABLE Table basics

Deletes a specified table.

Syntax
DELETE TABLE <table name> | ? | <filename skeleton>
[[TYPE] PARADOX | DBASE]

<table name> | ? | <filename skeleton 1> The name of the table that you want to delete.
DELETE TABLE ? and DELETE <filename skeleton> display a dialog box, in which you
can select the table you want to delete.

You can also delete a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 199

D E L E T E T A G+
+
+
D

[TYPE] PARADOX | DBASE Specifies the type of table to delete, which can include either
Paradox or dBASE tables.

Description
Use the DELETE TABLE command to delete tables and associated .NDX and .MDX
index files. Make sure the table is not in use before you attempt to delete it.

Example
The following example uses DELETE TABLE to delete two temporary tables after
creating an adhoc view of Clients table:

SET SAFETY OFF
USE Clients
COPY TO NewNames STRUCTURE EXTENDED
USE NewNames EXCLUSIVE
BROWSE && Delete unwanted fields or edit design from table
PACK && Saves new structure
CREATE NewClnt FROM NewNames
APPEND FROM Clients FOR State_Prov = "CA"
GO TOP
BROWSE
CLOSE DATABASES
DELETE TABLE NewNames TYPE DBASE
DELETE TABLE NewClnt TYPE DBASE

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DELETE FILE, DELETE TAG, ERASE

DELETE TAG Table organization

Deletes specified index tags from .MDX files. You can also use this command to delete
individual index tags defined for Paradox and SQL tables.

Syntax
DELETE TAG <tag name 1>

 [OF <filename 1> | ? | <filename skeleton 1>]
[, <tag name 2>

 [OF <filename 2> | ? | <filename skeleton 2>]...]

<tag name 1>, <tag name 2>, ... <tag name n> The index tag names to delete from .MDX files.

OF <filename 1> | ? | <filename skeleton 1> Specifies the .MDX file containing the tag name to
delete. OF ? and OF <filename skeleton 1> display a dialog box, in which you select a
multiple index file. If you specify a file without including its path, Visual dBASE looks
for the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including an extension, Visual dBASE assumes an .MDX extension.

200 L a n g u a g e R e f e r e n c e

D E L E T E D ()

If you don't specify an index file, Visual dBASE assumes the index tag you want to
delete is in the index file with the same name as the current table.

Description
Use DELETE TAG to delete index tags from .MDX files for dBASE tables or secondary
indexes on a Paradox table. Visual dBASE allows a maximum of 47 index tags in a single
.MDX file, so deleting unneeded tags frees slots for new tags as well as reducing the
amount of disk space and memory that an .MDX file requires.

For dBASE tables, the .MDX file must be open when you delete the tags. If you delete all
tags in an .MDX file, the .MDX file is also deleted. If you delete the production .MDX file
by deleting all index tags, the table file header is updated to indicate there is no longer a
production index associated with the table.

In a multiuser environment, the table associated with the indexes you want to delete
must be opened in exclusive mode. When accessing a Paradox table, specifying DELETE
TAG without an argument deletes the primary index.

Example
The following example creates a temporary index, uses it in a BROWSE command then
removes it with DELETE TAG:

USE Company EXCLUSIVE
INDEX ON Sic_code TAG Sic_code
BROWSE FIELDS Sic_code, Company
* now the Sic_code index is not needed, delete it
DELETE TAG Sic_code

Portability
Not supported in dBASE III PLUS. Also, the <filename skeleton> option is not available in
dBASE IV.

See Also
CLOSE INDEXES, COPY INDEXES, SET INDEX, TAG()

DELETED() Fields and records

Indicates if records in the current or a specified table have been marked for deletion.

Syntax
DELETED([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 201

D E S C E N D I N G ()+
+
+
D

Description
DELETED() returns .T. if the current record in the specified work area is marked for
deletion; otherwise, DELETED() returns .F.. If you do not specify a work area, the
current work area is assumed.

If no table is open in the current or specified work area, DELETED() also returns .F..

Example
The following example uses DELETE to mark a subset of the total table. DELETED() is
then used to perform a BROWSE that displays only that subset of records and to create
another table (Cal) that contains only California records:

SET TALK OFF
SET SAFETY OFF
USE Clients
SET DELETED OFF
DELETE FOR State_Prov = "CA"
GO TOP
BROWSE FIELDS Company, City, State_Prov FOR DELETED()
COPY TO Cal FOR DELETED()
USE Cal
BROWSE
CLOSE ALL

The next example uses DELETED() in an INDEX statement to place all records marked
as deleted at the beginning of the ordered table:

USE Clients EXCLUSIVE
DELETE FOR State_Prov = "CA"
INDEX ON IIF(DELETED(),"AA"+State_Prov,"Z" ;

+State_Prov)TAG DelState
BROWSE FIELDS Company, City, State_Prov
* California records would appear at the top; other
* states alphabetically below.
RECALL ALL
CLOSE ALL

See Also
DELETE, PACK, RECALL, SET DELETED

DESCENDING() Table organization

Indicates if a specified index was created with the DESCENDING keyword.

Syntax
DESCENDING([<.mdx filename expC>,] <index position expN> [, <alias>])

<.mdx filename expC> Specifies a multiple index file that contains the index tag you want
to check.

<index position expN> Selects an index tag by its position in an .MDX file or the position of
an index tag in the list of open indexes in the current or specified work area.

202 L a n g u a g e R e f e r e n c e

D I F F E R E N C E ()

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
The DESCENDING() function returns .T. if the index tag specified by the
<index position expN> parameter was created with the DESCENDING keyword;
otherwise, it returns .F.. The optional alias parameter specifies the work area in which
you want to check an index tag. If you do not specify a work area, the current work area
is assumed.

If you do not specify an .MDX file name, the DESCENDING() function checks for the
index tag in all open .MDX files. If a production .MDX file and other .MDX files are
open, the DESCENDING() function checks for the DESCENDING keyword in the
production .MDX file only.

If you do not specify an index tag, DESCENDING() determines if the master index tag
was created with the DESCENDING keyword. DESCENDING() returns .F. if the index
is an .NDX file or there is no master index.

If the specified .MDX file or index tag does not exist, the DESCENDING() function
returns an error message.

Example
The following example uses DESCENDING() to determine if the key for a specified
index was created using a descending index:

USE Company EXCLUSIVE
INDEX ON Company TAG Company
SET ORDER TO TAG Company
? TAG(), "Descending = ", DESCENDING()

INDEX ON Company TAG DescCo DESCENDING
? TAG(), "Descending = ", DESCENDING()

Portability
Not supported in dBASE III PLUS.

See Also
FOR(), INDEX, KEY(), MDX(), ORDER(), TAGCOUNT(), TAGNO(), UNIQUE()

DIFFERENCE() String data

Returns a number that represents the phonetic difference between two strings.

Syntax
DIFFERENCE(<expC1> | <memo field 1>, <expC2> | <memo field 2>)

<expC1> | <memo field 1> The first character expression or memo field to evaluate the
SOUNDEX() of and compare to the second value.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 203

D I R / D I R E C T O R Y+
+
+
D

<expC2> | <memo field 2> The second character expression or memo field to evaluate the
SOUNDEX() of and compare to the first value.

Description
SOUNDEX() returns a four-character code that represents the phonetic value of a
character expression or memo field. DIFFERENCE() compares the SOUNDEX() codes
of two character expressions or memo fields, and returns an integer from 0 to 4 that
expresses the difference between the codes.

A returned value of 0 indicates the greatest difference in SOUNDEX() codes—the two
expressions have no SOUNDEX() characters in common. A returned value of 4
indicates the least difference—the two expressions have all four SOUNDEX() characters
in common. However, using DIFFERENCE() on short strings can produce unexpected
results, as shown in the following example.

? SOUNDEX("Mom") && returns M500
? SOUNDEX("Dad") && returns D300
? DIFFERENCE("Mom","Dad") && returns 2

To compare the character-by-character similarity between two strings rather than the
phonetic similarity, use LIKE().

Example
The following example uses DIFFERENCE() to determine how closely two text strings
might match phonetically:

? SOUNDEX("Apples") && Returns A142
? SOUNDEX("Lapels") && Returns L142
? DIFFERENCE("Apples","Lapels") && Returns 3
? DIFFERENCE("Katherine","Kathryn") && Returns 4
? DIFFERENCE("Daniel","Damien") && Returns 3
? DIFFERENCE("Money","Monet") && Returns 3
? DIFFERENCE("dBASE","C") && Returns 1
? DIFFERENCE("Motor Oil","Cookies") && Returns 1

Portability
Not supported in dBASE III PLUS. The memo field arguments aren't supported in
dBASE IV.

See Also
LIKE(), SOUNDEX()

DIR/DIRECTORY Disk and file utilities

Performs a directory listing.

Syntax
DIR (or DIRECTORY)
[[ON]<drive>:]
[[LIKE] [<path>\] [<filename> | <filename skeleton>]]

204 L a n g u a g e R e f e r e n c e

D I R / D I R E C T O R Y

[ON] <drive>: Specifies the drive from which DIR performs its directory listing. A colon
(:) is optional after ON <drive>; however, if you use <drive> without ON, you must
follow it with a colon.

ON is optional and has no effect; it is included for backward compatibility with
dBASE IV.

[LIKE] [<path>\] <filename> | <filename skeleton> Specifies a path and/or file specification to
be used by DIR. Use the <path> option to perform a directory listing in a directory other
than the directory that is current on the default drive or on <drive>. Use the <filename>
option to list a single file. Use the <filename skeleton> option to list multiple files.

LIKE is optional and has no effect; it is included for backward compatibility with
dBASE IV.

Description
DIR (or DIRECTORY) is a utility command that lets you perform a directory listing. The
information provided on each file includes its name, its size in bytes, and the date of its
last update. DIR also shows the total number of bytes used by the listed files, the
number of bytes left on disk, and the total disk space.

DIR with no arguments displays information only on files with .DBF extensions in the
current directory; in addition to the information normally displayed, DIR displays the
number of records in each database.

You can use the wildcard characters * and ? to identify multiple files with similar names.
DIR with no arguments, DIR *.DBF, and DIR * are all equivalent commands. DIR N*
displays all .DBF files beginning with N. DIR N???? displays all .DBF files that have five-
letter names beginning with N. DIR N*.* displays all files beginning with N, regardless
of extension. DIR N*. displays all files beginning with N that have no file-name
extension.

If you want to specify a drive and path or file name information without using ON or
LIKE, you must follow <drive> with a colon. DIR ON C LIKE *.BAT and DIR C:*.BAT
are equivalent commands.

A path must end with a backslash (\), as shown in the following example:

* the following returns the .dbf file names
DIR C:\VISUALDB\SAMPLES\
* the following returns "0 bytes in 0 files"
DIR C:\VISUALDB\SAMPLES

If you have not used ON KEY or SET FUNCTION to reassign the F4 key, pressing F4 is a
quick way to execute DIR.

The output presented by DIR is affected by the settings made by SET DATABASE and
SET DBTYPE.

Example
The following examples use DIR:

DIR && Shows all tables in current subdirectory
DIR ON B: && Shows all tables on B drive

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 205

D I S K S P A C E ()+
+
+
D

DIR A: && Shows all tables on A drive
DIR *.prg && Shows all program files
DIR LIKE *.* ON C:\DBASE
* Shows all files on C:\DBASE

Portability
The ON and LIKE options are not supported in dBASE III PLUS.

See Also
DISPLAY FILES, FILE(), LIST FILES, FSIZE(), ON KEY, SET DATABASE, SET
DEFAULT, SET DBTYPE TO, SET FUNCTION

DISKSPACE() Disk and file utilities

Returns the number of bytes available on the default or specified drive's disk.

Syntax
DISKSPACE([<drive expN>])

<drive expN> A drive number from 1 to 26. For example, the numbers 1 and 2 correspond
to drives A and B, respectively.

Without <drive expN> or if <drive expN> is 0, DISKSPACE() returns the number of bytes
available on the default drive.

If <drive expN> is less than 0 or greater than 26, DISKSPACE() returns the number of
bytes available on the drive from which you load dBASE.

Description
Use DISKSPACE() to determine how much space is left on a disk.

DISKSPACE() can be used in conjunction with RECCOUNT() and RECSIZE() in
application programs that automatically back up database files. This function lets you
know if there is sufficient space on the disk for the backup file.

Example
The following examples use DISKSPACE():

? DISKSPACE() && current drive
? DISKSPACE(2) && drive B
? DISKSPACE(-1) && dBASE

Portability
The optional argument <drive expN> is not supported in dBASE IV or dBASE III PLUS.

See Also
HOME(), RECCOUNT(), RECSIZE(), SET DEFAULT

206 L a n g u a g e R e f e r e n c e

D I S P L A Y

DISPLAY Table organization

Displays records from the current table in the result pane of the Command window.

Syntax
DISPLAY
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[[FIELDS] <exp list>]
[OFF]
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

<scope> The number of records to DISPLAY. RECORD <n> identifies a single record by
its record number. NEXT <n> identifies n records, beginning with the current record.
ALL specifies all records. REST specifies all records from the current record to the end of
the file.

FOR <condition 1>
WHILE <condition 2> Determines which records appear with DISPLAY. FOR restricts
DISPLAY to records that meet <condition 1>, starting at the first record of the table or
scope and continuing until the end of the table or scope. WHILE starts processing with
the current record and continues with each subsequent record as long as <condition 2> is
true.

FIELDS <exp list> Field names or expressions whose contents (values) you want to
display; the names of the fields in the list are separated by commas. If you don't list any,
Visual dBASE displays the values of all fields for the current record or the records you
specify. The FIELDS keyword is included for readability only; it has no affect on the
operation of the command.

OFF Suppresses display of the record number. Record numbers are not displayed for
Paradox or SQL tables.

[TO FILE <filename> | ? | <filename skeleton>] Sends output to a file or to a printer. TO FILE
directs output to the text file <filename>, as well as to the Command window (unless SET
CONSOLE is OFF). By default, Visual dBASE assigns a .TXT extension to <filename> and
saves the file in the current directory. The ? and <filename skeleton> options display a
dialog box, in which you specify the name of the target file and the directory to save it
in. TO PRINTER directs output to the printer, as well as to the results pane of the
Command window.

[TO PRINTER] Directs output to the printer, as well as to the results pane of the
Command window.

Description
Use DISPLAY to view one or more records of the current table in the results pane of the
Command window. Issuing DISPLAY without any arguments displays only the current
record whereas LIST displays all records. If SET HEADINGS is OFF, Visual dBASE
doesn't display field names when you issue DISPLAY.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 207

D I S P L A Y+
+
+
D

DISPLAY pauses when the results pane is full and displays a dialog box prompting you
to display additional information. Scroll the output up or down by doing any of the
following:

• Press Enter or PgDn to scroll down to the next window.

• Click near the bottom of the vertical scroll bar to scroll down to the next window.

• Press PgUp to scroll up to the next window.

• Click near the top of the vertical scroll bar to scroll up to the next window.

• Press the Up or Down arrows to scroll up or down, respectively, one line.

• Click the vertical scroll bar up or down arrows to scroll up or down, respectively, one
line.

• Press Spacebar to scroll up one line.

• Type <expN> and press Enter to scroll up the specified number of lines.

DISPLAY is similar to LIST, except that LIST doesn't pause at the end of the first
window of information but rather lists the information continuously, halting at the last
window.

If the information output to the results pane is more than the dBASE buffer can contain,
you might not be able to scroll back up to information you've scrolled down through.
Use the TO FILE option to send the information to a file. Use the TO PRINTER option to
send the information to a printer.

Example
The following example uses DISPLAY to display selected data from the Clients table:

USE Clients
DISPLAY
* display all fields in the current record

DISPLAY ALL
* display all fields in all records. On completion
* record counter is positioned at end of table

GOTO 2 && go to 2nd record in the table
DISPLAY REST FIELDS Company, Contact
* display company and contact fields in rest of table

SET FIELDS TO Company, Contact, Phone
DISPLAY all
* combine the set fields and display commands
* to display company, contact and phone fields
* in all records

See Also
DISPLAY STRUCTURE, LIST, SET HEADINGS, SET FIELDS

208 L a n g u a g e R e f e r e n c e

D I S P L A Y C O V E R A G E

DISPLAY COVERAGE Error handling and debugging

Displays the contents of a coverage file (.COV) in the results pane of the Command
window.

Syntax
DISPLAY COVERAGE
<.COV filename> | ? | <filename skeleton 1>
[ALL]
[SUMMARY]
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

<.COV filename> | ? | <filename skeleton> The coverage file that dBASE creates or modifies
when SET COVERAGE is ON, and you call a program, or call a procedure or UDF in a
procedure file. The ? and <filename skeleton> options display a dialog box from which
you can select a coverage file. If you specify a file without including its path, dBASE
looks for the file in the current directory, then in the path you specify with SET PATH. If
you specify a file without including its extension, dBASE assumes .COV.

ALL Displays in the results pane of the Command window the following information:

• The contents of the coverage file for <filename 1>'s program and of the coverage files
for each executed program or procedure file called by <filename 1>'s program

• The total number of logical blocks entered and exited in all the program files
combined

• The percentage of logical blocks entered and exited in all the program files combined

SUMMARY If ALL isn't specified, displays the following information about <filename 1>s
program. If ALL is specified, displays the following information about <filename 1>s
program and about all programs called by <filename 1>'s program:

• The logical blocks not entered and exited

• The total number of logical blocks entered and exited

• The percentage of logical blocks entered and exited

TO FILE <filename 2> | ? | <filename skeleton> Directs output to <filename 2> and to the results
pane of the Command window. By default, dBASE assigns a .TXT extension to
<filename 2> and saves the file in the current directory. The ? and <filename skeleton>
options display a dialog box in which you specify the name of the target file and the
directory to save it in.

TO PRINTER Directs output to the printer and to the results pane of the Command
window.

Description
A coverage file contains the results of the coverage analysis of a program, procedure, or
UDF. You cause dBASE to analyze a program, procedure, or UDF and store the results
of the analysis in a coverage file with the SET COVERAGE ON command. You can issue
DISPLAY COVERAGE in a program file or in the Command window.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 209

D I S P L A Y F I L E S+
+
+
D

DISPLAY COVERAGE displays the contents of <filename 1> and the results of
percentage calculations using <filename 1>'s contents. The output appears in the results
pane of the Command window, starting at the beginning of the main program's
coverage file. DISPLAY COVERAGE displays the first window of output and pauses
when the window is full. See the description of DISPLAY for information about how to
navigate in the window.

The amount of memory available determines the size of the results pane of the
Command window buffer. If the information output is more than the buffer can contain,
you might not be able to scroll back up to information that has already been displayed.
In that case, use either the TO FILE or TO PRINTER option to send all information to a
file or printer.

DISPLAY COVERAGE is the same as LIST COVERAGE, except that LIST COVERAGE
doesn't pause with the first window of information but rather continuously lists the
information, halting at the last window. As with DISPLAY COVERAGE output, you
can scroll LIST COVERAGE output.

Example
See SET COVERAGE for an example of using DISPLAY COVERAGE.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
#pragma, DISPLAY, LIST, SET COVERAGE

DISPLAY FILES Disk and file utilities

Displays information about files on disk in the results pane of the Command window.

Syntax
DISPLAY FILES
[[LIKE] <filename 1> | <filename skeleton 1>]
[ON <drive>]
[TO FILE <filename 2> | ? | <filename skeleton>] | [TO PRINTER]

[LIKE] <filename 1> | <filename skeleton> The file you want to display information on.
DISPLAY FILES <filename skeleton> displays the names of all files matching a template
that uses the wildcard characters ? and *. If you specify a file, and the file is not in the
default directory or in the path you specify with SET PATH, then <filename> must
include the drive and path. LIKE has no effect on the operation of the command; include
it for readability only.

ON <drive> The disk drive containing the files you want to display information on. By
default, dBASE looks for the file or files you specify in the current drive and directory.

TO FILE <filename 2> | ? | <filename skeleton> Directs output to the text file <filename 2> and to
the results pane of the Command window. By default, dBASE assigns a .TXT extension

210 L a n g u a g e R e f e r e n c e

D I S P L A Y F I L E S

to <filename 2> and saves the file in the current directory. The ? and <filename skeleton>
options display a dialog box in which you specify the name of the target file and the
directory to save it in.

TO PRINTER Directs output to the printer and to the results pane of the Command
window.

Description
DISPLAY FILES is a utility command that lets you perform a directory listing. The
information provided on each file includes its name, its size in bytes, and the date of its
last update. DISPLAY FILES also shows the total number of bytes used by the listed
files, the number of bytes left on disk, and the total disk space.

DISPLAY FILES with no options lists only table files (.DBF) in the current default
directory. The number of records is displayed for each table, along with its size in bytes,
and the date of its last update.

You can use the wildcard characters * and ? to identify multiple files with similar names.
For example, although DISPLAY FILES * is equivalent to DISPLAY FILES with no
argument (only .DBF files are displayed), DISPLAY FILES N* displays all .DBF files
beginning with N. DISPLAY FILES N*.* displays all files beginning with N, regardless
of extension. DISPLAY FILES N????.DBF displays all .DBF files that have five-letter
names beginning with N.

DISPLAY FILES pauses at the start of the output when the window is full. See the
description of DISPLAY for information about how to navigate in the window.

If the information output is more than dBASE's buffer can contain, you might not be
able to scroll back up to information you've scrolled down through. Use either the
TO FILE or TO PRINTER option to send all information to a file or printer.

DISPLAY FILES is the same as LIST FILES, except that LIST FILES doesn't pause with
the first window of information but rather continuously lists the information, halting at
the last window. As with DISPLAY FILES output, you can scroll LIST FILES output.

The SET DATABASE and SET DBTYPE settings affect DISPLAY FILES and LIST FILES
output.

Example
The following examples use DISPLAY FILES:

DISPLAY FILES
* Shows all tables in current subdirectory
DISPLAY FILES ON B: && Shows all tables on B drive
DISPLAY FILES A: && Shows all tables on A drive
DISPLAY FILES *.prg && Shows all program files
DISPLAY FILES LIKE *.* ON C:\DBASE
* Shows all files on C:\DBASE

Portability
Not supported in dBASE III PLUS. The ON <drive> and TO FILE ? options are not
supported in dBASE IV.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 211

D I S P L A Y M E M O R Y+
+
+
D

In dBASE IV, if you use TO FILE <filename 2> and do not include an extension,
dBASE IV adds a .PRT extension. Visual dBASE adds a .TXT extension instead.

See Also
DIR, DISPLAY, FILE(), LIST, SET DATABASE, SET DBTYPE, SET DEFAULT

DISPLAY MEMORY Environment

Displays information about memory variables in the results pane of the Command
window.

Syntax
DISPLAY MEMORY
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

TO FILE <filename> | ? | <filename skeleton> Directs output to the text file <filename>, also
called the target file, and to the results pane of the Command window. By default,
dBASE assigns a .TXT extension to <filename> and saves the file in the current directory.
The ? and <filename skeleton> options display a dialog box in which you specify the name
of the target file and the directory to save it in.

TO PRINTER Directs output to the printer and to the results pane of the Command
window.

Description
Use DISPLAY MEMORY to display the contents and size of a memory variable list. If
you haven't used ON KEY or SET FUNCTION to reassign the F7 key, pressing F7 is a
quick way to execute DISPLAY MEMORY.

DISPLAY MEMORY displays information about both user-defined and system memory
variables. The following information on user-defined memory variables is displayed.

• Name
• Scope (public, private, local, static or hidden)
• Data type
• Value
• Number of active memory variables
• Number of memory variables still available for use
• Number of bytes of memory used by character variables
• Number of bytes of memory still available for user character variables
• Name of the program that initialized private memory variables

The following information on system memory variables is displayed.

• Name
• Scope (public, private, or hidden)
• Data type
• Current value

212 L a n g u a g e R e f e r e n c e

D I S P L A Y S T A T U S

DISPLAY MEMORY displays the first window of output and pauses when the window
is full. See the description of DISPLAY for information about how to navigate in the
window.

The amount of memory available determines the size of the results pane of the
Command window buffer. If the information output is more than the buffer can contain,
you might not be able to scroll back up to information that has already been displayed.
In that case, use either the TO FILE or TO PRINTER option to send all information to a
file or printer.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE
displays a dialog box asking if you want to overwrite the file. If SET SAFETY is OFF, any
existing file with the same name is overwritten without warning.

DISPLAY MEMORY is the same as LIST MEMORY, except that LIST MEMORY
displays the information without pauses, halting at the last window. As with DISPLAY
MEMORY output, you can scroll LIST MEMORY output.

Portability
Only a TO PRINT option is supported in dBASE III PLUS. The ? and <filename skeleton>
options are not supported in dBASE IV. If you don't specify a file-name extension with
the TO FILE <filename> option, dBASE IV adds .PRT instead of .TXT.

See Also
LIST, LOCAL, PRIVATE, PUBLIC, SET FUNCTION, SET SAFETY, ON KEY, STATIC,
STORE

DISPLAY STATUS Environment

Displays information about the current dBASE environment in the results pane of the
Command window.

Syntax
DISPLAY STATUS
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

TO FILE <filename> | ? | <filename skeleton> Directs output to the text file <filename>, also
called the target file, and to the results pane of the Command window. By default,
dBASE assigns a .TXT extension to <filename> and saves the file in the current directory.
The ? and <filename skeleton> options display a dialog box in which you specify the name
of the target file and the directory to save it in.

TO PRINTER Directs output to the printer and to the results pane of the Command
window.

Description
Use DISPLAY STATUS to identify open tables and index files and to check the status of
the SET commands. DISPLAY STATUS shows information related to the current session
only.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 213

D I S P L A Y S T A T U S+
+
+
D

If you haven't used ON KEY, SET, or SET FUNCTION to reassign the F6 key, pressing
F6 is a quick way to execute DISPLAY STATUS.

DISPLAY STATUS displays the following information:

• Name and alias of open tables in each work area
• Names of all open memo files in each work area
• Name of any open format file in each work area
• Names of all open indexes and their index key expressions in each work area
• SET ORDER setting in each work area
• Master index, if any, in each work area
• Database relations in each work area
• Filter conditions in each work area
• SET PATH file search path
• SET DEFAULT drive setting
• Current work area
• SET PRINTER or SET DEVICE setting
• DBTYPE setting
• Numeric settings for SET MARGIN, SET DECIMALS, SET MEMOWIDTH, SET

TYPEAHEAD, SET ODOMETER, SET REFRESH, and SET REPROCESS
• ON KEY, ON ESCAPE, and ON ERROR settings
• SET ON/OFF command settings
• Programmable function key and SET FUNCTION settings

DISPLAY STATUS displays the first window of output and pauses when the window is
full. See the description of DISPLAY for information about how to navigate in the
window.

The amount of memory available determines the size of the Results pane of the
Command window buffer. If the information output is more than the buffer can contain,
you might not be able to scroll back up to information that has already been displayed.
In that case, use either the TO FILE or TO PRINTER option to send all information to a
file or printer.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE
displays a dialog box asking if you want to overwrite the file. If SET SAFETY is OFF, any
existing file with the same name is overwritten without warning.

DISPLAY STATUS is the same as LIST STATUS, except that LIST STATUS displays the
information without pauses, halting at the last window. As with DISPLAY STATUS
output, you can scroll LIST STATUS output.

Portability
Only a TO PRINT option is supported in dBASE III PLUS. The ? and <filename skeleton>
options are not supported in dBASE IV. If you don't specify a file-name extension with
the TO FILE <filename> option, dBASE IV adds .PRT instead of .TXT.

See Also
LIST, SET(), SETTO(), SET SAFETY

214 L a n g u a g e R e f e r e n c e

D I S P L A Y S T R U C T U R E

DISPLAY STRUCTURE Table basics

Displays the field definitions of the specified table.

Syntax
DISPLAY STRUCTURE
[IN <alias>]
[TO FILE <filename> | ? <filename skeleton>] | [TO PRINTER]

IN <alias> Identifies the work area of the open table whose structure you want to display
rather than that of the current table. You can enter a work area number (1 through 225),
letter (A through J), or alias name. The work area letter or alias name must be enclosed
in quotes.

[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER] Sends output to a file or to a
printer. TO FILE directs output to the text file <filename>, as well as to the results pane of
the Command window. By default, Visual dBASE assigns a .TXT extension to <filename>
and saves the file in the current directory. The ? and <filename skeleton> options display a
dialog box, in which you specify the name of the target file and the directory to save it
in. TO PRINTER directs output to the printer, as well as to the results pane of the
Command window.

Description
Use DISPLAY STRUCTURE to view the structure of the current or a specified table in
the results pane of the Command window. DISPLAY STRUCTURE displays the
following information about the current or specified table:

• Name of the table
• Type of table (Paradox, dBASE, or SQL)
• Number of records
• Date of last update
• Fields
• Field number
• Field name (if SET FIELDS is ON, the greater-than symbol (>) appears next to each

field specified with the SET FIELDS TO command)
• Type
• Length
• Number of bytes per record (the sum of field lengths plus one additional byte

reserved for storing the asterisk that marks a record for deletion)

Multiply the total number of bytes per record by the number of records in the table to
estimate the size of a dBASE table (excluding the size of the table file header).

DISPLAY STRUCTURE pauses when the results pane of the Command window is full
and displays a dialog box prompting you to display additional information. See the
description of DISPLAY for information about how to navigate in the Command
window.

If the information output to the results pane of the Command window is more than the
Visual dBASE buffer can hold, you might not be able to scroll back up to information

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 215

D I S P L A Y S T R U C T U R E+
+
+
D

you've scrolled down through. Use the TO FILE or TO PRINTER options to save all
information to a file or as printer output. You can send output to either a file or printer,
but not both at the same time.

DISPLAY STRUCTURE is similar to LIST STRUCTURE, except that LIST STRUCTURE
doesn't pause when the Command window fills, but rather lists the information
continuously.

Neither DISPLAY STRUCTURE nor LIST STRUCTURE permit modification of an
existing table structure. To alter the structure, use MODIFY STRUCTURE.

Example
The following example uses DISPLAY STRUCTURE and LIST STRUCTURE to display
the structure of a table:

USE Clients
LIST STRUCTURE TO FILE Clients.TXT

The following text is saved in a text file named CLIENTS.TXT by the LIST STRUCTURE
command:

Structure for table : C:\VISUALDB\SAMPLES\CLIENTS.DBF
Table type : DBASE
Number of records : 100
Last update : 05/01/94

Field Field Name Type Length Dec Index

1 CLIENT_ID CHARACTER 5 N
2 COMPANY CHARACTER 35 N
3 CONTACT CHARACTER 20 N
4 ADDRESS CHARACTER 30 N
5 CITY CHARACTER 15 N
6 STATE CHARACTER 2 N
7 ZIP CHARACTER 5 N
8 AREACODE CHARACTER 3 N
9 PHONE CHARACTER 8 N
10 EXTENSION CHARACTER 5 N
11 STARTBAL NUMERIC 8 2 N
12 BALDATE DATE 8 N
13 CUISINE CHARACTER 15 N
14 TYPE NUMERIC 1 N
15 NOTES MEMO 10 N

** Total ** 171

See Also
DISPLAY, LIST, MODIFY STRUCTURE, SET FIELDS

216 L a n g u a g e R e f e r e n c e

D M Y ()

DMY() Date and time data

Returns a specified date expression as a character string in DD MONTH YY or
DD MONTH YYYY format.

Syntax
DMY(<expD>)

<expD> The date expression to return as a character string in DD MONTH YY or DD
MONTH YYYY format.

Description
DMY() returns a date in DD MONTH YY or DD MONTH YYYY format, where DD is
the day number, MONTH is the full month name, and YY is the year number. If SET
CENTURY is OFF (the default), DMY() returns the year as 2 digits. If SET CENTURY is
ON, DMY() returns the year as 4 digits.

Enter <expD> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expD> matches the date format
in use when your program runs.

If you pass an invalid date to DMY(), it converts the date to a valid one and returns that
date in DD MONTH YY or DD MONTH YYYY format. If you pass an empty or non-
date expression delimited with braces ({ }) to DMY(), it returns "0 Unknown 00" or
"0 Unknown 0000". If you pass a non-date expression or an expression that isn't
delimited with braces to DMY(), dBASE returns an error.

Example
The following example uses DMY() to display a date field value in the form day
number, month spelled out and year as determined by SET CENTURY:

SET TALK OFF
USE Clients
Cnt=1
DO WHILE .NOT. EOF()
CLEAR
? CENTER("Client Database Report",80)
? CENTER("Run on " + CDOW(DATE()) + ", " + DMY(DATE()),80,"-")
?
? "Company" AT 2, "Phone" AT 40, "First Contact" AT 55
DO WHILE Cnt <= 10 .AND. .NOT. EOF()

? Company AT 2, Phone AT 40, CDOW(Baldate)+", " + DMY(Baldate) AT 55
SKIP
Cnt=Cnt+1

ENDDO
Cnt=1
WAIT
ENDDO
CLOSE ALL

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 217

D O+
+
+
D

Portability
Not supported in dBASE III PLUS.

See Also
CDOW(), CMONTH(), DAY(), DOW(), MDY(), MONTH(), SET CENTURY, SET
DATE, YEAR()

DO Programs

Runs a program, procedure, or user-defined function (UDF).

Syntax
DO <filename> | ? | <filename skeleton> |
<procedure name> |
<UDF name>
[WITH <parameter list>]

<filename> | ? | <filename skeleton> The program file to execute. The ? and <filename
skeleton> options display a dialog box from which you can select a file. If you specify a
file without including its path, dBASE looks for the file in the current directory, then in
the search path in search order. See "Search path and order" later in this section for more
information.

If you specify a file without including its extension, dBASE assumes a .PRO extension (a
compiled object file). If dBASE can't find a .PRO file, it looks for a .PRG file (a source
file), which, if found, it compiles. By default, dBASE creates the .PRO in the same
directory as the .PRG, which might not be the current directory.

<procedure name> | <UDF name> The procedure or UDF in an open program file to execute.
The procedure or UDF must be in the program file containing the DO command that
calls it, or in a separate open file on the search path. The search path is described later in
this section.

WITH <parameter list> Specifies memory variable values, field values, or any other valid
expressions to pass as parameters to a program, procedure, or UDF. See the description
of PROCEDURE for information on parameter passing.

Description
Use DO to run programs from the Command window or to run procedures or other
programs from a program. If you enter DO in the Command window, control returns to
the Command window when the program, procedure, or UDF ends. If you use DO in a
program to execute another program, procedure, or UDF, control returns to the
program line following the DO statement when the program, procedure, or UDF ends.

The limit on the number of nested DOs calls depends on the amount of available
memory and the number of files you have open (a DO command might open a file).
Avoid using DO recursively because you can quickly exceed the limit of nested DOs.

When dBASE encounters a DO statement in a program file, it looks in that file for a
procedure or UDF of the specified name. If the current program file contains a

218 L a n g u a g e R e f e r e n c e

D O

procedure and a UDF with the same name, dBASE executes the first one declared. If
dBASE doesn't find a PROCEDURE or FUNCTION definition of the specified name in
the same program file, it looks for a program, procedure, or UDF of the specified name
on the search path in search order.

Search path and order
If the name you specify with DO doesn't include a path or a file-name extension, it can
be a program, procedure, UDF, or file name. To resolve the ambiguity, dBASE searches
for the name in specific places (the search path) in a specific order (the search order) and
runs the first program or subroutine of the specified name that it finds. The search path
and order dBASE uses is as follows:

1 The executing program's object file (.PRO)

2 Other open object files (.PRO) in the call chain, in most recently opened order

3 The file specified by SYSPROC = <filename> in DBASEWIN.INI

4 Any files opened with SET PROCEDURE, SET PROCEDURE...ADDITIVE, or SET
LIBRARY statements, in the order in which they were opened

5 The object file (.PRO) with the specified name in the search path

6 The program file (.PRG) with the specified name in the search path, which dBASE
automatically compiles

Example
The following example uses DO to run procedures:

DO Client_Rpt
DO SalesReport WITH "CA"
DO AddRecord WITH "Smith","John",25

PROC Client_Rpt
* ...
RETURN

PROC SalesReport
Parameters State
* ...
RETURN

PROC AddRecord
PARAMETERS Lastname, Firstname, Age
* ...
RETURN

Portability
Calling a UDF with DO isn't supported in dBASE IV or dBASE III PLUS. The search
path and search order of dBASE IV and dBASE III PLUS differ from that of Visual
dBASE. Both dBASE IV and dBASE III PLUS create compiled object files with .DBO
extensions, and place them in the current directory, by default.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 219

D O C A S E+
+
+
D

See Also
!, CLEAR PROGRAM, COMPILE, DOS, PROCEDURE, RETURN, RUN, RUN(), SET
DEVELOPMENT, SET ESCAPE, SET LIBRARY, SET PROCEDURE

DO CASE Programs

Conditionally processes statements by evaluating one or more conditions and executing
the statements following the first condition that evaluates to true.

Syntax
DO CASE
CASE <condition expL 1>

 <statements>
[CASE <condition expL 2>

 <statements>...]
[OTHERWISE

 <statements>]
ENDCASE

CASE <condition expL> If the condition is true, executes the set of commands between
CASE and the next CASE, OTHERWISE, or ENDCASE command, and then transfers
control to the line following ENDCASE. If the condition is false, control transfers to the
next CASE, OTHERWISE, or ENDCASE command.

<statements> One or more program lines consisting of any combination of commands,
functions, and user-defined functions (UDFs).

OTHERWISE Executes a set of statements if all the CASE statements evaluate to false.

ENDCASE A required command that marks the end of the DO CASE structure.

Description
DO CASE is similar to IF...ELSE...ENDIF. As with IF conditions, dBASE evaluates DO
CASE conditions in the order they're listed in the structure. However, DO CASE acts on
only the first true condition in the structure, even if several apply. In situations where
you want only the first true instance to be processed, use DO CASE instead of a series of
IF commands.

Also, use DO CASE when you want to program a number of exceptions to a condition.
The CASE <condition> statements can represent the exceptions, and the OTHERWISE
statement the remaining situation.

Starting with the first CASE condition, dBASE does the following.

• Evaluates each CASE condition until it encounters one that's true
• Executes the statements between the first true CASE statement and the next CASE,

OTHERWISE, or ENDCASE
• Exits the DO CASE structure without evaluating subsequent CASE conditions
• Moves program control to the first line after the ENDCASE command

220 L a n g u a g e R e f e r e n c e

D O W H I L E

If none of the conditions are true, dBASE executes the statements under OTHERWISE if
it's included. If no OTHERWISE statement exists, dBASE exits the structure without
executing any statements and transfers program control to the first line after the
ENDCASE command.

If you include command pairs such as IF...ENDIF and DO WHILE...ENDDO, you must
nest them within separate DO CASE statements. You can also nest DO CASE structures.

Example
Compare this example with the examples of the IF command. The following CASE
construct determines the magnitude of a variable and displays an appropriate message:

nM_value = 225
DO CASE

CASE nM_value > 1000
? "Value is over 1000."

CASE nM_value > 100
? "Value is over 100."

CASE nM_value > 10
? "Value is over 10."

CASE nM_value > 1
? "Value is over 1."

OTHERWISE
? "The value is 1 or less."

ENDCASE

See Also
DO WHILE, DO...UNTIL, FOR...NEXT, IF, IIF(), SCAN

DO WHILE Programs

Executes the statements between DO WHILE and ENDDO as long as a specified
condition is true or until dBASE encounters an EXIT command.

Syntax
DO WHILE <condition expL>
<statements>
[LOOP]
[EXIT]
ENDDO

<condition expL> A logical expression that determines if dBASE executes the statements
following the DO WHILE statement. If the expression evaluates to .F., dBASE skips the
statements following DO WHILE and executes the command line following ENDDO. If
the expression evaluates to .T., dBASE executes the commands in the DO WHILE loop.

<statements> Program lines consisting of any combination of commands, functions,
user-defined functions (UDFs), and LOOP and EXIT options.

LOOP Returns program control to the top of the DO WHILE loop without executing the
statements that follow LOOP and precede ENDDO.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 221

D O W H I L E+
+
+
D

EXIT Transfers program control out of the DO WHILE loop to the command following
ENDDO without executing the statements that follow EXIT and precede ENDDO.

ENDDO A required command that marks the end of the DO WHILE loop.

Description
Use DO WHILE...ENDDO to execute specified statements for as many times as a
specified condition is true. When dBASE encounters a DO WHILE statement, it
determines whether <condition expL> is true or false. If <condition expL> is true, dBASE
executes the statements in the DO WHILE loop one by one until it encounters ENDDO,
LOOP, or EXIT. If <condition expL> is false, dBASE skips the loop and executes the
command line following ENDDO.

ENDDO and LOOP return program control to the DO WHILE statement and cause
dBASE to evaluate <condition expL> again. EXIT transfers program control out of the DO
WHILE loop to the command following ENDDO.

You can nest loops and other structures, including other DO WHILE loops, in a DO
WHILE loop. You can nest up to 125 DO WHILE loops in a procedure or function; the
maximum depends on the number of other loops, such as DO UNTIL, that are also
running..

DO WHILE...ENDDO and DO...UNTIL are opposite constructs. DO WHILE...ENDDO
executes commands while a condition is true (until the condition is false), while
DO...UNTIL executes commands while a condition is false (until the condition is true).
Because DO...UNTIL executes commands before evaluating the condition, the
commands between DO and UNTIL execute at least once, even when the condition is
true. Because DO WHILE...ENDDO evaluates the condition before executing
commands, the commands between DO WHILE and ENDDO don't execute at all if the
condition is initially false.

Example
The following example uses DO WHILE to step through a table one record at a time and
bring up the edit window if a record is missing a phone number. This process repeats
until the EOF() marker is encountered or the user answers "N" to the continue prompt:

SET EXCAPE OFF
USE Clients
CLEAR
DO WHILE .NOT. EOF()

IF ISBLANK(Phone)
mRec = Recno()
EDIT NOAPPEND NODELETE RECORD MREC
SKIP
ACCEPT "Continue?(Y/N)" TO mCont

IF UPPER(mCont) = "N"
EXIT

ENDIF
CLEAR

ELSE
SKIP

ENDIF

222 L a n g u a g e R e f e r e n c e

D O . . . U N T I L

ENDDO
RETURN

See Also
DO CASE, DO...UNTIL, FOR...NEXT, IF, SCAN

DO...UNTIL Programs

Executes the statements between DO and UNTIL as long as a specified condition is false
or until dBASE encounters an EXIT command.

Syntax
DO
<statements>
[LOOP]
[EXIT]
UNTIL <condition expL>

<statements> Program lines consisting of any combination of commands, functions,
user-defined functions (UDFs), and LOOP and EXIT options.

LOOP Passes program control to the end of the DO...UNTIL loop and evaluates
<condition expL> without executing the commands that follow LOOP and precede
UNTIL.

EXIT Transfers program control out of the DO...UNTIL loop to the command following
UNTIL <condition expL> without reevaluating <condition expL> or executing the
commands that follow EXIT and precede UNTIL.

UNTIL <condition expL> A required command that marks the end of the DO...UNTIL loop.
The <condition expL> argument is a logical expression that determines if dBASE executes
the statements in the DO...UNTIL loop. If the expression evaluates to .F., program
control returns to the DO command and dBASE executes the commands in the
DO...UNTIL loop. If the expression evaluates to .T., program control transfers out of the
loop to the line following UNTIL.

Description
Use DO...UNTIL to execute specified statements for as many times as a specified
condition is false. When dBASE first encounters a DO...UNTIL loop, it executes the
statements between DO and UNTIL until it encounters LOOP, EXIT, or UNTIL. If it
encounters UNTIL, dBASE evaluates the condition to determine if it goes through the
loop again. Because dBASE evaluates the condition after executing the statements, the
statements in a DO...UNTIL loop always execute at least once, even when the condition
is initially true.

You can nest loops and other structures, including other DO...UNTIL loops, in a
DO...UNTIL loop. You can nest up to 116 DO...UNTIL loops in a procedure or function;
the maximum depends on the number of other loops, such as DO WHILE, that are also
running.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 223

D O S+
+
+
D

DO...UNTIL and DO WHILE...ENDDO are opposite constructs. DO...UNTIL executes
commands while a condition is false (until the condition is true), while
DO WHILE...ENDDO executes commands while a condition is true (until the condition
is false). Unlike DO...UNTIL, DO WHILE...ENDDO evaluates the condition before
executing commands; thus, the commands between DO WHILE and ENDDO don't
execute at all if the condition is initially false.

Use DO...UNTIL when you want commands to execute at least once, as with data entry
programs in which you require at least one entry and allow any number of further
entries. This type of program often requires an explicit response to re-execute the
commands in the DO...UNTIL loop. The program evaluates this response with UNTIL
<condition expL>.

In other situations, the choice between DO...UNTIL and DO WHILE can also depend on
which command saves a few program lines or makes a program more readable. You can
often rephrase a negative condition for one into a positive condition for the other.

Example
The following example uses DO...UNTIL to show one screen full of information about
flights. The DO ... UNTIL loop ends either at row 20 or when the end of file is reached:

SET TALK OFF
USE Flights EXCLUSIVE
CLEAR
? CENTER("Flight Information")
? "Flight","Origin","Dest","Departure","Arrival"
DO

? Flight_no, Origin, Dest, Departure, Arrival
SKIP

UNTIL row()>= 20 .OR. EOF()
CLOSE DATABASE

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DO WHILE, IF, FOR...NEXT

DOS Disk and file utilities

Interrupts dBASE and displays the DOS prompt, allowing execution of DOS
commands. dBASE resumes when EXIT is typed at the DOS prompt.

Syntax
DOS

224 L a n g u a g e R e f e r e n c e

D O W ()

Description
Use the DOS command to temporarily leave dBASE and perform commands in DOS.
Enter commands in DOS as you normally do and use EXIT to return to dBASE after the
desired commands have been executed.

When you issue commands that run in a DOS window, dBASE loads
COMMAND.COM using DBASEWIN.PIF in the _dbwinhome directory. You can use
the Windows PIF Editor to customize the settings in DBASEWIN.PIF. For more
information about .PIF files, see your Windows documentation.

To execute single DOS commands without exiting dBASE, use ! or RUN. To execute
Windows applications, use RUN().

Example
DOS takes you out to DOS:

DOS

Type EXIT from the DOS prompt to return to dBASE.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
_dbwinhome, RUN, RUN()

DOW() Date and time data

Returns the day of the week corresponding to a specified date expression as a number
from 1 to 7.

Syntax
DOW(<expD>)

<expD> The date expression, in the current date format, whose corresponding weekday
number to return.

Description
DOW() returns the number of the day of the week on which a date falls. Sunday is
equal to 1, Monday to 2, and so on through Saturday, which is equal to 7. To return the
name of the day of the week instead of the number, use CDOW().

You must enter <expD> in the current date format as determined by SET DATE,
DBASEWIN.INI, or the International option of the Windows Control Panel (in that
order). That is, SET DATE settings override those in DBASEWIN.INI, and settings in
DBASEWIN.INI override those in the Windows Control Panel. Be sure <expD> matches
the date format in use when your program runs.

If you pass an invalid date to DOW(), dBASE converts the date to a valid one and
returns the weekday number of that date. If you pass an empty or non-date expression

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 225

D T O C ()+
+
+
D

delimited with to DOW(), it returns 0. If you pass a non-date expression or an
expression that isn't delimited with braces to DOW(), it returns an error.

Example
The following example determines how many records in the flight table have a Date
field value that equates to Saturday (value of 7) or Sunday (value of 1):

CLEAR
USE Flights
COUNT FOR DOW(Date)=1 .OR. DOW(Date)=7 TO Weekend
? Weekend
RETURN

See Also
CDOW(), CMONTH(), SET CENTURY, SET DATE

DTOC() Expressions and type conversion

Returns a specified date expression as a character expression.

Syntax
DTOC(<expD>)

<expD> The date expression, in the current date format, to return as a character
expression.

Description
Use DTOC() to convert a date expression to a character expression. Once you convert
date data to character data, you can manipulate it as you would any string. For example,
if you want to print the current date on a report, use DTOC(DATE()). To convert a date
expression to a character string suitable for indexing or sorting, use DTOS().

Specify <expD> in the current date format. dBASE uses the value set by SET DATE,
DBASEWIN.INI, or the International option of the Windows Control Panel (in that
order) to determine the value of <expD>. That is, SET DATE settings override those in
DBASEWIN.INI, and settings in DBASEWIN.INI override those in the Windows
Control Panel. Be sure <expD> matches the date format in use when your program runs.
DTOC() returns a character expression in the current date format.

If you pass an invalid date to DTOC(), it converts the date to a valid one and returns
that date as a character expression. If you pass an empty date ({ / / } or { }) to DTOC(),
it returns an empty string expression in the current date format. For example, if the SET
DATE format is AMERICAN, DTOC({ }) returns " / / ". If you pass a non-date
expression or an expression that isn't delimited with braces ({ }) to DTOC(), it returns an
error.

Example
The following example uses DTOC() to convert date values in the BalDate field to a
character string so that they can be concatenated with a character field (Client_ID) in an

226 L a n g u a g e R e f e r e n c e

D T O R ()

array element variable. Also note the conversion of a numeric value (StartBal) to
character with STR(). The example program stores a three-field string for each record to
array String, then outputs the array contents to the Command window results pane:

SET TALK OFF
USE Clients
DECLARE String[RECCOUNT()]
Cnt = 1
SCAN

STRING[Cnt]=Client_ID+"*"+DTOC(BalDate)+"*"+ LTRIM(STR(StartBal,7,2))
Cnt=Cnt+1

ENDSCAN
* The following FOR...NEXT loop verifies the contents of the array.
FOR i=1 TO RECCOUNT()

? STRING[i] AT 10
NEXT i

See Also
CTOD(), DATE(), DTOS(), SET DATE, SET CENTURY

DTOR() Numeric data

Returns the radian value of an angle whose measurement is given in degrees.

Syntax
DTOR(<expN>)

<expN> A negative or positive integer or float that is the size of the angle in degrees.

Description
DTOR() converts the measurement of an angle from degrees to radians. DTOR()
returns a float. To convert degrees to radians, dBASE

• Multiplies the number of degrees by pi
• Divides the result by 180
• Returns the quotient

A 180-degree angle is equivalent to pi radians.

Use DTOR() in the trigonometric functions SIN(), COS(), and TAN() because these
functions require the angle value in radians. For example, to find the sine of a 45-degree
angle, use SIN(DTOR(45)), which returns .71 if the default number of decimal places
is 2.

Use SET DECIMALS to set the number of decimal places DTOR() displays.

Example
The following examples show some ways to use DTOR():

? DTOR(180) && Returns 3.14 (pi)
? DTOR(0) && Returns 0

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 227

D T O S ()+
+
+
D

? DTOR(360) && Returns 6.28 (2*pi)
? DTOR(90) && Returns 1.57 (pi/2)
? DTOR(-90) && Returns -1.57

The following example converts 60 degrees 30 minutes 15 seconds to radians:

? DTOR(60.525) && Returns 1.06

Portability
Not supported in dBASE III PLUS.

See Also
ACOS(), ASIN(), ATAN(), ATN2(), COS(), PI(), RTOD(), SET DECIMALS, SIN(),
TAN()

DTOS() Expressions and type conversion

Returns a specified date expression as a character string in YYYYMMDD format.

Syntax
DTOS(<expD>)

<expD> The date expression, in the current format, to return as a character string in
YYYYMMDD format.

Description
Use DTOS() to convert a date expression to a character string suitable for indexing or
sorting. For example, you can use DTOS() when indexing on a date field in combination
with another field of a different type. DTOS() always returns a character string in
YYYYMMDD format, even if SET CENTURY is OFF.

You must enter <expD> in the current date format as determined by SET DATE,
DBASEWIN.INI, or the International option of the Windows Control Panel (in that
order). That is, SET DATE settings override those in DBASEWIN.INI, and settings in
DBASEWIN.INI override those in the Windows Control Panel. Be sure <expD> matches
the date format in use when your program runs.

If you want to ensure that records in a table are sorted by date regardless of the current
date format in use, and need to concatenate the date field with another field in the table,
use DTOS() instead of DTOC(). DTOS() always returns YYYYMMDD, while the value
returned by DTOC() depends on the current date format. This means that with
DTOS(), dBASE sorts updated records into the table the same way, regardless of the
date format in effect. If you use DTOC(), however, the same date format must be
current whenever the index is updated; if the date format changes, the index will not be
updated correctly.

If you pass an invalid date to DTOS(), dBASE converts the date to a valid one and
returns that date as a character string. If you pass an empty or non-date expression
delimited with curly braces to DTOS(), it returns an empty string (""). If you pass an
expression that isn't delimited with curly braces to DTOS(), it returns an error.

228 L a n g u a g e R e f e r e n c e

E D I T

Example
The following examples show the difference between DTOS() and DTOC().

SET CENTURY OFF
date1 = {4/1/94}
? DTOC(date1) && Returns 04/01/94
? DTOS(date1) && Returns 19940401
SET CENTURY ON
? DTOC(date1) && Returns 04/01/1994
? DTOS(date1) && Returns 19940401
SET CENTURY OFF

The following example uses DTOS() to convert date field information to a character
string with the year first to facilitate searching for a specific year.

SET TALK OFF
USE Clients EXCLUSIVE
INDEX ON DTOS(Baldate) TAG Bal_date
yr = "1992"
? CENTER("Report for: "+yr+" - Run on: " + DTOC(DATE()))
? && Spacing line

SCAN FOR SUBSTR(DTOS(Baldate),1,4) = yr
? Company + DTOC(Baldate) AT 5

ENDSCAN
SET TALK ON
CLOSE ALL

Portability
Not supported in dBASE III PLUS.

See Also
DTOC(), INDEX, SET CENTURY, SET DATE

EDIT Fields and records

Displays fields in the current table for editing.

Syntax
EDIT
[<starting record expN > | <bookmark>]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[COLOR [<standard text>] [, [<enhanced text>] [, <border>]]]
[COLUMNAR]
[FIELDS <field 1> [<field option list 1>] |

 <calculated field 1> = <exp 1> [<calculated field option list 1>]
 [, <field 2> [<field option list 2>] |
 <calculated field 2> = <exp 2> [<calculated field option list 2>]...]]

[FORMAT]
[FREEZE <field 3>]

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 229

E D I T+
+
+
+
E

[KEY <exp 3> [, <exp 4>]]
[LOCK <expN>]
[NOAPPEND]
[NODELETE]
[NOEDIT | NOMODIFY]
[NOFOLLOW]
[NOINIT]
[NORMAL]
[NOTOGGLE]
[NOWAIT]
[TITLE <expC 1>]
[WIDTH <expN>]
[WINDOW <window name>]

<starting record expN> | <bookmark> The record number or bookmark (for tables that don't
use record numbers) to edit.

<scope> The number of records to edit. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by EDIT. FOR restricts EDIT
to records that meet <condition 1>. WHILE starts processing with the current record and
continues with each subsequent record as long as <condition 2> is true.

COLOR Specifies the colors of standard text, enhanced text, and the perimeter of the
Table Records window. To specify the colors of these elements separately, use the
<standard text>, <enhanced text>, and <perimeter> options. You can also use the
<background> option if you have a monitor with a uniform background.

The <standard text> and <enhanced text> attributes include three settings: a foreground
color, a background color, and an optional color for creating blended (hatched)
backgrounds. Separate each setting with a forward slash (/).

For more information about color settings, see SET COLOR TO and SET COLOR OF.

COLUMNAR Arranges the fields in columns on the editing form.

COMPRESS Reduces the number of rows used to display field names in the Table
Records window.

<standard text> Color attributes of command messages and screen output. For
example, the output of the ? and @ ... SAY commands appear in
standard text.

<enhanced text> Color attributes of enhanced text areas, such as @...GET fields and
highlighted BROWSE data cells.

<perimeter> Color attributes of the perimeter bordering the area displaying
text on the screen.

<background> Color attributes of the background for display systems with
uniform backgrounds. <background> includes two parameters: a
background color and an attribute.

230 L a n g u a g e R e f e r e n c e

E D I T

FIELDS <field 1> [<field option list 1>] |
 <calculated field 1> = <exp 1> [<calculated field option list 1>]
 [, <field 2> [<field option list 2>] |
 <calculated field 2> = <exp 2> [<calculated field option list 2>] ...]] Displays the specified fields,
in the order they're listed, for browsing. Options for <field option list 1>, <field option list
2>, which apply to <field 1>, <field 2>, and so on, affect the way these fields are
displayed. These options are as follows:

Note You may also use the "/" character when specifying only a single option in a field option
list.

Read-only calculated fields are composed of an assigned field name and an expression
that results in the calculated field value, as with Commission = Rate * Saleprice. Options

\B = <exp 1>, <exp 2> [\F] RANGE option; forces any value entered in
<field 1> to fall within <exp 1> and <exp 2>,
inclusive

RANGE REQUIRED option; the \F option
prevents a previously entered value from
being accepted if it doesn't fall between
<exp 1> and <exp 2>, inclusive

\H = <expC> HEADER option; causes <expC> to appear
above the field column in the Table Records
window, replacing the field name

\P = <expC> PICTURE option; displays <field 1> according
to the PICTURE or FUNCTION clause <expC>

\R READ-ONLY option; specifies that <field 1> is
read-only and can't be edited

\V = <condition> [\F] [\E = <expC>] VALID option; allows a new <field 1> value to
be entered only when <condition> evaluates
to .T.

VALID REQUIRED option; the \F option
prevents the cursor from leaving <field 1> and
the editing session from ending until
<condition> evaluates to .T.

ERROR MESSAGE option; \E = <expC>
causes <expC> to appear when <condition>
evaluates to .F.

\W = <condition> WHEN option; allows <field 1> to be edited
only when <condition> evaluates to .T.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 231

E D I T+
+
+
+
E

for calculated fields affect the way these fields are displayed. These options are as
follows:

FORMAT Causes EDIT to accept and display input according to the specifications of a
format file opened with SET FORMAT. Data entered must conform to any PICTURE,
FUNCTION, RANGE, and VALID clauses in the format file.

FREEZE <field 3> Restricts editing to <field 3>, although other fields are visible when you
change to browse mode.

KEY <exp 3> [,<exp 4>] When the table has a master index, displays records whose key
field value matches or comes after <exp 3>, or falls between <exp 3> and <exp 4>.

LOCK <expN > Causes the first <expN 2> fields in the table, or the first <expN> fields in
the field list, to continue to appear in place when you move the cursor to fields to the
right in the Table Records window.

NOAPPEND Prevents you from adding records in either browse or edit modes.

NODELETE Prevents the marking of records for deletion from within the Table Records
window.

NOEDIT | NOMODIFY Prevents you from modifying records from the Table Records
window.

NOFOLLOW When the current table has a master index, causes the cursor to remain in
place when you change the key field in a record, rather than follow the record to its new
location in the indexing order. Without NOFOLLOW, dBASE re-indexes the table as
soon as you move to another record when a master index for the table is open.

NOINIT Causes EDIT to execute the options specified with the previous EDIT command.
Use NOINIT if a program calls EDIT several times or if you issue EDIT several times
from the Command window, and you want the same options. Specify the command
options the first time you use EDIT, and issue EDIT NOINIT for subsequent use in the
same session.

NORMAL When EDIT is issued from an active window, displays the Table Records
window in normal, full-screen mode with their default or defined colors, ignoring the
defined colors of the window. When you exit EDIT, dBASE returns you to the active
window. Without NORMAL, the table records appears in the active window.

NOTOGGLE Prevents toggling from EDIT to BROWSE.

NOWAIT Continues execution of a program after a Table Records window is displayed;
otherwise, program execution is suspended until after the Table Records window is
closed.

TITLE <expC 1> Displays <expC> as the title of the Table Records window.

\<column width> The width of the column within which <calculated field 1> is
displayed

\H = <expC> Causes <expC> to appear above the calculated field column in the
Table Records window, replacing the calculated field name

232 L a n g u a g e R e f e r e n c e

E D I T

WIDTH <expN> Specifies the display width for character fields in the Table Records
window. If a field is wider than the specified width, you can scroll the field within the
specified width. The <expN> argument must evaluate to a positive number.

WINDOW <window name> Activates the window <window name> and displays table
records in the window.

Description
Use EDIT to display and change the contents of one or more table records. EDIT without
the FIELDS option displays all fields of the current record. Use SET RELATION
command to view fields from records in linked tables.

To move between records in the Table Records window, you can press PgUp and PgDn to
move backward or forward, one record at a time. You can also use the window controls
and the mouse and choose from various menu options to control operations performed
with EDIT. See the User's Guide for more information on performing operations and
navigating in the Table Records window.

When you're through viewing or editing a table in the Table Records window, press
Ctrl+W to exit EDIT or choose File|Save and Close. To exit EDIT without saving changes
to the current record, press Ctrl+Q, choose File|Abandon and Close, or double-click the
Control menu. If you're using EDIT or BROWSE in a program, exiting EDIT returns
program control to the command line immediately following the EDIT command line.

To view and modify a memo field, move the cursor to the memo field and press
Ctrl+Home, or double-click the memo field. To save the modified memo field, press
Ctrl+W.

To append a new record (unless you use EDIT...NOAPPEND), move the cursor to the
last field of the last record in the table and press PgDn.

Many of the EDIT options are the same as those provided by BROWSE. (Press F2 to
toggle between the two modes.)

Use FIELDS followed by a list of table field names or calculated field names to control
the fields EDIT and BROWSE display, and whether you can edit data in a particular
field.

A calculated field is a read-only field that displays the value of an expression. The
expression typically includes one or more fields in the current table, such as

Name = Firstname + " " + Lastname
Total = Price + (Salestax * Price)
Monthdue = CMONTH(Billdate + 30)

The expression to the left of = specifies the name of the calculated field, and the
expression on the right evaluates to each calculated field's contents.

The Table Records window displays fields according to the @...SAY...GET statements of
an open format file, whether you use the FORMAT option or not. Use the FORMAT
option as a reminder when a format file is open. To open the format file, use SET
FORMAT TO and the format file name. If you open a format file, the FIELDS option of
EDIT has no effect, and EDIT and BROWSE display only the fields specified in the
format file. Although the format file doesn't affect the format of the Table Records

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 233

E J E C T+
+
+
+
E

window, data entered in the Table Records window must conform to any PICTURE,
FUNCTION, RANGE, or VALID clauses in the format file.

EDIT can alter only the contents of a table. To modify the table structure, use MODIFY
STRUCTURE. EDIT and CHANGE are equivalent commands.

Example
The following example uses EDIT to open a Table Records window containing a subset
of the total fields with specified editing limitations:

USE Company IN SELECT() EXCLUSIVE
INDEX ON CompCode TAG CompCode
EDIT FIELDS CompCode, Company, ;

Street1, City, State_Prov, Zip_P_Code ;
NOFOLLOW NOAPPEND NODELETE

CLOSE ALL

See Also
APPEND, BROWSE, MODIFY STRUCTURE, SET FORMAT, SET RELATION

EJECT Printing

Advances printer paper to the top of the next page.

Syntax
EJECT

Description
Use EJECT to position printed output on the page. If you are using a tractor-feed printer
(such as a dot matrix printer) and the paper is correctly positioned, EJECT advances the
paper to the top of the next sheet. If you are using a single-sheet printer (such as a laser
printer), EJECT prints any data in the print queue and ejects the page. Before printing or
executing EJECT, connect and turn on the printer.

EJECT works in conjunction with _padvance, _plength, and _plineno. If _padvance is
set to "FORMFEED" (the default), issuing the EJECT command from dBASE is
equivalent to using your printer's formfeed button or sending the formfeed character
(ASCII 12) to the printer. If _padvance is set to "LINEFEEDS", issuing EJECT sends
individual linefeeds to the printer until _plineno equals _plength, then resets _plineno
to 0. Then, _pageno is incremented by 1. For more information, see _padvance.

EJECT is often used in when printing reports. For example, if PROW() returns a value
that is close to the bottom of the page, issue EJECT to continue the report at the top of
the next page. EJECT automatically resets the printhead to the top left corner of the new
page, which is where PROW() = 0 and PCOL() = 0.

EJECT is the same as EJECT PAGE, except EJECT PAGE also executes any page-
handling routine you've defined with ON PAGE.

234 L a n g u a g e R e f e r e n c e

E J E C T P A G E

Example
In this example, one line is written to the printer and EJECT is then used to ensure that
further commands are written on the next page:

SET PRINTER ON
? "This page left intentionally blank"
EJECT

See Also
_padvance, _plength, _plineno, EJECT PAGE, ON PAGE, PCOL(), PROW(), SET
PRINTER, SET PROW

EJECT PAGE Printing

Advances printer paper to the top of the next page and executes any ON PAGE
command.

Syntax
EJECT PAGE

Description
Use EJECT PAGE with ON PAGE to control the ejection of pages by a printer. If you
define a page-handling routine with ON PAGE AT LINE <expN> and then issue EJECT
PAGE, dBASE checks to see if the current line number (_plineno) is greater than the line
number specified by <expN>. If _plineno is less than the ON PAGE line, EJECT PAGE
sends sufficient linefeeds to trigger the ON PAGE page-handling routine.

If _plineno is greater than the ON PAGE line, or if you don't have an ON PAGE page-
handling routine, EJECT PAGE advances the output as follows:

• If _padvance is set to "FORMFEED" and SET PRINTER is ON, dBASE issues a
formfeed (ASCII code 12).

• If _padvance is set to "LINEFEEDS" and SET PRINTER is ON, dBASE issues
sufficient linefeeds (ASCII code 10) to advance to the next page. It uses the formula
_plength – _plineno to calculate the number of linefeeds.

• If you direct output to a destination other than the printer (for example, if you use
SET ALTERNATE or SET DEVICE), dBASE uses the formula _plength – _plineno to
calculate the number of linefeeds.

After ejecting a page, EJECT PAGE increments _pageno by 1 and resets _plineno to 0.

Example
See ON PAGE for an example of EJECT PAGE.

Portability
Not supported in dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 235

E L A P S E D ()+
+
+
+
E

See Also
?, ??, _padvance, _pageno, _plength, _plineno, EJECT, ON PAGE,
PRINTJOB...ENDPRINTJOB, SET ALTERNATE, SET DEVICE, SET PRINTER, SET
PROW

ELAPSED() Date and time data

Returns the number of seconds elapsed between two specified times.

Syntax
ELAPSED(<stop time expC>, <start time expC>)

<stop time expC> The time expression, in the format HH:MM:SS, at which to stop timing
seconds elapsed. The <stop time expC> argument should be a later time than
<start time expC>; if it is not, dBASE returns a negative value.

<start time expC> The time expression, in the format HH:MM:SS, at which to start timing
seconds elapsed. The <start time expC> argument should be an earlier time than
<stop time expC>; if it is not, dBASE returns a negative value.

Description
Use ELAPSED() with TIME() to determine benchmarks for a program—that is, to
determine how long a program takes to execute when you use different programming
strategies. You can also use ELAPSED() to determine a particular computer's
processing speed; you can then slow down screen displays that would otherwise
execute too quickly. You can also use ELAPSED() to design timeout features in
automated demonstration programs and tutorials.

ELAPSED() subtracts the value of <start time expC> from <stop time expC>. If
<start time expC> is the later time, ELAPSED() returns a negative integer. Both
<stop time expC> and <start time expC> must be in HH:MM:SS format, where HH is the
hour, MM the minutes, and SS the seconds; however, you don't need to specify minutes
and seconds if you want to designate them as 0.

Example
The following example uses ELAPSED() to compute elapsed time in hours between two
entered times:

LOCAL f
f = NEW GFORM()
f.Open()

CLASS GFORM OF FORM
this.Left = 53.00
this.Height = 15.00
this.Width = 43.00
this.Text = "Time worked today?"
this.HelpId = ""
this.HelpFile = ""
this.Top = 5.59

236 L a n g u a g e R e f e r e n c e

E L A P S E D ()

DEFINE TEXT T1 OF THIS;
PROPERTY;

Left 4.00,;
Height 1.00,;
ColorNormal "N/W",;
Width 28.00,;
Border .F.,;
Text "Enter Start Time (24 hr):",;
Top 3.00

DEFINE ENTRYFIELD F1 OF THIS;
PROPERTY;

Left 34.00,;
Height 1.00,;
Width 5.00,;
Value " : ",;
Picture "99:99",;
Border .T.,;
Top 3.00

DEFINE TEXT T2 OF THIS;
PROPERTY;

Left 4.00,;
Height 1.00,;
ColorNormal "N/W",;
Width 28.00,;
Border .F.,;
Text "Enter Quit Time (24 hr):",;
Top 5.00

DEFINE ENTRYFIELD F2 OF THIS;
PROPERTY;

Left 34.00,;
Height 1.00,;
Width 5.00,;
Value " : ",;
Picture "99:99",;
Border .T.,;
Top 5.00

DEFINE PUSHBUTTON COMPUTE OF THIS;
PROPERTY;

Left 12.00,;
Height 2.00,;
ColorNormal "N/W",;
Width 19.00,;
OnClick {;myResult="Time worked today: " +

LTRIM(STR(ELAPSED(Form.F2.Value, Form.F1.Value)/3600,6,2)) + " Hours"
; Form.WorkTime.Text=myResult},;

Text "Elapsed Time",;
Default .T.,;
Top 9.00

DEFINE TEXT WORKTIME OF THIS;
PROPERTY;

Left 4.00,;
Height 1.00,;

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 237

E M P T Y ()+
+
+
+
E

ColorNormal "R+/W",;
Width 30.00,;
Border .F.,;
Text "Time worked today: ",;
Top 7.00

ENDCLASS

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
SECONDS(), TIME()

EMPTY() Expressions and type conversion

Returns .T. if a specified expression or field is 0 or blank, .F. if it contains any other value.

Syntax
EMPTY(<exp>)

<exp> An expression of any data type.

Description
EMPTY() returns .T. if a specified expression is blank or 0, .F. if it contains data or a
numeric value other than 0.

EMPTY() is almost identical to ISBLANK(). However, ISBLANK() differentiates
between zero and blank values in numeric fields, while EMPTY() does not. For more
information, see ISBLANK().

Example
The following example compares the use of AVERAGE when used with no conditions,
with ISBLANK(), and with EMPTY().

File Blnktest.DBF contains 4 records, with
the following values:
Record # NUMFIELD

1 0
2 10
3 20
4 (blank)

The following includes all records, so it does not calculate a true average if blank values
can be included.

AVERAGE numfield TO nAver1 && Returns 7.5 (30/4)

The following ignores blank records, but includes those with a value of 0. This is the
most accurate average if 0 values are valid.

238 L a n g u a g e R e f e r e n c e

E O F ()

AVERAGE numfield TO nAver2 ;
FOR .NOT. ISBLANK(numfield) && Returns 10 (30/3)

The following ignores records that are blank or have a value of 0. Use this if you want to
exclude records with no value, or with a value of 0.

AVERAGE numfield TO nAver3 ;
FOR .NOT. EMPTY(numfield) && Returns 15 (30/2)

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
BLANK, ISBLANK(), SPACE(), TYPE()

EOF() Fields and records

Indicates if the record pointer is at the end of the file.

Syntax
EOF([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
EOF() returns .T. when the record pointer in the current or specified table is positioned
past the last record or when the record pointer is positioned past the last record in the
master index file. Otherwise, EOF() returns .F. Also, if no table is open in the specified
work area, EOF() returns .F.

EOF() returns .T. after SCAN processes the last record in a table, when you use SKIP to
pass the last record in a table or index file, when you use LIST with no options, or when
CONTINUE, FIND, GO, LOCATE, LOOKUP(), SEEK(), or SEEK fails to find the
specified record (and SET NEAR is OFF).

Example
The following example uses EOF() to test for the end of file during a DO...UNTIL loop.
When the record pointer skips past the last record, EOF() becomes true and the
DO...UNTIL loop ends:

USE COMPANY
DO

* ...
SKIP && skip to next record

UNTIL EOF() && test for EOF()

The following example defines a form and two pushbuttons for moving the record
pointer. BOF() and EOF() are used to avoid a BOF() or EOF() error alert at either end
of the table:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 239

E R A S E+
+
+
+
E

SET PROCEDURE TO PROGRAM(1) ADDITIVE
USE Clients
DEFINE FORM F1
DEFINE PUSHBUTTON Pb1 OF F1 AT 10,10;

PROPERTY Text "Previous", Width 8, OnClick Back
DEFINE PUSHBUTTON Pb2 OF F1 AT 10,22;

PROPERTY Text "Next", Width 8, OnClick Forward
OPEN FORM F1

FUNCTION Back
IF .NOT. BOF()

SKIP-1
ENDIF
RETURN .T.

FUNCTION Forward
IF .NOT. EOF()

SKIP
ENDIF
RETURN .T.

See Also
BOF(), FIND, FOUND(), LOCATE, RECNO(), SEEK, SEEK()

ERASE Disk and file utilities

Removes a file from a disk.

Syntax
ERASE <filename> | ? | <filename skeleton>

<filename> | ? | <filename skeleton> Identifies the file to remove. ? and <filename skeleton>
display a dialog box from which you can select a file.

If you specify a file without including its path, dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including its extension, dBASE does not assume an extension.

Description
ERASE is a utility command that deletes a file from a disk. ERASE and DELETE FILE
are equivalent commands.

ERASE is nearly identical to the ERASE (or DEL) command in DOS. Unlike the DOS
command, however, including the wildcard characters * and ? in a file-name skeleton
opens a dialog box from which to choose file names to erase. Also unlike the DOS
command, you can delete only one file at a time with ERASE. A file must be closed
before ERASE can remove it.

If the file that you want to remove has an extension, you must include that extension in
<filename>. If the file is not on the default drive you must specify a drive designation,

240 L a n g u a g e R e f e r e n c e

E R R O R ()

and if the file is not in the current directory or in the path you specify with SET PATH,
you must specify the directory path.

If <filename> is present in the current directory and also exists in the SET PATH
directory, ERASE <filename> without path information removes only the file in the
current directory. SET SAFETY has no effect on ERASE.

ERASE does not automatically remove a .DBT file when the .DBF file it is associated
with is removed. To remove all files associated with a table, use DELETE TABLE.

Example
The following examples use ERASE:

ERASE Temp.prg
ERASE ?
* Displays the open source dialog box

Portability
The <filename skeleton> argument is not supported in dBASE IV or dBASE III PLUS.

See Also
DELETE TABLE, RENAME, SET DIRECTORY, SET PATH, SET SAFETY

ERROR() Error handling and debugging

Returns the number of the most recent dBASE error.

Syntax
ERROR()

Description
Use ERROR() to determine the error number when an error occurs. ERROR() is initially
set to 0. ERROR() returns an error number when an error occurs, and remains set to that
number until one of the following happens:

• Another error occurs

• RETRY is issued

• The subroutine in which the error occurs completes execution

The following table compares the functionality of CERROR(), DBERROR(),
DBMESSAGE(), ERROR(), MESSAGE(), SQLERROR(), and SQLMESSAGE().

Function Returns

CERROR() Compiler error number
DBERROR() IDAPI error number
DBMESSAGE() IDAPI error message
ERROR() dBASE error number

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 241

E X P ()+
+
+
+
E

See online Help for a listing of all error codes.

Example
See ON ERROR for an example of using ERROR().

Portability
The error codes of some errors in dBASE IV and dBASE III PLUS are different from the
error codes for the same errors in Visual dBASE. See online Help for more information.

An ON ERROR command does not need to be active in Visual dBASE for ERROR() to
return an error code.

See Also
CERROR(), DBERROR(), DBMESSAGE(), MESSAGE(), ON ERROR, RETRY,
SQLERROR(), SQLMESSAGE()

EXP() Numeric data

Returns e raised to a specified power.

Syntax
EXP(<expN>)

<expN> The positive, negative, or zero power (exponent) to raise the number e to.

Description
EXP() returns a float equal to e (the base of the natural logarithm) raised to the <expN>
power. For example, EXP(2) returns 7.39 because e^2=7.39.

EXP() is the inverse of LOG(). For example, if Y=EXP(X), then LOG(Y)=X.

Use SET DECIMALS to set the number of decimal places EXP() displays.

Example
The following example uses EXP() to determine the exponential of several values:

SET DECIMALS TO 6
? EXP(1) && Returns 2.718282;

the value of e
? EXP(0) && Returns 1.000000
? EXP(-1) && Returns 0.367879
? EXP(-10) && Returns .000045
? EXP(-50) && Returns 0.000000

MESSAGE() dBASE error message

SQLERROR() Server error number
SQLMESSAGE() Server error message

Function Returns

242 L a n g u a g e R e f e r e n c e

E X T E R N

The following example shows how to calculate 25*25 using e and natural logarithms:

dec = SET("DECIMALS")
SET DECIMALS TO 2
x = 25
y = LOG(x) + LOG(x) && y = 6.44
? EXP(y) && Returns 625.00
SET DECIMALS TO dec

See Also
LOG(), LOG10(), SET DECIMALS

EXTERN Windows programming

Declares a prototype for a non-dBASE function contained in a DLL file.

Syntax
EXTERN [CDECL] <return type> <function name>
([<parameter type list>])
[<path>] <filename>

or

EXTERN [CDECL] <return type> <user-defined function name>
([<parameter type list>])
[<path>] <filename>
FROM <export function name> | <ordinal number>

Since you create a function prototype with EXTERN, parentheses are required as with
other functions. Parentheses affect the way data types are promoted and converted.

CDECL Makes EXTERN use the C calling convention. If you omit CDECL, dBASE uses
the Pascal calling convention. (See the following table.)

<function name> The export name of the function. The export name of an external
function is contained in the .REF file associated with the DLL file that holds the function.

<return type> and <parameter type> A keyword representing the data type of the value
returned by the function, and the data type of each argument you send to the function,
respectively. The following table lists the keywords you can use.

Keyword
dBASE
data type C data type

Pascal
data type

ASM
data type

Parameters or return values
CDOUBLE Numeric long double (80 bit) Double N/A
CHANDLE Numeric Handles, such as

HANDLE, HWND,
HFONT, HDC

Handles, such as
Hwnd, HFont, HDC

dw

CINT Numeric int Integer dw (16 bit)
CLOGICAL Logical short Int Integer dw (16 bit)
CLONG Numeric long int (32 bit) Long Int dd (32 bit)

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 243

E X T E R N+
+
+
+
E

For example, a C function may expect a 32-bit unsigned long value as a parameter, and
return a char * string. In your EXTERN command, you specify CLONG as the parameter
in <parameter type list> and CSTRING as the <return type>. When you call the function,
you pass a dBASE numeric variable and store the returned value to a character variable.

<user-defined function name> The name you give to the external function instead of the
export name. When you specify <user-defined function name> (instead of <function
name>), you must use the FROM <expC> | <expN> clause to identify the function in the
DLL file.

FROM <export function name> | <ordinal number> Identifies the function in the DLL file
specified by <filename>. <export function name> identifies the function by its name, which
is stored in the .DEF file that is associated with the DLL file. <ordinal number> identifies
the function with a number, which is also stored in the .DEF file.

When the function you call does not return a value, specify CVOID for <return type>.

<filename> The name of the DLL file in which the external function is stored. This name
must include the extension if the DLL file is not already in memory. The file name of any
DLL that you load in memory must be unique; for example, you can't load SCRIPT.DLL
and SCRIPT.FON into memory concurrently, even though they have different file-name
extensions.

If the DLL file is not already loaded into memory, EXTERN loads it automatically. If the
DLL file is already in memory, EXTERN increments the reference counter once.
Therefore, it isn't necessary to execute LOAD DLL before using EXTERN.

The reference counter is incremented only the first time, regardless of how many times
you execute the LOAD DLL and EXTERN commands.

<path> The directory path to the DLL file in which the external function is stored. When
you omit <path>, dBASE looks in the following directories for the DLL by default:

1 The current directory.
2 The Windows directory (for example, C:\WINDOWS).
3 The Windows SYSTEM subdirectory (for example, C:\WINDOWS\SYSTEM).
4 The directory containing DBASEWIN.EXE, or the directory in which the .EXE file of

your compiled program is located.
5 The directories in the current DOS path.
6 The directories mapped for search in a network.

The <path> specification is necessary only when the DLL file is not in one of these
directories.

CSTRING Character char far *
(zero terminated)

PChar dw (16 bit)

CVOID N/A void Procedure N/A
CWORD Numeric short int (16 bit) WORD dw (16 bit)

Parameters only
CPTR N/A void * Pointer dd (32 bit)

Keyword
dBASE
data type C data type

Pascal
data type

ASM
data type

244 L a n g u a g e R e f e r e n c e

E X T E R N

Description
Use EXTERN to declare a prototype for an external function written in a language other
than dBASE. A prototype tells dBASE to convert its arguments to data types the external
function can use, and to convert the value returned by the external function into a data
type dBASE can use.

To call an external DLL function, first prototype it with EXTERN. Then, using the name
of the function you specified with EXTERN, call the function as you would any dBASE
function. You must prototype an external function before you can call that function in
your dBASE program.

The external function is held in a C library such as Windows API or a customized DLL
file you create in C, Pascal, or ASM. (For more information on using EXTERN and DLL
files, see Chapter 25 in the Programmer’s Guide.) Although most library code is contained
in files with extensions of .DLL, such code can be held in .EXE files, or even in .DRV or
.FON files.

Example
The following example is a dBASE program that uses EXTERN to call a C program
(cSample1.PRG). Explanations of included functions are as follows:

* Reverse():
* Uses the FROM option to specify a new name for
* the function (StrRevC) in the .DLL that has the
* ordinal number 2. In this example the var
* myString is passed by reference, it is then
* modified by the function StrRevC() in the dll
* and the modified string is then displayed in
* dBASE.
* GetDOSEnv():
* This example shows returning a address of a
* String to display in dBASE from a .dll, the
* String is one of the DOS Environment strings.
* GetDOSEnvNum():
* This example shows returning a number to dBASE
* from a .dll, the number is the number of null
* terminated strings in the DOS Environment. Use
* this first to find how many strings to get from
* GetDOSEnv().
* GetDOSEnvLen():
* This example shows returning a number to dBASE
* from a .dll, the number is the length of all the
* strings in the DOS Environment.

CLEAR
EXTERN CVOID Reverse(CSTRING) cSample1.dll FROM 2
* 2 is the ORDINAL number in the DLL cSample.dll
EXTERN CSTRING GetDOSEnv(CWORD) cSample1.dll
EXTERN CWORD GetDOSEnvLen() cSample1.dll
EXTERN CWORD GetDOSEnvNum() cSample1.dll
myString = "AbCdE"
? "Original Str: ",myString
Reverse(myString)
? "From StrRevC: ",myString

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 245

E X T E R N+
+
+
+
E

nSize=GetDOSEnvLen()
? "The Size of the DOS Environment Sting is: ",nSize
?
? "The DOS Environment is:"
FOR i = 1 to GetDOSEnvNum() && for 1 to Number of;

Strings in DOS Env
? GetDOSEnv(i) && print each String;

from the DOS Env
NEXT

The C source code for creating the .DLL file is as follows: (cSample1.C)

#include <windows.h>
#include <string.h>
#pragma argsused
int FAR PASCAL LibMain(HINSTANCE hInstance,

WORD wDataSeg, WORD wHeapSize, LPSTR lpszCmdline){
if (wHeapSize > 0) UnlockData (0) ;
return 1;}

#pragma argsused
int FAR PASCAL WEP(int wParameter) {

return 1;}
/* ##

Function StrRevC()
##*/

#pragma argsused
void FAR PASCAL StrRevC(LPSTR lpstrString) {

strrev(lpstrString);}
/* ##

Functions related to GetDOSEnv()
##*/

#pragma argsused
LPSTR FAR PASCAL GetDOSEnv(UINT index) {

LPSTR p;
UINT i;

for(i=1,p=GetDOSEnvironment();
i<index && *p != '\0';
p += (lstrlen(p)+1),++i);

return p;}
#pragma argsused
UINT FAR PASCAL GetDOSEnvLen(void) {

return (UINT)
(GetDOSEnv((UINT)-1) - GetDOSEnv(1)) + 1;}

#pragma argsused
UINT FAR PASCAL GetDOSEnvNum(void) {

LPSTR p;
UINT i;
for(i=0,p=GetDOSEnvironment(); *p != '\0';

p += (lstrlen(p)+1),++i);
return i;}

The C source code for creating the .DEF file is as follows(cSample1.DEF):

LIBRARY CSAMPLE1
DESCRIPTION 'A Sample DLL for dBASE for Windows'
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE

246 L a n g u a g e R e f e r e n c e

E X T E R N

DATA PRELOAD SINGLE
HEAPSIZE 1400

EXPORTS
WEP @1
STRREVC @2
GETDOSENV @3
GETDOSENVLEN @4
GETDOSENVNUM @5

The following section demonstrates the FROM option of EXTERN (using the name of
the function in the .DLL): This code segment displays a messagebox with an 'i' icon, title
of 'MyBox', message of 'Hello World', and 2 buttons, 'OK' and 'Cancel'.

EXTERN CWORD MyBox(CHANDLE,CSTRING,CSTRING,CWORD);
user.exe FROM "MessageBox"

? MyBox(0,"Hello World","MyBox",65)

Example 2: Calling a PASCAL dll. In this example the variable myString is passed by
reference. It is then modified by the function StrRevP() in the dll and the modified string
is returned.

* dBASE Program (pStrRev.PRG)
EXTERN CVOID StrRevP(CSTRING) pStrRev.dll
myString = "ABCD"
StrRevP(myString)
? myString

DLL Source Code (pStrRev.PAS)

Library pStrRev;
Uses

Strings;
Function StrRevP(str : PChar) : PChar; Export;
Var

endstr : PChar;
ch : Char;

Begin
StrRevP := str;
If Assigned(str) And (str^ <> #0) Then

Begin
endstr := StrEnd(str);
Dec(endstr);
While endstr > str Do
Begin

ch := str^;
str^ := endstr^;
endstr^ := ch;
Inc(str);
Dec(endstr)

End
End

End;
Exports

StrRevP Index 1;
Begin
End.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 247

F A C C E S S D A T E ()+
+
+
+
+
F

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
LOAD DLL, RELEASE DLL

FACCESSDATE() Windows 95

Returns the last date a file was opened under Windows 95.

Syntax

FACCESSDATE(<filename expC>)
<filename expC> The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

Description
FACCESSDATE() checks the file specified by <filename> and returns the date that the
file was last opened, provided the file was last opened under the Windows 95 operating
system. This function is only useful on a system running the Windows 95 operating
system. Under Windows 3.1, FACCESSDATE() returns a blank date.

Example
The following example uses FACCESSDATE() to check the last opened date of a table:

? FACCESSDATE("C:\VISUALDB\SAMPLES\ANIMALS.DBF")
06/01/95

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FCREATEDATE(), FCREATETIME(), FDATE(), FTIME()

FCLOSE() Low-level access

Closes a file previously opened with FCREATE() or FOPEN(). Returns .T. if successful,
.F. if unsuccessful.

Syntax
FCLOSE(<file handle expN>)

<file handle expN> The file handle number of the file to close. When you open a file with
FCREATE() or FOPEN(), these functions return a file handle number. Use this number
as <file handle expN>. If you specify a file handle number that hasn't previously been
returned by FCREATE() or FOPEN(), dBASE returns an error message.

248 L a n g u a g e R e f e r e n c e

F C R E A T E ()

Description
FCLOSE() closes a file you've opened with FCREATE() or FOPEN(). FCLOSE()
returns .T. if it's able to close the file. If the file is no longer available (for example, the file
was on a floppy disk that has been removed) and there is data in the buffer that has not
yet been written to disk, FCLOSE() returns .F.

FCLOSE() doesn't close files that were opened by any means other than FCREATE() or
FOPEN().

To close all open files, including those opened with FCREATE() and FOPEN(), use
CLOSE ALL or CLEAR ALL. To save the file to disk without closing it, use FFLUSH().

Example
The following example uses FCLOSE() to close the README.TXT file after adding text:

IF FILE("C:\VISUALDB\README.TXT")
Handle=FOPEN("README.TXT","RW") && Opens Read-Write
FSEEK(Handle,0,2) && Move to EOF
FPUTS(Handle,"The End") && Write to file

IF .NOT. FCLOSE(Handle) && Try closing file
? "Couldn't close the file"
? "The DOS error number is:", FERROR()

ENDIF
ENDIF

Portability
Not supported in dBASE III PLUS.

See Also
CLEAR ALL, CLOSE..., FCREATE(), FERROR(), FFLUSH(), FOPEN()

FCREATE() Low-level access

Creates and opens a specified file. Returns the file handle number of the file if successful or
–1 if unsuccessful.

Syntax
FCREATE(<filename expC>[, <access expC>])

<filename expC> The name of the file to create and open and whose file handle number to
return. By default, FCREATE() creates the file in the current directory. To create the file
in another directory, specify a full path name for <filename expC>.

<access expC> The access level of the file to create, as shown in the following table. Write
means you can change (overwrite) data in the file, and append means you can add data
to the end of the file. If you try to overwrite data in a file that has append access but not
write access, the data is added to the end of the file.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 249

F C R E A T E ()+
+
+
+
+
F

Description
Use FCREATE() to create a file with a name you specify, assign the file the level of
access you specify, open the file, and return the file handle number DOS assigns to the
file. If dBASE can't create the file (for example, if the file is already open), FCREATE()
returns –1.

SET SAFETY has no effect on FCREATE(). If <filename expC> already exists, it is
overwritten without warning. To see if a file with the same name already exists, use
FILE() before issuing FCREATE().

To use other low-level functions, such as FREAD() and FWRITE(), first open a file with
FCREATE() or FOPEN(). Both FCREATE() and FOPEN() return the file handle
number you need to pass to other low-level functions.

When you open a file with FCREATE(), the file pointer is positioned at the first
character in the file. Use FSEEK() to position the file pointer before reading from or
writing to a file.

Example
The following example uses FCREATE() to create a file named JACK.TXT with Read
and Append access levels:

Filename="Jack.TXT"
? FILE(Filename) && Returns .F.;

file does not currently exit
Handle=FCREATE(Filename,"RA")
IF Handle>0

FPUTS(Handle,"This is a test file.")
FCLOSE(Handle)
FOPEN(Filename)
? FGETS(Handle) && Returns "This is a test file."

ENDIF
WAIT
CLEAR ALL

Portability
Not supported in dBASE III PLUS.

<access expC> Access level

not supplied Read, write, and append
"R" Read-only
"W" Write-only
"A" Append-only
"RW" or "WR" Read and write

"AR" or "RA" Read and append
"AW" or "WA" Write and append

250 L a n g u a g e R e f e r e n c e

F C R E A T E D A T E ()

See Also
FCLOSE(), FERROR(), FGETS(), FILE(), FOPEN(), FREAD(), FSEEK(), SET
ALTERNATE, SET DEVICE, SET SAFETY

FCREATEDATE() Windows 95

Returns the date a file was created under Windows 95.

Syntax

FCREATEDATE(<filename expC>)
<filename expC> The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

Description
FCREATEDATE() checks the file specified by <filename> and returns the date that the
file was created, provided the file was created under the Windows 95 operating system.
This function is only useful on a system running the Windows 95 operating system.
Under Windows 3.1, FCREATEDATE() returns a blank date.

Example
The following example uses FCREATEDATE() to check the creation date of a table:

? FCREATEDATE("C:\VISUALDB\SAMPLES\ANIMALS.DBF")
06/01/95

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FACCESSDATE(), FCREATETIME(), FDATE(), FTIME()

FCREATETIME() Windows 95

Returns the time a file was created under Windows 95.

Syntax
FCREATETIME(<filename expC>)

<filename expC> The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

Description
FCREATETIME() checks the file specified by <filename> and returns the time, as a
character string, that the file was created, provided the file was created under the
Windows 95 operating system. This function is only useful on a system running the

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 251

F D A T E ()+
+
+
+
+
F

Windows 95 operating system. Under Windows 3.1, FCREATETIME() returns an
empty string.

Example
The following example uses FCREATEDATE() to check the creation time of a table:

? FCREATETIME("C:\VISUALDB\SAMPLES\ANIMALS.DBF")
12:20:10

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FACCESSDATE(), FCREATEDATE(), FDATE(), FTIME()

FDATE() Disk and file utilities

Returns the date stamp for the specified file.

Syntax
FDATE(<filename expC>)

<filename expC> The name of the file to evaluate. Wildcard characters are not supported.

If you specify a file without including its path, dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including its extension, dBASE does not assume an extension.

Description
Use FDATE() to determine the date on which the last change was made to a file on disk.

When you update a file, dBASE changes the file's date stamp to the current operating
system date when the file is written to disk. For example, when the user edits a table,
dBASE changes the date stamp on the table file when the file is closed. FDATE() reads
the date stamp and returns its current value.

If the file that you want to evaluate has an extension, you must include that extension in
<filename expC>. If the file is not on the default drive you must specify a drive
designation, and if the file is not in the current directory or in the path you specify with
SET PATH, you must specify the directory path.

If dBASE cannot find the file, it returns an error. Therefore, you may want to test for its
existence with FILE() before issuing FDATE(). FLUSH does not update a files time
stamp.

If <filename expC> is present in the current directory and also exists in the SET PATH
directory, FDATE(<filename expC>) (without path information) returns information on
the file in the current directory.

252 L a n g u a g e R e f e r e n c e

F D E C I M A L ()

Example
This example compares the date and time stamps on COMPANY.DBF and its backup
on the B drive. If the backup is dated earlier than the current table then a backup is
recommended:

IF FDATE("B:Company.dbf")< FDATE("Company.dbf");
.AND.;
FTIME("B:Company.dbf") < FTIME("Company.dbf")

? "Time to do a backup"
Difference= ;

FDATE("Company.dbf") – FDATE("B:Company.dbf")
? Difference, " days since last backup"
WAIT

ENDIF

Portability
Not supported in dBASE III PLUS.

See Also
FILE(), FLUSH, FSIZE(), FTIME(), SET DIRECTORY, SET PATH

FDECIMAL() Fields and records

Returns the number of decimal places in a specified field of a table.

Syntax
FDECIMAL(<field number expN> [, <alias>])

<field number expN> The position of the field that you want to evaluate.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
FDECIMAL() returns the number of decimal places in a specified field of a table.
FDECIMAL() returns zero if the field has no decimal places or if the table doesn't
contain a field in the specified position. FDECIMAL() returns an error if you specify a
non-numeric field.

Fields in the table are numbered from 1 to 1024 based on their position in the table
structure. If you do not specify a work area, FDECIMAL() evaluates the table in the
current work area.

Example
The following example uses FDECIMAL() to return the number of decimal places in the
numeric field StartBal of the Clients table:

CLEAR
SET TALK OFF
USE Clients

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 253

F E O F ()+
+
+
+
+
F

DISPLAY STRUCTURE && StartBal is field number 11
STORE FDECIMAL(11,1) TO m_places
? FIELD(11) + " has " + LTRIM(STR(m_places)) + ;

" decimal places." && Returns a value of 2
SET TALK ON

See FLENGTH() for another example of FDECIMAL().

Portability
Not supported in dBASE IV and dBASE III PLUS.

See Also
FIELD(), FLENGTH()

FEOF() Low-level access

Returns .T. if the file pointer is at the end of a file previously opened with FCREATE()
or FOPEN().

Syntax
FEOF(<file handle expN>)

<file handle expN> The file handle number of the file whose file-pointer position to
determine. When you open a file with FCREATE() or FOPEN(), these functions return
a file handle number. Use this number as <file handle expN>. If you specify a file handle
number that hasn't previously been returned by FCREATE() or FOPEN(), dBASE
returns an error message.

Description
FEOF() determines if the file pointer of the file you specify is at the end of the file (EOF),
and returns .T. if it is. The file pointer is considered to be at EOF if it is positioned at the
byte after the last character in the file.

You can move the file pointer to the end of the file with FSEEK(). For example,
FSEEK(fnum,0,2) moves the file pointer to the end of the file whose file handle number
is stored in the variable fnum.

Example
The following example opens the README.TXT file and displays or prints the file one
line at a time until reaching the end of the file:

SET PATH TO C:\VISUALDB
Handle=FOPEN("Readme.TXT","R") && Opens, read only
SET PRINTER ON && optional
DO WHILE .NOT. FEOF(Handle) && loops until EOF

? FGETS(Handle) && sends 1 line to display or printer
ENDDO
SET PRINTER OFF

254 L a n g u a g e R e f e r e n c e

F E R R O R ()

Portability
Not supported in dBASE III PLUS.

See Also
FCLOSE(), FCREATE(), FERROR(), FOPEN(), FSEEK()

FERROR() Low-level access

Returns the error number of the most recent low-level input or output error, or 0 if the
most recent low-level function was successful.

Syntax
FERROR()

Description
Use the number that FERROR() returns in an error-handling routine to respond to low-
level errors. The following table lists the low-level function errors that FERROR()
returns.

Example
The following example attempts to open a file with FOPEN() when the file name is
misspelled. The IF/ELSE branch uses FERROR() to return the DOS error message that
was returned when FOPEN() failed:

SET PATH TO C:\VISUALDB
Filename="Reedme.TXT"
* Filename misspelled
IF FOPEN(Filename) = –1
* Returns –1 if open or not successful

? "The DOS error number is: ", LTRIM(STR(FERROR()))
* FERROR() returns 2 – File or directory not found
ENDIF
RETURN

Error number Cause of error

2 File or directory not found
3 Bad path name
4 No more file handle numbers available
5 Can't access file
6 Bad file handle
8 No more directory entries available
9 Error trying to set the file pointer
13 No more disk space
14 End of file

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 255

F F L U S H ()+
+
+
+
+
F

Portability
Not supported in dBASE III PLUS.

See Also
FCLOSE(), FCREATE(), FEOF(), FFLUSH(), FGETS(), FOPEN(), FPUTS(), FREAD(),
FSEEK(), FWRITE(), ON ERROR

FFLUSH() Low-level access

Writes to disk a file previously opened with FCREATE() or FOPEN(), without closing
the file. Returns .T. if successful, .F. if unsuccessful.

Syntax
FFLUSH(<file handle expN>)

<file handle expN> The file handle number of the file to write to disk. When you open a file
with FCREATE() or FOPEN(), these functions return a file handle number. Use this
number as <file handle expN>. If you specify a file handle number that hasn't previously
been returned by FCREATE() or FOPEN(), dBASE returns an error message.

Description
Use FFLUSH() to save a file in the file buffer to disk, flush the file buffer, and keep the
file open. If FFLUSH() is successful, it returns .T.

Flushing a buffer to disk is similar to saving the file and continuing to work on it. Until
you flush an open file buffer to disk, any data in the buffer is stored only in RAM
(random-access memory). If the power to the computer fails or dBASE ends abnormally,
data in RAM is lost. However, if you have used FFLUSH() to write the file buffer to
disk, you lose only data that was added between the time you issued FFLUSH() and the
time the system failed.

To save the file to disk and close the file, use FCLOSE().

Example
The following example creates a file named JACK.TXT, inputs a text string into the file
and writes to disk with FFLUSH() without closing the file. FPUTS() adds additional
text which is subsequently displayed with the DO WHILE .NOT. FEOF() loop:

Handle=FCREATE("Jack.TXT","RW")
Filename="Jack.Txt"
FPUTS(Handle,"dBASE means") && Text to file
FFLUSH(Handle) && Saved to disk file still open
FSEEK(Handle,0,0) && Move pointer to the beginning of file
? FGETS(Handle) && Displays text
WAIT && Pauses program
CLEAR && Clears screen
FPUTS(Handle,"Quality in Software Craftsmanship") && Appends text
FCLOSE(Handle) && Close Jack.TXT
Handle =FOPEN(Filename,"R") && Reopen file
DO WHILE .NOT. FEOF(Handle)

256 L a n g u a g e R e f e r e n c e

F G E T S ()

? FGETS(Handle) && Display contents
ENDDO
RETURN

Portability
Not supported in dBASE III PLUS.

See Also
FCLOSE(), FCREATE(), FEOF()

FGETS() Low-level access

Returns a character string from a file previously opened with FCREATE() or FOPEN().

Syntax
FGETS(<file handle expN> [, <characters expN>] [, <end-of-line exp>])

<file handle expN> The file handle number of the file whose characters to read and return.
When you open a file with FCREATE() or FOPEN(), these functions return a file handle
number. Use this number as <file handle expN>. If you specify a file handle number that
hasn't previously been returned by FCREATE() or FOPEN(), dBASE returns an error
message.

<characters expN> The number of characters to read and return before a carriage return is
reached. Acceptable values are 0 to 32766; if <characters expN> is less than 0 or greater
than 32766, dBASE uses 0 or 32766, respectively.

<end-of-line exp> The end-of-line indicator, which can be one or two characters. The
following table lists standard codes for use as end-of-line indicators. Do not enclose
them in quotes. You can combine two characters with a plus (+) sign, for example,
CHR(141) + CHR(138).

You can't enter hexadecimal numbers directly for <end-of-line exp>, but you can combine
them by adding their decimal equivalents. For example, 0D0A Hex equals CHR(13) +
CHR(10); CHR(13) is 0D Hex, and CHR(10) is 0A Hex. Use HTOI() to convert a Hex
number to its decimal equivalent.

<end-of-line exp> Represents

not supplied Hard CR/LF (0D0A Hex)
CHR(141) Soft carriage return (U.S.) (8D Hex)

CHR(255) Soft carriage return (Europe) (FF Hex)
CHR(138) Soft linefeed (U.S.) (8A Hex)
CHR(0) Soft linefeed (Europe) (00 Hex)
CHR(13) Hard carriage return (0D Hex)
CHR(10) Hard linefeed (0A Hex)

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 257

F G E T S ()+
+
+
+
+
F

Description
FGETS() reads and returns a character string from the file you specify, starting at the file
pointer position and continuing up to but not including the first end-of-line character it
encounters. If you don't specify a number of characters to return with <characters expN>,
the maximum number of characters FGETS() can return is 32766. If FGETS() encounters
the end-of-line character before reading the number of characters you specify with
<characters expN>, it returns the number of characters before the end-of-line character.

FGETS() truncates the return string at the first 00 hexadecimal character, CHR(0), it
encounters. If you think the file contains 00 hexadecimal characters, use FREAD() and
read one byte at a time to locate them.

FGETS() returns an empty string ("") if it's unsuccessful, such as when the file pointer is
at the end of the file. Use FEOF() and FERROR() to determine if the file pointer is at the
end of the file or if another condition exists which would prevent FGETS() from
returning a value.

If FGETS() encounters an end-of-line character, it positions the file pointer at the
character after that character. Otherwise, FGETS() positions the file pointer at the
character after the last character it returns. Use FSEEK() to move the file pointer before
or after using FGETS().

Except for one feature, FREAD() and FGETS() are identical; FREAD() returns end-of-
line characters while FGETS() does not. That is, if FGETS() encounters an end-of-line
character, it stops reading, even if it hasn't yet read <characters expN> characters.
FREAD(), on the other hand, includes end-of-line characters in the string it returns.

Example
The following example creates a text file named TEST.TXT and appends 9 lines of the
string "123456789". The program then uses FGETS(), in combination with a character
counter (Cnt) and a line counter (Cnt2), to output 9 progressively longer lines of text
starting with 1 character and increasing to the full 9 character string. FSEEK() and Cnt2
incremented in 11 byte intervals positions the file pointer at each successive line:

nHandle=FCREATE("Test.TXT","RW") && Create file
* Input text data
FOR i=1 TO 9 && Loop for 9 lines

FPUTS(nHandle,"123456789") && Append text
NEXT i && Increment Cnt
* Output text data
FSEEK(nHandle,0,0) && Moves pointer to top of file
CLEAR && Clears the Command window results pane
Cnt=1
Cnt2=11 && 11 bytes/line
DO WHILE .NOT. FEOF(nHandle)

? FGETS(nHandle,Cnt) && Display string of length Cnt
FSEEK(nHandle,Cnt2) && Position pointer
Cnt=Cnt+1 && Increment Cnt
Cnt2=Cnt2+11 && Increment Cnt2

ENDDO
FCLOSE(nHandle) && Close Test.TXT

258 L a n g u a g e R e f e r e n c e

F I E L D ()

Portability
Not supported in dBASE III PLUS.

See Also
FCREATE(), FEOF(), FERROR(), FOPEN(), FPUTS(), FREAD(), FSEEK(), HTOI()

FIELD() Fields and records

Returns the name of the field in a specified position of a table.

Syntax
FIELD(<field number expN> [, <alias>])

<field number expN> The position of the field whose name you want returned.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
FIELD() returns the name of a field in a table based on the specified <field number expN>
parameter. Fields are numbered from 1 to 1024 based on their position in the table
structure.

If you do not specify a work area, FIELD() returns the name of the field in the current
table. FIELD() returns an empty string ("") if the table does not contain a field in the
specified position.

Example
The following example uses FIELD() to return names of the fields in a table to generate
a data entry form. This code could be used as a generic data entry procedure when the
table is undetermined:

SET TALK OFF
CLEAR
USE Clients && Use any table
APPEND BLANK
Fldcnt=1
DO WHILE LEN(FIELD(Fldcnt))<>0

mField=FIELD(Fldcnt)
@ ROW()+1,0 SAY mField+;
REPLICATE(".",25-LEN(mField)) GET &mField
Fldcnt = Fldcnt + 1

ENDDO
READ
CLEAR
SET TALK ON

See Also
DBF(), FLENGTH()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 259

F I L E ()+
+
+
+
+
F

FILE() Disk and file utilities

Tests for the existence of a file. Returns .T. if the file exists and .F. if it doesn't.

Syntax
FILE(<filename expC>)

<filename expC> The name of the file that is searched for. Wildcard characters are not
supported.

If you specify a file without including its path, dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including its extension, dBASE does not assume an extension.

Description
Use FILE() to determine whether a file exists.

If the file that you want to search for has an extension, you must include that extension
in <filename expC>. If the file is not on the default drive, you must specify a drive
designation, and if the file is not in the current directory or in the path you specify with
SET PATH, you must specify the directory path.

Example
The following examples use FILE():

? FILE("C:\Command.com") && Returns .T.
? FILE("Company.dbf") && Returns .T.
? FILE("Bak\Nosuch") && Returns .T.

FILE() is often used to test for the existence of a table before opening it:

DO WHILE .NOT. FILE("B:Company.dbf")
? "Insert the back up disk in drive B"
WAIT

ENDDO
USE B:Company

See Also
DIR, DISPLAY FILES, GETFILE(), PUTFILE(), SET DIRECTORY, SET PATH

FIND Table organization

Locates the first record of an indexed table whose key value matches the specified key
value.

Syntax
FIND <search key literal>

<search key literal> Part or all of the index key value of a record to search for. Don't
enclose <search key literal> in quotes (single or double) or square brackets.

260 L a n g u a g e R e f e r e n c e

F I N D

Description
The FIND command positions the record pointer to the first record in an indexed table
that matches the specified literal key value. FIND can search only for characters or a
numeric or float value contained in the index key field. The match with the index key
must be exact if SET EXACT is ON.

An indexed search is similar to looking up a topic in a book index and turning directly
to the appropriate page. Once an index is created, FIND or SEEK can use it to quickly
identify appropriate records.

FIND begins searching at the top of the index and stops when either a match is found or
the end of the index is reached. If a match is found (FOUND() returns .T.), the record
pointer of the associated table is positioned at the record containing the match.

Other records whose key field matches the specified characters or number can be
accessed by using SKIP. SKIP advances the record pointer to the next indexed record,
which includes other records with matching key fields if they exist.

Unlike using the CONTINUE command following the LOCATE command, SKIP
doesn't search for a match; it moves the pointer one record whether or not you skipped
to a record that matches the FIND argument.

If FIND is unsuccessful, dBASE returns the message Find not successful and positions
the record pointer beyond the last record of the index. (EOF() is .T.; FOUND() is .F.)

Unless the key field contains leading spaces, the command-line argument need not be
delimited (enclosed in single or double quotation marks or brackets). The entered
expression is considered to start with the first nonblank character. However, if you are
searching for a key containing leading spaces, delimiters must be used. Within the
delimiters, enter the exact character string, including leading spaces. You can also store
a literal character string or numeric value in a memory variable and use the memory
variable to specify the search expression in the FIND command.

The search commands FIND, SEEK, and LOCATE are designed for different situations.
FIND and SEEK conduct more rapid searches than LOCATE, but can be used only in
limited situations. Both require an indexed file and can search only for values of the key
expression. SEEK offers greater flexibility than FIND by accepting any expression.

If the information you are searching for is in an unindexed file or is not contained in the
key field of an indexed file, use LOCATE. LOCATE accepts an expression of any data
type as input and can search any field of a table for that value. For large tables, a
sequential search using LOCATE can be slow. In such cases, use INDEX to create a new
index, and then use SEEK or FIND.

Example
The following example uses FIND to locate the first occurrence of a company in Illinois:

USE Company EXCLUSIVE
INDEX ON State_Prov TAG State
FIND IL && Find the first Illinois record
IF FOUND()

? "All Companies in Illinois"
LIST FIELDS Company, State_Prov ;
WHILE State_Prov="IL"

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 261

F K L A B E L ()+
+
+
+
+
F

ELSE
? "Illinois was not found"

ENDIF

See Also
CONTINUE, EOF(), FOUND(), LOCATE, SEEK, SEEK(), SET EXACT, SKIP

FKLABEL() Keyboard and mouse events

Returns the name of a programmable function key.

Syntax
FKLABEL(<expN>)

<expN> The programmable function key whose name to return. Use FKLABEL(0) to
return the value of the first programmable function key, FKLABEL(1) to return the
second, etc.

Description
Use FKLABEL() to return the name assigned to a function key by the current system.
You can then use the returned value with SET FUNCTION, SET KEY, or ON KEY
LABEL to assign a statement or command to a function key.

Since different computer manufacturers give different names to function keys, your
application may lack portability if you reference a function key by name. FKLABEL()
extracts the function key's name from the current system, ensuring that the name is
correct when you move your application from system to system.

On most IBM-compatible computers, programmable function keys include F1 to F10,
Ctrl+F1 to Ctrl+F10, and Shift+F1 to Shift+F10. In Visual dBASE, you can also program Alt+F1
to Alt+F10 with ON KEY or SET KEY. Visual dBASE doesn't support assigning values to
F11 or F12.

Example
The following examples use FKLABEL() in the SET FUNCTION command:

SET FUNCTION FKLABEL(1) TO "hello there"
SET FUNCTION FKLABEL(2) TO "DO MySub;"
* Pressing F2 is equivalent to
* typing "hello there"
* Pressing F3 will call subroutine MySub

Notice that:

? FKLABEL(0) && returns F1
? FKLABEL(9) && returns F10
? FKLABEL(10) && returns CTRL+F1
? FKLABEL(19) && returns CTRL+F10
? FKLABEL(20) && returns SHIFT+F1
? FKLABEL(29) && returns SHIFT+F10

262 L a n g u a g e R e f e r e n c e

F K M A X ()

See Also
FKMAX(), ON KEY, SET FUNCTION, SET KEY

FKMAX() Keyboard and mouse events

Returns the number of programmable function keys.

Syntax
FKMAX()

Description
Different computer manufacturers provide different sets of function keys, and you may
need to allow for this when you transfer your application to other systems. FKMAX()
detects how many function keys are available in the current system, letting you provide
for alternative function key assignments when a particular system lacks certain function
keys. Function key assignments are made with SET FUNCTION, SET KEY, and ON
KEY LABEL.

On most IBM-compatible computers, programmable function keys include F1 to F10,
Ctrl+F1 to Ctrl+F10, and Shift+F1 to Shift+F10. In Visual dBASE, you can also program Alt+F1
to Alt+F10 with ON KEY or SET KEY. Visual dBASE doesn't support programming F11 or
F12.

Example
STORE FKMAX() TO Keycount

See Also
FKLABEL(), ON KEY, SET FUNCTION, SET KEY

FLDCOUNT() Fields and records

Returns the number of fields in a table.

Syntax
FLDCOUNT([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
FLDCOUNT() returns the number of fields in the current or a specified table. If you do
not specify a work area, the current work area is assumed. FLDCOUNT() returns a
value of 0 if no table is open in the specified work area.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 263

F L D L I S T ()+
+
+
+
+
F

Example
The following example uses FLDCOUNT() to return the number of fields in two tables
to derive a total field count for a one dimensional array that stores the field names of
both tables:

SET TALK OFF
USE Company IN 1
Fldcnt = FLDCOUNT(1)
USE Contact IN 2
Fldcnt = Fldcnt + FLDCOUNT(2)
DECLARE Fld_Arr[Fldcnt]
x = 1
FOR Select = 1 TO 3

FOR x_fld = 1 TO FLDCOUNT(Select)
fld_arr[x] = FIELD(x_fld,Select)
x = x + 1

NEXT
NEXT
Cnt = 1
DO WHILE Cnt <= FldCnt && Displays array contents

? Fld_arr[Cnt]
Cnt=Cnt+1

ENDDO
SET TALK ON
CLOSE ALL
CLEAR ALL

See Also
FIELD(), DISPLAY STRUCTURE, LIST STRUCTURE, RECCOUNT(), TYPE()

FLDLIST() Fields and records

Returns the fields and calculated field expressions of a SET FIELDS TO list.

Syntax
FLDLIST([<field number expN>])

<field number expN> The position of the field or calculated field expression in a SET
FIELDS TO list whose name you want returned. If you do not specify a field number,
FLDLIST() returns the entire field list, up to 254 characters.

Description
FLDLIST() returns the field or calculated field expression in a SET FIELDS TO list that
corresponds to a specified field number. If you do not specify a field number,
FLDLIST() returns the entire field list, up to 254 characters; remaining characters are
truncated. Each field name or expression in the field list is separated by a comma.
FLDLIST() always returns fully-qualified field names, that is, it includes the table or
alias name. For read-only fields, FLDLIST() appends "/R" to the field name.

FLDLIST() returns a value even if SET FIELDS is OFF. If the specified field number
exceeds the number of items in the field list, FLDLIST() returns an empty string ("").

264 L a n g u a g e R e f e r e n c e

F L E N G T H ()

Example
The following example demonstrates using FLDLIST() with and without an alias value:

USE Company IN 1
USE Contact Alias Reps IN 2
SELECT 1
SET FIELDS TO Company, City
? FLDLIST(1) && Returns Company->Company
SELECT 2
SET FIELDS TO CompCode, Contact
? FLDLIST(1) && Returns Company->Company
? FLDLIST(2) && Returns Company->City
? FLDLIST(3) && Returns Reps->CompCode
? FLDLIST() && Returns full list

Portability
Not supported in dBASE III PLUS.

See Also
SET FIELDS

FLENGTH() Fields and records

Returns the length of the field in a specified position of a table.

Syntax
FLENGTH(<field number expN> [, <alias>])

<field number expN> The position of the field whose length you want returned. Fields are
numbered from 1 to 1024 according to their position in the table structure.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
FLENGTH() returns the length of a field in a table based on the specified
<field number expN> parameter. The field length for numeric and float fields includes
decimal digits and 1 digit for the decimal point character. FLENGTH() returns 1 for
date and memo fields. It returns 0 if the table does not contain a field in the specified
position.

If you do not specify a work area, FLENGTH() returns the length of the field in the
current table.

Example
The following example uses FLENGTH() to return the width of the Company field
(from the structure). This value is then used to compute the number of hyphens to print
by subtracting the number of characters present in the field of the current record
(derived from LEN(TRIM(Company)). The number 13 is then added to this amount

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 265

F L O C K ()+
+
+
+
+
F

because of the 15 space margin between columns provided by the expression AT
FLENGTH(2)+15 associated with the Contact column:

USE Clients
? CENTER("List of Client Companys and Contacts")
?
SCAN
? Trim(Company)+REPLICATE("-",(FLENGTH(2)-LEN(TRIM;

(Company))+13)), Contact AT FLENGTH(2)+15
ENDSCAN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FDECIMAL(), FIELD()

FLOCK() Shared data

Locks the current table or a specified alias table, returning .T. if successful.

Syntax
FLOCK([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes. If you don't include <alias>,
FLOCK() locks the current table.

Description
Use FLOCK() to lock the current table or an alias table file, preventing others from
using the table.

When you lock a table with FLOCK(), only you can make changes to it. However,
unlike USE...EXCLUSIVE and SET EXCLUSIVE ON, FLOCK() does let other users view
the locked table while you are using it. When you lock a table with FLOCK(), it remains
locked until you issue UNLOCK or close the table.

FLOCK() is similar to RLOCK(), except that FLOCK() locks an entire table, while
RLOCK() lets you lock specific records of a table. Use FLOCK(), therefore, when you
need to have sole access to an entire table or related tables—for example, when you
need to update multiple tables related by a common key.

All commands that change table data cause dBASE to attempt to execute an automatic
record or file lock. If dBASE fails to execute an automatic record or file lock, it returns an
error. You might want to use FLOCK() for event trapping, testing for its return value
rather than for an error condition.

FLOCK() can lock a shared table even if another network user is viewing data
contained in the table. FLOCK() is unsuccessful only if another user has explicitly

266 L a n g u a g e R e f e r e n c e

F L O C K ()

locked the table or a record in the table, or is using a command that automatically locks
the table or a record in the table.

When SET REPROCESS is set to 0 (the default) and FLOCK() can't immediately lock a
table, dBASE prompts you to attempt the lock again or cancel the function. Until you
choose to cancel the function, FLOCK() repeatedly attempts to lock the table. Use
SET REPROCESS to eliminate being prompted to cancel the FLOCK() function, or to set
the number of locking attempts. If FLOCK() returns .F., you can reissue FLOCK().

When you set a relation to a parent table with SET RELATION and then lock the table
with FLOCK(), dBASE attempts to lock all child tables. For more information about
relating tables, see SET RELATION.

Example
This example loops until it can lock the file with FLOCK() or until the user decides to
stop trying:

RecordWasRead=.T.
Again=.T.
SET REPROCESS TO 10
USE Company SHARED && exclusive off
DO WHILE Again

IF FLOCK() && Can dBASE lock the file?
DO Compmod && Yes: Update Company.DBF
RecordWasRead=.T.
Again=.F.
UNLOCK && Allow other users to change

&& the file.
ELSE && FLOCK() returns .F.

CLEAR
? "Company can't be locked."
Wait "Try Again? " TO Ans
IF UPPER(Ans)="Y"

Again = .T.
ELSE

Again = .F.
ENDIF

ENDIF
ENDDO
USE
SET REPROCESS TO 0 && The default

Portability
Not supported in dBASE III PLUS.

See Also
BEGINTRANS(), LOCK(), RLOCK(), SET EXCLUSIVE, SET LOCK, SET RELATION,
SET REPROCESS, UNLOCK, USE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 267

F L O O R ()+
+
+
+
+
F

FLOOR() Numeric data

Returns the nearest integer that is less than or equal to a specified number.

Syntax
FLOOR(<expN>)

<expN> A numeric or float number, from which to determine and return the integer that
is less than or equal to it.

Description
FLOOR() returns the nearest integer that is less than or equal to <expN>. If you pass a
number with any digits other than zero (0) as decimal digits, FLOOR() returns the
nearest integer that is less than the number. If you pass an integer to FLOOR(), or a
number with only zeros for decimal digits, it returns the integer equal to the number.

For example, if the default number of decimal places is 2,

• FLOOR(2.10) returns 2.00
• FLOOR(–2.10) returns –3.00
• FLOOR(2.00) returns 2.00
• FLOOR(2) returns 2
• FLOOR(–2.00) returns –2.00

Use SET DECIMALS to set the number of decimal places FLOOR() displays.

When you pass a positive number to it, FLOOR() operates exactly like INT(). See the
table in the description of INT() that compares INT(), FLOOR(), CEILING(), and
ROUND().

The value returned by FLOOR() has the same data type as <expN>.

Example
The following example uses FLOOR() to return the passed value, rounded down to the
next whole number:

SET DECIMALS TO 2
price = 129.95
tax = .075
total = price + (price*tax)
? "The price of the upgrade is " + STR(price,6,2)
? " The state sales tax is " + STR(tax*100,5,2) + "%"
? " The amount due is " + STR(total,6,2)
?
? "'NO CHANGE REQUIRED' Sale Price is " + STR(FLOOR(total),6,2)

Another example of FLOOR() is shown in the example for INT().

Portability
Not supported in dBASE III PLUS. In dBASE IV, FLOOR() doesn't display any decimal
places, regardless of the value of SET DECIMALS.

268 L a n g u a g e R e f e r e n c e

F L U S H

See Also
CEILING(), INT(), ROUND(), SET DECIMALS

FLUSH Fields and records

Writes data buffers to disk and releases unallocated memory.

Syntax
FLUSH

Description
Use FLUSH to protect data integrity and maximize available memory.

When you open a table and its associated index and memo files, Visual dBASE loads a
certain number of records from the file into a memory buffer, along with the portion of
each open index that pertains to those records. When the buffer is full or when you close
tables or indexes (with CLOSE DATABASES, USE, CLOSE INDEXES, CLOSE ALL, or
SET INDEX TO), Visual dBASE writes the records back to disk, storing any
modifications you have made. FLUSH allows you to save information from the data
buffer to disk without first closing tables or indexes. FLUSH saves information in tables
and associated files open in work areas other than the current work area.

Use FLUSH when you need to store critical information to disk that could otherwise be
lost. However, don't use FLUSH too frequently, as it slows execution. For example, in an
order-entry application in which only a few orders are entered each hour, FLUSH can
save data that might be lost if the power is inadvertently turned off; since orders are
entered infrequently, the time needed to execute FLUSH is not important.

Example
The following example uses FLUSH after two different data input scenarios to clear the
buffers when AUTOSAVE is set to OFF:

USE Company IN SELECT()
SELECT Company
SET AUTOSAVE OFF
APPEND BLANK
@ 2, 2 SAY "Company Code" GET Company->CompCode
@ 3, 2 SAY "Company Name" GET Company->Company
@ 5, 8 SAY "Street" GET Company->Street1
@ 6,15 GET Company->Street2
@ 7,10 SAY "City" GET Company->City
@ 7,35 SAY "State" GET Company->State_Prov
@ 8,35 SAY "Zip" GET Company->Zip_P_Code
READ
FLUSH
CLEAR
APPEND
FLUSH
CLOSE ALL

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 269

F N A M E M A X ()+
+
+
+
+
F

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLEAR, CLOSE..., MEMORY()

FNAMEMAX() Windows 95

Returns the maximum allowable file-name length on a given drive or volume.

Syntax
FNAMEMAX([<expC>]
<expC>
The drive letter, or name of the volume, to check. If <expC> is not provided, the current
drive/volume is assumed. If the drive/volume does not exist, dBASE returns an error
message.

Description
FNAMEMAX() checks the drive or volume specified by <expC> and returns the
maximum file-name length allowed for files on that drive/volume. This function is only
useful on a system running the Windows 95 operating system. Under Windows 3.1,
FNAMEMAX() always returns 12.

Example
The following example uses FNAMEMAX() to determine the maximum allowable file-
name

length on drive C:
? FNAMEMAX("C")
255

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FSHORTNAME()

FOPEN() Low-level access

Opens a specified file. Returns the file handle number of the file if successful or –1 if
unsuccessful.

Syntax
FOPEN(<filename expC> [, <access expC>])

270 L a n g u a g e R e f e r e n c e

F O P E N ()

<filename expC> The name of the file to open and whose file handle number to return. By
default, dBASE looks for the file in the current directory, then the directory specified in
SET PATH. Specify a full path name for <filename expC> to open a file in another
directory.

<access expC> The access level of the file being opened, as shown in the following table.
Write means you can change (overwrite) data in the file, and append means you can add
data to the end of the file. If you try to overwrite data in a file that has append access but
not write access, the data is added to the end of the file.

Description
Use FOPEN() to open a file with a name you specify, assign the file the level of access
you specify, and return the file handle number DOS assigns to the file. If dBASE can't
open the file (for example, if the file is already open), FOPEN() returns –1.

To use other low-level functions, such as FREAD() and FWRITE(), first open a file with
FOPEN() or FCREATE(). Both functions also provide you with the file handle number
you need to pass to other low-level functions.

When you open a file with FOPEN(), the file pointer is positioned at the first character
in the file. Use FSEEK() to position the file pointer before reading from or writing to a
file.

Example
The following example uses FOPEN() to open the README file located on the default
install directory and sends it to the printer by using SET PRINTER ON, a FEOF() loop
and FGETS():

SET PATH TO C:\VISUALDB && Parent directory
IF FILE("Readme.TXT") && Check for file

nHandle=FOPEN("Readme.TXT","R") && Open read only
ENDIF
IF nHandle>0 && Did file open?

SET PRINTER TO LPT1 && Output to print
DO WHILE .NOT. FEOF(nHandle)

? FGETS(nHandle) && Return a line
ENDDO
SET PRINTER TO

ELSE
? "Unable to open file. File error #:", LTRIM(STR(FERROR()))

ENDIF
IF nHandle=–1

<access expC> Access level

not supplied Read-only
"R" Read-only
"W" Write-only
"A" Append-only
"RW" or "WR" Read and write
"AR" or "RA" Read and append
"AW" or "WA" Write and append

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 271

F O R ()+
+
+
+
+
F

? "Unable to close file. File error #:", LTRIM(STR(FERROR()))
ELSE

IF FCLOSE(nHandle)
?
? "File closed"

ELSE
? "Unable to close file. File error #:", LTRIM(STR(FERROR()))

ENDIF
ENDIF
RETURN

Portability
Not supported in dBASE III PLUS.

See Also
FCLOSE(), FCREATE(), FERROR(), FILE(), GETFILE(), SET PATH

FOR() Table organization

Returns the FOR clause used to create a specified index file or tag.

Syntax
FOR([[<.mdx filename expC>,] <index position expN> [,<alias>]])

<.mdx filename expC> The multiple index file that contains the index tag you want to
check.

<index position expN> The position of an index tag in an .MDX file or the position of an
index file in the list of open indexes for the current or a specified table.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
FOR() returns the FOR clause used with the INDEX command to create a specified
.MDX tag for the current or specified table. The FOR() function evaluates the FOR
clause for the master index for the current table, the index tag in a specified position
within the list of open indexes for a table, or the index tag within a specified .MDX file.

If no .MDX file name is specified, FOR() evaluates the index in a specified position
within the list of all open indexes in the same work area. The FOR() function first checks
.NDX and production .MDX tags, then checks index tags in other .MDX files.

FOR() returns an empty string ("") if there isn't an index tag in the specified position, the
index in the specified position is an .NDX file, or the specified index tag was not created
with a FOR clause. FOR() also returns an empty string ("") if you do not specify an index
tag position and the table does not have a master index.

You can use TAGNO() to determine the index order number of a specified index or
index tag. The order of open indexes for a specified table remains the same until you
specify another index order with USE, SET INDEX, or INDEX.

272 L a n g u a g e R e f e r e n c e

F O R . . . N E X T

Example
The following example uses FOR() to determine the conditions set in the index's FOR
clause:

DELETE FILE Comptemp.mdx
* Create a temporary MDX file
USE Company EXCLUSIVE
INDEX ON CompCode ;

TAG CompCode OF Comptemp FOR CompCode = "D"
INDEX ON Company ;

TAG Company OF Comptemp
INDEX ON City ;

TAG City OF Comptemp FOR Zip_Postal = "9"
?
? "Tag and For Clause"
?
? TAG(1),FOR(1)
* TAG(1) and FOR(1) return the TAG and FOR
* clause for the first index in the production
* MDX file, Company.mdx
? "1", TAG("Comptemp",1), FOR("Comptemp",1)
* FOR() clause of COMPCODE index is CompCode = "D"
? "2", TAG("Comptemp",2), FOR("Comptemp",2)
* FOR() clause of COMPANY index is empty
? "3", TAG("Comptemp",3), FOR("Comptemp",3)
* FOR() clause of CITY index is Zip_Postal="9"

Portability
Not supported in dBASE III PLUS.

See Also
INDEX, SET INDEX, SET ORDER, TAG(), TAGCOUNT(), TAGNO(), USE

FOR...NEXT Programs

Executes the statements between FOR and NEXT the number of times indicated by the
FOR statement.

Syntax
FOR <memvar> = <start expN> TO <end expN> [STEP <step expN>]
<statements>
[LOOP]
[EXIT]
NEXT

<memvar> The memory variable that's incremented or decremented and then tested
each time through the loop. On a normal exit from the loop (one done without the EXIT
command), the value of <memvar> is greater or less than <end expN> by the amount of
<step expN>.

<start expN> The initial value of <memvar>.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 273

F O R . . . N E X T+
+
+
+
+
F

<end expN> The final allowed value of <memvar>. If you change this value in the FOR
loop, the loop doesn't recognize the change and thus continues to execute until the
original value is reached.

STEP <step expN> Defines a step size (<step expN>) by which dBASE increments or
decrements <memvar> each time the loop executes. By default, dBASE increments by 1.
If you change this value in the FOR loop, the loop doesn't recognize the change and thus
continues to increment or decrement <start expN> by the original <step expN> value.

When <step expN> is positive, dBASE increments <memvar> until it is greater than
<end expN>. When <step expN> is negative, dBASE decrements <memvar> until it is less
than <end expN>.

The <step expN> argument can be an integer, a fraction, or a floating-point number.
STEP <step expN> must be on the same line as the FOR command.

<statements> Program lines consisting of any combination of commands, functions,
user-defined functions (UDFs), and LOOP and EXIT options.

LOOP Returns program control to the top of the FOR loop and increments <memvar> by
1 (or increments or decrements by <step expN>) without executing the statements that
follow LOOP and precede NEXT.

EXIT Transfers program control out of the FOR loop to the statement following NEXT
without reevaluating <memvar> or executing the statements that follow EXIT and
precede NEXT. The <memvar> value remains the same as when dBASE encountered the
EXIT statement.

NEXT A required command that marks the end of the FOR loop. When dBASE
encounters NEXT, it increments or decrements <memvar> according to the associated
FOR statement and either returns to the associated FOR statement if the value of
<memvar> has not reached its limit or transfers program control to the next command
line.

Description
Use FOR...NEXT to execute a block of statements a specified number of times. When
dBASE first encounters a FOR loop, it sets <memvar> to <start expN> and then performs
the following steps:

• If <memvar> is in the range from <start expN> through <end expN>, dBASE executes
the statements between FOR and NEXT one by one until it encounters LOOP, EXIT,
or NEXT.

• If dBASE encounters LOOP or NEXT, it increments <memvar> by 1 (or by
<step expN> if you used the STEP option) and returns program control to FOR.

• If <memvar> still evaluates to a number in the range from <start expN> to <end expN>,
dBASE executes the statements in the loop again.

• If <memvar> evaluates to a number greater than <end expN> (or less than <end expN>
if <step expN> is negative), the program exits the FOR loop and executes the line
following NEXT.

• If dBASE encounters EXIT, it immediately transfers program control out of the loop
to the statement following the associated NEXT command without incrementing or

274 L a n g u a g e R e f e r e n c e

F O U N D ()

decrementing <memvar> or executing any of the statements following EXIT and
preceding NEXT.

You can nest loops and other structures, including other FOR...NEXT loops, in a FOR
loop. You can nest up to 20 FOR loops in a procedure or function.

Use FOR loops to move displays in a window, process characters in a string, or access
table records or array cells sequentially.

Example
The following example uses ALEN() in a FOR...NEXT loop to print out the contents of
an array:

USE Clients
DECLARE acContact[RECCOUNT(),1]
COPY TO ARRAY acContact
USE
ShowArray(acContact)
RETURN

FUNCTION ShowArray
PARAMETER avArray
FOR i = 1 to ALEN(avArray)

? STR(i,3,0)+" – "+avArray[i,1]
NEXT
RETURN .T.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DO...UNTIL, DO WHILE, IF, SCAN

FOUND() Table organization

Indicates if the last-issued FIND, LOCATE, CONTINUE, SEEK, LOOKUP(), or SEEK()
command or function finds a match.

Syntax
FOUND([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
FOUND() returns .T. if LOCATE, CONTINUE, LOOKUP(), FIND, SEEK, or SEEK()
finds a match in the current or specified table. FOUND() returns .F. if no previous
search has been performed in the same work area, or if a search is unsuccessful. You can
perform searches in different work areas and maintain the status of each FOUND()
operation, independent of the other work areas.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 275

F P U T S ()+
+
+
+
+
F

If tables are linked by a SET RELATION TO command, Visual dBASE searches the
related tables as you move in the active table with the FIND, LOCATE, SEEK, or
CONTINUE commands or using the SEEK() or LOOKUP() functions. If you move the
record pointer with any other command or function, FOUND() returns .F.

When SET NEAR is ON,

• FOUND() returns .T. if an exact match occurs.

• FOUND() returns .F. for a near match, and the record pointer is moved to the record
whose key immediately follows the value searched for.

When SET NEAR is OFF, FOUND() returns .F. if a match does not occur.

Example
See the examples in SEEK, FIND, or LOCATE for an example of FOUND().

See Also
CONTINUE, EOF(), FIND, LOCATE, LOOKUP(), SEEK, SEEK(), SET NEAR, SET
RELATION

FPUTS() Low-level access

Writes a character expression and one or two end-of-line characters to a file previously
opened with FCREATE() or FOPEN() and positions the file pointer after the last
character written. Returns the number of characters added if successful, 0 if
unsuccessful, or –1 if an error occurs.

Syntax
FPUTS(<file handle expN>, <string expC>
[, <characters expN>] [, <end-of-line exp>])

<file handle expN> The file handle number of the file to write the specified characters and
end-of-line character to. When you open a file with FCREATE() or FOPEN(), these
functions return a file handle number. Use this number as <file handle expN>. If you
specify a file handle number that hasn't previously been returned by FCREATE() or
FOPEN(), dBASE returns an error message.

<string expC> The character expression to write to the specified file. If you want to write
only a portion of <string expC> to the file, use the <characters expN> argument.

<characters expN> The number of characters of the specified character expression
<string expC> to write to the specified file, starting at the first character in <string expC>.
The valid range is 0 to 32766.

<end-of-line exp> The end-of-line indicator, which can be one or two characters, to write
to the specified file after the character expression. The following table lists standard

276 L a n g u a g e R e f e r e n c e

F P U T S ()

codes for use as end-of-line indicators. Do not enclose them in quotes. You can combine
two characters with a plus (+) sign, for example, CHR(141) + CHR(138).

You can't enter hexadecimal numbers directly for <end-of-line exp>, but you can combine
them by adding their decimal equivalents. For example, 0D0A Hex equals CHR(13) +
CHR(10); CHR(13) is 0D Hex, and CHR(10) is 0A Hex. Use HTOI() to convert a Hex
number to its decimal equivalent.

Description
FPUTS() writes a character string and one or two end-of-line characters to a file. If
successful, FPUTS() returns the number of bytes written to the file, including one or two
for the end-of-line character or characters. If you don't have write or append access to
the file, FPUTS() returns 0 and dBASE returns FERROR() number 5. If an error occurs,
FPUTS() returns –1. When FPUTS() finishes executing, the file pointer is located at the
character immediately after the last character written, which is the end-of-line character.

Except for one feature, FPUTS() and FWRITE() are identical; FPUTS() follows the
character expression it writes with an end-of-line character while FWRITE() does not.

FPUTS() writes to the file you specify starting at the current file pointer position. Use
FSEEK() to move the file pointer before or after you use FPUTS().

If the file pointer is at the end of the file, FPUTS() appends the specified string and the
end-of-line character to the file. If the file pointer is not at the end of the file and you
have write access to the file, FPUTS() overwrites existing text at the file pointer position.
If you have append access (but not write access) to the file, FPUTS() appends text to the
end of the file, regardless of the file pointer position, and dBASE does not return an
error.

Example
The following example creates a text file named TEST.TXT and appends a progressively
larger number of characters from the memory variable "String". The first pass through
the FOR...NEXT loop appends the character "1" of "String" followed by soft carriage
return and soft line feed characters. Subsequent passes append additional characters
from String as i increments to 9. The program then uses FGETS in a .NOT. FEOF() loop
to output the contents of TEST.TXT, which will display 9 lines of text counting from 1 to
9 starting with 1 character:

<end-of-line exp> Represents

not supplied Hard CR/LF (0D0A Hex)
CHR(141) Soft carriage return (U.S.) (8D Hex)
CHR(255) Soft carriage return (Europe) (FF Hex)
CHR(138) Soft linefeed (U.S.) (8A Hex)
CHR(0) Soft linefeed (Europe) (00 Hex)
CHR(13) Hard carriage return (0D Hex)
CHR(10) Hard linefeed (0A Hex)

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 277

F R E A D ()+
+
+
+
+
F

nHandle=FCREATE("Test.TXT","RW") && Create file
* Input text data
String="123456789"
FOR i=1 TO 9 && Loop for 9 lines

FPUTS(nHandle,String,i,CHR(13)+CHR(10))
* Append i number of characters from String
* followed by a CR/LF.
NEXT i && increments i
* Output text data
FSEEK(nHandle,0,0) && Moves pointer to top of file
CLEAR && Clear the Command window results pane
DO WHILE .NOT. FEOF(nHandle)

? FGETS(nHandle) && Display line
ENDDO
FCLOSE(nHandle) && Close Test.TXT

Portability
Not supported in dBASE III PLUS. In dBASE IV, FPUTS() fails and dBASE returns an
error when used with a file that doesn't have write or append access.

See Also
FCREATE(), FEOF(), FERROR(), FGETS(), FOPEN(), FSEEK(), FWRITE(), HTOI(),
SUBSTR()

FREAD() Low-level access

Returns a specified number of characters from a file previously opened with
FCREATE() or FOPEN() and positions the file pointer after the last character returned.

Syntax
FREAD(<file handle expN>, <characters expN>)

<file handle expN> The file handle number of the file whose characters to read and return.
When you open a file with FCREATE() or FOPEN(), these functions returns a file
handle number. Use this number as <file handle expN>. If you specify a file handle
number that hasn't previously been returned by FCREATE() or FOPEN(), dBASE
returns an error message.

<characters expN> The number of characters to return from the specified file. Acceptable
values are 0 to 32766; if <characters expN> is less than 0 or greater than 32766, dBASE
uses 0 or 32766, respectively.

Description
FREAD() returns the number of characters you specify from the file you specify.
FREAD() starts reading and storing characters from the current file pointer position and
repositions the file pointer to the character immediately after the last character read. Use
FSEEK() to move the file pointer before or after you use FREAD().

Except for one feature, FREAD() and FGETS() are identical; FREAD() returns end-of-
line characters while FGETS() does not. For more information, see FGETS().

278 L a n g u a g e R e f e r e n c e

F S E E K ()

Example
The following example uses FREAD() to display 600 characters at a time from the
README.TXT file. The WAIT command within the loop allows the user to review the
file one page at a time.

SET PATH TO C:\VISUALDB && Parent directory
nHandle=FOPEN("Readme.TXT","R") && Open read only
DO WHILE .NOT. FEOF(nHandle)

? FREAD(nHandle,600) && Display next 600 characters
? && Spacing above Wait
WAIT "Browse at your leisure-;

Press any key to continue"
? && Spacing below Wait

ENDDO
RETURN

Portability
Not supported in dBASE III PLUS.

See Also
FCREATE(), FEOF(), FERROR(), FGETS(), FOPEN(), FSEEK(), FWRITE()

FSEEK() Low-level access

Moves the file pointer a specified number of bytes in a file previously opened with
FCREATE() or FOPEN(), and returns the number of bytes from the beginning of the file
to the file pointer.

Syntax
FSEEK(<file handle expN>, <bytes expN> [, <position expN>])

<file handle expN> The file handle number of the file in which to move the file pointer.
When you open a file with FCREATE() or FOPEN(), these functions return a file handle
number. Use this number as <file handle expN>. If you specify a file handle number that
hasn't previously been returned by FCREATE() or FOPEN(), dBASE returns an error
message.

<bytes expN> The number of bytes to move the file pointer in the specified file. If
<bytes expN> is negative, the file pointer moves toward the beginning of the file. If
<bytes expN> is 0, the file pointer moves to the position you specify with <position expN>.
If <bytes expN> is positive, the file pointer moves toward the end of the file or beyond
the end of the file.

<position expN> The number 0, 1, or 2, indicating a position relative to the beginning of
the file (0), to the file pointer's current position (1), or to the end of the file (2). The default
is 0.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 279

F S H O R T N A M E ()+
+
+
+
+
F

Description
FSEEK() moves the file pointer in the file you specify, and returns the number of bytes
from the beginning of the file to the file pointer's new position. If an error occurs,
FSEEK() returns –1.

The movement of the file pointer is relative to the beginning of the file unless you
specify otherwise with <position expN>. For example, FSEEK(filenum, 5) moves the file
pointer five characters from the beginning of the file while FSEEK(filenum, five, 1)
moves it five characters forward from its current position. You can move the file pointer
beyond the end of the file, but you can't move it before the beginning of the file.

To move the file pointer to the beginning of a file, use FSEEK(<file handle expN>, 0). To
move it to the end of a file, use FSEEK(<file handle expN>, 0, 2).

FGETS(), FPUTS(), FREAD(), and FWRITE() also move the file pointer as they read
from or write to the file.

Example
See FGETS() for an example of using FSEEK().

Portability
Not supported in dBASE III PLUS.

See Also
FCREATE(), FEOF(), FOPEN(), FREAD(), FWRITE()

FSHORTNAME() Windows 95

Returns the short name (i.e. the DOS compatible name) of a file created under
Windows 95.

Syntax
FSHORTNAME(<filename expC>)

<filename expC> The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

Description
FSHORTNAME() checks the file specified by <filename> and returns a name for the file
following the DOS file naming convention (eight character file name, three character
extension). If SET FULLPATH is ON, the path is also returned. This function is only
useful on a system running the Windows 95 operating system. Under Windows 3.1,
FSHORTNAME() returns the file-name.

Example
The following example uses FSHORTNAME() to check the short name of a table:

280 L a n g u a g e R e f e r e n c e

F S I Z E ()

? FSHORTNAME("ANIMAL_LISTINGS_TABLE.DBF")
ANIMAL~1.DBF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FNAMEMAX()

FSIZE() Disk and file utilities

Returns the size of a file in bytes.

Syntax
FSIZE(<filename expC>)

<filename expC> The name of the file to evaluate. Wildcard characters are not supported.

If you specify a file without including its path, dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including its extension, dBASE does not assume an extension.

Description
Use FSIZE() to determine the size of a file on disk.

When you update a file, dBASE changes the file's size, which appears next to the file
name in a directory listing. For example, when the user edits a table, dBASE changes the
size on the table file when the file is closed. FSIZE() reads the size and returns its current
value.

If the file that you want to evaluate has an extension, you must include that extension in
<filename expC>. If the file is not on the default drive, you must specify a drive
designation, and if the file is not in the current directory or in the path you specify with
SET PATH, you must specify the directory path.

If dBASE cannot find the file, it returns an error. Therefore, you may want to test for its
existence with FILE() before issuing FSIZE(). FLUSH does not update a files size.

If <filename expC> is present in the current directory and also exists in the SET PATH
directory, FSIZE(<filename expC>) without path information returns information on the
file in the current directory.

Example
The following example finds the size of the Company table and, if there is enough space
on drive B, writes a copy to that drive:

Needed1=FSIZE("Company.dbf")
Needed2=FSIZE("Company.dbt") && the memo file
Needed=Needed1+Needed2
Available=DISKSPACE(2)

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 281

F T I M E ()+
+
+
+
+
F

IF Needed <= Available
RUN COPY Company.dbf B:
RUN COPY Company.dbt B:

ELSE
? "Available", Available
? "Needed ", Needed
WAIT "Warning. Not enough space on drive B:"

ENDIF

Portability
Not supported in dBASE III PLUS.

See Also
FDATE(), FILE(), FLUSH, FTIME(), SET DIRECTORY, SET PATH

FTIME() Disk and file utilities

Returns the time stamp for the file named <filename expC>.

Syntax
FTIME(<filename expC>)

<filename expC> The name of the file to evaluate. Wildcard characters are not supported.

If you specify a file without including its path, dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including its extension, dBASE does not assume an extension.

Description
Use FTIME() to determine the time of day when the last change was made to a file on
disk.

When you update a file, dBASE changes the file's time stamp to the current operating
system time when the file is written to disk. For example, when the user edits a table,
dBASE changes the time stamp on the table file when the file is closed. FTIME() reads
the time stamp and returns its current value.

If the file that you want to evaluate has an extension, you must include that extension in
<filename expC>. If the file is not on the default drive you must specify a drive
designation, and if the file is not in the current directory or in the path you specify with
SET PATH, you must specify the directory path.

If dBASE cannot find the file, it returns an error. Therefore, you may want to test for its
existence with FILE() before issuing FTIME(). FLUSH does not update a files time
stamp.

If <filename expC> is present in the current directory and also exists in the SET PATH
directory, FTIME(<filename expC>) without path information returns information on the
file in the current directory.

282 L a n g u a g e R e f e r e n c e

F U N C T I O N

Example
This example compares the date and time stamps on COMPANY.DBF and its backup
on the B drive. If the backup is the same day as the current table but an earlier time then
a backup is recommended:

DO CASE
CASE FDATE("B:Company.dbf") = FDATE("Company.dbf") .AND.;

FTIME("B:Company.dbf") < FTIME("Company.dbf")
* Same day but different times
? "Backup recommended"
WAIT

CASE FDATE("B:Company.dbf") < FDATE("Company.dbf")
* Backup is earlier date than current table
Difference= FDATE("Company.dbf") – FDATE("B:Company.dbf")
? Difference, " days since last backup"
? "Backup recommended"
WAIT

ENDCASE

Portability
Not supported in dBASE III PLUS.

See Also
FILE(), FLUSH, FSIZE(), FDATE(), SET DIRECTORY, SET PATH

FUNCTION Programs

Defines a user-defined function (UDF) in a program file. This command is supported
primarily for compatibility with dBASE IV, in which there were significant syntactic
and functional differences between UDFs and procedures (defined with the
PROCEDURE command). In Visual dBASE, procedures and UDFs use the same syntax,
and can be used and called in the same ways. Therefore, making a distinction between
procedures and functions is no longer necessary, and using PROCEDURE is
recommended in Visual dBASE. For more information, see PROCEDURE.

Portability

In dBASE IV, you could have a procedure and a UDF with the same name available at
the same time, because they were called differently. In Visual dBASE, if a procedure and
a UDF of the same name are available, the first one declared is the only one recognized.
For more portability information, see PROCEDURE.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 283

F U N I Q U E ()+
+
+
+
+
F

FUNIQUE() Disk and file utilities

Creates a unique file name.

Syntax
FUNIQUE(<expC>)

<expC> A file-name skeleton, which can include wildcards and any valid file-name
characters.

Description
Use FUNIQUE() to create a unique file name with random numbers and letters you
specify. For example, use FUNIQUE() to create temporary files without overwriting
existing files.

To specify a file name of a specific length, or to specify which characters in the file name
should be random numbers, use the ? wildcard character.

FUNIQUE() generates the new file name by replacing each wildcard character with a
random number, then looking in the current or specified directory for a file name that
matches the new file name. If no match is found, FUNIQUE() creates the file name and
returns the name. If a match is found, FUNIQUE() tries again until a unique file name is
found. If no combination of random numbers is successful, FUNIQUE() returns an
empty string.

If you omit <expC>, FUNIQUE() creates an 8-character file name with no extension,
composed entirely of random numbers.

Example
The following example uses FUNIQUE() to obtain a unique file name for a temporary
table to which totals are calculated. The temporary table is then removed:

Temptable=FUNIQUE("Temp????.dbf")
* Using FUNIQUE, Temp???? returns Temp followed by 4 numbers and .dbf,
* for example, Temp7990.dbf, Temp8832.dbf

USE Orders EXCLUSIVE
INDEX ON Customer_n TAG Customer_n
TOTAL ON Customer_n TO &Temptable
* Temptable now has the totals for orders for each customer

USE &Temptable
BROWSE FIELDS Customer_n, Total_inv, Amt_paid
USE

ERASE &Temptable

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FCREATE(), FERROR(), FILE(), FOPEN()

284 L a n g u a g e R e f e r e n c e

F V ()

FV() Numeric data

Returns a float that is the future value of an investment.

Syntax
FV(<payment expN>, <interest expN>, <term expN>)

<payment expN> The amount of the periodic payment. Specify the payment in the same
time increment as the interest and term. The payment can be negative or positive.

<interest expN> The interest rate per period expressed as a positive decimal number.
Specify the interest rate in the same time increment as the payment and term.

<term expN> The number of payments. Specify the term in the same time increment as
the payment and interest.

Description
Use FV() to calculate the amount realized (future value) after equal periodic payments
(deposits) at a fixed interest rate. FV() returns a float representing the total of the
payments plus the interest generated and compounded.

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%,
<interest expN> is .095 (9.5/100) for payments made annually.

Express <payment expN>, <interest expN>, and <term expN> in the same time increment.
For example, if the payment is monthly, express the interest rate per month, and the
number of payments in months. You would express an annual interest rate of 9.5%, for
example, as .095/12, which is 9.5/100 divided by 12 months.

The formula dBASE uses to calculate FV() is as follows:

where int = rate / 100

For the future value an investment of $350 made monthly for five years, earning 9%
interest, the formula expressed as a dBASE expression looks like this:

? FV(350,.09/12,60) && Returns 26398.45
? 350*((1+.09/12)^60–1)/(.09/12) && Returns 26398.45

In other words, if you invest $350/month for the next five years into an account that
pays an annual interest rate of 9%, at the end of five years you will have $26398.45.

Use SET DECIMALS to set the number of decimal places FV() displays.

Example
The following example uses FV() to calculate the future value of monthly payments
made over a set period at a known interest rate:

LOCAL f
f = NEW GFORM()
f.Open()

fv pmt * 1 int+ term 1–
int

------------------------------------=

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 285

F V ()+
+
+
+
+
F

CLASS GFORM OF FORM
this.Left = 49.00
this.Height = 15.00
this.ColorNormal = "BG+/BG"
this.Width = 50.00
this.Text = "Future Value"
this.HelpId = ""
this.HelpFile = ""
this.Top = 5.82

DEFINE TEXT TXT1 OF THIS;
PROPERTY;

Left 5.00,;
Height 1.00,;
ColorNormal "BG+/BG",;
Width 26.00,;
Border .F.,;
Text "Monthly installment?",;
Top 3.00

DEFINE ENTRYFIELD AMNT OF THIS;
PROPERTY;

Left 30.00,;
Height 1.00,;
Width 5.00,;
Value 0,;
Picture "9999",;
Border .T.,;
Top 3.00

DEFINE TEXT TXT2 OF THIS;
PROPERTY;

Left 5.00,;
Height 1.00,;
ColorNormal "BG+/BG",;
Width 26.00,;
Border .F.,;
Text "Interest rate expected?",;
Top 5.00

DEFINE ENTRYFIELD INT OF THIS;
PROPERTY;

Left 33.00,;
Height 1.00,;
Width 5.00,;
Value 0.00,;
Picture "99.99",;
Border .T.,;
Top 5.00

DEFINE TEXT TXT3 OF THIS;
PROPERTY;

Left 5.00,;
Height 1.00,;
ColorNormal "BG+/BG",;
Width 34.00,;
Border .F.,;

286 L a n g u a g e R e f e r e n c e

F W R I T E ()

Text "How many monthly payments?",;
Top 7.00

DEFINE ENTRYFIELD PYMTS OF THIS;
PROPERTY;

Left 40.00,;
Height 1.00,;
Width 4.00,;
Value 0,;
Picture "999",;
Border .T.,;
Top 7.00

DEFINE PUSHBUTTON RESULTS OF THIS;
PROPERTY;

Left 14.00,;
Height 2.00,;
ColorNormal "N/W",;
Width 19.00,;
OnClick {;myResult="Future Value will be: $" +

LTRIM(STR(FV(Form.Amnt.Value,
(Form.Int.Value/100)/12,Form.Pymts.Value),13,2)) ;
Form.FV.Text=myResult},;

Text "Future Value",;
Default .T.,;
Top 11.00

DEFINE TEXT FV OF THIS;
PROPERTY;

Left 5.00,;
Height 1.00,;
ColorNormal "BG+/BG",;
Width 33.00,;
Border .F.,;
Text "Future Value: ",;
Top 9.00

ENDCLASS

Portability
Not supported in dBASE III PLUS.

See Also
PAYMENT(), PV(), SET DECIMALS

FWRITE() Low-level access

Writes a character expression to a specified file and positions the file pointer after the
last character written. Returns the number of characters added if successful, 0 if
unsuccessful, or –1 if an error occurs.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 287

F W R I T E ()+
+
+
+
+
F

Syntax
FWRITE(<file handle expN>, <string expC> [, <characters expN>])

<file handle expN> The file handle number of the file to write the specified characters and
end-of-line character to. When you open a file with FCREATE() or FOPEN(), these
functions returns a file handle number. Use this number as <file handle expN>. If you
specify a file handle number that hasn't previously been returned by FCREATE() or
FOPEN(), dBASE returns an error message.

<string expC> The character expression to write to the specified file. If you want to write
only a portion of <string expC> to the file, use the <characters expN> argument.

<characters expN> The number of characters of the specified character expression
<string expC> to write to the specified file, starting at the first character in <string expC>.

Description
FWRITE() writes a character string to a file. Except for one feature, FWRITE() and
FPUTS() are identical; FPUTS() follows the character expression it writes with an end-
of-line character while FWRITE() does not. For more information, see FPUTS().

Example
The following example uses FWRITE() within a SCAN loop to write the contents of the
Name field of each record in the Animals table to a text file. The program then uses
FGETS() within a DO WHILE .NOT. FEOF() loop to output the contents of the text file
to the Command window.

nFile="Animals.TXT"
nHandle=FCREATE(nFile,"RW") && Create text file
SET PATH TO C:\VISUALDB\SAMPLES && Make Samples directory available
USE ANIMALS
* input data
SCAN

FWRITE(nHandle,Trim(Name)+CHR(13)+CHR(10))
* Append Name field contents plus CR/LF to text file.
ENDSCAN* output data
FSEEK(nHandle,0,0) && File pointer to top of file
CLEAR && Clears Command window results pane
DO WHILE .NOT. FEOF(nHandle)

? FGETS(nHandle) && Display line
ENDDO
FCLOSE(nHandle) && Close ANIMALS.TXT

Portability
Not supported in dBASE III PLUS.

See Also
FCREATE(), FEOF(), FERROR(), FOPEN(), FPUTS(), FREAD(), FSEEK()

Chapter 4Co
mma

nds
and

functi

288 L a n g u a g e R e f e r e n c e

G E N E R A T E

GENERATE Error handling and debugging

Adds random records to the current table.

Syntax
GENERATE [<expN>]

<expN> A number of random-data records to add to the current table. The <expN>
argument must be between 1 and 1,000,000,000 inclusive and can't result in the
generation of more than 2,000,000,000 bytes (2,000MB), the maximum size of a dBASE
table. If you specify a <expN> value that is less than or equal to 0, dBASE doesn't
generate any records. If you don't specify a value for <expN>, dBASE prompts you for a
number and waits for input.

Description
GENERATE fills a table with sample data so you can thoroughly test and debug a
program. If a table contains existing records, GENERATE leaves them intact and adds
<expN> records to the table.

When you use the GENERATE command with a table containing a memo field, dBASE
creates a memo field for each record but doesn't fill its associated memo file with data.

Example
The following example uses GENERATE to add 10 new records to a temporary table
created from CLIENTS.DBF.

USE Clients
COUNT && Returns number of records
COPY TO Temp
USE Temp
GENERATE 10
COUNT && Returns previous number +10
BROWSE && Note the addition of 10 random records

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
APPEND, BROWSE, CHANGE, DEBUG, DISPLAY COVERAGE, EDIT, SET
COVERAGE

GETCOLOR() Colors and fonts

Calls a dialog box in which you can define a custom color or select a color from the color
palette. Returns a character string containing the red, green, and blue values for the
color selected.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 289

G E T D I R E C T O R Y ()+
+
+
+
+
+
G

Syntax
GETCOLOR([<title expC>])

<title expC> A character string up to 78 characters long that appears as the title of the
dialog box.

Description
Use GETCOLOR() to open a dialog box in which you can choose a color from a palette
of predefined colors or create a customized color. In this dialog box, you choose and
create colors in the same way you do if you use the Color Palette available when you
choose Color in the Windows Control Panel.

GETCOLOR() returns a string in the format "red value, green value, blue value", as
shown in the following example.

mRed = GETCOLOR() && choose a pure red color
? mRed && returns "255,0,0"
mBlue = GETCOLOR() && create a light blue color
? mBlue && returns "164,200,240"

You can use the string returned by GETCOLOR() in a related command, DEFINE
COLOR, to use a specific color in a program.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DEFINE COLOR

GETDIRECTORY() Disk and file utilities

Displays a dialog box from which you can select a directory for use with subsequent
commands.

Syntax
GETDIRECTORY([<directory expC>])

<directory expC> The initial directory to appear in the dialog box. If <directory expC> is
omitted, the current directory appears as the initial directory.

Description
Use GETDIRECTORY() to return a directory name for use in subsequent commands,
such as FCREATE(), SET DIRECTORY, or SET PATH.

GETDIRECTORY() does not return a final backslash at the end of the directory name it
returns. If you want to create a full path name by concatenating a file name onto the
value GETDIRECTORY() returns, include the backslash in your directory name in one
of the following ways:

290 L a n g u a g e R e f e r e n c e

G E T E N V ()

* Add backslash to directory returned
mCpath = GETDIRECTORY() + "\"
* Add backslash when concatenating to directory
mCfilename = "abc.txt"
mCfullname = GETDIRECTORY() + "\" + mCfilename

Example
The following shows three examples of GETDIR():

Newdir=GETDIR()
* open the directory dialog box
* If user chooses Cancel then Newdir is empty
Newdir=GETDIR("D:\Examples")
USE Company
Fullname=GETDIR()+"\"+DBF()

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FCREATE(), GETFILE(), SET DIRECTORY, SET PATH

GETENV() Disk and file utilities

Returns the value of a DOS environment variable.

Syntax
GETENV(<expC>)

<expC> The name of the DOS environment variable to evaluate.

Description
Use GETENV() to return the current value of a DOS environment variable.

DOS environment variables are similar to dBASE memory variables. These variables are
usually created with DOS commands like SET and PATH. For example, SET
NAME=HARRY creates an environment variable NAME containing the character
string "HARRY", and PATH=C:\DOS changes the DOS variable PATH or creates a new
one.

If dBASE can't find the environment variable specified by <expC>, it returns a null
string.

Example
The following examples use GETENV():

? GETENV("comspec") && where is command.com
? GETENV("Path") && the current path
? GETENV("Prompt") && the prompt

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 291

G E T E X P R ()+
+
+
+
+
+
G

See Also
OS(), SET PATH

GETEXPR() Expressions and type conversion

Displays a dialog box in which you can create or edit an expression, and returns the
expression you specify.

Syntax
GETEXPR([<expression expC> [, <title expC> [, <data type expC>]]])

<expression expC> A character expression to edit. If you specify <expression expC>, a
dialog box opens with <expression expC> in the Expression field. Without
<expression expC>, the dialog box opens with nothing in the Expression field.

<title expC> A character string that appears as the title of the dialog box. Without
<title expC>, the default title of the dialog box displays. If you want to specify a value for
<title expC>, you must also specify a value or empty string ("") for <expression expC>.

<data type expC> A single character specifying the data type of the result of the
expression you specify in the dialog box. The data type appears as the Result type in the
dialog box. If you want to specify a value for <data type expC>, you must also specify a
value or empty string for <expression expC> and <title expC>.

Use the following characters in <data type expC> for the corresponding data types:

• C for character
• D for date
• L for logical
• N for numeric
• X for any

Description
GETEXPR() displays the dBASE Expression Builder tool. Use it to build valid dBASE
expressions to insert into the Text Editor, the Command window, and certain dialog box
fields. For example, a user could use the Expression Builder to create a condition you
then apply to a table with a SET FILTER statement.

The Expression Builder only builds expressions; it doesn't assign them. You can issue
GETEXPR() in a program or in the Command window, and you can assign a variable to
it so that the variable gets the value of what GETEXPR() returns.

In addition to using GETEXPR(), you can also call the Expression Builder in the
following ways:

• Choose Edit|Build Expression from the menu
• Press Ctrl+E

292 L a n g u a g e R e f e r e n c e

G E T F I L E ()

Example
The following example uses GETEXPR() to branch to the Edit an Expression dialog box
for entry of a state to search for:

USE Clients
cState = SPACE(LEN(Clients->State_Prov))
cExpression = "UPPER(State_Prov)"
cCaption = " Magic!! Build an Expression "
cType = "L"
cKey = ""
CLEAR
@ 1,1 SAY "Enter a state's name: " ;

GET cState ;
PICTURE "@!"

READ
IF .NOT. ISBLANK(cState)

cExpression = cExpression + " = " + "'" + cState;
+ "'"
cKey = GETEXPR(cExpression,cCaption,cType)
LOCATE FOR &cKey.

IF FOUND()
? Company, City

ELSE
CLEAR
? "There are no entries for " + cState

ENDIF
ENDIF
USE

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
SET FILTER

GETFILE() Disk and file utilities

Displays a dialog box, from which the user can choose or enter an existing file name,
and returns the file name. Returns an empty string if the user exits the dialog box by any
method except by double-clicking on a file name or choosing OK.

Syntax
GETFILE([<filename skeleton expC>
[, <title expC>
[, <filetype expL>
[, <change filetype expL>]]]])

<filename skeleton expC> A character string that matches selected file names with the
wildcard characters ? and *. The GETFILE() dialog box lists only those file names in the
current directory that match the file name skeleton. Without <filename skeleton expC>, the
dialog box lists all file names.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 293

G E T F I L E ()+
+
+
+
+
+
G

<title expC> A title displayed in the top of the dialog box. <title expC> can be up to 60
characters long. Without <title expC>, the GETFILE() dialog box displays the default
title. If you want to specify a value for <title expC>, you must also specify a value or
empty string ("") for <filename skeleton>.

<filetype expL> A logical value that determines whether the dialog box opens with a list
of all file types (.T.) or with a list of tables in a database (.F.). The default is .T. If you
want to specify a value for <filetype expL>, you must also specify a value or empty string
("") for <filename skeleton> and <title expC>.

<change filetype expL> A logical value that determines whether the user can switch
between database tables and all file types while in the dialog box (.T.) or cannot switch
between file types (.F.). The default is .F. If you want to specify a value for
<change filetype expL>, you must also specify a value or empty string ("") for <filename
skeleton> and for <title expC>, and you must specify a value for <filetype expL>.

Description
Use GETFILE() to retrieve a file name of your choice from a dialog box. Once the file
name is retrieved, you can use it in other commands and function calls. For example,
you can use GETFILE() to return a table file name so you can open a table with USE, or
return the name of a text file for an editor object you create with DEFINE EDITOR.
GETFILE() does not open any files.

The GETFILE() dialog box includes names of files whether they are currently open or
closed. dBASE returns the full path name of the file whether SET FULLPATH is ON or
OFF.

By default, the dialog box opened with GETFILE() displays file names from the current
directory the first time you issue GETFILE(). After the first time you use GETFILE()
and exit successfully, the subdirectory you choose becomes the default the next time
you use GETFILE().

Example
The following examples use GETFILE():

F1=GETFILE() && Simply opens the dialog box
F2=GETFILE("*.prg") && Displays only program files
F3=GETFILE("*.dbf","Choose any table") && Selects tables and displays;

&& title "Choose any table"
F4=GETFILE("*.dbf","Only a table",.f.) && Only allow user to choose tables

? "F1",F1
? "F2",F2
? "F3",F3
? "F4",F4

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FILE(), PUTFILE(), SET FULLPATH

294 L a n g u a g e R e f e r e n c e

G E T F O N T ()

GETFONT() Colors and fonts

Calls a dialog box in which you select a character font. Returns a string containing the
font name, point size, font style (if you choose a style other than Regular), and family.

Syntax
GETFONT([<title expC>])

<title expC> A character string up to 78 characters long that appears as the title of the
dialog box.

Description
Use GETFONT() to place the values associated with a specified font into a character
string, as shown in the following examples. If you want to add a font to the [Fonts]
section of DBASEWIN.INI but don't know its exact name or family, use GETFONT().
Then add the information GETFONT() returns into DBASEWIN.INI.

mNormal = GETFONT() && choose Arial, Regular, 10-pt
? mNormal && returns "Arial,10,Swiss"
mBold = GETFONT() && choose Helvetica bold, 12-pt
? mBold && returns "Helvetica,12,B,Swiss"

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
?

GO Fields and records

Moves the record pointer to the specified position in a table. For Paradox and SQL
tables, you can move to a specific record using bookmarks.

Syntax
GO[TO]
BOTTOM | TOP | <bookmark> | [RECORD] <expN>
[IN <alias>]

TO Include for readability only; TO has no affect on the operation of the command.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 295

G O+
+
+
+
+
+
G

BOTTOM | TOP | <bookmark> | RECORD <expN> Specifies where to move the record pointer.
The following table describes each of the available keywords or options.

IN <alias> Specifies an open table other than the current one, in which to move the
record pointer. You can specify a work area number (1 through 225), letter (A through J),
or alias name. The work area letter or alias name must be enclosed in quotes.

Description
GO positions the record pointer in the current or specified table or index file. GO
<expN> or GO RECORD <expN> moves the record pointer to a specific record,
regardless of whether a master index is open or where that record number occurs in an
indexed order.

For tables that do not support record numbers (that is, Paradox and SQL tables), GO
<expN> returns an error. For these type of tables, you specify a <bookmark> in place of a
record pointer value. Bookmarks are a special data type that cannot be displayed or
printed directly. You can return a bookmark of a specific record, for example, using the
RECNO() or BOOKMARK() function. Optionally, you can store the bookmark in a
memory variable and substitute that variable in the <bookmark> argument provided
with the GO command.

If an index isn't in use, TOP and BOTTOM refer to the first and last records in a table. If
an index file is in use for a table, TOP and BOTTOM refer to the first and last records in
the index file.

With SET DELETED ON, you can move the record pointer to a record that is marked for
deletion by directly specifying its number. GOTO can also move the record pointer to
records that are restricted by SET FILTER, although you can't access such records with
EDIT.

If a relation is set up among several tables, moving the record pointer in the parent table
with GOTO repositions the record pointer in a child table to a related record. If there is
no related record, the child table record pointer is positioned at the end of the file.
Moving the record pointer in a child table, however, doesn't reposition the record
pointer in the parent table.

Example
The following example uses GO to move the record pointer in an open table:

Option Description

BOTTOM If the specified table has no master index, moves the record pointer to the last record
of the table. If the table has a master index, moves the record pointer to the last
record of the index.

TOP If the specified table has no master index, moves the record pointer to the first
record of the table. If the table has a master index, moves the record pointer to the
first record of the index.

<bookmark> A marker for a specific row (similar to a record pointer) for tables that don't support
record numbers.

RECORD <expN> The record number to move the record pointer to. Entering a number in the
Command window is equivalent to GO <expN>. The RECORD keyword is
included for readability only; it has no affect on the operation of the command.

296 L a n g u a g e R e f e r e n c e

H E L P

SET TALK OFF
USE Clients EXCLUSIVE
INDEX ON Client_ID TAG Client_ID
SEEK "A5577"
? RECNO(), Client_ID, Company, Zip_P_Code
rec_num = RECNO()
GO TOP
? RECNO(), Client_ID, Company, Zip_P_Code
GO BOTTOM
? RECNO(), Client_ID, Company, Zip_P_Code
rec_mark = BOOKMARK()
GO rec_num
? RECNO(), Client_ID, Company, Zip_P_Code
GO rec_mark
? RECNO(), Client_ID, Company, Zip_P_Code
CLOSE ALL

See Also
EOF(), RECNO(), SELECT, SET DELETED, SET FILTER, SET RELATION, SKIP

HELP Windows programming

Activates the dBASE Help system.

Syntax
HELP
[<help topic>]

<help topic> The Help topic you access with HELP.

Description
Use the HELP command to provide information on dBASE.

The <help topic> option is a character string consisting of a single letter or a group of
letters. dBASE locates the first Help topic beginning with this string and opens the
Search dialog box with the topic highlighted.

Pressing F1 executes the HELP command automatically unless you reprogram F1 with
ON KEY LABEL or SET FUNCTION.

For information on creating a customized Help system, see Chapter 14 in the
Programmer's Guide.

Example
The command HELP, used in a program or in the Command window, can provide
explanations of individual commands, features, or a user overview of Views and Tools,
the Debugger or language. To access information on Views and Tools, issue the
following command:

HELP Views and Tools

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 297

H O M E ()+
+
+
+
+
+
+
H

To access Help information on a specific command type (for example)

HELP CLASS

To access information on a feature type (for example)

HELP SPEEDBARS

See Also
HelpFile, HelpID, SET HELP TO, SET TOPIC

HOME() Disk and file utilities

Returns the path to the directory where the DBASEWIN.EXE in use is located.

Syntax
HOME()

Description
Use HOME() to identify the directory in which the currently running copy of
DBASEWIN.EXE is located. When you install dBASE, the installation program (by
default) installs DBASEWIN.EXE in the DOS directory \VISUALDB\BIN. HOME()
returns this directory. HOME() returns the full path name whether SET FULLPATH is
ON or OFF.

To identify the dBASE home directory, use _dbwinhome.

Example
HOME() returns the dBASE directory from which DBASEWIN.EXE was launched:

? HOME() && F:\VISUALDB\BIN\
* This is different from _dbwinhome
? _dbwinhome && \VISUALDB\

Portability
Not supported in dBASE III PLUS.

See Also
_dbwinhome, CD, MKDIR, SET DIRECTORY, SET FULLPATH, SET PATH

HTOI() Expressions and type conversion

Returns the decimal-number equivalent of a specified hexadecimal number.

Syntax
HTOI(<expC>)

<expC> The hexadecimal number whose decimal-number equivalent to return.

298 L a n g u a g e R e f e r e n c e

I D ()

Description
Use HTOI() to convert a hexadecimal number to a decimal number of float type.
HTOI() is the inverse function of ITOH(), which accepts numeric and float numbers
and returns a hexadecimal equivalent as a character string. Use both functions with
Windows Application Programming Interface (API) calls that require hexadecimal
values.

Example
The following examples use HTOI() to return the numeric value of the passed
hexadecimal values:

? HTOI("FAFA") && Returns 64250.0000
? HTOI("40FA") && Returns 16634.0000
? ITOH(12345,8) && Returns 00003039
? HTOI(" 3013") && Returns 12307.0000

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ITOH()

ID() Shared data

Returns the name of the current user on a local area network (LAN) or other multiuser
system.

Syntax
ID()

Description
ID() accepts no arguments and returns the name of the current user as a character
string. ID() returns an empty string when you call it on a single-user system or when a
user name isn't registered on a multiuser system.

Example
The following example keeps track of the last network user to update a record. It
updates a network database and puts ID(), the current user, into a field called USER:

PROCEDURE OkToChange && Updates a network database and logs user name
IF ID() <> ""

REPLACE NAME WITH cName, USER with ID()
ELSE

CLEAR
? "You have lost your network connection. Data not saved."
WAIT

ENDIF
RETURN

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 299

I F+
+
+
+
+
+
+
+
I

Portability
Not supported in dBASE III PLUS.

See Also
CONVERT, LKSYS(), NETWORK()

IF Programs

Conditionally processes statements by evaluating one or more conditions and executing
the statements following the first condition that evaluates to true.

Syntax
IF <condition expL 1>

 <statements>
[ELSEIF <condition expL 2>

 <statements>
[ELSEIF <condition expL 3>

 <statements>...]]
[ELSE

 <statements>]
ENDIF

<condition expL> A logical expression that determines if the set of statements between IF
and the next ELSE, ELSEIF, IF, or ENDIF command execute. If the condition is true, the
statements execute. If the condition is false, control passes to the next ELSE, ELSEIF, or
ENDIF.

<statements> One or more program lines consisting of any combination of commands,
functions, and preprocessor directives.

ELSEIF <condition expL> <statements> Specifies that when the previous IF or ELSEIF
condition is false, control passes to this ELSEIF <condition expL>. As with IF, if the
condition is true, only the set of statements between this ELSEIF and the next ELSEIF,
ELSE, or ENDIF execute. If the condition is false, control passes to the next ELSEIF,
ELSE, or ENDIF.

You can enter this option as either ELSEIF or ELSE IF. The ellipsis (...) in the syntax
statement indicates that you can have multiple ELSEIF statements.

ELSE <statements> Specifies statements to execute if all previous conditions are false.

ENDIF A required command that marks the end of the IF structure.

Description
Use IF...ELSEIF...ENDIF to evaluate one or more conditions and execute only the set of
statements following the first condition that evaluates to true. For the first true
condition, dBASE executes the statements between that program line and the next
ELSEIF, ELSE, or ENDIF, then skips everything else in the IF structure and executes the
program line following ENDIF. If no condition is true and an associated ELSE command

300 L a n g u a g e R e f e r e n c e

I F

exists, dBASE executes the set of statements after ELSE and then executes the program
line following ENDIF.

Use IF...ENDIF to test one condition and IF...ELSEIF...ENDIF to test two or more
conditions. If you have more than three conditions to test, consider using DO CASE
instead of IF. Compare the example in this section with the example for DO CASE.

You can nest IF statements to test multiple conditions; however, the ELSEIF option is an
efficient alternative. When you use ELSEIF, you don't need to keep track of which ELSE
applies to which IF, nor do you have to put in an ending ENDIF.

You can put many commands in each set of commands. If the number of commands in a
set makes the code hard to read, consider putting them in a procedure and calling the
procedure from the IF statement instead.

Example
The following example of nested IF constructs determines the magnitude of a
previously declared memory variable and displays an appropriate message. Contrast
this code segment with the simpler ELSEIF construct of the second section:

nM_value=523
IF nM_value > 1000

? "Value is over 1000."
ELSE

IF nM_value > 100
? "Value is over 100."

ELSE
IF nM_value > 10

? "Value is over 10."
ELSE

IF nM_value > 1
? "Value is over 1."

ELSE
? "Value is 1 or less."

ENDIF
ENDIF

ENDIF
ENDIF

The following example of a nested IF construct uses ELSEIF to determine the magnitude
of a previously declared memory variable and displays an appropriate message:

IF nM_value > 1000
? "Value is over 1000."

ELSEIF nM_value > 100
? "Value is over 100."

ELSEIF nM_value > 10
? "Value is over 10."

ELSEIF nM_value > 1
? "Value is over 1."

ELSE
? "Value is 1 or less."

ENDIF

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 301

I I F ()+
+
+
+
+
+
+
+
I

Portability
ELSEIF isn't supported in dBASE IV or dBASE III PLUS.

See Also
DO CASE, DO...UNTIL, DO WHILE, FOR...NEXT, IIF(), SCAN

IIF() Programs

Returns one of two values depending on the result of a specified logical expression.

Syntax
IIF(<expL>, <exp1>, <exp2>)

<expL> The logical expression to evaluate to determine whether to return <exp1> or
<exp2>.

<exp 1> The character, date, logical, numeric, or float expression to return if <expL>
evaluates to .T.

<exp 2> The character, date, logical, numeric, or float expression to return if <expL>
evaluates to .F. The data type of <exp 2> doesn't have to be the same as that of <exp 1>.

Description
IIF() stands for "immediate IF" and is a shortcut to the IF...ELSE...ENDIF programming
construct. Use IIF() where expressions are allowed but programming constructs aren't,
such as in reports and labels, and to restrict a value to one of two possibilities.

Example
The following example uses IIF() to pass either of two results back to the variable or
command using IIF():

x = IIF(SUBSTR(LDRIVER(),6,2)="US", "AMERICAN", "FRENCH")
SET DATE TO &x
? DATE()

The next example uses IIF() to index a table such that a selected state appears at the top
of the ordered database rather than in its usual character or numeric value order.

USE Clients EXCLUSIVE
INDEX ON IIF(State_Prov="CA","A","Z") + STATE_PROV TAG TopState
LIST FIELDS Company, Contact, State_Prov OFF NEXT 30
CLOSE ALL

See Also
IF

302 L a n g u a g e R e f e r e n c e

I M P O R T

IMPORT Table basics

Creates a dBASE table from data stored in files with different formats.

Syntax
IMPORT FROM <filename> | ?
[[TYPE] WB1 | WK1]
[HEADING]

<filename> | ? The name of the file you want to import. IMPORT ? displays a dialog box,
from which you can select a file to import. If you specify a file without including its
path, Visual dBASE looks for the file in the current directory, then in the path you
specify with SET PATH.

[TYPE] WB1 | WK1 Specifies the format of data you are importing. The TYPE keyword is
included for readability only; it has no effect on the operation of the command. The
following table provides a description of the different file formats that are supported:

[HEADING] Specifies using the label headings of spreadsheet columns as the new field
names of the table created by IMPORT. Labels . Labels used as field names are truncated
at 10 characters. Spaces are converted to the underscore character and other characters
are mapped to valid dBASE field name characters.

Description
Use the IMPORT command to import data from files in non-dBASE formats. You need
to specify the extension of a file, if it is something other than the default extension.

IMPORT creates the table in which data is imported in the same drive and directory as
the original file and opens the table in the current work area. To display information
about the imported file, use DISPLAY STATUS and DISPLAY STRUCTURE.

Example
The following example uses IMPORT FROM to create a new .DBF table from a Quattro
Pro .WB1 file:

SET DBTYPE TO DBASE
IMPORT FROM C:\QPW\SAMPLES\LOANPMT.WB1 TYPE WB1
CD C:\QPW\SAMPLES
USE LOANPMT
BROWSE
CLOSE ALL

Type Description

WB1 A Quattro Pro for Windows spreadsheet file. Spreadsheet rows form table
records; spreadsheet columns form table fields. If you don't specify an
extension, Visual dBASE assumes .WB1.

WK1 A Lotus 1-2-3 spreadsheet. Spreadsheet rows form table records; spreadsheet
columns form table fields. If you don't specify an extension, Visual dBASE
assumes .WK1.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 303

I N D E X+
+
+
+
+
+
+
+
I

See Also
APPEND, DISPLAY STATUS, DISPLAY STRUCTURE, USE

INDEX Table organization

Creates an index for the current table. For Paradox and SQL tables, you can define index
tags, but you do not specify the name of an index file.

Syntax
INDEX ON <key exp>
[TO <.ndx filename> | ? | <.ndx filename skeleton>]
[UNIQUE]

or

INDEX ON <key exp> | <field list>
TAG <tag name>

 [OF <.mdx filename> | ? | <.mdx filename skeleton>]
 [FOR <condition>]

[DESCENDING]
[UNIQUE]

You can use a special form of this command, INDEX ON <field list> PRIMARY, to create
a primary index on a Paradox table.

<key exp> | <field list> For dBASE tables, <key exp> specifies the name of a character,
numeric, float, or date field, it can be a dBASE expression of up to 220 characters that
includes operators or functions that manipulate field values, or a combination of field
names and expressions. The maximum length of the key, the result of the evaluated
index <key exp>, is 100 characters.

When <key exp> is based on more than one field, all elements of the expression must
evaluate to the character type. You can join multiple fields or expressions using string
concatenation operators (+ or –).

For Paradox and SQL tables, indexes can't include expressions: however, you can create
indexes based on one or more fields. In that case, you specify the index key as a
<field list>, separating the name of each field with a comma.

TAG <tag name> Specifies the name of the index tag added to an .MDX multiple index
file. If you do not specify an .MDX file, index tags are added to the production .MDX
file.

OF <.mdx filename 2> | ? | <.mdx filename skeleton> Specifies the .MDX multiple index file that
dBASE adds new index tags to. OF ? and OF <filename skeleton> display a dialog box, in
which you can select an existing .MDX file. If you specify a file that doesn't exist, Visual
dBASE creates it and adds the index tag name. By default, Visual dBASE assigns an
.MDX extension and saves the file in the current directory.

TO <.ndx filename 1> | ? | <.ndx filename skeleton> Specifies the name of an .NDX index file. By
default, Visual dBASE assigns an .NDX extension to <filename 1> and saves the file in the

304 L a n g u a g e R e f e r e n c e

I N D E X

current directory. The ? and <.ndx filename skeleton> options display a dialog box, in
which you specify the name of the target file and the directory to save it in.

FOR <condition> Restricts the records Visual dBASE includes in the index to those
meeting the specified <condition>. Without the FOR <condition> or UNIQUE options, all
records of the table are included in the index.

DESCENDING Creates the index in descending order (Z to A, 9 to 1, later dates to earlier
dates). Without DESCENDING, INDEX creates an index in ascending order.

UNIQUE Prevents multiple records with the same <key expC> value from being included
in the index; Visual dBASE includes in the index only the first record with that value.
Without the UNIQUE or FOR <condition> options, all records of the table are included
in the index. For SQL tables, specifies creating a unique index which prevents entry of
duplicate index keys in a table.

Description
Use INDEX to organize data for rapid retrieval and ordered display. INDEX doesn't
actually change the order of the records in a table but rather creates an index file in
which records are arranged in numeric, float, character, or date order based on the value
of a key expression. Like the index of a book, with ordered entries and corresponding
page numbers, an index file contains ordered key expressions with corresponding
record numbers. When the table is used with a master index, the contents of the table
appear in the order specified by the index.

At the end of an indexing operation, the new index file is the master index, and the
record pointer is positioned at the first record of the indexed table. Visual dBASE closes
all other indexes except those whose tag names are in the production .MDX file, if one
exists, with the same name as the table.

In an index, records are usually arranged in ascending order, with lowest key values at
the beginning of the index. Using the DOS Code Page 437 (U.S.) character set, character
keys are ordered in ASCII order (from A to Z and then from a to z); numeric and float
keys are ordered from lowest to highest numbers; and date keys are ordered from
earliest to latest date. Include the UPPER() function in the key expression to convert all
lowercase letters to uppercase and achieve alphabetical order for character-type fields.

Note Most non-U.S. character sets provide a different sort order for characters than the DOS
Code Page 437 character set.

You can reverse the order of an index, arranging records in descending order, by
including the DESCENDING keyword. (You can use DESCENDING only when
building .MDX tags.)

If a function is used in a key expression, keep in mind that the index is ordered
according to the function output. Thus, when you use FIND or SEEK, or otherwise
access the key value of a record, include the entire key expression. For example, INDEX
ON SOUNDEX(Name) TO Names creates an index ordered by the values SOUNDEX()
returns. When attempting to find data by the key value, you must include the entire key
expression, such as SEEK SOUNDEX("Jones") rather than SEEK "Jones". Don't use
functions such as CHR(), LTRIM(), RTRIM(), TRIM(), or IIF() that vary the field
length in the key expression.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 305

I N D E X+
+
+
+
+
+
+
+
I

In some tables, multiple records may share the same <key value>. Use the UNIQUE
option to include only the first such record in the index. INDEX with the UNIQUE
option has the same effect as indexing a table with SET UNIQUE ON.

FOR <condition> limits the records whose key expression values dBASE includes in the
index to those meeting the specified condition. For example, if you use INDEX ON
Lastname + Firstname TO Salaried FOR Salary > 24000, Visual dBASE includes only
records of employees with salaries higher than $24,000 in the index. The FOR condition
can't include calculated fields.

Once a table has been indexed, use LOOKUP(), SEEK, SEEK(), and FIND to retrieve
data. The structure of an index file allows these commands to quickly locate values of
the key expression.

When you execute APPEND, BROWSE, CHANGE, EDIT, INSERT, PACK, REPLACE,
@...GET, or UPDATE, Visual dBASE automatically updates all open index files. Index
files closed when changes are made in a table can be opened and then updated using
REINDEX.

Multiple index files simplify updating indexes, since Visual dBASE updates all indexes
with tag names listed in .MDX files specified with USE...ORDER or SET ORDER. Visual
dBASE automatically opens a production .MDX file, if one exists, when you use the
associated table.

INDEX...TAG creates an index and adds the tag name to a multiple index file. If you
don't include OF <filename>, INDEX...TAG adds the tag name to the production .MDX
file. Visual dBASE creates the production .MDX or the specified file if it doesn't already
exist.

INDEX...TAG closes all open indexes except those with tag names in the production
.MDX file, or within the same .MDX file you specify. If indexes with tag names listed in
the specified .MDX file are not open, Visual dBASE opens them.

INDEX is similar to SORT, another command that allows ordering of a table. Unlike
INDEX, though, SORT physically rearranges the table records, a time-consuming
process for large files. To maintain the sorted order, either new records must be placed
in their proper position using INSERT, or the entire table must be resorted. Also, SORT
doesn't support SEEK, SEEK(), or FIND, making the process of locating data in a sorted
table slower.

Example
The following example uses INDEX to create index tags for the current table:

USE Clients EXCLUSIVE
INDEX ON Company TAG Company
* creates an index by Company
BROWSE TITLE "Indexed by Company"
INDEX ON State_Prov+City ;

TAG StateCity DESCENDING
* Combine State and City index
BROWSE TITLE "Indexed by State & City Descending"
INDEX ON City;

TAG CA ;

306 L a n g u a g e R e f e r e n c e

I N K E Y ()

FOR State_Prov = "NY" && only cities in New York State
BROWSE TITLE "Indexed by City, NY only"

Portability
The file-name skeleton option is not available in dBASE IV. TAG, FOR and .MDX
options not available in dBASE III PLUS.

See Also
FIND, KEY(), LOOKUP(), ORDER(), REINDEX, SEEK, SEEK(), SET INDEX, SET
ORDER, SET UNIQUE, SORT, TAG(), USE

INKEY() Keyboard and mouse events

Returns the decimal value associated with the first key or key combination held in the
keyboard typeahead buffer and removes the keystroke from the buffer. Can also be
used to wait for a keystroke and return its value.

Syntax
INKEY([<seconds expN>] [, <mouse expC>])

<seconds expN> The number of seconds INKEY() waits for a keystroke. If <expN> is
zero, INKEY() waits indefinitely for a keystroke.

<mouse expC> Determines whether INKEY() returns a value when you click the mouse.
If <expC> is M or m, INKEY() returns –100. If <expC> is not M or m, INKEY() ignores a
mouse click and waits for a keystroke.

Description
The keyboard typeahead buffer stores keystrokes the user enters while dBASE is busy
processing other data. Use INKEY() to identify and delete a keystroke held in the
keyboard typeahead buffer. If the typeahead buffer is empty, INKEY() returns the value
of zero.

For example, if you press C and then Alt+P, dBASE stores the values 67 and –420 in the
typeahead buffer. INKEY() returns 67, and a second INKEY() returns –420. See
Appendix D for a complete list of the values returned by INKEY(). See Appendix E for a
list of decimal values corresponding to keys.

To determine a value in the buffer in a position other than the first position, or to
determine a buffer value without removing it from the buffer, use NEXTKEY().

Example
The following example continuously executes a loop that shows the value of INKEY()
and the character typed. The loop ends when the Escape key (ASCII 27) is pressed:

CLEAR
SET ESCAPE OFF
* ESCAPE ON will interrupt the program and the
* Escape key will not be trapped by INKEY()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 307

I N P U T+
+
+
+
+
+
+
+
I

? "Press Esc to continue"
k=0
DO WHILE k <> 27

k=INKEY()
? k
IF k>0

?? CHR(k) && show the key and the ascii char
ENDIF

ENDDO
SET ESCAPE ON

The following example displays a message and waits up to 10 seconds or until any key
or mouse button is clicked:

? "This message will display for 10 seconds max"
Pause=inkey(10,"m")
IF Pause=0

? "You waited the 10 seconds"
ENDIF

Portability
The <seconds expN> option is not supported in dBASE III PLUS. The <mouse expC>
option is not supported in dBASE IV or dBASE III PLUS. For some keys, Visual dBASE
returns values different from those in earlier versions of dBASE. See Appendix D for a
complete list of returned values.

See Also
CLEAR TYPEAHEAD, KEYBOARD, LASTKEY(), NEXTKEY(), ON KEY,
READKEY(), SET TYPEAHEAD

INPUT Input/Output

Accepts a user-entered expression and stores it to a memory variable. INPUT can accept
character, numeric, float, date, or logical data. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use DEFINE with the Text and
EntryField classes for displaying and accepting information on a form.

For complete syntax information on INPUT, see online Help. For more information
about working with Visual dBASE forms, see the Forms chapters in the User's Guide.

Syntax
INPUT [<prompt expC>] TO <memvar>

<prompt expC> A character expression that prompts the user for input.

TO <memvar> Assigns the user input to the memory variable you specify for <memvar>.
If <memvar> doesn't exist, dBASE creates it. If <memvar> does exist, INPUT
overwrites it.

308 L a n g u a g e R e f e r e n c e

I N P U T

Description
Use INPUT primarily in program files to prompt the user for these types of keyboard
input:

• Non-character data

• Character data, entered in quotes or square brackets

• Complex expressions

The user terminates data entry by pressing Enter. If the user presses Enter without
typing any characters, dBASE continues to prompt for input until the user enters
something.

If SET ESCAPE is ON, pressing Esc in response to an INPUT terminates a program.

The type of expression the user inputs determines the type of memory variable INPUT
creates:

The SET DECIMALS setting affects how numeric keyboard entries with decimals are
displayed.

To ensure that the user enters the correct type of data, use <prompt expC> to indicate
what the user should enter. For example, <prompt expC> could be "Enter today's date
surrounded by braces ({ })". You could then use TYPE() to test the type of data the user
enters.

Other commands that let programs read data from the keyboard are ACCEPT and
WAIT.

Example

The following examples demonstrate the use of INPUT to enter different types of
variables:

CLEAR
amount=0
INPUT"How much? " TO Amount
* Amount will be overwritten
? Amount,type("Amount")
INPUT"Enter a date (e.g. {01/01/01} " TO Enterdate
? Enterdate, type("Enterdate")
INPUT 'Enter your name (e.g. "John") ' TO Name
? Name, type("Name")

Enterdate and Name are not guaranteed to contain a date and a name. They could
contain .T., "abc", or 5.7, and be a logical, string, or numeric type.

Expression Rules for entering <memvar> variable type

Integer Enter directly Numeric
Character Delimit with ' ' or " " or [] Character
Date Delimit with { } Date
Logical .T. or .F. Logical

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 309

I N S E R T+
+
+
+
+
+
+
+
I

See Also
ACCEPT, CTOD(), DEFINE SET DECIMALS, SET ESCAPE, TYPE(), WAIT

INSERT Fields and records

Adds a new record to the current table at the current record location.

Syntax
INSERT
[BLANK]
[BEFORE]
[NOWAIT]

BLANK Inserts a blank record, but doesn't display a window to update field values in
the new record.

BEFORE When no master index is in use, inserts a new record before the current record
rather than after.

NOWAIT Invokes the form to edit a new record but does not move focus there. If used in
a program, execution continues to statement following the INSERT NOWAIT
command.

Description
Use INSERT to add a single record within an existing table. If dBASE tables are linked
with the SET RELATION command, the CONSTRAIN and INTEGRITY options control
operations that add new records to child and parent tables. For more information, see
the SET RELATION command.

When adding a record to an indexed table, INSERT adds the new record to the end of
the table (with a record number one greater than the previous highest record number)
and also correctly inserts the record in all open indexes. Index files closed at the time a
new record is inserted in a table may be updated using REINDEX.

If you INSERT a record at the end of a file, INSERT (but not INSERT BLANK) functions
like APPEND, continuing to add new records until you exit.

If SET CARRY is OFF, the default setting, newly inserted records are blank before
editing. If SET CARRY is ON, each new record is filled with the contents of the
preceding record.

INSERT BLANK adds a record to the current table and moves the record pointer to the
new record, just as INSERT does, but doesn't display a window to update values in the
blank record.

In a table without a master index, issuing the INSERT command without the BEFORE
option adds a blank record immediately following the current record, also updating any
open indexes. In a table with a master index, INSERT adds the record to the end of the
table and updates all open indexes when you save the new record.

310 L a n g u a g e R e f e r e n c e

I N S E R T A U T O M E M

Example
The following example uses INSERT BLANK to insert a blank record after the current
record:

SET TALK OFF
USE Clients EXCLUSIVE
SKIP 3
? RECNO(), Company && Note recno() and company
SKIP-1 && Moves record pointer back
INSERT BLANK
SKIP && Advance record pointer 1
? RECNO(), Company && Former record is now 1;

record number higher
CLOSE ALL

The next example uses INSERT BEFORE to insert a blank record before the current
record and present an entry window for user input.

USE Clients EXCLUSIVE
SKIP 4
? RECNO(), Company
INSERT BEFORE && Edit window presented
? RECNO(), Company && Newly added record in old;

record position
SKIP && Advance record pointer 1
? RECNO(), Company && Old record
CLEAR
CLOSE ALL

See Also
APPEND, INSERT AUTOMEM, REINDEX, REPLACE, SET CARRY, SET FIELDS, SET
RELATION, STORE, USE

INSERT AUTOMEM Fields and records

Adds a new record to the current table using values stored in automem variables.

Syntax
INSERT AUTOMEM
[BEFORE]

BEFORE Inserts the new record before the current record.

Description
INSERT AUTOMEM adds a new record to a table using the values stored in automem
variables. If no master index exists, INSERT AUTOMEM without the BEFORE option
adds the record immediately after the current record. If a master index exists, INSERT
AUTOMEM adds the record to the end of the table and updates all open indexes.

A full discussion of the use of automem variables for adding data to a table is included
under APPEND AUTOMEM.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 311

I N S E R T A U T O M E M+
+
+
+
+
+
+
+
I

The only difference between INSERT AUTOMEM and APPEND AUTOMEM is that, in
an unindexed table, INSERT AUTOMEM adds the record immediately after (or before)
the current record, while APPEND AUTOMEM adds the record to the end of the table.
INSERT AUTOMEM assigns the new record a record number one greater than (or less
than) the current record and also changes all record numbers beyond the new record;
APPEND AUTOMEM assigns the new record the last record number in the table.

When a master index is open, APPEND AUTOMEM and INSERT AUTOMEM work
identically. Both assign the new record the last record number in the table and update
all open indexes.

INSERT AUTOMEM provides advantages over INSERT BLANK since INSERT
AUTOMEM updates a table only once, while INSERT BLANK updates a table first
when it adds a blank record, and again when you use REPLACE to update the blank
values.

Example
The following example seeks a specified record, uses STORE AUTOMEM to hold field
names and values for the current record, checks to determine the presence of a Collect
table and uses INSERT AUTOMEM to transfer the selected record's data to the Collect
table:

CLEAR
SET TALK OFF
USE Clients ORDER Client_ID
Lookup = "A3367"
SEEK Lookup
IF FOUND()

STORE AUTOMEM
ELSE

RETURN
ENDIF
IF .NOT. FILE("Collect.DBF")

COPY STRUCTURE TO Collect
ENDIF
USE Collect EXCLUSIVE
INSERT AUTOMEM
BROWSE
CLOSE ALL
SET TALK ON
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
APPEND AUTOMEM, INSERT

312 L a n g u a g e R e f e r e n c e

I N S P E C T ()

INSPECT() Objects

Opens the Inspector, a window that lists object properties and lets you change their
settings.

Syntax
INSPECT(<object reference>)

<object reference> A reference to the object that you want to inspect. dBASE generates a
variable containing an object reference when you create an object with the NEW
operator or the DEFINE command. This variable has the same name you gave to the
object.

Description
Use INSPECT() to examine and change object properties directly. For example, during
program development you can use INSPECT() to evaluate objects and experiment with
different property settings.

The Inspector is modeless, and doesn't affect program execution.

Note You can access the Inspector from the Form Designer by right-clicking the form or one
of its objects and selecting Inspector from the SpeedMenu.

You can get help on any property in the Inspector by selecting the property and pressing
F1.

Example
The following example uses INSPECT() to open a dialog box that displays the current
properties of spinbox Spin1 after changing the spinbox value:

PUBLIC F1
USE COUNTRY
SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM F1 FROM 2,2 TO 15,40;

PROPERTY Text "SpinBoxDemo"
DEFINE SPINBOX Spin1 OF F1;

PROPERTY;
Datalink "Country->GNP",;
Top 2,;
Left 4,;
Height 2,;
Step 1000

DEFINE PUSHBUTTON Proceed OF F1;
PROPERTY;

OnClick Check,;
Top 5,;
Left 6,;
TEXT "Proceed"

OPEN FORM F1

PROCEDURE Check
? INSPECT(F1.Spin1)

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 313

I N T ()+
+
+
+
+
+
+
+
I

CLOSE FORMS F1
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DISPLAY MEMORY, DISPLAY STATUS

INT() Numeric data

Returns the integer portion of a specified number.

Syntax
INT(<expN>)

<expN> A numeric or float number whose integer value to determine and return.

Description
Use INT() to remove the decimal digits of a numeric or float number and retain only the
integer portion, the whole number. INT() returns an integer whose data type is
numeric.

If you pass a number with decimal places to a function or command that uses an integer
as an argument, such as _pageno or SLEEP, dBASE automatically truncates that
number, in which case you don't need to use INT().

The following table compares INT(), FLOOR(), CEILING(), and ROUND(). (In these
examples, the value of the second ROUND() argument is 0.)

Example
The following example uses INT() to display the contents of a field:

SET TALK OFF
CLEAR
STORE 0 TO rate, min_time, total
STORE "U" TO up_down
STORE "$ " TO set_cur
@ 4, 8 SAY "What currency do you want to use " + ;

"($, DM, FR, YEN)" GET set_cur FUNCTION "@!"
@ 5,32 SAY "What is the billing rate?" ;

GET rate PICTURE "999.99"
@ 6,19 SAY "What is the billing time (in minutes)?";

<expN> INT() FLOOR() CEILING() ROUND()

2.56 2 2.00 3.00 2.60
–2.56 –2 –3.00 –2.00 –2.60
2.54 2 2.00 3.00 2.50
–2.54 –2 –3.00 –2.00 –2.50

314 L a n g u a g e R e f e r e n c e

I S A L P H A ()

GET min_time PICTURE "9999"
@ 7,25 SAY "Do you want to round Up or Down?" ;

GET up_down PICTURE "!" VALID up_down $ "UD"
@ 8,12 SAY "What is the total billable time (in minutes)?";

GET total PICTURE "9999"
READ

time = INT(total/60) + (MOD(total,60)/60)
bill = IIF(up_down = "U", CEILING(total/min_time), FLOOR(total/min_time))
@ 10,12 SAY "The total billable time is " + LTRIM(STR(time,7,2)) + " hours"
dec = SET("DECIMALS")
SET DECIMALS TO 2
cur = SET("CURRENCY")
SET CURRENCY TO TRIM(set_cur)
IF set_cur = "YEN"

SET CURRENCY RIGHT
ENDIF
IF set_cur = "DM" .OR. set_cur = "FR"

sep = SET("SEPARATOR")
point = SET("POINT")
SET SEPARATOR TO "."
SET POINT TO ","

ENDIF
@ 11,12 SAY "For a total of "
@ 11,27 SAY bill * rate PICTURE "$$999,999.99"
SET DECIMALS TO dec
SET CURRENCY TO cur
IF set_cur = "YEN"

SET CURRENCY LEFT
ENDIF
IF set_cur = "DM" .OR. set_cur = "FR"

SET SEPARATOR TO sep
SET POINT TO point

ENDIF

See Also
ABS(), CEILING(), FLOOR(), ROUND()

ISALPHA() String data

Returns .T. if the first character of a string is alphabetic.

Syntax
ISALPHA(<expC> | <memo field>)

<expC> | <memo field> The character string or memo field to test.

Description
ISALPHA() tests the first character of a character expression or memo field and returns
.T. if it's an alphabetic character. ISALPHA() returns .F. if the character isn't alphabetic
or if the character expression or memo field is empty.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 315

I S A L P H A ()+
+
+
+
+
+
+
+
I

The current language driver defines the character values that are lowercase and
uppercase alphabetic. In a U.S. language driver, a lowercase alphabetic character is from
a to z, and an uppercase alphabetic character is from A to Z. See Appendix C in the
Programmer's Guide for more information about language drivers.

Example
The following example uses ISALPHA() to determine if the first character of each string
is an alphabetic character:

? ISALPHA("Visual dBase") && Returns .T.
? ISALPHA(" Visual dBase") && Returns .F.
? ISALPHA("") && Returns .F.
? ISALPHA('2548 Vestal Parkway') && Returns .F.

The next example uses ISALPHA() to determine whether a character location specified
by SUBSTR() is alphabetic. With the variable Is_Alpha initialized to .F., the Street
procedure steps through the contents of Address field until it encounters an alphabetic
character and returns the string that follows:

CLEAR
SET TALK OFF
USE Clients
DO WHILE .NOT. EOF()

? Street(Address) && just the street name
SKIP

ENDDO

FUNCTION Street
Parameter Full_Addr
Full = TRIM(Full_Addr)
Len = LEN(Full)
Start = 0
IF Len > 0 && Check if longer than 0

Is_Alpha = .F.
Char_Pos = 1
DO WHILE .NOT. Is_Alpha && Check until alpha

Is_Alpha = ISALPHA(SUBSTR(Full,Char_Pos,1))
Start = Start + 1
Char_Pos = Char_Pos + 1

ENDDO
Street = SUBSTR(Full,Start,Len-Start)

ELSE
Street = ""

ENDIF
RETURN Street && Return the street name only

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS.

See Also
CHARSET(), ISLOWER(), ISUPPER(), LDRIVER(), LOWER(), UPPER()

316 L a n g u a g e R e f e r e n c e

I S B L A N K ()

ISBLANK() Expressions and type conversion

Determines if a specified field or expression is blank.

Syntax
ISBLANK(<exp>)

<exp> An expression of any data type.

Description
ISBLANK() returns .T. if a specified expression is blank, .F. if it contains data. A field is
blank if it has never contained a value or if you used the BLANK command on it.
ISBLANK() returns a different result from EMPTY() when used on numeric fields;
ISBLANK() differentiates between zero and blank values, while EMPTY() does not.

ISBLANK() is especially useful when performing functions such as averaging, since it
ensures that blank values are not included in the calculation. If you don't need to
differentiate between 0 or blank values in numeric fields, you can use either ISBLANK()
or EMPTY().

Example
The following interactive commands from the Command window demonstrate the
functionality of ISBLANK():

Empty = SPACE(20)
? ISBLANK(Empty) && Returns .T.
Empty = " "
? ISBLANK(Empty) && Returns .T.
mDate = { / / } && or {}
? ISBLANK(mDate) && Returns .T.
USE Clients
APPEND BLANK && adds new blank record
? ISBLANK(StartBal) && Returns .T.
REPLACE StartBal WITH 0
? ISBLANK(StartBal) && Returns .F.
BLANK FIELDS StartBal
? ISBLANK(StartBal) && Returns .T.
? ISBLANK(Notes) && Returns .T. for memo
REPLACE Notes WITH "Something for the memo field"
? ISBLANK(Notes) && Returns .F. for memo field

Use ISBLANK() to exclude blank records from calculations.

CALCULATE AVG(StartBal) FOR .NOT. ISBLANK(StartBal)

The following example uses ISBLANK() to select only those records with non-blank
values in the StartBal field of the Clients table to create a report:

SET SAFETY OFF
SET TALK OFF
USE Clients EXCLUSIVE
INDEX ON Company TAG Company
BLANK FIELDS StartBal FOR StartBal = 0

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 317

I S C O L O R ()+
+
+
+
+
+
+
+
I

? CENTER("Start Balance Report")
?
SCAN

IF .NOT. ISBLANK(StartBal)
? COMPANY + "Balance Due " + ;

TRANSFORM(StartBal,"@$999,999,999.99")
ENDIF

ENDSCAN
RETURN

See EMPTY() for additional examples of ISBLANK().

Portability
Not supported in dBASE III PLUS.

See Also
APPEND, BLANK, EMPTY(), SPACE(), TYPE()

ISCOLOR() Colors and fonts

Returns .T. if system monitor is color, .F. if it is monochrome. ISCOLOR() is supported
primarily for compatibility with dBASE IV. Visual dBASE determines the color palette
to use from the Color settings specified in the Windows Control Panel.

For more information about ISCOLOR(), see online Help. For more information about
Windows colors, see your Windows documentation.

ISLOWER() String data

Returns .T. if the first character of a string is alphabetic and lowercase.

Syntax
ISLOWER(<expC> | <memo field>)

<expC> | <memo field> The character string or memo field to test.

Description
ISLOWER() tests the first character of a character expression or memo field and returns
.T. if it's a lowercase alphabetic character. ISLOWER() returns .F. if the character isn't
lowercase or if the character expression or memo field is empty.

The current language driver defines the character values that are lowercase and
uppercase alphabetic. In a U.S. language driver, a lowercase alphabetic character is from
a to z, and an uppercase alphabetic character is from A to Z. See Appendix C in the
Programmer's Guide for more information about language drivers.

318 L a n g u a g e R e f e r e n c e

I S M O U S E ()

Example
The following example uses ISLOWER() to determine if the first character of each string
is a lowercase letter:

? ISLOWER("Visual dBase") && Returns .F.
? ISLOWER(" Visual dBase") && Returns .F.
? ISLOWER("") && Returns .F.
? ISLOWER('2548 Vestal Parkway') && Returns .F.
? ISLOWER("software craftmanship") && Returns .T.

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS.

See Also
CHARSET(), ISALPHA(), ISUPPER(), LDRIVER(), LOWER(), UPPER()

ISMOUSE() Keyboard and mouse events

Returns a logical true (.T.) when a mouse driver is currently installed on your system, or
false (.F.) when no mouse driver is present.

Syntax
ISMOUSE()

Description
Use ISMOUSE() to determine if a mouse driver is installed on the current system. For
example, you may want to use ISMOUSE() to control whether a message says "Click
OK to continue" or "Choose OK to continue."

Example
The following example uses ISMOUSE() to determine if a mouse is enabled and returns
the appropriate message to the Command window results pane:

IF ISMOUSE()
? "The mouse is enabled" AT 5

ELSE
? "The mouse is disabled" AT 5

ENDIF

Portability
Not supported in dBASE III PLUS.

See Also
INKEY(), MDOWN(), MCOL(), MROW(), ON MOUSE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 319

I S T A B L E ()+
+
+
+
+
+
+
+
I

ISTABLE() Table basics

Tests for the existence of a table in a specified database and returns .T. if the table exists
or .F. if it doesn't.

Syntax
ISTABLE(<table name>)

<table name> The name of the table to search for. You must also provide the full path if
the table is not in the current directory or a directory specified with SET PATH. You can
also specify a path relative to the current directory.

You can also check for the existence of a table in a database (defined using the BDEBDE
Configuration Utility) by specifying the database as a prefix (enclosed in colons) to the
name of the table, that is, :database name:table name. If the database is not already open,
Visual dBASE displays a dialog box in which you specify the parameters, such as a login
name and password, necessary to establish a connection to that database.

Description
Use ISTABLE() to confirm the existence of a table of the type specified by SET DBTYPE.
If the table is not in the current default directory, you must include the directory path
with the name of the table. You can also specify a database if you want to search for a
table that is not in the current database.

Example
The following example uses ISTABLE() to check for the existence of a specified Paradox
table on the SAMPLES directory, and if present, opens the table in a Browse:

CLOSE ALL
CLEAR
IF ISTABLE("C:\VISUALDB\SAMPLES\Customer.DB")

USE Customer
BROWSE

ELSE
? "No such table exists"

ENDIF
RETURN

See Also
DIR, DISPLAY FILES, FILE(), GETFILE(), PUTFILE(), SET DEFAULT, SET
DATABASE, SET DBTYPE, SET DIRECTORY, SET PATH

320 L a n g u a g e R e f e r e n c e

I S U P P E R ()

ISUPPER() String data

Returns .T. if the first character of a string is alphabetic and uppercase.

Syntax
ISUPPER(<expC> | <memo field>)

<expC> | <memo field> The character string or memo field to test.

Description
ISUPPER() tests the first character of a character expression or memo field and returns
.T. if it's an uppercase alphabetic character. ISUPPER() returns .F. if the character isn't
uppercase or if the character expression or memo field is empty.

The current language driver defines the character values that are lowercase and
uppercase alphabetic. In a U.S. language driver, a lowercase alphabetic character is from
a to z, and an uppercase alphabetic character is from A to Z. See Appendix C in the
Programmer's Guide for more information about language drivers.

Example
The following example uses ISUPPER() to determine if the first character of each string
is an uppercase letter:

? ISUPPER("Visual dBase") && Returns .T.
? ISUPPER(" Visual dBase") && Returns .F.
? ISUPPER("") && Returns .F.
? ISUPPER('2548 Vestal Parkway') && Returns .F.
? ISUPPER("Software Craftmanship") && Returns .T.

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS.

See Also
CHARSET(), ISALPHA(), ISLOWER(), LDRIVER(), LOWER(), UPPER()

ITOH() Expressions and type conversion

Returns the hexadecimal equivalent of a specified decimal number as a character string.

Syntax
ITOH(<expN 1>[, <expN 2>])

<expN 1> The decimal number whose hexadecimal equivalent to return.

<expN 2> The number of characters to include in the returned hexadecimal character
string. If <expN 2> is greater than the number of characters returned, ITOH() pads the
returned string with leading 0's to make it <expN 2> characters long. For example,
ITOH(21) returns the string "15", while ITOH(21,4) returns "0015".

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 321

J O I N+
+
+
+
+
+
+
+
+
J

If expN2 is smaller than the length of the returned string, it is ignored.

Description
Use ITOH() to convert a decimal number to a character string representing its
hexadecimal equivalent. ITOH() is the inverse function of HTOI(), which accepts
hexadecimal numbers in the form of character expressions and returns a decimal
equivalent. Use both functions with Windows Application Programming Interface
(API) calls that require hexadecimal values.

Example

? ITOH(13824,4) && Returns 3600

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
HTOI()

JOIN Table organization

Combines records of the current table with records of a specified table to create a new
table.

Syntax
JOIN WITH <alias> TO <filename> | ? | <filename skeleton>
[[TYPE] PARADOX | DBASE]
FOR <condition>
[FIELDS <field list>]

<alias> The alias table with which to combine the current table's records to create
<filename>.

TO <filename> | ? | <filename skeleton> Creates the table file <filename>. By default, Visual
dBASE assigns a .DBF extension to <filename> and saves the file in the current directory.
The ? and <filename skeleton> options display a dialog box, in which you specify the
name of the target file and the directory to save it in.

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box, in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create. The TYPE
keyword is included for readability only; it has no effect on the operation of the
command.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, Visual dBASE assigns a .DBF extension.

322 L a n g u a g e R e f e r e n c e

J O I N

Specifying PARADOX creates a Paradox table with a .DB extension.

FOR <condition> Restricts JOIN to records in the current table that meet the specified
<condition>.

FIELDS <field list> Limits the fields of the new table to those included in <field list>. Enter
field names from the current table directly and field names of the alias table in the form
alias->field. Without FIELDS, the new table contains all fields of both tables.

Description
Use JOIN to create new tables joining the records of two existing tables. The fields list
can specify any type of field from either table, except for binary, memo, and OLE fields.

You can use the SET FIELDS command before JOIN, rather than specifying a fields list.
In that case, only the fields listed in SET FIELDS are included in the new table. If you do
not specify a fields list, field assignments are first made from the current table and then
from the second table. If both tables contain a field with the same name, only the field
from the first table is added to the new table; the field in the second table is ignored.

The FOR condition typically compares the values of fields in records of one table with
the value of fields in records of another table. In the simplest case, the equality operator
(=) determines whether the values of one table's fields are identical to the other table's
fields (regardless of whether the field names are the same). Use care when formulating
the FOR condition to ensure that only the records you want are included in the new
table, as the JOIN command can potentially create a very large table (equal to the
number of records in the current table multiplied by the number of records in the alias
table).

Because of the number of records compared during the JOIN operation, JOIN is also
potentially a very time-consuming command. To provide temporary combinations of
data from more than one table, without taking the time required by JOIN, use the SET
RELATION command.

Example
The following example uses JOIN to create a new table with specified fields drawn from
both the original tables based on a stated relation between the two tables:

CLOSE DATABASE
USE Company IN SELECT() && Work area 1
USE Contact IN SELECT() && Work area 2
SELECT Contact
JOIN WITH Company ;

FOR Contact->CompCode = Company->CompCode ;
FIELDS Contact->CompCode, Company->Company, Contact->Contact;
TO CompCntc

The CompCntc table has been created with a structure of the fields in the FIELDS clause.
There is now a single table with fields Compcode, Company, and Contact. The FOR
clause was necessary to ensure that each company was linked to the contacts at that
company.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 323

K E Y ()+
+
+
+
+
+
+
+
+
+
K

SELECT 3
USE CompCntc
LIST OFF

See Also
SELECT, SET RELATION, USE

KEY() Table organization

Returns the key expression used to create the specified index.

Syntax
KEY([<.mdx filename>,] <index position expN> [, <alias>])

<.mdx filename> Specifies a multiple index file that contains the index tag you want to
check.

<index position expN> Selects an index file or tag by the position of an index tag in an
.MDX file or the position of an index file in the list of open indexes for the current or a
specified work area.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
The KEY() function returns the key expression that was used to create a specified index.
If you have several open .NDX indexes or several indexes with tag names listed in
multiple index files, you can use KEY() to determine the key expression of each index.

If no index is open in the current or specified work area, or if <index position expN>
doesn't evaluate to the position of any index in the index list, KEY() returns an empty
string ("").

Example
The following example uses KEY() to retrieve the indexes key statement.

USE Company EXCLUSIVE
INDEX ON CompCode TAG CompCode
INDEX ON Zip_Postal+Company TAG ZipCompany

TagCompCode=TAGNO("CompCode")
* Get the Tag number of CompCode
TagZipCompany=TAGNO("ZipCompany")
* Get the Tag number of ZipCompany

? TagCompCode, TAG(TagCompCode), KEY(TagCompCode)
? TagZipCompany, TAG(TagZipCompany),;

KEY(TagZipCompany)

324 L a n g u a g e R e f e r e n c e

K E Y B O A R D

Portability
Not supported in dBASE III PLUS.

See Also
INDEX, NDX(), ORDER(), SET INDEX, SET ORDER, TAG(), TAGCOUNT(),
TAGNO(), USE

KEYBOARD Keyboard and mouse events

Puts the value of <expC> into the typeahead buffer. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, forms do not use the
typeahead buffer.

For complete syntax information on KEYBOARD, see online Help. For information
about working with forms, see the Forms chapters in the User's Guide.

KEYMATCH() Table organization

Indicates if a specified expression is found in an index.

Syntax
KEYMATCH (<exp> [,<index position expN> |
[<.mdx filename expC>,] <tag expN>]
[,<alias>]])

<exp list> Specifies the expression of any data type that you want to look for. For
Paradox and SQL tables, you can specify one or more values (separated by commas)
that match single or composite index key fields.

<index position expN> Specifies an .NDX file by the position of the index in the list of open
indexes for the current or a specified table.

<.mdx filename expC> Specifies a multiple index file that contains the index tag you want
to check.

<tag expN> Specifies an index tag by the position of an index tag in an .MDX file for the
current or a specified table.

<alias> Specifies the work area where the specified .NDX or .MDX is open. You can
specify a work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
The KEYMATCH() function determines if specified key expressions are found in a
particular index. KEYMATCH() returns .T. or .F. to indicate whether the specified
expression was found. SET EXACT controls whether exact matches of character string
data is required.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 325

L A B E L F O R M+
+
+
+
+
+
+
+
+
+
+
L

A primary use of the KEYMATCH() function is to check for duplicate values during an
APPEND operation.

KEYMATCH() looks only in the specified index file or tag. It ignores the settings for
SET DELETED, SET FILTER, and SET KEY, ensuring the integrity of data in a table even
when you work with a subset of the table records.

If you specify only an expression (<exp>) whose value you want to match,
KEYMATCH() searches the current master index for an index key with the same value.
If a matching index key is found, KEYMATCH() returns .T.

Example
The following example uses KEYMATCH() to determine if a passed value is found in
the index:

SET EXACT OFF && KEYMATCH is affected by SET EXACT
USE Company EXCLUSIVE
INDEX ON Company TAG CompanyCa FOR State_Prov = "CA"
INDEX ON City TAG City OF Location
? KEYMATCH("Cons",TAGNO("CompanyCa"))
? KEYMATCH("Compton","Location",TAGNO("City"))

Both answers return .T. from the sample table.

Portability
Not supported in dBASE III PLUS.

See Also
INDEX, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET ORDER, USE

LABEL FORM Input/Output

Generates and displays or prints a label report, using the label format stored in a
specified label file and information derived from records in the current table.

Syntax
LABEL FORM <filename 1> | ? | <filename skeleton 1>
[<scope>] [FOR <condition 1>] [WHILE <condition 2>]
[SAMPLE]
[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

<filename 1> | ? | <filename skeleton> The file to get label formats from. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH. If you specify a file without including its
extension, dBASE looks for .RPL, .LBG, or .LBL, in that order.

<scope> The number of records in the current table from which to derive labels.
RECORD <n> identifies a single record by its record number. NEXT <n> identifies n

326 L a n g u a g e R e f e r e n c e

L A B E L F O R M

records, beginning with the current record. ALL specifies all records. REST specifies all
records from the current record to the end of the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by LABEL FORM. FOR
restricts LABEL FORM to records that meet <condition 1>. WHILE starts processing with
the current record and continues with each subsequent record as long as <condition 2> is
true.

SAMPLE Displays or prints a label containing asterisks for text and then prompts you
for more samples.

TO FILE <filename 2> | ? | <filename skeleton 2> Directs output to the text file <filename>. By
default, dBASE assigns a .TXT extension to <filename> and saves the file in the current
directory. The ? and <filename skeleton> options display a dialog box in which you
specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer.

Description
Use LABEL FORM to print or display labels in a format that you've defined in the
Report Designer using CREATE LABEL or MODIFY LABEL. For information about
using the Report Designer, see the Crystal Reports documentation. If you don't specify a
<scope>, WHILE <condition 1>, or FOR <condition 2> option, LABEL FORM prints the
label specifications for each record in record number or index order.

When printing or displaying a label report that includes groups of data or group
subtotals, either the current table must be in sorted order or its master index must be in
use. The sorted file or index must be arranged according to the value of the field on
which the data is grouped.

LABEL FORM without the TO FILE or TO PRINTER options displays the labels in the
results pane of the Command window or current user-defined window.

Example
This example opens the Company database and then generates labels using the
Complbl1 label form:

CLOSE DATABASE
USE Company
LABEL FORM Complbl1 TO PRINT
* This label format produces one across labels,
* 6 lines per label, with Company, Street,
* City, State and Zip code:
* General Consolidated
* 35 Libra Plaza
* Nashua NH 09242
*
*
*
* Consolidated Brands, Inc.
* 3 Independence Parkway
* Rivendell CA 93456

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 327

L A S T K E Y ()+
+
+
+
+
+
+
+
+
+
+
L

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS.

See Also
CREATE LABEL

LASTKEY() Keyboard and mouse events

Returns the value of the key or key combination that was pressed to terminate execution
of a full-screen command. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, use properties such as OnClick to initiate actions based on
how a user exits a form.

For complete syntax information on LASTKEY(), see online Help. For information
about working with forms, see the Forms chapters in the User's Guide.

LDRIVER() Environment

Returns the name of the language driver the current table or a specified table is using. If
no table is open and you issue LDRIVER() without an argument, it returns the global
language driver in use.

Syntax
LDRIVER([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
Use LDRIVER() to learn which language driver the current table or a specified table is
using. If you don't pass LDRIVER() an argument, it returns the name of the language
driver of the current table or, if no tables are open, the global language driver in use.
LDRIVER() also returns information on Paradox and SQL databases.

The language driver associated with a table depends on the DOS code page or the BDE
language driver setting that was in effect when the table was created. With Visual
dBASE, you can choose the language driver that applies to your dBASE data in the
[CommandSettings] section in the DBASEWIN.INI file. For example, you can load a
German language driver to work with a table created while that driver was active.

Example
This example shows the LDRIVER() function and a sample response:

? LDRIVER() && DB437US0

This example first closes all tables and obtains the global language driver. Then it opens
a table and checks whether the table was created with the global language driver. If not,
a warning is displayed:

328 L a n g u a g e R e f e r e n c e

L E F T ()

CLOSE ALL
SET LDCHECK OFF
* this program replaces the LDCHECK alert message
GlobalDriver=LDRIVER()
USE Customer
TableLangDriver=LDRIVER()
SET EXACT ON
IF GlobalDriver<>TableLangDriver

? "Warning: this table was created"+ "with a different language driver"
? "Global Language Driver: "+GlobalDriver
? DBF()+" Language Driver: "+TableLangDriver
WAIT

ENDIF
SET EXACT OFF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ANSI(), CHARSET(), OEM(), SET LDCHECK

LEFT() String data

Returns a specified number of characters from the beginning of a character string or
memo field.

Syntax
LEFT(<expC> | <memo field>, <length expN>)

<expC> | <memo field> The string or memo field to extract characters from.

<length expN> The number of characters to extract from the beginning of the string or
memo field.

Description
Starting with the first character of a character expression or a memo field, LEFT()
returns a specified number, <length expN>, of characters. LEFT() returns a maximum of
32766 characters, the maximum length of a string.

If <length expN> is greater than the number of characters in the specified string or memo
field, LEFT() returns the string as it is, without adding space characters to achieve the
specified length. You can use LEN() to determine the actual length of the returned
string.

If <length expN> is less than or equal to zero, LEFT() returns an empty string. If
<length expN> is greater than or equal to zero, LEFT(<expC>, <length expN>) achieves the
same results as SUBSTR(<expC>, 1, <length expN>).

When LEFT() returns characters from a memo field, it counts two characters for each
carriage-return and linefeed combination (CR/LF).

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 329

L E F T ()+
+
+
+
+
+
+
+
+
+
+
L

Example
The following example uses LEFT() to return a portion of a text string, starting from the
left end of the string:

? LEFT("dBASE",1) && Returns "d"
? LEFT("dBASE",3) && Returns "dBA"
? LEFT("dBASE",9) && Returns "dBASE"
? LEFT("dBASE",0) && Returns ""

The next example uses ISALPHA() and SUBSTR() to determine the character position
of the first alpha character in a string (Address). The derived variable (To) is then used
as the length parameter of LEFT() to display only the street number portion of the
Address field:

CLOSE DATABASES
SET TALK OFF
CLEAR
USE Clients
DO WHILE .NOT. EOF()
? Street_No(Address) && Returns just

&& the street number
SKIP
ENDDO
CLOSE DATABASES

FUNCTION Street_No
Parameter Full_Addr
Full = TRIM(Full_Addr)
Len = LEN(full)
To = 0
IF Len > 0 && Check if longer

Is_Alpha = .F. && than 0
Char_Pos = 1
DO WHILE .NOT. Is_Alpha && Check til alpha

Is_Alpha = ISALPHA(SUBSTR(full,char_pos,1))
IF .NOT. Is_Alpha && Add to variable

To = To + 1 && to if ISALPHA()
ENDIF && returns .F.
Char_Pos = Char_Pos + 1

ENDDO
Street = LEFT(Full,To-1)

ELSE
Street = ""

ENDIF && Return the
RETURN Street && street number

Portability
The <memo field> argument isn't supported in dBASE III PLUS. Both dBASE III PLUS
and dBASE IV limit the return value of LEFT() to 254 characters.

See Also
AT(), LEN(), RIGHT(), SUBSTR()

330 L a n g u a g e R e f e r e n c e

L E N ()

LEN() String data

Returns the number of characters in a specified character string or memo field.

Syntax
LEN(<expC> | <memo field>)

<expC> | <memo field> The character string or memo field whose length to find.

Description
LEN() returns the number of characters (the length) of a character string or memo field.
The length of an empty character string or empty memo field is zero. LEN() counts an
embedded null character, CHR(0), as one character. When LEN() calculates the length
of a memo field, it counts two characters for each carriage-return and linefeed
combination (CF/LF).

To find the length of numeric or float data, use LENNUM().

To find the number of lines in a memo field, use MEMLINES(). To find the length of a
particular line of a memo field, use LEN() with MLINE(). For example,
LEN(MLINE(Descrip,3)) returns the length of the third line in the memo field Descrip.

Example
The following examples use LEN() to determine the length of text strings:

? LEN("Aloha!") && Returns 6
? LEN("") && Returns 0
? LEN("Hello" + " There") && Returns 11

The next example uses LEN() to determine the number of characters in the Notes memo
field. If Notes has no contents, LEN() returns 0:

USE Clients
SCAN

? IIF(LEN(Notes)>0,Notes,"Record ";
+ LTRIM(STR(RECNO()))+" has no Notes")

ENDSCAN
CLOSE DATABASES

Portability
The <memo field> argument isn't supported in dBASE III PLUS, and dBASE III PLUS and
dBASE IV don't count null characters.

See Also
LENNUM(), MEMLINES(), MLINE(), TRIM()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 331

L E N N U M ()+
+
+
+
+
+
+
+
+
+
+
L

LENNUM() Numeric data

Returns the display length of a specified number, including leading spaces.

Syntax
LENNUM(<expN>)

<expN> The numeric or float number whose display length to return.

Description
Use LENNUM() before formatting a display involving numeric values of varying
lengths.

If you pass LENNUM() the name of a numeric field, it returns the length of the field.

If a number has eight or fewer whole-number digits and no decimal point, it is by
default a numeric-type number; the default display length for numeric-type numbers is
10. For example, LENNUM(123) returns 10.

Example
The following example uses LENNUM() to determine the character length of a number:

CLEAR
dec = SET("DECIMALS")
FOR x = 3 TO 9 STEP 1

SET DECIMALS TO x
num_val = 3.2 * 1.53
? "The results of 3.2 * 1.53 – " + STR(num_val,7 + x,x) + " – is " + ;

LTRIM(STR(LENNUM(num_val),2,0)) + " characters in length"
? " when DECIMALS is SET TO " + LTRIM(STR(x,1,0))
?

NEXT
SET DECIMALS TO dec

Portability
Not supported in dBASE III PLUS or dBASE IV. In dBASE III PLUS and dBASE IV.

See Also
LEN(), SET DECIMALS, STR()

LIKE() String data

Returns .T. if a specified string matches a specified skeleton string.

Syntax
LIKE(<skeleton expC>, <expC> | <memo field>)

<skeleton expC> A string containing a combination of characters and wildcards. The
wildcards are ? and *.

332 L a n g u a g e R e f e r e n c e

L I K E ()

<expC> | <memo field> The string or memo field to compare to the skeleton string.

Description
Use LIKE() to compare one string to another. The <skeleton expC> argument contains
wildcard characters and represents a pattern; the <expC> or <memo field> argument is
compared to this pattern. LIKE() returns .T. if <expC> or <memo field> evaluates to a
string that matches <skeleton expC>. To compare the phonetic similarity between two
strings rather than the character-by-character similarity, use DIFFERENCE().

Use the wildcard characters ? and * to form the pattern for <skeleton expC>. An asterisk
(*) stands for any number of characters, including zero characters. The question mark (?)
stands for any single character. Both wildcards can appear anywhere and more than
once in <skeleton string>. Wildcard characters in <skeleton expC> can stand for uppercase
or lowercase letters.

If * or ? appears in <expC> or <memo field>, they are interpreted as literal, not wildcard,
characters, as shown in the following example.

LIKE("a*d","abcd") && returns .T.
LIKE("a*d","aBCd") && returns .T.
LIKE("abcd","a*d") && returns .F.

LIKE() is case-sensitive. Use UPPER() or LOWER() for case-insensitive comparisons
with LIKE(). This is shown in the following example.

LIKE("*xyz","uvwxyz") && returns .T.
LIKE("*xyz","UVWXYZ") && returns .F.
LIKE(LOWER("*xyz"),LOWER("UVWXYZ")) && returns .T.

LIKE() returns .T. if both arguments are empty strings. LIKE() returns .F. if one
argument is empty and the other isn't.

LIKE() isn't affected by SET EXACT or by the current language driver.

Example
The following example uses LIKE() to determine whether two text strings are similar:

? LIKE("abc","abc") && Returns .T.
? LIKE("abc","Abc") && Returns .F.
? LIKE("a?c","abc") && Returns .T.
? LIKE("a*c","abc") && Returns .T.
? LIKE("a*","abc") && Returns .T.
? LIKE("*bc","abc") && Returns .T.
? LIKE("?abc","abc") && Returns .F.

The next example uses LIKE() to list only those records that contain "COMPUTER" in
the company field:

USE Clients
LIST FIELDS Company, Contact ;

FOR LIKE("*COMPUTER",UPPER(Company))
CLOSE DATABASES

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 333

L I N E N O ()+
+
+
+
+
+
+
+
+
+
+
L

Portability
Not supported in dBASE III PLUS. The <memo field> argument isn't supported in
dBASE IV.

See Also
AT(), DIFFERENCE(), LDRIVER(), LOWER(), RAT(), SET EXACT, SUBSTR(),
UPPER()

LINENO() Error handling and debugging

Returns the number of the current program line in the current program, procedure, or
user-defined function (UDF).

Syntax
LINENO()

Description
Use LINENO() to track program flow. Use it in conjunction with PROGRAM() to learn
when a program executes a given line of code. You can also use LINENO() with ON
ERROR to find out which line produces an error.

LINENO() is meaningful only when issued from within a program, procedure, or UDF.
When issued in the Command window, LINENO() returns 0.

LINENO() always returns the actual program line number; the number doesn't reflect
the order in which the line executes within the program.

Example
See ON ERROR for an example of using LINENO().

Portability
Not supported in dBASE III PLUS.

See Also
ERROR(), MESSAGE(), PROGRAM(), RESUME, SUSPEND

334 L a n g u a g e R e f e r e n c e

L I S T

LIST Table organization

Syntax

Description
All LIST commands have equivalent DISPLAY commands that output the same
information; both LIST and DISPLAY output to the results pane of the Command
window. The only difference is that LIST commands list continuously, halting after the
last window of information, while DISPLAY commands start with and pause at the first
window of information. See DISPLAY for a description of how to navigate through
DISPLAY and LIST output in the results pane. See the complementary DISPLAY
commands for descriptions of the information each DISPLAY and LIST command
produces.

If the information output to the results pane is more than the Visual dBASE buffer can
contain, you might not be able to scroll back up to information you've scrolled down
through. Use the TO FILE or TO PRINTER options to save all information to a file or as
printer output.

LIST
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[[FIELDS] <exp list>]
[OFF]
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

Table organization

LIST COVERAGE
[<.COV filename> | ? | <filename skeleton>]
[ALL]
[SUMMARY]
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

Error Handling and
Debugging

LIST FILES
[[LIKE] <filename 1> | <filename skeleton 1>]
[ON <drive>]
[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

Disk and file management

LIST MEMORY
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

Environment

LIST STATUS
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

Environment

LIST STRUCTURE
[IN <alias>]
[TO FILE <filename> | ? | <filename skeleton>] | [TO PRINTER]

Table basics

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 335

L I S T C O U N T ()+
+
+
+
+
+
+
+
+
+
+
L

Example
The following example uses LIST to show selected data from the Clients table:

USE Clients EXCLUSIVE
LIST ALL
* list all fields in all records

GO TOP && begin at the first record
LIST NEXT 10 FIELDS Company, Contact OFF
* list only Company and Contact fields
* in the next 10 records
* OFF turns off the record number

INDEX ON COMPANY TAG COMPANY
* create an index by Company
SEEK "C" && find the first Company beginning with "C"
LIST COMPANY WHILE COMPANY="C" OFF
* show Company names so long as the Company begins
* with the letter "C"

See Also
DISPLAY, DISPLAY COVERAGE, DISPLAY FILES, DISPLAY MEMORY, DISPLAY
STATUS, DISPLAY STRUCTURE

LISTCOUNT() Objects

Returns the number of prompts in a list box.

Syntax
LISTCOUNT(<form reference>.<list box reference>)

<form reference>.<list box reference> <form reference> is an object reference variable pointing
to the form in which the list box is placed. <list box reference> is an object reference
variable pointing to the list box you evaluate.

You can create <form reference> and <list box reference> with the DEFINE command:

* Create an object reference variable, MyForm.
DEFINE FORM MyForm
* Create an object reference variable, xChoose.
DEFINE LISTBOX xChoose OF MyForm

You can also create <form reference> and <list box reference> with the NEW operator:

MyForm = NEW FORM()
xChoose = NEW LISTBOX("MyForm")

Description
Use LISTCOUNT() when you can't anticipate the number of prompts a list box
may have at run time. For example, when you specify "FILE *.*" for the DataSource
property, the number of prompts varies when files are added or deleted from the
default directory.

336 L a n g u a g e R e f e r e n c e

L I S T C O U N T ()

You can use LISTCOUNT() to control loops that evaluate user choices in a multiple-
choice list box. For example, you can see which prompts were chosen by evaluating
each prompt with the LISTSELECTED() function in a DO...WHILE loop.

You make a list box multiple-choice by setting the Multiple property to true (.T.).

Example
The following example defines a form that contains a listbox that displays names from
the ANIMALS.DBF table. Property Multiple .T. provides that the user can select more
than one listbox prompt. The OnRightMouseDown property calls procedure Checked,
which uses LISTCOUNT() and LISTSELECTED() to send the selected prompts to the
Command window results pane with each OnRightMouseDown:

LOCAL f
f = NEW GFORM()
f.Open()

CLASS GFORM OF FORM
this.Left = 58.60
this.Height = 10.12
this.Width = 41.00
this.Text = "Animals of the World"
this.OnRightMouseDown = CHECKED
this.HelpId = ""
this.HelpFile = ""
this.Top = 9.35

DEFINE LISTBOX LB1 OF THIS;
PROPERTY;

Left 9.00,;
Height 4.00,;
ColorNormal "N/W*",;
Width 20.00,;
DataSource "FIELD ANIMALS->NAME",;
ColorHighLight "W+/B",;
Multiple .T.,;
Top 3.00

ENDCLASS

PROCEDURE Checked
FOR i=1 TO LISTCOUNT(Form.LB1)

? LISTSELECTED(Form.LB1,i)
NEXT i
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DO...WHILE, FOR...NEXT, LISTSELECTED(), Multiple

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 337

L I S T S E L E C T E D ()+
+
+
+
+
+
+
+
+
+
+
L

LISTSELECTED() Objects

Returns a list box prompt.

Syntax
LISTSELECTED(<form reference>.<list box reference> [, expN])

<form reference>.<list box reference> <form reference> is an object reference variable pointing
to the form in which the list box is placed. <list box reference> is an object reference
variable pointing to the list box you evaluate.

You can create <form reference> and <list box reference> with the DEFINE command:

* Create an object reference variable, MyForm.
DEFINE FORM MyForm
* Create an object reference variable, xChoose.
DEFINE LISTBOX xChoose OF MyForm

You can also create <form reference> and <list box reference> with the NEW operator:

MyForm = NEW FORM()
xChoose = NEW LISTBOX("MyForm")

<expN> The number of the prompt to evaluate. If you include <expN>,
LISTSELECTED() returns the prompt of the specified item only if it is selected. If you
omit <expN>, LISTSELECTED() returns the currently-chosen prompt in a single-choice
list box or the most recently chosen prompt in a multiple-choice list box.

Description
Use LISTSELECTED() to evaluate which list box prompt or prompts are selected.

Use LISTSELECTED() in conjunction with LISTCOUNT() to evaluate user choices in a
multiple-choice list box. For example, you can determine which prompts were chosen
by evaluating each prompt with the LISTSELECTED() function in a DO...WHILE loop.
(If the list box has an uncertain number of prompts, you use LISTCOUNT() to
determine the number of times to execute the loop.)

You make a list box multiple-choice by setting the Multiple property to true (.T.).

Example
The following example defines a form that contains a listbox that displays names from
the ANIMALS.DBF table. Property Multiple .T. provides that the user can select more
than one listbox prompt. The OnClose procedure Checked uses LISTCOUNT() and
LISTSELECTED() to send the selected record prompts to the Command window results
pane with OnRightMouseDown:

LOCAL f
f = NEW GFORM()
f.Open()

CLASS GFORM OF FORM
this.Left = 58.60
this.Height = 10.12
this.Width = 41.00

338 L a n g u a g e R e f e r e n c e

L K S Y S ()

this.Text = "Animals of the World"
this.OnRightMouseDown = CHECKED
this.HelpId = ""
this.HelpFile = ""
this.Top = 9.35

DEFINE LISTBOX LB1 OF THIS;
PROPERTY;

Left 9.00,;
Height 4.00,;
ColorNormal "N/W*",;
Width 20.00,;
DataSource "FIELD ANIMALS->NAME",;
ColorHighLight "W+/B",;
Multiple .T.,;
Top 3.00

ENDCLASS

PROCEDURE Checked
FOR i=1 TO LISTCOUNT(Form.LB1)

? LISTSELECTED(Form.LB1,i)
NEXT i
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DO...WHILE, FOR...NEXT, LISTCOUNT()

LKSYS() Shared data

Returns information about a locked record or file.

Syntax
LKSYS(<expN>)

<expN> A number representing the information for LKSYS() to return:

<expN> Returns

0 Time when lock was placed
1 Date when lock was placed
2 Login name of user who locked record or file
3 Time of last update or lock
4 Date of last update or lock

5 Login name of user who last updated or locked record or file

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 339

L K S Y S ()+
+
+
+
+
+
+
+
+
+
+
L

Description
LKSYS() returns multiuser information contained in a _dbaselock field of a table. For
LKSYS() to return information, the current table must have a _dbaselock field. Use
CONVERT to add a _dbaselock field to a table. If the current table doesn't contain a
_dbaselock field, LKSYS() returns an empty string for any value of <expN>.

When a record is locked, either explicitly or automatically, the time, date, and login
name of the user placing the lock are stored in the _dbaselock field of the record. When a
file is locked, this same information is stored in the _dbaselock field of the first record of
the table.

Passing 0, 1, or 2 as arguments to LKSYS() returns values only after an attempted file or
record lock has failed. If a file or record lock on a converted table file fails, the
information for LKSYS() arguments 0, 1, and 2 is written to a buffer from the table's
_dbaselock field. If you then pass 0, 1, or 2 to LKSYS(), the information is read from the
buffer. The buffer isn't overwritten until you attempt another lock that fails. Thus, 0, 1,
and 2 always return the information that was current at the time of the last lock failure.

You can pass 3, 4, or 5 as arguments to LKSYS() whether or not the current record or file
is currently locked. These arguments return information about the last successful record
or file lock. When you pass any of these arguments to LKSYS(), it returns information
directly from the _dbaselock field rather than from an internal buffer.

If you pass 2 or 5 to obtain a user login name, and the _dbaselock field is only 8
characters wide, LKSYS() returns an empty string. The first 8 characters of a _dbaselock
field are the count, time, and date information of the last update or lock, so the field
must be wider than 8 characters to fit part or all of the login user name. Set the width of
the field with CONVERT.

Note LKSYS() doesn't return locking information about SQL databases or Paradox tables.

Example
The following example uses RLOCK() to lock a record of the Company table. If not
successful, LKSYS() returns time, date and user id information on the network user
who has locked the record. If the lock is successful the user will branch to a data entry
procedure:

CLEAR
USE Company SHARED
GoTo 2
mRetry="Y"
DO WHILE UPPER(mRetry)="Y"

IF .NOT. RLOCK()
LckTime = LKSYS(0)
LckDate = LKSYS(1)
LckUser = LKSYS(2)

? "Lock Info: ",LckTime, LckDate, LckUser
?
Wait "Try again? (Y/N)" to mRetry

ELSE
? "Lock successful - proceed with data entry"
mRetry=""

ENDIF

340 L a n g u a g e R e f e r e n c e

L O A D D L L

ENDDO
?
WAIT

Portability
Not supported in dBASE III PLUS.

See Also
CHANGE(), CONVERT, FLOCK(), RLOCK(), SET LOCK, UNLOCK

LOAD DLL Windows programming

Initiates a DLL file.

Syntax
LOAD DLL [<path>] <DLL filename>

[<path>] <DLL name> The name of the DLL file. <path> is the directory path to the DLL file
in which the external function is stored.

Description
Use LOAD DLL to make the resources of a DLL file available to your application.

You can also use LOAD DLL to check for the existence of a DLL file. For example, you
can use the ON ERROR command to execute an error trapping routine each time the
LOAD DLL command can't find a specified DLL file.

LOAD DLL does not use the dBASE path to find DLL files. Instead, it searches the
following directories:

1 The current default directory

2 The Windows directory (the directory containing WIN.COM)

3 The Windows system directory (the directory containing GDI.EXE)

4 The directory containing DBASEWIN.EXE

5 The directories listed in the DOS environment variable PATH

6 The directories mapped in a network (if any)

A DLL file is a precompiled library of external routines written in non-dBASE languages
such as C and Pascal. A DLL file can have any extension, although most have extensions
of .DLL.

When you initialize a DLL file with LOAD DLL, dBASE can access its resources;
however, it doesn't become resident in memory until your program or another
Windows program uses its resources.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 341

L O C A L+
+
+
+
+
+
+
+
+
+
+
L

To access a DLL function, create a dBASE function prototype with EXTERN. Then,
using the name you specified with EXTERN, call the routine as you would any dBASE
function.

LOAD DLL also loads and registers VBX controls.

Example
The following example uses LOAD DLL to initialize an image resource from a .DLL file:

LOAD DLL MyPicts.DLL
DEFINE FORM Pics FROM 2,2 TO 20,40
DEFINE Image MyPict OF Pics;

PROPERTY DataSource "Resource MyPicts.DLL 1001", Top 5, Left 5
OPEN FORM Pics

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
EXTERN, RELEASE DLL

LOCAL Memory variables

Declares memory variables that are visible only in the subroutine where they're
declared.

Syntax
LOCAL <memvar list>

<memvar list> The list of memory variables to declare local.

Description
Use LOCAL to declare a list of memory variables available only to the subroutine in
which the command is issued. Local variables differ from those declared PRIVATE in
one way; private variables are available to lower-level subroutines, while local variables
are not. Local variables are accessible only to the subroutine—the program, procedure,
or user-defined function (UDF)—in which they are declared.

A variable that is local to a subroutine is in effect a different variable from one with the
same name in a higher-level or unrelated routine. Once a local variable is assigned a
value, DISPLAY MEMORY and LIST MEMORY indicate a variable of the same name in
a higher-level subroutine as hidden.

To declare a variable LOCAL, do so before initializing it to a particular value. Declaring
a variable LOCAL, however, doesn't create it. After declaring a variable LOCAL, you
can create and initialize it to a value with STORE or =. You can't declare local arrays.
Local variables are erased from memory when the subroutine that creates them finishes
executing.

342 L a n g u a g e R e f e r e n c e

L O C A T E

For more information, see PUBLIC for a table that compares the scope and availability
of public, private, local, and static variables.

Example
The following example uses LOCAL to declare the variable Today as a memory variable
available only in Procedure Results:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM Tenure FROM 0,0 TO 15,40
DEFINE TEXT T1 OF Tenure AT 3,4;

PROPERTY Text "Start Date? (Month/Day/Year)", Width 30
DEFINE Entryfield F1 OF Tenure AT 3,28;

PROPERTY Value {}, Picture "99/99/99", Width 9
DEFINE EntryField F2 OF Tenure AT 5,28;

PROPERTY OnGotFocus Results, Value " ", Width 9
DEFINE TEXT T2 OF Tenure AT 5,4;

PROPERTY TEXT "Years with the company", Width 22
OPEN FORM Tenure

PROCEDURE Results
Local Today
Today = Date()
Form.F2.Value = (Today-Form.F1.Value)/365
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLEAR MEMORY, PRIVATE, PUBLIC, RELEASE, STATIC, STORE

LOCATE Table organization

Searches a table for the first record that matches a specified condition.

Syntax
LOCATE
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]

<scope> The number of records to locate. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by LOCATE. FOR restricts
LOCATE to records that meet <condition 1>. WHILE starts processing with the current
record and continues with each subsequent record as long as <condition 2> is true.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 343

L O C A T E+
+
+
+
+
+
+
+
+
+
+
L

Description
LOCATE performs a sequential search of a table and tests each record for a match to the
specified conditions. If a match is found (FOUND() returns .T.), the record pointer of
the table is positioned at that record. Entering CONTINUE resumes a search, allowing
additional records meeting the specified condition to be found.

If no records meet the specified conditions or the bottom of the table is reached, Visual
dBASE returns the message End of LOCATE scope (if SET TALK is ON) and positions
the record pointer at the end of file (EOF() returns .T., and FOUND() returns .F.). Visual
dBASE also returns this message if entering CONTINUE fails to find a record meeting
the condition specified in the previous LOCATE.

LOCATE ALL and LOCATE FOR <condition> begin a search at the beginning of the
current table, regardless of the position of the record pointer. However, LOCATE
WHILE <condition>, LOCATE NEXT <n>, and LOCATE REST begin the search with
the current record, rather than with the first record.

LOCATE does not require an indexed table; however, if an index is in use, LOCATE
follows its index order. LOCATE uses the rules established by SET EXACT to determine
whether a record meets the specified conditions. If SET EXACT is OFF (the default
setting), only the beginning characters of the string on the right side of an equals sign
need to match the string entered on the left side for LOCATE to determine that a
condition has been met. If SET EXACT is ON, the strings must be identical to meet the
condition.

The search commands LOCATE, SEEK, and FIND are each designed for use under
particular conditions. LOCATE is the most flexible, accepting expressions of any data
type as input and searching any field of a table. For large tables, however, a sequential
search using LOCATE might be slow.

Use FIND or SEEK for greater speed. Both conduct an indexed search, similar to looking
up a topic in a book index and turning directly to the appropriate page, allowing
information to be found almost immediately. Once you use the INDEX command to
create an index for a table, FIND and SEEK use this index to quickly identify an
appropriate record. SEEK offers greater flexibility than FIND by accepting dBASE
expressions as well as character and numeric input in specifying values of the key
expression.

Example
The following example uses LOCATE to find the first company in the file that is in
Texas:

USE Clients EXCLUSIVE
LOCATE FOR State_Prov="TX"
* locate does not depend on the index
IF FOUND()

DISPLAY FIELDS Company, City, State_Prov
ELSE

? "No companies in Texas"
ENDIF

344 L a n g u a g e R e f e r e n c e

L O C K ()

See Also
CONTINUE, FIND, FOUND(), LOOKUP(), SEEK, SEEK(), SET EXACT

LOCK() Shared data

Locks the current record or a specified list of records in the current table or a specified
alias table, and returns .T. if successful.

Syntax
LOCK([<record list expC>] | [<bookmark list expC>][,<alias>])

<list expC> The list of record numbers to lock, separated by commas.

<bookmark list expC> The list of bookmarks (record indicators) returned by
BOOKMARK() specifying a record in a non-dBASE table, such as a Paradox table, that
doesn't have natural record-order record numbers. Separate bookmarks by commas.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes. If you don't include <alias>,
LOCK() acts on the current table.

You don't have to specify record numbers or bookmarks if you want to specify a value
for <alias>. However, if you have specified record numbers or bookmarks, you must
precede <alias> with a comma (,).

Description
LOCK() is equivalent to RLOCK(). For more information, see RLOCK().

Example
See RLOCK() which is identical to LOCK().

Portability
Not supported in dBASE III PLUS. The <bookmark list expC> option isn't supported in
dBASE IV.

See Also
FLOCK(), RLOCK(), SET LOCK, SET RELATION, SET REPROCESS, UNLOCK

LOG() Numeric data

Returns the logarithm to the base e (natural logarithm) of a specified number.

Syntax
LOG(<expN>)

<expN> A positive nonzero number that equals e raised to the log. If you specify 0 or a
negative number for <expN>, dBASE returns an error.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 345

L O G 1 0 ()+
+
+
+
+
+
+
+
+
+
+
L

Description
LOG() returns the natural logarithm of <expN>, expressed as a float number. The
natural logarithm is the power (exponent) to which you raise the mathematical constant
e to get <expN>. For example, LOG(5) returns 1.61 because e^1.61=5.

LOG() is the inverse of EXP(). For example, if LOG(Y)=X, then Y=EXP(X).

Use SET DECIMALS to set the number of decimal places LOG() displays.

Example
The following example uses LOG() to return the base value and uses EXP() to find the
cube roots for a set of passed values:

CLEAR
SET DECIMALS TO 2
? "Values" AT 7,"Log" AT 20, "Exponential of cube" AT 29
? "root of Log values" AT 29
FOR Value = 45 TO 270 STEP 15
? Value AT 3, LOG(Value) AT 12, EXP(LOG(Value)/3) AT 28
NEXT

See Also
EXP(), LOG10(), SET DECIMALS

LOG10() Numeric data

Returns the logarithm to the base 10 of a specified number.

Syntax
LOG10(<expN>)

<expN> A positive nonzero number which equals 10 raised to the log. If you specify 0 or
a negative number for <expN>, dBASE returns an error.

Description
LOG10() returns the common logarithm of <expN>, expressed as a float number. The
common logarithm is the power (exponent) to which you raise 10 to get <expN>. For
example, LOG10(100) returns 2 because 10^2=100.

Use SET DECIMALS to set the number of decimal places LOG10() displays.

Example
The following example uses LOG10() to return base 10 values:

SET DECIMAL TO 2
?
? "Values" AT 7, "Base 10" AT 19, "Exponential of base 10 values" AT 29
FOR value = 50 TO 200 STEP 10

@ ROW() + 1, 3 SAY value
@ ROW(),13 SAY LOG10(value)

346 L a n g u a g e R e f e r e n c e

L O G O U T

@ ROW(),23 SAY LOG10(EXP(value))
NEXT

Portability
Not supported in dBASE III PLUS.

See Also
EXP(), LOG(), SET DECIMALS

LOGOUT Security

LOGOUT logs out the current user and sets up a new log-in dialog.

Syntax
LOGOUT

Description
LOGOUT logs out the current user from the current session and sets up a new log-in
dialog when used with PROTECT. The LOGOUT command enables you to control user
sign-in and sign-out procedures. The command forces a logout and prompts for a login.

When the command is processed, a log-in dialog appears. The user can enter a group
name, log-in name, and password. The PROTECT command establishes log-in
verification functions and sets the user access level.

LOGOUT closes all open tables, their associated files, and program files.

If PROTECT has not been used, and no DBSYSTEM.DB file exists, the LOGOUT
command is ignored.

See also
PROTECT, QUIT

LOOKUP() Table organization

Searches a field for a specified expression and, if the expression is found, returns the
value of a field within the same record.

Syntax
LOOKUP(<return field 1>, <exp>, <lookup field 2>)

<return field 1> The field of the current or specified table whose value you want to return
if a match is found.

<exp> The expression to look for in the <lookup field 2>. Specify an alias when referring
to fields outside the current work area.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 347

L O O K U P ()+
+
+
+
+
+
+
+
+
+
+
L

<lookup field 2> The field of the current or a specified table whose value must match
<exp>. If <return field 2> is a memo field, <exp> must be a character expression.

Description
The LOOKUP() function searches for values of <lookup field 2> that match the specified
expression <exp>. If it finds a match, LOOKUP() positions the record pointer to the first
record where a match occurred and returns the value of <return field 1>.

If no match is found, LOOKUP() returns an empty string (""), 0, an empty date, or .F.,
depending on the data type of <lookup field 1>. Also, EOF() returns .T., FOUND()
returns .F., and the record pointer is positioned at the end of the file.

LOOKUP() performs a sequential search, unless an index whose key matches
<return field 2> is open as a master index. To minimize the time LOOKUP() takes to
search a table, you can specify a master index.

When you use LOOKUP() after executing a SET RELATION command, the <exp> and
<lookup field 2> can be in the parent table, and <return field 1> can be in the child table.

Example
The following example uses LOOKUP() to find the first company in Chicago:

USE Company
Answer=LOOKUP(Company,"Chicago",City)
* Answer now contains the name of a company in
* Chicago or else is empty
IF .NOT. EMPTY(Answer)

? "In Chicago :"+ Answer
ELSE

? "No one in Chicago"
ENDIF

The following example takes each record in the Company table and uses LOOKUP() to
look up in the Contact table the name of a contact at that company:

CLOSE DATA
USE CONTACT
SELECT 2
USE Company EXCLUSIVE
SCAN

? Company,LOOKUP(Contact->Contact,;
Compcode,Contact->Compcode)

ENDSCAN

Portability
Not supported in dBASE III PLUS.

See Also
EOF(), FOUND(), LOCATE, SEEK, SEEK(), SET EXACT, SET INDEX, SET ORDER

348 L a n g u a g e R e f e r e n c e

L O W E R ()

LOWER() String data

Converts all uppercase characters in a string to lowercase and returns the resulting
string.

Syntax
LOWER(<expC> | <memo field>)

<expC> | <memo field> The character string or memo field to convert to lowercase.

Description
LOWER() converts the uppercase alphabetic characters in a character expression or
memo field to lowercase. LOWER() ignores digits and other characters. LOWER()
returns a maximum of 32766 characters, the maximum length of a string.

The current language driver defines the character values that are lowercase and
uppercase alphabetic. In a U.S. language driver, a lowercase alphabetic character is from
a to z, and an uppercase alphabetic character is from A to Z. See Appendix C in the
Programmer's Guide for more information about language drivers.

Example
The following example uses LOWER() to convert uppercase text to lowercase:

? LOWER("Technical") && Returns "technical"
? LOWER("") && Returns ""
? LOWER("12 APPLES") && Returns "12 apples"

In a field containing names in the format FIRSTNAME (Space) LASTNAME all in
capital letters, UPPER() and LOWER() can be used to change the name string to upper-
and lowercase as follows:

USE Contact
REPLACE ALL Contact WITH UPPER(SUBSTR(Contact,1,1))+;

LOWER(SUBSTR(Contact,2,AT(" ",Contact)-2))+ " " +;
UPPER(SUBSTR(Contact,AT(" ",Contact)+1,1))+;
LOWER(SUBSTR(Contact,AT(" ",Contact)+2,16))

While this example demonstrates the use of UPPER(), LOWER(), and SUBSTR() to
manipulate text strings, the previous task could also be accomplished by the following
command.

REPLACE ALL Contact with PROPER(Contact)

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS.

See Also
CHARSET(), ISALPHA(), ISLOWER(), ISUPPER(), LDRIVER(), PROPER(),
UPPER()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 349

L T R I M ()+
+
+
+
+
+
+
+
+
+
+
L

LTRIM() String data

Returns a string with no leading space characters.

Syntax
LTRIM(<expC> | <memo field>)

<expC> | <memo field> The string or memo field to remove the leading space characters
from.

Description
LTRIM() returns a character expression or memo field with no leading space characters.
LTRIM() returns a maximum of 32766 characters, the maximum length of a string.

Using LTRIM() with a memo field removes leading spaces only at the beginning of the
first line of the field. To remove leading spaces from a particular line of a memo field,
use LTRIM() with MLINE().

To remove trailing space characters from a string or memo field, use RTRIM() or
TRIM().

Example
The following example uses LTRIM() to remove leading spaces from text in a character
field:

? STR(11.95,8,2) && Returns 11.95
? LTRIM(STR(11.95,8,2)) && Returns 11.95

Numeric data defaults to the right in a table while character data defaults left. Further,
when numeric data is stored to a memory variable, the variable defaults to 10 spaces
long. The following example uses LTRIM() and STR() to left-justify numeric data:

USE Clients
96 && Positions record pointer at record number 96
X=Startbal && store contents of Startbal to X
? X && Returns 56.36
Y=LTRIM(STR(X,13,2))
? Y && Returns 56.36

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS, and dBASE
IV and dBASE III PLUS limit the return value of LTRIM() to 254 characters.

See Also
LEFT(), MLINE(), RIGHT(), RTRIM(), STR(), SUBSTR(), TRIM()

350 L a n g u a g e R e f e r e n c e

L U P D A T E ()

LUPDATE() Fields and records

Returns the date of the last change to the current or a specified table.

Syntax
LUPDATE([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
LUPDATE() displays the last update date of the specified table. If no table is open,
LUPDATE() returns a blank date. LUPDATE() returns the date in the form mm/dd/
yy. This format can be modified with the SET CENTURY, SET DATE, and SET MARK
commands.

Example
The following example uses LUPDATE() to return the date that a specified table was
last updated:

USE Company IN SELECT()
USE Contact IN SELECT()
? "The table - Company - was last updated on " + DTOC(LUPDATE("Company"))
? "The table - Contact - was last updated on " + DTOC(LUPDATE("Contact"))
CLOSE ALL

See Also
DTOC(), SET CENTURY, SET DATE

MAX() Expressions and type conversion

Compares two expressions of the same data type and returns the greater value. If
comparing two logical expressions, returns .T. if one or both expressions are true.

Syntax
MAX(<exp 1>, <exp 2>)

<exp 1> An expression (character, date, logical, float, or numeric) to compare to a
second expression of the same data type. You can compare float to numeric type
numbers.

<exp 2> An expression of the same data type as <exp 1> to compare to <exp 1>. You can
compare float to numeric type numbers.

Description
Use MAX() to compare two numbers, two character strings, two dates, or two logical
values to determine the greater of the two values compared. MAX() returns:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 351

M C O L ()+
+
+
+
+
+
+
+
+
+
+
+
M

• The greater of two numbers

• The character string with the higher collation value of two character strings. Collation
values are determined by the language driver in use. For more information on
language drivers, see Appendix C in the Programmer's Guide.

• The later of two dates

• True if one or both of two logical expressions evaluate to true

If <exp 1> and <exp 2> are equal, MAX() returns their value. For example, if you issue
STORE 100 TO mvar1 and STORE 50+50 TO mvar2, MAX(mvar1,mvar2) returns 100.

If you use MAX() with character strings, first issue SET EXACT ON to ensure accurate
results. When comparing character strings, MAX() is case-sensitive.

Example
The following example uses MAX() to compare a YTD_Sales field value with a memory
variable that holds a computed average and returns the greater value:

CLEAR
SET TALK OFF
USE Company
AVERAGE YTD_Sales FOR YTD_Sales<>0 TO Midpt
GO TOP
? CENTER("Subsidiaries Exceeding Corporate Average Sales")
?
? "Company", "Subsid Avg" AT 27, "YTD Sales" AT 42, "Excess" AT 56
? REPLICATE("*",7) AT 0, REPLICATE("*",10) AT 27, ;

REPLICATE("*",9) AT 42, REPLICATE("*",6) AT 56
DO WHILE .NOT. EOF()

IF MAX(YTD_Sales,MidPt)=Ytd_Sales
? Company, Midpt AT 25, YTD_Sales, YTD_Sales - Midpt

ENDIF
SKIP

ENDDO
RETURN
CLOSE ALL

Portability
In dBASE III PLUS, MAX() supports only numeric expressions. In dBASE IV, MAX()
doesn't support logical expressions.

See Also
CALCULATE, IIF(), MIN(), LDRIVER(), SET EXACT, SET LDCHECK

MCOL() Keyboard and mouse events

Returns the current column position of the mouse pointer. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use properties such as
OnLeftMouseDown to manage mouse actions in forms.

352 L a n g u a g e R e f e r e n c e

M D

For complete syntax information on MCOL(), see online Help. For information about
working with forms, see the Forms chapters in the User's Guide.

MD Disk and file utilities

Creates a new DOS directory.

Syntax
MD <directory>

<directory> The directory you want to create.

Description
MD and MKDIR are equivalent commands. See the description of MKDIR for more
information.

Example
See MKDIR for an example of MD.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CD, MKDIR, SET DIRECTORY

MDOWN() Keyboard and mouse events

Returns .T. if the mouse button is pressed, .F. if it is not. This command is used primarily
in a non-event driven environment. In Visual dBASE, use properties such as
OnLeftMouseDown to manage mouse actions in forms.

For complete syntax information on MDOWN(), see online Help. For information about
working with forms, see the Forms chapters in the User's Guide.

MDX() Table organization

Returns the name of an .MDX file open in the current or a specified work area.

Syntax
MDX(<index tag expN>[, <alias>])

<index tag expN> The position of an index tag in the open multiple index file whose name
you want to return.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 353

M D Y ()+
+
+
+
+
+
+
+
+
+
+
+
M

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
MDX() returns the name of the .MDX file open in the current or specified work area that
contains a specified index tag. The index tag position corresponds to the .MDX file
position in the index file list specified by SET INDEX TO, SET ORDER TO, or USE
commands. If SET FULLPATH is ON, MDX() also returns the drive and directory
location of the .MDX file in addition to its name.

If you do not specify an index order number, MDX() returns the name of the .MDX file
that contains the master index tag. If you do not specify an index order number and the
master index is an .NDX file, MDX() returns an empty string (""). MDX() also returns
an empty string if there is no .MDX file open or no index tag in the specified position.

Example
The following example uses MDX() to determine the .MDX files that are open for the
current table:

USE Company EXCLUSIVE
? 1,MDX(1)
? 2,MDX(2)
? " Only one MDX is open"
INDEX ON City TAG City OF Location
? 1,MDX(1)
? 2,MDX(2)
? "Now two MDXs are open"

Portability
Not supported in dBASE III PLUS.

See Also
FOR(), INDEX, NDX(), SET FULLPATH, SET INDEX, SET ORDER, TAG(),
TAGCOUNT(), TAGNO(), USE

MDY() Date and time data

Returns a specified date as a character string in MONTH DD, YY format.

Syntax
MDY(<expD>)

<expD> The date expression to return as a character string in MONTH DD, YY format.

Description
MDY() returns a date in MONTH DD, YY or MONTH DD, YYYY format, where
MONTH is the full month name, DD is the day number, and YY is the year number. If
SET CENTURY is OFF (the default), MDY() returns the year as 2 digits. If SET

354 L a n g u a g e R e f e r e n c e

M E M L I N E S ()

CENTURY is ON, MDY() returns the year as 4 digits. MDY() always returns the day
portion as 2 digits.

Enter <expD> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expD> matches the date format
in use when your program runs.

If you pass an invalid date to MDY(), dBASE converts the date to a valid one and
returns that date in MONTH DD, YY or MONTH DD, YYYY format. If you pass an
empty or non-date expression delimited with braces ({ }) to MDY(), it returns
"Unknown 00, 00" or "Unknown 00, 0000". If you pass a non-date expression or an
expression that isn't delimited with braces to MDY(), it returns an error.

Example
See DMY() for an example of using MDY(), substituting MDY() for any DMY()
reference.

Portability
Not supported in dBASE III PLUS.

See Also
CDOW(), CMONTH(), DAY(), DMY(), DOW(), MONTH(), SET CENTURY, YEAR()

MEMLINES() Fields and records

Returns the number of lines in a memo field.

Syntax
MEMLINES(<memo field> [,<line length expN>])

<memo field> The memo field the MEMLINES() function operates on.

<line length expN> Specifies the line length used in calculating the number of lines in a
memo field. <expN> can be set to any number from 8 to 255. If <expN> is not specified,
MEMLINES() calculates each line using the memo width specified using the SET
MEMOWIDTH command.

Description
The MEMLINES() function returns the number of lines in a memo field based on the
memo width specified by the line length parameter. If you don't specify a line length,
MEMLINES() treats the memo field text as if it were wordwrapped within a display—
50 characters wide unless you specify another display width with the SET
MEMOWIDTH command.

If a word doesn't completely fit within the remainder of a line, MEMLINES() includes
that word at the beginning of the next line. If the number of characters in a word is
longer than the default or specified memo field line length, MEMLINES() truncates the

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 355

M E M L I N E S ()+
+
+
+
+
+
+
+
+
+
+
+
M

word at the end of the line and includes the remainder of the word at the beginning of
the next line.

Example
The following example uses MEMLINES() to return the number of lines in a memo field
as a function of a user entered MEMOWIDTH. As a line counter variable is incremented
down the page, MEMLINE() is used to determine whether the next memo will fit on the
current page:

SET TALK OFF
CLEAR
colwidth = 10
@ 6,12 SAY "Report will be how many columns wide? " ;

GET colwidth PICTURE "99" VALID colwidth > 9 .AND. colwidth < 68
READ
mwidth = SET("MEMOWIDTH")
SET MEMOWIDTH TO colwidth
USE Company
output_to = "S"
IF output_to = "S"

pglngth = 15
ELSE

pglngth = 58
ENDIF
linecnt = 1
memoline = 1
DO WHILE .NOT. EOF()

CLEAR
linecnt = 1
DO WHILE linecnt + MEMLINES(Notes) <= pglngth .AND. .NOT. EOF()

? Company AT 2
linecnt = linecnt + 1
memoline = 1
DO WHILE memoline <= MEMLINES(Notes) .AND. MEMLINES(Notes) <> 0

? MLINE(Notes,memoline)AT 12
linecnt = linecnt + 1
memoline = memoline + 1

ENDDO
SKIP

ENDDO
WAIT "Press any key to continue"

ENDDO
CLOSE ALL
SET MEMOWIDTH TO mwidth

Portability
Not supported in dBASE III PLUS. The line length argument is not supported in
dBASE IV.

See Also
MLINE(), SET MEMOWIDTH, STORE MEMO

356 L a n g u a g e R e f e r e n c e

M E M O R Y ()

MEMORY() Environment

Returns the number of kilobytes currently available in random access memory (RAM).

Syntax
MEMORY([<expN>])

<expN> Visual dBASE ignores this parameter; it is included for backward compatibility
with dBASE IV.

Description
Use MEMORY() to determine how much memory is available in the system. The value
MEMORY() returns includes memory made available by the use of a Windows swap
file.

You might want to check available memory before using a command such as RUN or
RUN() from within an application, to make sure the called application will load and run
properly.

Example
The following example warns if the user has less than a megabyte of RAM available:

IF MEMORY()>=1000
? "You have at least a megabyte of RAM"

ELSE
?? "Warning: You have less than a megabyte of RAM:"
? MEMORY(),"Kb"

ENDIF

Portability
Not supported in dBASE III PLUS. In dBASE IV, <expN> can be a value from 0 to 7, with
each value returning memory information relevant in a DOS environment.

See Also
DIR, DISPLAY MEMORY, FLUSH, LIST, RUN, RUN()

MENU() dBASE IV menus

Returns the name of the current dBASE IV menu bar as an uppercase character string.
This command is supported primarily for compatibility with dBASE IV. In Visual
dBASE, use INSPECT() to return information associated with objects in forms.

For complete syntax information on MENU(), see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 357

M E S S A G E ()+
+
+
+
+
+
+
+
+
+
+
+
M

MESSAGE() Error handling and debugging

Returns the error message of the most recent dBASE error.

Syntax
MESSAGE()

Description
Use MESSAGE() with other error-trapping commands and functions, such as ON
ERROR, RETRY, and ERROR(), to substitute specific responses and actions for dBASE
default responses to errors.

MESSAGE() is initially set to an empty string. MESSAGE() returns an error message
when an error occurs, and remains set to that error message until one of the following
happens:

• Another error occurs
• RETRY is issued
• The subroutine in which the error occurs completes execution

To learn the IDAPI error message of the last IDAPI error generated by the current table,
use DBMESSAGE().

See the table in the description of ERROR() that compares CERROR(), ERROR(),
MESSAGE(), DBERROR(), DBMESSAGE(), SQLERROR(), and SQLMESSAGE().

See online Help for a listing of all dBASE error messages.

Example
See ON ERROR for an example of using MESSAGE().

Portability
The error messages of some errors in dBASE IV and dBASE III PLUS are different from
the error messages for the same errors in Visual dBASE. See online Help for more
information.

See Also
CERROR(), DBERROR(), DBMESSAGE(), ERROR(), ON ERROR, RETRY,
SQLERROR(), SQLMESSAGE()

MIN() Expressions and type conversion

Compares two expressions of the same data type and returns the lesser value. If
comparing two logical expressions, returns .T. if one or both expressions are true.

Syntax
MIN(<exp 1>, <exp 2>)

358 L a n g u a g e R e f e r e n c e

M I N ()

<exp 1> An expression (character, date, logical, float, or numeric) to compare to a
second expression of the same data type. You can compare float to numeric type
numbers.

<exp 2> An expression of the same data type as <exp 1> to compare to <exp 1>. You can
compare float to numeric type numbers.

Description
Use MIN() to compare two numbers, two character strings, two dates, or two logical
values to determine the lesser of the two values compared. MIN() returns:

• The smaller of two numbers

• The character string with the lower collation value of two character strings. Collation
values are determined by the language driver in use. For more information on
language drivers, see Appendix C in the Programmer's Guide.

• The earlier of two dates

• False if one or both of two logical expressions evaluates to false

If <exp 1> and <exp 2> are equal, MIN() returns their value. For example, if you issue
STORE 100 TO mvar1 and STORE 50+50 TO mvar2, MIN(mvar1,mvar2) returns 100.

If you use MIN() with character strings, first issue SET EXACT ON to ensure accurate
results. When comparing character strings, MIN() is case-sensitive.

Example
The following example uses MIN() to compare a YTD_Sales field value with a memory
variable that holds a computed average and returns the smaller amount:

CLEAR
SET TALK OFF
USE Company
AVERAGE YTD_Sales FOR YTD_Sales<>0 TO Midpt
GO TOP
? CENTER("Subsidiaries Below Corporate Average Sales")
?
? "Company", "Subsid Avg" AT 27, "YTD Sales" AT 42, "Amount Below Avg" AT 56
? REPLICATE("*",7) AT 0, REPLICATE("*",10) AT 27, ;

REPLICATE("*",9) AT 42, REPLICATE("*",16) AT 56
DO WHILE .NOT. EOF()

IF MIN(YTD_Sales,MidPt)=Ytd_Sales
? Company, Midpt AT 25, YTD_Sales, Midpt - YTD_Sales

ENDIF
SKIP

ENDDO
RETURN
CLOSE ALL

Portability
In dBASE III PLUS, MIN() supports only numeric expressions. In dBASE IV, MIN()
doesn't support logical expressions.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 359

M K D I R+
+
+
+
+
+
+
+
+
+
+
+
M

See Also
CALCULATE, IIF(), MAX(), SET EXACT

MKDIR Disk and file utilities

Creates a new DOS directory.

Syntax
MKDIR <directory>

<directory> The directory you want to create.

Description
Use MKDIR to create a new directory without exiting dBASE. MD is equivalent to
MKDIR.

MKDIR is equivalent to the DOS command MKDIR or MD. When <directory> is a single
name, MKDIR creates a new directory of that name beneath the current directory. When
<directory> includes a path, MKDIR creates a new directory in the specified path. The
path name must be an existing path, with the name of the new directory at the end
preceded by a backslash. If <directory> is preceded by a backslash, MKDIR creates a new
directory under the root directory.

The new directory name must follow the same naming conventions as DOS directory
names.

After you create the new directory, you can use CD or SET DIRECTORY to make the
new directory the default directory. You can also use SET PATH to include the new
directory in the dBASE search path.

Example
The following examples use MKDIR or MD to create a subdirectory on drive D called
Project, three subdirectories below Project and another subdirectory on the C drive:

MKDIR D:\Project
MKDIR D:\Project\Programs
MKDIR D:\Project\Data
MD D:\Project\Backup
MD C:\Editor

If you try to make a directory that already exists or is on a path that does not exist you
will get an error message

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CD, SET DIRECTORY, SET PATH

360 L a n g u a g e R e f e r e n c e

M L I N E ()

MLINE() Fields and records

Extracts a specified line of text from a memo field in the current record.

Syntax
MLINE(<memo field> [, <line number expN > [, <line length expN>]])

<memo field> The memo field the MLINE() function operates on.

<line number expN > The number of the line in the memo field returned by the MLINE()
function. The default for <line number expN> is 1.

<line length expN > The number that determines the length of a line in the memo field.
<line length expN> can be set to any number from 8 to 255. If <line length expN> is not set,
the SET MEMOWIDTH setting specifies the length of the line. If <line number expN> of
the memo field has less than <line length expN> characters, MLINE() adds characters to
the end of the returned string from the line following <line number expN>.

Description
MLINE() returns a specified line of text from a memo field. MLINE() treats the text of
the memo field as if it were wordwrapped within a display width specified by the SET
MEMOWIDTH setting or by <line length expN>. If a word doesn't completely fit within
the specified length, MLINE() includes that word at the beginning of the next line and
doesn't include any portion of the word in the returned string. Thus, the text that
appears on a particular line is determined by the length of each line and wordwrapping
text.

Example
See MEMLINES() for an example of MLINE().

Portability
Not supported in dBASE III PLUS. The line length argument is not supported in
dBASE IV.

See Also
MEMLINES(), REPLACE MEMO, SET MEMOWIDTH, STORE MEMO

MOD() Numeric data

Returns the modulus (remainder) of one number divided by another.

Syntax
MOD(<dividend expN>, <divisor expN>)

<dividend expN> The number to be divided.

<divisor expN> The number to divide by.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 361

M O D I F Y . . .+
+
+
+
+
+
+
+
+
+
+
+
M

Description
MOD() divides <dividend expN> by <divisor expN> and returns the remainder as a
whole number. For example MOD(X,Y) returns the remainder of x/y.

MOD() returns a positive number if <divisor expN> is positive, and returns a negative
number if <divisor expN> is negative.

The modulus formula is

<dividend>-FLOOR(<dividend>/<divisor>)*<divisor>

where FLOOR() returns the greatest integer less than or equal to its argument.

Example
An example of MOD() is shown in the example for INT().

See Also
CEILING(), FLOOR(), INT()

MODIFY... Information

Modifies the corresponding object or file.

Syntax

MODIFY APPLICATION
[<filename> | ? | <filename skeleton>]

Forms

MODIFY CATALOG
[<filename> | ? | <filename skeleton>]

Table basics

MODIFY COMMAND
[<filename> | ? | <filename skeleton>]
[WINDOW <window name>]

Programs

MODIFY FILE
[<filename> | ? | <filename skeleton>]
[WINDOW <window name>]

Disk and file utilities

MODIFY FORM
[<filename> | ? | <filename skeleton>]

Forms

MODIFY LABEL
[<filename> | ? | <filename skeleton>]

Input/Output

MODIFY MENU
[<filename> | ? | <filename skeleton>]

Forms

MODIFY POPUP
[<filename> | ? | <filename skeleton>]

Forms

362 L a n g u a g e R e f e r e n c e

M O D I F Y S T R U C T U R E

Description
The MODIFY commands listed here operate the same as their CREATE command
counterparts. For more information, see the corresponding CREATE commands.

MODIFY STRUCTURE Table basics

Allows you to modify the structure of the current table. You can modify the structure of
both dBASE .DBF and Paradox .DB files, but not SQL tables.

Syntax
MODIFY STRUCTURE

Description
Use MODIFY STRUCTURE to change the structure of the current table by adding or
deleting fields, or changing a field name, width, or data type. Issuing the MODIFY
STRUCTURE command opens the Table Designer, an interactive environment in which
you can create or modify the structure of a table. For more information about using the
Table Designer, see the User's Guide.

Before allowing changes to the structure of a dBASE table, Visual dBASE makes a
backup of the original table assigning the file a .DBK extension. Visual dBASE then
creates a new table file with the .DBF extension and copies the modified table structure
to that file. When you've finished modifying a table structure, Visual dBASE copies the
content of the backup file into the new structure. If data is accidentally truncated or lost,
you can recover the original data from the .DBK file. Before modifying the structure of a
table, make sure that you have sufficient disk space to create the backup file plus any
temporary storage required to copy records between the two tables (approximately
twice the size of the original table).

If a table contains a memo field, MODIFY STRUCTURE also creates a backup memo file
to store the original memo field data. This file has the same name as the table, but is
given a .TBK extension.

You shouldn't change a field name and its width or type at the same time. If you do,
Visual dBASE won't be able to append data from the old field, and your new field will
be blank. Change the name of a field, save the file, and then use MODIFY STRUCTURE
again to change the field width or data type.

MODIFY QUERY
[<filename> | ? | <filename skeleton>]

Table organization
MODIFY REPORT
[<filename> | ? | <filename skeleton>]

Input/Output

MODIFY SCREEN
[<filename> | ? | <filename skeleton>]

Forms

MODIFY VIEW
[<filename> | ? | <filename skeleton>]

Table organization

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 363

M O D I F Y S T R U C T U R E+
+
+
+
+
+
+
+
+
+
+
+
M

Also, don't insert or delete fields from a table and change field names at the same time. If
you change field names, MODIFY STRUCTURE appends data from the old file by using
the field position in the file. If you insert or delete fields as well as change field names,
you change field positions and could lose data. You can, however, change field widths
or data types at the same time as you insert or delete fields. In those cases, since
MODIFY STRUCTURE appends data by field name, the data will be appended
correctly.

Visual dBASE successfully converts data between a number of field types. If you change
field types, however, keep a backup copy of your original file, and check your new files
to make sure the data has been converted correctly.

If you convert numeric fields to character fields, Visual dBASE converts numbers from
the numeric fields to right-aligned character strings. If you convert a character field to a
numeric field, Visual dBASE converts numeric characters in each record to digits until it
encounters a non-numeric character. If the first character in a character field is a letter,
the converted numeric field will contain zero.

You can convert logical fields to character fields, and vice versa. You can also convert
character strings that are formatted as a date (for example, mm/dd/yy or mm-dd-yy) to
a date field, or convert date fields to character fields. You can't convert logical fields to
numeric fields.

In general, Visual dBASE attempts to make a conversion you request, but the conversion
must be a sensible one or data may be lost. Numeric data can easily be handled as
characters, but logical data, for example, cannot become numeric. To convert
incompatible data types (such as logical to numeric), first add a new field to the file, use
REPLACE to convert the data, then delete the old field.

If you modify the field name, length, or type of any fields that have an associated tag in
the production (.MDX) file, the tag is rebuilt. If any indexes are open when you modify a
table structure, dBASE automatically closes those indexes when saving the modified
table. You should re-index the table after you modify its structure.

Example
The following example uses MODIFY STRUCTURE in the Command window to
change the structure of a table:

USE Clients IN SELECT() EXCLUSIVE
MODIFY STRUCTURE
CLOSE DATABASES

The structure of a table can also be displayed but not changed by using the following
commands in the Command window:

USE CLIENTS IN SELECT() NOUPDATE
DISPLAY STRUCTURE
CLOSE DATABASES

See Also
APPEND, APPEND MEMO, COPY STRUCTURE, CREATE, DISPLAY STRUCTURE,
LIST STRUCTURE, REPLACE

364 L a n g u a g e R e f e r e n c e

M O N T H ()

MONTH() Date and time data

Returns the number of the month for a specified date expression.

Syntax
MONTH(<expD>)

<expD> The date expression whose corresponding month number to return.

Description
MONTH() returns a date's month number—a value from 1 to 12.

Enter <expD> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expD> matches the date format
in use when your program runs.

If you pass an invalid date to MONTH(), dBASE converts the date to a valid one and
returns the month number of that date. If you pass an empty or non-date expression
delimited with braces ({ }) to MONTH(), it returns 0. If you pass a non-date expression
or an expression that isn't delimited with braces to MONTH(), it returns an error.

Example
The following example uses MONTH() to determine the month number of the system
date and combine it with a text string that includes the correct suffix:

IF SET("CENTURY") <> "OFF"
SET CENTURY OFF

ENDIF
IF SET("DATE") <> "AMERICAN"

SET DATE AMERICAN
ENDIF
month = MONTH(DATE())
mon_strng = LTRIM(STR(month))
DO CASE

CASE month = 1
mon_strng = "1st"

CASE month = 2
mon_strng = "2nd"

CASE month = 3
mon_strng = "3rd"

CASE month = 4 .OR. month = 5 .OR. month = 6 ;
.OR. month = 6 .OR. month = 7 .OR. month = 8 ;
.OR. month = 9 .OR. month = 10 ;
.OR. month = 11 .OR. month = 12
mon_strng = mon_strng + "th"

ENDCASE
? "This is the " + mon_strng + " month of " + ;

LTRIM(STR(YEAR(DATE()))) + " " + DTOC(DATE())

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 365

M O V E W I N D O W+
+
+
+
+
+
+
+
+
+
+
+
M

See Also
CMONTH(), DAY(), DATE(), SET CENTURY, SET DATE

MOVE WINDOW dBASE IV windows

Redefines the row and column coordinates of the existing dBASE IV-style window
<window name>. The window size, shape, and contents are not affected. This command
is supported primarily for compatibility with dBASE IV. In Visual dBASE, use the
Moveable property of a form to control whether the user can move the form.

For complete syntax information on MOVE WINDOW, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

MROW() Keyboard and mouse events

Returns the current row position of the mouse pointer. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use properties such as
OnLeftMouseDown to manage mouse actions in forms.

For complete syntax information on MROW(), see online Help. For information about
working with forms, see the Forms chapters in the User's Guide.

MSGBOX() Forms

Opens a dialog box that displays a message and pushbuttons, and returns a numeric
value that corresponds to the pushbutton the user chooses.

Syntax
MSGBOX(<message expC>, [<title expC>, [<box type expN>]])

<message expC> The message to display in the dialog box.

<title expC> The title to display in the title bar of the dialog box.

<box type expN> A numeric value that determines which icon (if any) and which
pushbuttons to display in the dialog box. To specify a dialog box with pushbuttons and
no icon, use the following numbers:

<box type expN> Pushbuttons

0 OK
1 OK, Cancel
2 Abort, Retry, Ignore
3 Yes, No, Cancel
4 Yes, No
5 Retry, Cancel

366 L a n g u a g e R e f e r e n c e

M S G B O X ()

For example, the following command opens a dialog box with Yes, No, and Cancel
pushbuttons, and no icon.

Verdict = MSGBOX("Click me", "Bye!", 3)

To specify a dialog box with pushbuttons and an icon, add any of the following
numbers to <box type expN>:

For example, the following command opens the same dialog box as the previous one,
this time with a blue i:

? MSGBOX("Click me", "Bye!", 67) && 3 + 64

When a dialog box has more than one pushbutton, the left most pushbutton is normally
the default, However, if you add 258 to <box type expN>, the second pushbutton is the
default, and if you add 512 to <box type expN>:, the third pushbutton is the default. For
example, the following command opens the same dialog box as the previous one with
the Cancel pushbutton as the default:

? MSGBOX("Click me", "Bye!", 579) && 3 + 64 + 512

If you omit <box type expN>, box type 0 is used by default.

Description
Use MSGBOX() to prompt the user to make a choice or acknowledge a message by
clicking a pushbutton in a modal dialog box.

While the dialog box is open, program execution stops and the user cannot give focus to
another window. When the user chooses a pushbutton, the dialog box disappears,
program execution resumes, and MSGBOX() returns a numeric value that indicates
which pushbutton was chosen.

Number to add Icon displayed

16

32

48

64

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 367

M S G B O X ()+
+
+
+
+
+
+
+
+
+
+
+
M

For example, you can use the return value to make branching decisions in an error
handling routine. Each time an error condition occurs, the routine could use MSGBOX()
to open a dialog box containing Abort, Retry, and Ignore pushbuttons. The routine
could evaluate the number returned by MSGBOX() and take the appropriate action.

Example
The following example uses an error handling routine to display a dialog box offering
Abort, Retry, and Ignore pushbuttons each time an error condition is generated. If the
user clicks Abort, execution is terminated. If the user clicks Retry, control returns to the
master routine. If the user clicks Ignore, execution continues after the command that
failed.

* The master routine
SET TALK OFF
FOR i = 1 to 5

DO MessUp
? "Try again" && This command executes only if

&& user clicks the Retry button.
NEXT i
RETURN

PROCEDURE MessUp
ON ERROR DO FixIt WITH;

PROGRAM(), MESSAGE(), LINENO()

? COMPANY() && This function does not exist,
&& so it generates an error.

DIR && This command executes only if
&& user clicks Ignore button.

RETURN

PROCEDURE FixIt(PRO, MES, LIN)
Verdict = MSGBOX("Problem at line "+;

LTRIM(STR(LIN))+;
", "+MES, "Routine's name: "+PRO, 18)

DO CASE
CASE Verdict = 3 && Abort (Stop execution)

CANCEL
CASE Verdict = 4 && Retry (Try again)

Pushbutton Return value

OK 1
Cancel 2
Abort 3
Retry 4
Ignore 5

Yes 6
No 7

Chapter 4Co
mma

nds
and

functi
ons

368 L a n g u a g e R e f e r e n c e

N D X ()

RETURN TO MASTER
CASE Verdict = 5 && Ignore (Go on)

RETURN
ENDCASE

RETURNPortability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ACCEPT, READMODAL(), ReadModal(), WAIT

NDX() Table organization

Returns the name of an .NDX file.

Syntax
NDX([<index position expN> [, <alias>]])

<index position expN> Selects an .NDX file by the position of an index file in the list of
open indexes for the current or a specified table.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
The NDX() function returns the name of an .NDX file based on the position of an index
file in the list of open indexes for the current or a specified table. The position of indexes
in the index file list is specified by SET INDEX, SET ORDER, or USE commands.

If you do not specify an index position, NDX() returns the name of the current master
index file, or an empty string ("") if the master index is provided by an .MDX file. NDX()
also returns an empty string if there is no index in the specified index position for the list
of open indexes defined by the SET INDEX or USE commands.

If SET FULLPATH is ON, NDX() also returns the drive and directory location of the
.NDX file in addition to its name.

Example
The following example creates three indexes and then uses NDX() to determine the
names of .NDX files open for the current table:

USE Company EXCLUSIVE
INDEX ON CompCode TO CompCode
INDEX ON City TO City
INDEX ON Zip_P_code TO Zip
SET INDEX TO Zip, CompCode, City
* Now all 3 indexes are open
? "Index 1 ",NDX(1)
? "Index 2 ",NDX(2)
? "Index 3 ",NDX(3)

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 369

N E T W O R K ()+
+
+
+
+
+
+
+
+
+
+
+
+
N

See Also

DBF(), FIELD(), KEY(), MDX(),ORDER(), SET FULLPATH, SET INDEX, SET
ORDER, TAG(), USE

NETWORK() Shared data

Returns .T. if dBASE is running on a system in which a local area network (LAN) card or
other multiuser system card has been installed.

Syntax
NETWORK()

Description
Use NETWORK() to determine if a program might be running in a network
environment. For example, your program might need to do something in a network
environment that it doesn't need to do in a single-user environment, such as issue USE
with the EXCLUSIVE option.

NETWORK() returns .T. if a network card is installed; it doesn't determine whether a
user is currently running dBASE in a network environment. To determine whether a
user is actually working in a network environment, use ID().

Example
This example uses NETWORK() to test if the user has a network card installed. The user
will SET EXCLUSIVE ON only when it might be needed. Without a network card, SET
EXCLUSIVE can be ON permanently:

IF NETWORK()
SET EXCLUSIVE OFF && set ON as needed

ELSE
SET EXCLUSIVE ON && No network

ENDIF

See Also
GETENV(), OS(), USE

NEXTKEY() Keyboard and mouse events

Returns the decimal value associated with a key or key combination held in the
keyboard typeahead buffer. NEXTKEY() does not remove the keystroke from the
buffer.

Syntax
NEXTKEY([<expN>])

370 L a n g u a g e R e f e r e n c e

N E X T K E Y ()

<expN> The position of the key or key combination in the typeahead buffer. If <expN> is
omitted, NEXTKEY() returns the value of the first keystroke in the buffer. If <expN> is
larger than the number of keystrokes in the buffer, NEXTKEY() returns 0.

Description
The keyboard typeahead buffer stores keystrokes the user enters while dBASE is busy
processing other data. Use NEXTKEY() to identify, but not delete, a keystroke held in
the buffer. If the buffer is empty, NEXTKEY() returns a value of zero.

For example, if you press C and then Alt+P, dBASE stores the values 67 and –420 in the
typeahead buffer. NEXTKEY(1) returns 67, and NEXTKEY(2) returns –420. See
Appendix D for a complete list of the values returned by NEXTKEY(). See Appendix E
for a complete list of decimal values corresponding to keys.

To determine the value of the first keystroke in the buffer and delete it from the buffer,
use INKEY().

Example
The following example verifies whether SPACEBAR is the key pressed immediately
after F6. If so, the SpaceBar routine is called; otherwise, the typeahead buffer is cleared:

WAIT
IF LASTKEY() = –5 && F6

IF NEXTKEY() = 32 && SPACEBAR
DO SpaceBar

ELSE
CLEAR TYPEAHEAD

Description
OEM() is the inverse of ANSI(). For more information, see ANSI().

Example
The following example displays the 255 characters that are possible with ASCII, ANSI,
and OEM formats:

FOR i=1 to 255
ASCII=CHR(i)
? i,ASCII,ANSI(ASCII),OEM(ASCII)
* The next 3 commands cause a pause
* every 10 lines
IF MOD(i,10)=0

WAIT
ENDIF

NEXT i

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ANSI()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 371

O N B A R+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

ON BAR dBASE IV menus

Executes a command when the user selects (highlights) a bar in a dBASE IV popup
menu. This command is supported primarily for compatibility with dBASE IV. In Visual
dBASE, use DEFINE, OPEN FORM, and READMODAL() to create and activate menus
associated with forms.

For complete syntax information on ON BAR, see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

ON ERROR Error handling and debugging

Executes a specified command when an error occurs.

Syntax
ON ERROR
[<command>]

<command> The command to execute when an error occurs in the program, procedure,
or UDF. To execute more than one command when an error occurs, issue ON ERROR
DO <filename>, where <filename> is a program or procedure file containing the sequence
of commands to execute. ON ERROR without a <command> option disables any
previous ON ERROR <command>.

Description
Use ON ERROR to control a program's response to run-time errors. For example,
<command> can specify a new message in place of a standard error message. When
ON ERROR is active, dBASE doesn't display its default run-time error messages.

While dBASE is executing an ON ERROR command, that particular ON ERROR
<command> statement is disabled. Thus, if another error occurs during the execution of
<command>, dBASE responds with its default error messages. You can, however, set
another ON ERROR condition inside a subroutine called with ON ERROR.

ON ERROR <command> has no effect during the following commands:

• APPEND

• CREATE/MODIFY
APPLICATION/LABEL/REPORT/SCREEN/STRUCTURE/VIEW

• MODIFY COMMAND/FILE

ON ERROR is similar to ON ESCAPE and ON KEY. ON ESCAPE specifies a command
for dBASE to execute when SET ESCAPE is ON and Esc is pressed. ON KEY specifies a
command for dBASE to execute when a specified key is pressed.

Avoid using a dBASE command recursively with ON ERROR.

See the table in the description of ERROR() that compares CERROR(), ERROR(),
MESSAGE(), DBERROR(), DBMESSAGE(), SQLERROR(), and SQLMESSAGE().

372 L a n g u a g e R e f e r e n c e

O N E S C A P E

Example
The following example uses ON ERROR to open a user defined window when a run-
time error occurs. In the example, the command ? Company() will cause an error
because Company function does not exist:

ON ERROR DO ErrHndlr WITH ERROR(), MESSAGE(), PROGRAM(), LINENO()
USE Clients
? Company()
RETURN

PROCEDURE ErrHndlr
PARAMETERS nERRORno, cErrMessage, cProgram, nLineNo
DEFINE FORM HeadsUp from 10,25 TO 20,50
DEFINE TEXT Line1 OF HeadsUp AT 2,2 ;

PROPERTY Text "An Error has occurred", Width 22
DEFINE TEXT Line2 OF HeadsUp AT 4,2;

PROPERTY Text "Error: " + cErrMessage, Width 22
DEFINE TEXT Line3 OF HeadsUp AT 5,2;

PROPERTY Text "Number: " + STR(nErrorno), Width 22
DEFINE TEXT Line4 OF HeadsUp AT 6,2;

PROPERTY Text "Program: "+ cProgram, Width 22
DEFINE TEXT Line5 OF HeadsUp AT 7,2;

PROPERTY Text "Line #: " + STR(nLineno), Width 22
OPEN FORM HeadsUp

See Also
CERROR(), ERROR(), DBERROR(), DBMESSAGE(), MESSAGE(), ON ESCAPE, ON
KEY, ON READERROR, RETRY, RETURN, SET ERROR, SET ESCAPE, SQLERROR(),
SQLMESSAGE()

ON ESCAPE Keyboard and mouse events

Executes a specified command when SET ESCAPE is ON and the Esc key is pressed
during command or program execution.

Syntax
ON ESCAPE
[<command>]

<command> The command to execute when the following conditions are in effect:

• SET ESCAPE is ON
• The user presses Esc during command or program execution

To execute more than one command when Esc is pressed, issue ON ESCAPE DO
<filename>, where <filename> is a program or procedure file containing the sequence of
commands to execute. ON ESCAPE without a <command> option disables any previous
ON ESCAPE <command>.

If you issue ON ESCAPE <command> in a program, you should disable the current
ON ESCAPE condition by issuing ON ESCAPE without a <command> option before the

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 373

O N E S C A P E+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

program ends. Otherwise, the ON ESCAPE condition remains in effect for any
subsequent commands and programs you issue and run until you exit dBASE.

Description
When SET ESCAPE is ON (its default setting), pressing Esc interrupts program
execution. If ON ESCAPE <command> is in effect, pressing Esc executes the specified
command and then continues program execution. If no ON ESCAPE <command> is in
effect, pressing Esc interrupts program execution and displays the dBASE Program
Interrupted window.

You can issue ON ESCAPE <command> in the Command window to execute
<command> when Esc is pressed during the execution of subsequent commands. In this
case, dBASE returns control to the Command window when it finishes executing
<command>.

Pressing Esc while a user-defined window, menu bar, pop-up menu, or pull-down
menu is active deactivates the object and doesn't execute the command specified with
ON ESCAPE. ON ESCAPE <command> also has no effect when Esc is pressed during
commands such as CHANGE, EDIT, or READ.

ON ESCAPE is similar to ON ERROR and ON KEY. ON ERROR specifies a command
for dBASE to execute when an error occurs in a program, procedure, or UDF. ON KEY
specifies a command for dBASE to execute when a specified key, or any key, is pressed.

If SET ESCAPE is ON and both ON KEY and ON ESCAPE are in effect, ON ESCAPE
takes precedence when Esc is pressed. See ON KEY for a table that summarizes the
relationship between SET ESCAPE, ON ESCAPE, and ON KEY when Esc is pressed.

Example
The following example uses ON ESCAPE to substitute a small program, PrgEscape, for
the Escape key. In this example, the programmer has wrongly programmed an endless
loop that requires the use of Escape to debug. When escape is pressed, the program and
line will be shown:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
* So that other program files can access PrgEcape
SET ESCAPE ON
ON ESCAPE DO PrgEscape WITH PROGRAM(1),LINENO()
DO WHILE .t. && set up an endless loop

x="always allow a way out"
y=" of a do while loop"
z="Press Escape to stop"
? x
? y
? z

ENDDO

Procedure PrgEscape
PARAMETERS prg,line
? "Programmed Escape:",prg,line
SUSPEND

374 L a n g u a g e R e f e r e n c e

O N E X I T B A R

See Also
ON ERROR, ON KEY, SET ESCAPE, SET KEY

ON EXIT BAR dBASE IV menus

Executes a command when the user exits a pop-up menu item. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE,
OPEN FORM, and READMODAL() to create and activate menus associated with
forms.

For complete syntax information on ON EXIT BAR, see online Help. For information
about defining forms, see the Forms chapters in the User’s Guide.

ON EXIT MENU dBASE IV menus

Executes a command when the user exits a pad in a dBASE IV menu bar if the pad is not
assigned a command by ON EXIT PAD. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN FORM, and
READMODAL() to create and activate menus associated with forms.

For complete syntax information on ON EXIT MENU, see online Help. For information
about defining forms, see the Forms chapters in the User’s Guide.

ON EXIT PAD dBASE IV menus

Executes a command when the user exits a specified pad in a dBASE IV menu bar. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use DEFINE, OPEN FORM, and READMODAL() to create and activate menus
associated with forms.

For complete syntax information on ON EXIT PAD, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

ON EXIT POPUP dBASE IV menus

Executes a command when the user exits a bar in a dBASE IV pop-up menu, if the bar is
not assigned a command by ON EXIT BAR. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN FORM, and
READMODAL() to create and activate menus associated with forms.

For complete syntax information on ON EXIT POPUP, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 375

O N K E Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

ON KEY Keyboard and mouse events

Executes a command when a specified key or key combination is pressed during
execution of a command or a program.

Syntax
ON KEY
[LABEL <key label>]
[<command>]

LABEL <key label> Identifies the key or key combination that, when pressed, causes
<command> to execute. Without LABEL <key label>, dBASE executes <command> when
you press any key. ON KEY LABEL is not case-sensitive.

<command> The command that is executed when you press the key or key combination.
If you omit <command>, the command previously assigned by ON KEY is disabled.

Description
Use ON KEY to specify a command that executes when the user presses a key or key
combination. When the key is pressed, ON KEY causes dBASE to stop executing the
current command and execute <command>. The interrupted command resumes when
<command> finishes executing.

ON KEY interrupts most commands, but it doesn't interrupt commands that rely on
uninterrupted processing to ensure data accuracy, such as SORT, INDEX, and PACK.
ON KEY also doesn't affect the execution of some commands that require user input,
such as ACCEPT and WAIT.

When you issue both ON KEY LABEL <key label> <command> and ON KEY <command>,
the key or key combination you specify with ON KEY LABEL <key label> <command>
takes precedence and executes its associated <command>.

When you don't include LABEL, only one ON KEY specification can be active at a given
time. When you include LABEL, multiple ON KEY specifications for multiple keys can
be active at once.

ON KEY without arguments removes the effect of all previously-entered ON KEY
<command> commands.

SET KEY is identical in function to ON KEY LABEL; only the syntax differs. If you use
ON KEY LABEL and SET KEY to set the same key, dBASE executes the program or
procedure specified by the most recently issued command.

ON KEY is similar to ON ESCAPE ON ESCAPE specifies a command for dBASE to
execute when SET ESCAPE is ON and the Esc key is pressed. If SET ESCAPE is ON and
both ON KEY and ON ESCAPE are in effect, ON ESCAPE takes precedence when Esc is
pressed. The following table summarizes the relationship between SET ESCAPE, ON
ESCAPE, and ON KEY when Esc is pressed:

376 L a n g u a g e R e f e r e n c e

O N K E Y

ON KEY LABEL
Use the following key label names to assign key or key combinations with ON KEY
LABEL <key label>.

Example
The following example displays selected fields from 10 records, pauses for 3 seconds
and adds more records to the screen. ON KEY LABEL command is used to branch the
program to procedures that either reverse the record pointer, enter a browse window, or
exit scrolling:

CLEAR
SET TALK OFF
PUBLIC mExit
mExit=.F.

SET ESCAPE ON ESCAPE ON KEY When you press Esc

ON DO prog1 dBASE displays Program Interrupted window
OFF DO prog1 Prog1 executes
ON DO prog2 DO prog1 Prog2 executes
OFF DO prog2 DO prog1 Prog1 executes

Key identification <key label>

Alphabetic characters A or a, B or b, ...
Numbers 0, 1, 2 ...
Backspace Backspace

Back Tab Backtab

Delete Del

End End

Home Home

Insert Ins

Page Up PgUp

Page Down PgDn

Tab Tab

Left arrow Leftarrow

Right arrow Rightarrow

Up arrow Uparrow

Down arrow Downarrow

F1 to F10 F1, F2, F3, ...
Control+<key> Ctrl-<key> or Ctrl+<key>
Shift+<key> Shift-<key> or Shift+<key>

Alt+<key> Alt-<key> or Alt+<key>
Enter Enter

Escape Esc

Space bar Spacebar

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 377

O N M E N U+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

ON KEY LABEL F8 DO BackUp
ON KEY LABEL F9 DO Details
ON KEY LABEL F10 DO GetOut
USE Clients Order Company
? CENTER("INSTRUCTIONS")
? CENTER("Press F8 to go back X records")
? CENTER("Press F9 to Browse all fields")
? CENTER("Press F10 to exit")
?
WAIT "Slow Browse - Press any key when ready"
Cnt=1
DO WHILE .NOT. EOF() .AND. .NOT. mExit

DISPLAY NEXT 10 Company, Contact
Pause=INKEY(3)

ENDDO
SET TALK ON
ON KEY
RETURN

PROCEDURE BackUp
CLEAR
SKIP -9
RETURN

PROCEDURE Details
SKIP -9
BROWSE
RETURN

PROCEDURE GetOut
mExit=.T.
RETURN

Portability
The LABEL <key label> option is not supported in dBASE III PLUS.

See Also
CLEAR TYPEAHEAD, INKEY(), KEYBOARD, ON ERROR, ON ESCAPE, SET
ESCAPE, SET FUNCTION

ON MENU dBASE IV menus

Executes a command when the user selects (highlights) any pad in a dBASE IV menu
bar if the pad is not assigned a command with ON PAD. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN
FORM, and READMODAL() to create and activate menus associated with forms.

For complete syntax information on ON MENU, see online Help. For information about
defining forms, see the Forms chapters in the User’s Guide.

378 L a n g u a g e R e f e r e n c e

O N M O U S E

ON MOUSE Keyboard and mouse events

Detects when the user clicks the left mouse button and executes a command when the
button is released. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, use properties such as OnLeftMouseDown to manage
mouse actions in forms.

For complete syntax information on ON MOUSE, see online Help. For information
about working with forms, see the Forms chapters in the User's Guide.

ON NETERROR Shared data

Executes a specified command when a multiuser-specific error occurs.

Syntax
ON NETERROR [<command>]

<command> The command to execute when a multiuser-specific error occurs. To execute
more than one command when such an error occurs, issue ON NETERROR DO
<filename>, where <filename> is a program or procedure file containing the sequence of
commands to execute. ON NETERROR without a <command> option disables any
previous ON NETERROR <command> statement.

Description
Use ON NETERROR to control a program's response to multiuser-specific errors. For
example, in a multiuser environment on a local area network (LAN), an error can occur
when two users attempt to alter the same record in a shared table at the same time, or
when one user attempts to open a shared table that another user already has open for
exclusive use.

ON NETERROR is similar to ON ERROR, except that ON ERROR responds to all run-
time errors regardless of whether they're multiuser-specific. You can use ON ERROR to
handle both single-user and multiuser errors, or you can use ON NETERROR to handle
just multiuser errors. If you issue both ON ERROR and ON NETERROR, then ON
ERROR responds to just single-user errors, leaving ON NETERROR to respond to
multiuser errors.

While dBASE is executing an ON NETERROR command, that particular
ON NETERROR <command> statement is disabled. Thus, if another multiuser-specific
error occurs during the execution of <command>, dBASE responds with its default error
messages. You can, however, set another ON NETERROR condition inside a subroutine
called with ON NETERROR.

You should avoid using a dBASE command recursively with ON NETERROR.

Example
The following example uses ON NETERROR in case the Clients table cannot be opened
exclusively:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 379

O N P A D+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

SET PROCEDURE TO PROGRAM(1) ADDITIVE
ON NETERROR Do NetErr
USE Clients EXCLUSIVE
* If Clients cannot be opened exclusively then
* the subroutine NetErr will be called.

PROCEDURE NETERR
WAIT "Multi-user problem"

See Also
DO, ERROR(), MESSAGE(), ON ERROR, RETRY, RETURN, SET EXCLUSIVE, SET
REPROCESS, SQLERROR(), SQLMESSAGE()

ON PAD dBASE IV menus

Executes a command or displays a pop-up menu when the user selects (highlights) a
pad in a dBASE IV menu bar. This command is supported primarily for compatibility
with dBASE IV. In Visual dBASE, use DEFINE, OPEN FORM, and READMODAL() to
create and activate menus associated with forms.

For complete syntax information on ON PAD, see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

ON PAGE Printing

Executes a specified command when printed output reaches a specified line on the
current page.

Syntax
ON PAGE
[AT LINE <expN> <command>]

AT LINE <expN> Identifies the line number at which to execute the specified page-
formatting command.

<command> The command to execute when printed output reaches the specified line
number, <expN>. To execute more than one command, issue ON PAGE DO <filename>,
where <filename> is a program or procedure file containing the sequence of commands
to execute.

Description
Use ON PAGE to specify a command to execute when printed output reaches a specific
line number. ON PAGE with no options disables any previous ON PAGE statement.

The value of the _plineno system variable indicates the number of lines that have been
printed on the current page. As soon as the _plineno value is equal to the value you
specify for <expN>, dBASE executes the ON PAGE command.

380 L a n g u a g e R e f e r e n c e

O N P A G E

Use the ON PAGE command to print headers and footers. For example, the ON PAGE
command can call a procedure when the _plineno system memory variable reaches the
line number that signifies the end of a page. In turn, that procedure can call two
procedures, one to print the footer on the current page and one to print the header on
the next page.

You can begin header routines with EJECT PAGE to ensure that the header text prints at
the top of the following page. EJECT PAGE also sets the _plineno system memory
variable to 0. Use the ? command at the beginning of a header procedure to skip several
lines before printing the header information. You can also use the ? command at the end
of the procedure to skip several lines before printing the text for the page.

Begin footer routines with the ? command to move several lines below the last line of
text. You can use the ?? command with the _pageno system memory variable to print a
page number for each page on the same line as the footer.

To calculate the appropriate footer position, add the number of lines for the bottom
margin and the number of lines for the footer text to get the total lines for the bottom of
the page. Subtract this total from the total number of lines per page. Use this result to
specify a number for the AT LINE argument. If the footer text exceeds the number of
lines per page, the remainder prints on the next page.

Example
This example uses EJECT PAGE in conjunction with ON PAGE to print a footer on each
page. In this example, a page length of 5 is set up (lines 0 through 4). Text is printed on
four lines: 0,1,2,3, and the footer prints on line 4. Eight lines of text are printed on two
pages:

SET TALK OFF
CLEAR
SET PRINTER ON
_padvance="LINEFEEDS"
_plength=5
_pageno=1
EJECT
ON PAGE AT LINE 3 do Page_Brk
PRINTJOB
i=1
DO WHILE i<=8

?? "Line of text ",_pageno,_plineno,i
?
i=i+1

ENDDO
ON PAGE && turn off ON PAGE
ENDPRINTJOB
CLOSE PRINTER

PROCEDURE Page_Brk
?? " Page Footer",_pageno,_plineno
EJECT PAGE
RETURN
* Page Line i
* This prints out as:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 381

O N P O P U P+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

*
* Line of text 1 0 1
* Line of text 1 1 2
* Line of text 1 2 3
* Line of text 1 3 4
* Page Footing 1 4
* Line of text 2 0 5
* Line of text 2 1 6
* Line of text 2 2 7
* Line of text 2 3 8
* Page Footer 2 4

Portability
Not supported in dBASE III PLUS.

See Also
?, ??, _pageno, _plineno, EJECT PAGE, PRINTJOB...ENDPRINTJOB, SET PCOL, SET
PRINTER, SET PROW

ON POPUP dBASE IV menus

Executes a command when the user selects (highlights) a bar in a dBASE IV pop-up
menu, if the bar is not assigned a command with ON BAR. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN
FORM, and READMODAL() to create and activate menus associated with forms.

For complete syntax information on ON POPUP, see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

ON READERROR Error handling and debugging

Executes a specified command when an error occurs during data-entry.

Syntax
ON READERROR
[<command>]

<command> The command to execute when a user enters an invalid value into a field.
ON READERROR without <command> disables any previously issued ON
READERROR <command>.

Description
Use ON READERROR to trap the following data-entry errors:

• Invalid dates
• Input that is outside the boundaries specified by a RANGE option of @...SAY...GET
• Input that doesn't meet the condition specified in a VALID option of @...SAY...GET

382 L a n g u a g e R e f e r e n c e

O N S E L E C T I O N B A R

The command you specify with ON READERROR can be a call to a program,
procedure, or user-defined function (UDF). For example, you could call a UDF that
displays a message.

With or without ON READERROR, the user must enter valid dates and data that are
within a VALID or RANGE clause. If the user makes a data-entry error when a RANGE
clause is in effect but no ON READERROR condition is in effect, dBASE displays a
message indicating acceptable input values.

Example
The following example brings up the Clients table in a Table Record window and uses
ON READERROR to trap for incorrect date entries. To activate ON READERROR, enter
an invalid date in BalDate and procedure ErrHndlr presents a window with appropriate
messages:

ON READERROR DO ErrHndlr
USE Clients
BROWSE
RETURN

PROCEDURE ErrHndlr
DEFINE FORM HeadsUp FROM 10,25 TO 20,50
DEFINE TEXT Line1 OF HeadsUp AT 2,4;

PROPERTY Text "An Error has occurred",;
Width 22, ColorNormal "R/W"

DEFINE TEXT Line2 OF HeadsUp AT 4,4;
PROPERTY Text "Error: Date out of range",;
Width 22

DEFINE TEXT Line3 OF HeadsUp AT 6,4;
PROPERTY Text "Enter a value within range",;
Width 22

OPEN FORM HeadsUp

Portability
Not supported in dBASE III PLUS.

See Also
APPEND, CHANGE, EDIT, INSERT, ON ERROR, READ, @...SAY...GET

ON SELECTION BAR dBASE IV menus

Executes a command when the user chooses a bar in a dBASE IV pop-up menu. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use DEFINE, OPEN FORM, and READMODAL() to create and activate menus
associated with forms.

For complete syntax information on ON SELECTION BAR, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 383

O N S E L E C T I O N F O R M+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

ON SELECTION FORM Forms

Executes a subroutine or a codeblock when the user submits a form.

Syntax
ON SELECTION FORM <form name>
[<expFP> | <expCB>]

<form name> The name of the form to which <expFP> or <expCB> is assigned.

<expFP> | <expCB> A subroutine or a codeblock to execute when the user submits the
form. <expFP> is the name of a function or a procedure, and <expCB> is a codeblock.

If you omit <expFP> | <expCB>, the subroutine or codeblock previously assigned by
ON SELECTION FORM is disabled.

Description
Use ON SELECTION FORM to execute a subroutine or codeblock automatically when
the user submits a form.

A form is submitted when the user:

• Presses Enter when the cursor is in the body of the form, but not in a browse object, an
editor object, or on a drive letter or directory prompt in a list box or a combo box.

• Presses Spacebar when the cursor is on a pushbutton.

• Presses the pick character of a pushbutton, or Alt+<pick character>, when the cursor is
in the form.

• Clicks when the mouse pointer is on a pushbutton.

ON SELECTION FORM is equivalent to the OnSelection event property of the form
object.

Example
The following example defines a form and list box for selecting an aircraft model and
uses ON SELECTION FORM to call procedure Photo when the user presses Enter.
Procedure Photo displays a graphic from the binary field Image of the selected record:

CLOSE ALL
SET TALK OFF
SET PROCEDURE TO PROGRAM(1) ADDITIVE
USE Aircrdb ORDER Aircraft IN SELECT()
SELECT Aircrdb
DEFINE FORM AC ;

PROPERTY ;
Top 5, ;
Left 2, ;
Height 13, ;
Width 30, ;
Text "Aircraft", ;
Sizeable .T.

DEFINE LISTBOX Model OF AC ;

384 L a n g u a g e R e f e r e n c e

O N S E L E C T I O N M E N U

PROPERTY ;
Top 2, ;
Left 10, ;
Height 7, ;
Width 18, ;
DataSource "FIELD Aircrdb->Aircraft"

ON SELECTION FORM AC Photo
OPEN FORM AC

FUNCTION Photo
RESTORE IMAGE FROM BINARY Image
RETURN .T.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ActiveControl, _curobj, OnClick, OnSelection

ON SELECTION MENU dBASE IV menus

Executes a command when the user chooses a pad from a dBASE IV menu bar if the pad
is not already assigned a command with ON SELECTION PAD. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE,
OPEN FORM, and READMODAL() to create and activate menus associated with
forms.

For complete syntax information on ON SELECTION MENU, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

ON SELECTION PAD dBASE IV menus

Specifies the command that executes when the user chooses a pad in a dBASE IV menu
bar. This command is supported primarily for compatibility with dBASE IV. In Visual
dBASE, use DEFINE, OPEN FORM, and READMODAL() to create and activate menus
associated with forms.

For complete syntax information on ON SELECTION PAD, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

ON SELECTION POPUP dBASE IV menus

Executes a command when the user chooses a bar in a dBASE IV pop-up menu, if the
bar is not assigned a command by ON SELECTION BAR. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN
FORM, and READMODAL() to create and activate menus associated with forms.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 385

O P E N D A T A B A S E+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

For complete syntax information on ON SELECTION POPUP, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

OPEN DATABASE Table basics

Establishes a connection to a database server or a database defined for a specific
directory location.

Syntax
OPEN DATABASE <database name>
[AUTOEXTERN]
[LOGIN <username>/<password>]
[WITH <option string>]

<database name> The name of the database you want to open. Databases are created
using the BDE Configuration Utility (see Getting Started for more information).

<user name>/<password> Character string specifying the user name and password
combination required to access the database.

WITH <option string> Character string specifying server-specific information required to
establish a database server connection. For information about establishing database
server connections, refer to your Borland SQL Link documentation, and contact your
network or database administrator for specific connection information.

Description
The OPEN DATABASE command is used to establish a connection with a database
defined with the BDE Configuration Utility. When opening a database, you need to
specify whatever login parameters and database-specific information that connection
requires. Typically, your network or system administrator can provide you with the
information necessary to establish connections to established databases and database
servers at your site.

Example
The following example uses OPEN DATABASE to establish a connection with a
database server, opens a database previously created using the BDE Configuration
Utility with SET DATABASE TO, and opens a server dBASE table and appends it to the
client/server database:

CLEAR
SET DBTYPE TO DBASE
OPEN DATABASE CAClients && Establish connection with database server
USE CAClients IN 1 && Opens server table
SELECT 1 && Work area 1 active
APPEND FROM CLIENTS.DBF && Append from local dBASE table
CLOSE ALL && Closes Clients server table
CLOSE DATABASE CAClients && Disconnect from database server

Portability
Not supported in dBASE IV or dBASE III PLUS.

386 L a n g u a g e R e f e r e n c e

O P E N F O R M

See Also
CLOSE..., DATABASE(), SET DATABASE, SET DBTYPE

OPEN FORM Forms

Opens forms as modeless windows.

Syntax
OPEN FORM <form name 1> [ON <object name 1>]
[, <form name 2> [ON <object name 2>] ...]

<form name 1> [, <form name 2>, ...] The names of the forms to open.

ON <object name> Specifies which object in a form gets initial focus.

Description
Use OPEN FORM to open forms and display their objects.

The form you open with OPEN FORM is modeless. A modeless form has the following
characteristics:

• While the form is open, focus can be transferred to other forms.
• Execution of the routine that opened the form continues after the form is opened.

You open forms as modeless windows when you want more than one form open at
once. For example, an application that performs several tasks might use a different form
for each task.

Only one form can have focus at a given time; this form is said to be active, and is
displayed on top of all other open forms. dBASE gives input focus to forms in the order
in which you list them in the OPEN FORM command; the first form specified receives
input focus first. When the last form is closed, execution of the application is finished.

Note To open a form as a modal window, use the ReadModal() method or the
READMODAL() function. For example, forms that serve as dialog boxes are modal,
since they halt program execution until the user inputs a response.

The OPEN FORM command is equivalent to the Open() method.

Example
The following example defines four default sized forms and uses the OPEN FORM
command syntax options to establish an initial focus order:

DEFINE FORM Opn1
DEFINE FORM Opn2 AT 4,4
DEFINE FORM Opn3 AT 8,8
DEFINE FORM Opn4 AT 12,12
OPEN FORM Opn4, Opn1, Opn3, Opn2

Portability
Not supported in dBASE IV or dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 387

O R D E R ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

See Also
Open(), READMODAL(), ReadModal()

ORDER() Table organization

Returns the name of the master .NDX file or the master .MDX index tag in the current or
a specified work area.

Syntax
ORDER([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
ORDER() returns the name of the master .NDX file or .MDX index tag in the current or
specified work area. ORDER() returns an empty string ("") if no master index exists in
the specified work area.

You can use ORDER() to determine the name of the master index and save the name of
the index to a memory variable, and then use the SET ORDER command to later restore
the master index.

Example
The following example uses ORDER() to show the name of master index for the current
table:

USE Company EXCLUSIVE
INDEX ON Company TAG Company
INDEX ON City TAG City
SET ORDER TO Company
? "The master index file is " + ORDER() + " for the " + DBF() + " table"
SET ORDER TO && no index
? "The master index file is " + ORDER() + " for the " + DBF() + " table"
SET ORDER TO City
? "The master index file is " + ORDER() + " for the " + DBF() + " table"

Portability
Not supported in dBASE III PLUS.

See Also
ALIAS(), KEY(), MDX(), NDX(), SELECT(), SET INDEX, SET ORDER, TAG(), USE

388 L a n g u a g e R e f e r e n c e

O S ()

OS() Disk and file utilities

Returns the name and version number of the current operating system or the current
version of Windows.

Syntax
OS([<expN>])

<expN> Any number. OS() without <expN> returns the name and version number of
the operating system. OS(expN) returns the version of Windows currently running.

Description
Use OS() to determine the operating system or version of Windows in which your
programs are running. To determine which version of dBASE is running, use
VERSION().

OS() lets you make your applications more portable from system to system. For
example, if you plan to copy an application to more than one system, and if you suspect
that some of these systems have DOS versions that are too old to accommodate certain
sections of your code, make the execution of these sections contingent on the value
returned by OS().

Example
This example uses OS() to test whether the operating system in use is Windows version
3.10 or later. It finds the number of characters to the right of 'version', separates them out
and converts them to a number. This number is compared to 3.10:

Os=OS(1) && Will return "Windows version ??.??"
L=Len(Os)
* Number of Chars
Os=UPPER(Os)
* convert to upper case
Pos=AT("VERSION",Os)
* locate 'version' in Os
* Pos points at the 'v' in 'version'
RightSide=L-Pos-6
* get # chars after 'version'
VersionStr=Right(Os,RightSide)
VersionNum=Val(VersionStr)
* convert to number
IF VersionNum<3.10

? "Your current operating system is",OS()
? "Your current windows system is ",OS(1)
WAIT ;
"This program needs Windows version 3.10 or later"

ENDIF

Portability
The <expN> option is not supported in dBASE IV or dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 389

P A C K+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

See Also
VERSION()

PACK Fields and records

Removes all records marked for deletion from the current table. This command has no
effect when accessing Paradox or SQL tables, since records are removed immediately
when they are deleted.

Syntax
PACK

Description
Use PACK to remove records from the current table that were previously marked for
deletion by the DELETE command. You need to open a table for exclusive use before
using PACK.

After you execute a PACK command, the disk space used by the deleted records is
reclaimed when the table is closed. All open index files are automatically re-indexed
after PACK is executed. (Use REINDEX to update closed indexes.)

Space in .DBT memo files associated with deleted records is not reduced, however,
when you use the PACK command. To reclaim space in a memo file, you need to use
COPY to copy the original table.

Use PACK with caution. Records that have been marked for deletion but not yet
eliminated with PACK can be undeleted and restored to a table using RECALL. Records
eliminated with PACK are permanently lost and can't be recovered.

SET DELETED ON provides many of the benefits of PACK without actually removing
records from a table. With SET DELETED ON, most commands function as if records
marked for deletion had been eliminated from a table.

To permanently remove all records of the current table in one step, use the ZAP
command.

Example
The following example creates a form with an entry field for entering a State_Prov code
and a pushbutton that calls a procedure that uses PACK to permanently delete marked
records from the file TEMP.DBF:

* Main Program
SET SAFETY OFF
USE Clients
COPY TO Temp
USE Temp EXCLUSIVE
PUBLIC mState
mState=" " && Three Spaces
DO Cleanup
* End Main Program

390 L a n g u a g e R e f e r e n c e

P A D ()

PROCEDURE Cleanup
SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM Pack FROM 2,2 TO 20,30
DEFINE ENTRYFIELD State OF Pack AT 7,10;

PROPERTY Datalink "mState"
DEFINE TEXT State2 OF Pack AT 5,6;

PROPERTY Text "Enter State_Prov Code", Width 20
DEFINE PUSHBUTTON Exit OF Pack AT 12,10;

PROPERTY TEXT "Pack", OnClick GetRid, Width 9
OPEN FORM Pack

* Procedure for Pushbutton
PROCEDURE GetRid
CLOSE FORMS Pack
DELETE FOR State_Prov = UPPER(mState)
PACK
COUNT FOR State_Prov= UPPER(mState) TO Check
IF Check = 0

? "Pack was successful."
ENDIF
RETURN

See Also
DELETE, RECALL, SET DELETED, ZAP

PAD() dBASE IV menus

Returns the name of the currently selected (highlighted) or most recently chosen pad in
a dBASE IV menu bar. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, use INSPECT() to return information associated with
objects in forms.

For complete syntax information on PAD(), see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

PADPROMPT() dBASE IV menus

Returns the prompt of the currently selected (highlighted) or most recently chosen pad
in a dBASE IV menu bar. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, use INSPECT() to return information associated with
objects in forms.

For complete syntax information on PADPROMPT(), see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 391

P A R A M E T E R S+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

PARAMETERS Programs

Assigns variable names to data passed from a calling program. This command is
included primarily for compatibility with prior versions of dBASE, where using
PARAMETERS was the only way to assign variable names in procedures. In Visual
dBASE, you should assign variable names by including them in parentheses after a
PROCEDURE statement, because this makes them local in scope. For more information,
see PROCEDURE.

PAYMENT() Numeric data

Returns the periodic amount required to repay a debt.

Syntax
PAYMENT(<principal expN>, <interest expN>, <term expN>)

<principal expN> The original amount to be repaid over time.

<interest expN> The interest rate per period expressed as a positive decimal number.
Specify the interest rate in the same time increment as the term.

<term expN> The number of payments. Specify the term in the same time increment as
the interest.

Description
Use PAYMENT() to calculate the periodic amount (payment) required to repay a loan
or investment of <principal expN> amount in <term expN> payments. PAYMENT()
returns a float based on a fixed interest rate compounding over a fixed length of time.

If <principal expN> is positive, PAYMENT() returns a positive number.
If <principal expN> is negative, PAYMENT() returns a negative number.

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%,
<interest expN> is .095 (9.5/100) for payments made annually.

Express <interest expN> and <term expN> in the same time increment. For example, if the
payments are monthly, express the interest rate per month, and the number of
payments in months. You would express an annual interest rate of 9.5%, for example, as
.095/12, which is 9.5/100 divided by 12 months.

The formula dBASE uses to calculate PAYMENT() is as follows:

where int = rate/100

For the monthly payment required to repay a principal amount of $16860.68 in five
years, at 9% interest, the formula expressed as a dBASE expression looks like this:

pmt princ * int * 1 int+()term

1 int+()term 1–
--=

392 L a n g u a g e R e f e r e n c e

P A Y M E N T ()

? PAYMENT(16860.68,.09/12,60) && Returns 350.00
nTemp = (1 + .09/12)^60
? 16860.68*(.09/12*nTemp)/(nTemp-1) && Returns 350.00

Use SET DECIMALS to set the number of decimal places PAYMENT() displays.

Example
The following example creates a form for user entered mortgage loan information and
uses PAYMENT() to calculate monthly loan payments:

LOCAL f
f=NEW Mortgage()
f.OPEN()
CLASS Mortgage OF FORM

this.Top=5
this.Left=50
this.Width=55
this.Height=13
this.Text="Dewey's Loans"
DEFINE TEXT Txt1 OF THIS AT 2, 5;

PROPERTY Text "What is the principal?",;
Width 26, ColorNormal "RB/W"

DEFINE ENTRYFIELD Princ OF THIS AT 2,35;
PROPERTY Value 0, ;
Width 7

DEFINE TEXT Txt2 OF THIS AT 4, 5;
PROPERTY Text "What is the interest rate?",;
Width 35, ColorNormal "RB/W"

DEFINE ENTRYFIELD Int OF THIS AT 4,35 ;
PROPERTY Value 0, Picture "99.99",;
Width 8

DEFINE TEXT Txt3 OF THIS AT 6,5;
PROPERTY Text "What is the number of payments?",;
Width 50, ColorNormal "RB/W"

DEFINE ENTRYFIELD Pay OF THIS AT 6,45 ;
PROPERTY Value 0, Picture "999",;
Width 8

DEFINE PUSHBUTTON Results OF THIS AT 10,18;
PROPERTY Text "Payment",;
OnClick {;myResult="Your payment will be: $" + ;
LTRIM(STR(PAYMENT(Form.Princ.Value,;
(Form.Int.Value/100)/12,Form.Pay.Value),13,2));
; Form.FV.Text = MyResult},;
Height 2, ColorNormal "N/W", Width 15

DEFINE TEXT FV OF THIS AT 8,8;
PROPERTY Text "Your payment: ", Width 40,;
ColorNormal "R+/W"

ENDCLASS

Portability
Not supported in dBASE III PLUS.

See Also
FV(), PV(), SET DECIMALS

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 393

P C O L ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

PCOL() Printing

Returns the printing column position of a printer. Column numbers begin at 0.

Syntax
PCOL()

Description
Use PCOL() to determine the horizontal printing position of a printer—that is, the
column at which the printer is set to begin printing. Use PCOL() in mathematical
statements to direct the printer to begin printing at a position relative to its current
column position. For example, PCOL() + 5 represents a position five columns to the
right of the current position, and PCOL() – 5 represents a position five columns to the
left of the current position.

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font of the parent form window. For more information about the
coordinate plane, see Chapter 16 in the Programmer's Guide.

PCOL() returns a column number that reflects the current value of _ppitch, regardless
of whether you're printing with proportional or monospaced fonts. If you're printing
with a proportional font, you can add and subtract fractional numbers to and from the
PCOL() value to move the printing position accurately. If you issue ? without the
STYLE option and use only integer coordinates, dBASE uses a monospaced font and all
output should appear exactly the same as in dBASE IV.

SET PRINTER must be ON or SET DEVICE TO PRINTER must be in effect for PCOL()
to return a column position; otherwise, it returns 0.

Example
The following example writes "Jack & Jill" to the printer. It uses PCOL() to note the
column position three times, at the beginning, after "Jack", and after "Jill":

SET TALK OFF
SET PRINTER ON
* now ?s are directed to printer
? && sets printer at col 0 of next line
beginpos=pcol() && note the current column
?? "Jack"
lastjackpos=pcol()
?? " & Jill"
lastjillpos=pcol()
SET PRINTER OFF
CLOSE PRINTER
? beginpos && 0.00
? lastjackpos && 4.00
? lastjillpos && 11.00
SET TALK ON

394 L a n g u a g e R e f e r e n c e

P C O U N T ()

See Also
COL(), PROW(), SET DEVICE, SET PCOL, SET PRINTER

PCOUNT() Programs

Returns the number of parameters passed by a calling command to the called program,
procedure, or user-defined function (UDF).

Syntax
PCOUNT()

Description
Because you can pass a program, procedure, or UDF more or fewer parameters than the
PARAMETERS <parameter list> statement specifies, you can use PCOUNT() to
determine exactly how many parameters have been passed.

PCOUNT() returns 0 if no parameters are passed.

Example
The following example uses PCOUNT() to determine the number of parameters passed
to a procedure.

Param1 = 'Hello'
Param2 = 100
DO MyProg WITH Param1, Param2

PROCEDURE MyProg
PARAMETERS Par1, Pr2, Pr3, Pr4
? 'You passed ' + LTRIM(STR(PCOUNT())) + ;
" parameters to this procedure."
RETURN

Portability
PCOUNT() is not supported in dBASE III PLUS.

See Also
DO, FUNCTION, PARAMETERS, PROCEDURE, SET PROCEDURE

PI() Numeric data

Returns the approximate value of pi, the ratio of a circle's circumference to its diameter.

Syntax
PI()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 395

P L A Y S O U N D+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Description
PI() returns a float that is approximately 3.141592653589793. pi is a constant. Use it to
measure the area and circumference of a circle or the volume of a cone or cylinder. For
example, use it in the trigonometric functions SIN(), COS(), and TAN(), which require
the angle value in radians. pi radians is equivalent to 180 degrees.

Use SET DECIMALS to set the number of decimal places PI() displays.

Example
The following example uses PI() in a program to determine geometric dimensions of a
hot tub:

SET TALK OFF
CLEAR
width = 0
depth = 0
@ 12,12 SAY "Enter the width of your hottub " GET width PICTURE "99"
@ 13,12 SAY "What is the depth of the hottub" GET depth PICTURE "99"
READ
@ 15,12 SAY "The hottub has a circumference of " + ;

LTRIM(STR((2 * PI() * width/2))) + " feet"
@ 16,12 SAY "The hottub has a volume of " + ;

STR(PI() * ((width/2)^2) * depth,5,2) + " cubic feet"
@ 17,12 SAY "The hottub is " + ;

STR(PI() * ((width/2)^2),5,2) + " feet in area"

Portability
Not supported in dBASE III PLUS. In dBASE IV, PI() returns a value accurate only to 14
decimal places, regardless of the value of SET DECIMALS.

See Also
COS(), DTOR(), RTOD(), SET DECIMALS, SIN(), TAN()

PLAY SOUND Data objects

Plays a sound stored in a .WAV file or a binary field.

Syntax
PLAY SOUND
FILENAME

 <filename> | ? | <filename skeleton> |
BINARY <binary field>

FILENAME <filename> | ? | <filename skeleton> |
BINARY <binary field> Specifies the sound file or binary field. PLAY SOUND FILENAME
? and PLAY SOUND FILENAME <filename skeleton> display a window that lets the user
select a sound file. <filename> is the name of a sound file; PLAY SOUND assumes a
.WAV extension unless you specify otherwise. If you specify a file without including its
path, dBASE looks for the file in the current directory, then in the path you specify with

396 L a n g u a g e R e f e r e n c e

P L A Y S O U N D

SET PATH. PLAY SOUND BINARY <binary field> plays the sound stored in a binary
field.

Description
Use PLAY SOUND to play sounds you record with the Windows Sound Recorder or
other sound applications developed for Windows. These sounds may include music,
speech, or any other sounds stored in binary fields or in .WAV files.

Note To play a sound, your system must have a sound driver or a sound adapter board.

Example
The following example uses PLAY SOUND in a codeblock of an OnClick property of
pushbutton Sound to play a sound stored in a binary field:

LOCAL f
f = NEW PICTURES ()
f.Open()

CLASS PICTURES OF FORM
this.EscExit = .T.
this.View = "PICTURES.QBE"
this.ColorNormal = "BG/B"
this.Text = "Pictures Form"
this.Width = 76.00
this.Top = 0.00
this.Left = 0.00
this.Height = 30.00
this.Minimize = .F.
this.Maximize = .F.
this.OnOpen = {;create session}

DEFINE PUSHBUTTON SOUND OF THIS;
PROPERTY;

OnClick {;PLAY SOUND Binary Pictures->Sound},;
Text "Sound",;
Width 18.00,;
Top 5.00,;
Left 1.00,;
Height 3.00,;
FontSize 16.00,;
FontName "Courier"

* Additional object definitions
ENDCLASS

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
SET PATH TO

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 397

P O P U P ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

POPUP() dBASE IV menus

Returns the name of the current dBASE IV pop-up menu. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use INSPECT() to return
information associated with objects in forms.

For complete syntax information on POPUP(), see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

PRINTJOB...ENDPRINTJOB Printing

Uses the values stored in system memory variables to control a printing operation.

Syntax
PRINTJOB
<statements>
ENDPRINTJOB

<statements> Any valid dBASE statements.

Description
Use PRINTJOB...ENDPRINTJOB to control a printing operation with the values of the
system memory variables _pbpage, _pepage, _pcopies, _peject, and _plineno. When
dBASE begins executing PRINTJOB, it does the following:

1 Closes the current print document (if any) and begins a new one, as if you had issued
CLOSE PRINTER before issuing PRINTJOB

2 Ejects a page if _peject is set to "BEFORE" or "BOTH"

3 Sets _pcolno to 0

When dBASE reaches ENDPRINTJOB, it does the following:

1 Ejects a page if _peject is set to "AFTER" or "BOTH"
2 Resets _pcolno to 0

Before using PRINTJOB...ENDPRINTJOB, set the relevant system memory variables
and issue SET PRINTER ON. After ENDPRINTJOB, use CLOSE PRINTER to close and
print the document.

Example
The following example uses PRINTJOB to print one line of text making three copies:

_pcopies=3 && 3 copies
_peject="none" && no page eject before or after
_plineno=0 && initialized to 0
SET PRINTER ON
PRINTJOB
? "A one line print job"
?

398 L a n g u a g e R e f e r e n c e

P R I N T S T A T U S ()

ENDPRINTJOB
CLOSE PRINTER && initiate printing
* prints:
* A one line print job
*
* A one line print job
*
* A one line print job
*

Portability
Not supported in dBASE III PLUS.

See Also
_pbpage, _pcopies, _peject, _pepage, _plineno, EJECT, EJECT PAGE, ON PAGE, SET
PRINTER

PRINTSTATUS() Printing

Returns true (.T.) if the print device is ready to accept output.

Syntax
PRINTSTATUS([<port name expC>])

<port name expC> A character expression such as "LPT1" that identifies the printer port to
check. Valid port names include all designations that the Windows Control Panel
recognizes.

Description
Use PRINTSTATUS() to determine whether you've designated a printer port as an
output device with SET PRINTER TO <port name expC>. In dBASE, the Windows Print
Manager spools print output to and manages the printer port. Therefore, the Print
Manager informs you when a printer isn't ready to receive output.

If you don't pass <port name expC> to PRINTSTATUS(), it checks the default port you
specified with SET PRINTER TO. PRINTSTATUS() returns only .F. if you haven't
specified a printer port with SET PRINTER TO or if the port you specify hasn't been set
with SET PRINTER TO.

Note dBASE automatically executes SET PRINTER TO on startup if the WIN.INI file contains
a valid printer definition. See your Windows documentation for information on
WIN.INI settings.

Example
This example reads the default PRINTSTATUS and then queries LPT1, LPT2 and LPT3:

? PRINTSTATUS()
? PRINTSTATUS("LPT1")
? PRINTSTATUS("LPT2")
? PRINTSTATUS("LPT3")

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 399

P R I V A T E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Portability
Not supported in dBASE III PLUS.

See Also
CLOSE..., SET DEVICE, SET PRINTER

PRIVATE Memory variables

Declares memory variables that you can use in the program where they're declared and
in all subroutines the program calls. PRIVATE is supported primarily for compatibility
with dBASE IV. In Visual dBASE, declaring variables LOCAL is recommended.

Syntax
PRIVATE <memvar list> |
ALL

 [LIKE <memvar skeleton 1>]
 [EXCEPT <memvar skeleton 2>]

<memvar list> The list of memory variables you want to declare private, separated by
commas.

ALL Makes private all memory variables declared in the subroutine.

LIKE <memvar skeleton 1> Makes private the memory variables whose names are like the
memory variable skeleton you specify for <memvar skeleton 1>. Use characters of the
variable names and the wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2> Makes private all memory variables except those whose
names are like the memory variable skeleton you specify for <memvar skeleton 2>. Use
characters of the variable names and the wildcards * and ? to create <memvar skeleton 2>.
You can use LIKE and EXCEPT in the same statement, for example, PRIVATE ALL
LIKE mvar* EXCEPT mvarnum*.

Description
Use PRIVATE to declare a memory variable in a subroutine private to that subroutine
and its subroutines, and therefore inaccessible to higher-level routines in the call chain.
To declare a variable PRIVATE, do so before initializing it to a particular value.
Declaring a variable PRIVATE, however, doesn't create it. After declaring a variable
private, you can create and initialize it to a value with STORE, =, or DECLARE.

A private variable is inaccessible to routines above it in the calling chain. In this way, a
private variable is protected from having its value changed by routines above it in the
calling chain that have variables with the same name. A variable that is private to a
subroutine is in effect a different variable from one with the same name in a higher-level
or unrelated routine. Once a private variable is assigned a value, DISPLAY MEMORY
and LIST MEMORY indicate a variable of the same name in a higher-level subroutine as
hidden.

By default, variables you initialize in programs are private. However, if you initialize a
variable that has the same name as a variable declared PUBLIC in an earlier subroutine

400 L a n g u a g e R e f e r e n c e

P R I V A T E

or in the Command window, and don't declare the variable PRIVATE, it not created as a
private variable. Instead, the subroutine uses and alters the value of the existing public
variable.

A private variable is not protected from alteration by a lower-level subroutine that has a
variable with the same name. If a lower-level subroutine stores to or alters a variable
that has the same name as one to which data has been stored at a higher level, the
higher-level variable is accessed, and its data overwritten.

To prevent this from happening—to have dBASE in effect consider the same-named
variables to be two different variables—declare the variable PRIVATE in the lower-level
subroutine (or define variables as LOCAL). If you want the lower-level subroutine to
have access to the value of the variable but not be able to send back an altered value,
include it in parentheses in the DO...WITH statement.

Private variables are erased from memory when the subroutine that creates them
finishes executing.

For more information, see PUBLIC for a table that compares the scope and availability
of public, private, local, and static variables.

Example
The following example branches from a main program to several lower-level
procedures to demonstrate that a variable declared PRIVATE in Level_2 is available in
all procedures below the level on which it is declared, but that it is not accessible once
the program returns to the main program level:

* **Main.Prg***
CLOSE ALL
CLEAR ALL
CLEAR
SET TALK OFF
? "**Main.PRG**"
STATIC nTotal
PUBLIC cString
nTotal = 7109.50
cString= "Hello"
ON ERROR ? "Var not available";

&& Displays message on error
? nTotal && Returns 7109.50
? cString && Returns "Hello"
DO Level_2 && Branch to Proc Level_2
?
? "**Back to Main.PRG**"
? Deadline && "Var not available" above Proc Level_2

PROCEDURE Level_2
?
? "**Proc Level_2**" && Orientation only
PRIVATE Deadline && Var declared Private in Procedure Level_2
? Deadline && "Var not available"-not yet initialized
Deadline = {12/31/99} && Initialize variable
? Deadline && Now it has a value
DO Level_3 && Branch to Level3

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 401

P R O C E D U R E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

?
? "**Back to Level_2**"
? Deadline && 12/31/99 still available
RETURN && Return to line after DO Level_2 in Main

PROCEDURE Level_3
?
? "**Proc Level_3**" && Orientation only
? cString && "Hello" is Public
? nTotal && "Var not available"-Static in Main
? Deadline && 12/31/99 available in Procs below Level_2
Do Level_4 && Branch to Level_4
?
? "**Back to Level_3**"
? Deadline && 12/31/99 Still available
RETURN && Return to line after DO Level_3 in Level_2

PROCEDURE Level_4
?
? "**Proc Level_4**" && Orientation only
? nTotal && "Var not available-Static in Main
? cString && "Hello" - Public variable
? Deadline && 12/31/99 still available in Procs below Level_2
RETURN && Return to line after DO Level_4 in Level_3

Portability
dBASE IV and dBASE III PLUS do not support both LIKE and EXCEPT in the same
PRIVATE statement.

See Also
CLEAR MEMORY, DECLARE, LOCAL, PUBLIC, STATIC, STORE, =

PROCEDURE Programs

Defines a procedure in a program file and optionally declares memory variables to
represent parameters passed to the procedure.

Syntax
PROCEDURE <procedure name> [(<parameter list>)]
[<statements>]
[RETURN [<return exp>]]

<procedure name> The name of the procedure. Although dBASE imposes no limit to the
length of procedure names, it recognizes only the first 32 characters. Procedure names
can contain letters, numbers, and underscores.

(<parameter list>) Memory variable names to assign to data items (or parameters) passed
to the procedure by the statement that called it. The variables in <parameter list> are local
in scope, protecting them from modification in lower-level subroutines. For more
information about the local scope, see LOCAL.

402 L a n g u a g e R e f e r e n c e

P R O C E D U R E

The number of variables assigned can be different from the number of parameters
passed. You can use PCOUNT() to identify the number of parameters a procedure has
received. You can include up to 255 variable names in <parameter list>.

Note Procedures written in prior versions of dBASE might contain variable names that were
declared using the PARAMETERS statement. This use is supported in Visual dBASE for
backward compatibility, but is not recommended because it scopes the variables as
private instead of local. Variables scoped as private may inadvertently be overwritten if
a subroutine the procedure calls uses a variable with the same name. For more
information about the private scope, see PRIVATE.

<statements> Any valid program statements that you want the procedure to execute.
This can include assignment statements, commands, procedure calls, dBASE function
calls, and other procedure calls. You can call procedures recursively.

RETURN [<return exp>] Returns program control and supplies the value defined by
<return exp> to the calling statement. If you don't include RETURN, the procedure ends
when it encounters another PROCEDURE statement, a CLASS statement, a FUNCTION
statement, or the end of the file. If you plan to use the value returned by the procedure,
as in ? MyProc(), you must include RETURN <return exp>.

Description
Use PROCEDURE to define a program subroutine that carries out certain commands
and optionally returns a value. With procedures, you can extend the dBASE language to
perform a wide range of functions that meet particular needs in your applications. You
also create more modular code, which is easier to debug and maintain.

For example, if there are several places in your application where you want to perform
certain tasks, include them in a procedure, as shown in the following example. In this
case, each time you want to skip a record and go to the top of the file on encountering
EOF, you would issue DO NextRecOrTop.

PROCEDURE NextRecOrTop
SKIP && go to the next record if possible
IF EOF() && if reach end-of-file

GO TOP && go to first record in the table
ENDIF

RETURN

Issue PROCEDURE only in a program file (.PRG or .WFM).You can't nest procedures,
or begin a procedure within a processing loop defined with IF, SCAN, etc.

You call a procedure with DO or with the call operator (parentheses), as shown in the
following example.

** Two ways to call the same procedure
x = 100
DO FirstProc WITH x
? x && returns 200
x = 100
? Firstproc(x) && returns 200

PROCEDURE FirstProc(mvar)
mvar = mvar * 2
RETURN mvar

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 403

P R O C E D U R E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Using parameters
Use parameters to exchange values or references between one subroutine and a
subroutine it calls. For example, if you regularly need to return a date 30 days from
another date, you can create a procedure to calculate and return this value using the first
date as a parameter you send to the procedure. The called procedure creates a local
variable name representing the value of the parameter you send, performs the
calculation, and returns the value representing a date 30 days later.

This is shown in the following example. Each time you need to add 30 days to a date,
call Thirty() with the date as a parameter. In the example, begindate is the name the
called procedure assigns to the parameter.

SET DATE AMERICAN
dStartDate = {03/12/95}
? Thirty(dStartDate) && returns the value in enddate

PROCEDURE Thirty(begindate)
*begindate is the variable name assigned to the value in dStartDate
enddate = begindate + 30
RETURN enddate

You can pass memory variables, properties, array names and array elements, fields,
literals, or expressions as parameters to procedures.

Passing memory variables and properties
There are two ways to pass memory variables and properties, by reference or by value.
This section uses the term "memory variable" to refer to both memory variables and
properties.

• If you pass memory variables by reference, the called procedure has direct access to
the variable. Its actions can change (overwrite) the value in that variable. Pass
variables by reference if you want the called procedure to manipulate the values
stored in the memory variables it receives as parameters.

• If you pass memory variables by value, the called procedure has access only to the
value contained in the variable. Its actions can't change the contents of the variable
itself. Pass variables by value if you want to the called procedure to use the values in
the variables in its calculations without changing their values in the calling
subroutine. To pass a memory variable by value, enclose it in parentheses when you
pass it.

The following example shows the differences between passing a memory variable by
reference and by value.

X=10
? X && X = 10
Do MyProc WITH X && pass 10 by reference
? X && X now = 11 (changed by MyProc)
DO MyProc WITH (X) && pass 11 by value
? X && X still = 11 (unchanged by MyProc)
PROCEDURE MyProc(N) && N represents the value in X
? N && returns 10 first time called, 11 second time called
N=N+1

404 L a n g u a g e R e f e r e n c e

P R O C E D U R E

? N && returns 11 first time called, 12 second time called
RETURN

Field names take precedence over variable names. If a field and a variable have the same
name and you want to pass the variable as a parameter, use M-><memvar name> to force
use of the variable. For example, if you have a field named CustNo and a variable
named CustNo, to pass the variable to the procedure ShowCust, use the following
command:

DO ShowCust WITH M->CustNo

Passing arrays
If you use an array as a parameter, you can pass either the entire array, by passing only
the array name, or individual elements of the array.

• Passing an entire array or an element of an array works the same as passing a
memory variable.

• If you pass the array name without parentheses, you're making a pass by reference.
The called subroutine can change values in the array.

• If you enclose the array name in parentheses when you pass it, you're making a pass
by value. The called subroutine can't change values in the array.

• When you pass an array element, it is always passed by reference, even if you enclose
it in parentheses; the called subroutine can change values in the array.

Passing fields
In contrast to memory variables, fields passed as parameters can't be changed by a
subroutine. Fields are always passed by value, so the called procedure can't change their
contents.

If you want to alter a field, store its contents to a memory variable and then execute the
subroutine with that variable (for example, DO Namechg WITH cNewname). When
control returns to the calling program, replace the field contents with the memory
variable contents (for example, REPLACE Fname WITH cNewname).

Making procedures available
You can include a procedure in the program file that uses it, or place it in a separate
program file you access with SET PROCEDURE or SET LIBRARY. If you include a
procedure in the program file that uses it, you should place it at the end of the file and
group it with other procedures.

A single program file can contain a total of 193 procedures. To access more than 193
procedures, use SET PROCEDURE...ADDITIVE. The maximum size of a procedure is
limited to the maximum size of a program file.

If you plan to call a procedure with the DO command, as in DO ThisProcedure, don't
give the procedure the same name as the program file that contains it. If you do, dBASE
tries to run the program instead of the procedure, leading to unpredictable results.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 405

P R O C E D U R E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

If you plan to call a procedure with the call operator (parentheses), as in
ThisProcedure(), don't give the procedure the same name as a built-in dBASE function.
If you do, dBASE executes its built-in function instead of the procedure.

When you call a procedure, dBASE searches for it in the search path in search order. If
there is more than one procedure available with the same name, dBASE runs the first
one it finds. For this reason, avoid using the same name for more than one procedure.
See the description of DO for an explanation of the search path and order dBASE uses.

When you create a procedure, you can use its name to determine its address (a value of
type "function pointer"). Codeblocks associated with objects are anonymous
procedures. For more information on working with procedures, codeblocks, and
function pointers, see Chapter 4 in the Programmer's Guide.

Example
The following example calls procedures from within the main program file:

*MAIN.PRG
SET TALK OFF
CLEAR
DO A
DO B
DO C
RETURN

PROCEDURE A
@ 10,2 SAY "PROCEDURE A at the end of MAIN.PRG"
RETURN

PROCEDURE B
@ 15,2 SAY "PROCEDURE B at the end of MAIN.PRG"
RETURN

PROCEDURE C
@ 20,2 SAY "PROCEDURE C at the end of MAIN.PRG"
RETURN

The following example calls procedures from a separate procedure file:

*MAIN.PRG
SET TALK OFF
CLEAR
SET PROCEDURE TO PROCFILE
DO A
DO B
DO C
RETURN

*PROCFILE.PRG
PROCEDURE A
@ 10,2 SAY "PROCEDURE A in PROCFILE.PRG"
RETURN

PROCEDURE B
@ 15,2 SAY "PROCEDURE B in PROCFILE.PRG"

406 L a n g u a g e R e f e r e n c e

P R O G R A M ()

RETURN

PROCEDURE C
@ 20,2 SAY "PROCEDURE C in PROCFILE.PRG"
RETURN

Portability
In dBASE IV, you could have a procedure and a UDF (declared with FUNCTION) with
the same name available at the same time, because they were called differently. In Visual
dBASE, if a procedure and a UDF of the same name are declared, the first one declared
is the only one recognized.

The following table summarizes other differences in the use of PROCEDURE in
dBASE III PLUS, dBASE IV, and Visual dBASE.

See Also
CLASS, CLOSE..., COMPILE, DEBUG, DO, FUNCTION, LOCAL, PCOUNT(),
PRIVATE, RETRY, RETURN, SET LIBRARY, SET PROCEDURE

PROGRAM() Error handling and debugging

Returns the name of the currently executing program, procedure, or user-defined
function (UDF).

Syntax
PROGRAM([<expN>])

 dBASE III PLUS dBASE IV Visual dBASE

Maximum length of
procedure name

8 characters Unlimited, but only first
9 characters are
recognized

Unlimited, but only the first
32 characters are recognized

Characters allowed
in procedure name

Letters, numbers, and
underscores; first
character must be a
letter

Letters, numbers, and
underscores; first
character must be either
a letter or a number

Letters, numbers, and
underscores

Maximum number
of procedures per
program file

32 (33 and above aren't
recognized)

963 193; use SET
PROCEDURE...ADDITIVE
to access more than 193

Maximum
procedure size

Unlimited 65520 bytes of compiled
code

Same as maximum file size

Treatment of
unnamed
procedures

Not listed as one of the
procedures in the
procedure list

Listed as one of the
procedures in the
procedure list; by
default, given the name
of the program file

Same as dBASE IV

Line continuation
character (;)

Can't be used to
separate the
PROCEDURE
command and the
procedure name

Can be used to separate
the PROCEDURE
command and the
procedure name

Same as dBASE IV

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 407

P R O M P T ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

<expN> Any number.

Description
PROGRAM() returns the name of the lowest level executing subroutine—program,
procedure, or UDF. PROGRAM() returns an empty string ("") when no program or
subroutine is executing.

PROGRAM(expN) returns the full path name of the program that is currently running,
which may be different from the name of the lowest level executing subroutine. This is
shown in the following example.

SET PROCEDURE TO program1
** Inside PROGRAM1.PRG is PROCEDURE procedure1
** If procedure1 is running, note the following:
? PROGRAM() returns PROCEDURE1
? PROGRAM(expN) returns C:\VISUALDB\PROGRAM1.PRG.

You can issue PROGRAM() in the Command window if a program is suspended with
SUSPEND. For example, if Program A calls Procedure B, and Procedure B is suspended,
issuing PROGRAM() in the Command window returns the name of Procedure B;
issuing PROGRAM(expN) in the Command window returns the full path name of the
file containing Procedure B.

You can also use PROGRAM() with ON ERROR and LINENO() to identify the
subroutine that was executing and the exact program line number at which the error
occurred.

PROGRAM() returns the name of the subroutine in uppercase letters. PROGRAM()
doesn't include a file-name extension even if the subroutine is a separate file, while
PROGRAM(expN) always includes a file-name extension.

Example
See the example of ON ERROR for an example of PROGRAM().

Portability
Not supported in dBASE III PLUS.

See Also
DEBUG, LINENO(), ON ERROR, PROCEDURE, RESUME, SET PROCEDURE,
SUSPEND

PROMPT() dBASE IV menus

Returns the prompt of the currently selected (highlighted) or most recently chosen
menu item. This command is supported primarily for compatibility with dBASE IV. In
Visual dBASE, use INSPECT() to return information associated with objects in forms.

For complete syntax information on PROMPT(), see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

408 L a n g u a g e R e f e r e n c e

P R O P E R ()

PROPER() String data

Converts a character string to proper-noun format and returns the resulting string.

Syntax
PROPER(<expC> | <memo field>)

<expC> | <memo field> The character string or memo field to convert to proper-noun
format.

Description
PROPER() returns a string where the first character of each word in a character
expression or memo field is capitalized and the remaining letters are lowercase.
PROPER() changes the first character of a word only if it is a lowercase alphabetic
character. PROPER() returns a maximum of 32766 characters, the maximum length of a
string.

The current language driver defines the character values that are lowercase and
uppercase alphabetic. In a U.S. language driver, a lowercase alphabetic character is from
a to z, and an uppercase alphabetic character is from A to Z. See Appendix C in the
Programmer's Guide for more information about language drivers.

Example
The following example uses PROPER() to create consistent capitalization of text strings:

? PROPER("e. b. white") && Returns "E. B. White"
? PROPER("e.b. white") && Returns "E.b. White"
? PROPER("4-WINDS MUSIC") && Returns "4-winds Music"
? PROPER("") && Returns ""

When character field data is entered in all uppercase, you might want to permanently
convert the field contents to upper- and lowercase. The following example replaces all
uppercase company names in the Company table with the first letter of each word in
uppercase and the remainder of each word in lowercase:

USE COMPANY
REPLACE ALL Company with PROPER(Company)

PROPER() also works with memo fields. The next example displays the contents of all
memo fields in the Contact table and uses PROPER() to convert all first letters of strings
to uppercase:

USE Contact
SCAN
? PROPER(Notes)
?
ENDSCAN
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 409

P R O T E C T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

See Also
LDRIVER(), LOWER(), SET LDCHECK, UPPER()

PROTECT Security

Creates and maintains security on a dBASE system.

Syntax
PROTECT

Description
This command is issued within dBASE by the database administrator, who is
responsible for data security. PROTECT works in a single user or multiuser
environment.

PROTECT is optional. If you use it, however, the security system always controls
dBASE table access.

This command displays a multi-page dialog. The first time you use protect, the system
prompts you to enter and confirm an administrator password.

Warning Remembering the administrator password is essential. You can access the security
system only if you can supply the password. Once established, the security system can
be changed only if you enter the administrator password when you call PROTECT.
Keep a hard copy of the database administrator password in a secured area. There is no
way to retrieve a password from the system.

PROTECT includes three distinct types of database protection:

• Log-in security, which prevents access to dBASE, or all protected tables (at the
discretion of the database administrator), by unauthorized personnel.

• File and field access security, which allows you to define what dBASE tables, and
fields within tables, each user can access.

• Data encryption, which encrypts dBASE tables so that unauthorized users cannot
read them

The following table summarizes the database security types, how to implement each
security type, and the results of security implementation.

It is not necessary to implement all three levels of security; you can stop at the log-in
level if you wish. You must implement the security types in the order shown in the
previous table.

Security Type You Define: You Get:

Log-in User name and password Control over access to dBASE or all protected
tables

File and Field Access Access levels Control over access to dBASE tables, fields in
tables, and application code

Data Encryption User and file group Automatic encryption and decryption of data

410 L a n g u a g e R e f e r e n c e

P R O W ()

Log-in security is the first security level. Once a security system is in place, you can set
up log-in security in one of two ways:

• Users cannot access dBASE until they pass log-in security.

• Users can access dBASE, but cannot access any protected table until they pass log-in
security.

Access control is the next security level. Access control determines what a user can do
both with the table and the data in the table, and can be used to control processing of
application code. User access levels are numbered 1 through 8, where 1 has the greatest
and 8 has the lowest access privileges. You establish an access level for each user in the
user's profile, and additional access levels for table and field privileges in the table
privilege scheme.

You establish privileges for a table by assigning access levels, in any combination, for
read, update, extend, and delete operations.

Data encryption scrambles the table so that unauthorized users cannot read the data.

The DBSYSTEM.DB file PROTECT builds and maintains a password system file called
DBSYSTEM.DB, which contains a record for each user who accesses a PROTECTed
system. Each record, called a user profile, contains the user's log-in name, account name,
password, group name, and access level. When a user attempts to start dBASE (if
dBASE is configured to require a log-in to start the program), or attempts to access a
protected table (if dBASE is configured to require a log-in when a protected table is
accessed), dBASE looks for a DBSYSTEM.DB file. You can specify a location for this file
in the [CommandSettings] section of DBASEWIN.INI:

DBSYSTEM=C:\VISUALDB\BIN

If there is no DBSYSTEM entry in DBASEWIN.INI, dBASE looks for the file in the same
directory in which DBASEWIN.EXE is located. If it finds the file, it initiates the log-in
process. If it does not find the file, there is no log-in process.

DBSYSTEM.DB is maintained as an encrypted file. Keep a record of the information
contained in DBSYSTEM.DB, as well as a current backup copy of the file. If the
DBSYSTEM.DB file is deleted or damaged and no backup is available, the database
administrator will need to reinitialize PROTECT using the same administrator
password and group names as before, or the data will be unrecoverable.

See the “Restricting access to confidential tables” chapter in the User's Guide for more
information about PROTECT.

See Also
ACCESS(), LOGOUT, SET ENCRYPTION, USER()

PROW() Printing

Returns the printing row position of a printer. Row numbers begin at 0.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 411

P R O W ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Syntax
PROW()

Description
Use PROW() to determine the vertical printing position of a printer—that is, the row at
which the printer is set to begin printing. Use PROW() in mathematical statements to
direct the printer to begin printing at a position relative to its current row position. For
example, PROW() + 5 represents a position five rows below the current position and
PROW() – 5 represents a position five rows above the current position.

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font of the parent form window. For more information about the
coordinate plane, see Chapter 16 in the Programmer's Guide.

If you're printing with a proportional font, you can add and subtract fractional numbers
to and from the PROW() value to move the printing position accurately. If you issue ?
without the STYLE option and use only integer coordinates, dBASE uses a monospaced
font, and all output appears exactly the same as in dBASE IV.

SET PRINTER must be ON or SET DEVICE TO PRINTER must be in effect for PROW()
to return a row position; otherwise, it returns 0.

Example
This example reads the current row from PROW() and writes "hello" two rows down
and some results on the line below it:

SET TALK OFF
SET DEVICE TO PRINTER
EJECT && prow() is now zero
Beginrow=prow()
@ prow()+2,0 SAY "Hello"
* prow() is now beginrow+2
* because of the @SAY command
Hellorow=prow()
@ prow()+1,0 SAY "Begin row=" && move to next row
@ prow(),pcol() SAY Beginrow && 0.00
@ prow(),pcol() SAY " Hello row="
@ prow(),pcol() SAY Hellorow && 2.00
@ prow(),pcol() SAY " Prow()="
@ prow(),pcol() SAY prow() && 3.00
SET DEVICE TO SCREEN && reset device
CLOSE PRINTER && Initiates the printout

See Also
PCOL(), ROW(), SET PROW

412 L a n g u a g e R e f e r e n c e

P U B L I C

PUBLIC Memory variables

Declares global memory variables or arrays that you can use and change in any dBASE
program or subroutine, or in the Command window.

Syntax
PUBLIC <memvar list> |
ARRAY <array name 1>"["<expN list 1>"]"
[, <array name 2>"["<expN list 2>"]"...]

Brackets ([]) in double quotation marks are required syntax components.

<memvar list> The memory variables to make public.

ARRAY <array name 1>[<expN list 1>], <array name 2>[<expN list 2>] ... The array variable(s)—
<array name 1>, <array name 2>, and so on—and array element(s) of each array—<expN
list 1>, <expN list 2>, and so on—to make public.

Description
Use PUBLIC to declare a memory variable, including array variables, in a subroutine
accessible to higher-level and lower-level routines in a program and to the Command
window.

When control passes from a subroutine—a program, procedure, or user-defined function
(UDF)—to the higher-level calling routine—a program, procedure, UDF, or the
Command window—dBASE normally clears from memory any variables the
subroutine initialized. Declaring a variable PUBLIC prevents that variable from being
cleared when control passes to the higher-level routine.

To declare a variable PUBLIC, do so before initializing it to a particular value. Declaring
a variable PUBLIC creates it and initializes it to .F.

By default, variables you initialize in the Command window are public, and those you
initialize in programs are private. The following table compares the characteristics of
variables declared PUBLIC, PRIVATE, LOCAL and STATIC in a subroutine called
CreateVar.

By default, when you have a program suspended, dBASE assigns private status to
memory variables, including arrays, that you initialize in other programs and in the
Command window. When you don't have a program suspended, dBASE assigns public
status to variables that you initialize in the Command window.

PUBLIC PRIVATE LOCAL STATIC

Created when it is declared and initialized to a
value of .F.

Y N N Y

Can be used and changed in CreateVar Y Y Y Y
Can be used and changed in lower-level
subroutines called by CreateVar

Y Y N N

Can be used and changed in higher-level
subroutines that call CreateVar

Y N N N

Automatically released when CreateVar ends N Y Y N

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 413

P U T F I L E ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Declaring an array variable with PUBLIC ARRAY achieves the same result as issuing
PUBLIC <array name> followed by DECLARE <array>. For example, the following first
line of code achieves the same result as the following second two lines of code:

PUBLIC ARRAY Row[5]

PUBLIC Row
DECLARE row[5]

Example
The following example uses PUBLIC to make the variables Val,Val1,Val2 accessible
throughout all called programs and procedures:

RELEASE Val,Val1,Val2
PUBLIC Val,Val1,Val2
? Val,Val1,Val2 && .F. .F. .F.
Val=10
? Val,Val1,Val2 && 10 .F. .F.
DO Proc1
? Val,Val1,Val2 && 1 11 .F.
DO Proc2
? Val,Val1,Val2 && 2 11 22

PROCEDURE Proc1
Val = 1
Val1 = 11
RETURN

PROC Proc2
Val = 2
Val2 = 22
RETURN

If the PUBLIC statement is omitted then Val1 and Val2 will not be available in the main
program because they are first used in Proc1 and Proc2. Val would be available to Proc1
and Proc2 because it is first used in the main program.

Portability
The array name argument is not supported in dBASE III PLUS.

See Also
CLEAR MEMORY, DECLARE, LOCAL, PARAMETERS, PRIVATE, RELEASE,
RESTORE, SAVE, STATIC, STORE

PUTFILE() Disk and file utilities

Displays a dialog box within which the user can create a new file name. Returns the file
name the user enters, or returns an empty string if the user chooses the Cancel button or
presses Esc.

414 L a n g u a g e R e f e r e n c e

P U T F I L E ()

Syntax
PUTFILE([<title expC>
[, <filename expC>
[, <extension expC>
[, <filetype expL>
[, <change filetype expL>]]]]])

<title expC > A title that is displayed at the top of the dialog box.

<filename expC > The default file name that is displayed in the dialog box's entryfield.
Without <filename expC >, PUTFILE() displays an empty entryfield.

<extension expC > A default extension for the file name that PUTFILE() returns.

<filetype expL> A logical value that determines whether the dialog box opens with a list
of all file types (.T.) or with a list of tables in a database (.F.). The default is .T. If you
want to specify a value for <filetype expL>, you must also specify a value or empty string
("") for <filename skeleton>, <title expC>, and <extension expC>.

<change filetype expL> A logical value that determines whether the user can switch
between database tables and all file types while in the dialog box (.T.) or cannot switch
between file types (.F.). The default is .F. If you want to specify a value for
<change filetype expL>, you must also specify a value or empty string ("") for
<filename skeleton>, <title expC>, and <extension expC>, and you must specify a value for
<filetype expL>.

Description
Use PUTFILE() to generate a new file name. Once the file name is generated, you can
use it in other commands and function calls. For example, you can use PUTFILE() to
generate a table file name, then give another file that file name with RENAME.

By default, the dialog box opened with PUTFILE() displays file names from the
directory that was last accessed through the dialog box. Each time you use the dialog
box to access a different directory, that directory serves as the default the next time the
dialog box is opened.

Example
The following examples use PUTFILE():

F1=PUTFILE() && Simply opens the dialog box
F2=PUTFILE("Select a file name for this report")
* Adds a title to the dialog box
F3=PUTFILE("Enter report name","Report.txt")
* User OKs the default name or enters another name
F4=PUTFILE("Enter a table name","Temp",".dbf")
* Default name: temp and default extension: .dbf
? "F1",F1
? "F2",F2
? "F3",F3
? "F4",F4

Portability
Not supported in dBASE IV or dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 415

P V ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

See Also
FILE(), GETFILE(), RENAME

PV() Numeric data

Returns a float that is the present value of an investment.

Syntax
PV(<payment expN>, <interest expN>, <term expN>)

<payment expN> The amount of the periodic payment. Specify the payment in the same
time increment as the interest and term. The payment can be negative or positive.

<interest expN> The interest rate per period expressed as a positive decimal number.
Specify the interest rate in the same time increment as the payment and term.

<term expN> The number of payments. Specify the term in the same time increment as
the payment and interest.

Description
PV() is a financial function that calculates the original principal balance (present value)
of an investment. PV() returns a float that is the amount to be repaid with equal
periodic payments at a fixed interest rate compounding over a fixed length of time. For
example, use PV() if you want to know how much you need to invest now to receive
regular payments for a specified length of time.

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%,
<interest expN> is .095 (9.5 / 100) for payments made annually.

Express <payment expN>, <interest expN>, and <term expN> in the same time increment.
For example, if the payment is monthly, express the interest rate per month, and the
number of payments in months. Express an annual interest rate of 9.5%, for example, as
.095/12, which is 9.5/100 divided by 12 months.

The formula dBASE uses to calculate PV() is as follows:

where int = rate 100

For the present value of an investment earning 9% interest, to be paid at $350 monthly
for five years, the formula expressed as a dBASE expression looks like this:

? PV(350,.09/12,60) && Returns 16860.68
nTemp = (1 + .09/12)^60
? 350*(nTemp-1)/(.09/12*nTemp) && Returns 16860.68

In other words, you have to invest $16,860.68 now into an account paying an interest
rate of 9% annually to receive $350/month for the next five years.

Use SET DECIMALS to set the number of decimal places PV() displays.

pv pmt * 1 int+()term 1–

int * 1 int+()term
--=

416 L a n g u a g e R e f e r e n c e

Q U I T

Example
The following example uses PV() to calculate the size of a mortgage loan that the user
could afford, given the monthly payment the user desires, current interest rates and the
number of payments (360 for 30-year mortgage):

LOCAL f
f=NEW PV()
f.OPEN()
CLASS PV OF FORM

this.Width=50
this.Height=15
this.Text= "What can I afford?"
this.ColorNormal="BG+/BG"
DEFINE TEXT Txt1 OF THIS AT 3,5;

PROPERTY Text "Desired monthly payment?", Width 26
DEFINE ENTRYFIELD Amnt OF THIS AT 3,38 ;

PROPERTY Value 0, Picture "9999", Width 5
DEFINE TEXT Txt2 OF THIS AT 5,5;

PROPERTY Text "Current interest rate?", Width 26
DEFINE ENTRYFIELD Int OF THIS AT 5,38 ;

PROPERTY Value 0, Picture "99.99", Width 5
DEFINE TEXT Txt3 OF THIS AT 7,5;

PROPERTY Text "How many monthly payments?", Width 30
DEFINE ENTRYFIELD Pymts OF THIS AT 7,38 ;

PROPERTY Value 0, Picture "999", Width 4
DEFINE PUSHBUTTON Results OF THIS AT 11,18;

PROPERTY Text "Loan Amount", Width 15,;
OnClick {;myResult="You can afford to borrow $"+;
LTRIM(STR(PV(Form.Amnt.Value,;
(Form.Int.Value/100)/12,Form.Pymts.Value),13,2));
; Form.PV.Text=myResult}, Height 2, ColorNormal "N/W"

DEFINE TEXT PV OF THIS AT 9,8;
PROPERTY Text "How much to borrow? ", Width 30

ENDCLASS

Portability
Not supported in dBASE III PLUS.

See Also
FV(), PAYMENT(), SET DECIMALS

QUIT Programs

Closes all open files, clears all memory variables, exits dBASE, and returns control to the
operating system.

Syntax
QUIT [WITH <expN>]

WITH <expN> Passes a return code, <expN>, to the operating system when you exit
dBASE.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 417

R A N D O M ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Description
Use QUIT to end your dBASE work. If you include QUIT in a program file, dBASE halts
the program's execution and exits dBASE. To end a program's execution without
leaving dBASE, use CANCEL or RETURN.

Use QUIT WITH <expN> to pass a return code to Windows or to another application.

Example
The following example shows how to create pushbuttons on a form that present the user
with the option to terminate dBASE by issuing the QUIT command. In this example,
clicking on the Exit pushbutton issues a code block containing the QUIT command:

DEFINE FORM QuitTest FROM 2,2 TO 15,40;
PROPERTY Text "Testing Quit"

DEFINE PUSHBUTTON PB1 OF QuitTest AT 8,11;
PROPERTY Text "Exit dBASE", Width 15,;

OnClick {;QUIT}
OPEN FORM QuitTest

Portability
The WITH <expN> option is not supported in dBASE III PLUS.

See Also
CANCEL, CLEAR, CLOSE..., RELEASE, RETURN, RUN, RUN()

RANDOM() Numeric data

Returns a decimal value between 0 and 1.

Syntax
RANDOM([<expN>])

<expN> The numeric or float number with which to seed RANDOM().

Description
Use RANDOM() to generate a series of random numbers. If you specify a positive
<expN> value, RANDOM() uses <expN> as a seed value. A seed value is the value that a
function operates on to return a result. Thus, RANDOM() always returns the same
number when you specify the same positive <expN>. For example, RANDOM(199)
always returns 0.11, RANDOM(399) always returns 0.23, and RANDOM(599) always
returns 0.35.

If you don't specify <expN>, or use zero, RANDOM() uses as a seed value the number
that the previous RANDOM() returned or, if there is no previous RANDOM(), a fixed
internal seed value of 0.

Use RANDOM() with a negative <expN> value when you want RANDOM() to return
a more truly random series of numbers. If you specify a negative <expN> value,
RANDOM() uses a seed value based on the number of seconds on your computer

418 L a n g u a g e R e f e r e n c e

R A N D O M ()

system clock. As a result, using RANDOM() with negative <expN> values makes it
likely that RANDOM() will return different numbers each time your program executes.

You can use RANDOM() to generate a seemingly random series of numbers while
maintaining control over what those numbers are. For example, using RANDOM(5),
and then RANDOM() three times without the <expN> option always returns 0.03, 0.49,
0.56, 0.68. In the first use of RANDOM(), 5 is the seed value; in the second use of
RANDOM(), 0.03 is the seed value, since the previous RANDOM() returned 0.03.

Use SET DECIMALS to set the number of decimal places RANDOM() displays.

Example
The following program generates a random list of 20 flights from the Flights table for
making random inspections:

USE FLIGHTS
SET TALK OFF
CLEAR
Count=1
DO WHILE COUNT <=20

Flt=INT(RANDOM()*RECCOUNT()+1)
GOTO Flt
? Flight_No AT 10, Origin, Dest
Count=Count+1

ENDDO
X=INKEY(5) && Delays display 5 seconds
CLOSE ALL

The following example uses RANDOM() to generate a random number to be used as
part of a unique table name:

CLEAR
Tmp_file = "TMP" + LTRIM(STR(RANDOM()*10000,5,0))+".DBF"
USE Clients
COPY STRUCTURE TO &Tmp_file
USE &tmp_file IN 2
SELECT 2
? "The current table is: " + Tmp_file
X=INKEY(5) && Delays display 5 seconds
CLOSE ALL
ERASE &tmp_file

The next example uses RANDOM() to generate three sets of six randomly picked
numbers from a possible range of 1–51:

CLEAR
SET TALK OFF
Play=1
Pick=1
DO WHILE Play<=3

DO WHILE Pick<=6
lotto = RANDOM()*51
? "Pick"+LTRIM(STR(Pick))+" " AT 10, ;

LTRIM(STR(lotto,5,0))
Pick=Pick+1

ENDDO

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 419

R A T ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

?
Pick=1
Play=Play+1

ENDDO
SET TALK ON
RETURN

Portability
Not supported in dBASE III PLUS. In dBASE IV, the function is RAND(); RANDOM()
isn't recognized.

In dBASE IV, you can reset to the default seed value by issuing RAND(100001). Visual
dBASE does not support resetting to the default seed value. Also in dBASE IV,
RAND(0) always returns the same value. In Visual dBASE, RANDOM(0) is identical to
RANDOM(), and uses as a seed value the number that the previous RANDOM()
returned.

See Also
GENERATE, SET DECIMALS

RAT() String data

Returns a number that represents the starting position of a string within another string
or memo field. RAT() searches back from the right end of the target string or memo
field, and returns a value counting from the beginning of the target.

Syntax
RAT(<search expC>, <target expC> | <target memo field>
[, <nth occurrence expN>])

<search expC> The string to search for in <target expC> or <target memo field>.

<target expC> | <target memo field> The string or memo field, or target, in which to search for
<search expC>.

<nth occurrence expN> Which occurrence of <search expC> to find. If you don't specify
<nth occurrence expN>, dBASE searches for the first occurrence from the end. You can
search for other occurrences by specifying the number (based on starting from the end),
which must be greater than zero.

Description
Use RAT() to search for the first or <nth occurrence expN> occurrence of <search expC> in
a target string or memo field, searching right to left, end to beginning. The search is case-
sensitive. Use UPPER() or LOWER() to make the search case-insensitive.

Even though the search starts from the end of the target string or memo field, the result
RAT() returns represents the numeric position of <search expC> counting from the
beginning of the target. This is shown in the following example.

420 L a n g u a g e R e f e r e n c e

R E A D

? RAT("abc","abcdefabc") && returns 7
** |
** The bar above shows the first occurrence of 'abc'
** searching from the end of the target
** That character is in position 7 counting from the
** beginning of the target

If <search expC> occurs only once in the target, RAT() and AT() return the same value.
For example, RAT("abc","abcdef") and AT("abc","abcdef") both return 1.

RAT() returns 0 when:

• The search string isn't found
• The search string is an empty string
• The search string is longer than the target string
• The nth occurrence you specify with <nth occurrence expN> doesn't exist

To find the starting position of <search expC>, searching from left to right, beginning to
end, use AT(). To learn if one string exists within another, use the substring operator ($).
See Chapter 1 for information about operators.

Example
The following example uses RAT() to locate the starting point of a passed string,
starting at the right end of a second string:

? RAT("B","ABC") && Returns 2
? RAT("ss","Mississippi") && Returns 6
? RAT("ss","Mississippi",2) && Returns 3
? RAT("Z","ABC") && Returns 0
? RAT("a","ABC") && Returns 0
? RAT("ABC","AB") && Returns 0
? RAT("","ABC") && Returns 0
? RAT("a","abc",2) && Returns 0

The next example uses RAT() when displaying the contents of a field:

USE Clients
LIST FIELDS Company, Contact ;

FOR RAT("COMPUTER",UPPER(Company)) > 0
CLOSE DATABASES

Portability
Not supported in dBASE III PLUS. dBASE IV limits a memo field search to
approximately 64K of data.

See Also
AT(), LOWER(), STUFF(), SUBSTR(), UPPER()

READ Input/Output

Activates all @...GET fields and memory variables in the results pane of the Command
window or the current dBASE IV window. This command is supported primarily for

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 421

R E A D K E Y ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

compatibility with dBASE IV. In Visual dBASE, use DEFINE, OPEN FORM, and
READMODAL() to create and activate forms.

For complete syntax information on READ, see online Help. For information about
defining forms, see the Forms chapters in the User's Guide.

READKEY() Keyboard and mouse events

Returns an integer that identifies the key or key combination that was pressed to
terminate execution of a full-screen editing command. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use properties such as
OnClick to initiate actions based on how a user exits a form.

For complete syntax information on READKEY(), see online Help. For information
about working with forms, see the Forms chapters in the User’s Guide.

READMODAL() Forms

Opens a form as a modal window and returns the name of the object that has input
focus when the user submits the form.

Syntax
READMODAL(<object reference> [, <expL>])

<object reference> References the object that receives initial input focus when the form is
opened.

<expL> A logical condition that determines if pressing Esc closes the form. The default is
true (.T.).

Description
Use READMODAL() to open a form as a modal window.

A form that you open as a modal window has the following characteristics:

• While the form is open, focus can't be transferred to other forms.

• Execution of the routine that opened the form stops until the form is closed. When the
form is closed, control transfers to the command line after the one that opened the
form.

Many applications use modal forms as dialog boxes, which typically require users to
take an action before the dialog box can be closed.

By default, READMODAL() returns the name of the object that has focus when the user
submits the form; however, you can specify your own return value for READMODAL()
using the WITH option of CLOSE FORMS.

READMODAL() is similar to the ReadModal() method, which also opens a form as a
modal window.

422 L a n g u a g e R e f e r e n c e

R E A D M O D A L ()

To open a form as a modeless window, use the Open() method or the OPEN FORM
command.

Example
The following example uses READMODAL() to display and enable a previously
defined form:

SET CUAENTER OFF
DEFINE FORM Mortgage FROM 2,2 TO 15,60;

PROPERTY Text "Dewey's Loans",MDI .F.,;
OnClose {;SET CUAENTER ON}

DEFINE TEXT Txt1 OF Mortgage AT 2,5;
PROPERTY Text "What is the principal?",;
Width 26, ColorNormal "RB/W"

DEFINE ENTRYFIELD Princ OF Mortgage AT 2,45;
PROPERTY Picture "999,999",;
Width 7, Value 0

DEFINE TEXT Txt2 OF Mortgage AT 4,5;
PROPERTY Text "What is the interest rate?",;
Width 30, ColorNormal "RB/W"

DEFINE ENTRYFIELD Int OF Mortgage AT 4,45 ;
PROPERTY Picture "99.99",;
Width 5, Value 0

DEFINE TEXT Txt3 OF Mortgage AT 6,5;
PROPERTY Text "What is the number of;

payments?",Width 39,ColorNormal "RB/W"
DEFINE ENTRYFIELD Pay OF Mortgage AT 6,45 ;

PROPERTY Picture "999",;
Width 4, Value 0

DEFINE TEXT Txt4 OF Mortgage AT 8,8;
PROPERTY Text "Your payment will be:",;
Width 30, ColorNormal "R+/W"

DEFINE ENTRYFIELD Pymnt OF Mortgage AT 8,45;
PROPERTY Width 10, Value 0, Picture "$9999.99",;
OnGotFocus {;this.Value=;

PAYMENT(Form.Princ.Value,;
(Form.Int.Value/100)/12,Form.Pay.Value)}

DEFINE PUSHBUTTON Exit OF Mortgage AT 11,18;
PROPERTY Text "Exit", OnClick {;Form.Close()}

READMODAL(Mortgage.Princ)

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ACTIVATE WINDOW, CLEAR WINDOWS, CLOSE..., DEACTIVATE WINDOW,
DEFINE WINDOW, Open(), OPEN FORM, ReadModal(), RELEASE WINDOWS

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 423

R E C A L L+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

RECALL Fields and records

Unmarks records that were previously marked for deletion in the current table. This
command has no effect when accessing Paradox or SQL tables, since records are
removed immediately when they are deleted.

Syntax
RECALL
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]

<scope> The number of records to recall. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by RECALL. FOR restricts
RECALL to records that meet <condition 1>. WHILE starts processing with the current
record and continues with each subsequent record as long as <condition 2> is true.

Description
Use RECALL to undelete records that have been marked for deletion in the current table
with DELETE but have not yet been removed with PACK. Executing DELETE doesn't
erase records but identifies them as to be deleted. RECALL reverses this process,
unmarking the records and fully restoring them to the table. RECALL with no options
unmarks the current record only.

Records eliminated with PACK or ZAP are permanently removed and can't be
recovered using RECALL.

When SET DELETED is ON, the <scope> and FOR options have no effect, and the
WHILE option affects only the current record. RECALL with no options is not affected
by SET DELETED; the current record is recalled.

In most cases, SET DELETED ON filters out all deleted records of the active table. It is
possible to access a deleted record, though, if you refer to the record by record number.
For example, if record number 4 is deleted and SET DELETED is ON, GO 4 positions the
record pointer at the deleted record.

Example
See DELETE for an example of RECALL.

See Also
DELETE, PACK, SET DELETED, ZAP

424 L a n g u a g e R e f e r e n c e

R E C C O U N T ()

RECCOUNT() Fields and records

Returns the number of records in the current or a specified table.

Syntax
RECCOUNT([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
RECCOUNT() retrieves a count of a table's records from the table header, which holds
information about the table structure. In contrast, COUNT with no argument yields a
record count by actually counting the table's records.

If no table is active, RECCOUNT() returns zero. RECCOUNT() includes all records,
even if SET DELETED is ON or SET FILTER is in effect.

You can use RECSIZE() in combination with RECCOUNT() to determine the
approximate size, in bytes, of a table. The DIR command displays the number of bytes
DOS allocates to a table. DOS might not allocate the same number of bytes as the actual
size of the file.

Example
The following example uses RECCOUNT() to return the number of records in each
specified table:

USE Company IN SELECT()
USE Contact IN SELECT()
? "The table - Company - has " + ;

LTRIM(STR(RECCOUNT("Company"),4,0)) + " records."
? "The table - Contact - has " + ;

LTRIM(STR(RECCOUNT("Contact"),4,0)) + " records."
CLOSE ALL

The following example uses RECCOUNT() to initialize an array to the dimensions of
Clients table and copies the contents of the table to the array:

SET TALK OFF
USE Clients
DECLARE Clnt2[RECCOUNT(),FLDCOUNT()]
COPY TO ARRAY Clnt2
Cnt = 1
DO WHILE Cnt <= RECCOUNT()

? Clnt2[Cnt,2] && Displays company name
Cnt=Cnt+1

ENDDO
CLOSE ALL
CLEAR ALL
SET TALK ON

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 425

R E C N O ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

See Also
DIR, DBF(), DISKSPACE(), DISPLAY STRUCTURE, RECNO(), RECSIZE()

RECNO() Fields and records

Returns the current record number of the current or a specified table. For Paradox and
SQL tables, this function returns a bookmark of the current position in a table.

Syntax
RECNO([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
RECNO() returns the current record number of the table in the current or a specified
work area. RECNO() considers all records, even if SET DELETED is ON or SET FILTER
is in effect. If no table is open in the specified work area, RECNO() returns a value of 0.

If the record pointer moves past the last record (EOF) in the table, RECNO() returns a
value that is one more than the total number of records in the table. If the record pointer
moves before the first record (BOF) in the table, RECNO() returns a value of 1.
RECNO() also returns a value of 1 if there are no records in the table.

Example
The following example uses RECNO() to display the record number in a SCAN loop
and after the record pointer is moved from EOF() to BOF():

SET TALK OFF
CLEAR
USE Company IN SELECT() EXCLUSIVE
? "Record Num" AT 4, "Company" AT 18
?
SCAN

? LTRIM(STR(RECNO())) AT 4, Company AT 18
ENDSCAN
IF EOF()
? "The End of File has been reached ;
at Record #" + LTRIM(STR(RECNO(),3,0))
ENDIF
GO TOP
SKIP -1
IF BOF()
? "The Beginning of File has been reached ;
at Record # " + LTRIM(STR(RECNO(),3,0))
ENDIF
CLOSE ALL
SET TALK ON

426 L a n g u a g e R e f e r e n c e

R E C S I Z E ()

See Also
BOF(), EOF(), RECCOUNT()

RECSIZE() Fields and records

Returns the number of bytes in a record of the current or specified table.

Syntax
RECSIZE([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
RECSIZE() returns the number of bytes in a record of a table in the current or specified
work area. If no table is open in the specified work area, RECSIZE() returns a value of
zero.

LIST STRUCTURE and DISPLAY STRUCTURE also show the size of a table's records.

Example
The following example uses RECSIZE() to return the record length within the table
structure in bytes for each specified table:

USE Company IN SELECT()
USE Contact IN SELECT()
? "The table - Company - has a record size of " + ;

LTRIM(STR(RECSIZE("Company"),4,0)) + " bytes"
? "The table - Contact - has a record size of " + ;

LTRIM(STR(RECSIZE("Contact"),4,0)) + " bytes"
CLOSE ALL

See Also
DBF(), DIR, DISPLAY STRUCTURE, LIST STRUCTURE, RECCOUNT(), RECNO()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 427

R E D E F I N E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

REDEFINE Objects

Changes an object definition in memory.

Syntax
REDEFINE <class name> <object name>
[OF <container object>]
[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <stock property list>]
[CUSTOM <custom property list>]
[WITH <parameter list>]

<class name> The class of the object you want to redefine.

<object name> The object reference to the object you want to redefine.

OF <container object> Identifies the object that contains the object you want to redefine.
(For most UI objects this container object is a form.)

FROM <row>, <col> TO <row>, <col> | AT <row>, <col> Specifies the initial location and size of
the object within its parent form or window. FROM and TO specify the upper left and
lower right coordinates of the object, respectively. AT specifies the position of the upper
left corner.

PROPERTY <stock property list> Specifies values you assign to the built-in properties of the
object.

CUSTOM <custom property list> Specifies new properties you create for the object and the
values you assign to them. For information on custom properties, see Chapter 10 in the
Programmer's Guide.

WITH <parameter list> Specifies the parameters you pass to the object. Declare these
parameters with the PARAMETERS clause of the CLASS...ENDCLASS command.

Description
Use REDEFINE to change an existing object.

You control object characteristics with properties, which are memory variables contained
in the object. For example, a form has height and width, so form objects have properties
named Height and Width. The REDEFINE command lets you assign new values to
these and other properties after you create the object with the DEFINE command or the
NEW operator.

Each REDEFINE command has the same options as its associated DEFINE command,
and they both give control over the same properties.

You can also change properties using the dot operator. For information on the dot
operator and the syntax required to use it, see Chapter 10 in the Programmer's Guide.

Example
The following example creates four forms on the screen with a pushbutton in form
Fourth that enables the user to REDEFINE forms First, Second and Third to screen
positions that present a vertical form orientation:

428 L a n g u a g e R e f e r e n c e

R E F R E S H

SET PROCEDURE TO PROGRAM(1) ADDITIVE
PUBLIC FIRST, SECOND, THIRD, FOURTH
DEFINE FORM First FROM 0,0 TO 10,29
DEFINE FORM Second FROM 0,31 TO 10,58
DEFINE FORM Third FROM 13,0 TO 28,58
DEFINE FORM Fourth FROM 0,60 TO 28,74

DEFINE PUSHBUTTON Remodel OF Fourth AT 20,1;
PROPERTY;

TEXT "Change Layout", Width 13,;
OnClick Rotate

DEFINE PUSHBUTTON Exit OF Fourth AT 23,1;
PROPERTY;

TEXT "Revert To", Width 13,;
OnClick RevertTo

OPEN FORM First, Second, Third, Fourth
SET FOCUS TO Fourth

PROCEDURE RevertTo
CLOSE FORMS Third, Fourth
RETURN

PROCEDURE Rotate
CLOSE FORMS First, Second, Third
REDEFINE FORM First FROM 0,0 TO 28,17
REDEFINE FORM Second FROM 0,19 TO 28,37
REDEFINE FORM Third FROM 0,39 TO 28,58
OPEN FORM First, Second, Third
SET FOCUS TO FOURTH
RETURN

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
CLASS...ENDCLASS, DEFINE

REFRESH Table basics

Updates the current or specified work area data buffers to reflect the latest changes to
data.

Syntax
REFRESH [<alias>]

<alias> A work area number (1 through 225), letter (A through J), or alias name.
The work area letter or alias name must be enclosed in quotes.

Description
Use REFRESH to update specified work area data buffers so that data you display
reflects the latest changes made to tables by other users on a network. This command is

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 429

R E I N D E X+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

most often used when accessing data from tables stored on a database server; however,
you can also use it to update the data buffers for open Paradox and dBASE tables.

Example
This example opens Company.DBF and Orders.DBF. Because they are not exclusively
opened, another user could change a record in Company or Orders after this user has
read it from the server. REFRESH rereads the records to ensure that the latest data is
displayed:

CLOSE ALL
SET EXCLUSIVE ON
USE S:\VISUALDB\Samples\Orders
INDEX ON Customer_N TAG Customer_N
* build the index
CLOSE ALL
SET EXCLUSIVE OFF
USE S:\VISUALDB\Samples\Company
SELECT 2
USE S:\VISUALDB\Samples\Orders
SET RELATION TO Customer_N INTO Company
* Now anyone can access company
SCAN

REFRESH("Company")
REFRESH("Orders")
EDIT

ENDSCAN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
SET REFRESH

REINDEX Table organization

Updates all open index files in the selected work area to reflect changes in the current
table.

Syntax
REINDEX

Description
Use REINDEX to incorporate all changes made to the current table into the open index
files if they were not open when the table was updated. Re-indexing updates all open
.NDX and .MDX files opened with USE or SET INDEX.

If an index file is created using the UNIQUE option of the INDEX command, or while
SET UNIQUE is ON, REINDEX rebuilds the index as a unique index. Similarly, if you

430 L a n g u a g e R e f e r e n c e

R E L A T I O N ()

created a descending order index using the DESCENDING option of the INDEX
command, the REINDEX command rebuilds the index in descending order.

Example
The following example uses REINDEX to reindex an open index file after a new record
has been added with the index file open but inactive:

USE Company EXCLUSIVE
INDEX ON Ytd_sales TAG Ytd OF Company1
* this creates Company1.mdx with tag Ytd
USE COMPANY EXCLUSIVE
* now Company1.mdx will not be updated
APPEND BLANK
REPLACE Company WITH "Missing From Index"
* Company1.mdx is out of date
USE COMPANY INDEX Company1 EXCLUSIVE
SET ORDER TO TAG Ytd OF Company1
*
BROWSE TITLE "Record "+ltrim(str(reccount()))+" not in YTD"
* Ytd is now the index but it is out of date
* the last record cannot be found
REINDEX
* Ytd is now updated
BROWSE TITLE "Reindex includes last record"

See Also
INDEX, SET INDEX, SET ORDER, SET UNIQUE, USE

RELATION() Table organization

Returns the key expression defined with the SET RELATION command for the current
or specified work area.

Syntax
RELATION(<expN> [,<alias>])

<expN> The number of a relation that you want to return.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
RELATION() returns the expression linking tables defined from the current or specified
work area with the SET RELATION command. If the table is linked to more than one
table, you can specify the number of the relation you want to return. RELATION()
returns an empty string ("") if no relation is set in the <expN> position.

Use RELATION() to save the key expressions of all SET RELATION settings for later
use when restoring relations. To save the target table (the table into which you SET a
RELATION), use the TARGET() function.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 431

R E L E A S E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Example
The following example uses RELATION() to determine the key expression used to
establish a relationship between two child tables, Contact and Summary, and the parent
table, Company:

CLOSE ALL
CLEAR
SELECT 1
USE Customer
INDEX ON Customer_N TAG Customer_N
SELECT 2
USE Orders
SELECT 3
USE LineItem
INDEX ON Order_no TAG Order_no
SELECT 2
SET RELATION TO Order_no INTO LineItem
SET RELATION TO Customer_N INTO Customer ADDITIVE
IF LEN(RELATION(1)) > 0

@ 9,0 SAY "Orders.dbf is related to " + ;
TARGET(1)+ " key expression: "+RELATION(1)

IF LEN(RELATION(2)) > 0
@ 11,0 SAY "Orders.dbf is also related to " + ;
TARGET(2)+ " key expression: "+RELATION(2)

ENDIF
ENDIF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ALIAS(), CREATE QUERY, CREATE VIEW, CREATE VIEW...FROM
ENVIRONMENT, SELECT(), SET RELATION, SET VIEW, SET(), TARGET()

RELEASE Memory variables

Deletes specified memory variables and arrays, freeing memory space for additional
variables.

Syntax
RELEASE <memvar list> |
ALL

 [LIKE <memvar skeleton 1>]
 [EXCEPT <memvar skeleton 2>]

<memvar list> The specific memory variables to release from memory, separated by
commas.

ALL Removes from memory all stored memory variables.

432 L a n g u a g e R e f e r e n c e

R E L E A S E

LIKE <memvar skeleton 1> Removes from memory all memory variables whose names are
like the memory variable skeleton you specify for <memvar skeleton 1>. Use characters of
the variable names and the wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2> Removes from memory all memory variables except those
whose names are like the memory variable skeleton you specify for <memvar skeleton 2>.
Use characters of the variable names and the wildcards * and ? to create <memvar
skeleton 2>. You can use LIKE and EXCEPT in the same statement, for example,
RELEASE ALL LIKE mvar* EXCEPT mvarnum*.

Description
Use RELEASE to clear memory variables, thus making additional space available for
new ones. To remove large groups of variables, use the option ALL [LIKE
<memvar skeleton 1>] [EXCEPT <memvar skeleton 2>].

If you issue RELEASE ALL [LIKE <memvar skeleton 1>] [EXCEPT <memvar skeleton 2>] in
a subroutine—a program, procedure, or user-defined function (UDF)—dBASE releases
only the private memory variables defined in that subroutine. It doesn't release memory
variables declared in higher-level routines.

When control returns from a subroutine to its calling routine, dBASE clears from
memory all variables initialized in the subroutine that weren't declared PUBLIC or
STATIC. Thus, you don't have to release a subroutine's private variables explicitly with
RELEASE in the calling routine.

Example
The following example initializes a series of memory variables with names that are a
concatenation of a string and a natural order record number. After processing,
Client_ID and Company field values are held in variables IDx and Compx respectively.
DISPLAY MEMORY merely confirms the presence of these memory variables.
RELEASE ALL LIKE demonstrates how groups of memory variables can be released
from memory, as evidenced by subsequent DISPLAY MEMORY commands:

SET TALK OFF
SET SAFETY OFF
USE Clients EXCLUSIVE
INDEX ON Client_ID TAG Client_ID
DO WHILE .NOT. EOF()

VAR1="ID"+LTRIM(STR(RECNO()))
VAR2="Comp"+LTRIM(STR(RECNO()))
STORE Client_ID TO &VAR1
STORE Company TO &VAR2
SKIP

ENDDO
CLEAR
DISPLAY MEMORY && IDx and COMPx memvars
CLEAR
RELEASE ALL LIKE COMP*
DISPLAY MEMORY && IDx only remaining
CLEAR
RELEASE ALL LIKE ID*
DISPLAY MEMORY && all gone
CLEAR

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 433

R E L E A S E A U T O M E M+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

SET TALK ON
SET SAFETY ON

Portability
dBASE IV and dBASE III PLUS do not support both LIKE and EXCEPT in the same
RELEASE statement.

See Also
CLEAR, LOCAL, PRIVATE, PUBLIC, QUIT, RESTORE, RETURN, SAVE, STATIC

RELEASE AUTOMEM Fields and records

Clears all stored automem variables from memory.

Syntax
RELEASE AUTOMEM

Description
When you create a set of automem variables for a table using STORE AUTOMEM,
CLEAR AUTOMEM, or USE...AUTOMEM, Visual dBASE initializes one variable for
each field, assigning each variable the same name and data type as the corresponding
field. When you no longer need the automem variables, you can use RELEASE
AUTOMEM to remove them from memory, making space available for other variables.
RELEASE AUTOMEM releases all memory variables with the same name as fields in
the current table, even variables that were not created with an AUTOMEM command.

Closing a table or moving to another work area doesn't automatically release a table's
associated automem variables. Visual dBASE doesn't recognize a variable as an
automem variable, even if it was created as an automem variable, if it doesn't have the
same name as a field in the current table. Thus, when you close a table or select another
work area, the associated automem variables remain in memory. After you close a table
or select another work area, RELEASE AUTOMEM doesn't remove these variables from
memory so you must remove them with either RELEASE or CLEAR ALL.

Example
The following sample uses CLEAR AUTOMEM to enable the user to edit AUTOMEM
variables for a new record. However, a new record will only be added if the user
confirms that the data is correct. RELEASE AUTOMEM is used with ON ESCAPE and
READKEY() to release all automem variables from memory when the user discontinues
data entry by pressing ESCAPE:

SET TALK OFF
CLEAR
USE Clients
ON ESCAPE RELEASE AUTOMEM
AddMoreData()
RETURN

434 L a n g u a g e R e f e r e n c e

R E L E A S E D L L

FUNCTION AddMoreData
@0,0 to 8, 70
@10,20 to 12,45
CLEAR AUTOMEM
DO WHILE .T.

lConfirm = .F.
@11,22 CLEAR TO 11,39
@1,1 SAY 'ID' GET m->CLIENT_ID
@1,10 SAY 'COMPANY' GET m->COMPANY
@3,1 SAY 'Contact' GET m->CONTACT
@4,1 SAY 'Address' GET m->ADDRESS
@6,1 SAY 'City' GET m->CITY
@6,23 SAY 'State/Province' GET STATE_PROV
@6,54 SAY 'Zip' GET ZIP_P_CODE
READ

IF READKEY() = 12
RELEASE AUTOMEM
EXIT

ELSE
@11,22 SAY "Data Correct, Y-N?";
GET lConfirm PICTURE 'Y'
READ
IF lConfirm

APPEND AUTOMEM
CLEAR AUTOMEM

ENDIF
ENDIF

ENDDO
RETURN .T.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLEAR AUTOMEM, RELEASE, STORE AUTOMEM, USE

RELEASE DLL Windows programming

Deactivates DLL files.

Syntax
RELEASE DLL <DLL filename list>

Description
Use RELEASE DLL when you debug a DLL file or a dBASE application. For example,
you must deactivate a DLL file and activate it again each time you change one of its
routines.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 435

R E L E A S E M E N U S+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

A DLL file is a precompiled library of external routines written in non-dBASE languages
such as C and Pascal. A DLL file can have any extension, although most have extensions
of .DLL. You activate a DLL file with the LOAD DLL command.

Example
The following example demonstrates the command sequence for using RELEASE DLL
as a trouble shooting tool:

LOAD DLL myDLL.DLL
* ... test DLL operation
RELEASE DLL myDLL.DLL
* ... change .DLL or C program
LOAD DLL myDLL.DLL
* ... test again
RELEASE DLL myDLL.DLL

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
EXTERN, LOAD DLL

RELEASE MENUS dBASE IV menus

Removes deactivated menus from memory. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use RELEASE OBJECT to clear an object
from a form.

For complete syntax information on RELEASE MENUS, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

RELEASE OBJECT Objects

Removes object definitions from memory.

Syntax
RELEASE OBJECT <container reference>.<object reference>

<container reference>.<object reference> <container reference> is an object reference variable
pointing to the object (usually a form) that contains the object. <object reference> is an
object reference variable pointing to the object itself.

Description
Use RELEASE OBJECT to:

• remove an object when you no longer need it.
• conserve memory resources.

436 L a n g u a g e R e f e r e n c e

R E L E A S E P O P U P S

Releasing a form from memory also releases the objects it contains. Likewise, releasing a
menu from memory also releases the menus it contains.

RELEASE OBJECT is identical to the Release() method.

Example
The following example defines three check boxes on form Check_It and uses RELEASE
OBJECT to remove "Choice 3" check box from the form upon selection of Choice 1:

PUBLIC Check_It
SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM Check_It FROM 0,0 TO 10,18
DEFINE CHECKBOX Ck1 OF Check_It AT 2,4;

PROPERTY Text "Choice 1",;
OnChange Exclude, Value .F.

DEFINE CHECKBOX Ck2 OF Check_It AT 4,4;
PROPERTY Text "Choice 2", Value .F.

DEFINE CHECKBOX Ck3 OF Check_It AT 6,4;
PROPERTY Text "Choice 3", Value .F.

OPEN FORM Check_It

PROCEDURE Exclude
IF TYPE("Check_It.Ck3")<>"U"

RELEASE OBJECT Check_It.Ck3
ENDIF
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLEAR ALL, CLOSE..., Release()

RELEASE POPUPS dBASE IV menus

Erases dBASE IV popup menus from the screen and releases them from memory. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use RELEASE OBJECT to clear an object from a form.

For complete syntax information on RELEASE POPUPS, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

RELEASE SCREENS Input/Output

Removes from memory all or specified variables created by SAVE SCREEN, and clears
the Command window buffer. This command is supported primarily for compatibility
with dBASE IV.

For complete syntax information on CLEAR SCREENS, see online Help.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 437

R E L E A S E W I N D O W S+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

RELEASE WINDOWS dBASE IV Windows

Releases specified dBASE IV-style window definitions from memory. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use CLOSE
FORMS or RELEASE OBJECT to close or release a form.

For complete syntax information on RELEASE WINDOWS, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

RENAME Disk and file utilities

Renames a file on disk.

Syntax
RENAME <filename 1> | ? | <filename skeleton 1>
TO <filename 2> | ? | <filename skeleton 2>

<filename 1> | ? | <filename skeleton 1> Identifies the original file (also known as the source
file). RENAME ? and RENAME <filename skeleton> display a dialog box from which you
can select a file to rename. If you specify a source file without including its path, dBASE
looks for the file in the current directory, then in the path you specify with SET PATH. If
you specify a source file without including its extension, dBASE assumes no extension.

TO <filename 2> | ? | <filename skeleton 2> Identifies the new name for the source file (also
known as the target file). The ? and <filename skeleton> options display a dialog box in
which you specify the name of a target file and its directory.

Description
RENAME is a utility command that lets you change the name of a file at the operating
system level.

If the source file has a file-name extension, it must be specified in the command line. If
the source file is not in the current directory or the path you specify with SET PATH, a
path must also be included.

RENAME differs from its DOS counterpart in that wildcards do not let you rename
more than one file at a time. To rename more than one file at a time using wildcards, use
!, RUN, or DOS, and execute the DOS RENAME command.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE
displays a dialog box asking if you want to overwrite the existing file. If SET SAFETY is
OFF and a file exists with the same name as the target file, dBASE returns an error, and
the target file is not overwritten.

If you specify a new directory for the target file, dBASE copies the source file to this
directory. If you specify a new drive for the target file, dBASE returns an error message
and the source file is not copied or renamed.

RENAME does not automatically rename a .DBT or .MDX file associated with a .DBF
file. If, for example, you rename a table file that has memo fields and you do not rename

438 L a n g u a g e R e f e r e n c e

R E N A M E T A B L E

the associated .DBT file, an error message displays when you try to use the file. In such
cases, it is best to create a new copy of the file with COPY TO.

Example
The following examples use RENAME:

CLOSE DATABASES
RENAME Temp.dbf TO Savit.dbf
* Temp.dbf cannot be open
RENAME Temp.dbt TO Savit.dbt
RENAME ?
* Opens dialog box
RENAME *.qbe
* Opens dialog box showing only query files

See Also
!, COPY FILE, DOS, RUN, SET DEFAULT, SET DIRECTORY, SET PATH, SET SAFETY

RENAME TABLE Table basics

Changes the name of a specified table.

Syntax
RENAME TABLE <old table name> | ? | <filename skeleton 1>
TO <new table name> | ? | <filename skeleton 2>
[[TYPE] PARADOX | DBASE]

<old table name> | ? | <filename skeleton 1> Table you want to rename. RENAME TABLE ?
and RENAME TABLE <filename skeleton> display a dialog box, from which you can
select a table file. If you specify a file without including its path, Visual dBASE looks for
the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including an extension or specifying its type, Visual dBASE
assumes the file type specified with the SET DBTYPE command.

You can also rename a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

<new table name> | ? | <filename skeleton 2> New name of the table. If you rename a table in a
database, you must specify the same database as the destination of the new table. Also,
the new table name must be the same type as the old table. The ? and <filename skeleton>
options display a dialog box, in which you specify the name of the target table and the
directory to save it in.

[TYPE] PARADOX | DBASE Specifies the type of table you want to rename, which can be a
Paradox or dBASE table.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 439

R E P L A C E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Description
Use the RENAME TABLE command to change the name of a table without exiting to
the operating system. You cannot rename an open table, and the new table name cannot
already exist in the same directory or database.

If you rename a table that has associated files (such as memo or index files), those files
are also automatically renamed to match the new table name.

Example
The following example uses RENAME TABLE to change the name of a closed table:

dbf_file = "FLIGHTS.DBF"
IF SELECT() > 1

area = 1
go_on = .T.
DO WHILE area < SELECT() .AND. go_on

SELECT (area)
IF dbf_file = DBF()

go_on = .F.
ENDIF
area = area + 1

ENDDO
ENDIF
IF go_on

RENAME TABLE &dbf_file TO AllFlts.DBF
ENDIF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLOSE..., COPY, COPY FILE, USE

REPLACE Fields and records

Replaces the contents of specified fields in the current table with data from specified
expressions.

Syntax
REPLACE
<field 1> WITH <exp 1> [ADDITIVE]
[, <field 2> WITH <exp 2> [ADDITIVE]...]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[REINDEX]

<field 1> WITH <exp 1> Designates fields to be replaced by data in specified expressions.
Multiple fields of a record may be changed by including additional <field n> WITH
<exp n> expressions, separated by commas.

440 L a n g u a g e R e f e r e n c e

R E P L A C E

ADDITIVE Adds text to the end of memo field text instead of replacing existing text. You
can use ADDITIVE only when the specified field is a memo field in a dBASE table.

<scope> The number of records to replace. RECORD <n> identifies a single record by
its record number. NEXT <n> identifies n records, beginning with the current record.
ALL specifies all records. REST specifies all records from the current record to the end of
the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by the REPLACE command.
A FOR clause restricts REPLACE to records that meet <condition 1>. WHILE starts
processing with the current record and continues with each subsequent record as long
as <condition 2> is true.

REINDEX Specifies that all affected indexes are rebuilt once the REPLACE operation
finishes.

Description
The REPLACE command overwrites a specified field with new data. The field you
select can be any type, including memo fields. (To replace binary or OLE fields, use
REPLACE BINARY and REPLACE OLE.) The field and the expression specified by the
WITH clause must have the same data type. In numeric fields, the WITH expression can
be larger than the field width, in which case, the number is displayed in scientific
notation. In converting memo fields to character fields, REPLACE truncates the data to
fit in the assigned field width.

To change multiple fields, include additional <field n> WITH <exp n> expressions, one
for each field. When <scope>, WHILE, or FOR options are used, data is replaced in all
records within the scope and all records that match specified conditions.

Use the ADDITIVE option to add a character string to the end of existing memo field
text. You can leave a blank space at the beginning of the string to provide proper
spacing.

Be careful when replacing data in a table with a master index open when you are also
using the <scope>, WHILE, or FOR options. Visual dBASE automatically updates all
open index files after a REPLACE operation finishes. After replacing data that changes
the value in the key field in the master index, the record and the record pointer
immediately move to the position in the index based on the new value of a key. If
replacement in the key field causes a record (and the pointer) to move down past other
records that fall within the scope or meet the specified conditions, those records are not
replaced. To make replacements to an indexed table's key field, first close the index and
update the data, and then reopen the index using SET INDEX, and update the index
using REINDEX.

Replacements in fields other than the key field of the master index don't affect the order
of the index and can be made with <scope>, WHILE, or FOR without complications.

When replacing a numeric or float value, the new value length cannot exceed the field
width; otherwise, dBASE returns a numeric overflow message. The field contents are
replaced with an approximation to the new value in scientific notation, if it will fit;
otherwise the field contents are replaced with asterisks, destroying stored data.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 441

R E P L A C E A U T O M E M+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

REPLACE alters data in fields of the current table unless you use alias–>field to specify a
field in an alias table.

If no relation has been set from the current table, you can replace only the current record
in the alias table. If a relation has been set, you can use <scope>, FOR <condition 1>, or
WHILE <condition 2> to replace multiple records in the alias table.

REPLACE with no options substitutes <exp 1> for the contents of <field 1> in the current
record only.

An entered expression must be of the same data type as the contents of the field it is
replacing, except in the case of a memo field, which can be replaced by a character
expression.

Example
The following example uses REPLACE to change or enter data in TEMP.DBF, which is a
copy of Clients table:

SET SAFETY OFF
USE Clients EXCLUSIVE
INDEX ON Client_ID TAG Client_ID
COPY TO Temp.DBF
USE Temp
REPLACE ALL Company with PROPER(Company)
* If entered in all uppercase, changes to upper/lower case.
REPLACE ALL State_Prov with UPPER(State_Prov)
* Makes two-letter state codes all uppercase if entered in upper/lower case.
REPLACE ALL Phone with STUFF(Phone,AT("-",Phone),1,"*")
* Substitutes an asterisk for the hyphen in the Phone field.
REPLACE ALL NOTES with "Georgia state tax applies";

ADDITIVE FOR State_Prov="GA"
* Places the text sting in the Notes memo field of each Georgia record.
GO TOP
BROWSE
CLOSE ALL
SET SAFETY ON

See Also
APPEND, BLANK, BROWSE, CHANGE, EDIT, REINDEX, REPLACE AUTOMEM,
REPLACE BINARY, REPLACE MEMO, REPLACE OLE, SET RELATION, UPDATE

REPLACE AUTOMEM Fields and records

Transfers contents of memory variables into corresponding fields of the current record
in the current table.

Syntax
REPLACE AUTOMEM

442 L a n g u a g e R e f e r e n c e

R E P L A C E A U T O M E M

Description
Automem variables are memory variables that have the same name, data type, and
length as the corresponding fields of the current table. Automem variables are used to
hold data that will be stored in the fields of records. You can manipulate data stored in
automem variables as memory variables rather than as field values, and you can
validate the data before storing the data to a table.

Create a set of automem variables for the fields in a table with USE...AUTOMEM,
CLEAR AUTOMEM, or STORE AUTOMEM. To add new records to a table and fill the
fields with values from corresponding automem variables, use APPEND AUTOMEM
or INSERT AUTOMEM. To update the fields of existing records with values from
corresponding automem variables, use REPLACE AUTOMEM.

Use REPLACE AUTOMEM to update all the fields of a record without having to name
the fields. By contrast, with the REPLACE command, you need to name every field you
want updated.

Remember that an automem variable and its corresponding field have the same name.
When a command allows an argument that could be either a memory variable or a field,
Visual dBASE assumes the argument refers to a field. To distinguish the memory
variable from the field, prefix the names of automem variables with m->.

REPLACE AUTOMEM updates the current record. It can't update all records within a
specified scope or all records matching a condition, as the REPLACE command can with
the options <scope>, FOR <condition>, and WHILE <condition>.

REPLACE AUTOMEM doesn't replace field data with data from a memory variable
with the same name but of a different data type. If you try to make such a replacement,
Visual dBASE displays an error message.

Example
The first portion of this example creates a copy of Clients table that is then given to a
branch office or different department for changes:

USE Clients EXCLUSIVE
INDEX ON SUBSTR(Client_ID,1,1)+ ;

SUBSTR(Client_ID,2,4) TAG Client_ID
COPY TO Branch1 FOR State_Prov = "CA"
! COPY Branch1.DBF B: && Copies to diskette

After Branch1.DBF has been updated or changed and you wish to have these changes
reflected in the master Clients table, the following program uses REPLACE AUTOMEM
to transfer current field values in Branch1.DBF to the Clients table:

SET TALK OFF
SET EXACT OFF
USE Clients EXCLUSIVE
INDEX ON SUBSTR(Client_ID,1,1)+ ;

SUBSTR(Client_ID,2,4) TAG Client_ID
USE Branch1 IN 2
SELECT 2
GO TOP
DO WHILE .NOT. EOF()

CLEAR AUTOMEM

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 443

R E P L A C E B I N A R Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

STORE AUTOMEM
* Field values in current (Branch1) record stored to AUTOMEM variables

Look = SUBSTR(Client_ID,1,1)+;
SUBSTR(Client_ID,2,4)

SELECT 1 && switch to Clients table
SEEK Look && locate matching Client_ID
IF FOUND()

REPLACE AUTOMEM && update Clients to Branch1
ENDIF
SELECT 2 && back to Branch1.DBF
SKIP && increment record pointer

ENDDO
SELECT 1 && Check results by Browsing
GO TOP && Clients table
BROWSE
CLOSE ALL
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
APPEND AUTOMEM, CLEAR AUTOMEM, INSERT AUTOMEM, REPLACE, STORE
AUTOMEM, USE

REPLACE BINARY Fields and records

Replaces the contents of a binary field with the contents of another binary file.

Syntax
REPLACE BINARY <binary field name>
FROM <filename> | ? | <filename skeleton>
[TYPE <binary type user number>]

<binary field name> The binary field of the current table that is replaced by the contents of
<filename>.

FROM <filename> | ? | <filename skeleton> Specifies the file to copy to the binary field in the
current record. If you specify a file without including its path, Visual dBASE looks for
the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including its extension, Visual dBASE assumes a .BMP extension;
however, the file may also include types such as .BMP, .PCX, and .WAV files. The ? and
<filename skeleton> options display a dialog box, in which you specify the file to copy.

[TYPE <binary type user number>] Specifies a number that can be used to identify the type of
binary data being stored. Use the BINTYPE() function to retrieve the type number. The

444 L a n g u a g e R e f e r e n c e

R E P L A C E B I N A R Y

range is from 1 to 32K – 1 for user-defined file types and 32K to 64K – 1 for predefined
types (although any number may be specified within the allowable range).

Description
Use REPLACE BINARY to copy a binary file to the current record's binary field. You
can copy one binary file to each binary field of each record in a table.

While dBASE memo fields may contain types of information other than text, binary
fields are recommended for storing images, sound, or any other binary or BLOB type
data.

Example
The following example uses COPY BINARY to copy the Boa bitmap from
ANIMALS.DBF to a file named BOA.BMP. COPY STRUCTURE creates a new table
with an identical structure but no records. APPEND BLANK adds a new, blank record
and REPLACE BINARY copies the contents of BOA.BMP into the field Bmp of record
number one of ANIM2.DBF:

CLOSE ALL
USE Animals
GOTO 2
COPY BINARY Bmp TO Boa.BMP
COPY STRUCTURE TO Anim2
USE Anim2
b=2**15+1 && 32k+1 for type .BMP
APPEND BLANK
REPLACE BINARY Bmp FROM "Boa.BMP" TYPE b
EDIT
* In edit, User can now click on Bmp and see the Boa

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
APPEND MEMO, BINTYPE(), COPY BINARY, REPLACE MEMO, REPLACE
MEMO...FROM, REPLACE OLE, RESTORE IMAGE

Predefined binary type numbers Description

1 to 32K – 1 (32,767) User-defined file types
32K (32,768) .WAV files
32K + 1 (32,769) .BMP and .PCX files

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 445

R E P L A C E F R O M A R R A Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

REPLACE FROM ARRAY Fields and records

Transfers data stored in an array to the fields of the current record of a table.

Syntax
REPLACE FROM ARRAY <array name>
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]
[REINDEX]

<array name> The name of the array that you want to transfer data from.

<scope> The number of records to replace with the data stored in the specified array.
RECORD <n> identifies a single record by its record number. NEXT <n> identifies n
records, beginning with the current record. ALL specifies all records. REST specifies all
records from the current record to the end of the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by REPLACE FROM
ARRAY. FOR restricts REPLACE FROM ARRAY to records that meet <condition 1>.
WHILE starts processing with the current record and continues with each subsequent
record as long as
<condition 2> is true.

FIELDS <field list> Restricts data replacement to the fields specified by <field list>.

REINDEX Specifies that all non-master indexes are rebuilt once the REPLACE FROM
ARRAY operation finishes.

Description
Use REPLACE FROM ARRAY to transfer values from an array into fields of the current
table. The number specified by the last array subscript corresponds to the number of
fields you can replace. The number specified by the next-to-last subscript of the array
corresponds to the number of records you can replace.

When you use REPLACE FROM ARRAY with no options or just the FIELDS option,
Visual dBASE replaces field values starting at the current record. With a
multidimensional array, if there are more records than specified by the next-to-last array
subscript, Visual dBASE replaces record data until it runs out of array values.

Use a one-dimensional array to replace field values in one record. For example, if you
use DECLARE sample[3], a one-dimensional array, the command line REPLACE FROM
ARRAY sample replaces up to three fields in one record.

Use a two-dimensional array to replace the field values in more than one record. A two-
dimensional array is like a table with rows corresponding to records and columns
corresponding to fields. For instance, if you use DECLARE sample[2,3], the command
line REPLACE FROM ARRAY sample replaces up to three fields in two records.

446 L a n g u a g e R e f e r e n c e

R E P L A C E F R O M A R R A Y

The data types of the array must match those of corresponding fields in the table you are
replacing. If the data type of an array element and a corresponding field don't match,
Visual dBASE returns an error.

Example
The following example creates an array with 3 elements and copies 3 field values to the
array for display and possible editing. If the user chooses to edit the array values,
REPLACE FROM ARRAY is used to copy the altered field values back to the same
record in the table.

DECLARE CompArray[3]
* Create an array with three elements
CLOSE DATABASES
ON ESCAPE RETURN
USE Company
SET FIELDS TO Company, Phone, CompCode
DO WHILE .NOT. EOF()

COPY TO ARRAY CompArray FIELDS Company, Phone,;
CompCode NEXT 1

CLEAR
? "Company", "Phone" AT 30, "CompCode" AT 50
? "*******", "*****" AT 30, "********" AT 50
? CompArray[1], CompArray[2] AT 30, CompArray[3];

AT 50
?
?
ACCEPT "Entry Correct? (Y/N) " TO Chc
IF UPPER(Chc)="N"

@ 10,5 SAY "Enter Company " GET CompArray[1]
@ 11,5 SAY "Enter Phone " GET CompArray[2]
@ 12,5 SAY "Enter CompCode" GET CompArray[3]
READ
REPLACE FROM ARRAY CompArray

ENDIF
SKIP

ENDDO
CLOSE DATABASES

Portability
Not supported in dBASE III PLUS.

See Also
APPEND FROM ARRAY, COPY TO ARRAY, DECLARE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 447

R E P L A C E M E M O+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

REPLACE MEMO Fields and records

Replaces the text of a memo field with the contents of an array.

Syntax
REPLACE MEMO <memo field> WITH ARRAY <array name>
[ADDITIVE]

<memo field> The memo field where text from an array is stored.

WITH ARRAY <array name> The array whose contents replace the text in a memo field.

ADDITIVE Causes the new text to be appended to existing text. REPLACE MEMO
without the ADDITIVE option causes Visual dBASE to overwrite any text currently in
the memo field.

Description
Use the REPLACE MEMO command to replace the text of a memo field with the
contents of an array. Each element of <array name> contains the data to add one line to
the specified memo field. After you store text in the elements of the array, use REPLACE
MEMO to store that data in a memo field.

REPLACE MEMO, when used with STORE MEMO, lets you include the text of a memo
field on a data-entry screen displaying the text from automem variables and then stores
the changes back into the memo field when you've finished editing.

To add text to existing text or to an empty memo field, store empty character values to
an array instead of using STORE MEMO. Add text to the array and then use REPLACE
MEMO, including ADDITIVE if you don't want to overwrite existing text.

Example
The following example declares an array with an element for each field in Clients table,
copies the contents of record number 4 to the array, and then uses REPLACE MEMO to
place the contents of array Move into the memo field of record number 10:

SET TALK OFF
USE Clients
DECLARE Move[FLDCOUNT()]
GOTO 4
COPY TO ARRAY Move
GOTO 10
REPLACE Notes WITH CHR(13) + ;

"Cross Reference: " && Overwrites prior entries
REPLACE MEMO Notes WITH ARRAY Move ADDITIVE
? Notes && Displays Notes contents

Portability
Not supported in dBASE IV or dBASE III PLUS.

448 L a n g u a g e R e f e r e n c e

R E P L A C E M E M O . . . F R O M

See Also
APPEND MEMO, DECLARE, REPLACE, REPLACE FROM ARRAY, REPLACE
MEMO...FROM, STORE MEMO

REPLACE MEMO...FROM Fields and records

Inserts a text file in a memo field.

Syntax
REPLACE MEMO <memo field> FROM <filename> | ? | <filename skeleton>
[ADDITIVE]

<memo field> The memo field where a text file is inserted.

FROM <file name> | ? | <filename skeleton> The file that identifies a text file. The ? and
<filename skeleton> options display a dialog box in which you can specify the file whose
content you want to copy to the memo field.

ADDITIVE Causes the new text to be appended to existing text. REPLACE MEMO
without the ADDITIVE option causes Visual dBASE to overwrite any text currently in
the memo field.

Description
Use the REPLACE MEMO...FROM command to insert a text file into a memo field. You
can insert one text file to each memo field of each record in a table.

While dBASE memo fields may contain types of information other than text, binary
fields are recommended for storing images, sound, and other user-defined binary type
information. Use OLE fields for linking to OLE documents from other Windows
applications.

Example
In this example, the Customer file is scanned. If there is a file of the form
CUST????.DOC, where ???? is the 4 character company code, then REPLACE
MEMO...FROM copies the file into the Notes memo field:

CLOSE ALL
USE Customer
SCAN

FN="Cust"+Compcode+".Doc"
IF FILE("&FN")

REPLACE MEMO Notes FROM &FN
ELSE

BLANK FIELD Notes
ENDIF

ENDSCAN

Portability
Not supported in dBASE IV or dBASE III PLUS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 449

R E P L A C E O L E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

See Also
COPY MEMO, REPLACE BINARY, REPLACE MEMO, REPLACE OLE

REPLACE OLE Fields and records

Inserts an OLE document into an OLE field.

Syntax
REPLACE OLE <OLE field name>
FROM <filename> | ? | <filename skeleton>
[LINK]

<OLE field name> The field where an OLE document is inserted.

FROM <file name> | ? | <filename skeleton> The file that identifies an OLE document,
including its extension. If you specify a file without including its path, dBASE looks for
the file in the current directory, then in the path you specify with SET PATH. The ? and
<filename skeleton> options display a dialog box in which you specify the file.

LINK LINK provides a pointer to the OLE document. By default, dBASE embeds the
OLE document in the specified memo field.

Description
Use REPLACE OLE to insert the contents of an OLE document into an OLE field. You
can either embed the actual OLE document in an OLE field (the default) or access the
OLE document by linking it to the OLE field.

If you link the OLE document, the OLE field contains only a reference to the OLE
document. As long as the OLE document remains in the same location, the OLE field
displays the most current version of the document.

If you embed the OLE document, the OLE field contains a copy of the document. There
are no links between the field and the OLE document: therefore, any changes to the
original version of the OLE document are not reflected in the embedded document.

Example
The following example demonstrates REPLACE OLE. It adds a new record to the
Pictures table. The Name field is replaced with "AirBrlnd" and the bitmap file
AIRBRLND.BMP is placed in the BitMapOle field:

USE Pictures
APPEND BLANK
REPLACE Name WITH "AirBrlnd"
REPLACE OLE BitMapOle FROM "AirBrlnd.BMP"

If you have AIRBRLND.BMP you can examine this record with EDIT or BROWSE and
click on the BitMapOle field.

Portability
Not supported in dBASE IV or dBASE III PLUS.

450 L a n g u a g e R e f e r e n c e

R E P L I C A T E ()

See Also
CLASS OLE, DEFINE

REPLICATE() String data

Returns a string repeated a specified number of times.

Syntax
REPLICATE(<expC> | <memo field>, <expN>)

<expC> | <memo field> The string or memo field to repeat.

<expN> The number of times to repeat the string or memo field.

Description
REPLICATE() returns a character string composed of a character expression or memo
field repeated a specified number of times. dBASE displays an error if the resulting
string exceeds 32766 characters. Therefore, the number of repeats you specify must be
less than 32766 divided by the number of characters in the character expression or
memo field.

If the character expression is an empty string or the memo field is empty, REPLICATE()
returns an empty string. If the number of repeats you specify for <expN> is 0,
REPLICATE() returns an empty string. If <expN> is less than 0, dBASE displays an
error.

To repeat space characters, use SPACE().

Example
The following example uses REPLICATE() to create different strings of characters:

? REPLICATE("+",10) && Returns "++++++++++"
? REPLICATE("",10) && Returns ""
? REPLICATE("–",10) && Returns "----------"
? REPLICATE("dBASE",2) && Returns "dBASEdBASE"
a_s = REPLICATE("A",32766)
? LEN(a_s) && Returns 32766
? REPLICATE("dBASE for Windows!",1820)
* 32766/18 characters in the string = 1820 times

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS. Both
dBASE IV and dBASE III PLUS limit the return value of REPLICATE() to 254
characters.

See Also
SPACE()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 451

R E P O R T F O R M+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

REPORT FORM Input/Output

Generates and displays or prints a report, using the report format stored in a specified
report file and information derived from records in the current table.

Syntax
REPORT FORM <filename 1> | ? | <filename skeleton 1>
[<scope>] [FOR <condition 1>] [WHILE <condition 2>]
[CROSSTAB]
[HEADING <expC>]
[NOEJECT]
[PLAIN]
[SUMMARY]
[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

<filename 1> | ? | <filename skeleton> The report format file to use. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH. If you specify a file without including its
extension, dBASE looks for .RPT, .FRG, or .FRM, in that order. If you specify
CROSSTAB, dBASE looks for .RPC, .FRG, or .FRM, in that order.

<scope> The number of records to derive the report from. RECORD <n> identifies a
single record by its record number. NEXT <n> identifies n records, beginning with the
current record. ALL specifies all records. REST specifies all records from the current
record to the end of the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by REPORT FORM. FOR
restricts REPORT FORM to records that meet <condition 1>. WHILE starts processing
with the current record and continues with each subsequent record as long as <condition
2> is true.

CROSSTAB Specifies that the report was created with the Cross-Tab dialog box.

HEADING <expC> Adds a character expression, <expC>, as the heading of each page.
HEADING has no effect if used with PLAIN.

NOEJECT Prevents a page feed before printing begins.

PLAIN Suppresses page numbers and dates on the pages of the report. Any title appears
only on the first page.

SUMMARY Includes only the totals of groups and subtotals of subgroups, excluding the
individual contents of records within each group and subgroup. The report format
defines groups and subgroups.

TO FILE <filename 2> | ? | <filename skeleton 2> Directs output to the text file <filename 2>. By
default, dBASE assigns a .TXT extension to <filename 2> and saves the file in the current
directory. The ? and <filename skeleton> options display a dialog box in which you
specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer.

452 L a n g u a g e R e f e r e n c e

R E S O U R C E ()

Description
Use REPORT FORM to print or display reports in a format that you've defined in the
Report Designer using CREATE REPORT or MODIFY REPORT. For information about
using the Report Designer, see the Crystal Reports documentation. If you don't specify a
<scope>, WHILE <condition 1>, or FOR <condition 2> option, REPORT FORM prints the
report specifications for each record in record number or index order.

When printing or displaying a report that includes groups of data or group subtotals,
the current table must either be in sorted order or its master index must be in use. The
sorted file or index must be arranged according to the value of the field on which the
data is grouped.

REPORT FORM without the TO FILE or TO PRINTER options displays the report in the
Command window or current user-defined window.

Example
This example opens the Company database and then generates a report using the
Comprep1 report definition:

CLOSE DATABASE
USE Company
REPORT FORM Comprep1 TO PRINT

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS.

See Also
CREATE REPORT

RESOURCE() Windows programming

Returns a character string from a DLL file.

Syntax
RESOURCE(<resource id>, <DLL filename expC>)

<resource id> A numeric value that identifies the character string resource.

<DLL filename expC> The name of the DLL file.

Description
Use RESOURCE() to generate a character string from a resource in a DLL file. The
character string must be less than 32K; a character string longer than this is truncated.

RESOURCE() is often useful for internationalizing applications without changing
program code. For example, you can store in a DLL file all character strings that might
need translation from one language to another, and your application can retrieve them
at run time with the RESOURCE() function. To modify the application for another
language, translate the strings and store them in a new DLL file, in the same order and

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 453

R E S T O R E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

with the same resource IDs as their counterparts in the original DLL file. Then substitute
the new DLL for the original one. For more information on DLL files, see EXTERN,
LOAD DLL, and Chapter 25 in the Programmer's Guide.

Portability
Not supported in dBASE IV or in dBASE III PLUS.

Example
This example shows how RESOURCE() can be used to change languages for
international development:

#define ENGLISH 1
#define SPANISH 2
ApLanguage = SPANISH
MyGreeting = RESOURCE(SPANISH,”greeting.dll”)
CLEAR
? MyGreeting

See Also
EXTERN, LOAD DLL, RELEASE DLL

RESTORE Memory variables

Copies the memory variables stored in the specified disk file to active memory.

Syntax
RESTORE FROM <filename> | ? | <filename skeleton>
[ADDITIVE]

<filename> | ? | <filename skeleton> The file of memory variables to restore. RESTORE
FROM ? and RESTORE FROM <filename skeleton> display a dialog box, from which you
can select a file. If you specify a file without including its path, dBASE looks for the file
in the current directory, then in the path you specify with SET PATH. If you specify a
file without including its extension, dBASE assumes .MEM.

ADDITIVE Preserves existing memory variables when RESTORE is executed.

Description
Use RESTORE with SAVE to retrieve and store important memory variables. By default,
all private variables are cleared at the end of execution of the program file that created
them, while all public variables are cleared when you exit dBASE. To preserve these
values for future use, store them in a memory file by using SAVE. You can then retrieve
these values later by using RESTORE.

Without the ADDITIVE option, RESTORE clears all existing user memory variables
before returning to active memory the variables stored in a memory file. Use ADDITIVE
when you want to restore a set of variables while retaining those already in memory.

Note If you use ADDITIVE and a restored variable has the same name as an existing variable,
the restored variable will replace the existing one.

454 L a n g u a g e R e f e r e n c e

R E S T O R E I M A G E

If you issue RESTORE in the Command window, dBASE makes all restored variables
public. When dBASE encounters RESTORE in a program file, it makes all restored
variables private to that program.

Example
The following example stores Company name to the variable Start when the user exits a
BROWSE. The value in Start is then saved to an external .MEM file with the SAVE
command. The next time the program is run, RESTORE FROM is used to recover the
variable Start, and SEEK positions the record pointer to the appropriate Company so
BROWSE can be resumed at the former location:

SET TALK OFF
SET SAFETY OFF
USE Clients EXCLUSIVE
INDEX ON Company TAG Company
IF FILE("Lst_Look.MEM")

RESTORE FROM Lst_Look && Recover Start
SEEK Start
BROWSE

ELSE
GO TOP
BROWSE

ENDIF
STORE Company TO Start
SAVE TO Lst_Look.MEM
CLOSE ALL
SET TALK ON
SET SAFETY OFF

Portability
The ? and <filename skeleton> arguments are not supported in dBASE IV or dBASE III
PLUS.

See Also
CLEAR MEMORY, RELEASE, SAVE, SET PATH, STORE

RESTORE IMAGE Objects

Displays an image stored in a file or a binary field.

Syntax
RESTORE IMAGE FROM
<filename> | ? | <filename skeleton> | BINARY <binary field>
[TIMEOUT <expN>]
[TO PRINTER]
[[TYPE] PCX | TIF[F] | ICO | WMF | EPS]

FROM <filename> | ? | <filename skeleton> | BINARY <binary field> Identifies the file or binary
field to restore the image from. RESTORE IMAGE FROM ? and RESTORE IMAGE
FROM <filename skeleton> display the Open Source File dialog box, which lets the user

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 455

R E S T O R E I M A G E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

select a file. <filename> is the name of an image file; RESTORE IMAGE assumes a .BMP
extension and file type unless you specify otherwise. If you specify a file without
including its path, dBASE looks for the file in the current directory, then in the path you
specify with SET PATH. RESTORE IMAGE FROM BINARY <binary field> displays the
image stored in a binary field. You store an image in a binary field with the REPLACE
BINARY command.

TIMEOUT <expN> Specifies the number of seconds the image is displayed onscreen.

TO PRINTER Sends the image to the printer as well as to the screen.

[TYPE] PCX Specifies an image stored in PCX format, and assumes a .PCX file-name
extension if none is given. The word TYPE is optional.

Description
Use RESTORE IMAGE to display a graphic image that was generated and saved in
bitmap or PCX format. The image is displayed in a window.

Notes Your computer must have a graphics adapter to display an image.

To print an image with the TO PRINTER option, you must have a printer that can
process and print graphic data.

Example
The following example defines a form and list box for selection of an aircraft model and
uses RESTORE IMAGE to display a graphic from the memo field Image of the selected
record:

CLOSE ALL
SET TALK OFF
USE Aircrdb ORDER Aircraft IN SELECT()
SELECT Aircrdb
DEFINE FORM AC ;

PROPERTY ;
Top 5, ;
Left 2, ;
Height 13, ;
Width 30, ;
Text "Aircraft", ;
Sizeable .T., ;
OnSelection Photo

DEFINE LISTBOX Model OF AC ;
PROPERTY ;

Top 2, ;
Left 10, ;
Height 7, ;
Width 18, ;
DataSource "FIELD Aircrdb->Aircraft"

OPEN FORM AC

FUNCTION Photo
RESTORE IMAGE FROM BINARY Image
RETURN .T.

456 L a n g u a g e R e f e r e n c e

R E S T O R E S C R E E N

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DEFINE, REPLACE BINARY

RESTORE SCREEN Input/Output

Redisplays in the results pane of the Command window its previous contents saved
with SAVE SCREEN. This command is supported primarily for compatibility with
dBASE IV.

For complete syntax information on CLEAR SCREENS, see online Help.

RESTORE WINDOW dBASE IV windows

Extracts window definitions from a window file and loads them in memory. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
run the program, procedure, or library file that contains stored form definitions.

For complete syntax information on RESTORE WINDOW, see online Help. For
information about defining forms, see the Forms chapters in the User's Guide.

RESUME Error handling and debugging

Restarts program execution at the command line following the one at which program
execution was suspended.

Syntax
RESUME

Description
RESUME causes dBASE to resume execution of a program that is suspended. You can
suspend program execution by issuing SUSPEND. If you have not assigned a value to
ON ERROR, you can also choose to suspend a program when an error occurs.

To restart program execution, enter RESUME in the Command window. The program
file resumes execution at the line immediately following the line that caused it to
become suspended. If you want to re-execute the line that caused an error, perhaps
because you fixed the condition that caused the error, retype the program line at the
command line before issuing RESUME.

Example
See SUSPEND for and example of how to use RESUME after a SUSPEND command has
been executed in a program.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 457

R E T R Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

See Also
CANCEL, ON ERROR, RETRY, RUN, SUSPEND

RETRY Error handling and debugging

Returns control from a subroutine to the command line of the calling routine or
Command window that called the subroutine.

Syntax
RETRY

Description
Use RETRY to re-execute a command—for example, one that resulted in an error.
RETRY returns program control to the calling command. RETRY clears the memory
variables created by the subroutine.

RETRY is valid only in program files.

You can use RETRY with ON ERROR to give the user more chances to resolve an error
condition. Using RETRY with ON ERROR resets ERROR() to zero.

Example
The following example uses the Recover procedure when an error is detected with ON
ERROR. If the Clients table is already open in another work area when the USE
command is executed, an error is returned. The Recover procedure uses CLOSE
DATABASES to insure that all tables are closed and RETRY returns program flow to the
USE command:

ON ERROR DO Recover
USE Clients EXCLUSIVE
BROWSE
ON ERROR
CLOSE DATABASES

PROCEDURE Recover
WAIT "An error has occurred.;

Press any key to retry.."
CLOSE DATABASES
RETRY

See Also
ERROR(), MESSAGE(), ON ERROR, RESUME, RETURN

458 L a n g u a g e R e f e r e n c e

R E T U R N

RETURN Programs

Ends execution of a program, procedure, or user-defined function (UDF), returning
control to a calling routine—program, procedure, or UDF—or to the Command
window.

Syntax
RETURN
[<return exp> | TO MASTER | TO <routine name>]

<return exp> The value a procedure UDF returns to the calling routine or the Command
window. RETURN <return exp> must be the last line in a procedure or UDF definition;
<return exp> is required for UDFs.

TO MASTER Returns control to the highest-level calling routine or to the Command
window. As one routine calls another, each goes onto the call stack, a list of pending
routines and subroutines. TO MASTER returns to the bottom routine in the stack (the
master procedure), terminates all subroutines in the call stack, and releases all nonpublic
variables at each level.

If RETURN TO MASTER executes in the master procedure, control returns to the
Command window. If the call stack started from a suspended prompt in the Command
window, control returns to the suspended prompt.

TO <routine name> Returns control to the specified calling routine, terminating all
intervening subroutines on the call stack and releasing those subroutines' non-public
variables. (See the previous description of TO MASTER for an explanation of call stack.)

dBASE handles special cases as follows:

• If <routine name> is the name of the current routine, a regular RETURN occurs.

• If <routine name> occurs more than once in the call stack, control passes to the routine
by that name that is closest in the stack (the one that made the most recent call).

• If <routine name> is master, the TO MASTER option takes precedence and returns
control to the highest-level calling routine.

• If <routine name> isn't in the call stack, RETURN causes a run-time error.

Description
When a procedure ends, dBASE automatically returns to the calling routine. You can
use RETURN in procedures to return from a point in the procedure other than its end.
You must use RETURN at the end of UDFs to return the result (the return value) of the
UDF.

Use RETURN in programs to restore control to calling routines or to the Command
window. Command processing generally resumes as follows:

• If the routine is called with a DO statement, command processing continues at the
line following the DO statement.

• If the routine is a UDF called directly as a command or as part of an expression (not
with DO), command processing continues in the statement containing the call.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 459

R E T U R N+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

• If you use the TO MASTER or TO <routine name> options of the RETURN command,
command processing continues with the next command line after the last one
executed in MASTER or <routine name>.

RETURN does all of the following:

• Releases all non-public memory variables defined in the routine returned from (and
in any intervening routines on the call stack), but doesn't affect public variables or the
values of static variables in that routine

• Sets the ERROR() function to 0

• Changes scope—cognition of which private, local, and static system variables are in
effect and what their values are—to that of the routine returned to, restoring previous
values of private, local, and static system variables for that routine

You can also use CANCEL to end execution of a routine, but CANCEL always returns
control to the Command window.

Example
The following examples show various uses RETURN. In GetOut you can RETURN to
the main program or to an open procedure. The RETURN in IsReady() shows a value
being returned.

DO PrintTo With "LPT1:"
DO GetOut With .t.
DO GetOut With .f.
Answer= IsReady()

PROCEDURE PrintTo
PARAMETER OutPutDev
* ...
RETURN

PROCEDURE GetOut
Parameter Done
IF Done

RETURN TO MASTER
ELSE

RETURN TO ReportMenu
ENDIF

FUNCTION IsReady
RETURN .T.

Portability
The <return exp> and TO <routine name> options aren't supported in dBASE III PLUS.

See Also
CANCEL, DO, ERROR(), FUNCTION, LOCAL, PRIVATE, PROCEDURE, PUBLIC,
QUIT, RETRY, STATIC

460 L a n g u a g e R e f e r e n c e

R I G H T ()

RIGHT() String data

Returns characters from the end of a character string or memo field.

Syntax
RIGHT(<expC> | <memo field>, <expN>)

<expC> | <memo field> The string or memo field to extract characters from.

<expN> The number of characters to extract from the string or memo field.

Description
Starting with the last character of a character expression or memo field, RIGHT()
returns a specified number of characters. RIGHT() returns a maximum of 32766
characters, the maximum length of a string.

If the number of characters you specify for <expN> is greater than the number of
characters in the specified string or memo field, RIGHT() returns the string as is,
without adding space characters to achieve the specified length. If <expN> is less than or
equal to zero, RIGHT() returns an empty string.

When RIGHT() returns characters from a memo field, it counts two characters for each
carriage-return and linefeed combination (CR/LF).

Example
The following example uses RIGHT() to return a portion of a text string, starting from
the right end of the string:

? RIGHT("dBASE",1) && Returns "E"
? RIGHT("dBASE",3) && Returns "ASE"
? RIGHT("dBASE",9) && Returns "dBASE"
? RIGHT("dBASE",0) && Returns ""

The next example uses RIGHT() to order a file by the last three characters of the
Zip_P_Code field.

USE Clients EXCLUSIVE
INDEX ON RIGHT(Zip_P_Code,3) TAG Zipdex
LIST FIELDS Company, Zip
CLOSE ALL

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS. Both
dBASE IV and dBASE III PLUS limit the return value of RIGHT() to 254 characters.

See Also
AT(), LEFT(), RAT(), SUBSTR()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 461

R L O C K ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

RLOCK() Shared data

Locks the current record or a specified list of records in the current or specified alias
table, and returns .T. if successful.

Syntax
RLOCK([<list expC>] | [<bookmark list expC>]
[, <alias>])

<list expC> The list of record numbers to lock, separated by commas.

<bookmark list expC> The list of bookmarks (record indicators) returned by
BOOKMARK() specifying a record in a non-dBASE table, such as a Paradox table, that
doesn't have natural record-order record numbers. Separate bookmarks with commas.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes. If you don't include <alias>,
RLOCK() acts on the current table.

You don't have to specify record numbers or bookmarks if you want to specify a value
for <alias>. However, if you have specified record numbers or bookmarks, you must
precede <alias> with a comma (,).

Description
Use RLOCK() to lock the current record or a list of records in the current or an alias
table. If you don't pass RLOCK() any arguments, it locks the current record in the
current table. If you pass only <alias> to RLOCK(), it locks the current record in the alias
table. If RLOCK() is successful in locking all the records you specify, it returns .T. You
can lock up to 100 records in each table open at your workstation with RLOCK().

You can view and update a record you lock with RLOCK(). Other users can view this
record but can't update it. When you lock a record with RLOCK(), it remains locked
until you do one of the following:

• Issue UNLOCK

• Press Ctrl+L (the lock/unlock toggle command) in a Browse or Edit window when the
record pointer is on a record you locked with RLOCK()

• Close the table

RLOCK() is similar to FLOCK(), except FLOCK() locks an entire table. Use FLOCK(),
therefore, when you need to have sole access to an entire table or related tables—for
example, when you need to update multiple tables related by a common key—or when
you want to update more than 100 records at a time.

All commands that change table data cause dBASE to attempt to execute an automatic
record or file lock. If dBASE fails to execute an automatic record or file lock, it returns an
error. You might want to use RLOCK() for event trapping, testing for its return value
rather than for an error condition.

RLOCK() can't lock the records you specify when any of the following conditions exist:

462 L a n g u a g e R e f e r e n c e

R L O C K ()

• Another user has locked, explicitly or automatically, the current record or one of the
records in <list expC> or <bookmark list expC>.

• Another user has locked, explicitly or automatically, the current table or the specified
alias table.

By default, when RLOCK() can't immediately lock the records you specify, dBASE
prompts you to retry locking the records or to cancel further retries. Use SET
REPROCESS to specify the number of retries. If you choose to cancel, RLOCK()
returns .F.

When you set a relation to a parent table with SET RELATION and then lock a record in
the table with RLOCK(), dBASE attempts to lock all child records in child tables. For more
information on relating tables, see SET RELATION.

RLOCK() is equivalent to LOCK().

Example
This example loops until it can lock the 10th record with RLOCK() or until the user
decides to stop trying. If successful, a subroutine, CompMod, is called to update the
record:

RecordWasRead = .t.
SET REPROCESS TO 20 && Try to lock 20 times
USE Company
GO 10
Again = .t.
DO WHILE Again

IF RLOCK() && Can dBASE Lock the file?
DO CompMod && Update this record
Again = .f.
UNLOCK && Allow other users to change

&& the file.
ELSE && RLOCK() returns .F.

CLEAR
Wait "Record lock failed. Try again? (Y/N) ";

to mRetry
IF UPPER(mRetry)="N"

Again = .f.
ENDIF
RecordWasRead = .f.

ENDIF
ENDDO
USE
SET REPROCESS TO 0 && The default

LOCK() can lock more than one record:

USE Games ALIAS Fun
* ...
Pythagoras= LOCK("8,15,17","Fun")

Portability
Not supported in dBASE III PLUS. The <bookmark list expC> option isn't supported in
dBASE IV.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 463

R O L L B A C K ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

See Also
FLOCK(), SET LOCK, SET RELATION, SET REPROCESS, UNLOCK

ROLLBACK() Shared data

Ends a transaction initiated by BEGINTRANS() without saving any changes to the open
files. Returns .T. if the data was rolled back successfully.

Syntax
ROLLBACK([<database name expC>])

<database name expC> The name of the database in which to cancel the transaction.

• If you began the transaction with BEGINTRANS(<database name expC>), you must
issue ROLLBACK(<database name expC>). If instead you issue ROLLBACK(), dBASE
ignores the ROLLBACK() statement.

• If you began the transaction with BEGINTRANS(), <database name expC> is an
optional ROLLBACK() argument. If you include it, it must refer to the same database
as the SET DATABASE TO statement that preceded BEGINTRANS().

Description
Use ROLLBACK() to end the open transaction and restore any open files to the state
they were in when BEGINTRANS() was issued. To end a transaction and write changes
to the files, use COMMIT().For more information on transactions, see BEGINTRANS().

Example
The following example begins a transaction with BEGINTRANS(). It opens a multi-user
version of Company.dbf and attempts to set values in the Ytd_Sales field to 0. ON
ERROR detects any error which might occur. In particular, it will detect if another user
has locked any record in Company.dbf. If an error occurs, ROLLBACK() resets all
values. Otherwise COMMIT() writes the changes to disk:

CLOSE ALL
SET PROCEDURE TO PROGRAM(1) ADDITIVE
SET EXCLUSIVE OFF

BEGINTRANS()

TransErr=.f.
ON ERROR DO TransErr && Activates ON ERROR trap

USE L:\MultiUse\Company
REPLACE ALL Ytd_Sales WITH 0
ON ERROR && Disables ON ERROR

IF TransErr
? "Rollback"
ROLLBACK() && restore data

ELSE
? "Commit"

464 L a n g u a g e R e f e r e n c e

R O U N D ()

COMMIT() && save changes
ENDIF

PROC TransErr
WAIT "Warning: Transaction Fails"
TransErr=.t.

Portability
Not supported in dBASE IV or dBASE III PLUS. ROLLBACK() replaces the
ROLLBACK command in dBASE IV.

See Also
BEGINTRANS(), COMMIT(), SET EXCLUSIVE

ROUND() Numeric data

Returns a specified number rounded to a specified number of decimal places.

Syntax
ROUND(<expN 1>, <expN 2>)

<expN 1> The numeric or float number to round.

<expN 2> If <expN 2> is positive, the number of decimal places to round <expN 1> to. If
<expN 2> is negative, whether to round <expN 1> to the nearest tenth, hundredth,
thousandth, and so on.

Description
Use ROUND() to round a number to a specified number of decimal places or to a
specified tenth, hundredth, thousandth value, and so forth. Use ROUND() with
SET DECIMALS to round a number and remove trailing zeros.

If the digit in position <expN 2> + 1 is between 0 and 4 inclusive, <expN 1> (with
<expN 2> decimal places) remains the same; if the digit in position <expN 2> + 1 is
between 5 and 9 inclusive, the digit in position <expN 2> is increased by 1.

Use 0 as <expN 2>to round a number to the nearest whole number. Using –1 rounds a
number to the nearest teznth; rounding to a –2 rounds a number to the nearest
hundredth; and so on. For example, ROUND(14932,–2) returns 14900 and
ROUND(14932,–3) returns 15000.

See the table in the description of INT() that compares INT(), FLOOR(), CEILING(),
and ROUND().

Example
The following example demonstrates the use of ROUND() as the decimal place
parameter of the function is incremented:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 465

R O W ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

SET DECIMALS TO 6
SET TALK OFF
x = 14.746321
? " x = 14.746321"
FOR y = –5 TO 5 STEP 1

? "If y = " + STR(y,2,0)
?? " ROUND(x,y) returns "
?? ROUND(x,y)

NEXT
SET TALK ON

See Also
ABS(), CEILING(), FLOOR(), INT()

ROW() Input/Output

Returns the number of the current row position in the Results pane of the Command
window or the current dBASE IV window. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use the Top property of a class to
determine its vertical position on a form.

For complete syntax information on ROW(), see online Help. For more information
about working with Visual dBASE forms, see the Forms chapters in the User’s Guide.

RTOD() Numeric data

Returns the degree value of an angle measured in radians.

Syntax
RTOD(<expN>)

<expN> A negative or positive integer or float that is the size of the angle in radians.

Description
RTOD() converts the measurement of an angle from radians to degrees. RTOD()
returns a float.

To convert radians to degrees, dBASE

• Multiplies the number of radians by 180
• Divides the result by PI()
• Returns the quotient

An angle of pi radians is equivalent to 180 degrees.

Use RTOD() with the trigonometric functions ACOS(), ASIN(), ATAN(), and ATN2()
to convert the radian return values of these functions to degrees. For example, if the
default number of decimal places is 2, ATAN(1) returns the value of the angle in
radians, 0.79, while RTOD(ATAN(1)) returns the value of the angle in degrees, 45.00.

Chapter 4Co
mma

nds
and

functi

466 L a n g u a g e R e f e r e n c e

R T R I M ()

Use SET DECIMALS to set the number of decimal places RTOD() displays.

Example
The following example uses RTOD() to convert radians to degrees and returns degrees.
One pi radian is equal to 180 degrees:

? RTOD(pi()) && Returns 180

Portability
Not supported in dBASE III PLUS.

See Also
ACOS(), ASIN(), ATAN(), ATN2(), COS(), DTOR(), PI(), SET DECIMALS, SIN(),
TAN()

RTRIM() String data

Returns a string with no trailing space characters.

Syntax
RTRIM(<expC> | <memo field>)

<expC> | <memo field> The string or memo field to remove the trailing space characters
from.

Description
RTRIM() is identical to TRIM(). See the description of TRIM() for more information.

Example
See the example of TRIM(); substitute RTRIM() for TRIM()

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS. Both
dBASE IV and dBASE III PLUS limit the return value of RTRIM() to 254 characters.

See Also
LEFT(), LTRIM(), RIGHT(), TRIM()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 467

R U N+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

RUN Disk and file utilities

Executes a single DOS command or program from within dBASE.

Syntax
RUN <DOS command>

<DOS command> A command recognized by your DOS operating system.

Description
Use RUN to execute a single DOS command or program file without exiting dBASE.
Enter commands and file names exactly as you would when working in DOS; do not
enclose them in quotes. ! is equivalent to RUN.

When execution of the command or program file is completed, control returns to the
Command window or to the program, procedure, or user-defined function (UDF) that
executed RUN.

When you issue commands that run in a DOS window, you can use the Windows PIF
Editor to customize the settings in DBASEWIN.PIF. For example, if you don't want the
DOS window to close automatically after the command is completed, you can clear the
Close Window on Exit checkbox in DBASEWIN.PIF. For more information about .PIF
files, see your Windows documentation.

To execute multiple DOS commands interactively without exiting dBASE, use the DOS
command. To execute a Windows application without exiting dBASE, use RUN().

If you want to change the current directory being used by dBASE, use CD instead of
RUN. Issuing RUN CD will change the directory only in the DOS window; the directory
change will not be reflected in the dBASE system.

Example
RUN must have an argument:

RUN dir
* Performs the DOS directory command
RUN && gives a syntax error

See Also
CD, DOS, HOME(), RUN(), SET DIRECTORY, SET PATH

RUN() Disk and file utilities

Executes a single DOS command, a DOS application, or a Windows application from
within dBASE, and returns an exit code from the DOS command interpreter or the
Windows application.

Syntax
RUN([<expL1>,] <DOS command expC> [,<expL2>])

468 L a n g u a g e R e f e r e n c e

R U N ()

<expL1> Determines whether RUN() runs a Windows program (value of .T.) or a DOS
program (value of .F.). If you do not include <expL 1>, dBASE assumes a value of .F.

<DOS command expC> A command recognized by your DOS operating system. Unlike
the RUN command, this command must be <expC>.

<expL2> Visual dBASE ignores this parameter; it is included for backward compatibility
with dBASE IV.

Description
Use RUN() to execute a single DOS command or an external (DOS or Windows)
application without exiting dBASE. To execute multiple DOS commands interactively
without exiting dBASE, use the DOS command.

When execution of the command or program file is completed, control returns to the
Command window or to the program, procedure, or user-defined function (UDF) that
called RUN(), and an exit code is returned.

For RUN() to access DOS (as when <expL1> = .F. or when <expL1> is omitted), dBASE
loads COMMAND.COM using the DBASEWIN.PIF in the directory where
DBASEWIN.EXE is located. (To determine that directory, use HOME().). You can use
the Windows PIF Editor to customize the settings in DBASEWIN.PIF. For example, if
you don't want the DOS window to close automatically after the command is
completed, you can clear the Close Window on Exit checkbox in DBASEWIN.PIF. For
information about .PIF files, see your Windows documentation.

If a DOS command or application is executed, the exit code returned by RUN() is 0 if the
command or the application executes successfully.When RUN() executes Windows
applications, the value returned is the instance handle of the application (if execution
was successful) or an error number (if execution was unsuccessful). Each instance
handle is a 16-bit integer that identifies an active Windows application, and each error
number identifies a Windows error condition.

Example
This command attempts to run the Brief Editor in DOS. If it succeeds then Result =0; if
not, Result will be nonzero.

Result=RUN(.f.,"B")

These commands attempt to run Windows programs:

Result=RUN(.t.,"winfile.exe")
* e.g. returns 10798
Result=RUN(.t.,"nosuch.exe")
* e.g. returns 2

Portability
Not supported in dBASE III PLUS. In dBASE IV, <expL1> determines whether the
operating system's command interpreter is loaded, and <expL2> determines whether all
available extended memory is released prior to running <DOS command>.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 469

S A V E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See Also
DOS, HOME(), RUN

SAVE Memory variables

Stores all or specified memory variables to a designated memory file.

Syntax
SAVE TO <filename> | ? | <filename skeleton>
[ALL]
[LIKE <memvar skeleton 1>]
[EXCEPT <memvar skeleton 2>]

TO <filename> | ? | <filename skeleton> Directs the memory variable output to be saved to the
target file <filename>. By default, dBASE assigns a .MEM extension to <filename> and
saves the file in the current directory. The ? and <filename skeleton> options display a
dialog box in which you specify the name of the target file and the directory to save it in.

ALL Stores all memory variables to the memory file. If you issue SAVE TO <filename>
with no options, dBASE also saves all memory variables to the memory file.

LIKE <memvar skeleton 1> Stores in the target file the memory variables whose names are
like the memory variable skeleton you specify for <memvar skeleton 1>. Use characters of
the variable names and the wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2>] Stores in the target file all memory variables except those
whose names are like the memory variable skeleton you specify for <memvar skeleton 2>.
Use characters of the variable names and the wildcards * and ? to create
<memvar skeleton 2>.

Description
Use SAVE with RESTORE to store and retrieve important memory variables. Private
variables are cleared at the end of the program file that created them, while public
variables are cleared when you exit dBASE. To preserve these values for future use,
store them in a memory file with SAVE. Use RESTORE to retrieve them.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE
displays a dialog box asking if you want to overwrite the file. If SET SAFETY is OFF, any
existing file with the same name is overwritten without warning.

Note SAVE does not save object reference, function pointer, or system memory variables.

Example
See RESTORE for an example of using SAVE.

Portability
The ? and | <filename skeleton> options are not supported in dBASE IV or dBASE III
PLUS. dBASE IV and dBASE III PLUS do not support both LIKE and EXCEPT in the
same SAVE statement.

470 L a n g u a g e R e f e r e n c e

S A V E S C R E E N

In dBASE IV and dBASE III PLUS, you must specify ALL if you want to specify LIKE or
EXCEPT. In Visual dBASE, a statement such as SAVE TO memfile LIKE mvar* is
acceptable; the ALL option is assumed.

See Also
RELEASE, RESTORE, SET SAFETY, STORE

SAVE SCREEN Input/Output

Saves the contents of the results pane of the Command window. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, form
definitions are saved in program, procedure, or library files.

For complete syntax information on SAVE SCREEN, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

SAVE WINDOW dBASE IV windows

Saves window definitions to a window file. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, form definitions are saved in program,
procedure, or library files.

For complete syntax information on SAVE WINDOW, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

SCAN Programs

Steps through each record in the current table, executing specified statements on each
record that meets specified conditions.

Syntax
SCAN

 [<scope>] [FOR <condition 1>] [WHILE <condition 2>]
 [<statements>]
 [LOOP]
 [EXIT]

ENDSCAN

<scope> The number of records to scan. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
table.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by SCAN. FOR restricts
SCAN to records that meet <condition 1>. WHILE starts processing with the current
record and continues with each subsequent record as long as <condition 2> is true.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 471

S C A N+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

<statements> Program lines consisting of any combination of commands, functions,
user-defined functions (UDFs), and LOOP and EXIT options. Because SCAN processes
a table record by record, these statements are likely to include table commands and
functions such as ISBLANK() and REPLACE.

LOOP Moves the record pointer ahead one record and returns program control to the
beginning of the loop without performing the statements that follow LOOP and precede
ENDSCAN.

EXIT Transfers program control out of the SCAN loop to the statement following
ENDSCAN without executing the statements that follow EXIT and precede ENDSCAN
and without processing any more records.

ENDSCAN A required command that marks the end of the SCAN loop. When dBASE
encounters ENDSCAN, it moves the record pointer ahead one record and returns
program control to the beginning of the loop.

Description
Use SCAN to process the current table record by record, starting with the first record in
the table or master index or the first record that meets a FOR condition. For each record
that falls within <scope> or meets a FOR condition or a WHILE condition or any
combination of the three, dBASE executes all the statements after SCAN until it
encounters LOOP, EXIT, or ENDSCAN. The SCAN loop continues to the end of the
table (or the last record in the index) unless the <scope>, the FOR or WHILE condition, or
the EXIT option ends the processing earlier. The record pointer remains where it is
when processing ends.

At the end of each loop, dBASE automatically moves the record pointer forward one
record in the table before returning to the beginning of the loop; therefore, don't include
a SKIP command.

You can nest loops and other structures, including other SCAN loops, in a SCAN loop.
Each ENDSCAN in a nested group of SCANs moves the record pointer one record. The
nested code must account for this record pointer movement, or code might execute on
records you didn't intend it to.

SCAN works like a DO WHILE .NOT. EOF()...SKIP...ENDDO construct; however, with
SCAN you can specify conditions with FOR, WHILE, and <scope>. SCAN also requires
fewer lines of code than DO WHILE.

When using SCAN with an indexed table, don't change the value of a field that is (or is
part of) the master index key. When you change the value of such a field, dBASE
repositions the record in the index file, which might cause unintended results. For
example, if you change a key field that causes its record to move to the end of the index,
that record might have the SCAN...ENDSCAN statements executed on it a second time.

If you change work areas within a SCAN loop, select the work area containing the table
being scanned before control passes back to the first statement in the SCAN loop.

Example
The following example uses SCAN to step through a table and calls an invoicing
procedure for those records that have a positive value in field Startbal:

472 L a n g u a g e R e f e r e n c e

S E C O N D S ()

CLEAR
USE Clients
SCAN FOR Startbal > 0

DO Invoice WITH Company, Startbal, Baldate
ENDSCAN

PROCEDURE Invoice
PARAMETERS Company, Startbal, Baldate
? Company, Startbal, Baldate
RETURN

The following code is equivalent to the SCAN loop used in the previous example but
uses the DO WHILE and IF/ENDIF commands:

SET TALK OFF
USE Clients
DO WHILE .NOT. EOF()

If Startbal > 0
DO Invoice WITH Company, Startbal, Baldate

ENDIF
SKIP

ENDDO

PROCEDURE Invoice
PARAMETERS Company, Startbal, Baldate
? Company, Startbal, Baldate
RETURN

Portability
Not supported in dBASE III PLUS. Nested SCAN loops aren't supported in dBASE IV.

See Also
DO WHILE, DO...UNTIL, FOR...NEXT, INDEX, LOCATE, SEEK, SKIP

SECONDS() Date and time data

Returns the number of seconds that have elapsed on your computer's system clock since
12 a.m. (midnight).

Syntax
SECONDS()

Description
SECONDS() returns the number of seconds to the hundredth of a second that have
elapsed on your system clock since 12a.mmidnight). The number is in the format SS.hh,
where SS are the seconds, and hh are the hundredths of a second.

Use SECONDS() to calculate the amount of time that portions of your program take to
run. SECONDS() is more convenient for this purpose than TIME() because
SECONDS() returns a number rather than a character string.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 473

S E E K+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

You can also use SECONDS() instead of ELAPSED() to determine elapsed time for the
current day to within hundredths of a second.

Example
The first line of the following example parses the hour, minute and second characters of
the string returned by TIME() to calculate the number of seconds elapsed between
midnight and the current time. The second command line is meant to illustrate that
SECONDS() returns the same value as calculated by the first command line:

? TIME(),(VAL(SUBSTR(TIME(),1,2))*3600) + ;
(VAL(SUBSTR(TIME(),4,2))*60) + ;
VAL(SUBSTR(TIME(),7,2))

? SECONDS()

See Also
ELAPSED(), SET TIME, TIME()

SEEK Table organization

Searches for the first record in an indexed table whose key fields matches the specified
expression.

Syntax
SEEK <expC list> | <expN list>

<expC list> | <expN list> The character string or number to find in the master index key
fields. For dBASE tables, you can specify a dBASE expression that matches the index
key expression. For Paradox and SQL tables, you can specify values (separated by
commas) that match single or composite index key fields.

Description
Visual dBASE can search a table for specific information either by a sequential search of
a table or by an indexed search of the table's master index. A sequential search is similar
to looking for information in a book by reading the first page, then the second, and so
on, until the information is found or all pages have been read. LOCATE uses this
method, checking each record until the information is found or the last record has been
inspected.

An indexed search is similar to looking up a topic in a book index and turning directly
to the appropriate page. Once a table index is created, SEEK, or the similar command
FIND, can use this index to quickly identify the appropriate record.

SEEK begins searching at the top of an index and halts when either a match is found or
the end of the index is reached. If a match is found (FOUND() returns .T.), the record
pointer of the associated table is positioned at the record containing the match.

Use SKIP to access other records whose key fields match the index key fields or
expression. SKIP advances the record pointer one record; because of the indexed order,
other matches immediately follow the first. However, SKIP after SEEK (unlike

474 L a n g u a g e R e f e r e n c e

S E E K

CONTINUE after LOCATE) doesn't search for a match; it moves the record pointer one
record whether or not it finds a match.

The SET NEAR setting determines whether Visual dBASE, after an unsuccessful SEEK,
positions the record pointer at the end-of-file or at the record in the indexed table
immediately after the position at which the value searched for would have been found.
If SET NEAR is OFF (the default) and SEEK is unsuccessful, EOF() returns .T. and
FOUND() returns .F. If SET NEAR is ON and SEEK is unsuccessful, EOF() returns .F.
(unless the position at which the sought value would have been found is the last record
in the index), and FOUND() returns .F.

SEEK can locate any valid key fields or expressions of data type character, numeric,
float, or date. Character input must be delimited with single or double quotation marks
or brackets. Date expressions must be delimited with braces ({ }) or converted using the
CTOD() function.

The expression you look for with SEEK must match the key expression or fields of the
master index. For example, if the master index key is SUBSTR(Custno, 2, 5), use SEEK
SUBSTR(Custno, 2, 5).

When you seek a key expression of type character, the rules established by SET EXACT
determine if a match exists. If SET EXACT is OFF, the default condition, only the
beginning characters of the key field need to be entered for SEEK to determine a match.
If SET EXACT is ON, the entered expression must be identical to the key field for a
match to exist.

The SEEK() function works like SEEK followed by FOUND(), except that SEEK
searches in the current work area, while SEEK() can search in a current or a specified
work area. SEEK() returns .T. or .F. depending on whether the search is successful.

FIND, SEEK, and LOCATE each have their own advantages. FIND and SEEK conduct
the most rapid searches; however, both require an indexed file and can search only for
values of the key expression. SEEK offers greater flexibility than FIND by accepting
dBASE expressions as well as character and numeric input. Searches for memory
variable values using FIND require use of the & macro-substitution operator, while
character input to SEEK must be delimited.

If the information for which you are searching is in an unindexed file or is not contained
in the key field of an indexed file, you can use LOCATE. LOCATE accepts an expression
of any data type as input and can search any field of a table for that value. For large
tables, however, a sequential search using LOCATE can be slow. In such cases, you
might want to use INDEX to create a new index and then use SEEK, SEEK(), or FIND.

Example
The following example uses SEEK to locate the first occurrence of a company in Illinois:

USE Company EXCLUSIVE
INDEX ON State_Prov TAG State
Keyvalue="IL"
SEEK Keyvalue && SEEK the contents of a variable
IF FOUND()

? "All Companies in Illinois"

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 475

S E E K ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

LIST FIELDS Company, State_Prov;
WHILE State_Prov=Keyvalue

ELSE
? "Illinois was not found"

ENDIF

See Also
DTOS(), EOF(), FIND, FOUND(), INDEX, LOCATE, SEEK(), SET EXACT, SET NEAR

SEEK() Table organization

Searches for the first record in an indexed table whose key field matches the specified
expression.

Syntax
SEEK(<expC> | <expN> [,<alias>])

<expC> | <expN> The character string or number to look for in the key field of the indexed
table in the current or <alias> work area. Character input must be delimited with single
or double quotation marks or brackets. Date expressions must be delimited with braces
({ }) or converted using the CTOD() function.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
SEEK() evaluates the expression specified by <expC> or <expN> and attempts to find its
value in the master index of the table open in the current or specified work area. SEEK()
returns .T. if it finds a match of the key expression in the master index, and .F. if no
match is found.

SEEK() can search only for an expression that is contained in the master index key field.
When you specify <expC>, a character expression, and SET EXACT is ON, <expC> must
match every character in the key field. If SET EXACT is OFF, Visual dBASE compares
<expC> only to the first characters in the key field.

SEEK() begins searching at the top of an indexed table and moves the record pointer to
the first record whose key field matches <expC> or <expN>. If Visual dBASE doesn't find
<expC> or <expN>, SEEK() moves the record pointer to the end of the file. SEEK() can
locate any valid key expression of data type character, numeric, float, or date. If SET
NEAR is ON, the record pointer moves to the record immediately following the
expression searched for whenever an exact match cannot be found.

Use SKIP to access other records whose key field value matches the search expression.
SKIP advances the record pointer one record. Because of the indexed order, other
matches immediately follow the first. However, SKIP after SEEK() (unlike CONTINUE
after LOCATE) doesn't search for a match; it moves the record pointer one record
whether or not it finds a match.

476 L a n g u a g e R e f e r e n c e

S E L E C T

You can use SEEK() to produce the same effect as performing SEEK followed by
FOUND(). The value that FOUND() returns matches that returned by SEEK().

Example
The following example uses SEEK() to find the first occurrence of a matching record in
an indexed table:

CLOSE DATABASE
USE Company EXCLUSIVE && work area 1
INDEX ON State_Prov TAG State
SELECT 2
Gotit=SEEK("CA","Company")

dBASE is pointing to work area 2 and performing a SEEK() in work area 1.

Portability
Not supported in dBASE III PLUS.

See Also
EOF(), FIND, FOUND(), INDEX, LOOKUP(), SEEK, SET EXACT, SET NEAR, SET
RELATION, SET SKIP

SELECT Table basics

Sets the current work area in which to open or perform operations on a table.

Syntax
SELECT <alias>

<alias> Specifies a work area. You can enter a work area number (1 through 225), letter
(A through J), or alias name. The work area letter or alias name can also be enclosed in
quotes.

Description
Use SELECT to choose a work area in which to open a table, or to specify a work area in
which a table is already open. Use SELECT to open a table and other files associated
with a table, such as index, query, and format files, in each work area.

Each work area supports its own value of FOUND() and an independent record
pointer. Changes in the record pointer of the active work area have no effect on the
record pointers of any other work areas, unless you set a relation between the work
areas with the SET RELATION command.

Use the macro (&) operator to select a work area by a variable, or simply enclose the
variable containing the work area in parentheses. For example, if N=1, use SELECT (N)
to select work area 1.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 477

S E L E C T ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
The following example uses the SELECT command to change the current table to a
different previously opened table:

PUBLIC table1, table2
USE Contact EXCLUSIVE IN SELECT()
INDEX ON CompCode TAG CompCode
table1 = ALIAS()

USE Company IN SELECT()
table2 = ALIAS()

SELECT Company
COPY STRUCTURE TO CntctLst;

FIELDS Contact->CompCode, ;
Company->Company, Contact->Contact, ;
Company->Street1, Company->Street2, ;
Company->City, Company->State_Prov,;
Company->Zip_P_Code

USE CntctLst IN SELECT()
table3 = ALIAS()
APPEND
SELECT &table1
? ALIAS(),DBF(),WORKAREA()
SELECT &table3
? ALIAS(),DBF(),WORKAREA()
SELECT &table2
? ALIAS(),DBF(),WORKAREA()
SELECT 3
? ALIAS(),DBF(),WORKAREA()
SELECT 1
? ALIAS(),DBF(),WORKAREA()
SELECT 2
? ALIAS(),DBF(),WORKAREA()
CLOSE ALL

See Also
SELECT(), SET RELATION, USE, WORKAREA()

SELECT() Table basics

Returns the number of an available work area or the work area number associated with
a specified alias.

Syntax
SELECT([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

478 L a n g u a g e R e f e r e n c e

S E T

Description
If you do not specify an alias, SELECT() returns the number of the next available work
area, a number between 1 and 225. If you specify an alias, SELECT() determines
whether the specified alias name is already in use.

Use SELECT() to locate an available work area in which to open a table without closing
an open table. SELECT() returns a value of 0 when there are no more work areas
available or a specified <alias> is not already in use.

Example
The following example demonstrates how SELECT() is used to return the next available
work area or the work area of an alias:

CLOSE DATABASES
USE Clients IN SELECT()
USE Company IN SELECT()
? SELECT() && Returns 3, meaning work area 3 is next available
? ALIAS(1) && Returns CLIENTS
? ALIAS(2) && Returns COMPANY
? DBF(1) && Returns C:CLIENTS.DBF
? SELECT() && Returns 3, Work Area 3 still current work area
SELECT 2 && Work area 2 active
? ALIAS() && Returns COMPANY
? WORKAREA() && Returns 2
? SELECT() && Returns 3
? SELECT("Clients") && Returns 1 for work area 1

Portability
Not supported in dBASE III PLUS.

See Also
ALIAS(), DBF(), SELECT, WORKAREA()

SET Environment

Displays a dialog box for viewing and changing the values of many SET commands.
The changed values are stored in the DBASEWIN.INI file.

Syntax
SET

Description
Use SET to view and change settings interactively, instead of typing individual SET
commands such as SET TALK ON in the Command window.

Note Any changes you make to settings by using SET are automatically saved to
DBASEWIN.INI. This means that the settings will be in effect each time you start
dBASE. If you want to change the value of SET commands only temporarily, issue

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 479

S E T A L T E R N A T E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

individual SET commands in the Command window or in a program. For more
information about DBASEWIN.INI, see Appendix C in the User's Guide.

Issuing SET is the same as choosing the Properties | Desktop menu option.

Portability
In dBASE IV and dBASE III PLUS, changes you make by using SET are valid only until
you exit dBASE; they are not saved in the CONFIG.DB file.

See Also
DISPLAY STATUS, SET(), SETTO(), individual SET commands

SET ALTERNATE Input/Output

Controls the recording of input and output in an alternate text file.

Syntax
SET ALTERNATE on | OFF

SET ALTERNATE TO
[<filename> | ? | <filename skeleton>

 [ADDITIVE]]

<filename> | ? | <filename skeleton> The alternate text file, or target file, to create or open.
The ? and <filename skeleton> options display a dialog box in which you can specify a
new file or select an existing file. If you specify a file without including its path, dBASE
looks for the file in the current directory, then in the path you specify with SET PATH. If
you specify a file without including its extension, dBASE assumes .TXT.

ADDITIVE Appends dBASE output that appears in the results pane of the Command
window to the specified existing alternate file. If the file doesn't exist, dBASE returns an
error message.

Default
The default for SET ALTERNATE is OFF. To change the default, set the ALTERNATE
parameter in the [OnOffSetting Settings] section of DBASEWIN.INI. To set a default file
name for use with SET ALTERNATE, specify an ALTERNATE parameter in the
[CommandSettings] section of DBASEWIN.INI.

Description
Use SET ALTERNATE TO to create a record of dBASE output and commands. You can
edit the contents of this file with the Text Editor for use in documents, or store it on disk
for future reference. You can record, edit, and incorporate command sequences into
new programs. (To send the results of @...SAY commands to a text file, use SET DEVICE
TO FILE.)

SET ALTERNATE TO <filename> only opens an alternate file, while SET ALTERNATE
ON | OFF controls the storage of input and output to that file. Only one alternate file

480 L a n g u a g e R e f e r e n c e

S E T A L T E R N A T E

can be open at a time. When you issue SET ALTERNATE TO <filename> to open a new
file, dBASE closes the previously open alternate file.

When SET ALTERNATE is ON, dBASE stores output to the results pane of the
Command window in the text file you've opened by previously issuing
SET ALTERNATE TO <filename>. An alternate file must be open for SET ALTERNATE
ON to have an effect. SET ALTERNATE doesn't affect a program's output; it only
determines when that output is saved in the alternate file. (Keyboard entries in the
Command window aren't stored to the alternate file.)

To prevent your text file from beginning with a blank line, use two question marks (??)
before the first word that you send to the alternate file.

Issuing SET ALTERNATE OFF does not close the alternate file. Before accessing the
contents of an alternate file, formally close it with CLOSE ALTERNATE or SET
ALTERNATE TO (with no file name). This ensures that all data recorded by dBASE for
storage in the alternate file is transferred to disk, and automatically turns SET
ALTERNATE to OFF.

If SET SAFETY is ON, you don't use the ADDITIVE option, and a file exists with the
same name as the target file, dBASE displays a dialog box asking if you want to
overwrite the file. If SET SAFETY is OFF and you don't use the ADDITIVE option, any
existing file with the same name as the target file is overwritten without warning.

Example
This example uses the SET ALTERNATE commands to write text to the screen and an
ASCII file:

SET ALTERNATE TO Rose
* Open Rose.txt for text output
? "Opening alternate file" && to screen only
SET ALTERNATE ON
* ?,?? commands now go to Rose.txt
? "A rose "
SET ALTERNATE OFF && Stop storing to Rose.txt.
?? "tended carefully in your garden "
SET ALTERNATE ON && Add to Rose.txt.
?? "is a rose "
?? "is a rose "
? "You will be proud of"
CLOSE ALTERNATE && Close Rose.txt
* Rose.txt contains:
* A rose is a rose is a rose
* You will be proud of

Portability
The ADDITIVE option is not supported in dBASE III PLUS. The ? and <filename
skeleton> options are not supported in dBASE III PLUS or dBASE IV.

See Also
CLOSE..., SET DEVICE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 481

S E T A U T O S A V E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET AUTOSAVE Fields and records

Determines if dBASE writes data to disk each time a record is changed or added.

Syntax
SET AUTOSAVE on | OFF

Default
The default for SET AUTOSAVE is OFF. To change the default, update the AUTOSAVE
setting in DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the AUTOSAVE parameter directly in DBASEWIN.INI.

Description
Use SET AUTOSAVE ON to reduce the chances of data loss. When SET AUTOSAVE is
ON and you alter or add a record, Visual dBASE updates tables and index files on disk
when you move the record pointer. When SET AUTOSAVE is OFF, changes are saved
to disk as the record buffer is filled.

Since Visual dBASE periodically saves table changes to disk, in most situations you don't
need to SET AUTOSAVE ON. SET AUTOSAVE OFF lets you process data faster, since
Visual dBASE writes your changes to disk less often.

Example
The following example uses SET AUTOSAVE ON to save newly entered data to disk
each time the record pointer changes:

SET TALK OFF
CLOSE DATABASES
USE Company
a_save = SET("AUTOSAVE")
carry = SET("CARRY")
SET AUTOSAVE ON
SET CARRY ON
APPEND
SET CARRY &carry
SET AUTOSAVE &a_save
FLUSH
CLOSE ALL
CLEAR
SET TALK ON

Portability
Not supported in dBASE III PLUS.

See Also
CLOSE..., FLUSH

482 L a n g u a g e R e f e r e n c e

S E T B E L L

SET BELL Environment

Turns the computer bell on or off and sets the bell frequency and duration.

Syntax
SET BELL ON | off

SET BELL TO
[<frequency expN>, <duration expN>]

<frequency expN> The frequency of the bell tone in cycles per second, which must be an
integer from 19 to 10,000, inclusive.

<duration expN> The duration of the bell tone in ticks (18ths of a second), which must be
an integer from 1 to 19, inclusive.

Default
The default for SET BELL is ON. The default bell frequency is 512 Hertz (cycles per
second), and the default bell duration is 2 ticks. (A tick is 1/18 of a second.)

To change the default on|off setting, update the BELL parameter in the
[OnOffCommandSettings] section of DBASEWIN.INI. To change the frequency and
duration defaults, update the BELL parameters in the [CommandSettings] section of
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the parameters directly in DBASEWIN.INI.

Description
When SET BELL is ON, dBASE produces a tone when you fill a data entry field or enter
invalid data. SET BELL TO determines the frequency and duration of this tone.

CHR(7) sounds a tone whether SET BELL is ON or OFF.

SET BELL TO with no arguments sets the frequency and duration to the default values
of 512 and 2. SET BELL has an effect only on machines that have an internal speaker or
other sound system.

Example
The following examples set the bell to high and low pitch and short and long durations:

SET BELL ON
SET BELL TO 50,19
* BROWSE, APPEND etc will now ring the bell
* A long, very low bell
? CHR(7) && ring the bell
SET BELL TO 10000,1
* Short, very high pitched
? CHR(7) && ring the bell
SET BELL OFF
? CHR(7) && the bell still rings
* BROWSE, APPEND etc will not ring the bell

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 483

S E T B L O C K S I Z E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Portability
SET BELL TO <frequency expN>, <duration expN> not supported in dBASE III PLUS.

See Also
CHR(), SET CONFIRM

SET BLOCKSIZE Fields and records

Changes the default block size of memo field and .MDX index files.

Syntax
SET BLOCKSIZE TO <expN>

<expN> A number from 1 to 63 that sets the size of blocks used in memo and .MDX
index files. (The actual size in bytes is the number you specify multiplied by 512.)

Default
The default for SET BLOCKSIZE is 1 (for compatibility with dBASE III PLUS). To
change the default, update the BLOCKSIZE setting in DBASEWIN.INI.

Description
Use SET BLOCKSIZE to change the size of blocks in which Visual dBASE stores memo
field files and .MDX index files on disk. The actual number of bytes used in blocks is
<expN> multiplied by 512. Instead of using SET BLOCKSIZE, you can set the block size
used for memo and .MDX index files individually, by using SET MBLOCK and SET
IBLOCK commands.

After the block size is changed, memo fields created with the COPY, CREATE, and
MODIFY STRUCTURE commands have the new block size. To change the block size of
an existing memo field file, use the SET BLOCKSIZE command to change the block size
and then copy the table containing the associated memo field to a new file. The new file
then has the new block size.

Example
The following example uses SET BLOCKSIZE to create another table that is a copy of
Clients but has a memo blocksize of 1024 bytes embedded in its structure instead of the
default of 512 bytes:

USE Clients
? SET("Blocksize") && Returns 1, each memo block = 512 bytes
SET BLOCKSIZE TO 2
COPY TO Clients2
USE Clients2
? SET("Blocksize") && Returns 2
LIST FILES LIKE *.DBT && Note file size larger than Clients.DBT
CLOSE DATABASES

484 L a n g u a g e R e f e r e n c e

S E T B O R D E R

Portability
Not supported in dBASE III PLUS.

See Also
COPY, COPY INDEXES, CREATE, MODIFY STRUCTURE, INDEX, REINDEX,
REPLACE, SET(), SET IBLOCK, SET MBLOCK

SET BORDER Environment

Defines the default border of subsequently defined dBASE IV windows, dBASE IV pop-
up menus, and @...TO boxes. This command is supported primarily for compatibility
with dBASE IV. In dBASE for Window, use DEFINE to create forms instead of windows.

For more information about SET BORDER, see online Help. For more information about
working with forms, see the Forms chapters in the User's Guide.

SET CARRY Fields and records

Specifies the fields from which data is copied to new records created with APPEND,
BROWSE, EDIT, or INSERT commands.

Syntax
SET CARRY TO [<field list> [ADDITIVE]]

SET CARRY on | OFF

<field list> The list of fields whose values are carried forward to new records.

ADDITIVE Adds fields in <field list> to the list of fields previously defined with SET
CARRY TO. Without ADDITIVE, <field list> overrides any previously specified list of
fields.

Default
The default for SET CARRY is OFF.

Description
When SET CARRY is ON, records added using APPEND, BROWSE, EDIT, or INSERT
are filled with the contents of the record immediately preceding the new record at the
logical end of the table. (You can also supply default record contents for INSERT and
APPEND using the DEFAULT argument of @...SAY...GET.)

When SET CARRY is OFF, new records are initially blank. SET CARRY doesn't affect
INSERT AUTOMEM, APPEND AUTOMEM, INSERT BLANK, or APPEND BLANK.
These commands always add a record containing automem variables or a blank record.

Specifying a field list with the SET CARRY TO command limits the fields carried to the
new record. Using the SET CARRY TO command automatically sets CARRY ON.
Specifying the ADDITIVE keyword adds fields to an already defined field list.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 485

S E T C A T A L O G+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET CARRY TO with no field list restores the default condition where all fields are
carried to new records.

You can also limit the fields by specifying a field list with SET FIELDS TO. The SET
CARRY TO field list applies only to SET CARRY, while the SET FIELDS TO fields list
applies to all commands operating on tables. A SET FIELDS TO field list overrides a SET
CARRY TO field list.

Example
The following example uses SET CARRY TO to carry field data forward from the
previous record. In the example, the user wants to enter new records for companies that
are all in the same local area so they have the same State and Zip, plus report to the same
corporate office:

USE Company
SET CARRY TO State_Prov, Zip_P_Code, Corp_Off
APPEND
* Edit window appears with data already entered in the 3 designated fields.
SET CARRY OFF
CLOSE ALL

Portability
Not supported in dBASE III PLUS.

See Also
APPEND, INSERT, SET FIELDS, @...SAY...GET

SET CATALOG Table basics

Opens a catalog file.

Syntax
SET CATALOG TO [<filename> | ?]

SET CATALOG on | OFF

TO <filename> | ? Specifies the name of the catalog you want to open. SET CATALOG TO
? displays a dialog box, in which you can select an existing catalog file.

Default
The default for SET CATALOG is OFF. To change the default, update the CATALOG
setting in DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the CATALOG parameter directly in DBASEWIN.INI.

Description
Use SET CATALOG TO <filename> to open an existing catalog.

486 L a n g u a g e R e f e r e n c e

S E T C A T A L O G

SET CATALOG on|OFF determines if new files are added to the open catalog file. After
setting CATALOG ON, all tables and associated files such as index, query, format,
report, and label files you use or new files you create are added to the catalog.

To stop adding files to an open catalog, use SET CATALOG OFF. Then, when you want
to resume adding files to the catalog, use SET CATALOG ON again. To close a catalog,
use the SET CATALOG TO command without a filename.

A master catalog, CATALOG.CAT, stores catalog file names along with catalog title
descriptions. The description you enter for each catalog entry is displayed later in the
catalog window when you use the SET CATALOG TO ? command to select a catalog
name.

When you select a catalog file, it is automatically opened in its own work area buffer. If
you want to manipulate the catalog table, first open it in a user-accessible work area:

Catname=CATALOG()
USE(Catname) IN SELECT() AGAIN ALIAS Catalog

To update the catalog from within a program, temporarily disable the catalog:

Catname = CATALOG()
SaveCat = SET("CATALOG")
SET CATALOG OFF
USE (Catname) IN SELECT() ALIAS Catalog
* <update catalog>
USE IN Catalog
SET CATALOG TO (SaveCat)

Whenever you open a catalog, dBASE checks the catalog contents against the disk. If
you've previously deleted any files with SET CATALOG OFF, dBASE deletes the
corresponding entries in the catalog for the files that have been deleted.

Adding entries
When SET CATALOG is ON, a new entry is added automatically to the active catalog
when you use any of the following commands:

If the file name already exists in the catalog, you are prompted for a file title (if SET
TITLE is ON). Use the SET TITLE OFF command to suppress the file title prompt if you
do not want to enter file titles.

COPY STRUCTURE INDEX

COPY STRUCTURE EXTENDED JOIN

CREATE SET FILTER

CREATE FROM SET FORMAT

CREATE|MODIFY FORM SET VIEW

CREATE|MODIFY LABEL SORT

CREATE|MODIFY REPORT TOTAL

CREATE|MODIFY VIEW USE

IMPORT FROM

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 487

S E T C E N T U R Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
The following example first CREATEs a CATALOG that contains only the Company
and Orders tables. It later opens the catalog with SET CATALOG TO so that a user does
not need to deal with any other tables. They can use the Catalog viewer in place of the
file viewer:

CLOSE ALL
CREATE CATALOG CompOrd
USE Company
USE Orders IN Select()
SET CATALOG TO
* Now CompOrd is created

SET CATALOG TO CompOrd

Now user can use Catalog Viewer and need not deal with other tables in the
subdirectory.

See Also
CATALOG(), CREATE CATALOG, SELECT(), SET(), SET TITLE, USE

SET CENTURY Date and time data

Controls the format in which dBASE displays the year portion of dates.

Syntax
SET CENTURY on | off

Default
The default for SET CENTURY is set by the International option of the Windows
Control Panel. To change the default, set the CENTURY parameter in DBASEWIN.INI.
To do so, either use the SET command to specify the setting interactively, or enter the
CENTURY parameter directly in DBASEWIN.INI.

Description
When SET CENTURY is ON, dBASE displays dates in the current format with 4-digit
years; when SET CENTURY is OFF, dBASE displays dates in the current format with 2-
digit years.

You can enter a date with a 2-, 3-, or 4-digit year whether SET CENTURY is ON or OFF.
dBASE assumes that 2-digit years are in the 20th century. If SET CENTURY is OFF,
dBASE truncates any digits to the left of the last two when displaying the date.
However, dBASE stores the correct value of the date internally.

488 L a n g u a g e R e f e r e n c e

S E T C O L O R O F

The following table shows the how dBASE displays and stores dates depending on the
setting of SET CENTURY. (The table assumes SET DATE is AMERICAN.)

As the table shows, SET CENTURY doesn't affect the relationship between how you
enter a date and how dBASE evaluates and stores it. SET CENTURY affects only how
dBASE displays the year portion of the date.

Example
See the example of SET DATE for an example of SET CENTURY.

See Also
DATE(), SET DATE

SET COLOR OF Colors and fonts

Defines the color settings for specified screen areas. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use the ColorNormal or
ColorHighlight properties to define colors for objects.

For more information about SET COLOR OF, see online Help. For more information
about working with Visual dBASE objects, see Chapter 10 in the Programmer’s Guide.

SET COLOR TO Colors and fonts

Defines color display characteristics for dBASE IV windows and for text that appears in
the results pane of the Command window. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use the ColorNormal or ColorHighlight
properties to define colors for objects.

For more information about SET COLOR TO, see online Help. For more information
about working with Visual dBASE objects, see Chapter 10 in the Programmer’s Guide.

SET CONFIRM Environment

Controls the cursor's movement from one entry field to the next during data entry in the
results pane of the Command window and in dBASE IV windows. This command is

You enter date as
dBASE stores
date as

With
SET CENTURY ON,
dBASE displays

With
SET CENTURY OFF,
dBASE displays

{10/13/94} 10/13/1994 10/13/1994 10/13/94

{10/13/994} 10/13/0994 10/13/0994 10/13/94
{10/13/1994} 10/13/1994 10/13/1994 10/13/94
{10/13/2094} 10/13/2094 10/13/2094 10/13/94

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 489

S E T C O N S O L E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

supported primarily for compatibility with dBASE IV. It has no effect on Visual dBASE
forms.

For complete syntax information on SET CONFIRM, see online Help. For more
information about working with forms, see the Forms chapters in the User's Guide.

SET CONSOLE Environment

Controls the display of input and output in the results pane of the Command window
during program execution.

Syntax
SET CONSOLE ON | off

Default
The default for SET CONSOLE is ON.

Description
When SET CONSOLE is ON, dBASE displays all standard input and command output
in the results pane of the Command window. Use SET CONSOLE OFF to prevent
dBASE from displaying this input and output.

You can issue SET CONSOLE only in a program, not in the input pane of the Command
window. SET CONSOLE does not affect the display of error messages or safety
prompts, nor does it affect the display of input entered in the input pane of the
Command window.

A user can enter input requested by a program (such as by WAIT or ACCEPT) while
SET CONSOLE is OFF; however, dBASE displays neither the prompt for the input nor
the input itself.

@...SAY...GETs override the SET CONSOLE setting and are visible regardless of the
SET CONSOLE status.

Example
This example uses SET CONSOLE OFF to turn off the screen display while a report is
sent to the printer. It then sets the console back on:

SET CONSOLE OFF
REPORT FORM Report1 TO PRINTER
SET CONSOLE ON

Turn CONSOLE OFF only for a specific reason.

See Also
ACCEPT, ON ERROR, SET TALK, WAIT

490 L a n g u a g e R e f e r e n c e

S E T C O V E R A G E

SET COVERAGE Error handling and debugging

Determines whether dBASE creates/updates a coverage file (.COV).

Syntax
SET COVERAGE on | OFF

Default
The default for SET COVERAGE is OFF. To change the default, set the COVERAGE
parameter in DBASEWIN.INI. To do so, either use the SET command to specify the
setting interactively, or enter the COVERAGE parameter directly in DBASEWIN.INI.

Description
A coverage file is a binary file containing cumulative information on how many times, if
any, dBASE enters and exits (and thus fully executes) each logical block of a program.
Use SET COVERAGE as a program development tool to determine which program
lines dBASE executes and doesn't execute each time you run a program.

When SET COVERAGE is ON, and you call a program, procedure, or user-defined
function (UDF) in a separate program file, dBASE creates a new coverage file or updates
an existing one. When dBASE creates a coverage file, it assigns the file the root name of
the program or procedure file and a .COV extension.

To view the contents of a coverage file, use DISPLAY COVERAGE or LIST
COVERAGE. If the coverage file reveals that some lines aren't executing, you can
respond by changing the program or the input to the program to make the lines execute.
In this way, you can make sure that you test all lines of code in the program.

You can issue SET COVERAGE ON in a program file or in the Command window. If
you issue SET COVERAGE ON in a program file, dBASE will create coverage files for
that program and for each subroutine that exists in separate programs or procedure files
that the main program calls. You can also issue #pragma COVERAGE(ON) in a
program file to create a coverage file for it and all program files it calls.

If you issue SET COVERAGE ON in the Command window, dBASE will create
coverage files for any programs, or procedures or user-defined functions (UDFs) in
open procedure files, that you call from the Command window until you issue SET
COVERAGE OFF.

A logical block doesn't include commented lines or programming construct command
lines such as IF and ENDIF. It does, however, include command lines within
programming construct command lines. If your program doesn't contain any
programming constructs (IF, DO WHILE, FOR...NEXT, SCAN...ENDSCAN, LOOP, DO
CASE, DO...UNTIL), the program has only one logical block consisting of all
uncommented command lines.

The coverage file identifies a logical block by its corresponding program line number(s):

Line 1 * UPDATES.PRG
Line 2 SET TALK OFF Block 1 (Lines 2-3)
Line 3 USE Customer INDEX Salespers

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 491

S E T C O V E R A G E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Line 4 SCAN
Line 5 DO CASE
Line 6 CASE Salesper = "S-12"
Line 7 SELECT 2 Block 2 (Lines 7-8)
Line 8 USE S12
Line 9 CASE Salesper = "L-5"
Line 10 SELECT 2 Block 3 (Lines 10-11)
Line 11 USE L5
Line 12 CASE Salesper = "J-25"
Line 13 SELECT 2 Block 4 (Lines 13-14)
Line 14 USE J25
Line 15 ENDCASE
Line 16 DO Changes Block 5 (Lines 16-17)
Line 17 SELECT 1
Line 18 ENDSCAN
Line 19 CLOSE ALL Block 6 (Lines 19-20)
Line 20 SET TALK ON

Before dBASE can create coverage files, you must compile the program file and all
called files you want to analyze while SET COVERAGE is ON. If you COMPILE a
program while SET COVERAGE is OFF, then turn SET COVERAGE ON and DO the
program, dBASE doesn't produce a coverage file.

dBASE writes the coverage file to disk when the program is unloaded from memory or
when you issue a LIST COVERAGE or DISPLAY COVERAGE. To unload a program
from memory, use CLEAR PROGRAM.

The preprocessor command #pragma COVERAGE(ON) can only be used in a program
file. When you use #pragma COVERAGE(ON), you don't have to issue SET
COVERAGE ON before compiling the program; instead of recreating the coverage file,
dBASE updates the existing one when you make changes to the program and recompile.

Example
The following example is a batch program that updates records from a central file:

* Update.PRG
USE Clients
SET COVERAGE ON
SCAN

IF DELETED()
DO Deletes

ELSE
DO Updates

ENDIF
ENDSCAN
DISPLAY COVERAGE Update
CLOSE ALL

PROCEDURE Updates
* update code here

PROCEDURE Deletes
* delete code here

492 L a n g u a g e R e f e r e n c e

S E T C U A E N T E R

DISPLAY COVERAGE opens a .COV file that shows which lines of the program dBASE
executed when the program was run. If no records were marked for deletion, the
coverage file would reveal that dBASE had not executed one logical block, the line DO
DELETES. To test whether the call to procedure Deletes works, the programmer could
delete a test record and run the program again so that dBASE executes line 5.

When SET COVERAGE is ON and dBASE executes every line of a program, procedure,
or UDF file, the coverage file states that test coverage was 100%.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
#pragma, CLEAR PROGRAM, COMPILE, DEBUG, DISPLAY COVERAGE, SET
DEVELOPMENT

SET CUAENTER Forms

Determines whether Enter works in Windows mode or dBASE DOS mode.

Syntax
SET CUAENTER ON | off

Default
The default for SET CUAENTER is ON. To change the default, update the CUAENTER
setting in dBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the CUAENTER parameter directly in DBASEWIN.INI.

Description
Use SET CUAENTER to control Enter.

In Visual dBASE, pressing Enter submits the current form; this is typical of Windows
applications. However, in dBASE DOS, pressing Enter moves the cursor from one GET
field to the next. In Visual dBASE, you move focus from object to object with the mouse
or by pressing Tab and Shift-Tab instead of Enter.

To move focus in the dBASE DOS manner, execute SET CUAENTER OFF. You typically
do this when you need to maintain consistency with your DOS applications.

Example
The following example creates a basic form with three entry fields from the Contact
table and two pushbuttons to advance or retard the record pointer. SET CUAENTER
OFF is used to make the cursor behave as it would in a DOS application, that is, advance
between fields or to the pushbuttons when the user presses Enter. Changing the
command to SET CUAENTER ON causes the cursor to respond only to the TAB key
and mouse clicks:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 493

S E T C U R R E N C Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM Main FROM 0,0 to 13,40;

PROPERTY ColorNormal "BG+/BG",;
Text "System Update"

DEFINE TEXT T1 OF Main AT 3,5 ;
PROPERTY TEXT "Enter Current Time (24 hour):",;
Width 30

DEFINE ENTRYFIELD F1 OF Main AT 3,28 ;
PROPERTY Value SPACE(8), Picture "99:99:99",;
Width 8

DEFINE TEXT T2 OF Main AT 5,5 ;
PROPERTY TEXT "Enter Current Date",;
Width 20

DEFINE ENTRYFIELD F2 OF Main AT 5,28 ;
PROPERTY Value {}, Picture "99/99/99",;
Width 8

DEFINE PUSHBUTTON Update OF Main AT 9,7;
PROPERTY TEXT "Update System Time and Date",;
Height 2, Width 26, OnClick Update

OPEN FORM Main

PROCEDURE Update
SET DATE TO DTOC(Form.F2.Value)
SET TIME TO Form.F1.Value
? "Update complete"
CLOSE FORM Main
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
READ, @...SAY...GET

SET CURRENCY Numeric data

SET CURRENCY left | right positions currency symbol(s) to the left or right of a
monetary value when you use the "$" PICTURE or FUNCTION symbol or the function
TRANSFORM(). SET CURRENCY TO determines the characters dBASE uses for the
currency symbol.

Syntax
SET CURRENCY left | right

SET CURRENCY TO
[<expC>]

LEFT Places currency symbol(s) to the left of currency numbers.

RIGHT Places currency symbol(s) to the right of currency numbers.

494 L a n g u a g e R e f e r e n c e

S E T C U R S O R

<expC> The characters that appear as a currency symbol. Although dBASE imposes no
limit to the length of <expC>, it recognizes only the first nine characters. You can't
include numbers in <expC>.

Default
The defaults for SET CURRENCY are set by the International option of the Windows
Control Panel. You can change the defaults interactively by using the SET command, or
by specifying parameters directly in DBASEWIN.INI.

• To change the default location of the currency symbol, set the CURRENCY
parameter to LEFT or RIGHT in the [OnOffCommandSettings] section in
DBASEWIN.INI.

• To change the default characters that appear as a currency symbol, set the
CURRENCY parameter in the [CommandSettings] section in DBASEWIN.INI.

Description
Use SET CURRENCY left | right to specify the position of currency symbol(s) in
monetary numeric values. Use SET CURRENCY TO to establish a currency symbol
other than the default.

When SET CURRENCY is LEFT, dBASE displays only as many currency symbols as fit,
together with the digits to the left of any decimal point, within ten character spaces.

SET CURRENCY TO without the <expC> option resets the currency symbol to the
default set with the International option of the Windows Control Panel.

Example
An example of SET CURRENCY LEFT | RIGHT is shown in the example for INT().

Portability
SET CURRENCY left | right is not supported in dBASE III PLUS. SET CURRENCY TO
<expC > is not supported in dBASE III PLUS or dBASE IV.

See Also
SET POINT, SET SEPARATOR, TRANSFORM()

SET CURSOR Keyboard and mouse events

Determines whether the cursor is visible or hidden.

Syntax
SET CURSOR ON | off

Default
The default for SET CURSOR is ON. To change the default, set the CURSOR parameter
in DBASEWIN.INI.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 495

S E T D A T A B A S E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Description
Use SET CURSOR to control whether a cursor appears on the screen. When SET
CURSOR is OFF, the cursor is hidden. Issue SET CURSOR ON to redisplay the cursor.

Example
The following program ensures that the cursor is on during the program and resets the
cursor when leaving:

OldCursor=SET("CURSOR") && save current setting
SET CURSOR ON && set cursor on
* ...
SET CURSOR &OldCursor && reset cursor

Portability
Not supported in dBASE III PLUS.

SET DATABASE Table basics

Sets the default database from which tables are accessed.

Syntax
SET DATABASE TO [<database name>]

<database name> Specifies the name of the database you want to make the current
database.

Description
SET DATABASE sets the current database, which defines the default location for tables
accessed by dBASE commands. Using this command, you can select from any databases
previously opened with the OPEN DATABASE command. Databases are defined using
the BDE Configuration Utility. (For more information on using this program, see Getting
Started.)

When you issue the SET DATABASE TO command without a database, Visual dBASE
restores operation to accessing tables in the current directory (or in the directory
specified by SET PATH).

Example
See OPEN DATABASE and DATABASE() for examples of using SET DATABASE.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLOSE..., DATABASE(), OPEN DATABASE, SET DBTYPE

496 L a n g u a g e R e f e r e n c e

S E T D A T E

SET DATE Date and time data

Specifies the format dBASE uses for the display and entry of dates.

Syntax
SET DATE [TO]
AMERICAN | ANSI | BRITISH | FRENCH | GERMAN | ITALIAN | JAPAN | USA | MDY | DMY | YMD

TO Include for readability only; TO has no affect on the operation of the command.

AMERICAN | ANSI | BRITISH | FRENCH | GERMAN | ITALIAN | JAPAN | USA | MDY | DMY | YMD The
options correspond to the following formats:

Default
The default for SET DATE is set by the International option of the Windows Control
Panel. To change the default, set the DATE parameter in DBASEWIN.INI. To do so,
either use the SET command to specify the setting interactively, or enter the DATE
parameter directly in DBASEWIN.INI.

Description
SET DATE determines how dBASE displays fields and memory variables of date type. If
SET CENTURY is ON, dBASE displays all formats with a 4-digit year.

SET DATE overrides any prior SET MARK setting. However, you can use SET MARK
after SET DATE to change the date separator character.

Example
The following examples use SET DATE and SET CENTURY to control the display of
date data.

date = {04/01/94} && or date = {4/1/94}
SET CENTURY OFF
SET DATE AMERICAN
? date && Returns 04/01/94
SET CENTURY ON

Option Format

AMERICAN MM/DD/YY
ANSI YY.MM.DD
BRITISH DD/MM/YY
FRENCH DD/MM/YY
GERMAN DD.MM.YY
ITALIAN DD-MM-YY
JAPAN YY/MM/DD
USA MM-DD-YY
MDY MM/DD/YY
DMY DD/MM/YY

YMD YY/MM/DD

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 497

S E T D A T E T O+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

? date && Returns 04/01/1994
SET DATE JAPAN
? date && Returns 1994/04/01
SET DATE GERMAN
? date && Returns 01.04.1994
SET DATE BRITISH
? date && Returns 01/04/1994
SET DATE ITALIAN
? date && Returns 01-04-1994
SET DATE FRENCH
? date && Returns 01/04/1994
SET DATE USA
? date && Returns 04-01-1994

Portability
The format options JAPAN, USA, MDY, DMY, and YMD aren't supported in
dBASE III PLUS.

See Also
DATE(), DMY(), MDY(), SET CENTURY, SET DATE TO, SET MARK

SET DATE TO Date and time data

Sets the system date.

Syntax
SET DATE TO <expC>

<expC> The character expression, in the current date format, to set as the current system
date.

Default
The default for the value of the system date is set by the Date/Time option of the
Windows Control Panel.

Description
Use SET DATE TO to reset the date on your system clock. Subsequent values of DATE()
and the date stamp of files you save reflect the new date.

Enter <expC> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expC> matches the date format
in use when your program runs.

The date must be in the range from January 1, 1980, to December 31, 2099. Because
dBASE assumes 2-digit years refer to twentieth-century dates, you must type all 4 digits
for the year of dates beyond the twentieth century.

498 L a n g u a g e R e f e r e n c e

S E T D A T E T O

Example
The following example uses SET DATE TO and SET TIME TO to update system time
after getting input from the user:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM Main FROM 0,0 to 13,40;

PROPERTY ColorNormal "BG+/BG",;
Text "System Update"

DEFINE TEXT T1 OF Main AT 3,5 ;
PROPERTY TEXT "Enter Current Time (24 hour):", Width 30

DEFINE ENTRYFIELD F1 OF Main AT 3,28 ;
PROPERTY Value SPACE(8), Picture "99:99:99", Width 8

DEFINE TEXT T2 OF Main AT 5,5 ;
PROPERTY TEXT "Enter Current Date", Width 20

DEFINE ENTRYFIELD F2 OF Main AT 5,28 ;
PROPERTY Value {}, Picture "99/99/99", Width 8

DEFINE PUSHBUTTON Update OF Main AT 9,7;
PROPERTY TEXT "Update System Time and Date",;

Height 2, Width 26, OnClick Update
OPEN FORM Main

PROCEDURE Update
SET DATE TO DTOC(Form.F2.Value)
SET TIME TO Form.F1.Value
? "Update complete"
CLOSE FORM Main
RETURN

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
DATE(), SET CENTURY, SET DATE, SET TIME

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 499

S E T D B T Y P E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET DBTYPE Table basics

Sets the default table type to either Paradox or dBASE.

Syntax
SET DBTYPE TO [PARADOX | DBASE]

PARADOX | DBASE Sets the default table type to a Paradox or dBASE table.

Default
The default for SET DBTYPE TO is DBASE. To change the default, update the DBTYPE
setting in DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the DBTYPE parameter directly in DBASEWIN.INI.

Description
SET DBTYPE sets the default type of table used by commands that open or create a
table. You can override this selection by specifying a specific extension, that is, .DBF for
a dBASE table or .DB for a Paradox table.

SET DBTYPE TO specified without a DBASE or PARADOX argument returns DBTYPE
to its default (dBASE).

Example
The following example uses SET DBTYPE to set the environment for a relation between
two .DBF files. Selected fields are copied to a Paradox table. SET DBTYPE then sets the
table type environmental variable to Paradox, and the newly created table is used and
browsed. SET DBTYPE finally sets the environment back to the default of DBASE:

CLOSE DATABASES
SET SAFETY OFF
SET DBTYPE TO DBASE
USE Company ORDER Compcode IN SELECT()
USE Contact IN SELECT()
SELECT Contact
SET RELATION TO CompCode INTO Company
SELECT Contact
COPY TO CntctLst TYPE PARADOX;

FIELDS Company->Company, Contact->CompCode,;
Contact->Contact, Company->Street1, Company->Street2, ;
Company->City, Company->State_Prov, Company->Zip_P_Code

CLOSE DATABASES
SET DBTYPE TO PARADOX
USE CntctLst
BROWSE
CLOSE DATABASES
SET DBTYPE TO

Portability
Not supported in dBASE IV or dBASE III PLUS.

500 L a n g u a g e R e f e r e n c e

S E T D E C I M A L S

See Also
CLOSE..., COPY TABLE, CREATE, DATABASE(), DELETE TABLE, MODIFY
STRUCTURE, OPEN DATABASE, RENAME TABLE, SET DATABASE, USE

SET DECIMALS Numeric data

Determines the number of decimal places of numbers to display.

Syntax
SET DECIMALS TO
[<expN>]

<expN> The number of decimals places, from 0 to 18.

Default
The default for SET DECIMALS is 2. To change the default, set the DECIMALS
parameter in DBASEWIN.INI. To do so, either use the SET command to specify the
setting interactively, or enter the DECIMALS parameter directly in DBASEWIN.INI.

Description
Use SET DECIMALS to specify the number of decimal places of numbers you want
dBASE to display. SET DECIMALS affects the display of most mathematical calculations,
but not the way numbers are stored on disk or maintained internally.

SET DECIMALS TO without <expN> resets the number of decimal places back to the
default of 2.

Example
The following example uses SET DECIMALS to control how many decimal places are
displayed:

SET DECIMALS TO 2
? 2.22 * 3.3333 && Returns 7.40
SET DECIMALS TO 0
? 2.22 * 3.3333 && Returns 7
SET DECIMALS TO 7
? 2.22 * 3.3333 && Returns 7.3999260

Additional examples of using SET DECIMALS are included in the examples for INT()
and RANDOM().

See Also
INT(), RANDOM(), ROUND(), SET PRECISION, VAL()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 501

S E T D E F A U L T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET DEFAULT Disk and file utilities

Determines the default drive dBASE uses when searching for and storing files. SET
DEFAULT is supported primarily for backward compatibility with dBASE III PLUS. In
Visual dBASE, you can use SET DIRECTORY to specify a default drive and/or directory
in a single statement.

For more information about SET DEFAULT, see online Help.

SET DELETED Fields and records

Controls whether Visual dBASE processes records marked for deletion.

Syntax
SET DELETED ON | off

Default
The default for SET DELETED is ON. To change the default, update the DELETED
setting in DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the DELETED parameter directly in DBASEWIN.INI.

Description
Use SET DELETED to include or exclude records marked for deletion in a table. When
SET DELETED is OFF, all records appear in a table. When SET DELETED is ON, Visual
dBASE excludes records that have been marked for deletion from processing by
subsequent commands such as LOCATE and LIST. Records marked for deletion,
however, do remain in the table.

GO <expN>, INDEX, REINDEX, RECCOUNT() and any command executed with the
RECORD <expN> scope option aren't affected by SET DELETED. If, however, SET
DELETED is ON and the records are displayed, GO <expN> does not place the record
pointer on a record marked for deletion.

If two tables are related with SET RELATION, SET DELETED ON suppresses the
display of deleted records in the child table. The related record in the parent table still
appears, however, unless the parent record is also deleted.

Example
The following example uses SET DELETED to exclude records that are marked for
deletion from being copied to another table:

SET SAFETY OFF
USE Contact EXCLUSIVE IN SELECT()
INDEX ON CompCode TAG CompCode
USE Company IN SELECT()
SELECT Company
SET RELATION TO CompCode INTO Contact
DELETE FOR Company->State_Prov = "CA"
SET DELETED ON

502 L a n g u a g e R e f e r e n c e

S E T D E L I M I T E R S

COPY FIELDS Company->Company, Contact->Contact, ;
Company->Street1, Company->Street2, ;
Company->City, Company->State_Prov,;
Company->Zip_P_Code TO CntctLst TYPE PARADOX

SET DBTYPE TO PARADOX
USE CntctLst
BROWSE
CLOSE ALL
SET DBTYPE TO
SET SAFETY ON

Portability
In dBASE IV, the default for SET DELETED is OFF. In addition, regardless of the SET
DELETED setting, if you position the record pointer on a specific record with the GO
command, dBASE IV displays the record whether or not it is marked for deletion. Visual
dBASE does not display records marked for deletion when SET DELETED is ON.

See Also
DELETE, DELETED(), PACK, RECALL, SET(), SET FILTER, SET RELATION

SET DELIMITERS Input/Output

Controls whether specified delimiter characters mark the beginning and end of data-
entry fields. This command is supported primarily for compatibility with dBASE IV,
and has no effect in Visual dBASE forms.

For complete syntax information on SET DELIMITERS, see online Help.

SET DESIGN Environment

Determines whether CREATE and MODIFY commands can be executed.

Syntax
SET DESIGN ON | off

Default
The default for SET DESIGN is ON. To change the default, set the DESIGN parameter in
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the DESIGN parameter directly in DBASEWIN.INI.

Description
When SET DESIGN is ON, dBASE lets you use CREATE and MODIFY commands to
create and modify tables, forms, labels, reports, text, and queries. To prevent users of
your applications from creating and modifying these types of files, issue SET DESIGN
OFF in your programs.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 503

S E T D E V E L O P M E N T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

If you issue SET DESIGN ON or OFF in a subroutine, the setting is effective only during
execution of that subroutine.

Example
The default setting of SET DESIGN is usually ON. In this example the default setting in
dBASEWIN.INI is OFF so that a user cannot use CREATE and MODIFY:

* In dBASEWIN.INI
[OnOffCommandSettings]
design =OFF

Portability
Not supported in dBASE III PLUS.

See Also
CREATE, CREATE FORM, CREATE LABEL, CREATE REPORT, MODIFY
COMMAND, MODIFY FILE, MODIFY STRUCTURE

SET DEVELOPMENT Programs

Determines whether dBASE automatically compiles a program, procedure, or format
file when you change the file and then execute it or open it for execution.

Syntax
SET DEVELOPMENT ON | off

Default
The default for SET DEVELOPMENT is ON. To change the default, set the
DEVELOPMENT parameter in DBASEWIN.INI. To do so, either use the SET command
to specify the "Ensure Compilation" setting interactively, or enter the DEVELOPMENT
parameter directly in DBASEWIN.INI.

Description
When SET DEVELOPMENT is ON and you execute a program file with DO, or open a
procedure or format file, dBASE compares the time and date stamp of the source file
and the compiled file. If the source file has a later time and date stamp than the
compiled file, dBASE recompiles the file.

When SET DEVELOPMENT is ON and you change a source program, procedure, or
format file with MODIFY COMMAND, dBASE erases the corresponding compiled file.
When you then execute the program or open the procedure or format file, dBASE
recompiles it.

When SET DEVELOPMENT is OFF, dBASE doesn't compare time and date stamps, and
executes or opens existing compiled program, procedure, or format files. When you
modify a source file and then open or execute it, dBASE first looks for a compiled file in
memory and executes it if found. If no compiled file is in memory, dBASE looks for a

504 L a n g u a g e R e f e r e n c e

S E T D E V I C E

compiled disk file and executes it if found. If no compiled file is found, dBASE compiles
the file.

When you DO a program, open a procedure file with SET PROCEDURE, or open a
format file with SET FORMAT, dBASE always looks for, opens, and executes a
compiled file. Therefore, if dBASE can't find a compiled version of a source file when
you execute or open the source, dBASE compiles the file regardless of the
SET DEVELOPMENT setting.

During program development, when you're editing files often, you should turn
SET DEVELOPMENT ON. This ensures that you're always executing an up-to-date
compiled file.

Turn SET DEVELOPMENT OFF when you no longer plan to change any source code.
Turning SET DEVELOPMENT OFF speeds up program execution because dBASE
doesn't have to check time and date stamps. You might want to set the
DEVELOPMENT parameter to OFF in the DBASEWIN.INI file you distribute with your
compiled code.

Portability
Not supported in dBASE III PLUS.

See Also
CLEAR PROGRAM, COMPILE, DO, SET PROCEDURE

SET DEVICE Input/Output

Directs the output of @...SAY...GET commands, or non-streaming output, to the results
pane of the Command window or current dBASE IV window, the printer, or a file. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use SET PRINTER to direct streaming output to the printer or a file.

For complete syntax information on SET DEVICE, see online Help. For more
information on streaming output, see Chapter 24 in the Programmer's Guide.

SET DIRECTORY Disk and file utilities

Changes the current working drive or directory.

Syntax
SET DIRECTORY TO
[<path>]

<path> A character expression indicating the default path. To specify a root path, start
<path> with a backslash (\) or the root directory (as with C:\). If <path> doesn't begin
with \ or the root directory, dBASE begins the path with the current directory.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 505

S E T D I R E C T O R Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Default
The default working directory is the same as the directory returned by HOME(); that is,
the directory containing the dBASE program files. You can change the default in
Windows or in dBASE. In Windows, if you specify a Working Directory when you
create or modify the dBASE icon properties, dBASE uses that directory as its default.

You can also update the DIRECTORY setting in dBASEWIN.INI. To do so, either use the
SET command to specify the setting interactively, or enter the DIRECTORY parameter
directly in DBASEWIN.INI.

A directory in the DBASEWIN.INI file overrides any in the dBASE icons Working
Directory field.

Description
SET DIRECTORY lets you change the current working drive and directory. Use SET
DIRECTORY to change the current working directory to any valid drive and path. The
current directory appears in the Navigator window.

dBASE returns an error message if you try to SET DIRECTORY to a drive that doesn't
exist or isn't ready. If you're unsure whether a drive is valid and ready for use, issue
VALIDDRIVE() before using SET DIRECTORY.

SET DIRECTORY TO .. (two periods) changes the directory to the directory one level
above the current directory. SET DIRECTORY TO without the option <path> sets the
directory to the dBASE icons Working Directory, if there is one specified, or else to the
HOME() directory.

Another way to access files on different directories is with the command SET PATH.
You can specify one or more search paths, and dBASE uses these paths to locate files not
on the current directory. Use SET PATH when an application's files are in several
directories. You can also use SET DEFAULT to specify the drive on which dBASE
searches for and stores files.

If you change the drive with SET DIRECTORY, the default drive (SET DEFAULT) is also
set to the new drive.

SET DIRECTORY works like CD, except CD with no argument causes dBASE to display
the current drive and directory. See CD for details on path statements.

Example
The following example saves the current directory, then uses SET DIRECTORY to
change directories several times and examine the files in these subdirectories. Finally,
the example returns to the original directory:

* This example assumes that directories were created by:
* MD D:\Project
* MD D:\Project\Programs
* MD D:\Project\Data
* MD C:\Editor
*
Olddir=SET("DIRECTORY") && Original Directory
SET DIRECTORY TO D:\Project\Data
DIR && Displays DBFs

506 L a n g u a g e R e f e r e n c e

S E T D I S P L A Y

SET DIRECTORY TO D:\Project\Programs
DIR *.prg && Display the programs
SET DIRECTORY TO ..
* moves from D:\Project\Programs to D:\Project
DIR *.*
SET DIRECTORY TO C:\Editor && Change to C:\Editor
DIR *.doc
SET DIRECTORY TO &Olddir && Return to original directory

Portability
Not supported in dBASE III PLUS.

See Also
CD, HOME(), MKDIR, SET(), SET PATH, VALIDDRIVE()

SET DISPLAY Environment

Makes the results pane of the Command window correspond to the specified DOS
display mode. This command is supported primarily for compatibility with dBASE IV.
You don't need to issue this command for new applications running only in Windows.

For more information about SET DISPLAY, see online Help.

SET ECHO Error handling and debugging

Opens the dBASE Debugger. This command is supported primarily for compatibility
with dBASE IV. In Visual dBASE, use DEBUG to open the debugger.

For complete syntax information on SET ECHO, see online Help.

SET EDITOR Environment

Specifies the text editor to use when creating and editing programs and text files.

Syntax
SET EDITOR TO
[<expC>]

<expC> The expression you would enter at the DOS prompt or as the Windows
command line to start the editor, usually the name of the editor's executable file (.EXE)
or a Windows .PIF file. If <expC> doesn't include the file's full path name, dBASE looks
for the file in the current directory, then in the DOS path.

Default
The default for SET EDITOR is the Visual dBASE internal Text Editor. To specify a
different default editor, set the EDITOR parameter in DBASEWIN.INI. To do so, either

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 507

S E T E D I T O R+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

use the SET command to specify the setting interactively, or enter the EDITOR
parameter directly in DBASEWIN.INI.

Description
Use SET EDITOR to specify an editor other than the default dBASE Text Editor to use
when creating or editing text files. The file name you specify can be any text editor that
produces standard ASCII text files. The specified editor opens when you issue
CREATE/MODIFY FILE or CREATE/MODIFY COMMAND. If you issue SET
EDITOR TO without a file name for <expC>, dBASE returns to the default editor.

You can use SET EDITOR to specify a .PIF file, which is a Windows file that controls the
Windows environment for a DOS application, or a Windows .EXE file. Start the DOS
editor by running the .PIF file rather than the .EXE. When you issue commands that run
in a DOS window, dBASE loads COMMAND.COM using DBASEWIN.PIF in the
_dbwinhome directory. You can use the Windows PIF Editor to customize the settings
in DBASEWIN.PIF. For more information about .PIF files, see your Windows
documentation. If there is not enough memory available to access an external editor,
dBASE returns an "Unable to execute DOS" error message.

If the text editor you specify is already in use when you open a memo or file for editing,
a second instance of the editor starts.

Example
The following example changes the default editor to Brief, to Write, the Windows editor
and back to the dBASE editor:

SET EDITOR TO "c:\brief\b"
* now c:\brief does not need to be in the path statements
* MODIFY COMMAND now accesses Brief.
MODIFY COMMAND TEMP.PRG
SET EDITOR TO
MODIFY COMMAND TEMP
* Reverts to dBASE editor

You might not have sufficient RAM to access an external editor in which case dBASE
gives an "Unable to execute DOS" error message.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
_dbwinhome, MEMORY(), MODIFY COMMAND, MODIFY FILE

508 L a n g u a g e R e f e r e n c e

S E T E N C R Y P T I O N

SET ENCRYPTION Security

Establishes whether a newly created dBASE table is encrypted if PROTECT is used.

Syntax
SET ENCRYPTION ON | off

Default
The default for SET ENCRYPTION is ON.

Description
This command determines whether copied dBASE tables (that is, tables created through
the COPY, JOIN, and TOTAL commands) are created as encrypted tables. An encrypted
table contains data encrypted into another form to hide the contents of the original table.
An encrypted table can only be read after the encryption has been deciphered or copied
to another table in decrypted form.

To access an encrypted table, you must enter a valid user name, group name, and
password after the login screen prompts. Your authorization and access level determine
whether you can or cannot copy an encrypted table. After you access the table, SET
ENCRYPTION OFF to copy the table to a decrypted form. You need to do this if you
wish to use EXPORT, COPY STRUCTURE EXTENDED, MODIFY STRUCTURE, or
options of the COPY TO command.

Note Encryption works only with dBASE (.DBF) tables. Encryption works only with
PROTECT. If you do not enter dBASE or access the table through the log-in screen, you
will not be able to use encrypted tables.

All encrypted tables used concurrently in an application must have the same group
name.

Encrypted tables cannot be JOINed with unencrypted tables. Make both tables either
encrypted or unencrypted before JOINing them.

You can encrypt any newly created table by assigning the table an access level through
PROTECT.

See also
COPY TO, PROTECT, SET()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 509

S E T E R R O R+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET ERROR Error handling and debugging

Specifies one character expression to precede error messages and another one to follow
them.

Syntax
SET ERROR TO
[<preceding expC> [, <following expC>]]

<preceding expC> An expression of up to 33 characters to precede error messages. dBASE
ignores any characters after 33.

<following expC> An expression of up to 33 characters to follow error messages. dBASE
ignores any characters after 33. If you want to specify a value for <following expC>, you
must also specify a value or empty string ("") for <preceding expC>.

Default
The default for the message that precedes error messages is "Error: ". The default for the
message that follows error messages is an empty string. To change the default, set the
ERROR parameter in DBASEWIN.INI, using the following format:

ERROR = <preceding expC> [, <following expC>]

Description
Use SET ERROR to customize the beginnings and endings of run-time error messages.
SET ERROR TO without an argument resets the beginnings and endings to the default
values.

SET ERROR is similar to ON ERROR; both can be used to customize error messages.
SET ERROR, however, can only specify expressions to precede and follow a standard
dBASE error message, while ON ERROR can specify the message itself. Also unlike ON
ERROR, SET ERROR can't call a procedure that carries out a series of commands.

Example
Use SET ERROR to customize error messages.

SET ERROR TO "Oops! - ", " - Please fix this."
? "a" = 1 && generate a runtime error
SET ERROR TO

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
ERROR(), MESSAGE(), ON ERROR

510 L a n g u a g e R e f e r e n c e

S E T E S C A P E

SET ESCAPE Keyboard and Mouse Events

Specifies whether pressing Esc interrupts program execution.

Syntax
SET ESCAPE ON | off

Default
The default for SET ESCAPE is ON. To change the default, set the ESCAPE parameter in
DBASEWIN.INI.

Description
When SET ESCAPE is ON, pressing Esc interrupts program execution. Use SET
ESCAPE OFF in a program to prevent unexpected user interruptions and command file
termination during the execution of commands such as INDEX, PACK, and COPY.

Note Use SET ESCAPE OFF only in tested programs. If SET ESCAPE is OFF and you have not
used ON KEY or to designate another key that interrupts programs, you can interrupt
program execution only by rebooting your computer. Rebooting your computer to
interrupt program execution, in turn, can cause data loss.

Regardless of whether SET ESCAPE is ON or OFF, pressing Esc always interrupts the
processing of commands that pause for input from the keyboard, including ACCEPT,
BROWSE, EDIT, INPUT, and READ.

Example
In the following example there is a bug in the subroutine WontWork. The instructions
and the loop test do not correspond. With SET ESCAPE ON, you can press the Escape
key to interrupt the program You can then choose SUSPEND to examine the variable
MORE or to follow the program through the loop:

SET ESCAPE ON
DO WontWork

PROCEDURE WontWork
More = ""
DO WHILE More <> "X" && should be Upper(More)<>"X"

? "Beginning the loop"
* ...
WAIT "Enter E to exit the loop" TO More

ENDDO

See Also
CLEAR TYPEAHEAD, INKEY(), ON ERROR, ON ESCAPE, ON KEY, READKEY(),
SET KEY

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 511

S E T E X A C T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET EXACT String data

Establishes the rules dBASE uses to determine whether two character strings are equal.

Syntax
SET EXACT on | OFF

Default
The default for SET EXACT is OFF. To change the default, set the EXACT parameter in
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the EXACT parameter directly in DBASEWIN.INI.

Description
When comparing two strings, dBASE compares the first character of the string on the
right of the equal sign with the first character of the string on the left, then the second
character of the right string to the second of the left string, and so on until two characters
don't match or all characters of the right string have been examined.

If there are more characters in the string on the right, dBASE always returns .F. when the
strings are compared. Therefore, if you know one string is longer than the other, put the
longer string on the left side of the comparison operator.

When SET EXACT is ON, dBASE recognizes two character strings as equal when they
are identical. When SET EXACT is OFF, dBASE recognizes two character strings as
equal if all the characters in the string to the right of the comparison operator (=) match
the beginning characters in the string to the left.

For example, ? "abc"="abcdef" returns .F. whether SET EXACT is ON or OFF, because all
the characters in the string on the right do not match the beginning characters in the
string on the left. (There are more characters on the right than on the left.)

When SET EXACT is OFF, ? "abcdef"="abc" returns .T. because the characters in the
string on the right do match the beginning characters in the string on the left. When SET
EXACT is ON, ? "abcdef"="abc" returns .F., because the strings are not identical.

When SET EXACT is OFF and the right string is an empty string (""), dBASE returns .T.
when any string is compared to the empty string. When SET EXACT is ON and the right
string is an empty string, dBASE returns .T. only when another empty string is
compared to it.

To force an exact comparison whether SET EXACT is ON or OFF, use == instead of =, as
shown in the following example.

SET EXACT OFF
? "abcd" = "abc" && returns .T.
? "abcd" == "abc" && returns .F.

In language drivers that have primary and secondary weights for characters (not U.S.
language drivers but most others), dBASE compares characters by their primary
weights when SET EXACT is OFF and by their secondary weights when SET EXACT is
ON. For example, when SET EXACT is OFF, and the current language driver is German,
"drücker" and "drucker" are equal.

512 L a n g u a g e R e f e r e n c e

S E T E X A C T

SET EXACT affects all commands and functions that involve a string comparison,
including FIND, SEEK, SEEK(), LOCATE, LOOKUP(), and any command executed
with the FOR or WHILE option. For FIND and SEEK, dBASE treats the character string
you specify as the right string of the comparison and the index file's key field as the left
string.

Example
The following example uses SET EXACT to control how close to check for a match
between two strings:

SET EXACT ON
? "Will" = "William" && Returns .F.
? "William" = "Will" && Returns .F.
SET EXACT OFF
? "Will" = "William" && Returns .F.
? "William" = "Will" && Returns .T.

The second example uses SET EXACT to demonstrate the difference between locating a
memory variable with the SEEK command when EXACT is set OFF or ON:

SET TALK OFF
SET SAFETY OFF
SET EXACT OFF
USE Clients EXCLUSIVE
INDEX ON UPPER(Contact) TAG Contact
Lookup="Martin"
SEEK UPPER(Lookup)
IF FOUND()

DISPLAY FIELDS Company,Contact
ELSE

? "With EXACT SET OFF, the record was not found"
ENDIF

SET EXACT ON
SEEK UPPER(Lookup)
IF FOUND()

DISPLAY FIELDS Company,Contact
ELSE

? "With EXACT SET ON, the record was not found"
ENDIF
SET TALK ON
SET SAFETY ON
CLOSE DATABASES

Portability
In dBASE IV, constants are evaluated during compilation and not again during
program execution. ? "abc"="a" returns .T. if SET EXACT is OFF when the program is
compiled (and wasn't explicitly set in the program). If you later SET EXACT to ON in
the Command window, ? "abc"="a" still returns .T. in the program.

In Visual dBASE, constants are evaluated during program execution; ? "abc"="a" returns
.T. or .F. depending on the setting of SET EXACT when the program is run.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 513

S E T E X C L U S I V E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See Also
CHARSET(), FIND, LDRIVER(), LOCATE, LOOKUP(), SEEK, SEEK(),
SET LDCHECK

SET EXCLUSIVE Shared data

Controls whether dBASE opens tables and their associated index and memo files in
exclusive or shared mode.

Syntax
SET EXCLUSIVE on | OFF

Default
The default for SET EXCLUSIVE is OFF. To change the default, set the EXCLUSIVE
parameter in DBASEWIN.INI. To do so, either use the SET command to specify the
setting interactively, or enter the EXCLUSIVE parameter directly in DBASEWIN.INI.

Description
When you issue SET EXCLUSIVE ON, subsequent tables you open—and their
associated indexes and memos—are in exclusive mode, unless you open them with
USE...SHARED. When you open a table in exclusive mode, other users can't open, view,
or change the file or any of its associated index and memo files. If you try to open a table
that another user has opened in exclusive mode, dBASE displays an error message.

SET EXCLUSIVE OFF causes subsequent tables you open—and their associated indexes
and memos—to be in shared mode, unless you open them with USE...EXCLUSIVE. If a
table in shared mode is in a shared network directory, other users on the network with
access to the directory can open, view, and change the file and any of its associated
index and memo files.

If you use SET INDEX and the table is open in exclusive mode, dBASE opens the index
in exclusive mode. If the table is open in shared mode by way of an overriding
USE...SHARED, dBASE opens the index in the mode specified by USE.

An index created with INDEX is opened in exclusive mode, regardless of whether the
table is opened in shared or exclusive mode and regardless of the SET EXCLUSIVE
setting. After creating an index, you can open the index in shared mode with
USE...INDEX...SHARED or by issuing SET EXCLUSIVE OFF followed by SET INDEX
TO.

The following commands require the exclusive use of a table with either
SET EXCLUSIVE ON or USE...EXCLUSIVE:

• CONVERT
• COPY INDEXES
• DELETE TAG
• INDEX...TAG
• INSERT
• INSERT AUTOMEM

514 L a n g u a g e R e f e r e n c e

S E T F I E L D S

• INSERT BLANK
• MODIFY STRUCTURE
• PACK
• REINDEX
• ZAP

Example
The following example uses the Company table with SET EXCLUSIVE ON so that a
new index can be created. Once the index is created Company is reopened with
exclusive off:

CLOSE ALL
SET EXCLUSIVE ON
USE Company
INDEX ON CompCode+Company TAG CompComp
SET EXCLUSIVE OFF
* New USE commands will not be exclusive,
* but Company is currently exclusive
USE Company ORDER CompComp
* This releases the exclusive lock on Company

Portability
Not supported in dBASE III PLUS.

See Also
FLOCK(), INDEX, RLOCK(), SET INDEX, SET LOCK, USE

SET FIELDS Fields and records

Defines a group of fields to access in a table.

Syntax
SET FIELDS TO
[<field list> | ALL [LIKE <skeleton 1>] [EXCEPT <skeleton 2>]]

SET FIELDS on | OFF

<field list> | ALL [LIKE <skeleton 1> | EXCEPT <skeleton 2>] The fields list accessible in
subsequent table operations. The fields list may include fields from tables open in all
work areas and may also include read-only calculated fields. The following table
provides a description of SET FIELDS TO options:

Option Description

ALL Makes all fields accessible in all work areas
LIKE <skeleton 1> Makes all fields whose names match <skeleton 1> accessible

in all work areas

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 515

S E T F I E L D S+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Default
The default for SET FIELDS is OFF; however, specifying a fields list with SET FIELDS
TO automatically sets FIELDS ON.

Description
The SET FIELDS command defines a list of fields that can be accessed in one or more
tables. You can specify fields in other work areas by specifying fields prefixed by an
alias name. The list of fields specified with the SET FIELDS command is not active
unless you set FIELDS ON. When SET FIELDS is OFF, all fields in a table are accessible.

SET FIELDS is automatically set ON when you define a fields list with SET FIELDS TO
<field list>. You might, however, want to use SET FIELDS OFF to have all fields available
in certain circumstances and then switch back later to the restricted fields list you have
specified with the SET FIELDS TO command. If you SET FIELDS ON without using the
SET FIELDS TO <field list> command, no fields are accessible.

SET FIELDS TO with no parameters clears the fields list, makes all fields accessible, and
sets FIELDS OFF. (The CLEAR FIELDS command also clears the fields list.)

SET FIELDS affects the following commands, allowing access to only the fields specified
in <field list> when SET FIELDS is set ON:

SET FIELDS TO doesn't affect the following commands:

EXCEPT <skeleton 2> Makes all fields except those whose names match
<skeleton 2> accessible in all work areas

LIKE <skeleton 1> EXCEPT <skeleton 2> Makes all fields whose names are like <skeleton 1> except
those whose names match <skeleton 2> accessible in all
work areas

Option Description

APPEND COPY TO ARRAY

AVERAGE DISPLAY

BLANK EDIT

BROWSE JOIN

CALCULATE LIST

CHANGE SUM

CREATE| MODIFY VIEW SET CARRY

COPY TOTAL

COPY STRUCTURE DISPLAY

INDEX SET FILTER

LOCATE SET RELATION

516 L a n g u a g e R e f e r e n c e

S E T F I L T E R

The fields list specified with SET FIELDS TO can include both table field names and
calculated fields. The /R option provides a setting to specify read-only access to table
fields, for example:

Salary/R, Hours/R

To specify a calculated field, you can specify any valid dBASE expression. For example,

Gross_pay = Salary * Hours

The skeleton uses the wildcard character * for any number of characters and ? for one
character. ALL LIKE selects fields that match the skeleton. ALL EXCEPT selects the
fields that do not match the skeleton. SET FIELDS TO ALL includes all fields of the
current table.

To add to a previously specified fields list, use SET FIELDS TO again, with additional
fields. For example, if you specify SET FIELDS TO Field1, and then SET FIELDS TO
Field2, both Field1 and Field2 are in the fields list.

Example
The following example uses SET FIELDS ON or OFF to alternate between a fields list
declared with SET FIELDS TO and a table in the current work area:

SELECT 1
USE Contact Order CompCode
SELECT 2
USE Company
SET RELATION TO CompCode INTO Contact
SET FIELDS TO Contact->CompCode, Company->Company, ;

Contact->Contact, Company->Phone
SET FIELDS OFF
BROWSE && Company displayed in Browse
SET FIELDS ON
BROWSE && Fields list displayed
CLEAR FIELDS

See Also
CLEAR FIELDS, SET(), SET CARRY, SET RELATION

SET FILTER Table organization

Sets a condition to limit records processed by dBASE commands.

Syntax
SET FILTER TO
[<condition>] | [FILE <filename> | ? | <filename skeleton>]

<condition> The condition that records must meet to be processed by subsequent dBASE
commands.

FILE <filename>] | ? | <filename skeleton> The query file that specifies the filter condition. SET
FILTER TO FILE ? and SET FILTER TO FILE <filename skeleton> display a dialog box, in

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 517

S E T F I L T E R+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

which you can select a file. If you specify a file without including its path, Visual dBASE
looks for the file in the current directory, then in the path you specify with SET PATH. If
you specify a file without including its extension, Visual dBASE assumes a .QRY
extension.

Description
Use SET FILTER to view or work with only a portion of the records of a table. SET
FILTER TO with no condition or file specified removes the current filter condition,
causing Visual dBASE to process all records in the table. You can set up a separate filter
condition for each table you open in a different work area.

SET FILTER TO <condition> sets up a filter based on a valid dBASE expression. The
condition can filter records in the current table based on an expression including all data
types except memo. For example, you can specify SET FILTER TO Lastname = "Jones" to
filter records in a character field, SET FILTER TO Departure > {01/01/94} to filter
records based on a date field. You can also combine conditions, for example, specifying
SET FILTER TO Lastname = "Jones" .AND. Departure > {01/01/94}.

SET FILTER TO FILE <filename> obtains a filter condition from a dBASE III PLUS query
(.QRY) file. You cannot use a dBASE IV or Visual dBASE .QBE file with this command.

Filters specified with the SET FILTER command aren't activated until after the record
pointer is moved within a table (for example, using the GO TOP or SKIP command). All
commands that require a table in use, such as AVERAGE, BROWSE, EDIT, and
REPORT, can use conditions specified by SET FILTER.

A filter condition doesn't affect commands that identify records directly by number,
such as GOTO <expN>. GOTO <expN> can move the pointer to a record that doesn't
meet the filter condition; however, you cannot display that record (for example, using
the EDIT command).

Example
The following example uses SET FILTER to restrict the following BROWSE command to
Clients in California:

USE Clients
SET FILTER TO State_Prov = "CA"
BROWSE FIELDS Company, Contact, City, ;

State_Prov, Cuisine
SET FILTER TO && release the filter

The following example uses SET FILTER to select from a RELATED table:

CLOSE DATA
USE Company EXCLUSIVE
INDEX ON Compcode TAG Compcode
SELE 2
USE Contact EXCLUSIVE
INDEX ON Contact TAG Compcode
SET RELATION TO Compcode INTO Company
SET FILTER TO Company->State_Prov="CA"
DISPLAY ALL Contact, Compcode,;

Company->Company, Company->State_prov

518 L a n g u a g e R e f e r e n c e

S E T F O R M A T

Only contacts of companies in California are displayed.

See Also
CREATE QUERY, MODIFY QUERY, SET(), SET DELETED, SET KEY

SET FORMAT Input/Output

Opens the specified format file in the selected work area, closing any currently open
format file. Also compiles the format file if it hasn't already been compiled. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use DEFINE to create forms, which are used instead of dBASE IV windows or format
files.

For complete syntax information on SET FORMAT, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

SET FULLPATH Environment

Specifies whether functions that return file names return the full path with the file name.

Syntax
SET FULLPATH on | OFF

Default
The default for SET FULLPATH is OFF. To change the default, set the FULLPATH
parameter in DBASEWIN.INI. To do so, either use the SET command to specify the
setting interactively, or enter the FULLPATH parameter directly in DBASEWIN.INI.

Description
Use SET FULLPATH ON when you need to have functions such as CATALOG(),
DBF(), MDX(), and NDX() return a file name with its full path. For example, if you are
using tables in SQL databases, or tables located in different directories, issue SET
FULLPATH ON to ensure that DBF() returns the full file name for use in subsequent
commands.

Example
The following example obtains the name of the current table using both FULLPATH
ON and FULLPATH OFF:

USE COMPANY
SET FULLPATH ON
? DBF()
* FULLPATH ON returns G:\VISUALDB\EXAMPLES\COMPANY.DBF
SET FULLPATH OFF
? DBF()
* FULLPATH OFF returns G:COMPANY.DBF

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 519

S E T F U N C T I O N+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Portability
Not supported in dBASE III PLUS. If you want file names returned in the same format
as they are in dBASE III PLUS, issue SET FULLPATH OFF.

See Also
CATALOG(), DBF(), MDX(), NDX(), SET()

SET FUNCTION Keyboard and mouse events

Assigns a command or expression to a function key or to a combination of the Ctrl
(control) key or the Shift key and a function key.

Syntax
SET FUNCTION <key> TO <expC>

<key> A function key number, function key name, or character expression of a function
key name—for example, 3, F3, or "F3". Specify a character expression for <key> to assign
a key combination using the Ctrl or Shift key with a function key. Type "CTRL+" or
"SHIFT+" in uppercase or lowercase and then a function key name—for example,
"shift+F5" or "Ctrl+f3". For compatibility with dBASE IV, you can use a hyphen in place
of the plus sign. You can't combine Ctrl and Shift, such as "Ctrl+Shift+F3".

<expC> A dBASE command, function, user-defined function (UDF), or any character
string. Follow a command with a semicolon (;) to execute the command immediately
when you press <key>. You can execute more than one command by separating each
command in the list with a semicolon.

Default
The following function key settings are in effect when dBASE starts:

Description
Use SET FUNCTION to assign commands to a function key or a function key
combination with Ctrl or Shift. You can also use SET FUNCTION to assign any character
expression to a function key. When you're in the Command window and press the key
or key combination, <expC> appears at the cursor. If <expC> ends with a semicolon,
dBASE executes it immediately. If <expC> doesn't end with a semicolon (;), you can
edit it.

Key Command Key Command

F1 HELP; F7 DISPLAY MEMORY;

F3 LIST; F8 DISPLAY;
F4 DIR; F9 APPEND;
F5 DISPLAY STRUCTURE; F10 Activates the menu
F6 DISPLAY STATUS;

520 L a n g u a g e R e f e r e n c e

S E T H E A D I N G S

Note F2 is reserved for toggling between views while in the Browse window. You can
program it, but it won't be recognized when in the Browse window. You can't program
F10, or any combination using F11 or F12.

In forms, expressions assigned with SET FUNCTION are recognized only when you are
in Entry Fields.

For more information on programming function keys, as well as on programming other
keys, see ON KEY.

Example
The following example issues the SET command when the user presses a function key.
This activates the PROPERTIES|ENVIRONMENT menu which lets the user change
any SET command defaults:

SET FUNCTION F9 TO "SET;"

SET FUNCTION can also be used to issue multiple commands as follows:

SET FUNCTION F8 TO "CLOSE ALL;CLEAR;"+;
"USE Clients;BROWSE;"

See Also
DISPLAY STATUS, FKLABEL(), FKMAX(), HELP, INKEY(), ON KEY

SET HEADINGS Input/Output

Controls the display of field names in the output of AVERAGE, DISPLAY, LIST,
and SUM.

Syntax
SET HEADINGS ON | off

Default
The default for SET HEADINGS is ON. To change the default, set the HEADINGS
parameter in DBASEWIN.INI. To do so, either use the SET command to specify the
setting interactively, or enter the HEADINGS parameter directly in DBASEWIN.INI.

Description
When SET HEADINGS is ON, the output of AVERAGE, DISPLAY, LIST, and SUM
includes a heading identifying the fields of the table(s). Issue SET HEADINGS OFF
before issuing AVERAGE, DISPLAY, LIST, or SUM to view output data without field-
name headings.

Example
The following example uses DISPLAY with SET HEADING ON to show the field
names and SET HEADING OFF to hide the field names:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 521

S E T H E L P+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

USE Clients
SET HEADING OFF
? "Heading off"
DISPLAY Client_id, Company
SET HEADING ON
? "Heading on"
DISPLAY Client_id, Company
*
* Heading off
* 1 A8513 A Beck Pertamina
*
* Heading on
* Record# Client_id Company
* 1 A8513 A Beck Pertamina

Portability
In dBASE III PLUS, the command is SET HEADING (no final s).

In dBASE IV, SET HEADINGS also affects the results of the TYPE command,
determining whether the display of the typed file includes a heading specifying the file
name and date. In Visual dBASE, TYPE does not include this heading, regardless of the
SET HEADINGS setting.

See Also
AVERAGE, DISPLAY, LIST, SUM, TYPE

SET HELP Windows programming

Determines which Help file (.HLP) the dBASE Help system uses.

Syntax
SET HELP TO
[<help filename> | ? | <help filename skeleton>]

<help filename> | ? | <help filename skeleton> Identifies the Help file to activate. ? and
<filename skeleton> display a dialog box, from which you can select a file. If you specify a
file without including its extension, dBASE assumes .HLP.

Description
Use SET HELP TO to specify which Help file to use when the dBASE Help system is
activated.

The Help file is opened automatically when you start dBASE if you place the file in the
dBASE home directory.

SET HELP TO closes any open Help file before it opens a new file.

Example
To display a dialogue box to select from available Help files, issue the following
command:

522 L a n g u a g e R e f e r e n c e

S E T I B L O C K

SET HELP TO ? && or optionally
SET HELP TO *.HLP

To set Help to your own tailored help file:

SET HELP TO MyHlp.HLP

To set the Help file back to the Visual dBASE default:

SET HELP TO \VISUALDB\BIN\DBASEWIN.HLP

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
HELP, HelpFile, HelpID, SET TOPIC

SET IBLOCK Table organization

Changes the default block size used for new .MDX files.

Syntax
SET IBLOCK TO <expN>

<expN> A number from 1 to 63 that sets the size of index blocks allocated to new .MDX
files. The default value is 1. (The actual size in bytes is the number you specify
multiplied by 512 bytes; however, the minimum size of a block is 1024 bytes.) To change
the default, update the IBLOCK setting in DBASEWIN.INI. To do so, either use the SET
command to specify the setting interactively, or enter the IBLOCK parameter directly in
DBASEWIN.INI.

Description
Use SET IBLOCK to change the size of blocks in which Visual dBASE stores .MDX files
on disk to improve the performance and efficiency of indexes. You can specify a block
size from 1024 bytes to approximately 32K. The IBLOCK setting overrides any previous
block size defined by the SET BLOCKSIZE command or specified in the
DBASEWIN.INI file. After the block size has been changed, new .MDX index files are
created with the new block size.

Multiple index (.MDX) files are composed of individual index blocks (or nodes). Nodes
contain the value of keys corresponding to individual records and provide the
information to locate the appropriate record for each key value. Since the IBLOCK
setting determines the size of nodes, the setting also determines the number of key
values that can fit into each node. When a single node can't contain all the key values in
an index, Visual dBASE creates one or more parent nodes. These intermediate nodes
also contain key values. Instead of pointing to record numbers, however, intermediate
nodes point to leaf nodes or other lower-level intermediate nodes. If you increase the size
of index blocks and create a new .MDX file, the new and larger leaf nodes contain more
key values.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 523

S E T I B L O C K+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Whether you can improve performance by storing key values in larger or smaller nodes
depends on several factors: the distribution of data, if tables are linked together, the
length of key values, the value of INDEXBYTES, and the type of operation requested.
Typically, every .MDX file contains more than one index tag. Finding the best setting for
a given .MDX file requires experimentation because the best size for one index tag might
not be the best size for another.

The following is a list of basic principles governing index performance.

• Since nodes might not be sequential, Visual dBASE reads only one node at a time
from the disk. Reading more than one node is usually inefficient, because typically
the second node is not the next node in the sequential list.

• Once a node is read into memory, Visual dBASE attempts to store it there for later
use. The amount of space devoted to caching the index nodes is determined by the
setting of INDEXBYTES.

• When users link several tables together, for example, with SET RELATION,
performance is better if all the relevant nodes for the tables are in memory
simultaneously. For example, if a large node for table B pushes out the previously
read node for table A, Visual dBASE must find and read the table A node again from
disk when the node for table A needs to be used again. If both nodes remain in
memory, performance can be improved.

• When tables have many identical key values, Visual dBASE might have to store them
in many nodes. In this situation, performance might be improved by increasing the
node size so that Visual dBASE reads fewer nodes from disk to load the same number
of key values into memory.

• Small node sizes can cause performance degradation. This occurs because as nodes
are read in and out, Visual dBASE attempts to cache them all. When the small nodes
are removed from memory by more recently read nodes, they leave unused spaces in
memory that are too small to contain larger nodes. Over time, memory can become
fragmented, resulting in slower performance.

Example
This example creates two .MDXs containing identical data but with different IBLOCK
settings and consequently, different file sizes:

CLOSE DATA
DELETE FILE Co1.mdx
DELETE FILE Co2.mdx
* remove any previous .mdx
* CREATE THE MDXs
USE Company EXCLUSIVE
SET IBLOCK TO 2
INDEX ON CompCode TAG CompCode OF Co1
INDEX ON Company TAG Company OF Co1
INDEX ON City TAG City OF Co1
SET IBLOCK TO 20
INDEX ON CompCode TAG CompCode OF Co2
INDEX ON Company TAG Company OF Co2
INDEX ON City TAG City OF Co2
DIR CO?.MDX

524 L a n g u a g e R e f e r e n c e

S E T I N D E X

Two .MDXs, Co1.MDX and Co2.MDX are created with different IBLOCK settings. CO1
and CO2 will have different file sizes because their block lengths are different.

Portability
Not supported in dBASE III PLUS.

See Also
COPY, COPY INDEXES, CREATE, MODIFY STRUCTURE, INDEX, REINDEX,
REPLACE, SET(), SET BLOCKSIZE, SET MBLOCK

SET INDEX Table organization

Opens index files for the current table. Not applicable for Paradox and SQL tables.

Syntax
SET INDEX TO
[<filename list> | ? | <filename skeleton>]
[ORDER [TAG]

 <filename 1> | <tag name> [OF
 <filename 2> | ? | <filename skeleton>]]

<filename list> | ? | <filename skeleton> Specifies the index files to open, including both single
and multiple indexes. SET INDEX TO ? and SET INDEX TO <filename skeleton> display
a dialog box, in which you select an index file. If you specify a file without including its
path, Visual dBASE looks for the file in the current directory, then in the path you
specify with SET PATH.

If you specify a file without including its extension, Visual dBASE assumes an .NDX
extension for single index files and an .MDX extension for multiple index files. If you
have an .NDX file and an .MDX file with the same name, to open the .NDX file, specify
the .NDX extension.

ORDER [TAG] <filename 1> | <tag name> Specifies a master index that can be an .NDX file or a
tag name contained within an .MDX index file.

OF <filename 2> | ? | <filename skeleton> Specifies a multiple index file containing <tag
name>. OF ? and OF <filename skeleton> display a dialog box, in which you select a
multiple index file. If you specify a file without including its path, Visual dBASE looks
for the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including its extension, Visual dBASE assumes a .MDX extension.

Description
Use SET INDEX to open the specified .NDX and .MDX files in the current work area that
will be updated when changes are made to the associated table. Including an index file
list when issuing USE...INDEX is equivalent to following the USE command with the
SET INDEX command.

If the first index opened with SET INDEX is an .NDX file, that index becomes the master
index unless you specify another master index with the ORDER option or the SET

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 525

S E T I N D E X+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

ORDER command. If the first index opened with SET INDEX is an .MDX file and you
don't specify the ORDER clause, no master index is defined, and records in the table
appear in record number or natural order. To specify a master index for the current
table, specify the ORDER option or use the SET ORDER command.

Before opening the indexes specified with the command, SET INDEX closes all open
index files except those index files with tag names listed in the production .MDX file, the
index file with the same name as the current table. Specifying SET INDEX TO without a
list of indexes closes all open .NDX and .MDX files in the current work area, except for
the production index file. You can also use the CLOSE INDEX command. All indexes,
including the production .MDX file, are closed when you close the table.

The order in which you specify indexes with the SET INDEX command isn't necessarily
the same as the order Visual dBASE uses. Open indexes for a specified work area are
listed in the following order:

1 Any single index files are in the order you list them in <filename list>.

2 Indexes in the production .MDX file are in the order you list them in the .MDX file.

3 Indexes in other .MDX files you specify with USE...INDEX or the SET INDEX
command are in the order you list them in the individual .MDX files.

The order of the open indexes remains the same until you specify another index order
with the USE...INDEX or SET INDEX commands, or you issue an INDEX command.
Use the order number as an argument with NDX(), TAG(), and KEY() to determine an
index file name, tag name, or key expression.

Example
The following example uses SET INDEX to open index tags and set the controlling
index:

SET SAFETY OFF && To avoid overwrite warning
USE Company EXCLUSIVE
INDEX ON Company TAG Company && TAG Company in Company.mdx
INDEX ON Compcode TAG Compcode
SET INDEX TO Company ORDER Company
BROWSE FIELDS Company, Compcode;

TITLE "Indexed by Company"

The following example uses SET INDEX to open .NDX index files and set the
controlling index:

USE Company EXCLUSIVE
INDEX ON Company TO Company && Company.ndx
INDEX ON Compcode TO Compcode && Compcode.ndx
SET INDEX TO Compcode.ndx, Company.ndx
* These are .NDX indexes, not .MDX tags
BROWSE FIELDS Compcode, Company;

TITLE "Indexed by Compcode"

See Also
CLOSE..., INDEX, KEY(), MDX(), NDX(), ORDER(), REINDEX, SET ORDER, TAG(),
TAGNO(), TAGCOUNT(), USE

526 L a n g u a g e R e f e r e n c e

S E T I N T E N S I T Y

SET INTENSITY Environment

Determines whether dBASE displays variable and field data during data-entry
operations in dBASE IV windows in reverse video (monochrome monitors) or in the
colors specified for enhanced text with the SET COLOR or SET COLOR OF command
(color monitors). SET INTENSITY is supported primarily for compatibility with
dBASE IV. To define colors for Windows objects, use the ColorNormal and
ColorHighlight properties.

For more information about SET INTENSITY, see online Help.

SET KEY Keyboard and mouse events

Assigns a program or a procedure to a specified key or key combination. (The dBASE IV
command SET KEY, which limits the records processed in a table to those whose key
field value falls within a range, is now called SET KEY TO.)

Syntax
SET KEY <expN> | <expC> TO
[<program name> | <procedure name>]

<expN> | <expC> The key you assign the program or procedure to. <expN> is the
INKEY() value of the key or key combination. <expC> is a function specified by F1
through F9, Shift+F1 through Shift+F10, or Ctrl+F1 through Ctrl+F10.

<program name> | <procedure name> The program or procedure you assign to the key or key
combination.

Description
Use SET KEY to assign a program or a procedure to a key or a key combination. When
the user presses the specified key or key combination, SET KEY causes dBASE to stop
execution of the current program and execute the specified program or procedure. The
original program resumes execution when the program or procedure that SET KEY
executes is completed.

SET KEY is identical in function to ON KEY LABEL; only the syntax differs. If you use
ON KEY LABEL and SET KEY to set the same key, dBASE executes the program or
procedure specified by the most recently issued command. For more information, see
ON KEY.

Example
The following example uses SET KEY to set a function key, an alt key, a control key and
an alpha key as procedure calls:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
SET KEY "F2" TO Open && Do Open
SET KEY "ALT-F3" TO Close && Do Close
SET KEY "CTRL-F4" TO New && Do New
SET KEY "x" TO Exit && Do Exit

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 527

S E T K E Y T O+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

KEYBOARD "x{F2}{ALT-F3}{ctrl-F4}"
* This will call each function in turn

* Warning: the letter X will call the Exit procedure and ;
* cannot be used for ordinary typing.
Now reset the keys:

SET KEY "F2" TO
SET KEY "ALT-F3" TO
SET KEY "CTRL-F4" TO
SET KEY "x" TO

PROCEDURE Open
? "In open procedure"
RETURN

PROCEDURE Close
? "In Close Procedure"
RETURN

PROCEDURE Exit
? "In Exit Procedure"
RETURN

PROCEDURE New
? "In New Procedure"
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS. However, ON KEY is supported in
both.

See Also
ON KEY, SET ESCAPE, SET FUNCTION, SET KEY TO

SET KEY TO Table organization

Limits the records processed in the current or specified table to those whose key field
value falls within a range.

Syntax
SET KEY TO
[<exp list 1> |

 RANGE <exp 2> [,] |
 , <exp 3> |
 <exp 2>, <exp 3>
 [LOW <exp list 2> [,]]
 [HIGH [,] <exp list 3>]

[EXCLUDE]
[IN <alias>]

528 L a n g u a g e R e f e r e n c e

S E T K E Y T O

<exp 1> | RANGE <exp2> [,] | ,<exp3> | <exp2>, <exp3> Specifies a condition that filters records.
For Paradox and SQL tables, you can specify values (separated by commas) that match
single or composite index key fields. The following table summarizes how SET KEY
filters records in the master index:

LOW <exp list 2> [,] Specifies that records whose index key values are less than the
specified low values are not included with qualified records.

HIGH [,] <exp list 2> Specifies that records whose index key values are greater than the
specified high values are not included with qualified records.

EXCLUDE When a range is included, specifies that records where index values match
either the high or low value of the range are not included with qualified records.

IN <alias> Specifies a work area. You can enter a work area number (1 through 225),
letter (A through J), or alias name. The work area letter or alias name must be enclosed
in quotes.

Description
The SET KEY TO command limits the records that Visual dBASE processes in the
current or specified table to those whose key field values fall within the specified range.
Unless you specify the EXCLUDE keyword, Visual dBASE also includes key field values
that match the high or low values of the specified range. SET KEY TO with no
arguments removes any range of key values previously established for the current table
with SET KEY.

The values specified in <exp 1>, <exp 2>, and <exp 3> must match the key expression of
the master index. For example, if the index key is UPPER(Name), specify uppercase
letters in the range expressions. In determining whether the specified range expressions
match key field expressions, SET KEY TO follows the rules established by SET EXACT.
The SET KEY TO range takes effect after you move the record pointer.

You cannot use SKIP or LOCATE to go to a record that falls outside the SET KEY range.
However, you can use GO to move the record pointer to a record that is outside the SET
KEY range. Also, commands such as REPLACE that process more than one record
operate only on records that are within the SET KEY range. No records are processed
when you specify a range that doesn't contain any records.

When you issue both SET KEY and SET FILTER for the same table, Visual dBASE
processes only records that are within the SET KEY index range and that also meet the
SET FILTER condition.

Example
The following example uses SET KEY four times to select records from the table:

Option Description

<exp list1> Searches for records whose index key values match <exp list 1>
RANGE <exp2> [,] Searches for records whose index values are greater than or equal to <exp 2>
RANGE, <exp3> Searches for records whose index values are less than or equal to <exp 3>
RANGE <exp2>, <exp3> Searches for records whose index values are greater than or equal to <exp 2>

and less than or equal to <exp3>

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 529

S E T L D C H E C K+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

USE Company EXCLUSIVE
INDEX ON State_Prov TAG State

SET KEY TO "CA"
LIST State_Prov
WAIT "only CA"

SET KEY TO RANGE ,"IL"
LIST State_Prov
WAIT "up to Illinois"

SET KEY TO RANGE "GA",
LIST State_Prov
WAIT "Georgia and beyond"

SET KEY TO RANGE "GA","IL"
LIST State_Prov
WAIT "From Georgia to Illinois only"

Portability
Not supported in dBASE III PLUS.

See Also
INDEX, KEY(), MDX(), NDX(), TAG(), SET FILTER

SET LDCHECK Environment

Enables or disables language driver ID checking.

Syntax
SET LDCHECK ON | off

Default
The default for SET LDCHECK is ON. To change the default, set the LDCHECK
parameter in DBASEWIN.INI.

Description
Use SET LDCHECK to disable or enable dBASE's capability to check for language driver
compatibility. This capability is important if you work with dBASE tables created with
different dBASE configurations or different international versions of dBASE because it
warns you of conflicting language drivers.

Language drivers determine the character set and sorting rules that dBASE uses, so if
you create a dBASE table with one language driver and then use that file with a different
language driver, some of the characters will appear incorrectly and you may get
incorrect results when querying data.

For more information about working with language drivers, see Appendix C in the
Programmer's Guide.

530 L a n g u a g e R e f e r e n c e

S E T L D C O N V E R T

Example
See LDRIVER() for an alternative to SET LDCHECK ON.

Portability
Not supported in dBASE III PLUS.

See Also
CHARSET(), LDRIVER()

SET LDCONVERT Environment

Determines whether data read from and written to character and memo fields is
transliterated when the table character set does not match the global language driver.

Syntax
SET LDCONVERT ON | off

Default
The default for SET LDCONVERT is ON. To change the default, set the LDCONVERT
parameter in DBASEWIN.INI.

Description
Use SET LDCONVERT to determine whether the contents of character and memo fields
in tables created with a given language driver in effect, are converted to match the
language driver in effect at the time the fields are read or written to.

Language drivers determine the character set and sorting rules that dBASE uses, so if
you create a dBASE table with one language driver and then use that file with a different
language driver, some of the characters will appear incorrectly and you may get
incorrect results when querying data.

In general, SET LDCONVERT should be ON to insure that dBASE behaves as expected
when using data created under disparate language drivers.

For more information about working with language drivers, see PG_CHARLANG.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CHARSET(), LDRIVER(), SET LDCHECK

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 531

S E T L I B R A R Y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET LIBRARY Programs

Opens a dBASE program file (.PRG), making all procedures and user-defined functions
(UDFs) in the file available for execution.

Syntax
SET LIBRARY TO
[<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The library file to open. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file
without including its path, dBASE looks for the file in the current directory, then in the
path you specify with SET PATH. If you specify a file without including its extension,
dBASE assumes .PRO (a compiled object file). If dBASE can't find a .PRO file, it looks for
a .PRG file (a source file). If dBASE finds a .PRG file, it compiles it.

Description
SET LIBRARY complements SET PROCEDURE. Both commands open a file, allowing
access to the procedures and UDFs the file contains. You can use SET LIBRARY TO
without a file name to close an open library file.

To execute a procedure or UDF, dBASE must have access to the file containing it. When
dBASE encounters a call to a procedure or UDF, it looks for the procedure or UDF in
specific places in a specific order. One of the places dBASE looks is in a file opened with
SET LIBRARY. See the DO command for an explanation of the search path and order
dBASE uses.

For more information about working with a library file, see Chapter 4 in the
Programmer's Guide.

Example
The following example uses SET LIBRARY to make additional procedures and
functions from another file available to the main program:

** Rpt_Proc.PRG **
PROCEDURE Rpt_Head
line_cnt=1
DEFINE FORM MainForm FROM 0,0 TO 20,40
DEFINE TEXT line01 OF MainForm AT 1, 0 ;

PROPERTY TEXT CENTER("Clients Database Report")
DEFINE TEXT line02 OF MainForm AT 2,19 ;

PROPERTY TEXT ;
CENTER("Run on " + DTOC(DATE()),40,"-")

DEFINE TEXT rpt_line OF MainForm ;
AT line_cnt + 3,0 ;
PROPERTY TEXT CENTER("Company",40)

DEFINE TEXT rpt_line2 OF MainForm ;
AT line_cnt + 3,40 ;
PROPERTY TEXT CENTER("Contact",40)

DEFINE TEXT line03 OF MainForm AT 2,19 ;
PROPERTY TEXT CENTER(Next_Rpt(7),40,"-")

OPEN FORM MainForm

532 L a n g u a g e R e f e r e n c e

S E T L O C K

FUNCTION Next_Rpt
PARAMETERS days
nextdate = "Next Report Due on " + DTOC(DATE() + days)
RETURN nextdate

The next part of the example is the master program file:

** Main.PRG **
SET PROCEDURE TO Main
SET LIBRARY TO Rpt_Proc
DO MainSetup
DO Rpt_Head
SET LIBRARY TO

PROCEDURE MainSetup
SET TALK OFF
SET ECHO OFF
CLEAR
SET DEVELOPMENT ON
RETURN

Portability
Not supported in dBASE III PLUS. The ? and <filename skeleton> options are not
supported in dBASE IV.

In dBASE IV, a file opened with SET LIBRARY is always searched after a file opened
with SET PROCEDURE. In Visual dBASE, the first file opened is the first one searched.

See Also
DO, FUNCTION, PROCEDURE, SET(), SET PROCEDURE

SET LOCK Shared data

Determines whether dBASE attempts to lock a shared table during execution of certain
commands that read the table but don't change its data.

Syntax
SET LOCK ON | off

Default
The default for SET LOCK is ON. To change the default, set the LOCK parameter in
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the LOCK parameter directly in DBASEWIN.INI.

Description
Issue SET LOCK OFF to disable automatic file locking for certain commands that only
read a table. This lets other users change data in the file while you access it with read-
only commands. For example, you might want to issue SET LOCK OFF before using
AVERAGE if you don't expect other users to alter the data in the table you're using

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 533

S E T L O C K+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

significantly. Or, you might want to issue SET LOCK OFF before processing a range of
records that other users aren't going to update.

The following commands automatically lock tables when SET LOCK is ON and don't
lock tables when SET LOCK is OFF:

• AVERAGE
• CALCULATE
• COPY (source file)
• COPY MEMO
• COPY STRUCTURE
• COPY TO ARRAY
• COPY TO...STRUCTURE [EXTENDED] (source file)
• COUNT
• JOIN (both source files)
• LABEL FORM
• REPORT FORM
• SORT (source file)
• SUM
• TOTAL (source file)

dBASE continues to lock records and tables automatically for commands that let you
change data whether SET LOCK is ON or OFF.

Example
This program demonstrates the use of SET LOCK in processing read-only data.

USE Company
SET LOCK OFF && Do not lock records during COUNT
COUNT FOR Company->Type = "VAR" TO nCount
CLEAR
? nCount
SET LOCK ON

Portability
Not supported in dBASE III PLUS.

See Also
FLOCK(), RLOCK()

534 L a n g u a g e R e f e r e n c e

S E T M A R G I N

SET MARGIN Printing

Sets the width of the left border of a printed page.

Syntax
SET MARGIN TO <expN>

<expN> The column number at which to set the left margin. The valid range is 0 to 254,
inclusive. You can specify a fractional number for <expN> to position output accurately
with a proportional font.

Default
The default for SET MARGIN is 0. To change the default, set the MARGIN parameter in
DBASEWIN.INI.

Description
Use SET MARGIN to adjust the printer offset for the left margin for all printed output.
The margin established by SET MARGIN becomes the printer's column 0 position.
SET MARGIN resets the value of the _ploffset system memory variable but doesn't
affect the value of the _lmargin system memory variable.

Use SET MARGIN to adjust the position of text on the printed page according to the
type of paper. For example, if you're printing to three-hole paper, you might need to
increase the left border. You can also use SET MARGIN to compensate for the
placement of paper in the printer. For example, if the paper is off-center in the printer,
you can adjust the width of the left border to properly place the text.

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font. For more information about the coordinate plane, see Chapter 16 in
the Programmer's Guide.

If you change the value of SET MARGIN, dBASE takes the current value of _ppitch into
consideration when calculating the cell width of the coordinate plane. This happens
regardless of whether you're printing with proportional or monospaced fonts. If you
issue ? without using the STYLE option and use only integer coordinates, dBASE uses a
monospaced font, and all output appears exactly the same as in dBASE IV.

Example
This example displays the 10 digits with the default margin and then sets the margin to
column 10 and displays the 10 digits this time indented:

SET PRINTER ON
SET MARGIN TO 0 && The default
? "1234567890"
SET MARGIN TO 10
? "1234567890"
? _ploffset

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 535

S E T M A R K+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET MARGIN TO 0 && RESET MARGIN
SET PRINTER OFF
CLOSE PRINTER

Produces:

* this displays as:
* 1234567890
* 1234567890
* 10
*
* _ploffset is set by SET MARGIN

See Also
_indent, _lmargin, _ploffset, _rmargin

SET MARK Date and time data

Determines the character dBASE uses to separate the month, day, and year when it
displays dates.

Syntax
SET MARK TO
[<expC>]

<expC> The single date separator character. You can specify more than one character for
<expC>, but dBASE uses only the first one.

Default
The default for SET MARK is the separator character of the current date format in use by
the system. dBASE uses the value set by SET DATE, DBASEWIN.INI, or the
International option of the Windows Control Panel (in that order) to determine the
current date format. That is, SET DATE settings override those in DBASEWIN.INI, and
settings in DBASEWIN.INI override those in the Windows Control Panel.

To change the default separator character, set the MARK parameter in DBASEWIN.INI.
To do so, either use the SET command to specify the setting interactively, or enter the
MARK parameter directly in DBASEWIN.INI.

If you specify both DATE and MARK settings in DBASEWIN.INI, dBASE displays
dates in the month/day/year format corresponding to the DATE setting, but uses the
separator specified in the MARK setting. Once you’ve started dBASE, issuing SET
DATE overrides any prior SET MARK setting, including one specified in
DBASEWIN.INI.

Description
Use SET MARK to change the date separator from the default character. For example, if
you issue SET DATE AMERICAN, the date separator character is a forward slash (/),
and dBASE displays dates in MM/DD/YY format. However, if you specify SET MARK
TO "." after issuing SET DATE AMERICAN, dBASE displays dates in the format

536 L a n g u a g e R e f e r e n c e

S E T M B L O C K

MM.DD.YY. If you issue SET DATE AMERICAN again, the format returns to MM/
DD/YY.

Issuing SET MARK TO without <expC> resets the date separator character to that of the
current date format.

Example
The following example uses SET MARK to change the date separator when displaying
date data:

date = {04/01/94}
SET CENTURY OFF
SET DATE AMERICAN
ENDIF
? date && Returns 04/01/94
SET CENTURY ON
? date && Returns 04/01/1994
SET MARK TO ","
? date && Returns 04,01,1994
SET MARK TO "/"
? date && Returns 04/01/1994
SET MARK TO ":"? date && Returns 04:01:1994
SET MARK TO "-"
? date && Returns 04-01-1994
SET DATE AMERICAN

? date && Returns 04/01/1994
SET DATE USA
? date && Returns 04-01-1994

Portability
Not supported in dBASE III PLUS.

See Also
DATE(), DMY(), MDY(), SET CENTURY, SET DATE

SET MBLOCK Fields and records

Changes the default block size of new memo field (.DBT) files.

Syntax
SET MBLOCK TO <expN>

<expN> A number from 1 to 512 that sets the size of blocks used to store new memo
(.DBT) files. (The actual size in bytes is the number you specify multiplied by 64.)

Default
The default value for SET MBLOCK is 8 (or 512 bytes). To change the default, update the
MBLOCK setting in DBASEWIN.INI. To do so, either use the SET command to specify
the setting interactively, or enter the MBLOCK parameter directly in DBASEWIN.INI.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 537

S E T M B L O C K+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Description
Use SET MBLOCK to change the size of blocks in which dBASE stores new memo field
(.DBT) files on disk. You can specify a block size from 64 bytes to approximately 32K.
The MBLOCK setting overrides any previous block size defined by the SET
BLOCKSIZE command or specified in the DBASEWIN.INI file. After the block size has
been changed, new memo .DBT files are created with the new block size. dBASE stores
data in each memo field in a group made up of as many blocks as needed.

After the block size is changed, memo fields created with the COPY, CREATE, and
MODIFY STRUCTURE commands have the new block size. To change the block size of
an existing memo field file, use the SET BLOCKSIZE command to change the block size
and then copy the table containing the associated memo field to a new file. The new file
then has the new block size.

When the block sizes are large and the memo contents are small, memo (.DBT) files
contain unused space and become larger than necessary. If you expect the contents of
the memo fields to occupy less than 512 bytes (the default size allocated), set the block
size to a smaller size to reduce wasted space. If you expect to store larger pieces of
information in memo fields, increase the size of the block.

SET MBLOCK is similar to the older SET BLOCKSIZE command except for two
advantages:

• You can allocate different block sizes for memo field and index data, whereas SET
BLOCKSIZE requires the same block size for both. To allocate block sizes for index
data, use SET IBLOCK.

• You can specify smaller blocks with SET MBLOCK than with SET BLOCKSIZE. SET
BLOCKSIZE creates blocks in increments of 512 bytes, compared to 64 bytes with
SET MBLOCK.

Example
The following example uses SET MBLOCK to create another table that is a copy of
Clients but has a memo blocksize of 256 bytes embedded in its structure versus the
default of 512 bytes. This technique applies if memo entries are normally less than 256
bytes and you want to minimize wasted space in the .DBT file:

USE Clients
? SET("MBLOCK") && Returns default of 8;each memo block = 512 bytes
SET MBLOCK TO 4
COPY TO Clients2
USE Clients2
? SET("MBLOCK") && Returns 4
LIST FILES LIKE Clients*.DBT
* Note that Clients2.DBT is smaller than Clients.DBT
CLOSE DATABASES

Portability
Not supported in dBASE III PLUS.

See Also
CREATE, MODIFY STRUCTURE, REPLACE, SET(), SET BLOCKSIZE, SET IBLOCK

538 L a n g u a g e R e f e r e n c e

S E T M E M O W I D T H

SET MEMOWIDTH Fields and records

Sets the width of memo field display or output.

Syntax
SET MEMOWIDTH TO
[<expN>]

<expN> Specifies a number from 8 to 255 that sets the width of memo field display and
output.

Default
The default memo width is set to 50.

Description
Use SET MEMOWIDTH to change the column width of memo fields during display
and output. Memo fields can be displayed using the commands DISPLAY, LIST, ?, or ??.
SET MEMOWIDTH doesn't affect the display of a memo field in the Text Editor. If the
system memory variable variable_wrap is set to true (.T.), the system memory variables
_lmargin and _rmargin determine the memo width.

The @V (vertical stretch) picture function causes memo fields to be displayed in a
vertical column when _wrap is true. When @V is specified, the _pcolno system memory
variable is incremented by the @V value. This lets you change the appearance of the
printed output of ? or ?? commands by using the @V function. When @V is equal to
zero, memo fields wrap within the SET MEMOWIDTH width.

Example
The following example demonstrates the relationship between SET MEMOWIDTH and
the value returned by MEMLINES(). The REPLACE command places a string in memo
field Notes and SET MEMOWIDTH is used to alter the memo field length for output
purposes:

SET MEMOWIDTH TO 30
USE CLIENTS
REPLACE Notes WITH "Mr. Jackson contacted us "+;

"this date, 04/15/94 regarding his accident of "+;
"04/10/94 involving a truck and his 1994 Lexus."

CLEAR
? "MEMOWIDTH", "MEMLINES" AT 20
? " 30", LTRIM(STR(MEMLINES(Notes))) AT 22
?
? Notes
?
SET MEMOWIDTH to 45
? "MEMOWIDTH", "MEMLINES" AT 20
? " 45", LTRIM(STR(MEMLINES(Notes))) AT 22
?
? Notes

See MEMLINES() for another example of SET MEMOWIDTH.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 539

S E T M E S S A G E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See Also
?, ??, DISPLAY, LIST, MEMLINES(), MLINE(), SET(), _lmargin, _rmargin, _wrap

SET MESSAGE Environment

Displays a message in the status bar if it is enabled. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, you generally use the
StatusMessage property of an object to display a message on the status bar when an
object receives focus.

For more information about SET MESSAGE, see online Help.

SET MOUSE Keyboard and mouse events

Use SET MOUSE to enable or disable the mouse . This command is supported primarily
for compatibility with dBASE IV. In Visual dBASE applications, you would generally
not disable mouse capabilities.

Syntax
SET MOUSE ON | off

Default
The default for SET MOUSE is ON.

Description
Use SET MOUSE OFF to remove the mouse pointer from the screen. Once the mouse
pointer is removed, dBASE ignores all subsequent mouse actions. To enable the mouse
again, use SET MOUSE ON.

See Also
ISMOUSE(), MCOL(), MROW(), ON MOUSE

SET NEAR Table organization

Specifies where to move the record pointer after a FIND, SEEK, or SEEK() operation
fails to find an exact match.

Syntax
SET NEAR on | OFF

Default
The default for SET NEAR is OFF. To change the default, update the NEAR setting in
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the NEAR parameter directly in DBASEWIN.INI.

540 L a n g u a g e R e f e r e n c e

S E T O D O M E T E R

Description
Use SET NEAR to position the record pointer in an indexed table close to a particular
key value when a search does not find an exact match. When SET NEAR is ON, the
record pointer is set to the record closest to the key expression searched for but not
found with FIND, SEEK, or SEEK(). When SET NEAR is OFF and a search is
unsuccessful, the record pointer is positioned at the end of the file.

If you unsuccessfully search for a character, date, numeric, or float value when SET
NEAR is ON, and the index is in ascending order, Visual dBASE positions the record
pointer at the record whose key value follows the value searched for. When SET
DELETED is ON or a filter is set with the SET FILTER command, SET NEAR disregards
deleted or filtered records in determining the record nearest the key value expression.

With SET NEAR ON, FOUND() returns .T. for an exact match or .F. for a near match.
With SET NEAR OFF, FOUND() returns .F. if no match occurs.

Example
The following example uses SET NEAR to control the placement of the record pointer if
no matching record is found in an indexed table:

USE Company EXCLUSIVE
INDEX ON Zip_P_code TAG Zip
SET NEAR ON
SEEK "55555"
? EOF(),Zip_P_code
SET NEAR OFF
SEEK "55555"
? EOF(),Zip_P_code

There is no Zip_P_code 55555 in the table. With NEAR OFF, the record pointer is
positioned at EOF(). With NEAR ON, it is positioned at the nearest record, deleted or
not.

Portability
Not supported in dBASE III PLUS.

See Also
EOF(), FIND, FOUND(), LOCATE, SEEK, SEEK(), SET(), SET DELETED, SET FILTER

SET ODOMETER Environment

Specifies how frequently dBASE updates and displays record counter information in the
status bar if it is enabled. This command is supported primarily for compatibility with
dBASE IV. Visual dBASE displays a progress meter while certain commands are being
carried out.

For complete syntax information on SET ODOMETER, see online Help.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 541

S E T O R D E R+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET ORDER Table organization

Specifies an open index file or tag as the master index of a table.

Syntax
SET ORDER TO [<index position expN>]

or

SET ORDER TO [<.ndx filename 1>]
[NOSAVE]

or

SET ORDER TO
[TAG] <tag name>

 [OF <filename 2> | ?]
[NOSAVE]

<index position expN> A number specifying the position of an index in the list of open
.NDX files. This option is provided for compatibility with dBASE III PLUS and cannot
be used if there are any .MDX files open. If <index position expN> evaluates to 0, the table
appears unindexed, in record number or natural order.

<.ndx filename 1> Specifies the name of an .NDX file created on a dBASE table.

[TAG] <tag name> Specifies the name of an index tag open in an .MDX file (or a single or
multiple field index created on a Paradox or SQL table). The TAG keyword is included
for readability only; TAG has no affect on the operation of the command. For Paradox
tables, if you specify SET ORDER TO without including an index tag name, the primary
index is used as the master index, if it exists.

OF <filename 2> | ? Specifies the multiple index file that contains the index tag you want
to control the order of the current table. OF ? displays a dialog box, in which you select
an index file. If you specify a file without including its path, Visual dBASE looks for the
file in the current directory, then in the path you specify with SET PATH. If you specify
a file without including its extension, Visual dBASE assumes an .MDX extension.

If you use the [TAG] <.ndx filename 1> | <tag name> option but don't specify the name of
a .MDX index file, Visual dBASE searches first for an .NDX index file, and then searches
for the tag name in the production .MDX file.

NOSAVE Used to delete a temporary index after the associated table is closed. If you
decide after choosing this option that you want to keep the index, open the index again
using SET ORDER without the NOSAVE option, before you close the table.

Description
Use SET ORDER to change the master index of a table without having to close and
reopen indexes. You can choose the master index from the list of .NDX files or .MDX
index tags opened with the SET INDEX or USE...INDEX commands.

If you specify the order with <index position expN>, use the index order defined with the
SET INDEX command. You can use this option only if no .MDX files are open. If you

542 L a n g u a g e R e f e r e n c e

S E T P A T H

specify SET ORDER without specifying an index, or if <index position expN> evaluates to
0, the table appears unindexed, in record number order.

When accessing a Paradox table, specifying SET ORDER TO without an argument resets
the Paradox table to the primary index record order, if a primary index exists.

Example
The following example uses SET ORDER to specify which index file or tag is the active
index:

USE Company EXCLUSIVE
INDEX ON CompCode TAG CompCode
INDEX ON Company TAG Company
INDEX ON City TAG City
SET INDEX TO CompCode, Company, City
BROWSE FIELDS CompCode, Company, City ;

TITLE "Compcode order"
SET ORDER TO City
BROWSE FIELDS CompCode, Company, City ;

TITLE "City order"
SET ORDER TO Company
BROWSE FIELDS CompCode, Company, City ;

TITLE "Company order"
SET ORDER TO && return to natural order

See Also
CLOSE..., INDEX, KEY(), MDX(), NDX(), ORDER(), REINDEX, SET INDEX, TAG(),
TAGCOUNT(), TAGNO(), USE

SET PATH Disk and file utilities

Specifies the directory search route that dBASE follows to find files that are not in the
current directory.

Syntax
SET PATH TO
[<path list>]

<path list> A list of (optional) drives and directories indicating the search path—one or
more drives and directories you want dBASE to search for files. Separate each directory
path name with commas, semicolons, or spaces. The syntax for this command is similar
to the PATH command available in DOS. Unlike DOS, however, you can use spaces or
commas as well as semicolons to separate paths on the list; DOS accepts only
semicolons.

Default
The default for SET PATH is empty (no path). To change the default, update the PATH
setting in dBASEWIN.INI with as many valid drives and directories as you want. To do
so, either use the SET command to specify the setting interactively, or enter the PATH
parameter directly in DBASEWIN.INI.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 543

S E T P C O L+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Description
Use SET PATH to establish a search path to access files located on directories other than
the current directory. When no SET PATH setting exists and you don't provide the full
path name when you specify a file name, dBASE searches for that file only in the current
directory.

The order in which you list drives and directories with SET PATH TO <path list> is the
order dBASE searches for a file in that search path. Use SET PATH when an
application's files are in several directories.

A path name without a drive letter or beginning backslash begins at the current
directory on the current drive. Use two periods (..) to signify the parent directory of the
current directory, and use a beginning backslash to signify the root directory of the
current drive.

SET PATH TO without the option <path list> resets the search path to the default value
(no path).

Example
The following example uses SET PATH, opens a table in the path and uses SET
FULLPATH to show the subdirectory used:

* Current directory is d:\example
SET PATH TO c:\temp prg, d:\example\pdox
* 'prg' refers to d:\example\prg
USE Lineitems
SET FULLPATH ON
? DBF() && D:\EXAMPLE\PDOX\LINEITEMS.DBF
SET FULLPATH OFF

See Also
DISPLAY STATUS, LIST STATUS, SET DIRECTORY

SET PCOL Printing

Sets the printing column position of a printer, which is the value of PCOL().

Syntax
SET PCOL TO <expN>

<expN> The column number to which to set PCOL(). The valid range is 0 to 32,767,
inclusive.

Description
Use SET PCOL to set the horizontal printing position of a printer, which is the value the
PCOL() function returns. Subsequent @...SAY commands that specify a column
position on the current line print in a column position relative to the new PCOL() value.
Generally, you use the command SET PCOL TO 0 to reset the printer column to the left
edge of the page.

544 L a n g u a g e R e f e r e n c e

S E T P C O L

SET PCOL doesn't affect the printing of @...SAY commands that use relative addressing
with PCOL(). For example, the following command line prints "Hello" beginning 10
spaces to the right of the current column, regardless of the value of PCOL().

@ 1,PCOL() + 10 SAY "Hello"

When you move the printing position to a new line, dBASE reinitializes PCOL() to 0, so
SET PCOL affects the value of PCOL() for the current line only. When you send output
to your printer, dBASE updates PCOL() by adding 1 to the current PCOL() value for
each character it sends to the printer. The printing position moves 1 column for each
character the printer prints.

When you send a printer control code or escape sequence to your printer, the printing
position doesn't move. (Printer control codes and escape sequences are strings that give
the printer instructions, such as to print underlining, boldface type, or different fonts.)
Although control codes and escape sequences don't move the printing position, dBASE
nonetheless increments the PCOL() value by the number of characters that you send to
the printer. Each control code character increments the value of PCOL() by 1 just like
any other character. As a result, the value of PCOL() might not reflect the actual
printing position. Use SET PCOL to reset the value of PCOL() to the same value as the
printing position.

To send a control code to the printer without changing the value of PCOL(), save the
current value of PCOL() to a memory variable, send the control code to the printer, then
SET PCOL to the contents of the memory variable.

Example
The following example writes "Jack & Jill" to the printer. It uses PCOL() to note the
column position three times, at the beginning, after "Jack", and after "Jill":

SET TALK OFF
SET PRINTER ON
* now ?s are directed to printer
? && printer at col 0 of next line
beginpos=pcol() && note the current column
?? "Jack"
lastjackpos=pcol()
?? " & Jill"
lastjillpos=pcol()
* prints:
* Jack & Jill
SET PRINTER OFF
CLOSE PRINTER
? beginpos && 0.00
? lastjackpos && 4.00
? lastjillpos && 11.00
* Displays column positions for reference

Portability
Not supported in dBASE III PLUS or dBASE IV.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 545

S E T P O I N T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

See Also
@...SAY...GET, PCOL(), PROW(), SET PROW

SET POINT Numeric data

Specifies the character that separates decimal digits from integer digits in numeric
display.

Syntax
SET POINT TO
[<expC>]

<expC> The character representing the decimal point. You can specify more than one
character, but dBASE uses only the first one. If you specify a number as a character for
<expC> (for example, "3"), dBASE returns an error.

Default
The default for SET POINT is set by the International option of the Windows Control
Panel. To change the default, set the POINT parameter in DBASEWIN.INI. To do so,
either use the SET command to specify the setting interactively, or enter the POINT
parameter directly in DBASEWIN.INI.

Description
SET POINT affects both numeric input and display with commands such as EDIT. SET
POINT also affects numeric display with commands such as DISPLAY MEMORY,
STORE, =, and the PICTURE "." template character. You must use the period in the
PICTURE option, regardless of the setting of SET POINT. See Picture in Chapter 8 for
more information on the PICTURE option.

SET POINT affects only the display of numeric expressions in dBASE syntax, not their
input. Only a period is valid as a decimal point in numeric input. For example, if you
SET POINT TO "," (comma) and issue the following command, dBASE returns an error:

? MAX(123,4, 123,5)

The correct syntax is

? MAX(123.4, 123.5)

SET POINT TO without the <expC> option resets the decimal character to the default set
with the International option of the Windows Control Panel.

Example
The following example uses SET POINT to control the display of numeric data:

SET DECIMALS TO 2 && Default
SET CURRENCY LEFT && Default
SET SEPARATOR TO "."
SET POINT TO ","
SET CURRENCY TO "FR"
? 23445.95 PICTURE "$999,999.99" && Returns FR23.445,95

546 L a n g u a g e R e f e r e n c e

S E T P R E C I S I O N

? 2345.95 PICTURE "$999,999.99" && Returns FFR2.345,95
? 345.95 PICTURE "$999,999.99" && Returns FFFFR345,95
? 345.95 PICTURE "@$999,999.99" && Returns FR345,95

Another example of SET POINT is included in the INT() example.

Portability
Not supported in dBASE III PLUS.

See Also
SET DECIMALS, SET SEPARATOR, STORE

SET PRECISION Numeric data

Determines the number of digits dBASE uses when comparing numbers.

Syntax
SET PRECISION TO
[<expN>]

<expN> The number of digits, from 10 to 19.

Default
The default for SET PRECISION is 16. To change the default, set the PRECISION
parameter in DBASEWIN.INI. To do so, either use the SET command to specify the
setting interactively, or enter the PRECISION parameter directly in DBASEWIN.INI.

Description
Use SET PRECISION to change the accuracy, or precision, of numeric comparisons.
You can set precision from 10 to 19 digits.

SET PRECISION affects data comparisons, but not mathematical computations or data
display. In math computations, the precision is always 19 digits. To change the number
of decimal places dBASE displays, use SET DECIMALS.

Example
The following example demonstrates how the precision setting affects data comparisons
and mathematical computations:

SET DECIMALS TO 18 && Max value
SET PRECISION TO 19 && Max value
x = 0.12345678901234567
y = 0.12345678901234568
? x = y && Returns .F.
? x + y && Returns 0.246913578024691350

SET PRECISION TO 16
? x = y && Now returns .T.
? x + y && Still returns 0.246913578024691350

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 547

S E T P R I N T E R+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET DECIMALS TO 8
? x + y && Returns 0.24691358

Portability
Not supported in dBASE III PLUS. In dBASE IV, SET PRECISION affects mathematical
computations, but not comparisons of numbers.

See Also
SET DECIMALS

SET PRINTER Printing

The SET PRINTER TO setting specifies a file to receive streaming output, or uses a
device code recognized by the Windows Print Manager to designate a printer. The On/
Off setting controls whether dBASE also directs streaming output that appears in the
Command window to the device or file specified by SET PRINTER TO.

Syntax
SET PRINTER on | OFF

SET PRINTER TO
[[FILE] <filename> | ? | <filename skeleton>] | [<device>]

FILE Use this keyword if you want to bypass the Windows print driver so that no
printer control codes are written to the file. If you omit the keyword, the Windows print
driver output is written to the file.

<filename> | ? | <filename skeleton> The text file to send output to instead of the printer. By
default, dBASE assigns a .PRT extension to <filename> and saves the file in the current
directory. The ? and <filename skeleton> options display a dialog box, in which you
specify the name of the target file and the directory to save it in.

<device> The printer port of the printer to send output to. Specify printers and their
ports with the Windows Control Panel.

Default
The default for SET PRINTER is OFF. To change the default, set the PRINT parameter in
the [OnOffCommandSettings] section in DBASEWIN.INI. The default for SET
PRINTER TO is the default printer you specify with the Windows Control Panel.

Description
Use SET PRINTER TO to direct streaming output from commands such as ?, ??, and LIST
to a printer or a text file. SET PRINTER TO with no option sends this output to the
default printer. For more information about streaming and non-streaming output, see
Chapter 24 in the Programmer's Guide.

Use SET PRINTER ON/OFF to enable or disable the printer you specify with SET
PRINTER TO.

548 L a n g u a g e R e f e r e n c e

S E T P R I N T E R

To send streaming output to a file rather than the printer, issue SET PRINTER TO FILE
<filename>. When you issue SET PRINTER TO FILE <filename>, issuing SET PRINTER
ON directs streaming output to the text file <filename> rather than to the printer. The file
has the default extension of .PRT.

When SET PRINTER is OFF, dBASE directs streaming output only to the result pane of
the Command window. SET PRINTER must be ON to output data to a text file unless
you issue a command with its TO PRINTER option. The following example illustrates
this behavior:

SET PRINTER OFF
SET PRINTER TO FILE test.prt
TYPE file.txt && displays on screen only
TYPE file.txt TO PRINT && output sent to screen and test.prt

To send non-streaming output to the printer, use SET DEVICE TO PRINTER. To send
non-streaming output to a text file, use SET DEVICE TO FILE.

Example
The following example uses SET PRINTER ON and OFF:

SET PRINTER TO && Set printer to default
SET PRINTER ON
? "Hello" && to printer
SET PRINTER OFF
? prow(),pcol() && only displayed to screen
CLOSE PRINTER && initiate printing
SET PRINTER TO && resets to default
SET PRINTER TO PRN && sets to DOS output device
SET PRINTER TO LPT1
SET PRINTER TO NUL
SET PRINTER TO FILE Test
* Test.prt receives streaming output, including any control codes,
* that would have gone to the printer.

Portability
In dBASE III PLUS, use SET PRINT.

See Also
SET ALTERNATE, SET CONSOLE, SET DEVICE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 549

S E T P R O C E D U R E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET PROCEDURE Programs

Opens a dBASE program file (.PRG), making all procedures and user-defined functions
(UDFs) in the file available for execution.

Syntax
SET PROCEDURE TO
[<filename> | ? | <filename skeleton>]
[ADDITIVE]

<filename> | ? | <filename skeleton> The procedure file to open. The ? and <filename skeleton>
options display a dialog box, from which you can select a file. If you specify a file
without including its path, dBASE looks for the file in the current directory, then in the
path you specify with SET PATH. If you specify a file without including its extension,
dBASE assumes .PRO (a compiled object file). If dBASE can't find a .PRO file, it looks for
a .PRG file (a source file). If dBASE finds a .PRG file, it compiles it.

ADDITIVE Opens the procedure file(s) without closing any you've opened with previous
SET PROCEDURE statements. SET PROCEDURE TO < filename> (without the
ADDITIVE option) closes all procedure files you've opened with previous
SET PROCEDURE statements.

Description
To execute a procedure or UDF, dBASE must have access to the file containing it. When
dBASE encounters a call to a procedure or UDF, it looks for the procedure or UDF in
specific places in a specific order. One of the places dBASE looks is in a file opened with
SET PROCEDURE. See the DO command for an explanation of the search path and
order dBASE uses.

To make the procedures or UDFs in a program available to other programs, place the
following statement in the program:

SET PROCEDURE TO PROGRAM(1) ADDITIVE

If you issue SET PROCEDURE TO with no options, dBASE closes all procedure files
you've opened with SET PROCEDURE. If you want to close only specific procedure
files, use CLOSE PROCEDURE. The maximum number of open procedure files
depends on available memory.

For more information about working with procedure files, see Chapter 4 in the
Programmer's Guide.

Example
The following program lines use SET PROCEDURE to set and add various procedure
files so that all programs can access the procedures in the procedure files. Finally, all
procedure files are released:

SET PROC TO SoundLib
* All programs can access all procedures in SoundLib.PRG
SET PROCEDURE TO PictLib ADDITIVE
* All programs can now access all procedures in SoundLib.PRG and PictLib.PRG
SET PROCEDURE TO PictLib

550 L a n g u a g e R e f e r e n c e

S E T P R O C E D U R E

* Only PictLib can be accessed
SET PROCEDURE TO PROGRAM(1) ADDITIVE
* The current file, whatever its name, is now also a procedure file
SET PROCEDURE TO
* All procedure files are released and no longer available

The following example creates an entry form with three RadioButtons to select the
desired conversion factor. SET PROCEDURE TO Cnvrt.PRG makes the function Metric
in the procedure file Cnvrt available when the user clicks on entry field Answ:

** Metric Conversion Program **
SET PROCEDURE TO Cnvrt.PRG
f=NEW Convert()
f.OPEN()
CLASS Convert OF FORM

this.Top=2
this.Left=2
this.Width=50
this.Height=18
this.Text= "Conversion Utility"
DEFINE ENTRYFIELD Amt OF THIS AT 4,15;

PROPERTY Value 0, Width 8
DEFINE TEXT Ln1 OF THIS AT 2,6;

PROPERTY;
Text "Enter Amount; Select a RadioButton",;
Width 45

DEFINE RadioButton Inches OF THIS AT 6,8;
PROPERTY Text "Inches to Centimeters",;
Width 22, Value .F.

DEFINE RadioButton Pounds OF THIS AT 8,8;
PROPERTY Text "Pounds to Kilograms",;
Width 21, Value .F.

DEFINE RadioButton Degrees OF THIS AT 10,8;
PROPERTY Text "Degrees F to C",;
Width 21, Value .F.

DEFINE TEXT Ln2 OF THIS AT 12,8;
PROPERTY Text "Results:",;
Width 15

DEFINE ENTRYFIELD Answ OF THIS AT 12,19;
PROPERTY Value 0, Width 17,;
OnGotFocus Metric

DEFINE PUSHBUTTON Exit OF THIS AT 15,15;
PROPERTY TEXT "Exit", OnClick {;Form.Close()}

ENDCLASS

The following conversion function resides in a .PRG file named Cnvrt.PRG and is made
available to the main program by the command line SET PROCEDURE TO Cnvrt.PRG

Cnvrt.PRG
FUNCTION Metric
DO CASE

CASE Form.Inches.Value
Form.Answ.Value = LTRIM(STR(Form.Amt.Value;
* 2.54,10,2))+" Centimeters"

CASE Form.Pounds.Value
Form.Answ.Value = LTRIM(STR(Form.Amt.Value;

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 551

S E T P R O W+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

* .454,10,2))+" Kilograms"
CASE Form.Degrees.Value

Form.Answ.Value = LTRIM(STR((Form.Amt.Value;
-32)* (5/9),10,2))+" Degrees C"

ENDCASE
RETURN .T.

Portability
The ?, <filename skeleton>, and ADDITIVE options aren't supported in dBASE III PLUS
or dBASE IV. In dBASE IV, a file opened with SET PROCEDURE is always searched
before a file opened with SET LIBRARY. In Visual dBASE, the first file opened is the first
one searched.

See Also
CLOSE..., COMPILE, DO, FUNCTION, PARAMETERS, PROCEDURE, RETURN,
SET(), SET LIBRARY

SET PROW Printing

Sets the current row position of a printer's print head, which is the value of PROW().

Syntax
SET PROW TO <expN>

<expN> The row number to which to set PROW(). The valid range is 0 to 32,767,
inclusive.

Description
Use SET PROW to set the vertical printing position of a printer, which is the value the
PROW() function returns. Subsequent @...SAY commands that specify a row position
print relative to the new PROW() value. Generally, you use the command SET PROW
TO 0 to reset the printer row to top-of-page.

SET PROW doesn't affect the printing of @...SAY commands that use relative addressing
with PROW(). For example, the following command line prints the word "Hello" two
rows below the current row, regardless of the value of PROW().

@ PROW() + 2,0 SAY "Hello"

Example
The following example uses SET PROW to print relative to the current row:

SET DEVICE TO PRINTER
@ 10,0 say "Tenth row"
SET PROW TO 0
* reset prow, previous row 10 is now row 0
@ 2,0 say "2nd row relative to new setting"
SET DEVICE TO SCREEN
CLOSE PRINTER

552 L a n g u a g e R e f e r e n c e

S E T R E F R E S H

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
@...SAY...GET, PCOL(), PROW(), SET PCOL

SET REFRESH Shared data

Determines how often dBASE refreshes the workstation screen with table information
from the server.

Syntax
SET REFRESH TO <expN>

<expN> A time interval expressed in seconds from 0 to 3,600 (1 hour), inclusive.

Default
The default for SET REFRESH is 0, meaning dBASE doesn't update the screen. To
change the default, set the REFRESH parameter in DBASEWIN.INI. To do so, either use
the SET command to specify the setting interactively, or enter the REFRESH parameter
directly in DBASEWIN.INI.

Description
Use SET REFRESH to set a refresh interval when working with shared tables on a
network. Then, when you use BROWSE, EDIT, or CHANGE to edit shared tables, your
screen refreshes at the interval you set, showing you changes made by other users on
the network to the same tables.

If another user has a lock on the file or records you're currently viewing, the file or
records won't be refreshed until that user releases the lock.

Example
USE Employee
CONVERT
SET REFRESH TO 5
BROWSE

See Also
BROWSE, CHANGE, EDIT, FLOCK(), RLOCK()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 553

S E T R E L A T I O N+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET RELATION Table organization

Links two or more open tables with common fields or expressions.

Syntax
SET RELATION TO
[<key exp list 1> | <expN 1>

 INTO <child table alias 1>
 [, <key exp list 2> | <expN 2>
 INTO <child table alias 2>] ...]

[ADDITIVE]]

For dBASE tables, you can also specify options to restrict processing of unlinked child
table records and specify additional data integrity rules:

SET RELATION TO
[<key exp list 1> | <expN 1>

 INTO <child table alias 1>
 [CONSTRAIN]
 [INTEGRITY
 [CASCADE | RESTRICTED]]
 [, <key exp list 2> | <expN 2>
 INTO <child table alias 2>]
 [CONSTRAIN]
 [INTEGRITY
 [CASCADE | RESTRICTED]]...]

[ADDITIVE]

<key exp list 1> The key expression or field list that is common to both the current table
and a child table and links both tables. When specifying the INTEGRITY option, you can
specify a key field but not an expression. The child table must be indexed on the key
field and that index must be the master index in use for the child table. An index based
on the same key field must also be defined for the parent table but it doesn't need to be
the master index for that table.

<expN 1> INTO <child table alias> For dBASE tables only, you can specify <expN>to link
records in a child table. When <expN> is RECNO(), Visual dBASE links the current table
to a child table by corresponding record numbers, in which case, the child table doesn't
have to be indexed.

INTO <child table alias> <alias> specifies the child table linked to the current table. You can
specify a work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

<key exp list 2> | <expN 2> INTO <alias 2> ...] Specifies additional relationships from the
current table into other tables.

CONSTRAIN Limits records processed in the child table to those matching the key
expression in the parent table.

INTEGRITY [CASCADE | RESTRICTED] Specifies rules that control the addition or deletion of
records in the child table. If INTEGRITY is specified, key fields of records added to child
tables via APPEND, APPEND BLANK, BROWSE, EDIT, or INSERT commands are set
to values matching those of the parent table. Also, when you delete records or change

554 L a n g u a g e R e f e r e n c e

S E T R E L A T I O N

the value of key fields in the parent table, a dialog box appears, in which you can choose
to delete all related child records (performing a cascade delete).

The CASCADE and RESTRICTED options specify rules to follow when adding or
deleting records in a program (so the dialog box does not appear). The CASCADE
option specifies that all child table records with matching key field values are deleted
when you delete a record or change the key value of a record in the parent table. The
RESTRICTED option prevents deletions or changes to records in the parent table if the
child table contains records with matching key field values.

ADDITIVE Adds the new relation to any existing ones. Without ADDITIVE, SET
RELATION clears existing relations before establishing the new relation.

Description
Use SET RELATION to establish a link between open tables based on common fields or
expressions. Remember that you can also define relations and link tables automatically
by using the CREATE|MODIFY QUERY or VIEW commands, which let you save
relations to a .QBE file.

Before setting a relation, open each table in a separate work area. When a relation is set,
the table in the current work area is referred to as the parent table, and a table linked to
the parent table by the specified key is called a child table. The child table must be
indexed on the fields or expressions that link tables and that index must be the master
index in use for the child table.

A relation between tables is usually set through common keys specified by
<key exp list>. The relating expression can be any expression derived from the parent
table that matches the keys of the child table master index. The keys may be a single
field or a set of concatenated fields contained in each table. The fields in each table can
have different names but must contain the same type of data. For Paradox and SQL
tables, you can specify single or composite index key fields.

For dBASE tables only, if you specify a numeric expression to link tables, the parent
table is always linked to record numbers in a child table specified by the numeric
expression (typically, the RECNO() function). This causes record 1 in the parent table to
be linked to record 1 in the child table, record 2 in the parent table linked to record 2 in
the child table, and so on.

SET RELATION clears existing relations before establishing a new one, unless you use
the ADDITIVE option. SET RELATION TO without any arguments clears existing
relations from the current table without establishing any new relations.

For dBASE tables, the CONSTRAIN and INTEGRITY options control processing of
linked records. Using these options requires that the parent table not contain any
records with duplicate key values. If a parent table has duplicate records, copy the table
to a temporary table, index the temporary table using the UNIQUE option, and then use
COPY to copy the table back to the original table name. After setting up a relation with
either CONSTRAIN or INTEGRITY, the uniqueness of key values in the parent table is
strictly enforced.

The CONSTRAIN option restricts access in the child table to only those records whose
key values match records in a parent table. This is the same as using SET KEY TO on the
key field of the child table. As a result, you can't use SET KEY TO and CONSTRAIN at

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 555

S E T R E L A T I O N+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

the same time. If a SET KEY TO operation is in effect on the child table when you specify
CONSTRAIN with SET RELATION, Visual dBASE returns a "SET KEY in use in alias"
message. If the CONSTRAIN option is in effect when SET KEY TO is specified, Visual
dBASE returns the error "CONSTRAIN is active." You can use SET FILTER with the
CONSTRAIN option, if you want to specify additional conditions to qualify records in a
child table.

The INTEGRITY option specifies rules that control the addition or deletion of records in
the child table. If INTEGRITY is specified, when you add records using APPEND,
APPEND BLANK, BROWSE, EDIT, or INSERT commands, the key fields of records
added to child tables are set to values matching those of the parent table. If you add new
records to the parent table, values in the key field must be unique; otherwise, Visual
dBASE returns the error "Key already exists." When you edit records in the child table,
key fields in the child table are read-only.

Integrity rules assume SET DELETED is ON. Setting DELETED OFF is not
recommended when using the INTEGRITY option since it could show linked records
already marked for deletion.

If you specify the INTEGRITY option without the CASCADE or RESTRICTED
keywords, when you delete records or change the value of key fields in the parent table,
a dialog box appears, in which you can choose to delete all related child records
(performing a cascade delete).

If you specify INTEGRITY with the CASCADE option, Visual dBASE automatically
deletes all records in the child table that match the key value of records that are deleted
or changed in the parent table. If a key value of a record in the parent table is changed to
a value that already exists, Visual dBASE returns the error "Key already exists."

If you specify INTEGRITY with the RESTRICTED option, Visual dBASE prevents you
from deleting records in the parent table with linked child table records. If you attempt
to delete records or change the key value of records in the parent table while records
with matching key values still exist in the child table, Visual dBASE returns the error
"Linked records still exist in alias" and the parent table record is not deleted or changed.
You can delete records in a child table unless that table is itself a parent and an integrity
rule is defined that restricts deletions to its child table records.

More than one relation can be defined from the same table. Also, more than one relation
can be set from the same parent table if you use the ADDITIVE option or if you specify
multiple relations with the same SET RELATION command. You can also establish
additional relations from a child table, thus defining a chain of relations. Cyclic relations
aren't allowed; that is, Visual dBASE returns an error if you attempt to define a relation
from a child table back into its parent table.

When a relation is set from a parent table to a child table, the relation can be accessed
only from the work area that contains the parent table. To access fields of the child table
from the current work area, use the alias pointer (->) and prefix the name of fields in the
child table by its alias name.

If a matching record can't be found in a linked table, the linked table is positioned at the
end-of-file, and EOF() returns .T. The setting of SET NEAR does not affect positioning
of the record pointer in child tables. When the INTEGRITY option is used, if the parent

556 L a n g u a g e R e f e r e n c e

S E T R E L A T I O N

table is positioned at the end of file, Visual dBASE returns the error "No matching parent
record."

When a SET SKIP list is active, the record pointer is advanced in each table, starting with
the last work area in the relation chain and moving up the chain toward the parent table.

Example
The following example uses SET RELATION to create a relationship based on the key
field, CompCode, between the parent table, Company, and the child table, Contact:

CLOSE ALL
USE Contact EXCLUSIVE
INDEX ON Compcode TAG Compcode
SELECT 2
USE Company EXCLUSIVE
INDEX ON Company TAG Company
SET RELATION TO CompCode INTO Contact

Now the contact and the company for which they are a contact are connected. Contact,
the child table, must be indexed on Compcode. Company does not need to be indexed
on Compcode.

If you want to add a second relationship for Company, use the ADDITIVE clause. In this
example, a relationship to the TypeCo table is added. TypeCo is a code table that
contains the TYPE field used in the company table (for example, "ISV") and a description
in the TYPE_DESC field (for example, "Independent Software Vendor"):

SELECT SELECT() && Select the next open work area
USE TypeCo EXCLUSIVE && Contains a description of the type of company
INDEX ON TYPE TAG TYPE
SELECT Company
SET RELATION TO Type INTO TypeCo ADDITIVE

Now Company is simultaneously related to Contact via field Compcode and to TypeCo
via the Type field.

DISPLAY ALL Company,Contact->Contact,;
TypeCo->Type_desc

* All three tables are accessed

See Also
CREATE VIEW FROM ENVIRONMENT, JOIN, SELECT, SET FIELDS, SET FILTER,
SET SKIP, SET VIEW, SKIP

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 557

S E T R E P R O C E S S+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET REPROCESS Shared data

Specifies the number of times dBASE tries to lock a file or one or more records before
generating an error or returning .F.

Syntax
SET REPROCESS TO <expN>

<expN> A number from –1 to 32,000, inclusive, that is the number of times for dBASE to
try to lock a file or one or more records.

Default
The default for SET REPROCESS is 0, meaning dBASE doesn't try to lock a file or one or
more records after the original attempt. To change the default, set the REPROCESS
parameter in DBASEWIN.INI. To do so, either use the SET command to specify the
setting interactively, or enter the REPROCESS parameter directly in DBASEWIN.INI.

Description
Use SET REPROCESS to specify how many times dBASE should try to lock a file or one
or more records before generating an error or returning .F. SET REPROCESS affects
RLOCK(), LOCK(), and FLOCK(), and all commands and functions that automatically
attempt to lock a file or records.

SET REPROCESS TO 0 causes dBASE to prompt you to retry setting a lock or to cancel.
If you cancel, RLOCK(), LOCK(), and FLOCK() return .F., and a command that
automatically attempts to lock a file or record returns an error.

Setting SET REPROCESS to a number greater than 0 causes dBASE to retry setting a lock
the specified number of times without prompting you to confirm each retry or to cancel.

SET REPROCESS TO -1 causes dBASE to retry setting a lock without prompting you to
retry or cancel, and to continue retrying until the lock succeeds.

Example
See FLOCK() for an example for SET REPROCESS.

Portability
Not supported in dBASE III PLUS.

See Also
FLOCK(), ON ERROR, ON NETERROR, RETRY, RLOCK(), SET LOCK

558 L a n g u a g e R e f e r e n c e

S E T S A F E T Y

SET SAFETY Environment

Determines whether dBASE asks for confirmation before overwriting a file or removing
records from a table when you issue ZAP.

Syntax
SET SAFETY ON | off

Default
The default for SET SAFETY is ON. To change the default, set the SAFETY parameter in
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the SAFETY parameter directly in DBASEWIN.INI.

Description
When SET SAFETY is ON, dBASE prompts for confirmation before overwriting a file or
removing records from a table when you issue ZAP. If you want your program to
control the interaction between dBASE and the user with regard to overwriting files,
issue SET SAFETY OFF in your program.

SET SAFETY affects the following commands:

• Commands using a TO FILE option
• COPY
• COPY FILE
• COPY TO...STRUCTURE EXTENDED
• CREATE/MODIFY commands
• INDEX
• JOIN
• SAVE
• SET ALTERNATE TO
• SORT
• TOTAL
• UPDATE
• ZAP

Note SET TALK OFF does not suppress SET SAFETY warnings.

Example
This example zaps a table when safety is on and when it is off:

USE COMPANY
COPY TO TEMP
* Make a temporary table
USE TEMP EXCLUSIVE
SET SAFETY ON
ZAP
* A window titled ZAP appears and a message
* "Remove all records from TEMP.DBF" is shown.
* The user will have to OK zapping the TEMP.DBF

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 559

S E T S E P A R A T O R+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET SAFETY OFF
ZAP
* The table is zapped automatically
SET SAFETY ON
* Turn safety back on
USE
DELETE FILE TEMP.DBF
DELETE FILE TEMP.DBT
* Delete the temporary table

See Also
SET TALK

SET SEPARATOR Numeric data

Specifies the character that separates each group of three digits (whole numbers) to the
left of the decimal point in the display of numbers greater than or equal to 1000.

Syntax
SET SEPARATOR TO
[<expC>]

<expC> The whole-number separator, which is the character that separates each group of
three digits to the left of the decimal point in the display of numbers greater than or
equal to 1000. You can specify more than one character, but dBASE uses only the first
one. If you specify a number as a character for <expC> (for example, "3"), dBASE returns
an error.

Default
The default for SET SEPARATOR is set by the International option of the Windows
Control Panel. To change the default, set the SEPARATOR parameter in
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the SEPARATOR parameter directly in DBASEWIN.INI.

Description
SET SEPARATOR affects only the PICTURE "," template character and the numeric
display of byte totals for the commands DIR, DISPLAY FILES, and LIST FILES. For
example, if you SET SEPARATOR TO "."(period) and issue the following, dBASE
returns 123456 displayed as 123.456:

? 123456 PICTURE "999,999"

You must use the comma in the PICTURE function, regardless of the setting of SET
SEPARATOR. For more information on the PICTURE option, see Picture in Chapter 8.

SET SEPARATOR TO without the <expC> option resets the separator to the default set
with the International option of the Windows Control Panel.

Setting a whole-number separator with SET SEPARATOR doesn't affect the values of
numbers, only their display.

560 L a n g u a g e R e f e r e n c e

S E T S K I P

Example
See SET POINT and INT() for examples of SET SEPARATOR.

Portability
Not supported in dBASE III PLUS.

See Also
SET POINT

SET SKIP Table organization

Specifies how to advance the record pointer through records of linked tables.

Syntax
SET SKIP TO
[<alias 1> [, <alias 2>]...]

<alias1> [, <alias2>] ... The alias tables defined in a relation. You can specify a work area
number (1 through 225), letter (A through J), or alias name. The work area letter or alias
name must be enclosed in quotes. SET SKIP TO without any options cancels previous
SET SKIP settings.

Description
SET SKIP works only with tables that have been linked with the SET RELATION
command. Used together, the SET RELATION and SET SKIP commands determine the
way in which the record pointer moves through parent and child tables.

Use SET SKIP when you set a relation from a parent table containing unique key values
to child tables that contain duplicate key values, that is, a one-to-many relationship. SET
SKIP causes commands that move the record pointer to move the pointer to every
record with matching key values in a child table before moving the record pointer in the
parent table. If you define a chain of relations and use SET SKIP to move from one table
to the next down the chain, the record pointer moves to every record in the last child
table before the pointer moves in its parent table.

Example
The following example uses SET RELATION to create a relationship based on the key
field, CompCode, between the parent table, Company, and the child table, Contact. It
then uses SET SKIP in two different ways. First it accesses all contacts for each company,
and second it accesses only one contact per company:

CLOSE DATABASE
USE Contact EXCLUSIVE
INDEX ON Compcode+Contact TAG Compcont
* Compcode+Contact is used rather than just
* Compcode because now, for each company, the
* Contacts are in alphabetical order
SELECT 2
USE Company EXCLUSIVE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 561

S E T S P A C E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

INDEX ON Company TAG Company
SET RELATION TO CompCode INTO Contact
* Now the tables and relationships are established
SET SKIP TO Contact
DISPLAY ALL Company,Contact->Contact
* All contacts for all companies are shown
SET SKIP TO
DISPLAY ALL Company,Contact->Contact
* Now only one contact per company is shown

Portability
Not supported in dBASE III PLUS.

See Also
SET RELATION, SKIP

SET SPACE Input/Output

Determines whether dBASE inserts a space between expressions displayed or printed
with a single ? or ?? command.

Syntax
SET SPACE ON | off

Default
The default for SET SPACE is ON. To change the default, set the SPACE parameter in
DBASEWIN.INI.

Description
Use SET SPACE OFF when you use a single ? or ?? command to print a list of
expressions and you don't want spaces between the expressions. If you want the
expressions printed with spaces between them, issue SET SPACE ON.

SET SPACE has no effect on multiple ? or ?? commands. For example, if you issue the
command ?? <exp> twice, the second instance of <exp> will be printed adjacent to the
first, even if SET SPACE is ON. However, if SET SPACE is ON and you issue ?? <exp>,
<exp> as a single command, there will be a space between the two instances of <exp>.

Example
This example displays a first and a last name using SET SPACE ON and then SET
SPACE OFF:

Firstname="Rachel"
Lastname ="Jayes"
SET SPACE ON && the default
? Firstname,Lastname
* Rachel Jayes
SET SPACE OFF
? Firstname,Lastname

562 L a n g u a g e R e f e r e n c e

S E T S T E P

* RachelJayes
* The two variables are not separated

Portability
Not supported in dBASE III PLUS, which always adds a space between printed
expressions (as if SET SPACE were ON).

See Also
?, ??, LTRIM(), RTRIM(), TRIM()

SET STEP Error handling and debugging

SET STEP ON opens the dBASE Debugger. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, use DEBUG to open the debugger.

For complete syntax information on SET STEP, see online Help.

SET TALK Environment

Determines whether dBASE displays messages in the status bar, or displays memory
variable assignments in the results pane of the Command window.

Syntax
SET TALK ON | off

Default
The default for SET TALK is ON. To change the default, set the TALK parameter in
DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the TALK parameter directly in DBASEWIN.INI.

Description
When SET TALK is ON, dBASE uses the current SET ODOMETER setting to indicate
when operations such as COUNT and SORT are in progress in the status bar. It also
displays the results of memory variable assignments (using STORE or =) in the results
pane of the Command window.

Depending on the amount of memory your system has and the amount of memory
particular operations require, issuing SET TALK OFF might improve the performance
of some operations.

Use SET TALK with SET ALTERNATE or SET DEVICE to send SET TALK output to a
file or printer rather than to the results pane of the Command window.

Example
This example shows the effect of SET TALK ON and SET TALK OFF while creating a
memory variable:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 563

S E T T I M E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Oldtalk=SET("TALK")
SET TALK ON
First="Susan" && Susan
Last="O'Shenko" && O'Shenko
Name=Last+", "+First
SET TALK OFF
First="Tom"
Last="Frost"
Name=Last+", "+First
? Name
* Name will be set to "Frost, Tom" but this will not
* be displayed in the status bar
SET TALK &Oldtalk

When TALK is OFF, the assignment of "Tom" to First and "Frost" to Last and "Frost,
Tom" to Name are not displayed.

In the following example Count displays to the status bar when TALK is ON:

CLOSE ALL
USE COMPANY
SET TALK ON && Talk on
COUNT TO Recs && Count displays in status bar
SET TALK OFF && Talk off
COUNT TO Recs && No display

See Also
SET ALTERNATE, SET CONSOLE, SET DEVICE, SET ODOMETER, STORE

SET TIME Date and time data

Sets the system time.

Syntax
SET TIME TO <expC>

<expC> The time, which you must specify in one of the following formats:

• HH
• HH:MM or HH.MM
• HH:MM:SS or HH.MM.SS

Default
The default for the value of the system time is set by the Date/Time option of the
Windows Control Panel.

Description
Use SET TIME to reset your system's clock. Subsequent values of TIME() and the time
stamp of any files you save reflect the new time.

564 L a n g u a g e R e f e r e n c e

S E T T I T L E

Example
See SET DATE TO for an example SET TIME.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
SET DATE TO, TIME()

SET TITLE Table basics

Turns the catalog file title prompt on or off.

Syntax
SET TITLE ON | off

Default
The default for SET TITLE is ON. To change the default, set the TITLE parameter in
DBASEWIN.INI. To change the default, update the TITLE setting in DBASEWIN.INI.
To do so, either use the SET command to specify the setting interactively, or enter the
TITLE parameter directly in DBASEWIN.INI.

Description
When SET CATALOG is ON, files are automatically added to the catalog whenever
they are created, used, or saved. If SET TITLE is ON, you are prompted to enter a file
title or description to accompany the file entry in the catalog. Otherwise, this prompt
does not appear.

When you create files from the Command window and a catalog is open, files are added
to the catalog, but you are not prompted to enter a description.

To enter a title or modify other information in a catalog file, use commands such as
BROWSE, EDIT, or REPLACE. You can open and modify a catalog file in any work area,
but you cannot modify a catalog opened by SET CATALOG.

Example
The following example uses SET TITLE OFF to disable the prompt to enter a file title for
the catalog record when a newly created file is added to the open catalog:

SET CATALOG ON
SET CATALOG TO Learn
SET TITLE OFF
CREATE NewNames TYPE DBASE FROM Customer TYPE PARADOX
USE NewNames TYPE DBASE
BROWSE

See Also
CATALOG(), CREATE CATALOG, SELECT(), SET CATALOG, USE

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 565

S E T T O P I C+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET TOPIC Windows programming

Specifies a Help topic to display initially.

Syntax
SET TOPIC TO [<expC>]

<expC> The help topic keyword. If you omit <expC>, dBASE displays the Help
Contents topic by default.

Default
The default for SET TOPIC is an empty string. To change the default, update the TOPIC
setting in dBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the TOPIC parameter directly in DBASEWIN.INI.

Description
Use SET TOPIC to display a specified topic each time:

• The HELP command is executed.
• The user presses F1 while the cursor is in the Command window.

You specify the topic with <expC>, the help topic keyword. If you specify the entire
keyword, the Help system displays the topic immediately. If you specify only initial
characters, the Help system displays the Search dialog box, a tool that lets users select
topics from a list. The first topic whose Help keyword has <expC> in its leftmost position
is highlighted automatically. For example, executing SET TOPIC TO "CA", then HELP
displays the Search dialog box with CALCULATE highlighted.

When the user presses F1 while the cursor isn't in the Command window, the Help
system is context-sensitive and ignores the SET TOPIC TO setting. For example, if you
execute SET TOPIC TO "CA", then execute BROWSE, pressing F1 displays information
on the Table Editor rather than CALCULATE.

Example
The following example would change the help topic based on a menu choice:

DO CASE
CASE MenuChoice = 1

SET TOPIC TO "BROWSE"
BROWSE && dBASE BROWSE

CASE MenuChoice = 2
SET TOPIC TO "EDIT"
EDIT && dBASE EDIT

CASE MenuChoice = 3
SET TOPIC TO "SET"
SetOptions && User procedure to set various settings. ;

Topic will bring up search window in help with ;
SET... topics displayed

CASE MenuChoice = 4
QUIT

ENDCASE

566 L a n g u a g e R e f e r e n c e

S E T T Y P E A H E A D

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
HELP, HelpFile, HelpID, SET HELP TO

SET TYPEAHEAD Keyboard and mouse events

Sets the size of the typeahead buffer, where keystrokes are stored while dBASE is busy
processing other data. This command is supported primarily for compatibility with
dBASE IV. In Visual dBASE, forms do not use the typeahead buffer.

For complete syntax information on SET TYPEAHEAD, see online Help. For
information about working with forms, see the Forms chapters in the User's Guide.

SET UNIQUE Table organization

Determines if records with duplicate key values appear in an index file.

Syntax
SET UNIQUE on | OFF

Default
The default for SET UNIQUE is OFF. To change the default, update the UNIQUE setting
in DBASEWIN.INI. To do so, either use the SET command to specify the setting
interactively, or enter the UNIQUE parameter directly in DBASEWIN.INI.

Description
Use SET UNIQUE ON to include only the first record with the same key value in .MDX
and .NDX indexes created with the INDEX command. When SET UNIQUE is OFF,
indexes you create can include records with identical key values; records with identical
keys are arranged by record number in the index.. Whenever you reindex an index file,
Visual dBASE maintains the index in the same way it was created.

Visual dBASE processes unique indexes only once. Therefore, a previously hidden key
value is not automatically updated when it is changed. Also, if you append a record that
contains an index key that is already in the index file, the new record is not added to the
index file, although the table is updated with the new record. REINDEX explicitly
updates all key values in a unique index.

Following SET UNIQUE ON with an INDEX command is equivalent to issuing the
single command INDEX...UNIQUE.

Example
The following example uses SET UNIQUE to make an index with just one record per
state:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 567

S E T V I E W+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

USE Clients EXCLUSIVE
INDEX ON State_Prov TAG State
SET UNIQUE ON
INDEX ON State_Prov TAG UnqState
SET UNIQUE OFF && RESET UNIQUE
SET ORDER TO TAG State
BROWSE FIELDS State_Prov, Company ;

TITLE "All records"
SET ORDER TO TAG Unqstate
BROWSE FIELDS State_Prov, Company ;

TITLE "One record per State"
COUNT TO numstates
WAIT "There are companies in " + LTRIM(STR(numstates)) + " states"

See Also
INDEX, REINDEX, SET(), SET INDEX, SET ORDER, UNIQUE(), USE

SET VIEW Table organization

Opens a previously defined query or view file.

Syntax
SET VIEW TO <filename> | ? | <filename skeleton>

<filename> | ? | <filename skeleton> The query or view file containing the settings to define
the current working environment or view. SET VIEW TO ? and SET VIEW TO <filename
skeleton> display a dialog box, in which you select a view file. If you specify a file
without including its path, Visual dBASE looks for the file in the current directory, then
in the path you specify with SET PATH. If you specify a file without including its file-
name extension, Visual dBASE looks for a .QBE, then a .VUE file.

Description
Use SET VIEW to change the working environment to one that was previously defined
by CREATE QUERY, CREATE VIEW, or CREATE VIEW...FROM ENVIRONMENT.
The working environment includes open tables and index files, all relations, the active
fields list, and filter conditions.

Example
See CREATE VIEW ... FROM ENVIRONMENT for an example of SET VIEW.

See Also
CREATE QUERY, CREATE VIEW, CREATE VIEW...FROM ENVIRONMENT

568 L a n g u a g e R e f e r e n c e

S E T W I N D O W O F M E M O

SET WINDOW OF MEMO Fields and records

Specifies a window to use while editing the contents of a memo field.

Syntax
SET WINDOW OF MEMO TO [<window name>]

TO <window name> Specifies the name of a previously defined window to be used for
editing the contents of a memo field.

Description
Use the SET WINDOW OF MEMO command to use a previously defined window to
edit memo fields when you are using commands such as APPEND, BROWSE,
CHANGE, EDIT, or READ. The WINDOW clause that you specify with the
@...SAY...GET command for editing memo fields overrides the window specified with
this command.

If you specify SET WINDOW OF MEMO TO without specifying the name of a window,
Visual dBASE clears any previously defined window name.

Example
The following example uses SET WINDOW OF MEMO to specify a window to use for
editing a memo field:

DEFINE WINDOW MainWindow FROM 1, 1 TO 15,70
DEFINE WINDOW MemoEdit FROM 6,30 TO 14,68
USE Company EXCLUSIVE
ACTIVATE WINDOW MainWindow
SET WINDOW OF MEMO TO MemoEdit
@ 2, 1 GET Notes OPEN WINDOW MemoEdit
READ
CLOSE DATABASES
DEACTIVATE WINDOW MainWindow

Portability
Not supported in dBASE III PLUS.

See Also
ACTIVATE WINDOW, CLEAR WINDOW, DEFINE WINDOW, MOVE WINDOW

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 569

S E T ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SET() Environment

Returns the current setting of a SET command or function key.

Syntax
SET(<expC>)

<expC> A character expression that is the SET command or function key whose setting
value to return.

Description
Use SET() to learn a SET or function key setting so that you can change it or save it. For
example, you can issue SET() at the beginning of a program to learn current settings.
You can then save these settings in memory variables, change the settings, and restore
the original settings from the memory variables at the end of the program.

When dBASE supports a SET and a SET…TO command that use the same keyword,
SET() returns the on|off setting and SETTO() returns the SET…TO setting. For
example, you can issue SET CARRY ON, SET CARRY OFF, or SET CARRY TO <field
list>. SET("CARRY") returns "ON" or "OFF" and SETTO("CARRY") returns the field list
as a character expression.

If dBASE supports a SET…TO command but not a corresponding SET command, SET()
and SETTO() both return the SET…TO value. For example, SET("BLOCKSIZE") and
SETTO("BLOCKSIZE") both return the same value.

When <expC> is a function key name, such as "F4", SET() returns the function key
setting. To return the value of a Ctrl+function key setting, add 10 to the function key
number; to return the value of a Shift+function key setting, add 20 to the function key
number. That is, to return the value of Ctrl+F4, use SET("F14"), and to return the value of
Shift+F4, use SET("F24").

If a procedure file is open, SET("PROCEDURE") returns the name of the procedure file.
If more than one procedure file is open, SET("PROCEDURE") returns the name of the
first one loaded. To return the name of another open procedure file, enter a number as
the second argument; for example, SET("PROCEDURE",2) returns the name of the
second procedure file that was loaded. If no procedure files are open,
SET("PROCEDURE") returns an empty string ("").

The command you specify for <expC> can be abbreviated to four letters in most cases,
following the same rules as those for abbreviating keywords. For example, SET("DECI")
and SET("DECIMALS") have the same meaning. The <expC> argument is not case-
sensitive.

Example
In this example, you see a typical use of SET(). The current color settings are obtained
using SET() and saved. The colors are changed, some work is performed (in this case,
simply clearing the screen) and the original setting is then restored:

Oldcolors=SET("ATTRIBUTE")
SET COLOR TO G/B,R/B

570 L a n g u a g e R e f e r e n c e

S E T ()

CLEAR
SET COLOR TO &Oldcolors
* Old colors restored

The following example shows most of the SET() arguments along with the kind of
response obtained:

? SET("F1") && help;
? SET("ALTERNATE") && ON
? SET("ATTRIBUTE") && RGB+/B,N/W,N/G && N/G,W/B,RGB+/B,B/W,N/W
? SET("AUTO") && OFF
? SET("BELL") && ON
? SET("CARRY") && OFF
? SET("CATALOG") && OFF
? SET("CENTURY") && OFF
? SET("CONFIRM") && OFF
? SET("CONSOLE") && ON
? SET("COVER") && OFF
? SET("CUAENTER") && ON
? SET("CURRENCY") && LEFT
? SET("DELIMITER") && OFF
? SET("DELETED") && OFF
? SET("DESIGN") && ON
? SET("ECHO") && OFF
? SET("ENCRYPTION") && OFF
? SET("ESCAPE") && ON
? SET("EXACT") && OFF
? SET("EXCLUSIVE") && OFF
? SET("FIELDS") && OFF
? SET("FORMAT") && ""
? SET("FULLPATH") && OFF
? SET("HEADING") && ON
? SET("HELP") && ON
? SET("INTENSITY") && ON
? SET("LIBRARY") && ""
? SET("LOCK") && ON
? SET("MARGIN") && 0
? SET("MARK") && /
? SET("MEMOWIDTH") && 50
? SET("MESSAGE") && ""
? SET("NEAR") && OFF
? SET("ODOMETER") && 100
? SET("ORDER") && ""
? SET("PATH") && ""
? SET("PCOL") && 0
? SET("POINT") && .
? SET("PRECISION") && 16
? SET("PRINTER") && OFF
? SET("RELATION") && ""
? SET("REPROCESS") && 0
? SET("SAFETY") && OFF
? SET("SEPARATOR") && ,
? SET("SKIP") && ""
? SET("SPACE") && ON
? SET("STEP") && OFF
? SET("TALK") && ON

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 571

S E T T O ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

? SET("TOPIC") && ""
? SET("TYPE") && 50
? SET("UNIQUE") && OFF

Portability
Not supported in dBASE III PLUS.

See Also
DISPLAY STATUS, SET, SETTO()

SETTO() Environment

Returns the current setting of a SET...TO command or function key.

Syntax
SETTO(<expC>)

<expC> A character expression that is the SET...TO command whose setting value to
return.

Description
Use SETTO() to learn a SET or function key setting so that you can change it or save it.
For example, you can issue SETTO() at the beginning of a program to learn current
settings. You can then save these settings in memory variables, change the settings, and
restore the original settings from the memory variables at the end of the program.

When dBASE supports a SET and a SET…TO command that use the same keyword,
SET() returns the SET setting and SETTO() returns the SET…TO setting. For example,
you can issue SET CARRY ON, SET CARRY OFF, or SET CARRY TO <field list>.
SET("CARRY") returns the ON or OFF setting and SETTO("CARRY") returns the field
list as a character expression.

SETTO() is almost identical to SET(). For more information, see SET().

Example
In this example, you see a typical use of SETTO() when printing a special report to a
particular printer. The current setting of SET PRINTER TO is stored. SET PRINTER TO
is set to LPT2 and a report is printed. The original setting is then restored:

Oldprintto=SETTO("PRINTER") && e.g. LPT1
SET PRINTER TO LPT2
REPORT FORM Myreport TO PRINTER
SET PRINTER TO &Oldprintto

The following example shows most of the SETTO() arguments along with the kind of
response obtained:

572 L a n g u a g e R e f e r e n c e

S E T T O ()

? SETTO("ALTERNATE") && D:\VISUALDB\EXAMPLES\SETTO().RES
? SETTO("BORDER") && SINGLE
? SETTO("BELL") && 512,2
? SETTO("BLOCK") && 1
? SETTO("CATALOG") &&
? SETTO("CURRENCY") && $
? SETTO("DATE") && MDY
? SETTO("DECIMALS") && 2
? SETTO("DELIMITER") && ::
? SETTO("DEVICE") && SCREEN
? SETTO("DIRECTORY") && D:\VISUALDB\EXAMPLES
? SETTO("DISPLAY") && EGA25
? SETTO("EDITOR") &&
? SETTO("FILTER") &&
? SETTO("FIELDS") &&
? SETTO("FORMAT") &&
? SETTO("HELP") && DBASEWIN.HLP
? SETTO("IBLOCK") && 1
? SETTO("LIBRARY") &&
? SETTO("MARGIN") && 0
? SETTO("MARK") && /
? SETTO("MEMOWIDTH") && 50
? SETTO("MESSAGE") &&
? SETTO("ORDER") &&
? SETTO("PATH") &&
? SETTO("PCOL") && 0
? SETTO("POINT") && .
? SETTO("PRECISION") && 16
? SETTO("PROCEDURE") &&
? SETTO("PROW") && 0
? SETTO("PRINTER") && LPT1
? SETTO("RELATION") &&
? SETTO("REFRESH") && 0
? SETTO("RETRACE") && OFF
? SETTO("SEPARATOR") && ,
? SETTO("SKIP") &&
? SETTO("TOPIC") &&

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DISPLAY STATUS, SET, SET()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 573

S H E L L ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SHELL() Environment

Removes or restores the dBASE interactive environment (known as the shell) when a
form is open. Returns a logical value corresponding to the previous SHELL() state.

Syntax
SHELL([<expL1>], [<expL2>])

<expL1> The value that determines whether to hide or restore the shell. If <expL1> is
false (.F.), dBASE hides the shell.

<expL2> The value that determines whether the dBASE Application window remains
visible when the shell is hidden. If <expL2> is true (.T.), the Application window is
visible. If <expL1> is true, the full shell is on and <expL2> is ignored. If you open an MDI
form, the Application window stays visible (to contain the form) regardless of the
<expL2> value.

Description
Use SHELL(.F.) in programs to temporarily hide the standard dBASE environment,
allowing your application to take control of the user's working environment. To restore
the dBASE interactive environment, issue SHELL(.T.). The environment is also restored
when the user closes the form that SHELL() is activated for.

SHELL(.F., .F.) operates differently when you are working in a form that is defined as a
top-level MDI form (formname.MDI=.F.) or in a form that is not a top-level MDI form
(formname.MDI=.T.).

• When formname.MDI=.F. for the active form, SHELL(.F., .F.) appears to remove
dBASE from the user's system. The form name becomes the application name that
appears in the Windows Task List in place of "Visual dBASE." This makes your
application look like a standalone application, and is the typical use for SHELL().

• When formname.MDI=.T. for the active form, the menu system associated with the
form appears as the menu at the top of the screen instead of at the top of the form.
The user remains in dBASE, but the dBASE menu is replaced by the menu defined by
the active form. However, the user can still access the SpeedBar if it is active. The user
can click in the Command window to close the form.

Using SHELL() in a program has the same effect as changing the Visible property of the
FrameWin object of _app, as shown in the following example. For more information, see
_app.

SHELL(.F.) && same effect as next line
_app.FrameWin.Visible = .F.

If you issue SHELL(.F.) in the Command window, you exit to Windows momentarily
and then return to dBASE.

Example
This example shows the code generated by the form designer for a Shell Test form that
simply sets the left double click button to SHELL(.t.) and the right double click button to
SHELL(.f.).

574 L a n g u a g e R e f e r e n c e

S H O W M E N U

LOCAL f
f = NEW SHELL ()
f.Open()

CLASS SHELL OF FORM
this.OnRightDblClick = {shell(.t.)}
this.OnLeftDblClick = {shell(.f.)}
this.EscExit = .T.
this.mdi = .f.
* set mdi=.t. to see effect with mdi
this.Text = "Shell Test .t."
this.Width = 48.00
this.Top = 2.00
this.Left = 2.00
this.Height = 15.00
this.Minimize = .F.
this.Maximize = .F.

ENDCLASS

When the form is activated e.g. with DO Shell.wfm, the Shell Test form appears on the
screen (with mdi=.f.). Double clicking with the left mouse button makes other windows
in the dBASE screen disappear. Double clicking with the right button makes them
reappear. * When you set mdi=.t., the Shell Test form can be accessed by pressing Ctrl
Tab to show the Windows windows.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
_app, DEFINE, QUIT, SET DESIGN

SHOW MENU dBASE IV menus

Displays, but does not enable, a previously-defined dBASE IV menu bar. This command
is supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE,
OPEN FORM, and READMODAL() to create and activate menus associated with
forms.

For complete syntax information on SHOW MENU, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 575

S H O W O B J E C T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SHOW OBJECT Objects

Updates the appearance of an object to reflect its most recent property settings.

Syntax
SHOW OBJECT <container reference>.<object reference>

<container reference>.<object reference> <container reference> is an object reference variable
pointing to the object (usually a form) that contains the object. <object reference> is an
object reference variable pointing to the object itself.

Description
Use SHOW OBJECT to refresh an object on the screen. For example, when you change a
bitmap image on a push button with the UpBitMap property, SHOW OBJECT makes
the new image appear in the push button.

Example
The following example defines a form with two pushbuttons that move the record
pointer. An OnClick property calls a procedure that evaluates record pointer position
with regard to EOF() or BOF(). If the record pointer is located at EOF() or BOF(), the
procedure changes properties of the buttons and uses SHOW OBJECT to refresh the
displayed button as per the new properties. The ELSE clause of the procedure refreshes
the pushbutton to original property values and moves the record pointer:

USE ANIMALS
SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM F1;

PROPERTY Text "SHOW OBJECT Command Demo"
DEFINE PUSHBUTTON P1 OF F1 AT 9,15;

PROPERTY Text "Previous",;
Width 12, Height 2,;
OnClick Prev

DEFINE PUSHBUTTON P2 OF F1 AT 12,15;
PROPERTY Text "Next",;
Width 12, Height 2,;
OnClick Next

OPEN FORM F1

PROCEDURE Prev
IF BOF()

Form.P1.Text = "You are at BOF"
Form.P1.Width = 16
Form.P1.Left = 12
SHOW OBJECT form.P1

ELSE
Form.P1.Text = "Previous"
Form.P1.Width = 10
Form.P1.Left = 15
SHOW OBJECT form.P1
SKIP-1

ENDIF
RETURN

576 L a n g u a g e R e f e r e n c e

S H O W P O P U P

PROCEDURE Next
IF EOF()

Form.P2.Text = "You are at EOF"
Form.P2.Width = 16
Form.P2.Left = 12
SHOW OBJECT form.P2

ELSE
Form.P2.Text = "Next"
Form.P2.Width = 10
Form.P2.Left = 15
SHOW OBJECT form.P2
SKIP

ENDIF
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
UpBitMap

SHOW POPUP dBASE IV menus

Displays, but does not enable, a previously-defined dBASE IV pop-up menu. This
command is supported primarily for compatibility with dBASE IV. In Visual dBASE,
use DEFINE, OPEN FORM, and READMODAL() to create and activate menus
associated with forms.

For complete syntax information on SHOW POPUP, see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

SIGN() Numeric data

Returns an integer that indicates if a specified number is positive, negative, or zero (0).

Syntax
SIGN(<expN>)

<expN> The numeric or float number whose sign (positive, negative, or zero) to
determine.

Description
Use SIGN() to determine if a numeric or float expression evaluates to a positive,
negative, or zero (0) value. SIGN() returns 1 if a specified number is positive, -1 if that
number is negative, and 0 if that number is 0.

SIGN() always returns an integer, regardless of the value of SET DECIMALS.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 577

S I N ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
The following examples illustrate the three possible returned values of SIGN():

x = -1234.45
y = 1234.45
z = 0
? SIGN(x) && Returns -1
? SIGN(y) && Returns 1
? SIGN(z) && Returns 0

The following example uses SIGN() to display those records in the Clients table that
have zero or positive balances in the StartBal field:

USE Clients
? "Companies with a starting balance of $00.00"
?
SCAN FOR SIGN(StartBal)=0
? Company, StartBal
ENDSCAN
?
? "Companies with a starting balance greater " + "than $00.00"
?
SCAN FOR SIGN(StartBal)=1
? Company, StartBal
ENDSCAN
CLOSE DATABASES

Portability
Not supported in dBASE III PLUS.

See Also
ABS(), MAX(), MIN(), SET DECIMALS

SIN() Numeric data

Returns the trigonometric sine of an angle.

Syntax
SIN(<expN>)

<expN> The size of the angle in radians. To convert an angle's degree value to radians,
use DTOR(). For example, to find the sine of a 30-degree angle, use SIN(DTOR(30)).

Description
SIN() calculates the ratio between the side opposite an angle and the hypotenuse in a
right triangle. SIN() returns a float from -1 to +1. SIN() returns zero when <expN> is
zero, pi, or 2pi radians.

Use SET DECIMALS to set the number of decimal places SIN() displays.

578 L a n g u a g e R e f e r e n c e

S K I P

The cosecant of an angle is the reciprocal of the sine of the angle. To return the cosecant
of an angle, use 1/SIN().

Example
Following are some ways to use SIN():

? SIN(PI()) && Returns 0
? SIN(PI()/2) && Returns 1
? SIN(DTOR(30)) && Returns 0.5
? SIN(-3*PI()/2) && Returns 1
? -SIN(3*PI()/2) && Returns 1

The following program graphs a sine wave. It first draws the x- and y-axes, then plots
the points SIN() returns:

* Sine.prg
SET TALK OFF
CLEAR
* Draw the x and y axes
@ 11,0 SAY REPLICATE("-", 78)
FOR i = 0 TO 23

@ i,40 SAY "|"
NEXT
@ 11,40 SAY "."

FOR i = 0 to 79
y = 11 - 11 * SIN(i * PI()/20)
@ y,i SAY "."

NEXT
@ 23,0 && Move cursor below graph
SET TALK ON

Portability
Not supported in dBASE III PLUS.

See Also
ASIN(), COS(), DTOR(), PI(), RTOD(), SET DECIMALS, TAN()

SKIP Fields and records

Moves the record pointer in the current or specified work area.

Syntax
SKIP
[<expN>]
[IN <alias>]

<expN> The number of records Visual dBASE moves the record pointer forward or
backward in the table open in the current or specified work area. If <expN> evaluates to
a negative number, the record pointer moves backward. SKIP with no <expN>
argument moves the record pointer forward one record.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 579

S K I P+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

IN <alias> Specifies the work area in which to move the record pointer. You can specify a
work area number (1 through 225), letter (A through J), or alias name. The work area
letter or alias name must be enclosed in quotes. SKIP without IN <alias> moves the
record pointer in the current work area.

Description
Use SKIP to move the record pointer relative to its current position. For an unindexed
table, the record pointer moves a specified number of records. For an indexed table, the
record pointer skips the specified number of records following the index record order.

If you issue a SKIP command when the record pointer is at the last record in a table,
EOF() returns .T. Issuing any additional SKIP commands returns an error. Similarly, if
you issue a SKIP -1 command when the record pointer is at the first record of a file,
BOF() returns .T., and a subsequent negative SKIP command returns an error.

SKIP IN <alias> lets you advance the record pointer in another work area without
selecting that work area first with the SELECT command.

Example
The following example uses SKIP to move the record pointer through the records of a
table to display or print a listing of selected fields:

SET SAFETY OFF
SET TALK OFF
USE Country EXCLUSIVE
INDEX ON GNP TAG GNP
? CENTER("Country List-Lowest GNP First")
?
DO WHILE .NOT. EOF()

? Name AT 2, GNP AT 20, Capital AT 40
SKIP

ENDDO
CLOSE ALL

SKIP accompanied with a negative expression can be used to accomplish the reverse of
the previous example:

USE Country EXCLUSIVE
INDEX ON Population TAG Pop
? CENTER("Country List-Most Populous First")
?
GO BOTTOM
DO WHILE .NOT. BOF()

? Name AT 2, Population AT 20, Capital AT 40
SKIP-1

ENDDO
CLOSE ALL
SET TALK ON
SET SAFETY ON
RETURN

See Also
ALIAS(), BOF(), EOF(), GO, SCAN

580 L a n g u a g e R e f e r e n c e

S L E E P

SLEEP Programs

Pauses a program for a specified interval or until a specified time.

Syntax
SLEEP <seconds expN> |
UNTIL <time expC> [,<date expC>]

<seconds expN> The number of seconds to pause the program. The numeric expression
must evaluate to an integer ranging from 1 to 65,535 (1 second to about 18 hours).
Counting starts from the time you issue the SLEEP command.

UNTIL <time expC> Causes program execution to pause until a specified time
(<time expC>) on the current day. If you also specify <date expC>, the program pauses
until the time on that day. The time and date dBASE uses are the system time and date.
You can set the system time with SET TIME and the system date with SET DATE TO. If
the time has already passed, SLEEP UNTIL <time expC> has no effect.

The <time expC> argument is a character expression that must evaluate to a time in
HH<delimiter>MM<delimiter>SS (24-hour) format. A typical format for <time expC> is
"HH:MM:SS". The delimiter is conventionally a colon but can be any other single
keyboard character except a number. HH is a 1- or 2-digit number of hours, MM a 1- or
2-digit number of minutes, and SS a 1- or 2-digit number of seconds.

<date expC> An optional date until which the program is to pause. The <date expC>
argument is a character expression (not a date expression) that must evaluate to a date in
MM<delimiter>DD<delimiter>YY format if SET DATE is AMERICAN. (The typical
format is "MM/DD/YY".) The delimiter for <date expC> is conventionally a forward
slash (/) but can be any other single keyboard character except a number. MM is a one-
or two-digit number of months, DD a one- or two-digit number of days, and YY a one-
or two-digit number of years. If the date has already passed, SLEEP UNTIL <time expC>
[,<date expC>] has no effect. If you want to specify a value for <date expC>, you must also
specify a value for <time expC>.

Description
Use SLEEP to pause a program either for <seconds expN> seconds or until a specified
time (<time expC>). The specified time is the same day the program is running unless
you specify a date with <date expC>. If SET ESCAPE is ON, you can interrupt SLEEP by
pressing Esc.

Note If SET ESCAPE is OFF, there is no way to interrupt SLEEP. However, you can use
Ctrl+Esc and Alt+Tab to switch to another Windows application, or Alt+F4 to exit dBASE.

Although SLEEP can generate a pause from the Command window, programmers use
it primarily within programs. For example, you can use SLEEP to generate a pause
between multiple displaying windows or to allow a user to read a message on the
screen or complete an action. Pauses are also useful when you need to delay program
execution until a specific time.

SLEEP is an alternative to using a DO WHILE loop, a FOR...NEXT loop, or WAIT to
generate pauses in a program. SLEEP is more accurate than using loops because it's

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 581

S O R T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

independent of the execution speed of the system. You can also use INKEY(<expN>) if
you want the user to be able to interrupt the pause and continue with program
processing.

Example
The following example uses SLEEP to delay execution for five seconds:

SET ESCAPE ON
* ESCAPE ALLOWS YOU TO ABORT THE SLEEP COMMAND
SLEEP 5

The next example uses SLEEP to delay execution until 7:30 p.m. on the same day the
program is running:

SET ESCAPE ON
* ESCAPE ALLOWS YOU TO ABORT THE SLEEP COMMAND
SLEEP UNTIL "19:30:00"

The last example uses SLEEP to delay execution until 5:30 p.m.: on May 31, 1997 (SET
DATE is AMERICAN):

SET ESCAPE ON
* ESCAPE ALLOWS YOU TO ABORT THE SLEEP COMMAND
SLEEP UNTIL "17:30:00", "05/31/97"

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DO WHILE, FOR...NEXT, INKEY(), SET DATE TO, SET TIME, WAIT

SORT Table organization

Copies the current table to a new table, arranging records in the specified order.

Syntax
SORT TO <filename> | ?
[[TYPE] PARADOX | DBASE]
ON <field 1> [/A | /D [/C]]

 [,<field 2> [/A | /D [/C]]...]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[ASCENDING | DESCENDING]

<filename> | ? The new table file to copy and sort the current table's records to. By
default, Visual dBASE assigns a .DBF extension to <filename> and saves the file in the
current directory. The ? option displays a dialog box, in which you specify the name of
the target file and the directory to save it in.

582 L a n g u a g e R e f e r e n c e

S O R T

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box, in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create. The TYPE
keyword is included for readability only; it has no effect on the operation of the
command.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, Visual dBASE assigns a .DBF extension.

Specifying PARADOX creates a Paradox table with a .DB extension.

ON <field 1> Makes <field 1> the first field of <filename>and sorts <filename> records by
the values in <field 1>, which can be any data type except binary, memo, or OLE.

/A Sorts records in ascending order (A to Z; 1 to 9; past to future; false then true). Since
this is the default sort order, include /A for readability only.

/D Sorts records in descending order.

/C Removes the distinction between uppercase and lowercase letters. When you
specify both A and C, or both D and C, use only one forward slash (for example, /AC).

<field 2> [/A | /D [/C]] ... Sorts on a second field so that the new table is ordered first
according to <field 1>, then, for identical values of <field 1>, according to <field 2>. If a
third field is specified, records with identical values in <field 1> and in <field 2> are then
sorted according to <field 3>. The sorting continues in this way for as many fields as are
specified.

<scope> The number of records to copy from the current table to <filename> and sort.
RECORD <n> identifies a single record by its record number. NEXT <n> identifies n
records, beginning with the current record. ALL specifies all records. REST specifies all
records from the current record to the end of the file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by SORT. FOR restricts SORT
to records that meet <condition 1>. WHILE starts with the current record and continues
with each subsequent record as long as <condition 2> is true.

ASCENDING Sorts all specified fields for which you don't include a sort order in
ascending order. Since this is the default, include ASCENDING for readability only.

DESCENDING Sorts all specified fields for which you don't include a sort order in
descending order.

Description
The SORT command creates a new table in which the records in the current table are
positioned in the order of the specified key fields. Records marked for deletion are
ignored if SET DELETED is ON.

When you use SORT, dBASE creates a temporary index file. During the sorting process,
your disk must have space for this temporary index file and the new table file.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 583

S O R T+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SORT differs from INDEX in that it creates a new table rather than provide an index to
the original table. Although using SORT is generally not as efficient as using an index to
organize tables, you might want to use SORT for the following applications:

• To archive an outdated table and store it in a sorted order

• To create a table that is a sorted subset of an original table

• To maintain a small table that needs to be sorted in only one order

• To create an ordered table where record numbers are sequential and contiguous

You might also want to sort a table according to the order of an index file that it
commonly uses if the data in the table doesn't change frequently, since Visual dBASE
can access a table sorted in index order much faster than an unsorted table. In a table
sorted in index order, sequential records are next to each other on the disk.

Example
The following example uses SORT to make new tables:

USE Clients
SET DELETED ON
* remove the deleted records
SORT TO ClientC ON Company /C
USE ClientC
BROWSE FIELDS Company;

TITLE "Sorted by Company, case ignored"

ClientC is sorted by Company ignoring upper- and lowercase.

USE Clients
SORT TO ClientP ;

ON State_Prov , City /D, Company /DC;
FOR Zip_postal = "9" TYPE PARADOX

* Sort:
* State Ascending by default
* City Descending
* Company descending and ignoring case
* Only Zip_postal codes beginning with 9
* Creating a paradox table
SET DBTYPE TO PARADOX
USE ClientP
BROWSE;

FIELDS Company, City, State_Prov, Zip_postal ;
TITLE "Paradox file"

SET DBTYPE TO && reset to dBASE

See Also
INDEX

584 L a n g u a g e R e f e r e n c e

S O U N D E X ()

SOUNDEX() String data

Returns a four-character string that represents the SOUNDEX (sound-alike) code of
another string.

Syntax
SOUNDEX(<expC> | <memo field>)

<expC> | <memo field> The string or memo field for which to calculate the soundex code.
The string or memo can be any word or nonword that is a particular sound when
spoken. The string or memo can also be more than one word or nonword with spaces
between the words.

Description
SOUNDEX() returns a four-character code that represents the phonetic value of a
character expression or memo field. The code is in the form "letter digit digit digit,"
where "letter" is the first alphabetic character in the expression being evaluated. The
more phonetically similar two strings are, the more similar their SOUNDEX codes.

Use SOUNDEX() to find words that sound similar, or are spelled similarly, such as
names like "Smith," "Smyth," and "Smythe." Using the U.S. language driver, these all
evaluate to S531. You can index a table on the SOUNDEX() value of a field, then use
FIND or SEEK with SOUNDEX() for names that users want to search for. For example,
if a user wants to search for "Smith," convert "Smith" to SOUNDEX("Smith"), then search
for that code in a table with a master index based on SOUNDEX(lastname). You can also
use SOUNDEX() with LOCATE.

SOUNDEX() returns "0000" if the character expression or memo field is an empty string
or if the first nonblank character isn't a letter. SOUNDEX() returns 0's for the first digit
encountered and for all following characters, regardless of whether they're digits or
alphabetic characters.

To compare the SOUNDEX values of two character expressions or memo fields, use
DIFFERENCE(). If you want to compare the character-by-character similarity between
two strings rather than the phonetic similarity, use LIKE().

SOUNDEX() is language driver-specific. For more information on language drivers, see
Appendix C in the Programmer's Guide.

If the current language driver is U.S., SOUNDEX() does the following to calculate the
phonetic value of a string:

• Ignores leading spaces.

• Ignores the letters A, E, I, O, U, Y, H, and W.

• Ignores case.

• Converts the first nonblank character to uppercase and makes it the first character in
the SOUNDEX code.

• Converts B, F, P, and V to 1.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 585

S O U N D E X ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

• Converts C, G, J, K, Q, S, X, and Z to 2.

• Converts D and T to 3.

• Converts L to 4.

• Converts M and N to 5.

• Converts R to 6.

• Removes the second occurrence of any adjacent letters that receive the same digits as
phonetic values.

• Pads the end of the resulting string with zeros if fewer than three digits remain.

• Truncates the resulting string to three digits if more than three digits remain.

• Concatenates the first character of the code to the remaining three digits to create the
"letter digit digit digit" soundex code.

Example
The following example uses SOUNDEX() to get a code value for the sound of each text
string:

? SOUNDEX("bo") && Returns B000
? SOUNDEX("beau") && Returns B000
? SOUNDEX("bow") && Returns B000
? SOUNDEX("bow") = SOUNDEX("beau") && Returns .T.
? SOUNDEX("Conrad") && Returns C563
? SOUNDEX("") && Returns 0000
? SOUNDEX("1dBASEWay") && Returns 0000
? SOUNDEX("Go5ldenArches") && Returns G000
? SOUNDEX("Gol5denArches") && Returns G400

The next example uses SOUNDEX() when displaying the contents of a field:

USE Clients
? TRIM(City) + " returns a value of " + SOUNDEX(City); && Returns "Atlanta returns ;

a value of A345"
CLOSE DATABASES

Portability
Not supported in dBASE III PLUS. The <memo field> argument isn't supported in
dBASE IV.

See Also
DIFFERENCE(), FIND, INDEX, LIKE(), LOCATE, SEEK, SET EXACT

586 L a n g u a g e R e f e r e n c e

S P A C E ()

SPACE() String data

Returns a specified number of space characters.

Syntax
SPACE(<expN>)

<expN> The number of spaces to return.

Description
SPACE() returns a character string composed of a specified number of space characters.
The space character is ASCII code 32. The largest number of spaces you can specify is
32766, the maximum length of a string.

If <expN> is 0, SPACE() returns an empty string. If <expN> is less than 0, dBASE
displays an error.

To create a string using a character other than space, use REPLICATE().

Example
The following example uses SPACE() to initialize character memory variables of a
specified length.

mCompany=SPACE(20) && mCompany contains 20 spaces
STORE SPACE(20) TO mCompany && same as above

The following example uses SPACE() to create spacing in output text. The example
would return a trimmed city name, a comma and space, a two-letter State code, five
spaces and the Zipcode.

USE Clients
SCAN
? Company
? Contact
? Address
? TRIM(City) + ", " + State_Prov + SPACE(5);
+ Zip_P_Code
?
ENDSCAN

Portability
Both dBASE IV and dBASE III PLUS limit the return value of SPACE() to 254
characters.

See Also
ASC(), CHR(), REPLICATE()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 587

S Q L E R R O R ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SQLERROR() Error handling and debugging

Returns the number of the last server error.

Syntax
SQLERROR()

Description
Use SQLERROR() to determine the error number of the last server error. To learn the
text of the error message itself, use SQLMESSAGE().

See the table in the description of ERROR() that compares ERROR(), MESSAGE(),
DBERROR(), DBMESSAGE(), SQLERROR(), SQLMESSAGE(), and CERROR().

See online Help for a listing of all error messages.

Example
The following example uses SQLERROR() and SQLMESSAGE() to return an SQL error
number and SQL error message to an ON ERROR routine that displays a MDI form
with an error report:

ON ERROR DO ErrHndlr WITH ERROR(), MESSAGE(), ;
SQLERROR(), SQLMESSAGE(), PROGRAM(), LINENO()

SET DBTYPE TO DBASE
OPEN DATABASE CAClients
SET DATABASE TO CAClients
errorCode = SQLEXEC("SELECT Company, City ;

FROM Company WHERE State_Prov='CA'", "StateCA.DBF")
IF errorCode = 0

SET DATABASE TO
USE StateCa
LIST

ENDIF
RETURN

PROCEDURE ErrHndlr
PARAMETERS nErrorNo, cErrMess, nSQLErrorNo, cSQLErrMess, cProgram, nLineNo
DEFINE FORM HeadsUp FROM 10,20 TO 20,55;

PROPERTY Text "Heads Up"
DEFINE TEXT Line1 OF HeadsUp AT 2,10 ;

PROPERTY Text "An Error has occurred", Width 24, ColorNormal "R+/W"
DEFINE TEXT Line2 OF HeadsUp AT 4,2;

PROPERTY Text ;
IIF(ERROR()=240,cSqlErrMess,cErrMess), Width 33

DEFINE TEXT Line3 OF HeadsUp AT 5,2;
PROPERTY Text "Number: " + ;
IIF(ERROR()=240,STR(nSQLErrorNo),STR(nErrorno)), Width 24

DEFINE TEXT Line4 OF HeadsUp AT 6,2;
PROPERTY Text "Program: "+ cProgram, Width 22

DEFINE TEXT Line5 OF HeadsUp AT 7,2;
PROPERTY Text "Line #: " + STR(nLineno), Width 22

OPEN FORM HeadsUp

588 L a n g u a g e R e f e r e n c e

S Q L E X E C ()

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CERROR(), DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), ON ERROR,
RETRY, SQLMESSAGE()

SQLEXEC() Table basics

Executes an SQL statement in the current database or on specified dBASE or Paradox
tables.

Syntax
SQLEXEC(<SQL statement expC> [,<Answer table expC>])

<SQL statement expC> A character string that contains an SQL statement. The SQL
statement must follow server-specific dialect rules for the current database and must be
enclosed in quotes. For Paradox and dBASE tables, the dialect is the same as that used
by the Borland InterBase database server, which is ANSI-compliant. Character strings
and SQL or IDAPI reserved words contained within the SQL statement must also be
enclosed in either single or double quotes. (Single quotes are normally used.).

<Answer table expC> Paradox or dBASE table that stores the data returned by an SQL
SELECT statement; must also be in quotes. If you specify a file without including its
path, Visual dBASE creates the file in the current directory, then in the path you specify
with SET PATH. If you specify a file without including its extension, Visual dBASE
assumes the default table type specified with the SET DBTYPE command. If you don't
specify a table name, Visual dBASE creates a table named Answer with the extension
defined by the current DBTYPE setting.

You can also specify the name of an already open database (defined for a file directory
location only) as a prefix (enclosed in colons) to the name of the answer table, that is,
:database name:table name. You cannot specify the location of an answer table on a
database server.

Description
SQLEXEC() executes a SQL statement in the current database set by SET DATABASE,
or if a database is not set, on tables in the current or a specified directory. (You can
preface the name of a table with its directory location or specify an already open
database by enclosing the database name in colons, for example, :database name:table
name. If you're using Borland SQL Link to connect to a database server, Visual dBASE
passes the SQL statement you specify directly to the database server where the database
selected by SET DATABASE resides.

When an SQL statement contains SQL or IDAPI reserved words and you are executing
the statement on dBASE or Paradox tables, you need to enclose the reserved words in
single(‘) or double (“) quotes and use SQL table aliases (different than the aliases
associated with dBASE tables) to identify fields, for example:

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 589

S Q L M E S S A G E ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SELECT * FROM company.dbf b WHERE b.’CHAR’ = ‘element’

You can use table aliases to qualify fields specified in the SELECT, WHERE, GROUP BY,
or ORDER BY clauses of SELECT statements. This is particularly useful when querying
data from more than one table.

SQLEXEC() returns error codes with the same values as those returned by ERROR()
and MESSAGE(); a value of zero indicates that no error occurred as a result of the
statement's execution. If an error occurs, you can use DBERROR() and DBMESSAGE()
functions to return IDAPI errors or use the SQLERROR() and SQLMESSAGE()
functions to obtain information directly from the database server about the cause of an
error. (Also, the ERROR() function returns an error code of 240 if a server error occurs.)

Example
The following example executes an SQL SELECT statement on the server table
Company:

SET DBTYPE TO DBASE
OPEN DATABASE CAClients
SET DATABASE TO CAClients
errorCode = SQLEXEC("SELECT Company, City ;

FROM Company WHERE State_Prov='CA'", "StateCA.DBF")
IF errorCode = 0

SET DATABASE TO
USE StateCa
LIST

ENDIF
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), OPEN DATABASE, SET
DATABASE, SET DBTYPE, SET PATH, SQLERROR(), SQLMESSAGE()

SQLMESSAGE() Error handling and debugging

Returns the most recent server error message.

Syntax
SQLMESSAGE()

Description
Use SQLMESSAGE() to determine the error message of the last server error. To learn
the error code, use SQLERROR().

See online Help for a listing of all error messages.

590 L a n g u a g e R e f e r e n c e

S Q R T ()

Example
See SQLERROR() for an example of using SQLMESSAGE().

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CERROR(), DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), ON ERROR,
RETRY, SQLERROR()

SQRT() Numeric data

Returns the square root of a number.

Syntax
SQRT(<expN>)

<expN> A positive number whose square root to return. If <expN> is a negative number,
dBASE returns an error.

Description
SQRT() returns as a float the positive square root of a non-negative number. For
example SQRT(36) returns 6 because 6^2=36. The square root of 0 is 0.

An alternate way to find the square root is to raise the value to the power of 0.5. For
example, the following two commands return the same value:

? SQRT(36) && returns 6.00
? 36^.5 && returns 6.00

Use SET DECIMALS to set the number of decimal places SQRT() displays.

Example
The following example uses SQRT() to compute the length of a rafter after room width
and rise to the peak have been entered by the user:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
LOCAL f
f=NEW Rafter()
f.OPEN()
CLASS Rafter OF FORM

this.Top=2
this.Left=2
this.Width=30
this.Height=12
this.Text = "Rafter Computer"

DEFINE ENTRYFIELD Room OF THIS AT 2,22;
PROPERTY Picture "999",Value 0, Width 4

DEFINE ENTRYFIELD Rise OF THIS at 4,22;
PROPERTY Picture "99",Value 0, Width 4

DEFINE ENTRYFIELD RaftLength OF THIS AT 6,22;

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 591

S T A T I C+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

PROPERTY Width 6, Value 0, OnGotFocus Results
DEFINE TEXT Ln1 OF THIS AT 2,3;

PROPERTY Text "Enter width of room:", Width 15
DEFINE TEXT Ln2 OF THIS AT 4,3;

PROPERTY Text "Enter height of rise:", Width 15
DEFINE TEXT Ln3 OF THIS AT 6,3;

PROPERTY Text "Cut rafter to this length:", Width 18, ColorNormal "R/W"
DEFINE PUSHBUTTON Exit OF THIS AT 9,11;

PROPERTY TEXT "Exit", OnClick {;Form.Close()}
ENDCLASS

FUNCTION Results
Form.RaftLength.Value= STR(SQRT(((Form.Room.Value/2)^2)+(Form.Rise.Value^2)),5,2)
RETURN .T.

See Also
EXP(), LOG(), LOG(10), SET DECIMALS

STATIC Memory variables

Declares local memory variables that you can use only in the subroutine where they're
declared but whose values remain in memory until you exit dBASE.

Syntax
STATIC <variable 1> [= <value 1>] [,<variable 2> [= <value>] ...]

<variable> The variable to declare static.

<value> The value to assign to the variable.

Description
Use STATIC to declare memory variables available only to a particular subroutine but
public in memory duration. Static variables are different from other types of memory
variables in two important ways:

• You can declare and assign a value to a static variable in a single statement.
• Static variables initialized in a single statement are assigned the initialization value

only the first time the subroutine is run.

When you declare a variable STATIC in a subroutine—a program, procedure, or user-
defined function (UDF)—that variable is visible only within that subroutine. It is not
visible to higher- or lower-level subroutines. However, when the subroutine ends, the
static variable remains in memory, with the value it had when the subroutine ended. If
the subroutine is called again, the variable has the value it had when the subroutine last
ended, and keeps that value until the subroutine changes it.

When you declare a variable STATIC without assigning it a value, dBASE creates the
variable and assigns it the value .F.

Because static variables are not released when the subroutine in which they are created
ends, you can use them to retain values for subsequent times that subroutine runs. To
do this, declare and initialize the variable in a single statement, as shown below:

592 L a n g u a g e R e f e r e n c e

S T A T I C

** subroutine mtest
STATIC mvar = 100

The first time dBASE encounters this statement, mvar is initialized to a value of 100. If
the subroutine mtest is run again, mvar is not reinitialized to a value of 100. Instead,
mvar retains whatever value it had when mtest last ended.

See PUBLIC for a table that compares the scope and availability of public, private, local,
and static variables. See Chapter 5 in the Programmer's Guide for more information on
initializing and retaining values of static variables.

Example
The following example branches from a main program to several lower-level
procedures to demonstrate that STATIC variables are available only at the program
level in which they are declared and that they hold that value even if the variable is
changed in another procedural level:

* **Main.Prg***
CLOSE ALL
CLEAR ALL
CLEAR
SET TALK OFF
? "**Main.PRG**"
STATIC nTotal
PUBLIC cString
nTotal = 7109.50
cString= "Hello"
ON ERROR ? "Variable not available"; && Displays message on error
? nTotal && Returns 7109.50
? cString && Returns "Hello"
DO Primary && Branch to Proc Primary
?
? "**Back to Main.PRG**"
? nTotal && 7109.50-Still static value after ;

return from lower level procedures

PROCEDURE Primary
?
? "**Proc Primary**" && Orientation only
STATIC Deadline && Var declared Static in Procedure Primary
? Deadline && .F. because has no stored value
Deadline = {12/31/99} && Initialize variable
? Deadline && Now it has a value
DO Proc1 && Branch to Proc1
RETURN && Return to line after DO Primary in Main

PROCEDURE Proc1
?
? "**Proc Proc1**" && Orientation only
? cString && "Hello" is Public
? nTotal && "Var not available"-Static in Main
? Deadline && "Var not available"-Static in Primary
Do Sub1 && Branch to Sub1
?
? "**Back to Proc1**"

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 593

S T O R E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

? nTotal && "Var not available"-Static in another procedure
RETURN && Return to last line of Primary

PROCEDURE Sub1
?
? "**Proc Sub1**" && Orientation only
nTotal = 8801.11 && nTotal initialized to new value ;

but still a Static variable
? nTotal && 8801.11 - declared in current proc
? cString && "Hello" - Public variable
RETURN && Return to line after DO Sub1 in Proc1

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
CLEAR MEMORY, DECLARE, LOCAL, PRIVATE, PUBLIC, RELEASE, STORE

STORE Memory variables

Stores an expression to specified memory variables or array elements.

Syntax
STORE <exp> TO <memvar list> | <array element list>

or

<memvar> | <array element> = <exp>

<exp> The expression to store.

TO <memvar list> | <array element list> Stores <exp> to the memory variable(s) of <memvar
list> or to the array elements of <array element list>. You must DECLARE the array
before using STORE.

<memvar> | <array element> = <exp> The single memory variable or array element to store
<exp> to with the assignment operator (=). You must DECLARE the array before
using =.

Description
Use STORE to store any valid expression to a single memory variable, to several
memory variables, or to one or more array elements. Use = to store any valid expression
to a single memory variable or a single array element. When <exp>is a field name, the
contents of that field are stored. You can specify a field of any data type, including
memo.

To specify the scope of a variable, use LOCAL, PRIVATE, PUBLIC, or STATIC before
assigning a value to the variable. Memory variables are not linked to a particular
session—only the scope of a variable determines its accessibility within an application.

594 L a n g u a g e R e f e r e n c e

S T O R E

When you issue STORE, dBASE does one of the following:

• Creates a new memory variable and stores <exp> to it, or overwrites an existing
memory variable with the same name and scope and stores <exp> to it. (You can use
TYPE() to determine if a memory variable exists). The memory variable is assigned
the same data type as <exp>. SET SAFETY has no effect on STORE commands.

• Stores <exp> to the existing array element you specify. If the data type of the array
element is different from that of <exp>, STORE changes the array element data type
to match the data type of <exp>. You can also use AFILL() to store the same value to
multiple elements in an array.

If you use STORE to create a variable with the same name as a field in the current table
and later use the variable name in a command line, distinguish the memory variable by
prefixing it with m->. This is shown in the following example.

** Current table has a field named "author"
STORE "Hugo" to author
? author && displays contents of field
? m->author && displays "Hugo"

You can use STORE or STORE MEMO to store a memo field. STORE stores a record's
memo field, including carriage return(s) and linefeed(s), to a single memory variable or
element of an array. STORE MEMO stores each line of a memo field to one element of an
existing array.

Example
The following example uses STORE to place four state abbreviations in four elements of
a one-dimensional array named States and then uses a counting DO WHILE loop to
retrieve records from the Clients table for the respective states stored in memory:

SET TALK OFF
SET SAFETY OFF
DECLARE States[4]
STORE "TX" TO States[1]
STORE "WA" TO States[2]
STORE "GA" TO States[3]
STORE "MN" TO States[4]
USE Clients EXCLUSIVE
INDEX ON Company Tag Company
CLEAR
Cnt = 1
? CENTER("Company Listing for "+States[1] ;

+", "+States[2]+ ", "+States[3]+" and " + States[4])
?
DO WHILE Cnt < 5

SCAN FOR State_Prov = States[Cnt]
? Company AT 5, Contact, State_Prov
ENDSCAN
Cnt=Cnt+1

ENDDO
CLOSE ALL
SET TALK ON
SET SAFETY ON

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 595

S T O R E A U T O M E M+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Portability
Array element lists are not supported in dBASE III PLUS.

See Also
ACCEPT, AFILL(), DECLARE, INPUT, LOCAL, PRIVATE, PUBLIC, RESTORE, SAVE,
SET SAFETY, STATIC, STORE MEMO, WAIT

STORE AUTOMEM Fields and records

Stores the contents of all the current record's fields to a set of memory variables.

Syntax
STORE AUTOMEM

Description
STORE AUTOMEM copies every field of the current record to a set of matching
automem variables. Each memory variable has the same name, length, and data type as
one of the fields. Visual dBASE creates these memory variables if they don't already
exist.

Automem variables let you temporarily store the data from table records, manipulate
the data as memory variables rather than as field values, and then return the data to the
table (using REPLACE AUTOMEM, APPEND AUTOMEM, or INSERT AUTOMEM).

STORE AUTOMEM is one of three commands that create automem variables. The other
two, USE <filename> AUTOMEM and CLEAR AUTOMEM, initialize empty automem
variables for the fields of the current table. Neither of these commands transfers data to
the automem variables it creates, and the variables don't contain data until other
commands store it to them. The empty variables created by USE...AUTOMEM and
CLEAR AUTOMEM are typically used to append, insert, or replace data from outside
the program, such as in a data entry form, into a table. STORE AUTOMEM transfers
data from a table into automem variables.

Using memory variables in programming editing sequences gives you more control
over data editing than using field values directly. When you specify a field as a GET
argument in an @...SAY...GET line, after the field is edited using READ, Visual dBASE
returns the edited field directly to the table. When you use a memory variable as a GET
argument, you can perform other operations on the edited variable, such as validating
the data, before using REPLACE AUTOMEM to store the value back in the table.

Example
The following example uses STORE AUTOMEM to copy field values to a set of
automem variables for records that are marked for deletion. The LOCATE command
initiates a search for the first marked record and a DO WHILE .NOT. EOF() loop with a
CONTINUE command copies all other marked records to Temp.DBF:

SET SAFETY OFF
SET DELETED OFF
CLOSE DATABASES

596 L a n g u a g e R e f e r e n c e

S T O R E M E M O

USE Clients IN 1
SELECT 1
COPY STRUCTURE TO Temp
USE Temp IN 2
LOCATE FOR DELETED()

IF FOUND()
DO WHILE .NOT. EOF()

STORE AUTOMEM
SELECT 2
APPEND AUTOMEM
SELECT 1
CONTINUE

ENDDO
SELECT 2
BROWSE

ELSE
? "No records marked for Deletion"

ENDIF
RETURN

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLEAR AUTOMEM, REPLACE, USE

STORE MEMO Fields and records

Stores the text of a memo field to an array-type memory variable.

Syntax
STORE MEMO <memo field> TO ARRAY <array name>

<memo field> The memo field from which text is retrieved and stored in an array.

TO ARRAY <array name> The array in which text from the memo field is stored. Each array
element stores one line of text from the memo field. The length of each line can be up to
the number of characters specified by SET MEMOWIDTH.

Description
Use STORE MEMO to store the text of memo fields to array memory variables. (STORE
AUTOMEM lets you store the contents of the current record in automem variables for
all types of fields except memo fields.) After editing the contents of the array elements
that hold the contents of a memo field, use REPLACE MEMO to save the new values
back in the memo field.

Initialize the array using the DECLARE command before using STORE MEMO.
<array name> must be a one-dimensional array.

Make sure that you initialize arrays used with the STORE MEMO command so that they
have enough elements to hold all the memo field text. If the memo field text exceeds the

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 597

S T O R E M E M O+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

size of the array, Visual dBASE truncates the text to fit the size of the array and the lines
at the end of the memo field are lost when you use REPLACE MEMO. Make sure that
the array has enough elements to hold the largest memo you plan to edit. You can use
MEMLINES() to determine the number of elements you need for any particular memo
field you have.

Visual dBASE assigns the character type to each array element that holds memo field
text. If the memo field text doesn't fill the array, the remaining array elements retain
their original values (.F. as a default).

Example
The following example uses STORE MEMO to place text from a memo field in an
array_type memory variable:

SET TALK OFF
Colwidth = 50
Mwidth = SET("MEMOWIDTH")
SET MEMOWIDTH TO Colwidth
USE Company
DO WHILE .NOT. EOF()
CLEAR
Linecnt = 1
IF .NOT. ISBLANK(Notes)

DECLARE Memoline[MEMLINES(Notes)]
STORE MEMO Notes TO ARRAY Memoline
DO WHILE Linecnt <= MEMLINES(Notes)

@ Linecnt,12 GET memoline[linecnt]
linecnt = linecnt + 1

ENDDO
READ
replace_yn = "C"
@ linecnt + 2,2 SAY "Do you want to Replace " + ;
"the original text, Add to it, or Cancel? (R/A/C)";
GET replace_yn PICTURE "!" VALID replace_yn $ "RAC"
READ
DO CASE

CASE replace_yn = "R"
REPLACE MEMO Notes WITH ARRAY Memoline

CASE replace_yn = "A"
REPLACE MEMO Notes WITH ARRAY Memoline ADDITIVE

CASE replace_yn = "C"
CLEAR
EXIT

ENDCASE
ENDIF
SKIP
ENDDO
CLOSE ALL
SET MEMOWIDTH TO Mwidth

Portability
Not supported in dBASE IV or dBASE III PLUS.

598 L a n g u a g e R e f e r e n c e

S T R ()

See Also
DECLARE, MEMLINES(), MLINE(), REPLACE MEMO, STORE

STR() Expressions and type conversion

Returns the character string equivalent of a specified numeric expression.

Syntax
STR(<expN> [, <length expN> [, <decimals expN> [, <expC>]]])

<expN> The numeric or float expression to return as a character string.

<length expN> The length of the character string to return. The valid range is 1 to 20,
inclusive, and includes a decimal point, decimal digits, and minus sign characters. The
default is 10. If <length expN> is smaller than the number of integer digits in <expN>,
STR() returns asterisks (*).

<decimals expN> The number of characters to reserve for decimal digits. The default and
lowest allowable value is 0. If you do not specify a value for <decimals expN>, STR()
rounds <expN> to the nearest whole number. If you want to specify a value for
<decimals expN>, you must also specify a value for <length expN>.

<expC> The character to pad the beginning of the returned character string with when
the length of the returned string is less than <length expN> digits long. The default pad
character is a space. If you want to specify a value for <expC>, you must also specify
values for <length expN> and <decimals expN>. You can specify more than one character
for <expC>, but STR() uses only the first one.

Description
Use STR() to convert numeric data to character data, so you can manipulate it as
characters. For example, you can index on a numeric field in combination with a
character field by converting the numeric field to character with STR().

dBASE rounds and pads numbers to fit within parameters you set with <length expN>
and <decimals expN>, following these rules:

• If <decimals expN> is smaller than the number of decimals in <expN>, STR() rounds
to the most accurate number that will fit in <length expN>. For example,
STR(10.765,5,1) returns " 10.8" (with a single leading space), and STR(10.765,5,2)
returns "10.77".

• If <length expN> isn't large enough for <decimals expN> number of decimal places,
STR() rounds <expN> to the most accurate number that will fit in <length expN>. For
example, STR(10.765,4,3) returns "10.8".

• If <decimals expN> is larger than the number of decimals in <expN>, and
<length expN> is larger than the returned string, STR() adds zeros (0) to the end of the
returned string. dBASE only adds enough zero to bring the number of decimal digits
to a maximum of <decimals expN>.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 599

S T U F F ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

• If the returned string is still shorter than <length expN>, dBASE pads the left to fill to
the length of <length expN>. For example, STR(10.765,8,6) returns "10.76500" for a
returned length of 8; STR(10.765,7,6) returns "10.7650" for a returned length of 7; and
STR(10.765,12,6) returns " 10.765000" (with three leading spaces) for a returned
length of 12.

Example
The following example uses STR() to display the contents of a numeric field
concatenated with a character string:

SET TALK OFF
USE Clients
SET FILTER TO StartBal > 0
* Selects only those records with positive StartBal
GO TOP
? StartBal && Returns 456.00
? "The starting balance was $" + ;

STR(StartBal,8,2) && Returns $ 456.00
? "The starting balance can also be formatted as $" + ;

LTRIM(STR(StartBal,8,2)) && Returns $456.00
? "Or format the starting balance as " + ;

LTRIM(STR(StartBal,8,2,"$")) && Returns $$456.00

Portability
The <exp C> argument is not supported in dBASE IV or dBASE III PLUS.

See Also
SET POINT, SET SEPARATOR, SUBSTR(), VAL()

STUFF() String data

Returns a string with specified characters removed and others inserted in their place.

Syntax
STUFF(<target expC> | <target memo field>,

 <start expN>, <quantity expN>, <replacement expC>)

<target expC> | <target memo field> The string or memo field to remove characters from and
replace with new characters.

<start expN> The character position in the string or memo field at which to start
removing characters.

<quantity expN> The number of characters to remove from the string or memo field.

<replacement expC> The characters to insert in the string or memo field.

Description
STUFF() returns a target character expression or target memo field with a replacement
character string inserted at a specified position. Starting at the position you specify,

Chapter 4Co
mman
ds and
functi

ons

600 L a n g u a g e R e f e r e n c e

S T U F F ()

<start expN>, STUFF() removes a specified number, <quantity expN>, of characters from
the original string. STUFF() returns a maximum of 32766 characters, the maximum
length of a string.

If the target character expression is an empty string or the target memo field is empty,
STUFF() returns the replacement string.

If <start expN> is less than or equal to 0, STUFF() treats <start expN> as 1. If
<quantity expN> is less than or equal to 0, STUFF() inserts the replacement string at
position <start expN> without removing any characters from the target.

If <start expN> is greater than the length of the target, STUFF() doesn't remove any
characters and appends the replacement string to the end of the target.

If the replacement string is empty, STUFF() removes the characters specified by
<quantity expN> from the target, starting at <start expN>, without adding characters.

Example
The following example uses STUFF() to change the text in a series of strings:

? STUFF("Jenson",5,1,"e") && Returns "Jensen"
? STUFF("Johnson",6,0,"t") && Returns "Johnston"
? STUFF("",2,5,"father") && Returns "father"
? STUFF("rose",0,1,"n") && Returns "nose"
? STUFF("rose",5,2,"bud") && Returns "rosebud"
? STUFF("rosebud",5,3,"") && Returns "rose"

The next example uses STUFF() to replace all occurrences of "&" with "and" in the
Company field of Temp.DBF, which is a copy of the Clients table:

USE Clients
COPY TO TEMP
USE TEMP
SET TALK OFF
SCAN

IF "&" $ Company
REPLACE Company with ;
STUFF(Company,AT("&",Company),1,"and")

ENDIF
ENDSCAN
SET TALK ON
RETURN

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS.

See Also
AT(), LEFT(), RAT(), REPLICATE(), RIGHT(), SPACE(), SUBSTR()

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 601

S U B S T R ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SUBSTR() String data

Returns a substring derived from a specified character string or memo field.

Syntax
SUBSTR(<expC> | <memo field>, <start expN> [, <length expN>])

<expC> | <memo field> The string or memo field to extract characters from.

<start expN> The character position in the string or memo field to start extracting
characters.

<length expN> The number of characters to extract from the string or memo field.

Description
Starting in a character expression or memo field at the position you specify for
<start expN>, SUBSTR() returns the number of characters you specify for <length expN>.
SUBSTR() returns a maximum of 32766 characters, the maximum length of a string. If
<length expN> is zero or a negative number, SUBSTR() returns an empty string.

If you don't specify <length expN>, SUBSTR() returns all characters starting from
position <start expN> to the end of the string. If <length expN> is greater than the
number of characters from <start expN> to the end of the string, SUBSTR() returns only
as many characters as are left in the string, without adding space characters to achieve
the specified length. You can use LEN() to determine the actual length of the returned
string.

The following conditions cause dBASE to return an error:
• <expC> is an empty string
• <memo field> is empty
• <start expN> is zero
• <start expN> is a negative number
• <start expN> is greater than the number of characters in <expC> or <memo field>

When SUBSTR() returns characters from a memo field, it counts two characters for each
carriage-return and linefeed combination (CR/LF) in the memo field.

Use the substring operator ($) to learn if one string exists within another. See Chapter 1
for more information on operators.

Example
The following examples use SUBSTR() to extract a portion of a text string:

? SUBSTR("Data",1) && Returns "Data"
? SUBSTR("retrieval",7,3) && Returns "val"
? SUBSTR("is",1,1) && Returns "i"
? SUBSTR("made",3,1) && Returns "d"
? SUBSTR("easy",1) && Returns "easy"

SUBSTR() can be used for many ordering and data manipulation tasks. For example, to
order a table by the first three numbers of a phone number (disregarding area code)

602 L a n g u a g e R e f e r e n c e

S U M

when data is entered in a character field in the format "451-463-9000", create an index tag
using SUBSTR().

USE COMPANY EXCLUSIVE
INDEX ON SUBSTR(Phone,5,3) TAG Phexch

To convert field data entered as uppercase to upper- and lowercase, use the following
commands (field length = 20).

USE Address
REPLACE ALL Lname WITH UPPER(SUBSTR(Lname,1,1))+LOWER(SUBSTR(Lname,2,19))

The previous example applies only to cases where a single name or text string resides in
a field. If you want to capitalize all first letters of multiple strings in a field, use
PROPER():

REPLACE ALL Lname with PROPER(Lname)

Portability
The <memo field> argument isn't supported in dBASE III PLUS. Both dBASE IV and
dBASE III PLUS limit the return value of SUBSTR() to 254 characters, and both return
an error if <start expN> or <length expN> is zero or if <length expN> is a negative number.

See Also
AT(), LEFT(), LEN(), PROPER(), RAT(), RIGHT(), STUFF()

SUM Table organization

Computes a total for specified numeric and float fields in the current table and stores the
results in memory variables or an array.

Syntax
SUM
[<exp list>]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar list> | TO ARRAY <array name>]

<exp list> The numeric or float fields, expressions incorporating numeric or float fields,
or expressions converting character fields to numeric values to sum.

<scope> The number of records to sum. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by SUM. FOR restricts SUM
to records that meet <condition 1>. WHILE starts processing with the current record
and continues with each subsequent record as long as <condition 2> is true.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 603

S U S P E N D+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

TO <memvar list> | TO ARRAY <array name> TO <memvar list> specifies a list of memory
variables where you want to store totals. If <memvar list> includes array subscripts, the
array(s) must already exist. TO ARRAY <array name> specifies an array in which you
want to store totals.

Description
The SUM command totals the value of numeric expressions and stores the results in a
list of memory variables or individual elements of an array. If SET TALK is ON, DBASE
also displays results in the results pane of the Command window.

The number of memory variables specified must be exactly the same as the number of
specified numeric expressions you want to total. The position of fields in <exp list>
determines the order of values passed to <memvar list>. If you specify an array, it must
be one-dimensional, and you must initialize individual elements before storing results
in the array using the SUM command.

SUM is similar to TOTAL, which operates on an indexed or sorted table to create a
second table containing the sums of the numeric and float fields of records grouped on a
key expression.

Example
The following example uses SUM to calculate the total of year-to-date sales of all
companies:

USE Company

SUM Ytd_sales TO Ytd_sum

? "The total Ytd Sale was $", ;

 Ytd_sum PICTURE "99,999,999.99"

In this example there is no need to index the table, since every record must be read.

See Also
AVERAGE, CALCULATE, COUNT, TOTAL

SUSPEND Error handling and debugging

Suspends program execution, temporarily passing control to the Command window.

Syntax
SUSPEND

Description
SUSPEND lets you interrupt program execution at a specific point, a break point. The
program remains suspended until you issue RESUME or CANCEL, or until you exit
dBASE. If you issue RESUME, the program resumes from the break point. If you issue
CANCEL, dBASE cancels program execution and clears it from memory. (CANCEL

604 L a n g u a g e R e f e r e n c e

S U S P E N D

cancels all files called with DO, including ones that are suspended. You must close any
procedure files with CLOSE PROCEDURE.)

While a program is suspended, you can enter commands in the Command window. For
example, you can check and change the status of files, memory variables, SET
commands, and so on; however, dBASE ignores any changes you make to the program
while it is suspended. If you want to correct a suspended program, issue CANCEL, edit
the program, and then run it again.

If you initialize memory variables in the Command window while a program is
suspended, dBASE makes them private at the program level that suspension occurred.

You should not return to a suspended program by issuing DO <filename> in the
Command window. If you do so, you might eventually run out of memory. You will
also end up with "nested" SUSPEND statements, and may not know that a program is
still suspended. If you want to run a suspended program from the beginning, issue
CANCEL and then DO <filename>.

Example
The following program prompts the entry of a 2-letter state abbreviation and lists the
clients within that state. If the program fails to return a list of clients, the programmer
might insert the SUSPEND command just after the second CLEAR to halt the program
so that trouble shooting commands could be issued at the Command window such as: ?
mState to determine the value in the variable mState, LIST FOR STATE_PROV = "CA",
DISPLAY MEMORY, DISPLAY STATUS. Issue the command RESUME when ready to
proceed with the remainder of the program:

CLEAR
SET TALK OFF
USE CLIENTS
ACCEPT "Enter 2 letter State abbreviation: " TO mState
CLEAR
SUSPEND && To be removed after troubleshooting
? CENTER("Clients in "+UPPER(mState))
?
SCAN FOR State_Prov = UPPER(mState)

? Company, Contact, Startbal
ENDSCAN
RETURN

See Also
CANCEL, DO, RESUME, QUIT

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 605

T A G ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TAG() Table organization

Returns the name of an .NDX file or .MDX file tag name.

Syntax
TAG([<.mdx filename expC>,] <index number expN> [,<alias>])

<.mdx filename expC> The name of the multiple index file in which to look for a tag in the
<index number expN> position.

<index number expN> The number of the open .NDX file or index tag in the multiple index
file whose name you want to return.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
TAG() returns the name of an .NDX file or .MDX tag for the index specified by
<index number expN>. The index number indicates the position of an index in the list of
open indexes in the current or specified work area opened with the USE or SET INDEX
commands. If no index number is specified, TAG() returns the name of the master
index.

If you specify an .MDX file name, TAG() returns tag names that appear in the specified
multiple index file. The order in which tag names are listed in the multiple index file
determines the order in which TAG() returns tag names.

If you don't specify an .MDX file name, TAG() returns the tag name in the open index
list and checks .NDX files first. TAG() next checks the production .MDX index tags and
then other open .MDX files in the order you opened them.

If no index or tag exists in the specified position, TAG() returns an empty string ("").

Example
The following example uses TAG() to determine the names of index files open for the
current table:

USE Company EXCLUSIVE
INDEX ON CompCode TAG CompCode
INDEX ON Company TAG Company
INDEX ON Zip_P_Code TAG Zip
* There are now at least 3 indexes in Company.mdx.
FOR i=1 TO TAGCOUNT()

* TAGCOUNT() is the total number of indexes in Company.mdx
? "Tag",i, TAG(i)

NEXT i

Portability
Not supported in dBASE III PLUS.

606 L a n g u a g e R e f e r e n c e

T A G C O U N T ()

See Also
DBF(), DISPLAY STATUS, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET
ORDER, TAGCOUNT(), TAGNO(), USE

TAGCOUNT() Table organization

Returns the number of active indexes in a specified work area or .MDX multiple index
file.

Syntax
TAGCOUNT([<.mdx filename> [,<alias>]])

<.mdx filename> Specifies the multiple index file that contains the index tag you want to
check. If you specify a file without including its path, Visual dBASE looks for the file in
the current directory, then in the path you specify with SET PATH. If you specify a file
without including its extension, Visual dBASE assumes an .MDX extension.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
TAGCOUNT() returns the total number of open indexes or the number of index tag
names in a specified .MDX file. TAGCOUNT() returns 0 if there are no indexes or index
tags open for the current or specified work area, or if the multiple index file specified
with <filename> does not exist. If you do not specify an .MDX file name, TAGCOUNT()
returns the total number of indexes in the specified work area (.NDX files are included).
If you do not specify an alias, TAGCOUNT() returns the total number of indexes in the
current work area.

Example
The following example uses TAGCOUNT() to determine the number of indexes open
for the current table:

CLOSE ALL
USE Company IN SELECT() EXCLUSIVE
SELECT Company
INDEX ON CompCode TAG CompCode
INDEX ON Company TAG Company
* Compcode and Company are in the production mdx
INDEX ON Zip_P_Code TAG Zip OF Location
* Zip is in Location.mdx
INDEX ON City TO City
* City is in City.ndx
SET INDEX TO CITY, Location ORDER Zip
* There are now at least 2 tags in Company.mdx
* There is one in Location.mdx
* There is another index open in City.ndx
? "There are " + LTRIM(STR(TAGCOUNT())) + ;

" active indexes in workarea " + ;
LTRIM(STR(WORKAREA()))

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 607

T A G N O ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

WAIT
DISPLAY STATUS

Portability
Not supported in dBASE III PLUS.

See Also
DBF(), DISPLAY STATUS, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET
ORDER, TAG(), TAGNO(), USE, WORKAREA()

TAGNO() Table organization

Returns the index number of the specified index.

Syntax
TAGNO([<tag name expC> [,<.mdx filename> [,<alias>]]])

<tag name expC> The name of the index tag that you want to return the position of. If you
don't specify a tag name, TAGNO() returns the position of the master index.

<.mdx filename> The name of the multiple index file that contains the specified index tag.
If you don't specify an .MDX file name, TAGNO() returns the position of the tag name
for all open index files in the same work area, including .NDX files at the top of the
index list.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
TAGNO() returns a number that indicates the position of the specified index name in
the list of open indexes in the current or specified work area. The order of indexes is
determined by the order in which they were opened with the USE or SET INDEX
commands.

If you don't specify a tag name, TAGNO() returns the number of the master index. If
you don't specify an .MDX file name, TAGNO() searches the list of open index files in
the specified work area, including .NDX files. If you don't specify an alias, TAGNO()
operates on the list of open indexes in the current work area.

TAGNO() returns an error if the specified index tag or .MDX file does not exist.

Example
The following example uses TAGNO() to determine the number of the specified index
(.NDX) files:

USE Company EXCLUSIVE
INDEX ON CompCode TO CompCode
INDEX ON Company TO Company
INDEX ON Zip_Postal TO Zip
INDEX ON State_prov TO State_Prov

608 L a n g u a g e R e f e r e n c e

T A N ()

INDEX ON City TO City
SET INDEX TO CompCode, Company, City, State_Prov, Zip
? TAG(),TAGNO()
* eg "COMPCODE" 8
? TAGNO("CompCode") && e.g. 8
? TAGNO("Company") && e.g. 1
? TAGNO("City") && e.g. 6
? TAGNO("State") && e.g. 3
? TAGNO("Zip") && e.g. 11

Portability
Not supported in dBASE III PLUS.

See Also
DBF(), DISPLAY STATUS, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET
ORDER, TAG(), TAGCOUNT(), USE, WORKAREA()

TAN() Numeric data

Returns the trigonometric tangent of an angle.

Syntax
TAN(<expN>)

<expN> The size of the angle in radians. To convert an angle's degree value to radians,
use DTOR(). For example, to find the tangent of a 30-degree angle, use
TAN(DTOR(30)).

Description
TAN() calculates the ratio between the side opposite an angle and the side adjacent to
the angle in a right triangle. TAN() returns a float that increases from zero to plus or
minus infinity. TAN() returns zero when <expN> is 0, pi, or 2*pi radians. TAN() is
undefined (returns infinity) when <expN> is pi/2 or 3*pi/2 radians.

Use SET DECIMALS to set the number of decimal places TAN() displays.

The cotangent of an angle is the reciprocal of the tangent of the angle. To return the
cotangent of an angle, use 1/TAN().

Example
The following examples use TAN() to return the tangent (in radians) of a defined angle:

SET DECIMALS TO 6
? TAN(PI()) && Returns 0.000000
? TAN(PI()/2) && Returns infinity
? TAN(PI()/4) && Returns 1.000000
? TAN(DTOR(150)) && Returns –0.577350
? TAN(DTOR(–150)) && Returns 0.577350

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 609

T A R G E T ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Portability
Not supported in dBASE III PLUS.

See Also
ATAN(), ATN2(), COS(), DTOR(), PI(), RTOD(), SET DECIMALS, SIN()

TARGET() Table organization

Returns the name of a table linked to the current or specified work area.

Syntax
TARGET(<expN> [,<alias>])

<expN> Specifies the position of the relation in the SET RELATION list for the current or
specified table that you want to determine the relation for.

<alias> Specifies the work area from which you define a relation with the SET
RELATION command. If you don't specify an alias for the work area, TARGET()
assumes that the relation was set from the current work area. You can enter a work area
number (1 through 225), letter (A through J), or alias name. The work area letter or alias
name must be enclosed in quotes.

Description
TARGET() returns the name of a table that is linked to the table in the current or
specified work area by relations defined with the SET RELATION command. If you do
not specify an alias, TARGET() assumes the relation is set from the current work area.
The TARGET() function returns an empty string ("") if no relation is set in the <expN>
position of the SET RELATION list.

Example
The following example uses TARGET() to determine the names of the child tables
linked to Company in the following sample:

CLOSE DATABASE
USE Contact EXCLUSIVE
INDEX ON CompCode TAG CompCode
SELECT 2
USE Typeco EXCLUSIVE
SELECT Typeco
INDEX ON Type TAG Type
SELECT 3
USE Company
SET RELATION TO CompCode INTO Contact
SET RELATION TO Type INTO Typeco ADDITIVE
? "RELATION:",RELATION(1) , "TARGET:",TARGET(1)
* displays Compcode CONTACT
? "RELATION:",RELATION(2) , "TARGET:",TARGET(2)
* displays Compcode TYPECO
select 20

610 L a n g u a g e R e f e r e n c e

T E X T

? "TARGET:",TARGET(1,"Company") && works from any work area
* displays CONTACT

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CREATE, CREATE VIEW...FROM ENVIRONMENT, DISPLAY STATUS,
RELATION(), SET(), SET RELATION, SET VIEW

TEXT Input/Output

Displays the lines between TEXT and ENDTEXT as a block of text. This command is
supported primarily for compatibility with dBASE IV. In Visual dBASE, use DEFINE
with the Text class to display text in forms.

For complete syntax information on TEXT, see online Help. For information about
working with forms, see the Forms chapters in the User’s Guide.

TIME() Date and time data

Returns the system time as a character string in HH:MM:SS or HH:MM:SS.hh format.

Syntax
TIME([<exp>])

<exp> Any expression, which causes TIME() to return the current time to the
hundredth of a second.

Description
TIME() returns a character expression that is your system time. If you don't pass
TIME() an expression, it returns the current system time in HH:MM:SS format, where
HH is the hour, MM the minutes, and SS the seconds.

If you pass TIME() an expression, it returns the current system time in HH:MM:SS.hh,
where .hh is hundredths of a second. The expression value you pass to TIME() has no
effect on the time it returns other than to make it include hundredths of a second.

Example
See the example of SECONDS() for an example of TIME().

See Also
ELAPSED(), SET TIME

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 611

T O T A L+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TOTAL Table organization

Creates a table that stores totals for specified numeric and float fields of records grouped
by common key values.

Syntax
TOTAL ON <key expC> TO <filename> | ? | <filename skeleton>
[[TYPE] PARADOX | DBASE]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]

<key expC> The key expression of the master index or the name of the field on which the
current table has been sorted.

TO <filename> | ? | <filename skeleton> Directs output to the dBASE table named <filename>.
By default, Visual dBASE assigns a .DBF extension to <filename> and saves the file in the
current directory. The ? and <filename skeleton> options display a dialog box, in which
you specify the name of the target file and the directory to save it in.

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box, in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table to create. The TYPE keyword is
included for readability only; it has no effect on the operation of the command.

Specifying PARADOX creates a Paradox table with a .DB extension.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, dBASE assigns a .DBF extension.

<scope> The number of records to total. RECORD <n> identifies a single record by its
record number. NEXT <n> identifies n records, beginning with the current record. ALL
specifies all records. REST specifies all records from the current record to the end of the
file.

FOR <condition 1>
WHILE <condition 2> Determines which records are affected by TOTAL. FOR restricts
TOTAL to records that meet <condition 1>. WHILE starts processing with the current
record and continues with each subsequent record as long as <condition 2> is true.

FIELDS <field list> Specifies which numeric and float fields to total. If you don't include
FIELDS, dBASE totals all numeric and float fields.

Description
Use TOTAL to total the value of numeric fields in a table and create a second table to
store the results. The numeric fields in the table storing the results contain totals for all
records that have the same key value in the original table.

612 L a n g u a g e R e f e r e n c e

T R A N S F O R M ()

The current table must be either indexed or sorted on the key field. All records with the
same key field become a single record in the table storing the result totals. All numeric
fields appearing in the fields list contain totals. All other fields contain data from the first
record of the set of records with identical keys.

TOTAL is similar to SUM, except that SUM operates on an indexed or unindexed table,
returning a sum for all records of each numeric field. SUM doesn't create another table,
but stores the results to memory variables or an array.

Example
The following example uses TOTAL on the Company table to calculate the total of year
to date sales in each state:

CLOSE DATABASE
USE Company EXCLUSIVE
INDEX ON State_Prov TAG State
* First index Company table by State
* Index requires exclusive on
USE COMPANY SHARED
* TOTAL does not need exclusive on
TOTAL ON State_Prov TO StateTot
SELECT 2
USE StateTot
BROWSE FIELDS State_Prov, Ytd_sales TITLE "Total sales per state"

StateTot contains one record per state.

See Also
AVERAGE, CALCULATE, COUNT, SUM

TRANSFORM() String data

Returns a string containing data in a specified format.

Syntax
TRANSFORM(<exp>, <picture expC>)

<exp> The character, numeric, logical, or date expression to be formatted.

<picture expC> The string containing the template characters necessary to format <exp>.
The template characters are the same as those used in the PICTURE or FUNCTION
option of ? and ??, the Function property of the Entryfield class, etc. Precede any
FUNCTION template characters used with TRANSFORM() with an explicit @ symbol.
For more information about the FUNCTION option, see Function in Chapter 8.

Description
TRANSFORM() returns an expression in the PICTURE or FUNCTION format you
indicate with <picture expC>. Use TRANSFORM() to format data when the command
you're using allows expressions but doesn't include a PICTURE or FUNCTION option.
For example, use TRANSFORM() to format data in report and label forms, and to

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 613

T R I M ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

format DISPLAY and LIST output. Such formatting includes aligning text and
displaying numbers in scientific notation.

Example
The following example uses TRANSFORM() to print or display Startbal amounts with
commas and Baldate in English format (day/month/year):

CLEAR
USE Clients EXCLUSIVE
INDEX ON Company TO Comp
SET FIELDS TO Company, Startbal, Baldate
SCAN

? Company, TRANSFORM(Startbal,"999,999.99"), TRANSFORM(Baldate,"@E")
* Display balance with commas and date in English format
ENDSCAN
CLOSE DATABASES

See Also
?, ??, CLASS ENTRYFIELD

TRIM() String data

Returns a string with no trailing space characters.

Syntax
TRIM(<expC> | <memo field>)

<expC> | <memo field> The string or memo field to remove the trailing space characters
from.

Description
TRIM() returns a character expression or memo field with no trailing space characters.
TRIM() returns a maximum of 32766 characters, the maximum length of a string.
TRIM() is identical to RTRIM().

Using TRIM() with a memo field removes trailing spaces only at the end of the last line
of the field. To remove trailing spaces from a particular line of a memo field, use
LTRIM() with MLINE().

To remove leading space characters from a string or memo field, use LTRIM().

Example
The following example uses TRIM() to remove trailing spaces from text in a character
field:

USE Company
X = City + State + zip
? X
* Returns "Scotts Valley CA 95066"
X=TRIM(City)+", "+TRIM(State)+SPACE(2)+ZIP

614 L a n g u a g e R e f e r e n c e

T Y P E

? X
* Returns "Scotts Valley, CA 95066"

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS. Both
dBASE IV and dBASE III PLUS limit the return value of TRIM() to 254 characters.

See Also
LEFT(), LTRIM(), MLINE(), RIGHT(), STR(), SUBSTR()

TYPE Disk and file utilities

Display the contents of an ASCII file.

Syntax
TYPE <filename 1> | ? | <filename skeleton 1>
[MORE]
[NUMBER]
[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

<filename> | ? | <filename skeleton> The file whose contents to display, also called the source
file. TYPE ? and TYPE <filename skeleton> display a dialog box from which you can select
a file. If you specify a file without including its path, dBASE looks for the file in the
current directory, then in the path you specify with SET PATH. You must specify a file-
name extension.

MORE Pauses output when it fills the Command window; otherwise, the output scrolls
through the Command window to the end of the file.

NUMBER Precedes each line of output with its line number.

TO FILE <filename 2> | ? | <filename skeleton> Directs output to the text file <filename 2>, also
called the target file, as well as to the results pane of the Command window. By default,
dBASE assigns a .TXT extension to <filename 2> and saves the file in the current
directory. The ? and <filename skeleton> options display a dialog box in which you
specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer, as well as to the results pane of the Command
window.

Description
Use TYPE to display, copy, or print the contents of ASCII files.

If you TYPE a file TO FILE or TO PRINTER, dBASE adds two lines of output at the
beginning of the saved or printed output. The first line is a blank line, and the second
line contains the full path name and date stamp of the source file. If you specify
NUMBER, these two lines are not numbered; numbering begins with 1 at the first actual
line of the source file. If you specify MORE and cancel output before completion,
*** INTERRUPTED *** appears in the results pane of the Command window, but does
not appear in the incomplete saved or printed output.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 615

T Y P E ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE
displays a dialog box asking if you want to overwrite the file. If SET SAFETY is OFF, any
existing file with the same name is overwritten without warning.

Example
The following examples use TYPE:

TYPE Results.txt && Writes to the screen
TYPE Results.txt MORE && Pauses at each screenful
TYPE Myfile.prg NUMBER && Displays line numbers
TYPE Myfile.prg NUMBER TO FILE Myfile1.prg && Writes with numbers to new file
TYPE Myfile.prg NUMBER TO FILE ? && Opens dialog box for file name
TYPE Myfile.prg TO PRINTER && Prints Myfile.prg

Portability
Only a TO PRINT option is supported in dBASE III PLUS. The MORE, ?, and <filename
skeleton> options are not supported in dBASE IV. If you don't specify a file extension
with the TO FILE <filename> option, dBASE IV adds .PRT instead of .TXT.

See Also
COPY FILE, EJECT, SET ALTERNATE, SET PRINTER, SET SAFETY

TYPE() Expressions and type conversion

Returns a character string that indicates a specified expression's data type.

Syntax
TYPE(<exp> | <expC>)

<exp> | <expC> The expression whose type to evaluate and return.

Description
TYPE() can evaluate only character-based expressions. You can use <exp> (no quotes)
only if you are evaluating a memory variable that contains either the name of a database
field or character string that references an expression. Otherwise, use <expC> to evaluate
a literal expression, a field name, or a memory variable.

For example, if your database has a field named "START," you can determine the type of
this field in two ways. Either use TYPE("START"), or store the field name to a memory
variable (STORE "START" TO mvar) and use TYPE(mvar).

A similar principle applies to memory variables that are not field names:

• If you issue STORE "1+2=5" TO mvar, TYPE(mvar) returns L. This is because dBASE
interprets TYPE(mvar) as "What type of expression does the character string
contained in mvar represent?" The character string contained in mvar is "1+2=5",
which is a logical expression, so dBASE returns L.

616 L a n g u a g e R e f e r e n c e

T Y P E ()

• If you issue STORE "1+2=5" TO mvar, TYPE("mvar") returns C. However, dBASE
interprets TYPE("mvar") as "What type of data does the variable mvar contain?" Since
"1+2=5" is a character string, dBASE returns C in this case.

Memory variables may also evaluate to other memory variables. For example, if you
issue STORE 10 TO mnum and STORE "mnum" TO mvar, TYPE(mvar) returns N.
Again, this is because dBASE evaluates TYPE(mvar) as "What type of expression does
the character string contained in mvar represent?" The character string in mvar is
"mnum," which represents a variable that contains the number 10, so dBASE returns N.

If you want to evaluate a memory variable that does not evaluate to a character string,
you must use <expC>, as shown in the following example.

STORE DATE() TO mvar
? TYPE(mvar) && returns an error because mvar does ;

not contain a character string.
? TYPE("mvar") && returns D

TYPE() always returns a character string. The following table lists the values TYPE()
returns.

Example
The following examples use TYPE() to determine the data type of a specified
expression.

USE Clients
? TYPE("Company") && Returns C
? TYPE("BalDate") && Returns D
? TYPE("StartBal") && Returns N
mDate={12/31/99} && date type variable
? TYPE("mdate") && Returns D
? TYPE(mdate) && Returns error message
mField = "Startbal" && name of a field
? TYPE(mfield) && Returns N

If <exp> | <expC>contains this type of data TYPE() returns

dBASE array variable A
dBASE or Paradox binary field (BLOB) B
dBASE bookmark variable BM
dBASE character field or string variable, Paradox alphanumeric field C

dBASE code block variable CB
dBASE date field or variable, Paradox date field D
dBASE float field, Paradox numeric or currency field F
dBASE function pointer variable FP
OLE (general) G
dBASE logical field or variable L
dBASE or Paradox memo field M
dBASE numeric field or integer variable N
dBASE object variable O
dBASE SAVE SCREEN variable S
dBASE or Paradox undefined variable, field, or invalid expression U

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 617

U N I Q U E ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

mStartbal=Startbal && contents of a field
? TYPE(mStartbal) && Returns error message
? TYPE("mStartbal") && Returns F

See Also
EMPTY(), ISBLANK(), STORE

UNIQUE() Table organization

Indicates whether a specified index was created with the UNIQUE keyword (or with
SET UNIQUE ON).

Syntax
UNIQUE([[<.mdx filename>,] <index position expN> [,<alias>]])

<.mdx filename> Specifies a multiple index file that contains the index tag you want to
check.

<index position expN> Selects an index file or tag by the position of an index tag in an
.MDX file or the position of an index file in the list of open indexes for the current or a
specified table. The index position number specifies the position of the index within the
list of open indexes as opened with the SET INDEX or USE commands.

<alias> A work area number (1 through 225), letter (A through J), or alias name. The
work area letter or alias name must be enclosed in quotes.

Description
The UNIQUE() function returns .T. if the index specified by the optional <index position
expN> parameter was created with the INDEX...UNIQUE option, or INDEX with SET
UNIQUE ON. If you do not specify an index number, UNIQUE() checks the master
index or index tag for the current or specified work area.

The UNIQUE() function returns .F. when

• The master index or the specified index or index tag number was not created with the
INDEX...UNIQUE option or INDEX with UNIQUE set ON.

• You do not include an index number and the current table does not have a master
index.

• No open index or index tag in the current or specified work area has the specified
index number.

• UNIQUE() returns an error if a specified index or filename does not exist.

Example
The following example uses UNIQUE() to determine if the key for a specified index was
created as a UNIQUE index:

USE Company EXCLUSIVE
INDEX ON CompCode TAG CompCode
SET ORDER TO TAG Compcode

618 L a n g u a g e R e f e r e n c e

U N L O C K

? TAG(), "Unique = ", UNIQUE()
INDEX ON State_Prov TAG State OF Location UNIQUE
SET ORDER TO TAG State OF Location
? TAG(), "Unique = ", UNIQUE()
? TAG(1), "Unique = ", UNIQUE(1), MDX(1)
* UNIQUE can reference an index by position
* This is the first index of Company.mdx

Portability
Not supported in dBASE III PLUS.

See Also
DESCENDING(), FOR(), INDEX, KEY(), MDX(), NDX(), ORDER(), SET UNIQUE,
TAG(), TAGCOUNT(), TAGNO(), WORKAREA()

UNLOCK Shared data

Unlocks the current table if you locked it with FLOCK(). Unlocks all records in the
current table you locked with RLOCK() or LOCK().

Syntax
UNLOCK
[ALL | IN <alias>]

ALL In all work areas, unlocks all tables you locked with FLOCK() and all records you
locked with RLOCK() or LOCK().

IN <alias> Unlocks the alias table <alias> if you locked it with FLOCK(), or unlocks all of
its records you locked with RLOCK() or LOCK(). <alias> is a work area number
(1 through 225), letter (A through J), or alias name. The work area letter or alias name
must be enclosed in quotes. If you don't include <alias>, UNLOCK unlocks the current
table.

Description
Use UNLOCK to unlock file locks you obtained with FLOCK(), or to unlock record
locks you obtained with RLOCK() or LOCK(). Issue UNLOCK at the same workstation
as the one at which you issued the FLOCK(), RLOCK(), and LOCK() functions.
UNLOCK can't release locks obtained through other workstations.

If you're browsing or editing a table, and the record pointer is on a record or an entry
field representing a field in the table, pressing Ctrl+O toggles the current record between
a locked and unlocked state. That is, if the record is locked, Ctrl+O unlocks it; if the record
is unlocked, Ctrl+O locks it.

When you set a relation to a parent table with SET RELATION and then unlock the
parent table or records in the parent table with UNLOCK, dBASE also unlocks related
tables or records. For more information on relating tables, see SET RELATION.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 619

U P D A T E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

Example
See FLOCK() for an example for UNLOCK.

Portability
Not supported in dBASE III PLUS.

See Also
FLOCK(), RLOCK(), SET RELATION

UPDATE Table organization

Replaces data in the specified fields of the current table with data from another table.

Syntax
UPDATE ON <key exp> FROM <alias>
REPLACE <field 1> WITH <exp 1>

 [, <field 2> WITH <exp 2>...]
[RANDOM]
[REINDEX]

<key exp> The key expression that is common to both the current table and a table in a
second work area.

FROM <alias> Specifies a table open in another work area that provides updates to the
current table.

REPLACE <field 1> WITH <exp 1> Specifies the field in the current table to be updated with
the table specified by FROM <alias>. If a field specified by WITH <exp1> is in a different
work area from the current table, identify the field by its alias, for example, alias->field.

[,<field n> WITH <exp n> ...] Specifies additional fields to be updated.

RANDOM Specified when the updating table is neither indexed nor sorted. (Current
table must be indexed on the key expression common to both tables.)

REINDEX Specifies that all affected non-master indexes are rebuilt once the update
operation finishes.

Description
The UPDATE command uses data from a specified table to replace field values in the
current table. It makes the changes by matching records in the two files based on a
single key field.

The current table must be indexed on the field in the key expression. Unless the
RANDOM option is used, the table in the specified work area should also be indexed or
sorted on the same field. Fields that are included in the key expression must have
identical names in the two tables.

620 L a n g u a g e R e f e r e n c e

U P D A T E D ()

Example
The following example uses UPDATE to recalculate the totals for each order in the
Orders table from the LineItem table. UPDATE cannot look up multiple records, so
LineItem is totalled on Order_No to a new table, LineTot, and Orders is updated from
LineTot:

SET TALK ON
* to show the record counts
CLOSE ALL
USE ORDERS EXCLUSIVE
SELECT 2
USE LineItem
INDEX ON Order_no TAG Orders
TOTAL ON Order_no TO LineTot
USE LineTot
SELECT Orders
UPDATE ON Order_no FROM LineTot REPLACE Tot_inv WITH LineTot->Total
* Only orders with lineitems will be updated. With Talk ON you will see
* the number of records that were updated.

See Also
APPEND FROM, JOIN, REPLACE, SELECT, SET RELATION

UPDATED() Input/Output

Returns .T. (true) if you changed the contents of any @...GET fields or memory variables
in the results pane of the Command window or the current dBASE IV window. This
command is supported primarily for use with dBASE IV windows. In Visual dBASE,
use properties such as OnChange to manage changed information in forms.

For complete syntax information on UPDATED(), see online Help. For information
about working with forms, see the Forms chapters in the User's Guide.

UPPER() String data

Converts all lowercase characters in a string to uppercase and returns the resulting
string.

Syntax
UPPER(<expC> | <memo field>)

<expC> | <memo field> The character string or memo field to convert to uppercase.

Description
UPPER() converts the lowercase alphabetic characters in a character expression or
memo field to uppercase. UPPER() ignores digits and other characters. UPPER()
returns a maximum of 32766 characters, the maximum length of a string.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 621

U S E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

The current language driver defines the character values that are lowercase and
uppercase alphabetic. In a U.S. language driver, a lowercase alphabetic character is from
a to z, and an uppercase alphabetic character is from A to Z. See Appendix C in the
Programmer's Guide for information about language drivers.

Example
The following example uses UPPER() to convert lowercase text to uppercase when
comparing two strings:

? UPPER("Technical") && Returns "TECHNICAL"
? UPPER("Technical") = "Technical"; && Returns .F.
? UPPER("") && Returns ""
? UPPER("12 apples") && Returns "12 APPLES"

UPPER() is frequently used to ensure that character data matches for various
comparisons. The following example uses UPPER() to ensure a match during a SEEK:

SET EXACT OFF
USE Animals EXCLUSIVE
INDEX ON UPPER(Name) TAG Name
mSearch="Boa"
SEEK UPPER(msearch)
IF FOUND()

EDIT
ENDIF
RETURN

Portability
The <memo field> argument isn't supported in dBASE IV or dBASE III PLUS.

See Also
CHARSET(), ISALPHA(), ISLOWER(), ISUPPER(), LDRIVER(), LOWER(),
PROPER(), SET LDCHECK

USE Table basics

Opens the specified table, associated memo (.DBT) files, and production index (.MDX)
files, if any.

Syntax
USE
[<filename 1> | ? | <filename skeleton 1>
[[TYPE] PARADOX | DBASE]
[IN <alias>]
[INDEX <index name list> |

 <? list> | <index name skeleton list>]
[ORDER [TAG] <.ndx filename> |

 <tag name> [OF <.mdx filename>]]
[AGAIN]
[ALIAS <alias name>]

622 L a n g u a g e R e f e r e n c e

U S E

[AUTOMEM]
[EXCLUSIVE | SHARED]
[NOSAVE]
[NOUPDATE]]

<filename 1> | ? | <filename skeleton 1> The table file you want to open. USE ? and USE
<filename skeleton 1> displays a dialog box, from which you can select a table file. If you
specify a file without including its path, Visual dBASE looks for the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without
including an extension or specifying its type, Visual dBASE assumes the file type
specified with the SET DBTYPE command.

You can also open a table in a database (defined using the BDE Configuration Utility) by
specifying the database as a prefix (enclosed in colons) to the name of the table, that is,
:database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[[TYPE] PARADOX | DBASE] Specifies the type of table to open. The TYPE keyword is
included for readability only; it has no effect on the operation of the command.

Specifying PARADOX opens a Paradox table with a .DB extension.

Specifying DBASE opens a dBASE table (the default). If you don't include an extension
for <filename>, Visual dBASE assumes a .DBF extension.

IN <alias> Specifies a work area. You can enter a work area number (1 through 225),
letter (A through J), or alias name. The work area letter or alias name must be enclosed
in quotes.

INDEX <.index name list> | <? list> | <index name skeleton list> Applicable to dBASE indexes
only. (Indexes on Paradox and SQL tables are specified by the ORDER clause.) Opens
up to 100 individual index files for the specified table. <index name list> can include
single (.NDX) and multiple index file (.MDX) names. If the first file in <index name list> is
a single index file, and you don't use the ORDER option, the single index file becomes
the master index. INDEX <? list> and INDEX <index name skeleton list> displays a dialog
box, from which you can choose an existing index file.

ORDER [TAG] <tag name> Makes the <tag name> index file the master index. When
opening a Paradox table, you may specify a secondary index as the master index;
otherwise, the PRIMARY index is used. When opening an SQL table, you can also
specify an index to use as the master index.

If you don't include the ORDER clause and the first file name after INDEX is a single
index .NDX file, the single index file is the master index. If you don't include ORDER
and the first file name after INDEX is a multiple index .MDX file, the table doesn't use a
master index.

OF <.mdx filename> The multiple index file that includes <tag name>. Without OF
<filename>, dBASE searches for <tag name> in a multiple index file with the same root
name as the table.

ORDER [TAG] <.ndx filename> Makes the single index file, <.ndx filename>, the master index.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 623

U S E+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

AGAIN Opens a table and its related index files in the current or specified work area,
leaving the table open in one or more other work areas.

ALIAS <alias name> Specifies an alternate alias name for the table which is open in the
current work area. The default alias name is the table name unless you use the AGAIN
option. You can also use the letters A through H, or the numbers 1 through 255, to refer
to the work areas.

AUTOMEM Initializes a memory variable for each field of the specified table (not
including memo, binary, or OLE types). The memory variables are assigned the same
names and types as the fields.

EXCLUSIVE | SHARED EXCLUSIVE opens the table so that no other users can open the
table until you close it; SHARED allows other users access while the table is opened. The
default setting depends on whether you are accessing tables in a shared environment or
the LOCALSHARE setting in a single-user environment.

NOSAVE Used to open a .DBF file as a temporary table. When you close a file opened
with NOSAVE, it is erased along with its associated memo file. If you inadvertently
open a table with the NOSAVE option, use COPY TO to save the data.

NOUPDATE Prevents users from altering, deleting, or recalling any records in the table.

Description
The USE command opens an existing table, production (.MDX) index file, and
associated .DBT file if the table contains binary, memo, or OLE fields). Optionally, USE
also opens any associated .NDX or non-production .MDX index files that you specify.
You need to open a table before you can access any data stored in the table.

USE with no other argument closes the open table, indexes, and format file in the
current work area. USE IN <alias>, with no file name argument, closes the table and
related files in the specified work area. CLOSE TABLES closes tables in all work areas.

You can open a table in any available work area. When opening a table, you can name
the work area by including the ALIAS option in the USE command line. ALIAS names
follow the same rules as file names. Aliases are used when referring to a table from
another work area.

USE...INDEX specifies index files that are opened and maintained for a particular table.
The ORDER option specifies the master index from the list of indexes opened with the
INDEX option and the production .MDX index. USE...INDEX is identical to USE
followed by SET INDEX. See the SET INDEX and SET ORDER commands for an
explanation of the open index order and specifying a master index.

You can include .NDX as well as .MDX index file names with the INDEX option. If a
table has an .NDX and an .MDX index file with the same name, Visual dBASE opens
indexes listed in the .MDX index file. In that case, to open the single index you would
need to specify its full name, including its extension.

Use the NOSAVE option of USE to open a table as a temporary file. Visual dBASE
automatically erases the table, along with the associated memo and index files listed
previously, when you close the table.

624 L a n g u a g e R e f e r e n c e

U S E

The AUTOMEM option, which creates memory variables for all fields of the table
(excluding binary, memo, and OLE type fields), initializes the memory variables
according to the data type in the field as follows:

USE...AUTOMEM lets you create memory variables corresponding to fields in a table
for updating data values in an application program. See the APPEND AUTOMEM and
STORE AUTOMEM for more information on using automem variables.

Example
The following example demonstrates USE to open Flights and Aircrdb tables ordered by
an .MDX tag in the next two available work areas:

CLOSE DATABASES
USE Flights ORDER Aircraft EXCLUSIVE IN SELECT()
USE Aircrdb IN SELECT()
SELECT Aircrdb
SET RELATION TO Aircraft INTO Flights

The following example opens the Clients table and automatically creates memory
variables from each of the field values:

SELECT 1
USE Clients ORDER Company AUTOMEM EXCLUSIVE
DISPLAY MEMORY TO PRINT
* Displays memory variables created with AUTOMEM from Clients table.
CLOSE DATABASES

The following example opens a Paradox table:

USE Customer TYPE PARADOX
BROWSE
CLOSE DATABASES

See Also
ALIAS(), APPEND AUTOMEM, CLEAR AUTOMEM, CLOSE..., SELECT, SELECT(),
SET INDEX, SET ORDER, STORE AUTOMEM

Character All blanks

Float 0

Numeric 0

Logical .F.

Date / /

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 625

U S E R ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

USER() Security

Returns the login name of the user currently logged in to a protected system.

Syntax
USER()

Description
The USER() function returns the log-in name used by an operator currently logged in to
a system that uses PROTECT to encrypt files. On a system that does not use PROTECT,
USER() returns a null string.

See Also
ACCESS(), PROTECT

VAL() Expressions and type conversion

Returns a specified character string as a numeric or float value.

Syntax
VAL(<expC>)

<expC> The character expression to return as a numeric or float value, or the character
expression beginning with the number to return as a numeric or float value.

Description
Use VAL() to convert character expressions to numbers of numeric or float type. Once
you convert character data to numeric or float data, you can perform arithmetic
operations with it.

If the character string you specify contains both letters and numbers, VAL() returns the
value of the entire number to the left of the first nonnumeric character. If the string
contains a nonnumeric character other than a blank space in the first position, VAL()
returns 0. For example, VAL("ABC123ABC456") returns 0, VAL("123ABC456ABC")
returns 123, and VAL(" 123") also returns 123.

Example
The following examples use VAL() to return the numeric value of a character string,
variable or field.

SET TALK OFF
? VAL("123AB34") && Returns 123
? VAL("–32") && Returns –32
Strng1 = "BAY672"
? VAL(Strng1) && Returns 0
Strng2 = "345 Alcott Lane"
? VAL(Strng2) && Returns 345

626 L a n g u a g e R e f e r e n c e

V A L I D D R I V E ()

FldDemo.Prg
Strng2 = "345 Alcott Lane"
USE Clients ORDER Company
SEEK "Brown Designs"
IF FOUND()

REPLACE ADDRESS WITH Strng2
ENDIF
? VAL(Address) && Returns 345
SET TALK ON
CLOSE ALL
** End FldDemo.PRG**

The following example uses VAL() to convert character data in the Zip_P_Code field to
numeric type to filter only those records in the western region of Clients table.

SET TALK OFF
USE Clients EXCLUSIVE
INDEX ON Zip_P_Code TAG ZIP
SET FILTER TO VAL(Zip_P_Code)>80000
GO TOP
? CENTER("Phone List")
? CENTER("Western Region")
?
SCAN

? Company, Contact, Areacode, Phone, Extension
ENDSCAN
CLOSE ALL
SET TALK ON
RETURN

See Also
SET DECIMALS, SET POINT, SET SEPARATOR, STR()

VALIDDRIVE() Disk and file utilities

Returns .T. if the specified drive exists and can be read. Returns .F. if the specified drive
does not exist or cannot be read.

Syntax
VALIDDRIVE(<drive expC>)

<drive expC> Drive letter of the drive to be tested, optionally followed by a colon. If you
specify more than one letter in <drive expC>, dBASE evaluates only the drive
represented by the first letter.

Description
Use VALIDDRIVE() to determine if a specified drive exists and is ready before using
CD, SET DEFAULT, SET DIRECTORY or SET PATH. VALIDDRIVE() is also useful if
your program copies files to or from a drive, or includes drive letters in any file names.

VALIDDRIVE() can verify any drive specified, including drives created by partitioning
a hard disk and network drives.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 627

V A R R E A D ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

Example
The following examples use VALIDDRIVE():

? VALIDDRIVE("C:") && .T.
? VALIDDRIVE("A:") && .T. if A drive has floppy ready
? VALIDDRIVE("Z:") && .T. if Z drive exists

In the following example, VALIDDRIVE() checks a floppy drive, the B drive. If
VALIDDRIVE() returns false then the user is asked to insert a floppy disk. This code
will loop three times.

K=1 && set up a counter
DO WHILE .NOT. VALIDDRIVE("B:") .AND. K<=3

WAIT "Put a disk in drive B and press any key"
K=K+1 && increment the counter

ENDDO

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CD, SET DEFAULT, SET DIRECTORY, SET PATH

VARREAD() Input/Output

Returns the name of the current memory variable or field when you issue READ after
@…GET. This command is supported primarily for compatibility with dBASE IV. In
Visual dBASE, use the Name property to identify an object in a form.

For complete syntax information on VARREAD(), see online Help. For more
information about working with forms, see the Forms chapters in the User’s Guide.

VERSION() Environment

Returns a character string that is the name and version number of the currently running
version of dBASE.

Syntax
VERSION()

Description
Use VERSION() in programs that use features specific to different versions of dBASE.
For example, you can use VERSION() to learn what version of dBASE is in use and then
execute code specific to that version.

Example
The following example tests if the user is running Visual dBASE:

628 L a n g u a g e R e f e r e n c e

W A I T

IF "WINDOW"$UPPER(VERSION())
* Does "WINDOW" occur in the version name?

? "Running Windows" && Yes
ELSE

* User is not running a Windows version of dBASE
WAIT "You must have Visual dBASE"+ "to run this program"

ENDIF

See Also
OS()

WAIT Input/Output

Pauses the current program, optionally accepts a single character as data input, and
continues execution when any key is pressed. This command is supported primarily for
compatibility with dBASE IV. In Visual dBASE, WAIT is useful only if you are sending
output to the results pane of the Command window and want to pause at particular
points.

Syntax
WAIT
[<prompt expC>]
[TO <memvar>]

<prompt expC> A character expression that prompts the user for input.

TO <memvar> Assigns a single character to the memory variable you specify for
<memvar> as a character-type variable. If <memvar> doesn't exist, dBASE creates it. If
<memvar> does exist, WAIT overwrites it.

Default
If you don't specify <prompt expC>, dBASE displays "Press any key to continue" when
you issue WAIT.

Description
Use WAIT to halt program execution temporarily (for example, to display data without
enabling editing). Pressing any key exits WAIT and resumes program execution.

Note If SET ESCAPE is ON, pressing Esc at the WAIT prompt causes dBASE to interrupt
program execution. If SET ESCAPE is OFF, pressing Esc in response to WAIT causes
program execution to resume the same as any other key.

Although you use WAIT primarily to pause a program until the user presses a key, you
can also use it to store the pressed key to a character memory variable. If the user presses
Enter without typing any characters, WAIT assigns an empty string ("") to <memvar>.

Example
Wait can be used without a prompt or an input variable:

WAIT

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 629

W I N D O W ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
w

The default prompt then appears on the next row, in column 0:

* Press any key to continue ...

The following example shows WAIT with a prompt:

WAIT "Press any key to move to the next screen"

This examples shows WAIT with a prompt and input variable:

WAIT "Do you wish to print the report (Y/N)? " to Answer

See Also
SET ESCAPE

WINDOW() dBASE IV windows

Returns the name of the active dBASE IV-style window. This command is supported
primarily for compatibility with dBASE IV. In Visual dBASE, use INSPECT() to return
information associated with forms.

For complete syntax information on WINDOW(), see online Help. For information
about defining forms, see the Forms chapters in the User's Guide.

WORKAREA() Table basics

Returns a number representing the currently selected work area.

Syntax
WORKAREA()

Description
The WORKAREA() function returns the number of the currently selected work area.
Use WORKAREA() in a program to save the current work area number and then later
restore that work area using the SELECT command.

Example
See DBF() and SELECT() for an examples of using WORKAREA().

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DBF(), SELECT, SELECT()

630 L a n g u a g e R e f e r e n c e

Y E A R ()

YEAR() Date and time data

Returns the year of a specified date expression as a 4-digit number.

Syntax
YEAR(<expD>)

<expD> The date expression, in the current date format, whose corresponding year
number to return.

Description
YEAR() returns a date's 4-digit year number. The SET CENTURY setting has no effect
on YEAR().

Enter <expD> in the current date format as determined by SET DATE, DBASEWIN.INI,
or the International option of the Windows Control Panel (in that order). That is, SET
DATE settings override those in DBASEWIN.INI, and settings in DBASEWIN.INI
override those in the Windows Control Panel. Be sure <expD> matches the date format
in use when your program runs.

If you pass an invalid date to YEAR(), dBASE converts the date to a valid one and
returns the 4-digit year of that date. If you pass an empty or non-date expression
delimited with braces ({ }) to YEAR(), it returns 0. If you pass a non-date expression or
an expression that isn't delimited with braces to YEAR(), it returns an error.

You can use STR(YEAR()) to index on a date field in combination with a character field.

Example
See the example of CMONTH() for the use of YEAR().

See Also
DATE(), DAY(), DOW(), MONTH(), SET CENTURY, STR()

ZAP Fields and records

Removes all records from the current table.

Syntax
ZAP

Description
ZAP is the fastest way to delete all records from a table. DELETE ALL, followed by
PACK, also deletes all records from a table. Using ZAP requires a table be opened
exclusively.

When SET SAFETY is ON and you issue ZAP, Visual dBASE displays a warning
message asking you to confirm the operation before removing records.

C h a p t e r 4 , C o m m a n d s a n d f u n c t i o n s 631

Z A P+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
y

Example
The following example uses ZAP to permanently remove all records from the current
table:

USE Clients
SET TALK OFF
SET SAFETY ON
COPY TO TEMP
USE TEMP EXCLUSIVE
zap_yn = "N"
ACCEPT "Do you want to remove all records? (Y/N)" TO zap_yn
READ
IF UPPER(zap_yn) = "Y"

ZAP
? "All records have been removed from " + ALIAS()
ENDIF
CLOSE ALL
SET TALK ON

See Also
DELETE, PACK, SET SAFETY

632 L a n g u a g e R e f e r e n c e

S y s t e m m e m o r y v a r i a b l e s 633

Part 0System memory variables

634 L a n g u a g e R e f e r e n c e

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 635

C h a p t e r

5
Chapter 5System memory variables

_alignment Printing

Left-aligns, right-aligns, or centers ? and ?? command output within margins specified
by _lmargin and _rmargin when _wrap is true.

Syntax
_alignment = <expC>

<expC> The character expression "LEFT", "CENTER", or "RIGHT". You can enter
<expC> in any combination of uppercase and lowercase letters.

Default
The default for _alignment is "LEFT".

Description
Use _alignment to left-align, right-align, or center output from the ? and ?? commands
between the margins you set with _lmargin and _rmargin. The _alignment setting is
effective only when _wrap is true (.T.).

To control the alignment of text within a field, use the "B," "I," and "J" format options
with the PICTURE or FUNCTION options of an @...SAY statement. For information
about format options, see the Picture and Function sections in Chapter 8.

Example
The following example sets wrap on and then prints in the three different alignments:
left, center, and right:

savewrap=_wrap && save last wrap setting
_wrap=.t. && must be .t. for alignment
savealign=_alignment && save last alignment setting
_alignment="LEFT"
? "Hello LEFT"

636 L a n g u a g e R e f e r e n c e

_ a p p

_alignment="RIGHT"
? "Hello RIGHT"
_alignment="CENTER"
? "Hello CENTER"
_alignment=savealign && reset
_wrap=savewrap && reset

Portability
Not supported in dBASE III PLUS.

See Also
?, ??, @...SAY...GET, _lmargin, _rmargin, _wrap, SET MARGIN

_app Objects

Contains an object reference to the application object, which is the active dBASE session.

Syntax
_app.<property name> = <new value>

<property name> The application object property that you change.

<new value> The value you give to the application object property.

Description
Use _app to access and control the application object.

The application object is the current dBASE session. It has four properties,
DdeServiceName, ClassName, Insert, and OnInitiate. The application object also
contains an object called FrameWin, which is the dBASE application window.

DdeServiceName
Use the DdeServiceName property to let a client application establish a DDE link to a
particular dBASE session when multiple dBASE sessions exist.

The value you specify with DdeServiceName is the name of a dBASE application object.
Any active dBASE session is an application object; when you start a dBASE session, you
are actually creating an instance of a dBASE application object.

For example, when you start two dBASE sessions, you create two dBASE application
objects. Setting the DdeServiceName property of one application object to "NEWSERV"
(or some other unique name) lets an external application like Quattro Pro distinguish
between the two sessions. You use the _app system memory variable to reference and
set the DdeServiceName property of one of the sessions:

_app.DdeServiceName = "NEWSERV"

To create a DDE link to the NEWSERV session, Quattro Pro could execute the following
{INITIATE} request:

{INITIATE "NEWSERV", "MyTopic", CHANNEL}

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 637

_ a p p

To create a DDE link to the other session (whose DdeServiceName property still
contains the default value "DBASEWIN"), Quattro Pro could execute the following
{INITIATE} request:

{INITIATE "DBASEWIN", "MyTopic", CHANNEL}

ClassName
ClassName identifies the application object's class (APPLICATION). Classname is a
read-only property.

Insert
Determines if Insert is on or off. When you set Insert to true (.T.), Insert is on.

OnInitiate
Executes an initiation-handler subroutine. You write this routine to create DDETopic
objects, which handle DDE server events. OnInitiate executes the subroutine whenever
a client application requests a DDE link with the dBASE session. For more information,
see CLASS DDETopic and Chapter 26 in the Programmer's Guide.

The FrameWin object
The dBASE application window. This object contains five properties, Visible,
ClassName, hWnd, Text, and WindowState.

Visible Determines whether the dBASE application window is visible or hidden. You
set Visible to false (.F.) when you want to display non-MDI forms without displaying
the dBASE environment.

ClassName ClassName identifies the application object's class (FRAMEWINDOW).

hWnd Returns the dBASE Frame Window's object handle. External functions written in
other languages such as C, Pascal, or ASM use this handle to identify the object. These
external functions are usually stored in Dynamic Link Library (DLL) files. For example,
you can pass the object handle of the dBASE Frame Window as a parameter to an
external function, perhaps allowing the function to open or close the window.

hWnd is a read-only value.

For more information on DLL files and external functions, see EXTERN and Chapter 25
in the Programmer's Guide.

Text Specifies a character string to display in the title bar of the dBASE application
window. For more information, see the description of the Text property.

WindowState Determines if the dBASE application window is minimized, maximized, or
displayed in its original size. For more information, see WindowState.

Example
The following command, placed at the beginning of an application program, would
change the text in the upper-center of the dBASE application window to a company
name:

_app.FrameWin.Text = "National Federal Bank"

638 L a n g u a g e R e f e r e n c e

_ b o x

To remove the dBASE environment from the screen:

_app.FrameWin.Visible = .F.

To set Insert Off for your application:

_app.Insert = .F.

Since the ClassName property is read-only, access it as follows:

IF _app.ClassName = "APPLICATION" && Returns .T.
* perform action

ENDIF
* or

? _app.ClassName && Returns the string "APPLICATION"
* or

mVar = _app.ClassName && Initializes variable

See Also
CLASS DDETopic, EXTERN, LOAD DLL, RESOURCE()

_box Printing

Controls whether dBASE displays dBASE IV DEFINE BOX boxes in ? command output.

Syntax
_box = <expL>

<expL> The logical expression true or false in the form .T. or .F., respectively.

Default
The default for _box is .F.

Description
Use _box to control the display of boxes created with the dBASE IV command DEFINE
BOX. If you set _box to true (.T.), dBASE displays the boxes in the background of
streaming output from the ? command.

You can control the exact moment to display or print a box with _box. For example, you
can interrupt the printing of a box by setting _box to false (.F.) before it has finished
printing. When you set _box to .T. later, the rest of the box prints.

Example
_box is used only in conjunction with DEFINE BOX. See the example in DEFINE BOX.

Portability
Not supported in dBASE III PLUS.

See Also
ACTIVATE WINDOW, DEFINE BOX

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 639

_ c u r o b j

_curobj Forms

Identifies the position of the currently selected object in the tabbing order of the active
form.

Syntax
_curobj = <expN>

Description
_curobj holds a number identifying the position of the selected object.

A related form property, ActiveControl, returns the name of the object that currently has
input focus.

Example
The following example defines a form that contains four objects. The OnGotFocus
property is used to display the current object number at the Command window Results
pane when an object gains focus:

USE Contact.DBF
CLEAR
LOCAL f
f=NEW ENTRY()
f.OPEN()
CLASS Entry OF FORM

this.Top=2
this.Left=2
this.Width=36
this.Height=8
this.Text= "Contact.DBF"
this.StatusMessage="_curobj in Command window"
DEFINE ENTRYFIELD CompCode OF THIS AT 2,2;

PROPERTY Width 5, Height 1.5,;
DataLink "COMPCODE", OnGotFocus {;?_curobj}

DEFINE ENTRYFIELD Contact OF THIS AT 2,12;
PROPERTY Width 22, Height 1.5,;
DataLink "CONTACT", OnGotFocus {;?_curobj}

DEFINE PUSHBUTTON Back OF THIS AT 5,9;
PROPERTY Text "Back", Height 2,;

OnClick {;SKIP-1},;
OnGotFocus {;?_curobj}

DEFINE PUSHBUTTON Next OF THIS AT 5,19;
PROPERTY TEXT "Next", Height 2,;

OnClick {;SKIP},;
OnGotFocus {;?_curobj}

ENDCLASS

Portability
Not supported in dBASE IV or dBASE III PLUS.

640 L a n g u a g e R e f e r e n c e

_ d b w i n h o m e

See Also
ActiveControl, NEXTOBJ(), SET FOCUS TO

_dbwinhome Disk and file utilities

Contains the path to the dBASE home directory.

Syntax
? _dbwinhome

Description
Use _dbwinhome to identify the root directory (also called the home directory) in which
dBASE files are installed. When you install dBASE, the installation program (by default)
installs dBASE files in the DOS directory \VISUALDB, and creates subdirectories such
as \BIN and \SAMPLES under \VISUALDB. _dbwinhome returns the name of the
home directory (in this case, DBASEWIN.) _dbwinhome returns the full path name
whether SET FULLPATH is ON or OFF.

To identify where the currently running version of DBASEWIN.EXE is located, use
HOME().

Example
_DBWINHOME would only change if dBASE were reinstalled in a different directory:

? _dBWINHOME && e.g. D:\VISUALDB
* dBASE is installed in the VISUALDB subdirectory
* of the D drive.

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CD, HOME(), MKDIR, SET DIRECTORY, SET FULLPATH, SET PATH

_indent Printing

Specifies the number of columns to indent the first line of a paragraph of ? command
output when _wrap is true.

Syntax
_indent = <expN>

<expN> The column number, relative to the left margin, where the first line of a new
paragraph begins. You can specify a fractional number for <expN> to position output
accurately with a proportional font.

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 641

_ i n d e n t

Default
The default for _indent is 0.

Description
Use _indent to specify where the first line of a new paragraph begins relative to the left
margin. (Specify the left margin with _lmargin.) The _indent setting is effective only
when _wrap is true (.T.).

When you direct ? output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font. For more information about the coordinate plane, see Chapter 16 in
the Programmer's Guide.

If you change the value of _indent, dBASE takes the current value of _ppitch into
consideration when calculating the cell width of the coordinate plane. This happens
regardless of whether you're printing with proportional or monospaced fonts. If you
issue ? without the STYLE option and use only integer coordinates, dBASE uses a
monospaced font, and all output appears exactly the same as in dBASE IV.

To indent the first line of a paragraph, use a value greater than 0. For example, to begin
the line five columns to the right of the left margin, set _indent to 5. To create a hanging
indent (sometimes called an outdent), use a negative value. For example, to begin the
first line five columns to the left of the left margin, set _indent to -5. Using the default
value of 0 (no indent or outdent) aligns all lines in a paragraph to the left margin. The
sum of _lmargin and _indent must be greater than 0 and less than _rmargin.

Example
The following example sets wrap on and indents the first line of a text that wraps
around:

_indent=3 && set the indentation
savewrap=_wrap && save last wrap setting
_wrap=.t. && must be .t. for alignment
savelmargin=_lmargin && save last alignment setting
_lmargin=5
savermargin=_rmargin && save last alignment setting
_rmargin=20
? "New York, Chicago and Boston are "+;

"cold in wintertime."
* Now the text wraps around between columns 5 and 20
*
* New York,
* Chicago and
* Boston are cold
* in wintertime.
*
_rmargin=savermargin && restore the previous margin
_lmargin=savelmargin && restore the previous margin
_wrap=savewrap && reset wrap

642 L a n g u a g e R e f e r e n c e

_ l m a r g i n

Portability
Not supported in dBASE III PLUS.

See Also
?, ??, _alignment, _lmargin, _ploffset, _rmargin, _wrap, SET MARGIN

_lmargin Printing

Defines the left margin for ? and ?? command output when _wrap is true.

Syntax
_lmargin = <expN>

<expN> The column number of the left margin. The valid range is 0 to 254, inclusive.
You can specify a fractional number for <expN> to position output accurately with a
proportional font.

Default
The default for _lmargin is 0.

Description
Use _lmargin to set the left margin for ? and ?? command output. If you're sending
output to a printer, _lmargin sets the left margin from the _ploffset (page left offset)
column. For example, if _ploffset is 10 and _lmargin is 5, output prints from the 15th
column. The _lmargin setting is effective only when _wrap is true (.T.).

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font. For more information about the coordinate plane, see Chapter 16 in
the Programmer's Guide.

If you change the value of _lmargin, dBASE takes the current value of _ppitch into
consideration when calculating the cell width of the coordinate plane. This happens
regardless of whether you're printing with proportional or monospaced fonts. If you
issue ? without the STYLE option and use only integer coordinates, dBASE uses a
monospaced font, and all output appears exactly the same as in dBASE IV.

If you use _indent to specify the indentation of the first line of each paragraph, the
combined values of _lmargin and _indent must be less than the value of _rmargin.

Example
The following example uses _lmargin. It sets wrap on and then changes the left margin
and displays text:

_wrap=.t. && must be .t. for _lmargin
_lmargin=0
? "01234567890"

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 643

_ p a d v a n c e

_lmargin=5
? "Changing the margin"
* produces:
* 01234567890
* Changing the margin

Portability
Not supported in dBASE III PLUS.

See Also
?, ??, _alignment, _indent, _ploffset, _rmargin, _wrap, SET MARGIN, Style

_padvance Printing

Determines whether the printer advances the paper of a print job with a formfeed or
with linefeeds.

Syntax
_padvance = <expC>

<expC> The character expression "FORMFEED" or "LINEFEEDS".

Default
The default for _padvance is "FORMFEED".

Description
Use _padvance to specify whether dBASE advances the paper to the top of the next
sheet one sheet at a time using a formfeed character, or one line at a time using linefeed
characters. If you use the default "FORMFEED" setting, the paper advances according to
the printer's default form length setting.

Tractor-feed printers (such as dot matrix printers) generally use a "LINEFEEDS" setting,
while form feed printers (such as laser printers) generally use a "FORMFEED" setting.

Note Sending CHR(12) to the printer always issues a formfeed, even if you set _padvance to
"LINEFEEDS".

Use the "LINEFEEDS" setting if you change the length of the paper or want to print a
different number of lines than the default form length of the printer without adjusting
its setting. For example, to print short pages, such as checks that are 20 lines long, set
_plength to the length of the output (20 in this example) and _padvance to
"LINEFEEDS."

The number of linefeeds dBASE uses to reach the top of the next page depends on
whether you issue an eject during streaming or non-streaming output mode. For more
information about streaming and non-streaming output, see Chapter 24 in the
Programmer's Guide.

An eject occurs during streaming output mode when you issue:

644 L a n g u a g e R e f e r e n c e

_ p a g e n o

• EJECT PAGE without an ON PAGE handler

• EJECT PAGE with an ON PAGE handler when the current line position is past the
ON PAGE line

• PRINTJOB or ENDPRINTJOB and _peject causes an eject

In these cases, dBASE calculates the number of linefeeds to send to the print device
using the formula _plength – _plineno.

An eject occurs in nonstreaming output mode when you issue:

• EJECT

• SET DEVICE TO PRINTER and force a page eject with the @ command

In these cases, dBASE calculates the number of linefeeds to send to the print device
using the formula _plength – MOD(PROW(), _plength).

Example
There are two _padvance settings:

_padvance="FORMFEED"
_padvance="LINEFEEDS"

Portability
Not supported in dBASE III PLUS.

See Also
_peject, _plength, EJECT, EJECT PAGE, PRINTJOB...ENDPRINTJOB, ON PAGE, SET
DEVICE

_pageno Printing

Determines or sets the current page number.

Syntax
_pageno = <expN>

<expN> An integer from 1 to 32,767, inclusive.

Description
Use _pageno to number pages of streaming output from commands such as ?, ??, and
LIST. For more information about streaming and non-streaming output, see Chapter 24
in the Programmer's Guide.

With _pageno, you can determine the current page number or set the page number to a
specific value. Use it to print page numbers in a report or, when combining documents,
to assign an incremented number to the first page of the second document.

A page break occurs when the value of _plineno (the line number count) becomes
greater than the value of _plength (the currently defined printed page length in lines).

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 645

_ p b p a g e

At each page break of streaming output, dBASE automatically increments the value of
_pageno.

Example
This example prints 100 lines of output and prints a heading on line 1 of each page:

SET TALK OFF
SET PRINTER ON
_pageno=1
FOR i=1 TO 100

IF _plineno=1 && At first line of page
? "Top of Page ",_pageno

ENDIF
? "Line",i

NEXT i
SET PRINTER TO
CLOSE PRINTER
SET TALK ON

Portability
Not supported in dBASE III PLUS.

See Also
?, ??, _pbpage, _pepage, _plength, _plineno, LIST, ON PAGE

_pbpage Printing

Specifies the page number of the first page PRINTJOB prints.

Syntax
_pbpage = <expN>

<expN> The page number at which to begin printing. The valid range is 1 to 32,767,
inclusive. Specify a positive integer for <expN>.

Default
The default for _pbpage is 1.

Description
Use _pbpage to begin printing a print job at a specific page number. Pages with
numbers less than _pbpage don't print. To stop printing at a specific page number, use
_pepage.

If you set _pbpage to a value greater than _pepage, dBASE returns an error.

646 L a n g u a g e R e f e r e n c e

_ p c o l n o

Example
This example uses _pbpage to omit a page of a report. It outputs 100 lines and prints the
page and line number on each line as in the example for _plineno. Here, the beginning
page number is set to 2 so that page 1 does not print:

_pageno=1
_pbpage=2 && begin on page 2
SET PRINTER ON
PRINTJOB
FOR i=1 TO 100

?? "Page",_pageno," Line",_plineno
? && now force a linefeed

NEXT i
ENDPRINTJOB
SET PRINTER OFF
CLOSE PRINTER && start printing

Portability
Not supported in dBASE III PLUS.

See Also
_pageno, _pepage, PRINTJOB...ENDPRINTJOB

_pcolno Printing

Identifies or sets the current column number of streaming output.

Syntax
_pcolno = <expN>

<expN> The column number at which to begin printing. The valid range is 0 to 255,
inclusive. You can specify a fractional number for <expN> to position output accurately
with a proportional font.

Default
The default for _pcolno is 0.

Description
Use _pcolno to position printing streaming output from commands such as ?, ??, and
LIST. For more information about streaming output, see Chapter 24 in the Programmer's
Guide.

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font. For more information about the coordinate plane, see Chapter 16 in
the Programmer's Guide.

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 647

_ p c o p i e s

If you change the value of _pcolno, dBASE takes the current value of _ppitch into
consideration when calculating the cell width of the coordinate plane. This happens
regardless of whether you're printing with proportional or monospaced fonts. If you
issue ? without the STYLE option and use only integer coordinates, dBASE uses a
monospaced font, and all output appears exactly the same as in dBASE IV.

The PCOL() function also returns the current printhead position of the printer, but if
SET PRINTER is OFF, the PCOL() value doesn't change. _pcolno, on the other hand,
returns or assigns the current position in the streaming output regardless of the SET
PRINTER setting.

Example
This example displays the numbers 1 through 5. It uses _pcolno to position the numbers
so that each number begins at its own position:

SET TALK OFF
FOR i=1 to 5

_pcolno=i && set the column position
string=ltrim(str(i))
* convert i to a single character
?? string
?

NEXT I
SET TALK ON
* the output looks like this
* 1
* 2
* 3
* 4
* 5

Portability
Not supported in dBASE III PLUS.

See Also
?, _plineno, _rmargin, PCOL(), SET DEVICE, SET PRINTER

_pcopies Printing

Specifies the number of copies to print for a PRINTJOB.

Syntax
_pcopies = <expN>

<expN> The number of copies to print. The valid range is 1 to 32,767, inclusive. Specify a
positive integer for <expN>.

Default
The default for _pcopies is 1.

648 L a n g u a g e R e f e r e n c e

_ p d r i v e r

Description
Use _pcopies to print a specific number of copies of a print job. You can assign a value to
_pcopies in the Command window or in a program. The value of _pcopies has an effect
only when you send a print job to the printer by issuing PRINTJOB. In a program,
assign a value to _pcopies before issuing PRINTJOB.

Example
This example uses _pcopies to print the print job three times:

_pcopies=3 && Three copies
SET PRINTER ON
PRINTJOB
? "Very Small Report"
ENDPRINTJOB
SET PRINTER OFF
CLOSE PRINTER && start the printer

Portability
Not supported in dBASE III PLUS.

See Also
PRINTJOB...ENDPRINTJOB

_pdriver Printing

Identifies the current printer driver or activates a new driver.

Syntax
_pdriver = <expC>

<expC> The name of the printer driver to activate.

Default
The default for _pdriver is the printer driver you specify with the Windows Control
Panel. If you haven't specified a printer driver with the Control Panel, the value of
_pdriver is an empty string ("").

Description
Use _pdriver to identify the current printer driver or to activate an installed driver. (To
install a new printer driver, use the Windows Control Panel.)

The _pdriver value contains two elements separated by a comma: the base file name of
the Windows driver file and the name of the printer as it appears in WIN.INI. The
current driver might not identify a printer name, in which case, _pdriver contains only
the driver file name. For example, if the current printer driver is for the HP Laserjet IIISi
PostScript printer, _pdriver may contain the value "pscript,HP LaserJet IIISi PostScript".
To activate this driver, issue the command _pdriver = "pscript,HP LaserJet IIISi
PostScript".

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 649

_ p e j e c t

To activate a driver from within dBASE, it may be easier to use CHOOSEPRINTER()
than to assign a value to _pdriver. To activate a driver in Windows, use the Printers
program of the Windows Control Panel. CHOOSEPRINTER() opens the Print Setup
dialog box, in which you can also select options such as paper size, source, and
orientation (portrait or landscape). In the Windows Control Panel, you can choose Setup
to select these options.

Example
Use _pdriver to determine the current print driver:

? _pdriver
* With an Epson FX 80, the response is:
* EPSON9,Epson FX-80
* With an HP Laserjet running postscript, the
* response is:
* pscript,HP LaserJet IIISi PostScript

You can set the print driver with _pdriver:

_pdriver="pscript"

Portability
Not supported in dBASE III PLUS. Only Windows printer driver names are supported;
driver names used with dBASE IV are not supported.

See Also
_pform, _ppitch, _pquality, CHOOSEPRINTER(), SET PRINTER

_peject Printing

Determines whether dBASE ejects a sheet of paper before and after a PRINTJOB.

Syntax
_peject = <expC>

<expC> The character expression "before", "after", "both", or "none".

Default
The default for _peject is "before", which tells the printer to eject a sheet of paper before
starting the print job.

Description
Use _peject to specify if and when the printer should eject a sheet of paper. Assign a new
value to _peject (and to any other system memory variable) before issuing PRINTJOB in
a program to make the new value affect the print job.

650 L a n g u a g e R e f e r e n c e

_ p e p a g e

The following table describes _peject options.

Note The _peject system memory variable is distinct from the EJECT command, which tells
the printer to advance the paper to the top of the next page.

Example
This example shows the four possible _peject setting. The last setting is operational in
the PRINTJOB:

_peject="before"
_peject="after"
_peject="both"
_peject="none"
* _peject must be set before PRINTJOB
PRINTJOB
? "Hello World"

ENDPRINTJOB

Portability
Not supported in dBASE III PLUS.

See Also
_padvance, EJECT, EJECT PAGE, PRINTJOB...ENDPRINTJOB

_pepage Printing

Specifies the page number of the last page of a print job.

Syntax
_pepage = <expN>

<expN> The page number of the last page to print. The valid range is 1 to 32,767,
inclusive. You must specify a positive integer for <expN>.

Default
The default for _pepage is 32,767.

Description
Use _pepage to stop printing a print job at a specific page number. Pages with numbers
greater than _pepage don't print. To begin printing at a specific page number, use
_pbpage.

<expC> Result

"before" Eject sheet before printing the first page
"after" Eject sheet after printing the last page
"both" Eject sheet before and after the print job
"none" Don't eject sheet before or after the print job

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 651

_ p f o r m

If you set _pepage to a value less than _pbpage, dBASE returns an error.

Example
This example selects two pages from a PRINTJOB. The program prints 500 lines of
output and prints the page and line number on each line as in the example for _plineno.
Here, the ending page number is set to 2 so that only pages 1 and 2 print:

_pageno=1
_pbpage=1 && reset the default pbpage
_pepage=2 && end on page 2
SET PRINTER ON
PRINTJOB
FOR i=1 TO 500

?? "Page",_pageno," Line",_plineno
? && now force a linefeed

NEXT i
ENDPRINTJOB
SET PRINTER OFF
CLOSE PRINTER && begin printing

The ? command issues a linefeed before processing consequently in this case, the correct
line number is obtained by using ??.

Portability
Not supported in dBASE III PLUS.

See Also
_pageno, _pbpage, PRINTJOB...ENDPRINTJOB

_pform Printing

Identifies the current print form file or activates another one.

Syntax
_pform = <filename>

<filename> The name of a print form file (.PRF).

Default
The default for _pform is an empty string ("").

652 L a n g u a g e R e f e r e n c e

_ p f o r m

Description
Use _pform to determine the name of the current print form file or to activate another
one. A print form file (.PRF) is a dBASE binary file that contains print settings for
printing a print job. The print form file contains the following system memory variables:

When you specify a print form file by assigning its name to _pform, the values stored in
the file are assigned to their respective variables. Jobs you send to the printer then
behave in accordance with these variables.

Example
This example assumes there are two reports, Report1 and Report2. It uses Report1's
print form file, Report1.PRF to print Report2:

_pform= "Report1"
REPORT FORM Report2

Portability
Not supported in dBASE III PLUS.

See Also
PRINTJOB...ENDPRINTJOB

Variable Action

_padvance Determines whether the printer advances the paper with a formfeed or linefeeds.
_pageno Determines or sets the current page number.

_pbpage Specifies the page number at which PRINTJOB begins printing.
_pcopies Specifies the number of copies to print in a printjob.
_pdriver Activates a specified printer driver. (If the print form file is from dBASE IV, Visual

dBASE ignores this value.)
_peject Controls page ejects before and after PRINTJOB.
_pepage Specifies the number of the last page that PRINTJOB prints.
_plength Specifies the number of lines per page for streaming output.
_ploffset Determines the width of the left border on a printed page.
_ppitch Sets the printer pitch, the number of characters per inch that the printer prints.

_pquality Specifies if the printer prints in letter-quality or draft mode.
_pspacing Sets the line spacing for streaming output.

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 653

_ p l e n g t h

_plength Printing

Specifies the number of lines per page for streaming output.

Syntax
_plength = <expN>

<expN> The number of lines per page. The valid range is 1 to 32,767, inclusive. You can
specify a fractional number for <expN> to position output accurately with a
proportional font.

Default
The default page length is determined by the default page size of the current printer
driver and the current page orientation (portrait or landscape).

Description
Use _plength to specify a page length that is different from the default of the current
printer driver. For example, to print short pages, such as checks that are 20 lines long, set
_plength to the length of the output (20 in this example) and _padvance to
"LINEFEEDS" to advance to the top of the next page.

When you change printer drivers or page orientation, dBASE changes the value of
_plength automatically. You can change printer drivers in dBASE by issuing
CHOOSEPRINTER() or by assigning a value to _pdriver. In Windows, you can change
printer drivers with the Printers program of the Control Panel (however, it won't take
effect until you quit dBASE and start a new dBASE session). You can change page
orientation in any of these ways or, in dBASE, by changing the value of _porientation.

Example
This example sets the form length to 10 lines and prints 25 lines of output. Each line
simply prints line number and count (1 through 25). A three-line heading prints "Top of
Page" on each line 1:

_plength=10
_pageno=1
_plineno=0
SET PRINTER ON
FOR i=1 TO 25

IF _plineno=0 && At first line of page
?
? "Top of Page ",_pageno
?

ENDIF
? "Line",_plineno,"i=",i

NEXT i
SET PRINTER OFF
CLOSE PRINTER
* The first two pages are:
*
* Top of Page 1
*

654 L a n g u a g e R e f e r e n c e

_ p l i n e n o

* Line 3.00 i= 1
* Line 4.00 i= 2
* Line 5.00 i= 3
* Line 6.00 i= 4
* Line 7.00 i= 5
* Line 8.00 i= 6
* Line 9.00 i= 7
*
* Top of Page 2
*
* Line 3.00 i= 8
* Line 4.00 i= 9
* Line 5.00 i= 10
* Line 6.00 i= 11
* Line 7.00 i= 12
* Line 8.00 i= 13
* Line 9.00 i= 14

Portability
Not supported in dBASE III PLUS. In dBASE IV, the default page length is 66 lines.

See Also
_padvance, _pdriver, _porientation, CHOOSEPRINTER(), EJECT, EJECT PAGE

_plineno Printing

Identifies or sets the current line number of streaming output.

Syntax
_plineno = <expN>

<expN> The line number at which to begin printing. The valid range is 0 to _plength – 1.
You can specify a fractional number for <expN> to position output accurately with a
proportional font.

Default
The default for _plineno is 0.

Description
Use _plineno to position printing streaming output from commands such as ?, ??, and
LIST. For more information about streaming output, see Chapter 24 in the Programmer's
Guide.

The PROW() function also returns the current printhead position of the printer, but if
SET PRINTER is OFF, the PROW() value doesn't change. _plineno, on the other hand,
returns or assigns the current position in the streaming output regardless of the SET
PRINTER setting.

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 655

_ p l i n e n o

Example
This example prints 32 lines of output on four pages. The page length is set at 10 lines
per page, and the report prints the page and line number on each line using _pageno
and _plineno:

_pbpage=1 && reset the default pbpage
_pepage=32767 && reset the default pepage
_plength=10 && set the page length to 10 lines
_pageno=1
SET PRINTER ON
PRINTJOB && PRINTJOB resets _plineno to 0
FOR i=1 TO 32

IF _plineno=0 && At first line of page
*?
? "Top of Page ",_pageno
?

ENDIF
?? "Page",_pageno," Line",_plineno,i
? && now force a linefeed

NEXT i
ENDPRINTJOB
SET PRINTER OFF
CLOSE PRINTER
* The first two pages of output appear as follows:
*
* Top of Page 1
* Page 1 Line 2.00 1
* Page 1 Line 3.00 2
* Page 1 Line 4.00 3
* Page 1 Line 5.00 4
* Page 1 Line 6.00 5
* Page 1 Line 7.00 6
* Page 1 Line 8.00 7
* Page 1 Line 9.00 8
*
* Top of Page 2
* Page 2 Line 2.00 9
* Page 2 Line 3.00 10
* Page 2 Line 4.00 11
* Page 2 Line 5.00 12
* Page 2 Line 6.00 13
* Page 2 Line 7.00 14
* Page 2 Line 8.00 15
* Page 2 Line 9.00 16

Portability
Not supported in dBASE III PLUS.

See Also
_pcolno, _plength, _ppitch, EJECT PAGE, ON PAGE, PCOL(), PROW()

656 L a n g u a g e R e f e r e n c e

_ p l o f f s e t

_ploffset Printing

Displays or sets the width of the left border of a printed page.

Syntax
_ploffset = <expN>

<expN> The column number at which to set the left margin. The valid range is 0 to 254,
inclusive. You can specify a fractional number for <expN> to position output accurately
with a proportional font.

Default
The default for _ploffset is 0. To change the default, set the MARGIN parameter in
DBASEWIN.INI.

Description
Use _ploffset (page left offset) to specify the distance from the left edge of the paper to
the left margin of the print area. Use _lmargin to set the left margin from the _ploffset
column. For example, if _ploffset is 10 and _lmargin is 5, output prints from the 15th
column.

The _ploffset system memory variable is equivalent to the SET MARGIN value.
Changing the value of one changes the other. For more information, see SET MARGIN.

Example
See the example in SET MARGIN. _ploffset is identical to SET MARGIN.

Portability
Not supported in dBASE III PLUS, but SET MARGIN is.

See Also
_indent, _lmargin, SET MARGIN

_porientation Printing

Determines whether the printer prints in portrait or landscape mode.

Syntax
_porientation = <expC>

<expC> The character expression "PORTRAIT" or "LANDSCAPE".

Default
The default for _porientation is the orientation you specify with the Printers program of
the Windows Control Panel or, in dBASE, with the CHOOSEPRINTER() function. By
default, this orientation is portrait.

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 657

_ p p i t c h

Description
Use _porientation to specify whether you want to print in portrait or landscape mode.
When you print in portrait mode, each page is read vertically; a standard American
letter-size piece of paper is 8.5 inches wide by 11 inches long. When you print in
landscape mode, each page is read horizontally; a standard American letter-size piece of
paper is 11 inches wide by 8.5 inches long.

Most printer drivers support landscape printing; however, if you specify landscape
while using a printer driver that doesn't support it, the printer continues to print in
portrait mode, possibly truncating text.

Changing page orientation automatically resets _plength.

Example
_porientation has two settings:

_porientation="PORTRAIT"
_porientation="LANDSCAPE"

It takes effect only on a page boundary.

Portability
Not supported in dBASE III PLUS or dBASE IV.

See Also
_pdriver, _plength, _ppitch, SET PRINTER

_ppitch Printing

Sets the printer pitch, the number of characters per inch that the printer prints.

Syntax
_ppitch = <expC>

<expC> The character expression "pica", "elite", "condensed", or "default".

Default
The default for _ppitch is "default", the pitch defined by your printer's settings or by
setup codes or commands you sent to the printer before you started dBASE. "Default"
means that dBASE hasn't sent any pitch control codes to the printer.

Description
Use _ppitch to set the pitch (characters per inch) on the printer. The _ppitch setting
sends a control code appropriate to the current printer driver. Use the Windows Control
Panel or CHOOSEPRINTER() to select the printer driver.

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose sizes depend on the value of _ppitch. The height of each character cell is

658 L a n g u a g e R e f e r e n c e

_ p q u a l i t y

determined by the size of the font. For more information about the coordinate plane, see
Chapter 16 in the Programmer's Guide.

The following table lists _ppitch values.

If you change the value in other system memory variables such as _lmargin, _rmargin,
and _ploffset, dBASE takes the current value of _ppitch into consideration when
calculating the cell width of the coordinate plane. This happens regardless of whether
you're printing with proportional or monospaced fonts.

Example
This example shows the three settings of _ppitch:

s_ppitch=_ppitch && save current pitch
SET PRINTER ON
_ppitch="pica"
? "John Brown's body: 10 characters per inch"
_ppitch="elite"
? "John Brown's body: 12 characters per inch"
_ppitch="condensed"
? "John Brown's body: 17 characters per inch"
_ppitch=s_ppitch && restore original setting
CLOSE PRINTER

_ppitch is not valid for all printers.

Portability
Not supported in dBASE III PLUS.

See Also
_pdriver, _pquality, CHOOSEPRINTER()

_pquality Printing

Specifies whether the printer prints in letter-quality or draft mode. Used primarily with
dot-matrix printers; the _pquality value usually has no effect on printers that don't
support draft mode, such as laser and Postscript printers.

Syntax
_pquality = <expL>

<expL> The logical expression .T. for letter quality and .F. for draft quality.

_ppitch value Character cell width

"pica" 1/10" (10 characters/inch)

"elite" 1/12" (12 characters/inch)
"condensed" 1/17" (17 characters/inch)

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 659

_ p s p a c i n g

Default
The default for _pquality is false (.F.) for draft mode.

Description
Use _pquality to determine whether the printer prints in letter-quality or draft mode.
Letter-quality mode produces printed copy of higher quality (finer resolution) than
draft; however, draft mode usually prints more quickly than letter-quality, depending
on the printer.

Example
This example shows the two settings for print quality. Print quality cannot be changed
in mid page and might or might not be available on your printer:

CLOSE PRINTER
set printer on
_pquality= .f. && draft quality
? "John Brown's body"
CLOSE PRINTER
_pquality= .t. && letter quality
? "John Brown's body"
CLOSE PRINTER

Portability
Not supported in dBASE III PLUS.

See Also
_pdriver, _ppitch

_pspacing Printing

Sets the line spacing for streaming output.

Syntax
_pspacing = <expN>

<expN> The amount of line spacing. The valid range is 1 to 3, inclusive:

• A value of 1 represents single spacing.

• A value of 2 represents double spacing. There is one blank line between printed lines.

• A value of 3 represents triple spacing. There are two blank lines between printed
lines.

Paragraph spacing is in multiples of the height of the line just printed, which depends
on the tallest font used in printing the line. You can specify a fractional number for
<expN> to space text by partial line heights.

Default
The default for _pspacing is 1, which sets line spacing to single-line.

660 L a n g u a g e R e f e r e n c e

_ p s p a c i n g

Description
Use _pspacing to set the line spacing of streaming output from commands such as ?, ??,
and LIST. For more information about streaming and non-streaming output, see
Chapter 24 in the Programmer's Guide. To insert a single blank line into output, use the
? command.

The _pspacing value also affects the height of boxes displayed with the dBASE IV
DEFINE BOX command. For example, if you define a box with a height of 10 and assign
2 to _pspacing, dBASE prints the box with a height of 20 lines.

Example
This example uses _pspacing to set the spacing to 1 then 2 lines between lines of text and
finally back to 1 line:

_pspacing=1
? "Jack 1"
? "Jill 1"
_pspacing=2
? "Jack 2"
? "Jill 2"
_pspacing=1
? "Jack 1"
? "Jill 1"
* produces:
* Jack 1
* Jill 1
*
* Jack 2
*
* Jill 2
* Jack 1
* Jill 1

Notice that _pspacing takes place immediately so that the double spacing occurs before
Jack 2 and before Jill 2.

Portability
Not supported in dBASE III PLUS.

See Also
?, ??, _ppitch, DISPLAY, LIST

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 661

_ r m a r g i n

_rmargin Printing

Defines the right margin for ? and ?? command output when _wrap is true.

Syntax
_rmargin = <expN>

<expN> The column number of the right margin. The valid range is 0 to 255, inclusive.
You can specify a fractional number for <expN> to position output accurately with a
proportional font.

Default
The default for _rmargin is 79.

Description
Use _rmargin to set the right margin for output from the ? and ?? commands. The value
of _rmargin must be greater than the value of _lmargin or _lmargin + _indent. For
example, if _lmargin and _indent are both set to 5, _rmargin must be greater than 10 to
display at least one column of output.

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font. For more information about the coordinate plane, see Chapter 16 in
the Programmer's Guide.

If you change the value of _rmargin, dBASE takes the current value of _ppitch into
consideration when calculating the cell width of the coordinate plane. This happens
regardless of whether you're printing with proportional or monospaced fonts. If you
issue ? without the STYLE option and use only integer coordinates, dBASE uses a
monospaced font, and all output appears exactly the same as in dBASE IV.

Example
The following example sets wrap on and then changes the left margin and displays text:

savewrap=_wrap && save last wrap setting
_wrap=.t. && must be .t. for alignment
savelmargin=_lmargin && save last alignment setting
_lmargin=5
savermargin=_rmargin && save last alignment setting
_rmargin=20
? "New York, Chicago and Boston are cold in wintertime."
* Now the text wraps around between columns 5 and 20
_rmargin=savermargin && restore the previous margin
_lmargin=savelmargin && restore the previous margin
_wrap=savewrap && reset wrap

Portability
Not supported in dBASE III PLUS.

662 L a n g u a g e R e f e r e n c e

_ t a b s

See Also
?, ??, _alignment, _indent, _lmargin, _ploffset, _wrap, SET MARGIN

_tabs Printing

Sets one or more tab stops for output from the ? and ?? commands.

Syntax
_tabs = <expC>

<expC> The list of column numbers for tab stops. If you set more than one tab stop, the
numbers must be in ascending order and separated by commas. Enclose the entire list in
quotation marks. You can specify fractional numbers for <expC> to position output
accurately with a proportional font.

Default
The default for _tabs is an empty string ("").

Description
Use _tabs to define a series of tab stops. If _wrap is true, dBASE ignores tab stops equal
to or greater than _rmargin.

When you direct output to the printer, dBASE maps each character according to the
coordinate plane, a two-dimensional grid. The coordinate plane is divided into character
cells whose widths depend on the value of _ppitch. See the table in the description of
_ppitch, which lists _ppitch values. The height of each character cell is determined by
the size of the font. For more information about the coordinate plane, see Chapter 16 in
the Programmer's Guide.

If you change the value of _tabs, dBASE takes the current value of _ppitch into
consideration when calculating the cell width of the coordinate plane. This happens
regardless of whether you're printing with proportional or monospaced fonts. If you
issue ? without the STYLE option and use only integer coordinates, dBASE uses a
monospaced font, and all output appears exactly the same as in dBASE IV.

If you send a tab character, CHR(9), with ? or ??, dBASE expands it to the amount of
space required to reach the next tab stop. If the tab character you send is past the last tab
stop, dBASE ignores it, displaying output starting in the current column.

Example
The following program makes two tab stops at columns 5 and 20 The array A is
displayed beginning at the first tab stop, and its position in the array (i) is displayed at
the second tab stop:

_tabs="5,20" && tab stops at columns 5 and 20
DECLARE A[2]
A[1]="One"
A[2]="Two"
FOR i=1 to 2

C h a p t e r 5 , S y s t e m m e m o r y v a r i a b l e s 663

_ w r a p

? chr(9),A[i],chr(9),ltrim(str(i))
NEXT i
* chr(9) is equivalent to the tab key
* produces:
* One 1
* Two 2

Portability
Not supported in dBASE III PLUS. In dBASE IV, the value in_tabs also affects the Text
Editor. This is not the case in Visual dBASE; set tab settings for the Text Editor by setting
the Auto Indent value in the Properties Inspector dialog box of the Text Editor window.

See Also
?, ??, _indent, _lmargin, _rmargin, _wrap, CHR(), MODIFY COMMAND

_wrap Printing

Determines if streaming output wraps between margins specified by _lmargin and
_rmargin.

Syntax
_wrap = <expL>

<expL> The logical expression true or false in the form .T. or .F., respectively.

Default
The default for _wrap is false (.F.), which disables wordwrapping.

Description
Set _wrap to .T. to wrap streaming output from commands such as ?, ??, and LIST
within the margins you specify with _lmargin and _rmargin. For more information
about streaming output, see Chapter 24 in the Programmer's Guide.

When you enable wordwrapping, dBASE wraps text onto the next line, breaking
between words or numbers, when the output reaches the right margin. When you
disable wordwrap mode, dBASE extends text beyond the right margin, moving to the
next line only when a carriage return and linefeed combination (CR/LF) occurs in the
text.

The value of _wrap must be .T. for _alignment, _indent, _lmargin, and _rmargin to have
an effect.

When _wrap is .T., dBASE stores streaming output in a buffer until it finishes displaying
or printing the current line. If you generate output with the ? command, follow it with
another ? command to force the last line of text to print.

Example
This example shows a long string displayed with wrap on and with wrap off:

664 L a n g u a g e R e f e r e n c e

_ w r a p

_lmargin=5
_rmargin=15
string="Now is the time for all men and women to come to."
_wrap=.f.
? string
_wrap=.t.
? string
* wrap false displays as:
* Now is the time for all men and women to come to.
* wrap true displays as:
* Now is the
* time for
* all men and
* women to
* come to.

Portability
Not supported in dBASE III PLUS. In dBASE IV, the value in _wrap also affects the Text
Editor. This is not the case in Visual dBASE; set wrap on or off for the Text Editor by
selecting or deselecting the Word Wrap check box in the Properties Inspector dialog box
of the Text Editor window.

See Also

?, ??, _alignment, _indent, _lmargin, _ploffset, _rmargin, PRINTJOB...ENDPRINTJOB

P r e p r o c e s s o r d i r e c t i v e s 665

Part 0Preprocessor directives

666 L a n g u a g e R e f e r e n c e

C h a p t e r 6 , P r e p r o c e s s o r d i r e c t i v e s 667

C h a p t e r

6
Chapter 6Preprocessor directives

#define Preprocessor

Defines an identifier (name) for use in controlling program compilation, defining
constants, or creating inline functions.

Syntax
#define <identifier> [<replacement text>]

#define <identifier>(<parameter list>) <replacement text with parameters>

<identifier> A name. It identifies the text to replace if <replacement text> is supplied. The
name must start with an alphabetic character and can contain any combination of
alphabetic or numeric characters, uppercase or lowercase letters. The identifier is not
case-sensitive.

(<parameter list>) Parameter names that correspond to arguments passed to an inline
function (pseudo function) that you create with #define <identifier> (<parameter list>)
<replacement text>. If you specify multiple parameters, separate each with a comma.

<replacement text> The text that replaces all occurrences of <identifier>. If you specify
<replacement text>, the preprocessor scans each source code line for identifiers and
replaces each one it encounters with the specified replacement text. <replacement text>
can be any text that is part of a dBASE program, such as a string, variable name, or series
of commands.

Description
The #define directive defines an identifier and optionally lets you replace text in a
program before compilation. Each #define definition must begin on a new line and is
limited to 4096 characters.

Identifiers are available only to the program in which they are defined. To define
identifiers for use in multiple programs, use #include. To remove an identifier so that it
is no longer used as a preprocessor directive, use #undef.

668 L a n g u a g e R e f e r e n c e

d e f i n e

Typically, use the #define directive for the following purposes:

• to declare an identifier with no replacement text, so you can use it with the #ifdef or
#ifndef directive.

• to declare an identifier and assign replacement text to represent a constant value or a
complex expression, so you can use it with the #if directive.

• to create an inline function (pseudo function).

#define statements override memory variables, built-in commands and functions, and
any other element having the same name as <identifier>. This is shown in the following
examples.

* Overriding a memory variable
#define mValue 10
mValue = 25 && dBASE returns an error

&& because mValue is a constant
mVariable = 25
#define mVariable 10
? mVariable && displays 10

* Overriding a built-in function
#define upper(x) "? 'bad idea' " && UPPER() is a

 && built-in function
? upper("mvar") && returns 'bad idea'

For more information about using the #define directive, see Chapter 7 in the
Programmer's Guide.

Declaring identifiers
Defining an identifier without replacement text lets you use it with the #ifdef or #ifndef
directive to test if the identifier exists. This is useful for setting conditions to either
include or exclude code for compilation, as in the following example.

#define firstrun
...

#ifdef firstrun
<compile these program setup statements>
 <for example, include debugging commands>

#endif

If you later modify your program so you don't need to compile the program setup
statements, remove or comment the #define statement.

Declaring identifiers to represent constants
Assign an identifier to represent a constant value or expression when you want the
preprocessor to search for and replace all instances of the identifier with the specified
value or expression before compilation. This is shown in the following example.

#define cCompany "dSolutions, Inc."
...
? cCompany && displays "dSolutions, Inc."

C h a p t e r 6 , P r e p r o c e s s o r d i r e c t i v e s 669

d e f i n e

This search-and-replace capability, known as macro expansion, can streamline your code
and improve its readability because you can use a single identifier to represent a
frequently used constant or a complex expression. In addition, if you need to change the
value of a constant in your program, you need to change only the constant definition
and not every occurrence of the constant.

To replace an identifier only in parts of a program, insert #undef <identifier> into your
program where you want the search-and-replace process to stop.

Creating inline functions
When the preprocessor encounters a function call that matches the function definition, it
replaces the function call with the replacement text, inserting the arguments of the
function call into the replacement text. This is shown in the following example.

#define Avg(num1,num2) (num1+num2)/2
...
nNumber1=20
nNumber2=40
? Avg(nNumber1,nNumber2) && displays 30

Unlike standard dBASE user-defined functions (UDFs), the number of arguments
passed from a function call must match the number of parameters defined in your
#define statement.

Note There are important differences between how dBASE evaluates inline functions and
user-defined functions (UDFs). If you don’t understand these differences, your inline
functions might not return the values you expect. For best results, always enclose the
replacement text in parentheses to ensure the proper order of evaluation. For more
information, see Chapter 7 in the Programmer's Guide.

Nesting preprocessor macros
You can nest preprocessor macros; that is, a macro can expand into another macro. The
following example shows how the third macro definition depends on the first two:

#define K_CR CHR(13)
#define K_LF CHR(10)
#define K_CRLF K_CR + K_LF

Example
The following examples use #define to specify font parameters so that a desired font can
be called by a single identifier:

#define BIGFONT fontname "Roman",fontheight 20,;
fontwidth 22

#define TEXTFONT fontname "Roman",fontheight 11,;
fontwidth 6

#define ENTRYFONT fontname "Roman",fontheight 16,;
fontitalic .t.

The following examples use #define to specify a function that trims all values passed as
parameters and set a predetermined field list.

670 L a n g u a g e R e f e r e n c e

i f

#define ALLTRIM(x) LTRIM(RTRIM(x))
#define FIELDLIST "Flight_no,Origin,Dest,Date,;

Departure,Arrival,Price"

Portability
Not supported in dBASE III PLUS.

See Also
#if, #ifdef, #ifndef, #include, #undef

#if Preprocessor

Controls conditional compilation of code based on the value of an identifier assigned
with #define.

Syntax
#if <condition>
<statements 1>
[#else
<statements 2>]
#endif

<condition> A logical expression, using an identifier you've defined, that evaluates to
true or false.

<statements 1> One or more program lines consisting of any combination of commands,
functions, and preprocessor directives. These lines are compiled if <condition> evaluates
to true.

#else <statements 2> Specifies the program lines to compile if <condition> evaluates to
false.

Description
Use the #if directive to conditionally compile sections of source code based on the value
of <identifier>. Two other directives, #ifdef and #ifndef, are also used to conditionally
include or exclude code for compilation. Unlike the #if directive, however, they test only
for the existence of an identifier, not for its value.

Conditional compilation is useful when maintaining different versions of the same
program or for debugging. This is shown in the following example.

define mInvmod = "incomplete"
...
#if mInvmod="complete"

<Inventory module commands here>
#else

 mMessage = "Inventory not ready to compile"
#endif

For more information about using the #if directive, see Chapter 7 in the Programmer's
Guide.

C h a p t e r 6 , P r e p r o c e s s o r d i r e c t i v e s 671

i f d e f

Example
The following example uses #if/#else to determine if a preprocessor directive
containing a field list has been declared, and if not, uses #define to specify a field list:

#define FIELDLIST "Company, Contact, Phone"
*
*
* additional program
*
CLEAR
USE Clients
#if FIELDLIST = "Company, Contact, Phone"

LIST TO PRINT
#else

#define FIELDLIST "Company, Contact, Phone"
LIST TO PRINT

#endif

Portability
Not supported in dBASE III PLUS or dBASE IV, but supported in the dBASE Compiler
for DOS.

See Also
#define, #ifdef, #ifndef

#ifdef Preprocessor

Controls conditional compilation of code based on the existence of an identifier assigned
with #define or the existence of the __dbasewin__ identifier.

Syntax
#ifdef <identifier>
<statements 1>
[#else
<statements 2>]
#endif

<identifier> The identifier to test for existence. <identifier> is defined with the #define
directive.

<statements 1> One or more program lines consisting of any combination of commands,
functions, and preprocessor directives. These lines are compiled if <identifier> has been
defined.

#else <statements 2> Specifies the program lines to compile if <identifier> has not been
defined.

672 L a n g u a g e R e f e r e n c e

i f n d e f

Description
Use the #ifdef directive to conditionally compile sections of source code. If you've
defined <identifier> with #define, the code you specify with <statements 1> is compiled;
otherwise, the code following #else is compiled.

Conditional compilation is useful when maintaining different versions of the same
program or for debugging purposes. This is shown in the following example.

#define InvMod
#ifdef InvMod

 <Inventory module commands here>
#else

 mMessage = "Inventory not ready to compile"
#endif

To determine whether Visual dBASE or a prior version of dBASE is currently running,
use #ifdef with the__dbasewin__ identifier, as shown in the following example.

#ifdef __dbasewin__
 < code specific to dBASE for Windows>

#else
 <code specific to prior versions of dBASE>

#endif

For more information about using the #ifdef directive, see Chapter 7 in the Programmer's
Guide.

Example
The following example uses #ifdef to determine if a desired font has been defined prior
to printing. If not, the font is defined and printing is initiated.

#ifdef BIGFONT
LIST TO PRINT

#else
#define BIGFONT fontname "Roman",;

fontheight 20,fontwidth 22
LIST TO PRINT

#endif

Portability
Not supported in dBASE III PLUS.

See Also
#define, #if, #ifndef

#ifndef Preprocessor

Controls conditional compilation of code based on the existence of an identifier assigned
with #define.

C h a p t e r 6 , P r e p r o c e s s o r d i r e c t i v e s 673

i f n d e f

Syntax
#ifndef <identifier>
<statements 1>
[#else
<statements 2>]
#endif

<identifier> The identifier to test for existence. <identifier> is defined with the #define
directive.

<statements 1> One or more program lines consisting of any combination of commands,
functions, and preprocessor directives. These lines are compiled if <identifier> has not
been defined.

#else <statements 2> Specifies the program lines to compile if <identifier> has been
defined.

Description
Use the #ifndef directive to conditionally compile sections of source code. If you haven’t
defined <identifier> with #define, the code you specify with <statements 1> is compiled;
otherwise, the code following #else is compiled.

Conditional compilation is useful when maintaining different versions of the same
program or for debugging. This is shown in the following example.

#ifndef InvMod
 mMessage = "Inventory not ready to compile"

#else
 <Inventory module commands here>

#endif

For more information about using the #ifndef directive, see Chapter 7 in the
Programmer's Guide.

Example
The following example uses #ifndef to determine if a desired font has not been defined,
and if not, defines the font with #define. The #else portion serves to confirm that the font
is correctly defined by first undefining and then defining "BIGFONT".

#ifndef BIGFONT
#define BIGFONT fontname "Roman",;

fontheight 20,fontwidth 22
#else

#undef BIGFONT
#define BIGFONT fontname "Roman",;

fontheight 20,fontwidth 22
#endif

Portability
Not supported in dBASE III PLUS.

See Also
#define, #if, #ifdef

674 L a n g u a g e R e f e r e n c e

i n c l u d e

#include Preprocessor

Inserts the contents of the specified source file (known as an include or header file) into
the current program file at the location of the #include statement.

Syntax
#include <filename>| "<filename>"

<filename> | "<filename>" The name of the file, optionally including a full or partial path,
whose contents are to be inserted into the current program file. You can specify the file
name within or without quotes. An include file typically has an .h file-name extension.

If you specify <filename> without a path, the preprocessor uses the following search
order:

1 It searches the current directory for the file exactly as you've specified it.
2 If you omitted the .h file-name extension, it adds the extension and searches the

current directory.
3 If it can't find the file in the current directory, it looks in <home directory>\

INCLUDE. (The home directory is the one in the _dbwinhome system memory
variable.)

4 If it can't find the file in the current directory or <home directory>\INCLUDE, it
looks in the directory you specify in DOS with the INCLUDE environment variable.

Description
Identifiers are typically available only to the program in which they are defined. To use
a single set of identifiers in multiple programs, save the #define statements in a file, then
use the #include directive to define the identifiers in additional programs. The file
containing the #define statements is called an include file. For example, an include file
named IDENT.H might contain the following directives:

#define cCompany="dSolutions, Inc."
#define nSales=40000
#define cHomeState="TX"

Each program that needs access to these identifiers would contain the following line:

#include ident.h

An advantage of having all the #define statements in one file is the ease of maintenance.
If you need to modify any of the #define statements, you need only change the include
file; the program files that use the #define statements remain unchanged. After you
modify the include file, recompile your program file for the changes to take effect.

For example, if you later need to change the home state value in the previous example
from "TX" to "WA" throughout your application, you need to change the #define
statement only in IDENT.H.

For more information about include files, see Chapter 7 in the Programmer's Guide.

C h a p t e r 6 , P r e p r o c e s s o r d i r e c t i v e s 675

p r a g m a

Example
The following example inserts the contents of a user defined setup file in the currently
running dBASE program. The file "setup.h" can contain #define identifier definitions
that are common to several programs the user runs:

#include "c:\dbasewin\setup\setup.h"

Portability
Not supported in dBASE III PLUS or dBASE IV, but supported in the dBASE Compiler
for DOS.

See Also
#define, GETFILE()

#pragma Preprocessor

Sets compiler options.

Syntax
#pragma <coverage(on | off)>

#pragma <coverage(on | off)> Includes or excludes coverage analysis, which provides
information about which program lines are executed.

Description
Use #pragma coverage(on) in your program to start coverage analysis each time you
run the program, instead of executing SET COVERAGE ON in the Command window
before compiling and running the program.

This is also the only way to start coverage analysis from within a program; if you issue
SET COVERAGE ON in a program, dBASE doesn't create or update a coverage file for
that program. For more information about coverage files, see SET COVERAGE.

For more information about preprocessor directives, see Chapter 7 in the Programmer's
Guide.

Example
The following example uses #pragma to set coverage on for a debugging session:

#ifdef DEBUG
#pragma coverage(on)

#else
#pragma coverage(off)

#endif

Portability
Not supported in dBASE IV or dBASE III PLUS.

676 L a n g u a g e R e f e r e n c e

u n d e f

See Also
#define, SET COVERAGE

#undef Preprocessor

Removes the current definition of the specified identifier previously defined with
#define.

Syntax
#undef <identifier>

<identifier> The identifier whose definition is to be removed.

Description
The #undef directive removes the definition of an identifier previously defined with the
#define directive. If you use #define with <replacement text>, the preprocessor replaces
all instances of the identifier with the replacement text from the point it encounters that
#define until it encounters an #undef specifying the same identifier. Therefore, to
replace an identifier only in parts of a program, insert #undef <identifier> into your
program where you want the search-and-replace process to stop.

Example
See #ifndef for an example of using #undef.

Portability
Not supported in dBASE III PLUS.

See Also
#define

C l a s s e s 677

Part 0Classes

678 L a n g u a g e R e f e r e n c e

C h a p t e r 7 , C l a s s e s 679

C h a p t e r

7
Chapter 7Classes

CLASS ARRAY
An object that stores multiple memory variables in locations you can access
individually.

Properties
The following table lists the properties of the Array class. For more information on each
property, see Chapter 8.

Property Default Description

Add() N/A Adds elements to a one-dimensional array object
ClassName ARRAY Identifies the array class
Count() N/A Returns the number of elements in the associated array
Delete() N/A Deletes an element from a one-dimensional array object, or deletes a row or

column from a two-dimensional array object
Dimensions 1 Specifies the number of dimensions in the array object
Dir() N/A Stores the name, size, date stamp, time stamp, and DOS attribute(s) of files to

an array object
DirExt() N/A Same as Dir(), but with extra columns for Windows 95 file information
Element() N/A Returns the number of a specified element in the array object
Fields() N/A Stores structure information of the current table to the array object
Fill() N/A Inserts a specified value into one or more locations in an array object
Grow() N/A Adds elements to the array object
Insert() N/A Inserts an element into a one-dimensional array object, or inserts a row or

column of elements into a two-dimensional array object

RleaseAll() N/A Deletes all elements of the associated array.
RleaseKey() N/A Deletes a specified element from the associated array
Resize() N/A Increases or decreases the number of elements in the array object
Scan() N/A Searches an array object for a specified value

680 L a n g u a g e R e f e r e n c e

C L A S S A R R A Y

Description
Use an array object to store multiple related items in memory. For more information on
using array objects, see Chapter 10 in the Programmer's Guide.

When you create an array object with the NEW operator, you can specify two
parameters:

• <rows expN>—The number of elements if the array object is one-dimensional, or the
number of rows if the array object is two-dimensional.

• <columns expN>—The number of elements in each row. You specify <columns expN>
only if the array object is two-dimensional.

For example, the following command creates a two-dimensional array object with ten
rows and twenty elements in each row:

MyArray = NEW ARRAY(10, 20)

Note You can't use DEFINE to create an array object; instead, use the NEW operator. The
NEW operator creates an array object in the following example:

Array1 = NEW ARRAY(10, 20) && Creates array object.
DEFINE ARRAY Array1 && Returns an error

You can also create an array object with the DECLARE command:
DECLARE Array1[10,20] && Creates an array object Array1

Arrays can contain other arrays as elements:

Array1 = NEW ARRAY(10, 20) && Creates array object.
Array1[5,5] = NEW ARRAY(2,2) && Places array in 5th row, 5th column
Array1[5,5][1,1] = 10 && Places value in 1st row, 1st column

&& of the array element

You can also create a literal array object by specifying the values you want to place in the
array. Like other arrays, literal arrays can contain other arrays as elements. Literal arrays
are useful for populating items such as list boxes and tab boxes.

LitArray1 = {2,4,6}
? LitArray1[2] && Returns 4
LitArray2 = {"Jan", "Feb"}
? LitArray2[1] && Returns "Jan"
z={1, NEW ARRAY(2,2),3}
? z[2] && Returns Array
? z[2][1,2] && Returns .F.

Size N/A Contains the number of elements in an array object

Sort() N/A Sorts the elements in a one-dimensional array object, or sorts rows in a two-
dimensional array object

Subscript() N/A Returns the row number or the column number of a specified element in an
array object

Property Default Description

C h a p t e r 7 , C l a s s e s 681

C L A S S A S S O C A R R A Y

Example
The following example creates a form with one button for each field in a table. Field
names are stored in an array object named AButtons:

LOCAL loFields
loFields = NEW FieldForm()
loFields.OPEN()
CLASS FieldForm OF FORM

USE ?
* create a button for each field
AButtons = NEW ARRAY(1)

FOR i = 1 TO FCOUNT()
AButtons.ADD(1)
AButtons[i] = NEW PUSHBUTTON(THIS)
AButtons[i].text = FIELD(i)
AButtons[i].top = i * 2
AButtons[i].left = 5
AButtons[i].width = 20

NEXT
ENDCLASS

See Also
CLASS ASSOCARRAY, CLASS LISTBOX, CLASS TABBOX, DECLARE, PUBLIC

CLASS ASSOCARRAY
An array object class that takes character strings as subscripts.

Properties
The following table lists the properties of the Assocarray class. For more information on
each property, see Chapter 8.

Description
Use the ASSOCARRAY class to create an array that has character strings as subscripts.
This lets you assign meaningful information to both the subscript and the array element
it references. For more information on using array objects, see ARRAYXREF.

Property Default Description

ClassName ASSOCARRAY Identifies the assocarray class
Count() N/A Returns the number of elements in the associated array

FirstIndex N/A Returns the subscript character string for an element of an
associated array

IsIndex() N/A Returns .T. if the specified character expression is a subscript of
the associated array

NextIndex() N/A Returns the subscript of the next element in the associated array
RemoveAll() N/A Deletes all elements of the associated array.
RemoveKey() N/A Deletes a specified element from the associated array

682 L a n g u a g e R e f e r e n c e

C L A S S B R O W S E

Use the standard array operator [] to add and reference items in the array. An empty
string "" can be used as a subscript.

Example
The following example creates an associated array and displays its subscripts and
contents. It then deletes a specified element from the array.

aa = NEW ASSOCARRAY()
aa["San Francisco"] = "49ers"
aa["Los Angeles"] = "Rams"
x = aa.FirstIndex
DO WHILE .NOT. EMPTY(x)

? x, aa[x] && display element subscript and contents
x = aa.NextIndex(x) && 'increments' index pointer

ENDDO
? aa.Count() && Returns 2
aa.RemoveKey("San Francisco")&& Removes element from the array
? aa.Count() && Returns 1

See Also

CLASS ARRAY, DECLARE, PUBLIC

CLASS BROWSE
A data-editing tool that displays multiple records in row-and-column format, or single
records in columnar or edit format.

Properties
The following table lists the properties of the Browse class. For more information on
each property, see Chapter 8.

Property Default Description

Alias Empty string Determines the table file that is accessed
Append .T. Determines if records can be added
Before N/A Specifies which object the browse object precedes in the tabbing

order of the parent form
ClassName BROWSE Identifies the browse object's class
ColorHighlight WindowText

/Window
Sets the color of the browse object when it’s highlighted

ColorNormal BtnText/
BtnFace

Sets the color of the browse object

CUATab .T. Determines cursor behavior when you press Tab

Copy() N/A Copies selected text to the Windows clipboard

Cut() N/A Cuts selected text and places it on the Windows clipboard
Delete .T. Determines if records can be marked for deletion
Enabled .T. Determines if the browse object can be selected

C h a p t e r 7 , C l a s s e s 683

C L A S S B R O W S E

Fields Empty string Specifies the fields to display, and the field options to apply to
each field

FieldWidth N/A Specifies the width of a character field in a browse object
Follow .T. Determines if the display follows a record to its new index

order when a key field value is changed
FontBold .F. Determines if characters are displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points

Header3D .T. Specifies whether the top portion of the browse object appears
raised (three-dimensional)

Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help topic in

a Windows Help file (.HLP)
hWnd N/A Returns the browse object handle
ID –1 Identifies the browse object with a numeric value
Keyboard() N/A Passes a character string to the browse object, simulating typed

user input
Left N/A Sets the position of the left border
Mode 0 Specifies the display format
Modify .T. Determines if the user can alter records
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

browse object
Move() N/A Moves or sizes the browse object
Name BROWSE1 Specifies the browse object's name
OnAppend N/A Executes a subroutine when a record is added to the table
OnChange N/A Executes a subroutine when the user changes a value
OnGotFocus N/A Executes a subroutine when the browse object receives focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the browse
object

OnLeftMouseDown N/A Executes a subroutine when the user clicks the browse object
with the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the browse object

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the browse

object with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the browse object

with the middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle

mouse button while the pointer is on the browse object
OnMouseMove N/A Executes a subroutine when the user moves the mouse over the

browse object

Property Default Description

684 L a n g u a g e R e f e r e n c e

C L A S S B R O W S E

Description
Use a browse object to allow viewing and editing of records from a table. A browse
object offers most the capabilities and options of the BROWSE and EDIT commands.

To display data one record at a time (single-record format), set the Mode property to 1
or 2. Setting Mode to 1 specifies form layout, and setting Mode to 2 specifies columnar
layout. To display data in multiple-record format, set Mode to 0. When you set the
Toggle property to true, the user can switch between all three formats by pressing F2.

Two properties specify which table is displayed in the browse object.

• The View property of the parent form

OnNavigate N/A Executes a subroutine when the user moves to a different
record

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the browse

object with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the browse object

with the right mouse button

OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse
button while the pointer is on the browse object

PageNo N/A Specifies on which page of a multi-page form the browse object
appears

Parent N/A An object reference that points to the parent form
Paste() N/A Copies text from the Windows clipboard to the current cursor

position
Release() N/A Removes the browse object definition from memory
ScrollBar 2 (Auto) Determines if the browse object has a scroll bar
SetFocus() N/A Gives focus to the browse object
ShowDeleted .T. Determines if the browse object's delete box column is

displayed
ShowHeading .T. Determines if field name headings are displayed at the top of

each column in the browse object
ShowRecNo .T. Determines if the browse object's record number column is

displayed
StatusMessage Empty string Specifies a message to display on the status bar while the

browse object has focus
TabStop .T. Determines if the user can give object focus to the browse object

by pressing Tab or Shift+Tab

Text N/A Specifies a character string to display on the caption bar
Toggle .T. Determines if the user can switch between display modes
Top N/A Sets the position of the top border
Undo() N/A Reverses the effects of the most recent Cut(), Copy(), or

Paste() action
Visible .T. Determines whether the browse object is visible or hidden
When .T. Specifies a condition that must evaluate to true before the user

can give focus to the browse object
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , C l a s s e s 685

C L A S S B R O W S E

• The Alias property of the browse object

The View property bases the form on a query (QBE), which is automatically invoked
when you open the form. The Alias property determines which table opened by the
query is displayed. An alias is an alternate name given to an open table file, and can
consist of.

• A name you specify with the ALIAS option of the USE command.

• The table file name (if you did not assign the table an alias).

• The letter that corresponds to the work area of the table.

• The number, preceded by an underscore character (_), that corresponds to the work
area of the table.

A browse object is often used to display child records in a multi-table form. For
example, when the parent form is based on a query that opens two or more files in a
parent-child relation, you can specify the child table with the Alias property. For more
information on aliases and work areas, see Alias, SELECT, and USE.

You can specify individual fields to display with the Fields property. For example, if the
browse object's form is based on a query, you use Fields to display fields from any of the
query's tables. (You must specify a file with Alias before you can use Fields.)

You determine a browse object's dimensions with the FROM...TO clause of its DEFINE
command or with its Height and Width properties.

When you create a browse object with the NEW operator, you can specify two
parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
browse object. This value is optional.

For example, the following commands create a form and a browse object to display in it:

MyForm = NEW FORM()
MyBrow = NEW BROWSE(MyForm, "OurBrow")

The Name property of the new browse object contains "OurBrow".

Note You can specify a value for the View property with the Choose View dialog box, which
lets you choose query or a table. To access the Choose View dialog box, click on the Tool
Button next to the View item in the Inspector.

You can specify an Alias value with the Choose Alias dialog box, which lists all open
tables. To access the Choose Alias dialog box, click on the Tool Button next to the Alias
item in the Inspector.

You can specify a Fields value with the Choose Field dialog box, which lists fields from
all open tables. To access the Choose Field dialog box, click on the Tool Button next to
the Fields item in the Inspector.

If you use the Inspector, don't enclose the View, Alias, or Fields value with quotation
marks. If you do, dBASE displays an error message.

686 L a n g u a g e R e f e r e n c e

C L A S S C H E C K B O X

Example
The following example defines a form that contains a browse object of the Contact table.
The Exit pushbutton gives the user an alternative way to close the form:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.Top=2
this.Left=2
this.Width=38
this.Height=20
this.View = "Contact.DBF"
this.Text= "Edit as Required"
DEFINE BROWSE Br1 OF THIS;

PROPERTY;
Alias "Contact",;
Fields "CompCode, Contact",;
Top 4,;
Left 3,;
Width 32,;
Height 12,;
Delete .T.,;
StatusMessage "Contact Table Browse",;
Toggle .F. && Disables switching views with F2

DEFINE TEXT Text1 OF THIS;
PROPERTY;

Text "Contact Table Points of Contact",;
Width 38,;
Top 1,;
Left 0,;
Alignment 1,;
Height 2.50,;
FontSize 12.00,;
FontBold .T.

DEFINE PUSHBUTTON Exit OF THIS;
PROPERTY Text "Exit", Height 2,;

Top 17, Left 14,;
OnClick {;Form.Close()}

ENDCLASS

See Also
DEFINE, BROWSE, EDIT, OPEN FORM, RELEASE OBJECT

CLASS CHECKBOX
An object that lets users toggle logical values between true (.T.) and false (.F.).

C h a p t e r 7 , C l a s s e s 687

C L A S S C H E C K B O X

Properties
The following table lists the properties of the Checkbox class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the check box precedes in the tabbing
order of the parent form

ClassName CHECKBOX Identifies the check box class
ColorNormal BtnText/

BtnFace
Sets the color of the check box

DataLink Empty string Links the check box to a field

Enabled .T. Determines if the check box can be selected
FontBold .T. Determines if characters in the check box prompt are displayed

in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Group .T. Starts an object group in the parent form

Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help topic in

a Windows Help file (.HLP)
hWnd N/A Specifies the check box handle
ID –1 Identifies the check box with a numeric value
Left N/A Sets the position of the left border

MousePointer 0 Specifies the mouse pointer type when the pointer is over the
check box

Move() N/A Moves or sizes the check box
Name CHECKBOX1 Specifies the check box name
OldStyle .F. Determines if the check box is displayed in the default

Windows style or in dBase style
OnChange N/A Executes a subroutine when the user toggles between values

OnGotFocus N/A Executes a subroutine when the check box receives focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the check
box

OnLeftMouseDown N/A Executes a subroutine when the user clicks the check box with
the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the check box

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the check

box with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the check box with

the middle mouse button

688 L a n g u a g e R e f e r e n c e

C L A S S C H E C K B O X

Description
Use a check box to let users toggle a value between true and false, yes and no, or on and
off. This value can be contained in a logical field that you specify with the DataLink
property.

The presence of an X in a check box means true, yes, or on, and the absence of an X
means false, no, or off.

When you link a check box to a field and the user moves from record to record, the
check box setting changes to reflect each value.

When you create a check box with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
check box. This value is optional.

For example, the following commands create a form and a check box to display in it:

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle
mouse button while the pointer is on the check box

OnMouseMove N/A Executes a subroutine when the user moves the mouse pointer
over the check box

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the check

box with the right mouse button

OnRightMouseDown N/A Executes a subroutine when the user clicks the check box with
the right mouse button

OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse
button while the pointer is on the check box

PageNo N/A Specifies on which page of a multi-page form the check box
object appears

Parent N/A An object reference that points to the parent form
Release() N/A Removes the check box definition from memory
SetFocus() N/A Gives focus to the check box
SpeedTip Empty string Specifies the text that appears when the mouse remains on the

check box for more than one second
StatusMessage Empty string Specifies a message to display on the status bar while the check

box has focus

TabStop .T. Determines if the user can give focus to the check box by
pressing Tab or Shift+Tab

Text N/A Specifies a character string to display next to the check box
Top 0 Sets the position of the top border
Value .F. Determines whether the check box is selected (contains an x) or

is blank
Visible .T. Determines whether the check box is visible or hidden
When N/A Specifies a condition that must evaluate to true before the user

can give focus to the check box
Width 10.25 Sets the width

Property Default Description

C h a p t e r 7 , C l a s s e s 689

C L A S S C H E C K B O X

MyForm = NEW FORM()
MyCBox = NEW CHECKBOX(MyForm, "OurCBox")

The Name property of the new check box contains "OurCBox".

Note You can specify a field for the DataLink property with the Field Picker. To access the
Field Picker, click on the Tool Button next to the DataLink item in the Inspector.

Example
The following example uses check boxes for selecting options of the LIST command.
BigBox is a subclass of Checkbox with a big font:

USE ?
DEFINE FORM ListForm PROPERTY MDI .F.
DEFINE PUSHBUTTON Lister OF ListForm ;

PROPERTY ;
Text "List", ;
Top 10, ;
Left 15, ;
OnClick ListClick

NEW bigBox(ListForm,"Include record numbers")
NEW bigBox(ListForm,"Send to printer")
ListForm.Checkbox1.Top = 2
ListForm.Checkbox2.Top = 6
READMODAL(ListForm)

CLASS bigBox(f,lcText) OF CHECKBOX(f)
this.FontName = "Arial"
this.FontSize = 16
this.Text = SPACE(2) + lcText
this.Width = LEN(lcText) * 2
this.Left = 2
this.Value = .F.

ENDCLASS

FUNCTION ListClick
IF Form.Checkbox1.Value && include record;

numbers
IF Form.Checkbox2.Value && to printer

LIST TO PRINTER
ELSE

LIST
ENDIF

ELSE && no record numbers
IF Form.Checkbox2.Value && to printer

LIST OFF TO PRINTER
ELSE

LIST OFF
ENDIF

ENDIF
FORM.CLOSE()

RETURN 0

See Also
CLASS RADIOBUTTON, DEFINE

690 L a n g u a g e R e f e r e n c e

C L A S S C O M B O B O X

CLASS COMBOBOX
An object that lets users select a value from a list by entering characters in a text box or
by selecting the value directly from the list.

Properties
The following table lists the properties of the Combobox class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the combo box precedes in the tabbing
order of the parent form

ClassName COMBOBOX Identifies the combo box class
ColorNormal WindowText/

Window
Sets the color of the combo box

Copy() N/A Copies selected text to the Windows clipboard
Cut() N/A Cuts selected text and places it on the Windows clipboard
DataLink Empty string Links the combo box to a field
DataSource Empty string Specifies the prompts to display in the combo box
DropDownHeight 6 Specifies the number of lines displayed in the list portion of the

combo box
Enabled .T. Determines if the combo box can be selected
FontBold .T. Determines if characters are displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters

FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help topic

in a Windows Help file (.HLP)

hWnd N/A Returns the combo box handle
ID –1 Identifies the combo box with a numeric value
Keyboard() N/A Passes a character string to the combo box, simulating typed

user input
Left N/A Sets the position of the left border
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

combo box

Move() N/A Moves or sizes the combo box
Name COMBOBOX1 Specifies the combo box name
OnChange N/A Executes a subroutine when the user moves from one prompt

to another
OnGotFocus N/A Executes a subroutine when the combo box receives focus
OnHelp N/A Executes a subroutine when the user presses F1

C h a p t e r 7 , C l a s s e s 691

C L A S S C O M B O B O X

Description
Use a combo box to display a list of options and allow users to search through the
options rapidly.

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the combo
box

OnLeftMouseDown N/A Executes a subroutine when the user clicks the combo box with
the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the combo box

OnLostFocus N/A Executes a subroutine when focus is removed

OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the combo
box with the middle mouse button

OnMiddleMouseDown N/A Executes a subroutine when the user clicks the combo box with
the middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle
mouse button while the pointer is on the combo box

OnMouseMove N/A Executes a subroutine when the user moves the mouse in the
combo box

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the combo

box with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the combo box with

the right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse

button while the pointer is on the combo box
PageNo N/A Specifies on which page of a multi-page form the combo box

object appears
Parent N/A An object reference that points to the parent form
Paste() N/A Copies text from the Windows clipboard to the combo box

Release() N/A Removes the combo box definition from memory
SetFocus() N/A Gives focus to the combo box
Sorted .F. Determines if the prompts are listed in sorted order
StatusMessage Empty string Specifies a message to display on the status bar while a combo

box has focus
Style 1 Determines how a combo box appears, and how the user

selects or inputs values
TabStop .T. Determines if the user can give focus to the combo box by

pressing Tab or Shift+Tab

Top N/A Sets the position of the top border
Undo() N/A Reverses the effects of the most recent Cut(), Copy() or

Paste() action
Value N/A Sets the value in the combo box
Visible .T. Determines whether the combo box is visible or hidden
When N/A Specifies a condition that must evaluate to true before the user

can give the combo box focus
Width N/A Sets the width

Property Default Description

692 L a n g u a g e R e f e r e n c e

C L A S S C O M B O B O X

For example, combo box prompts might consist of last names from a field in an indexed
table. The user could locate the first record containing a particular last name by entering
the name's initial characters in the text box. As the user enters the characters, the prompt
scrolls to the top of the display. Alternatively, the user could use the scroll bars to
visually locate the last name, then select it directly with the mouse.

A combo box can display five different types of prompt:

1 File names

2 Values in a table field

3 Field names from the structure of a table

4 Elements in an array object

5 The names of all tables in the currently open database (See OPEN DATABASE for
information on databases.)

Specify the prompts with the DataSource property.

Determine the dimensions of a combo box with the FROM...TO clause of the DEFINE
command or with the Height and Width properties. If the height you specify isn't
enough for all the prompts, the user can scroll through the prompts. If the height you
specify is greater than needed, dBASE reduces the height automatically.

When you create a combo box with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
combo box. This value is optional.

For example, the following commands create a form and a combo box to display in it:

MyForm = NEW FORM()
MyComb = NEW COMBOBOX(MyForm, "OurComb")

The Name property of the new combo box contains "OurComb".

Notes You can specify a DataSource value with the Choose Data Source dialog box in the Form
Designer. To access the Choose Data Source dialog box, click the Tool Button next to the
DataSource item in the Inspector.

You can specify a field for the DataLink property with the Choose Field dialog box. To
access the Choose Field dialog box, click the Tool Button next to the DataLink item in the
Inspector.

Example
The following example defines a form that contains a combo box that displays names
from the Animals.DBF table. Double clicking on one of the choices closes the form:

LOCAL f
f=NEW Showbox()
f.OPEN()
CLASS Showbox OF FORM

this.View = "ANIMALS.DBF"

C h a p t e r 7 , C l a s s e s 693

C L A S S D D E L I N K

DEFINE COMBOBOX CB1 OF THIS;
PROPERTY;

DataSource "FIELD Animals->Name",;
FontBold .T.,;
Top 4,;
Left 6,;
Width 20, ;
OnLeftDblClick {; ? 'You picked...',;
THIS.value, ; FORM.CLOSE()}

DEFINE TEXT Text1 OF THIS;
PROPERTY;

Text "Pick Your Favorite Animal",;
FontBold .T., Width 40,;
Top 1, Left 3

ENDCLASS

See Also
CLASS LISTBOX, DEFINE

CLASS DDELINK
Initiates and controls a DDE link between dBASE and a server application, allowing
dBASE to send instructions and data-exchange requests to the server.

Properties
The following table lists the properties of the DDELink class. For more information on
each property, see Chapter 8.

Property Default Description

Advise() N/A Requests that the server notify the client when an item in the server
document changes

ClassName DDELINK Identifies the DDELink class
Execute() N/A Sends instructions to the server in its own language

Initiate() N/A Starts a conversation with a DDE server application
OnNewValue N/A Executes a subroutine when an item in the server application changes
Peek() N/A Retrieves a data item stored in a server document
Poke() N/A Inserts a data item into a server document
Reconnect() N/A Restores a DDE link that was terminated with Terminate()
Release() N/A Removes the DDELink object definition from memory
Server N/A Contains the name of the server you specified with the Initiate() method
Terminate() N/A Terminates the link with the server application
TimeOut 1000 Determines the amount of time dBASE waits for a transaction before

returning an error
Topic Empty string Contains the name of the topic you specified with the Initiate() method
Unadvise() N/A Asks the server to stop notifying the DDELink object when an item in the

server document changes

694 L a n g u a g e R e f e r e n c e

C L A S S D D E T O P I C

Description
Use a DDELink object to open a channel of communication (known as a DDE link)
between dBASE and an external Windows application (known as a server). You can
exchange data and instructions through this link, making the two applications work
together. For example, a DDElink object might establish a link to Quattro Pro for
Windows, open one of its notebook files, and copy its data into a dBASE table.

Establish a DDE link with the Initiate() property. If a session in the server application is
not already running, Initiate() tries to start a session before establishing the link. If the
attempt is unsuccessful, Initiate() returns a value of false.

For more information on DDE, see Chapter 26 in the Programmer's Guide. For
information on using dBASE as a server application, see CLASS DDETOPIC.

Example
The following example creates a DDELINK object with the NEW operator, attempts to
initiate a server session with Quattro Pro for Windows with the Initiate method, uses the
Peek method to extract a value from element GasCosts:B5 to a dBASE memory variable
and Poke to place a new value in cell GasCosts:B6 of the QPW spreadsheet:

LOCAL LinkObj
LinkObj = NEW DDELINK()
IF LinkObj.Initiate("QPW","Tutor.WB1")

? "Connection to QPW initiated"
ELSE

? "Connection to QPW failed"
ENDIF
mValue1=LinkObj.Peek("GasCosts:B5")
? mValue1
LinkObj.Poke("GasCosts:B6","198")
mValue2=LinkObj.Peek("GasCosts:B6")
? mValue2
LinkObj.RELEASE()

See Also
CLASS DDETOPIC, CLASS OLE, CLASS OLEAUTOCLIENT, DEFINE

CLASS DDETOPIC
Determines the actions taken when Visual dBASE receives requests from a DDE client.

Properties
The following table lists the properties of the DDETopic class. For more information on
each property, see Chapter 8.

Property Default Description

ClassName DDETOPIC Identifies the DDETopic class
Notify() N/A Notifies all client applications that a dBASE item was changed
OnAdvise N/A Executes a subroutine when an external application creates a hot link

C h a p t e r 7 , C l a s s e s 695

C L A S S D D E T O P I C

Description
Use a DDETopic object to determine what dBASE does for a client application when
dBASE is the server in a DDE link.

As a server application, Visual dBASE accepts directives from a client application,
accepts and sends data items to the server application, and performs whatever actions
you specify with DDETopic object properties. For example, an OnPoke subroutine
might receive a field name and a field value from a client application, insert the value
into the designated field, and notify the client application with the Notify() method.

You usually create a DDETopic object in an initiation-handler routine, which you assign
to the OnInitiate property of _app. An initiation-handler executes when a client
application requests a DDE link with dBASE. For more information on initiation
handlers, see Chapter 26 in the Programmer's Guide.

For information on using dBASE as a client application, see CLASS DDELINK.

When you create a DDETopic object with the NEW operator, specify the <topic>
parameter. This value is automatically placed in the Topic property of the new
DDETopic object. External applications use this property to identify the object and
establish a DDE link. For example, the following command creates a DDETopic object,
and puts "MyTopic" in the Topic property:

OurTopic = NEW DDETopic("MyTopic")

A Quattro Pro spreadsheet might execute the following command to invoke the new
object:

{INITIATE "DBASEWIN", "MyTopic"}

Example
The following example creates a DDE server for handling stock information. For
simplicity, only one hot link is supported at a time, and all stocks have the same value.
When a client buys a stock (Execute feature), the stock price goes up; when a client sells
a stock, the stock price goes down.

SET PROCEDURE TO PROGRAM(1) ADDITIVE
PUBLIC Stock, Adviser, Value
Value = 100.0
_app.DDEServiceName = "Stock"
_app.OnInitiate = INITHANDLER

OnExecute N/A Executes a subroutine when a client application sends a directive to dBASE

OnPeek N/A Executes a subroutine when the client requests a value from dBASE
OnPoke N/A Executes a subroutine when the client inserts a new value into a dBASE

item
OnUnadvise N/A Executes a subroutine when a client removes a hot link from a particular

item
Release() N/A Removes the DDETopic object definition from memory
Topic N/A The DDETopic object's topic

Property Default Description

696 L a n g u a g e R e f e r e n c e

C L A S S D D E T O P I C

FUNCTION InitHandler
PARAMETER Topic
IF ".STK" $ Topic

x = NEW StockTopic()
ELSE
x = .F.

ENDIF
RETURN x

CLASS StockTopic OF DDETOPIC
Stock.OnAdvise = AdvHandler
Stock.OnExecute = ExeHandler
Stock.OnPeek = PeekHandler
Stock.OnPoke = PokeHandler
Stock.OnUnadvise = UnAdvHandler

FUNCTION AdvHandler
PARAMETER Item
Adviser = Item
RETURN .T.

FUNCTION ExeHandler
PARAMETER Cmd
IF Cmd = "SELL"

Value = Value - 10.0
ELSE

IF Cmd = "BUY"
Value = Value + 10.0

ENDIF
ENDIF
THIS.Notify(Adviser)
RETURN .T.

FUNCTION PeekHandler
PARAMETER Item
RETURN Value

FUNCTION PokeHandler
PARAM Item, Val
? "POKE: ", Item, Val
RETURN .T.

FUNCTION UnAdvHandler
PARAMETER Item
IF(Adviser = item)

Adviser = .F.
ENDIF
RETURN .T.

ENDCLASS

See Also
CLASS DDELINK

C h a p t e r 7 , C l a s s e s 697

C L A S S E D I T O R

CLASS EDITOR
A tool that lets the user view and edit a text file or memo field.

Properties
The following table lists the properties of the Editor class. For more information on each
property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the editor object precedes in the tabbing
order of the parent form

Border .F. Determines if the editor object is surrounded with a border

ClassName EDITOR Identifies the editor class
ColorNormal WindowText/

Window
Sets the color of the editor object when it does not have focus

Copy() N/A Copies selected text to the Windows clipboard
Cut() N/A Cuts selected text and places it on the Windows clipboard
CUATab .T. Determines cursor behavior when you press Tab

DataLink Empty string Links the editor object to a text file, a memo field, or a
character field.

Enabled .T. Determines if the editor object can be selected
FontBold .T. Determines if characters are displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to characters in the display
FontSize N/A Specifies the size of the font in point size
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive help topics

HelpID Empty string Specifies the context string or context number of a help topic
in a Windows Help file (.HLP)

hWnd N/A Returns the editor object handle
ID –1 Identifies the editor object with a numeric value
Keyboard() N/A Passes a character string to the editor object, simulating typed

user input
Left N/A Sets the position of the left border

LineNo 1 Sets the current line in the editor object
Modify .T. Determines if the user can alter data in the editor object
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

editor object
Move() N/A Moves or sizes the editor object
Name EDITOR1 Specifies the name of the editor object
OnChange N/A Executes a subroutine when the user changes text in the editor

object

OnGotFocus N/A Executes a subroutine when the editor object receives focus

698 L a n g u a g e R e f e r e n c e

C L A S S E D I T O R

OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks on the
editor object

OnLeftMouseDown N/A Executes a subroutine when the user clicks on the editor object
with the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the editor object

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks on the

editor object with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks on the editor object

with the middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle

mouse button while the pointer is on the editor object
OnMouseMove N/A Executes a subroutine when the user moves the mouse in the

editor object
OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks on the

editor object with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks on the editor object

with the right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse

button while the pointer is on the editor object
PageNo N/A Specifies on which page of a multi-page form the editor object

appears
Parent N/A An object reference that points to the parent form

Paste() N/A Copies text from the Windows clipboard to the current cursor
position

Release() N/A Removes the editor object definition from memory
Scrollbar 1 (On) Determines if the editor object has a scroll bar
SetFocus() N/A Gives focus to the editor object
StatusMessage Empty string Specifies a message to display on the status bar while the

editor object has focus
TabStop .T. Determines if the user can give focus to the editor object by

pressing Tab or Shift+Tab
Top N/A Sets the position of the top border
Undo() N/A Reverses the effect of the most recent Cut(), Copy() or Paste()

action
Valid N/A Specifies a condition that must evaluate to true (.T.) before the

user can remove focus from the editor object
Value Empty string Determines the contents of the editor object
Visible .T. Determines whether the editor object is visible or hidden
When N/A Specifies a condition that must evaluate to true before the user

can give focus to the editor object
Width N/A Sets the width
Wrap .T. Determines if the editor object wraps input text automatically

Property Default Description

C h a p t e r 7 , C l a s s e s 699

C L A S S E D I T O R

Description
Use an editor object to give a form text-editing capability, letting users view and change
the contents of text files, memo fields, and character fields.

Use the DataLink property to specify the text file or memo field to access. To access a
text file, use the keyword FILE, as with:

"FILE MYTEXT.TXT"

To access a memo field or a character field, use the field name and the alias of the table
that contains the field.

To set the dimensions of the editor object, use the FROM...TO clause of its DEFINE
command or with its Height and Width properties. The scroll bars let the user move
horizontally or vertically within the display when input exceeds the dimensions of the
editor object.

To position the editor object on the form, use the Top and Left properties.

When you create an editor object with the NEW operator, you can specify two
parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
editor object. This value is optional.

For example, the following commands create a form and an editor object to display in it:

MyForm = NEW FORM()
MyEdit = NEW EDITOR(MyForm, "OurEdit")

The Name property of the new editor object contains "OurEdit".

Example
The following example defines a form that contains a browse object containing
CompCode and Contact information from the Contact table plus the associated memo
field contents displayed in an editor object to the right. Back and Next pushbuttons
advance or retard the record pointer while Exit gives the user an alternative way to close
the form:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.Top=2
this.Left=2
this.Width=72
this.Height=20
this.View = "Contact.DBF"
this.Text= "Edit as Required"
DEFINE BROWSE Br1 OF THIS;

PROPERTY;
Top 4,;
Left 3,;
Width 32,;

700 L a n g u a g e R e f e r e n c e

C L A S S E N T R Y F I E L D

Height 12
DEFINE TEXT Text1 OF THIS;

PROPERTY;
Text "Contact Table Points of Contact",;
Width 72,;
Top 1,;
Left 0,;
Alignment 1,;
Height 2.50,;
FontBold .T.,;
FontSize 14.00,;
ColorNormal "R/W"

DEFINE EDITOR ED1 OF THIS;
PROPERTY;

Top 4,;
Left 37,;
Width 32,;
Height 12,;
DataLink "Contact->Notes"

DEFINE PUSHBUTTON Back OF THIS;
PROPERTY Text "Back", Height 2,;

Top 17, Left 22,;
OnClick {;SKIP-1}, FontBold .T.

DEFINE PUSHBUTTON Next OF THIS;
PROPERTY TEXT "Next", Height 2,;

Top 17, Left 32,;
OnClick {;SKIP}, FontBold .T.

DEFINE PUSHBUTTON Exit OF THIS;
PROPERTY Text "Exit", Height 2,;

Top 17, Left 42,;
OnClick {;Form.Close()}, FontBold .T.

ENDCLASS

See Also
MODIFY COMMAND

CLASS ENTRYFIELD
An area in which the user can input or modify a single value.

Properties
The following table lists the properties of the Entryfield class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the entry field precedes in the tabbing
order of the parent form

Border .T. Determines if the entry field is surrounded with a border
ClassName ENTRYFIELD Identifies the Entryfield class

C h a p t e r 7 , C l a s s e s 701

C L A S S E N T R Y F I E L D

ColorHighLight WindowText/
Window

Sets the color of the entry field when it is highlighted

ColorNormal WindowText/
Window

Sets the color of the entry field when it isn't highlighted

Copy() N/A Copies selected text to the Windows clipboard
Cut() N/A Cuts selected text and places it on the Windows clipboard
DataLink Empty string Links the entry field to a table field
Enabled .T. Determines if the entry field can be selected
FontBold .T. Determines if characters in the entry field are displayed in

bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Function Empty string Formats displayed text
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help topic

in a Windows Help file (.HLP)
hWnd N/A Returns the entry field handle
ID –1 Identifies the entry field with a numeric value
Key N/A Executes a subroutine when the user presses a key
Keyboard() N/A Passes a character string to the entry field, simulating typed

user input
Left N/A Sets the position of the left border
MaxLength N/A Specifies the scrolling width
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

entry field
Move() N/A Moves or sizes the entry field
Name ENTRYFIELD1 Specifies the name of the entry field
OldStyle .F. Determines if the entry field is displayed in the default

Windows style or in dBase style
OnChange N/A Executes a subroutine when the user changes a value
OnGotFocus N/A Executes a subroutine when the entry field receives focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the entry
field

OnLeftMouseDown N/A Executes a subroutine when the user clicks the entry field
with the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the entry field

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the entry

field with the middle mouse button

Property Default Description

702 L a n g u a g e R e f e r e n c e

C L A S S E N T R Y F I E L D

Description
Use an entry field to let users enter and edit data in a single field. For example, a form
that allows access to only one table field might use an entry field instead of a browse
object.

OnMiddleMouseDown N/A Executes a subroutine when the user clicks the entry field
with the middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle
mouse button while the pointer is on the list box

OnMouseMove N/A Executes a subroutine when the user moves the mouse over
the entry field

OnOpen N/A Executes a subroutine when the parent form is opened

OnRightDblClick N/A Executes a subroutine when the user double-clicks the entry
field with the right mouse button

OnRightMouseDown N/A Executes a subroutine when the user clicks the entry field
with the right mouse button

OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse
button while the pointer is on the entry field

PageNo N/A Specifies on which page of a multi-page form the entry field
object appears

Parent N/A An object reference that points to the parent form
Paste() N/A Copies text from the Windows clipboard to the current cursor

position
Picture Empty string Formats text
Release() N/A Removes the entry field definition from memory

SelectAll .T. Determines if the initial value in the entry field appears
selected (highlighted) when the entry field receives focus

SetFocus() N/A Gives focus to the entry field
SpeedTip Empty string Specifies the text that appears when the mouse remains on

the entry field for more than one second
StatusMessage Empty string Specifies a message to display on the status bar while the

entry field has focus
TabStop .T. Determines if the user can give focus to the entry field by

pressing Tab or Shift+Tab

Top N/A Sets the position of the top border
Undo() N/A Reverses the effect of the most recent Cut(), Copy() or

Paste() action
Valid N/A Specifies a condition that must evaluate to true (.T.) before the

user can remove focus from the entry field
ValidErrorMsg Invalid input Specifies a character string to display on the status bar when

the Valid property returns false (N/A)
ValidRequired .F. Determines if the Valid property applies to all data or to new

data only
Value EntryField Sets the value in the entry field

Visible .T. Determines whether the entry field is visible or hidden
When N/A Specifies a condition that must evaluate to true before the

user can give focus to the entry field
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , C l a s s e s 703

C L A S S E N T R Y F I E L D

An entry field physically resembles an entry area created by the dBASE IV command
@...GET. However, entering data in an entry field doesn't require a READ command.

Use the DataLink property to specify the field to edit. If you wish, you can specify a field
for the DataLink property with the Field Picker in the Form Designer. To access the
Field Picker, click on the Tool Button next to the DataLink item in the Inspector.

Create entry field prompts with text objects. For example, a text object saying "Enter
password" might appear above an entry field that accepts passwords. For information
on text objects, see CLASS TEXT.

When you create an entry field with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
entry field. This value is optional.

For example, the following commands create a form and an entry field to display in it:

MyForm = NEW FORM()
MyField = NEW ENTRYFIELD(MyForm, "OurField")

The Name property of the new entry field contains "OurField".

Example
The following example defines a form that contains three entry fields. Each
ENTRYFIELD uses a different object-oriented definition syntax, all of which work in
Visual dBASE. The Back and Next pushbuttons let the user move the record pointer:

LOCAL F1
F1=NEW EntryForm()
F1.OPEN()
CLASS EntryForm OF FORM

this.View="Company.DBF"
this.Top=2
this.Left=2
this.Width=38
this.Height=13
this.Text= "Edit as Required"

* NEW operator syntax:
CompCode=NEW ENTRYFIELD(this)
CompCode.DataLink="Company->CompCode"
CompCode.Top=5
CompCode.Left=2
CompCode.Width=5
CompCode.Height=1.5

* Combination syntax:
DEFINE ENTRYFIELD Type OF THIS

this.Type.Width=5
this.Type.Top=5
this.Type.Left=9
this.Type.Height=1.5
this.Type.DataLink="Company->Type"

* DEFINE object syntax
DEFINE ENTRYFIELD Company OF THIS;

704 L a n g u a g e R e f e r e n c e

C L A S S F O R M

PROPERTY;
Width 20,;
Top 5,;
Left 16,;
Height 1.5,;
DataLink "Company->Company"

DEFINE TEXT Text1 OF THIS;
PROPERTY;

Text "Company Information",;
Width 34,;
Top 1,;
Left 2,;
Alignment 7,;
Height 2.50,;
FontSize 12.00,;
Border .T.

DEFINE PUSHBUTTON Back OF THIS;
PROPERTY Text "Back", Height 2,;

Top 10, Left 10,;
OnClick {;SKIP-1}

DEFINE PUSHBUTTON Next OF THIS;
PROPERTY TEXT "Next", Height 2,;

Top 10, Left 20,;
OnClick {;SKIP}

ENDCLASS

See Also
@...SAY...GET, DEFINE

CLASS FORM
A customized window containing objects for input and output.

Properties
The following table lists the properties of the Form class. For more information on each
property, see Chapter 8.

Property Default Description

AbandonRecord() N/A Releases from memory a record created with BeginAppend()
ActiveControl N/A Contains a reference to the object that currently has focus
AutoSize .F. Determines if the form adjusts itself automatically to contain its

objects when the form is opened
BeginAppend() N/A Creates a temporary buffer in memory for a record that is based

on the structure of the current table
CanClose N/A Executes a subroutine that determines if a form can be closed

when an attempt is made to close the form
ClassName FORM Identifies the Form class
Close() N/A Closes the form
ColorNormal BtnText/

BtnFace
Sets the color of the form

C h a p t e r 7 , C l a s s e s 705

C L A S S F O R M

Enabled .T. Determines if the form can receive focus

EscExit .T. Determines if the user can close the form by pressing Esc

First N/A Contains an object reference that points to the first object in the
form

Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help topic in

a Windows Help file (.HLP)
hWnd N/A Returns the object handle of the form
Icon N/A Specifies an icon format file (.ICO) or resource that displays

when a form is minimized
IsRecordChanged() .F. Returns a logical value that indicates whether the current record

in the append buffer, created with BeginAppend(), has been
modified

Left N/A Sets the position of the left border
Maximize .T. Determines if the form can be maximized
MDI .T. Determines if the form conforms to Windows Multiple

Document Interface (MDI) standards
MenuFile Empty string Assigns a predefined menu system to the form
Minimize .T. Determines if the form can be minimized
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

form
Move() N/A Specifies the mouse pointer type when the pointer is over the

form
Moveable .T. Determines if the form can be moved with the mouse
NextCol() N/A The next highest column position
NextObj N/A Returns a reference to the next object in the form's tabbing order
NextRow() N/A The next highest row position
OnAppend N/A Executes a subroutine when a record is added to a table on

which the form is based
OnChange N/A Executes a subroutine when the user changes a value in an

object
OnClose N/A Executes a subroutine when the form is closed
OnGotFocus N/A Executes a subroutine when the form receives focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the form

OnLeftMouseDown N/A Executes a subroutine when the user clicks the form with the
left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the form

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the form

with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the form with the

middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle mouse

button while the pointer is on the form

Property Default Description

706 L a n g u a g e R e f e r e n c e

C L A S S F O R M

OnMouseMove N/A Executes a subroutine when the user moves the mouse in the
form

OnMove N/A Executes a subroutine after the user moves the form
OnNavigate N/A Executes a subroutine when the user moves to a different record
OnOpen N/A Executes a subroutine when the form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the form

with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the form with the

right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse

button while the pointer is on the form
OnSelection N/A Executes a subroutine when the user submits the form
OnSize N/A Executes a subroutine after the user resizes the form
Open() N/A Opens the form as a modeless window
PageCount() N/A Returns the highest numbered page defined for the form
PageNo N/A Specifies the active page of the form

PopupMenu N/A Specifies a Popup menu for the form
Print() N/A Prints the form and the objects it contains
ReadModal() N/A Opens the form as a modal window
Refresh() N/A Updates data displayed in control objects within a form
Release() N/A Removes the form definition from memory
SaveRecord() N/A Saves to the current table a record created with BeginAppend()
ScaleFontName MS Sans Serif Determines which font the coordinate plane of the form is based

on
ScaleFontSize N/A Determines the height of each row and the width of each

column in the coordinate plane of the form
Scrollbar 0 (Off) Determines if the form has a scroll bar
SetFocus() N/A Gives focus to the form
ShowSpeedTip .T. Determines if hint balloons appear for controls on a form when

the mouse rests on those controls
Sizeable .T. Determines if the user can resize the form
StatusMessage Empty string Specifies a message to display on the status bar while a form has

focus
StatusMessage Empty string Specifies a message to display on the status bar while the form

has focus
SysMenu .T. Determines if the form has a Control menu
Text N/A Specifies a character string to display in the caption bar
Top N/A Sets the position of the top border
TopMost .F. Specifies whether modal forms display on top of all other forms
View Empty string Specifies the query or table on which the form is based
Visible .T. Determines whether the form is visible or hidden

Width N/A Sets the width
WindowState 0 (Normal) Determines whether the form is minimized, maximized, or

normal

Property Default Description

C h a p t e r 7 , C l a s s e s 707

C L A S S F O R M

Description
A form is a window you design. It can contain standard Windows interface objects (also
called controls) that let users enter, access, and modify data. For example, a form might
display a browse object (for editing records), entry fields (for entering single values) and
check boxes (for setting a logical field to true or false). A form is a container for the objects
it displays. Consequently, releasing a form definition from memory automatically
releases the definitions of the objects it contains.

A form can consist of more than one page. One way to implement multi-page forms is to
use the PageNo property of controls to determine on which page they appear, and use a
set of tabs to let users easily switch between pages. For more information, see CLASS
TABBOX.

Most forms are based on a query (QBE), which you specify with the View property. For
example, to base a form on a QBE named CONTACT.QBE, set the View property to
"CONTACT.QBE". Then use the DataLink and DataSource properties to link the objects
contained by the form to fields in the QBE tables.

You can create two types of forms: modal and modeless. In the Windows environment, a
modal form window is like a dBASE IV window. A modal form halts execution of the
routine that opened it until the form is closed. When active, it takes control of the user
interface; users can't switch to another window without exiting the form. A dialog box is
an example of a modal form; when it is opened, program execution stops and focus can't
be given to another window until the user closes the dialog box.

In contrast a modeless form window allows users to freely switch to other windows in
an application. Most forms that you create for a Windows application will typically be
modeless. A modeless form window conforms to the Multiple Document Interface
(MDI) protocol, which lets you open multiple document windows within an application
window.

To create and use a modeless form, set the MDI property to true (.T.) and open the form
with the Open() method or the OPEN FORM command. To create and use a modal
form, set MDI to false (.F.) and open the form with the ReadModal() method or the
READMODAL() function.

You can also create form windows that appear like application windows. To do so, set
the MDI property to false and use SHELL(.F.). SHELL(.F.) hides the standard dBASE
environment and lets your form take over the user interface. The dBASE application
window disappears, and the form name appears in the Windows Task List.

When you create an form with the NEW operator, you can specify a value for the Text
property with the <text> parameter. For example, the following commands create a
form and an editor object:

MyForm = NEW FORM("This is my form.")

When this form is opened, "This is my form" is displayed in the caption bar.

708 L a n g u a g e R e f e r e n c e

C L A S S I M A G E

Example
The following example uses DEFINE FORM, NEW FORM() and a subclass of form to
create similar forms:

DEFINE FORM Doggy;
PROPERTY;
Text "Oly",;
Top 5,;
Left 5

OPEN FORM Doggy

Kitty = NEW FORM()
Kitty.Text = "Lacey"
Kitty.Top = 10
Kitty.Left = 10
Kitty.OPEN()

Buddy = NEW Toni()
Buddy.OPEN()
CLASS Toni OF FORM

this.Text = "Toni"
this.Top = 15
this.Left = 15

ENDCLASS

See Also
CLASS TABBOX, DEFINE, MDI, Open(), OPEN FORM, ReadModal(),
READMODAL(), SHELL()

CLASS IMAGE
An area that displays bitmap images.

Properties
The following table lists the properties of the Image class. For more information on each
property, see Chapter 8.

Property Default Description

Alignment 0 Positions a graphic image in the image object
Before N/A Specifies which object the image object precedes in the tabbing

order of the parent form
ClassName IMAGE Identifies the image class
DataSource Empty string Specifies which DLL resource, file, or binary field that contains

the graphic image

Height N/A Sets the height
hWnd N/A Returns the image object handle
ID –1 Identifies the image object with a numeric value
Left N/A Sets the position of the left border

C h a p t e r 7 , C l a s s e s 709

C L A S S I M A G E

Description
Use an image object to display images in a form. For example, an image object might
display bitmap pictures stored in a binary field.

You can link an image object to any of three sources with the DataSource property:

• A file containing a bitmap image (.BMP or .PCX).
• A binary field containing bitmap images.
• A bitmap resource in a DLL file.

When you link an image object with a binary field and the user moves from record to
record, the image stored in each record is displayed.

The image you display in an image object is read-only.

When you create an image object with the NEW operator, you can specify two
parameters:

MousePointer 0 Specifies the mouse pointer's type when the pointer is over the
image object

Move() N/A Moves or sizes the image object
Name IMAGE1 Specifies the name of the image object
OnLeftDblClick N/A Executes a subroutine when the user double-clicks the image

object
OnLeftMouseDown N/A Executes a subroutine when the user clicks the image object

with the left mouse button
OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse

button while the pointer is over the image object
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the image

object with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the image object

with the middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle mouse

button while the pointer is on the image object
OnMouseMove N/A Executes a subroutine when the user moves the mouse in the

image object
OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the image

object with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the image object

with the right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse

button while the pointer is on the image object
Parent N/A An object reference that points to the parent form

PageNo N/A Specifies on which page of a multi-page form the image object
appears

Release() N/A Removes the image object definition from memory
Top N/A Sets the position of the top border
Visib1le .T. Determines whether the image object is visible or hidden
Width N/A Sets the width

Property Default Description

710 L a n g u a g e R e f e r e n c e

C L A S S L I N E

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
image object. This value is optional.

For example, the following commands create a form and an image object to display in it:

MyForm = NEW FORM()
MyImage = NEW IMAGE(MyForm, "OurImage")

The Name property of the new image object contains "OurImage".

Note You can select a bitmap image with the Choose Bitmap dialog box. To access the Choose
Bitmap dialog box, click on the Tool Button next to the DataSource item in the Inspector.

Example
The following example creates a subclass of Form containing a subclass of Image. The
subclass of Image places a bitmap in the form:

LOCAL ShowPlane
ShowPlane = NEW PlaneForm()
ShowPlane.OPEN()

CLASS PlaneForm OF FORM
NEW PlaneBMP(this)

ENDCLASS

CLASS PlaneBmp(form) OF IMAGE(form)
this.DataSource = "FILE Airbrlnd.BMP"

ENDCLASS

See CLASS LISTBOX for an additional example of using CLASS IMAGE.

See Also
CLASS SHAPE, DEFINE, RESTORE IMAGE

CLASS LINE
A line you display at a specified location in a form.

Properties
The following table lists the properties of the Line class. For more information on each
property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the line object precedes in the tabbing order of the
parent form

Bottom N/A Sets the row position of the lower end of the line object
ClassName LINE Identifies the line class
ColorNormal BtnText/

BtnFace
Sets the color of the line object

C h a p t e r 7 , C l a s s e s 711

C L A S S L I N E

Description
Use a line object to draw a line on a form. A line object can underline another object or
mark a boundary between two areas in a form.

The user can't give focus to a line object.

When you create a line object with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
line object. This value is optional.

For example, the following commands create a form and a line object to display in it:

MyForm = NEW FORM()
MyLine = NEW LINE(MyForm, "OurLine")

The Name property of the new line object contains "OurLine".

Example
The following example uses DEFINE LINE, within a Class definition, to create two
magenta lines (one vertical and one horizontal) on the form:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.Top=2
this.Left=2
this.Width=36
this.Height=13
this.Text= "Class Line Demo"

*
* other object definitions
*

DEFINE LINE Ln1 OF THIS;
PROPERTY;

Left 10,;

Left N/A Sets the horizontal position of the left end of the line object

Name LINE1 Specifies the name of the line object
OnOpen N/A Executes a subroutine when the parent form is opened
PageNo N/A Specifies on which page of a multi-page form the line object appears
Parent N/A An object reference that points to the parent form
Pen 0 (Solid) Specifies the line object's style
Release() N/A Removes the line object definition from memory
Right N/A Sets the column position right end of the line object
Top N/A Sets the row position of the higher end of the line object
Visible .T. Determines whether the line object is visible or hidden
Width 1 Sets the thickness of the line object

Property Default Description

712 L a n g u a g e R e f e r e n c e

C L A S S L I S T B O X

Top 3,;
Width 4,;
Bottom 8,;
ColorNormal "RB"

DEFINE LINE Ln2 OF THIS;
PROPERTY;

Left 3,;
Top 8,;
Width 4,;
Bottom 8,;
Right 33,;
ColorNormal "RB"

ENDCLASS

See Also
CLASS RECTANGLE, DEFINE

CLASS LISTBOX
An object that lets users select one or many values from a list.

Properties
The following table lists the properties of the Listbox class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the list box precedes in the tabbing order
of the parent form

ClassName LISTBOX Identifies the list box class
ColorHighLight WindowText

/Window
Sets the color of the list box when it's highlighted

ColorNormal WindowText
/Window

Sets the color of the list box when it isn't highlighted

Count() N/A Returns the number of prompts in the list box
CurSel 0 Specifies the currently-selected prompt in the list box
DataSource Empty string Determines which data is displayed in the list box
Enabled .T. Determines if the list box can be selected

FontBold .T. Determines if characters are displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in point size
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive Help topics

C h a p t e r 7 , C l a s s e s 713

C L A S S L I S T B O X

HelpID Empty string Specifies the context string or context number of a Help topic in
a Windows Help file (.HLP)

hWnd N/A Returns the list box handle
ID –1 Identifies the list box with a numeric value
Left N/A Sets the position of the left border
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

list box
Move() N/A Moves or sizes the list box
Multiple .F. Determines if more than one item in the list box can be selected

Name LISTBOX1 Specifies the name of the list box
OldStyle .F. Determines if the list box is displayed in the default Windows

style or in dBase style
OnGotFocus N/A Executes a subroutine when the list box receives focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the list box
OnLeftMouseDown N/A Executes a subroutine when the user clicks the list box with the

left mouse button
OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse

button while the pointer is over the list box
OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the list box

with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the list box with the

middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle mouse

button while the pointer is on the list box
OnMouseMove N/A Executes a subroutine when the user moves the mouse in the

list box
OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the list box

with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the list box with the

right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse

button while the pointer is on the list box
OnSelChange N/A Executes a subroutine when the highlight is moved from one

prompt to another
PageNo N/A Specifies on which page of a multi-page form the listbox object

appears
Parent N/A An object reference that points to the parent form
Release() N/A Removes the list box definition from memory
Selected() N/A Returns the currently-selected prompt
SetFocus() N/A Gives focus to the list box

Sorted .F. Determines whether the list box prompts are in sorted order or
in natural order

StatusMessage Empty string Specifies a message to display on the status bar while the list
box has focus

Property Default Description

714 L a n g u a g e R e f e r e n c e

C L A S S L I S T B O X

Description
Use a list box to let the user select from a series of prompts. For example, an application
might display file names in a list box, letting the user select one or more for deletion.

Specify list box prompts with the DataSource property. You can create five different
types of prompts:

1 File names and subdirectories.

2 The contents of a table field.

3 Field names from a table.

4 Elements in an array object.

5 The names of all tables in the currently open database. (See OPEN DATABASE for
information on databases.)

Determine the dimensions of a list box with the FROM...TO clause of the DEFINE
command or with its Height and Width properties. If the height you specify isn't
enough for all the prompts, the user can scroll through the prompts. If the height you
specify is greater than needed, dBASE reduces the height automatically.

Pressing the first character of a prompt selects that prompt. If more than one prompt
begins with the same character, pressing the character again selects the next prompt that
begins with the character.

To let the user choose any number of prompts (or none at all), set the Multiple property
to true. Each chosen prompt is tagged with a checkmark, and the list box is said to be
multiple-choice.

There are two ways to determine which prompt or prompts were chosen by the user:

• Check the contents of the Value property. Value contains the current selection in a
single-choice list box or the most recent selection in a multiple-choice list box.

• Use the LISTSELECTED() and LISTCOUNT() functions in a DO...WHILE loop to
evaluate the prompts. For more information, see the descriptions of
LISTSELECTED() and LISTCOUNT().

When you create a list box with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

TabStop .T. Determines if the user can give focus to the list box by pressing
Tab or Shift+Tab

Top N/A Sets the position of the top border
Value Empty string The currently selected prompt in the list box
Visible .T. Determines whether the list box is visible or hidden
When N/A Specifies a condition that must evaluate to true before the user

can give focus to the list box
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , C l a s s e s 715

C L A S S L I S T B O X

• <object name expC>—A character string assigned to the Name property of the new list
box. This value is optional.

For example, the following commands create a form and a list box to display in it:

MyForm = NEW FORM()
MyList = NEW LISTBOX(MyForm, "OurList")

The Name property of the new list box contains "OurList".

Example
The following example defines a form that contains a list box that displays names from
the Animals.DBF table and an image object that displays the associated animal's .BMP
image:

LOCAL ShowPics
ShowPics=NEW PickForm()
ShowPics.OPEN()
CLASS PickForm OF FORM

this.View="Animals.DBF"
this.Top=2
this.Left=2
this.Width=60
this.Height=20
this.Text= "Animals of the World"
DEFINE LISTBOX LB1 OF THIS;

PROPERTY;
DataSource "FIELD Animals->Name",;
Top 4,;
Left 6,;
Width 20,;
Height 12

DEFINE TEXT Text1 OF THIS;
PROPERTY;

Text "Pick Your Favorite Animal",;
FontBold .T.,;
Width 40,;
Top 1,;
Left 3,;
Height 2.50,;
FontSize 12.00,;
ColorNormal "RB/W"

DEFINE IMAGE Img1 OF THIS;
PROPERTY;

DataSource "BINARY Animals->BMP",;
Top 2,;
Left 32,;
Width 25,;
Height 15

ENDCLASS

See Also
DO...WHILE, DEFINE, LISTCOUNT(), LISTSELECTED(), ON SELECTION FORM,
OPEN FORM

716 L a n g u a g e R e f e r e n c e

C L A S S M E N U

CLASS MENU
A Windows-style menu system assigned to a form.

Properties
The following table lists the properties of the Menu class. For more information on each
property, see Chapter 8.

Description
Use menu objects to create a menu system for a form.

A menu system consists of two elements:

• The object reference variable that identifies the entire menu system. You must create
this variable before you can create the menu system. (The variable name is not
displayed anywhere.)

• Menu items, the prompts offered by the menu system. You can display menu items
in four places:

• The dBASE application menu bar, a row near the top of the application frame
window. (This happens only when the MDI property is set to true.)

• The Menu Bar, an unmarked row at the top of the form. (This happens only when the
MDI property is set to false.) The first menu item you create is automatically
displayed at the left end of the menu bar.

Property Default Description

Before N/A Specifies which other menu object the menu object precedes
Checked .F. Determines if a checkmark appears beside a menu prompt
ClassName MENU Identifies the menu class
Enabled .T. Determines if the menu can be selected
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-sensitive

Help topics
HelpID Empty string Specifies the context string or context number of a Help topic in a

Windows Help file (.HLP)
ID -1 Identifies the menu with a numeric value
Name MENU1 Specifies the name of the menu item
OnClick N/A Executes a subroutine when the user chooses the menu
OnHelp N/A Executes a subroutine when the user presses F1

Parent Empty string An object reference that points to the parent form
Release() N/A Removes the menu object definition from memory

Separator .F. Determines if the menu prompt is a menu item that the user can't select
Shortcut Empty string Specifies a key combination that executes the OnClick subroutine
StatusMessage Empty string Specifies a message to display on the status bar
Text N/A Specifies a character string to display in the menu prompt

C h a p t e r 7 , C l a s s e s 717

C L A S S M E N U

• A pull-down menu, which the user opens by selecting a menu item from the menu
bar.

• A cascading menu, which the user opens by selecting a menu item from a pull-down
menu or another cascading menu.

You create the object reference variable and menu items with the DEFINE MENU
command. To create a top-level menu that contains the standard Windows Edit and
Window pull-down menus, use DEFINE MENUBAR. For more information, see CLASS
MENUBAR.

You can also add popup menus to a form. Popup menus let users perform an action
(usually right-click) to bring up a list of menu items. For more information, see CLASS
POPUP.

The following commands create a form and declare a name for its menu system:

MyForm = NEW FORM()
DEFINE MENU Main OF MyForm

The following command creates a menu item (File) on the application menu bar:

DEFINE MENU File OF MyForm.Main PROPERTY Text "File"

The following command moves the menu item (File) to the menu bar of the form:

MyForm.MDI = .F.

The following commands create two menu items (Open and Close) in a pull-down
menu:

DEFINE MENU xOpen OF;
 MyForm.Main.File PROPERTY Text "Open"

DEFINE MENU xClose OF;
 MyForm.Main.File PROPERTY Text "Close"

The user opens this pull-down menu by selecting File, the menu item on the menu bar.

The following commands create a cascading menu with two menu items (Close Without
Saving, and Close and Save):

DEFINE MENU NoSave OF MyForm.Main.File.xClose;
 PROPERTY Text "Close Without Saving"

DEFINE MENU YesSave OF MyForm.Main.File.xClose;
 PROPERTY Text "Close and Save"

The user opens this cascading menu by selecting the Close menu item.

Creating pick characters
To let the user select a menu item with a key press, specify a pick character by placing an
ampersand to the left of the character in the menu item prompt. For example, the
previous command could have specified "S" as the pick character for the Close and Save
menu item:

DEFINE MENU YesSave OF MyForm.Main.File.xClose;
 PROPERTY Text "Close and &Save"

718 L a n g u a g e R e f e r e n c e

C L A S S M E N U

The method for entering a pick character depends on the level of the menu item. When
the pick character selects a menu item from the menu bar, the user presses the <Alt> key
before entering the character. To select any other menu item, the user inputs the
character only.

Assigning actions to menu items
You assign an action to a menu item with the OnClick subroutine. For example, the
following command assigns a subroutine named ClsSave to the Close and Save menu
item:

MyForm.Main.File.xClose.YesSave.OnClick = ClsSave

Notes You can move a menu object from one form to another by changing the Parent property
of the menu object. The Parent property is read-only for all other classes.

You can design a menu with the Menu Designer, a tool that creates a menu file (.MNU).
The menu file contains dBASE code that generates the menu you design. To access the
Menu Designer, click the Tool button next to the MenuFile property in the Inspector.

Example
The following example defines a main menu with two pull-down options, File and
Equipment. File has an Exit option and Equipment has a Select Flights option. This
menu definition is EQUIPMNT.MNU, a menu file called by EQUIPMNT.WFM on the
DBASEWIN\SAMPLES directory:

PARAMETER FormObj
NEW EQUIPMNTMENU(FormObj,"Root")
CLASS EQUIPMNTMENU(FormObj,Name) OF MENU(FormObj,Name)

this.Text = ""

DEFINE MENU FILE OF THIS;
PROPERTY;

Text "&File"

DEFINE MENU EXIT OF THIS.FILE;
PROPERTY;

OnClick {;form.close()},;
Text "E&xit",;
Shortcut "CTRL-Q"

DEFINE MENU EQUIPMENT OF THIS;
PROPERTY;

Text "&Equipment"

DEFINE MENU SELECT_FLIGHTS OF THIS.EQUIPMENT;
PROPERTY;

OnClick CLASS::GETFLIGHTS,;
Text "&Select Flights",;
Shortcut "CTRL-S"

PROCEDURE GETFLIGHTS
LOCAL getFltsF, Selected
SET PROCEDURE TO GetFlts.wfm ADDITIVE
getFltsF = NEW GetFltsForm()

C h a p t e r 7 , C l a s s e s 719

C L A S S M E N U B A R

getFltsF.MDI = .f.
getFltsF.ReadModal()
SHOW OBJECT form.FlightsBrowse

RETURN

ENDCLASS

See Also
_app, CLASS MENUBAR, CLASS POPUP, DEFINE, MDI

CLASS MENUBAR
A MenuBar object specifies a top-level menu for a form. Using the MENUBAR class lets
you add the standard Windows Edit and Windows pull-down menus to a form.

Properties

The following table lists the properties of the Menubar class. For more information on
each property, see Chapter 8.

Description
A Menubar object specifies a top-level menu for a form. A form's top-level menu doesn't
contain any menu prompts itself; it is only the container for child menu objects. The
child menu objects of the top-level menu contain the form's actual menu items.

Menu objects that have a Menubar as a Parent appear on the top line of a form. By
default, the Menu Designer creates a MenuBar subclass when creating a .MNU file.

You can design and implement menus without using Menubars, as in earlier versions of
dBASE. The advantage of using the MENUBAR class is that you can implement an Edit
pulldown that uses the Windows clipboard for Cut, Copy, Paste and Undo operations,

Property Default Description

ClassName MENUBAR Identifies the menubar object's class
EditCopyMenu .F. Specifies a menu item that copies selected text from a control to

the Windows clipboard

EditCutMenu .F. Specifies a menu item that deletes selected text from a control
and copies it to the Windows clipboard

EditPasteMenu .F. Specifies a menu item that pastes text from the Windows
clipboard to the edit control with focus

EditUndoMenu .F. Specifies a menu item that restores the form to the state before
the last edit operation was performed

ID 1 Identifies the menubar object with a numeric value
Name MENUBAR1 Specifies the menubar object's name
OnInitMenu N/A Specifies code that executes when the menubar is accessed
Parent N/A An object reference that points to the parent form
Release() N/A Removes the MenuBar definition from memory
WindowMenu .F. Specifies a top-level menu that displays the Window List of all

open MDI windows

720 L a n g u a g e R e f e r e n c e

C L A S S M E N U B A R

and you can implement a Window pulldown that offers the standard MDI window list.
The properties that enable these menu choices (EditCutMenu, EditCopyMenu, etc.) all
take an object reference to a Menu object as their value.

To quickly add the Edit and Windows menus and their dropdown options (Cut, Copy,
etc.), use the Menu Designer and add these options using the Menu pulldown menu.

Note The command CREATE MENU creates a Menubar subclass by. You can also use
DEFINE MENUBAR m OF FormX to create a menu bar for the form named FormX.

Example

** END HEADER -- do not remove this line*
* Generated on 03/31/95
*
Parameter FormObj
NEW FOOMENU(FormObj,"Root")
CLASS FOOMENU(FormObj,Name) OF MENUBAR(FormObj,Name)

DEFINE MENU FILE OF THIS;
PROPERTY;

Text "&File"
DEFINE MENU EXIT OF THIS.FILE;

PROPERTY;
Text "E&xit"

DEFINE MENU EDIT OF THIS;
PROPERTY;

Text "&Edit"
DEFINE MENU UNDO OF THIS.EDIT;

PROPERTY;
Text "&Undo"

DEFINE MENU CUT OF THIS.EDIT;
PROPERTY;

Text "Cu&t"
DEFINE MENU COPY OF THIS.EDIT;

PROPERTY;
Text "&Copy"

DEFINE MENU PASTE OF THIS.EDIT;
PROPERTY;

Text "&Paste"
DEFINE MENU WINDOW OF THIS;

PROPERTY;
Text "&Window"
DEFINE MENU ARRANGE OF THIS.WINDOW;

PROPERTY;
Text "&Arrange"

DEFINE MENU HELP OF THIS;
PROPERTY;

Text "&Help"
DEFINE MENU ABOUT OF THIS.HELP;

PROPERTY;
Text "&About"

This.EditUndoMenu = This.Edit.Undo
This.EditCutMenu = This.Edit.Cut
This.EditCopyMenu = This.Edit.Copy
This.EditPasteMenu = This.Edit.Paste

C h a p t e r 7 , C l a s s e s 721

C L A S S O B J E C T

This.WindowMenu = This.Window
ENDCLASS

See Also
CLASS MENU, CLASS POPUP, DEFINE

CLASS OBJECT
Creates a custom object with no properties.

Properties
The Object class does not have built-in properties.

Description
Use the Object class to create your own object. An object of the Object class is empty—it
contains no properties or methods. You customize this object by creating the properties
you want.

Example
The following example creates a user-defined object that contains the name and address
of a client:

oClient=NEW OBJECT()
oClient.Firstname = "Harvey"
oClient.Lastname = "West"
oClient.Address = "111 Last St."
oClient.City = "Portland"
oClient.State= "OR"

See Also
CLASS...ENDCLASS, CLASS PAINTBOX

CLASS OLE
Displays an OLE document that is stored in an OLE field, and lets the user initiate an
action in the server application that created the document.

Properties
The following table lists the properties of the OLE class. For more information on each
property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the OLE object precedes in the tabbing order of the
parent form

Border .F. Determines of the OLE object is surrounded with a border

722 L a n g u a g e R e f e r e n c e

C L A S S O L E

Description
Place an OLE object in a form to view and edit a document stored in an OLE field. For
example, if an OLE field contains a bitmap image created in Paintbrush, double-clicking
the OLE object linked to the field starts a session in Paintbrush and places the image in
the Paintbrush work area.

OLE stands for Object Linking and Embedding. When you link a document to an OLE
object, the OLE field does not contain the document itself; instead, it holds a link to a file
containing the document. When you embed a document in an OLE field, a copy of the
document is inserted into the OLE field, and no connection is made to a document file.

By double-clicking the OLE object, the user can invoke the application that created the
OLE document. Therefore, if an image was created in Paintbrush and linked or
embedded in the OLE field, double-clicking on the field starts a session in Paintbrush;

ClassName OLE Identifies the OLE class

DataLink Empty string Links the OLE object to a field
DoVerb() N/A Starts an OLE server session and determines its type
Enabled .T. Determines if the OLE object can be selected
Height N/A Sets the height
hWnd N/A Returns the OLE object handle
ID –1 Identifies the OLE object with a numeric value
Left N/A Sets the position of the left border
LinkFileName Empty string Identifies which OLE document file (if any) is linked with the current

OLE field.

Name OLE1 Specifies the name of the OLE object
OleType 0 Returns a number that reveals whether an OLE field is empty, contains an

embedded document, or contains a link to a document file.
OnChange N/A Executes a subroutine when the user modifies a document
OnClose N/A Executes a subroutine when the OLE server session is ended
OnGotFocus N/A Executes a subroutine when the OLE object receives focus
OnLostFocus N/A Executes a subroutine when focus is removed
OnOpen N/A Executes a subroutine when the parent form is opened
Parent N/A An object reference that points to the parent form
PageNo N/A Specifies on which page of a multi-page form the OLE object appears

Release() N/A Removes the OLE object definition from memory
ServerName Empty string Identifies the server application that is invoked when the user double-

clicks on an OLE viewer object.
SetFocus() N/A Gives focus to the OLE object
StatusMessage Empty string Specifies a message to display on the status bar while the OLE object has

focus
TabStop .T. Determines if the user can give object focus to the OLE object by pressing

Tab or Shift+Tab

Top N/A Sets the position of the top border
Visible .T. Determines whether the OLE object is visible or hidden
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , C l a s s e s 723

C L A S S O L E

the image is displayed in the Paintbrush drawing area, ready for editing. If the object
was linked, any changes made in the Paintbrush session are stored in the document file;
if the object was embedded, the changes are stored in the OLE field only.

An OLE viewer window object displays the contents of an OLE field. (Use the DataLink
property to identify this field by name.) Each time the record pointer is moved, the
contents of the viewer window are refreshed to display the OLE field in the current
record.

When you create an OLE object with the NEW operator, you can specify two
parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
OLE object. This value is optional.

For example, the following commands create a form and an OLE object to display in it:

MyForm = NEW FORM()
MyOLE = NEW OLE(MyForm, "OurOLE")

The Name property of the new OLE object contains "OurOLE".

Example
The following example is an extract from PICTURES.WFM on the SAMPLES directory
and demonstrates displaying an OLE field from the Pictures table on a form with an
OLE object:

LOCAL f
f = NEW PICTURES ()
f.Open()

CLASS PICTURES OF FORM
this.EscExit = .T.
this.View = "PICTURES.QBE"
this.ColorNormal = "BG/B"
this.Text = "Pictures Form"
this.Width = 76.00
this.Top = 0.00
this.Left = 0.00
this.Height = 30.00
this.Minimize = .F.
this.Maximize = .F.
this.OnOpen = {;create session}

DEFINE PUSHBUTTON SOUND OF THIS;
PROPERTY;

OnClick {;play sound binary pictures->sound},;
Text "Sound",;
Width 18.00,;
Top 5.00,;
Left 1.00,;
Height 3.00,;
FontSize 16.00,;
FontName "Courier"

724 L a n g u a g e R e f e r e n c e

C L A S S O L E

DEFINE LISTBOX THINGS OF THIS;
PROPERTY;

ColorNormal "bg+/b",;
Width 18.50,;
Top 11.42,;
Left 0.75,;
Height 5.50,;
DataSource "FIELD NAME",;
ColorHighLight "W+/B",;
FontSize 11.25,;
FontName "Fixedsys",;
ID 800

DEFINE OLE PICTURE OF THIS;
PROPERTY;

Width 55.00,;
Top 5.00,;
Left 20.00,;
Height 24.00,;
DataLink "PICTURES->BITMAPOLE",;
ID 88

DEFINE TEXT TITLE OF THIS;
PROPERTY;

ColorNormal "gr+/b",;
Text "Sights and Sounds",;
Width 59.50,;
Top 0.00,;
Left 20.00,;
Height 4.30,;
FontSize 32.00,;
FontName "Serif"

ENDCLASS

PROCEDURE Sound_OnClick
PLAY SOUND BINARY Pictures->Sound

PROCEDURE ClosePictures
USE IN PICTURES
FORM.CLOSE()

See Also
CLASS AUTOCLIENT, CLASS DDELINK, CLASS DDETOPIC, CLASS IMAGE,
DEFINE, DoVerb

C h a p t e r 7 , C l a s s e s 725

C L A S S O L E A U T O C L I E N T

CLASS OLEAUTOCLIENT
Creates an OLE2 controller which attaches to an OLE2 server.

Properties

The properties of this class are determined by the server.

Description

Use CLASS OLEAUTOCLIENT to attach to a server program. The syntax is:

<ClientClassName> = NEW OLEAUTOCLIENT<exp>

where <exp> is the server program ID. There is no equivalent DEFINE
OLEAUTOCLIENT statement.

After you have created the class, you can use the Property Inspector to see its properties.
You can change properties by using the Inspector or by using standard
ClientClassName.property statements.

Example

*
* OLEWORD.PRG
* Sample program to illustrate OLE2 Automation
* with Microsoft Word as the server.
*

*
* Create OLE2 Automation object. The parameter
* is the ProgID
*
ww = new oleautoclient(“word.basic”)
*
* All properties and methods of the OLE2
* Automation object are documented by the
* server.
*
ww.FileNew(“Normal”, 0)
ww.Insert(“This is my configuration file”)
ww.InsertBreak(6)
ww.InsertBreak(6)
ww.InsertFile(“c:\config.sys”)
ww.StartOfDocument()
ww.EndOfLine(1)
ww.EditCut()
ww.EditPaste()
ww.EditPaste()
? “current font size is”, ww.FontSize()
ww.EditSelectAll()
ww.GrowFont()
ww.GrowFont()
ww.GrowFont()

726 L a n g u a g e R e f e r e n c e

C L A S S P A I N T B O X

? “font size is now “, ww.FontSize()
ww.EditCopy() && Can paste into dBASE later
ww.FilePrint()
*
* Uncomment the following line to
* close Word
*ww.AppClose()

See Also
CLASS DDELINK, CLASS DDETOPIC, CLASS OLE

CLASS PAINTBOX
A generic control that can be placed on a form.

Properties
The following table lists the properties of the Paintbox class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the paintbox object precedes in the
tabbing order of the parent form

ClassName PAINTBOX Identifies the paintbox object's class
ColorNormal WindowText/

Window
Sets the color of the paintbox object when it isn't
highlighted

Enabled .T. Determines if the paintbox object can be selected
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains

context-sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help

topic in a Windows Help file (.HLP)
hWnd N/A Returns the paintbox object handle
ID -1 Identifies the paintbox object with a numeric value
Left N/A Sets the position of the left border
Move() N/A Moves or sizes the paintbox object
Name PAINTBOX1 Specifies the paintbox object's name
OnChar N/A Executes a subroutine when a "printable" key or key

combination is pressed
OnFormSize N/A Executes a subroutine whenever the parent form is

resized, restored, or maximized
OnGotFocus N/A Executes a subroutine when the paintbox object receives

focus
OnKeyDown N/A Executes a subroutine when any key is pressed
OnKeyUp N/A Executes a subroutine when any key is released
OnLeftDblClick N/A Executes a subroutine when the user double-clicks the

paintbox object

C h a p t e r 7 , C l a s s e s 727

C L A S S P A I N T B O X

Description
The PaintBox object is a generic control you can use to create a variety of objects. It is
designed for advanced developers who want to create their own custom controls using
the Windows API. It is simply a rectangular region of a form which has all the standard
control properties such as Height, Width, and Before, as well as all the standard mouse
events.

In addition to the standard events or properties, the PaintBox object has three events
that let you detect keystrokes entered when it has focus: OnChar, OnKeyDown, and
OnKeyUp. These let you create customized editing controls. The OnPaint and
OnFormSize properties let you modify the appearance of the object based on user
interaction.

OnLeftMouseDown N/A Executes a subroutine when the user clicks the paintbox
object with the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left
mouse button while the pointer is over the paintbox object

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the

paintbox object with the middle mouse button

OnMiddleMouseDown N/A Executes a subroutine when the user clicks the paintbox
object with the middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle
mouse button while the pointer is on the paintbox object

OnMouseMove N/A Executes a subroutine when the user moves the mouse
over the paintbox object

OnOpen N/A Executes a subroutine when the parent form is opened
OnPaint N/A Executes a subroutine whenever the object needs to be

redrawn
OnRightDblClick N/A Executes a subroutine when the user double-clicks the

paintbox object with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the paintbox

object with the right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right

mouse button while the pointer is on the paintbox object
PageNo N/A Specifies on which page of a multi-page form the

paintbox object appears
Parent N/A An object reference that points to the parent form
Release() N/A Removes the paintbox object definition from memory

SetFocus() N/A Gives focus to the paintbox object
TabStop .T. Determines if the user can give object focus to the

paintbox object by pressing Tab or Shift+Tab
Top N/A Sets the position of the top border
Visible .T. Determines whether the paintbox object is visible or

hidden
Width N/A Sets the width

Property Default Description

728 L a n g u a g e R e f e r e n c e

C L A S S P A I N T B O X

Example

local f
f = new PAINTEXFORM()
f.Open()
CLASS PAINTEXFORM OF FORM

this.OnLeftMouseUp = CLASS::FORM_ONLEFTMOUSEUP
this.Text = "Form"
this.Left = 54.5
this.Top = 2
this.PageNo = 1
this.ColorNormal = "N/BTNFACE"
this.Height = 20.6465
this.TopMost = .F.
this.Width = 67.666
DEFINE PAINTBOX PAINTBOX1 OF THIS;

PROPERTY;
OnPaint CLASS::PAINTBOX1_ONPAINT,;
OnLeftMouseDown CLASS::PAINTBOX1_ONLEFTMOUSEDOWN,;
OnLeftMouseUp CLASS::PAINTBOX1_ONLEFTMOUSEUP,;
Left 9.333,;
Top 2,;
ColorNormal "B+/0xffff80",;
PageNo 1,;
Height 6.8818,;
OnOpen CLASS::PAINTBOX1_ONOPEN,;
Width 21.333

Procedure PAINTBOX1_OnPaint
hfact = (256/43)
vfact = (256/15.5)
lwidth = form.paintbox1.width * hfact
lheight = form.paintbox1.height * vfact
form.pointarray = makepoint(lwidth/2,0)
form.pointarray = form.pointarray + makepoint(0,lheight)
form.pointarray = form.pointarray + makepoint(lwidth,lheight)
local hDC
hDC = GetDc(this.hwnd)
hBrush = CreateSolidBrush(hdc,RGB(255,0,0))
SelectObject(hDC,hbrush)
SetTextColor(hDC, RGB(0,0,255))
SetPolyFillMode(hDC,2)
Polygon(hDC,form.pointarray,3)
ReleaseDc(this.hWnd, hDC)

return

Procedure PAINTBOX1_OnOpen
set proc to program(1) ADDITIVE

EXTERN CHANDLE GetDc(CHANDLE) USER.EXE
EXTERN CINT ReleaseDc(CHANDLE,CHANDLE) USER.EXE
EXTERN CLOGICAL Polygon(CHANDLE,CPTR,CINT) GDI.EXE
EXTERN CINT SetTextColor(CHANDLE, CLONG) GDI.EXE
EXTERN CLOGICAL Ellipse(CHANDLE,CINT,CINT,CINT,CINT) GDI.EXE
EXTERN CLOGICAL FloodFill(chandle,cint,cint,clong) GDI.EXE
EXTERN CINT SetPolyFillMode(chandle,cint) GDI.EXE

C h a p t e r 7 , C l a s s e s 729

C L A S S P O P U P

EXTERN Chandle CreateSolidBrush(chandle,clong) GDI.EXE
EXTERN Chandle SelectObject(chandle,chandle) GDI.EXE
this.moving = .f.

return

Procedure PAINTBOX1_OnLeftMouseDown(flags, col, row)
this.moving = .t.

return

Procedure form_OnLeftMouseUp(flags, col, row)
if form.paintbox1.moving

form.paintbox1.move(col,row,form.paintbox1.width,form.paintbox1.height
)

form.paintbox1.moving = .f.
endif

return

Procedure PAINTBOX1_OnLeftMouseUp(flags, col, row)
this.moving = .f.

return
ENDCLASS
function RGB(r, g, b)
return b*65536+g*256+r
function MakePoint(x,y)
return(MakeInt(x) + MakeInt(y))
function MakeRect(left, top, width, height)
return
MakeInt(left)+MakeInt(top)+MakeInt(width+left)+MakeInt(top+height)
function MakeInt(int)
return chr(bitand(int,255))+chr(bitr(int,8))

See Also
CLASS IMAGE, CLASS OBJECT

CLASS POPUP
A Windows-style popup menu assigned to a form.

Properties
The following table lists the properties of the Popup class. For more information on each
property, see Chapter 8.

Property Default Description

ClassName POPUP Identifies the Popup class
ID 1 Identifies the popup with a numeric value
Left N/A Sets the position of the left border
Name POPUP1 Specifies the name of the popup menu
OnInitMenu N/A Specifies code that executes when the popup menu is opened

Open() N/A Opens the popup menu

730 L a n g u a g e R e f e r e n c e

C L A S S P O P U P

Description

Use CLASS POPUP to add a popup menu to a form. Popup menus give users a
"shortcut" way to perform actions without pulling down items from the menu bar. A
Popup's parent is always a Form. Individual menu items are attached to a Popup by
defining Menu objects with the Popup as parent.

A .POP file is similar to a .MNU in format with the name of the Popup passed as a
parameter instead of the explicit "Root" used in .MNU files.

A popup menu consists of two elements:

• The object reference variable that identifies the entire popup menu. You must create
this variable before you can create the menu. (The variable name is not displayed
anywhere.)

• Menu items, the prompts offered by the popup menu.

When you create a popup menu with the NEW operator, you can specify two
parameters:

• <parent form reference>-An object reference pointing to the parent form.

• <object name expC>-A character string assigned to the Name property of the new
popup menu. This value is optional.

For example, the following commands create a form and a popup to display in it:

MyForm = NEW FORM()
MyForm.MyPop = NEW POPUP(MyForm, "OurPopup")
MyForm.MyPop.Item1 = NEW MENU(MyForm.MyPop, "Close")
MyForm.MyPop.Item2 = NEW MENU(MyForm.MyPop, "Close and Save")
MyForm.Open()
MyForm.MyPop.Open()

The Name property of the new popup object contains "OurPopup".

Assigning actions to popup menu items You assign an action to a popup menu item with the
OnClick subroutine. For example, the following command assigns a subroutine named
ClsSave to the Close and Save menu item of the example above:

MyForm.MyPop.Item2.OnClick = ClsSave

Note You can design a popup menu with the Popup Designer, a tool that a popup menu file
(.POP). A popup menu file contains dBASE code that generates the popup menu you
design. To access the Popup Designer, click the File menu and select New | Popup.

Parent N/A An object reference that points to the parent form

Release() N/A Removes the popup definition from memory
Top N/A Sets the position of the top border
TrackRight .T. Determines whether the popup menu responds to a right mouse

click for selection of a menu item

Property Default Description

C h a p t e r 7 , C l a s s e s 731

C L A S S P U S H B U T T O N

Example

f = NEW Form()
DEFINE POPUP p OF f
DEFINE MENU Inspect OF f.p;
| PROPERTY;

Text "Inspector"

See Also

CLASS MENU

CLASS PUSHBUTTON
A button that executes a command or action when a user chooses it.

Properties
The following table lists the properties of the Pushbutton class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the pushbutton precedes in the
tabbing order of the parent form

ClassName PUSHBUTTON Identifies the Pushbutton class

ColorNormal BtnText/BtnFace Sets the color of the pushbutton
Default .F. Determines if the pushbutton is the default pushbutton
DisabledBitmap Empty string Specifies the graphic image to display in the pushbutton

when the pushbutton is disabled
DownBitmap Empty string Specifies the graphic image to display in the pushbutton

when the user presses the mouse button over the
pushbutton, or when the user presses the Spacebar while
the pushbutton has focus

Enabled .T. Determines if the pushbutton can be selected
FocusBitmap Empty string Specifies the graphic image to display in the pushbutton

when the pushbutton has focus
FontBold .T. Determines if characters are displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type

FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Group .T. Starts an object group in the parent form
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains

context-sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help

topic in a Windows Help file (.HLP)
hWnd N/A Returns the object handle of the pushbutton

732 L a n g u a g e R e f e r e n c e

C L A S S P U S H B U T T O N

ID –1 Identifies the pushbutton with a numeric value

Left N/A Sets the position of the left border
MousePointer 0 Specifies the mouse pointer type when the pointer is over

the pushbutton
Move() N/A Moves or sizes the pushbutton
Name PUSHBUTTON1 Specifies the name of the pushbutton
OnClick N/A Executes a subroutine when the user chooses a pushbutton
OnGotFocus N/A Executes a subroutine when the pushbutton receives focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the
pushbutton

OnLeftMouseDown N/A Executes a subroutine when the user clicks the pushbutton
with the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left
mouse button while the pointer is over the pushbutton

OnLostFocus N/A Executes a subroutine when focus is removed

OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the
pushbutton with the middle mouse button

OnMiddleMouseDown N/A Executes a subroutine when the user clicks the pushbutton
with the middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle
mouse button while the pointer is on the pushbutton

OnMouseMove N/A Executes a subroutine when the user moves the mouse in
the pushbutton

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the

pushbutton with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the pushbutton

with the right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right

mouse button while the pointer is on the pushbutton
PageNo N/A Specifies on which page of a multi-page form the

pushbutton object appears
Parent N/A An object reference that points to the parent form
Release() N/A Removes the pushbutton definition from memory
SetFocus() N/A Gives focus to the pushbutton

SpeedBar .F. Determines whether the pushbutton behaves like a
SpeedBar button or a standard pushbutton

SpeedTip Empty string Specifies the text that appears when the mouse remains on
the pushbutton for more than one second

StatusMessage Empty string Specifies a message to display on the status bar while the
pushbutton has focus

TabStop .T. Determines if the user can give object focus to the
pushbutton by pressing Tab or Shift+Tab

Text N/A Specifies a character string to display on the pushbutton
Top N/A Sets the position of the top border
UpBitmap Empty string Specifies the graphic image to display in the pushbutton

when it isn't selected

Property Default Description

C h a p t e r 7 , C l a s s e s 733

C L A S S P U S H B U T T O N

Description
Use a pushbutton to execute a specific action when the user chooses it.

When the user chooses a pushbutton, the following things happen:

• dBASE executes any procedure or codeblock you assign to the OnGotFocus property.

• dBASE executes any procedure or codeblock you assign to the OnClick property.

• dBASE submits the parent form, which executes any procedure or codeblock you
assign to the OnSelection property of the parent form.

The OnSelection procedure or codeblock identifies the pushbutton through the ID
property. When the user chooses the pushbutton, dBASE passes this value to the
procedure or codeblock you assigned to the OnSelection property. The procedure or
codeblock can use Id to identify which object was last selected.

When you create a pushbutton with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
pushbutton. This value is optional.

For example, the following commands create a form and a pushbutton to display in it:

MyForm = NEW FORM()
MyButton = NEW PUSHBUTTON(MyForm, "OurButton")

The Name property of the new pushbutton contains "OurButton".

Note You can write an OnClick or OnSelection procedure with the Procedure Editor, a
window that lets you enter dBASE program code. To access the Procedure Editor, click
the Tool Button next to the OnClick or OnSelection item in the Inspector.

Example
The following example defines a form with two fields from the Contact table displayed
and three alternative methods of defining pushbuttons to advance or retard the record
pointer and exit the form:

SET PROCEDURE TO BUTTONS.CC ADDITIVE
* Makes available custom objects PREVBUTTON,
* NEXTBUTTON and CANCELBUTTON
LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.Top=2
this.Left=2

Visible .T. Determines whether the pushbutton is visible or hidden

When N/A Specifies a condition that must evaluate to true before the
user can give focus to the pushbutton

Width N/A Sets the width

Property Default Description

734 L a n g u a g e R e f e r e n c e

C L A S S P U S H B U T T O N

this.Width=36
this.Height=27
this.View = "Contact.DBF"
this.Text= "Class Pushbutton Demo"
DEFINE ENTRYFIELD CompCode OF THIS;

PROPERTY;
Width 5,;
Top 1,;
Left 2,;
Height 1.5,;
FontBold .T.,;
DataLink "COMPCODE"

DEFINE ENTRYFIELD Contact OF THIS;
PROPERTY;

Width 22,;
Top 1,;
Left 12,;
Height 1.5,;
FontBold .T.,;
DataLink "CONTACT"

DEFINE PUSHBUTTON Reverse OF THIS;
PROPERTY;

OnClick {;SKIP-1},;
Text "&Previous",;
Top 4,;
Left 5,;
Width 12,;
Height 2.5,;
Group .T.,;
FontSize 8,;
FocusBitmap "Resource #104 DBAS0009.DLL",;
DownBitmap "Resource #104 DBAS0009.DLL",;
UpBitmap "Resource #104 DBAS0009.DLL"

DEFINE PUSHBUTTON NxtRcd OF THIS;
PROPERTY;

OnClick {;SKIP},;
Text "&Next",;
Top 4,;
Left 19,;
Width 12,;
Height 2.5,;
Group .T.,;
FontSize 8,;
FocusBitmap "Resource #100 DBAS0009.DLL",;
DownBitmap "Resource #100 DBAS0009.DLL",;
UpBitmap "Resource #100 DBAS0009.DLL"

DEFINE PUSHBUTTON Cx OF THIS;
PROPERTY;

OnClick {;Form.Close()},;
Text "&Cancel",;
Top 7,;
Left 12,;
Height 2.5,;
Width 12,;
Group .T.,;

C h a p t e r 7 , C l a s s e s 735

C L A S S R A D I O B U T T O N

FontSize 8,;
FocusBitmap "Resource #28 DBAS0009.DLL",;
DownBitmap "Resource #29 DBAS0009.DLL",;
UpBitmap "Resource #28 DBAS0009.DLL"

DEFINE LINE Ln1 OF THIS;
PROPERTY Left 7, Top 11, Width 4,;

Bottom 11, Right 29, ColorNormal "RB/W"
DEFINE PUSHBUTTON Back OF THIS AT 13,7;

PROPERTY Text "&Back", Height 2,;
OnClick {;SKIP-1}, FontBold .T.

DEFINE PUSHBUTTON Next OF THIS AT 13,21;
PROPERTY TEXT "&Next", Height 2,;

OnClick {;SKIP}, FontBold .T.
DEFINE PUSHBUTTON Exit OF THIS AT 16,14;

PROPERTY Text "&Exit", Height 2,;
OnClick {;Form.Close()}, FontBold .T.

DEFINE LINE Ln2 OF THIS;
PROPERTY Left 7, Top 19, Width 4,;

Bottom 19, Right 29, ColorNormal "RB/W"
DEFINE PREVBUTTON PriorRecord OF THIS;

PROPERTY;
Top 21 ,;
Left 6

DEFINE NEXTBUTTON NextRecord OF THIS;
PROPERTY;

Top 21,;
Left 20

DEFINE CANCELBUTTON Cx OF THIS;
PROPERTY;

Top 24,;
Left 13

ENDCLASS

See Also
CLASS FORM, DEFINE, ON SELECTION FORM

CLASS RADIOBUTTON
An object that represents a single choice in a set of mutually exclusive choices.

Properties
The following table lists the properties of the Radiobutton class. For more information
on each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the radio button precedes in the
tabbing order of the parent form

ClassName RADIOBUTTON Identifies the radio button class
ColorNormal BtnText/BtnFace Sets the color of the radio button
DataLink Empty string Links the radio button to a field

736 L a n g u a g e R e f e r e n c e

C L A S S R A D I O B U T T O N

Enabled .T. Determines if the radio button can be selected

FontBold .T. Determines if characters in the radio button prompt are
displayed in bold type

FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in point size
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Group N/A Starts an object group in the parent form
Height N/A Sets the height

HelpFile Empty string Identifies a Windows Help file (.HLP) that contains
context-sensitive help topics

HelpID Empty string Specifies the context string or context number of a help
topic in a Windows Help file (.HLP)

hWnd N/A Returns the radio button handle
ID –1 Identifies the radio button with a numeric value
Left N/A Sets the position of the left border
MousePointer 0 Specifies the mouse pointer type when the pointer is over

the radio button
Move() N/A Moves or sizes the radio button
Name RADIOBUTTON1 Specifies the name of the radio button
OldStyle .F. Determines if the radio button is displayed in the default

Windows style or in dBase style
OnChange N/A Executes a subroutine when the user selects a different

radio button
OnGotFocus N/A Executes a subroutine when the radio button receives

focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the
radio button

OnLeftMouseDown N/A Executes a subroutine when the user clicks the radio
button with the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left
mouse button while the pointer is over the radio button

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the

radio button with the middle mouse button

OnMiddleMouseDown N/A Executes a subroutine when the user clicks the radio
button with the middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle
mouse button while the pointer is on the radio button

OnMouseMove N/A Executes a subroutine when the user moves the mouse in
the radio button

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the

radio button with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the radio

button with the right mouse button

Property Default Description

C h a p t e r 7 , C l a s s e s 737

C L A S S R A D I O B U T T O N

Description
Use a radio button group to make users choose between options you provide, like the
buttons on older car radios. The user can select only one option from a group; for
example, a report-printing application might use a three-button group that gives a
choice between "Printer", "Screen", or "File". For radio buttons to work properly, they
must be arranged in such groups.

Use the Group property to make two or more radio buttons work together. For example,
if you create seven radio buttons and set the Group properties of the first and fourth
radio button to true (.T.), the first three buttons form one group, and the last four form
another. The two groups are independent; the user can select one button in the first
group and one button in the other.

Use the DataLink property to link the radio button with a field. Use the Text property to
specify the value each radio button inserts into the field when chosen. The Text value is
automatically displayed as a prompt next to the radio button. The text property contains
character data, so you can set DataLink to character fields only.

The Value property, which contains a logical value of true (.T.) or false (.F.), indicates
which button is selected from a group. The Value property of the selected radio button
is true, while the Value properties of unselected buttons in the group are false. Use a
CASE...ENDCASE statement to detect which radiobutton in the group is chosen.

When you create a radio button with the NEW operator, you can specify two
parameters:

• <parent form reference>—An object reference pointing to the parent form.

OnRightMouseUp N/A Executes a subroutine when the user releases the right
mouse button while the pointer is on the radio button

PageNo N/A Specifies on which page of a multi-page form the radio
button object appears

Parent N/A An object reference that points to the parent form
Release() N/A Removes the radio button definition from memory
SetFocus() N/A Gives focus to the radio button
SpeedTip Empty string Specifies the text that appears when the mouse remains on

the radio button for more than one second
StatusMessage Empty string Specifies a message to display on the status bar while the

radio button has focus
TabStop .T. Determines if the user can give focus to the radio button by

pressing Tab or Shift+Tab

Text N/A Specifies a character string to display next to the radio
button

Top N/A Sets the position of the top border
Value N/A Determines whether the radio button is checked
Visible .T. Determines whether the radio button is visible or hidden
When N/A Specifies a condition that must evaluate to true before the

user can give focus to the radio button
Width N/A Sets the width

Property Default Description

738 L a n g u a g e R e f e r e n c e

C L A S S R A D I O B U T T O N

• <object name expC>—A character string assigned to the Name property of the new
radio button. This value is optional.

For example, the following commands create a form and a radio button to display in it:

MyForm = NEW FORM()
MyRadio = NEW RADIOBUTTON(MyForm, "OurRadio")

The Name property of the new radio button contains "OurRadio".

Note You can specify a field for the DataLink property with the Choose Field dialog box. To
access this dialog box, click on the Tool Button next to the DataLink item in the
Inspector.

Example
The following example creates an entry form with three radio buttons to select a desired
conversion factor. Numeric values entered in the entry field are converted to the
checked unit of measure after clicking the Compute pushbutton:

** Metric Conversion Program **
SET PROCEDURE TO PROGRAM(1) ADDITIVE
LOCAL f
f=NEW Convert()
f.OPEN()
CLASS Convert OF FORM

this.Top=2
this.Left=2
this.Width=38
this.Height=18
this.Text= "Conversion Utility"
DEFINE ENTRYFIELD Amt OF THIS;

PROPERTY Value 0, Width 8,;
Top 4, Left 15

DEFINE TEXT Ln1 OF THIS;
PROPERTY;
Text "Enter Amount; Select a RadioButton",;
Width 40, Top 2, Left 6

DEFINE RadioButton Inches OF THIS;
PROPERTY Text "Inches to Centimeters",;
Width 22, Value .F., Top 6, Left 8

DEFINE RadioButton Pounds OF THIS;
PROPERTY Text "Pounds to Kilograms",;
Width 21, Value .F., Top 8, Left 8

DEFINE RadioButton Degrees OF THIS;
PROPERTY Text "Degrees F to C",;
Width 21, Value .F., Top 10, Left 8

DEFINE TEXT Ln2 OF THIS;
PROPERTY Text "Results:",;
Width 30, Top 12, Left 8,;
ColorNormal "R/W"

DEFINE PUSHBUTTON Results OF THIS;
PROPERTY TEXT "&Compute",;
Top 15, Left 15,;
OnClick {;myResult=Metric(form);
;Form.Ln2.Text="Results: " + myResult}

C h a p t e r 7 , C l a s s e s 739

C L A S S R E C T A N G L E

ENDCLASS

FUNCTION Metric(pForm)
DO CASE

CASE pForm.Inches.Value
myResult = LTRIM(STR(pForm.Amt.Value;
* 2.54,10,2))+" Centimeters"

CASE pForm.Pounds.Value
myResult = LTRIM(STR(pForm.Amt.Value;
* .454,10,2))+" Kilograms"

CASE pForm.Degrees.Value
myResult = LTRIM(STR((pForm.Amt.Value;
–32)* (5/9),10,2))+" Degrees C"

ENDCASE
RETURN myResult

See Also
DEFINE

CLASS RECTANGLE
A rectangle you display at a specified location in a form.

Properties
The following table lists the properties of the Rectangle class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the rectangle object precedes in the
tabbing order of the parent form

Border .T. Determines if the rectangle object is surrounded with a border
BorderStyle 0 (Normal) Determines whether the border is Normal, Raised, or

Lowered
ClassName RECTANGLE Identifies the rectangle class
ColorNormal BtnText/

BtnFace
Sets the color of the rectangle object

FontBold .T. Determines if characters in the label of the rectangle object are
displayed in bold type

FontItalic .F. Determines if characters in the label of the rectangle object are
displayed in italic type

FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters in the label of the rectangle object are

displayed in strikeout type
FontUnderline .F. Determines if characters in the label of the rectangle object are

displayed in underlined type
Height N/A Sets the height
hWnd N/A Returns the object handle of the rectangle object

740 L a n g u a g e R e f e r e n c e

C L A S S R E C T A N G L E

Description
Use a rectangle object to enclose an area of a form. For example, you can use a rectangle
object to draw a border around a group of related objects, such as a group of radio
buttons.

To assign a label that describes the group of objects, use the Text property. The label
appears in the top left corner of the rectangle.

Left N/A Sets the position of the left border

MousePointer 0 Specifies the mouse pointer type when the pointer is over the
rectangle object

Move() N/A Moves or sizes the rectangle object
Name RECTANGLE1 Specifies the name of the rectangle object
OldStyle .F. Determines if the rectangle object is displayed in the default

Windows style or in dBase style
OnLeftDblClick N/A Executes a subroutine when the user double-clicks the

rectangle object
OnLeftMouseDown N/A Executes a subroutine when the user clicks the rectangle object

with the left mouse button
OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse

button while the pointer is over the rectangle object
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the

rectangle object with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the rectangle object

with the middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle

mouse button while the pointer is on the rectangle object
OnMouseMove N/A Executes a subroutine when the user moves the mouse in the

rectangle object
OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the

rectangle object with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the rectangle object

with the right mouse button

OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse
button while the pointer is on the rectangle object

PageNo N/A Specifies on which page of a multi-page form the rectangle
object appears

Parent N/A An object reference that points to the parent form
PatternStyle 0 (Solid) Specifies a pre-defined Windows background hatching

pattern
Release() N/A Removes the rectangle object definition from memory
Text N/A Specifies a character string to display in the label of the

rectangle object
Top N/A Sets the position of the top border
Visible .T. Determines whether the rectangle object is visible or hidden
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , C l a s s e s 741

C L A S S R E C T A N G L E

A rectangle object does not affect other objects. The user can't give focus to the rectangle
object, and it doesn't display or modify data.

When you create a rectangle object with the NEW operator, you can specify two
parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
rectangle object. This value is optional.

For example, the following commands create a form and a rectangle object to display
in it:

MyForm = NEW FORM()
MySquare = NEW RECTANGLE(MyForm, "OurSquare")

The Name property of the new rectangle object contains "OurSquare".

Example
The following example uses DEFINE RECTANGLE, within a Class definition, to create
a lowered-border rectangle in the center of the form, which creates the visual effect of a
raised border around the edge of the form:

LOCAL f
f=NEW DISPLAY()
f.OPEN()
CLASS DISPLAY OF FORM

this.Top=2
this.Left=2
this.Width=36
this.Height=13
this.Text= "Class Rectangle Demo"
DEFINE RECTANGLE Rec1 OF THIS;

PROPERTY;
Left 3,;
Top 2,;
Width 30,;
Height 9,;
ColorNormal "RB/W",;
BorderStyle 2 && Lowered border style

DEFINE TEXT Txt1 OF THIS;
PROPERTY;

Text "Visual dBASE",;
Top 4, Left 5,;
FontItalic .T., FontSize 14,;
Width 19, Height 3, FontBold .T.,;
ColorNormal "RB/W"

DEFINE TEXT Txt2 OF THIS;
PROPERTY;

Text "has arrived",;
Top 7, Left 10,;
FontItalic .T., FontSize 14,;
Width 18, Height 3, FontBold .T.

ENDCLASS

742 L a n g u a g e R e f e r e n c e

C L A S S S C R O L L B A R

See Also
CLASS LINE, CLASS SHAPE

CLASS SCROLLBAR
An object that lets the user increase or decrease a value by moving a slider button.

Properties
The following table lists the properties of the Scrollbar class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the scroll bar precedes in the tabbing
order of the parent form

ClassName SCROLLBAR Identifies the scrollbar class
ColorNormal BtnText/

BtnFace
Sets the color of the scroll bar

DataLink Empty string Links the scroll bar to a field
Enabled .T. Determines if the scroll bar can be selected
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive help topics
HelpID Empty string Specifies the context string or context number of a help topic in

a Windows Help file (.HLP)
hWnd N/A Returns the scroll bar object handle
ID –1 Identifies the scroll bar with a numeric value
Left N/A Sets the position of the left border
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

scroll bar
Move() N/A Moves or sizes the scroll bar
Name SCROLLBAR1 Specifies the name of the scrollbar
OnChange N/A Executes a subroutine when the user moves the slider button

OnGotFocus N/A Executes a subroutine when the scroll bar receives focus
OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the scroll
bar

OnLeftMouseDown N/A Executes a subroutine when the user clicks the scroll bar with
the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the scroll bar

OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the scroll

bar with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the scroll bar with

the middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle
mouse button while the pointer is on the scroll bar

C h a p t e r 7 , C l a s s e s 743

C L A S S S C R O L L B A R

Description
Use a scroll bar to let users vary numeric values rapidly. Unlike spin boxes, scroll bars
don't accept keyboard input or use a Step value. Instead, the user drags the slider button
to increase or decrease the value.

As the user moves the slider button, the value is continually updated to reflect the
position of the button. For example, a scroll bar that varies a numeric value between 1
and 100 sets the value to 50 when the slider button is at the center of the scroll bar.

To set a range for the scrollbar, set RangeMin to the minimum value and RangeMax to
the maximum value.

You can combine a scroll bar with an entry field so that values set through the scroll bar
are reflected in the entry field. To do so, give the entry field the same DataLink
specification as the scroll bar. Similarly, you can link a scroll bar to a numeric field with
the DataLink property.

OnMouseMove N/A Executes a subroutine when the user moves the mouse in the
scroll bar

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the scroll

bar with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the scroll bar with

the right mouse button

OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse
button while the pointer is on the scroll bar

PageNo N/A Specifies on which page of a multi-page form the scrollbar
object appears

Parent N/A An object reference that points to the parent form
RangeMax 100.00 Determines the upper limit for the value linked to the scroll

bar
RangeMin 1.00 Determines the lower limit for the value linked to the scroll bar
Release() N/A Removes the scroll bar definition from memory
SetFocus() N/A Gives focus to the scrollbar
StatusMessage Empty string Specifies a message to display on the status bar while the scroll

bar has focus
TabStop .T. Determines if the user can give focus to the scroll bar by

pressing Tab or Shift+Tab

Top N/A Sets the position of the top border
Value N/A Sets the value in the scroll bar
Vertical .T. Determines whether the scroll bar is aligned vertically or

horizontally
Visible .T. Determines whether the scroll bar is visible or hidden
When N/A Specifies a condition that must evaluate to true before the user

can give focus to the scroll bar

Width N/A Sets the width

Property Default Description

744 L a n g u a g e R e f e r e n c e

C L A S S S C R O L L B A R

To automatically display the results of changes made using a datalinked scrollbar,
assign a procedure or codeblock such as {;form.refresh()} to the scroll bar's OnChange
property.

When you create a scroll bar with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
scroll bar. This value is optional.

For example, the following commands create a form and a scroll bar to display in it:

MyForm = NEW FORM()
MyScroll = NEW SCROLLBAR(MyForm, "OurScroll")

The Name property of the new scroll bar contains "OurScroll".

Example
The following example creates a form with an entry field object that displays the value
in the GNP field of Country.DBF. A horizontal scroll bar can be used to change the field
value within a specified range:

LOCAL f
f=NEW DISPLAY()
f.OPEN()
CLASS DISPLAY OF FORM

this.Top=2
this.Left=2
this.Width=36
this.Height=13
this.View = "Country.DBF"
this.Text= "Class Scrollbar Demo"
DEFINE ENTRYFIELD Etf1 OF THIS;

PROPERTY Datalink "Country->GNP",;
Width 9, Top 4, Left 13

DEFINE SCROLLBAR Sb1 OF THIS;
PROPERTY Vertical .F., Height 2,;
Top 6, Left 5,;
Width 25, DataLink "Country->GNP",;
RangeMin 1000, RangeMax 999999999
OnChange {;form.refresh()}

DEFINE TEXT Txt1 OF THIS;
PROPERTY Text "***Range: 1000 to 999999999***",;

Top 9, Left 0, Width 36, Alignment 7
ENDCLASS

See Also
CLASS SPINBOX

C h a p t e r 7 , C l a s s e s 745

C L A S S S H A P E

CLASS SHAPE
A region of color within a form.

Properties
The following table lists the properties of the Shape class. For more information on each
property, see Chapter 8.

Description
Use a Shape object to create a region of color within a form. The ShapeStyle property
determines the shape of the region you create. Like a Line object, a Shape does not have
an ID or an hWnd property.

While a Shape does not have a Border property, you can simulate a border by
designating a pair of colors (<foreground color>/<background color>) for the
ColorNormal property. The Shape object will display with a single-line border which is
<foreground color> while the interior of the Shape object is <background color>. Setting
ColorNormal to a single color value makes the entire shape that color.

Example
The following example creates a form and places an elliptical blue object with a bright
white border inside the form.

MyForm = NEW FORM("Shape Display")
MyShape = NEW SHAPE(MyForm, "OURSHAPE") &&Name property = "OURSHAPE"
MyShape.ShapeStyle = 2&& Elliptical shape

Property Default Description

ClassName SHAPE Identifies the shape class
ColorNormal BtnText/BtnFace Sets the border and interior colors of the shape object
Height N/A Sets the height
Left N/A Sets the position of the left border
Move() N/A Moves or sizes the shape object

Name SHAPE1 Specifies the name of the shape object
OnOpen N/A Executes a subroutine when the parent form is opened
PageNo N/A Specifies on which page of a multi-page form the shape object

appears
Parent N/A An object reference that points to the parent form
PenStyle 0 Specifies one of a series of line styles to be used for the border of

the shape object
PenWidth 1 Specifies the width of the border line of a shape object

Release() N/A Releases the shape object definition from memory
ShapeStyle 3 (Circle) Specifies which of several styles are applied to a shape object
Top N/A Sets the position of the top border
Visible .T. Determines whether the shape object is visible or hidden
Width N/A Sets the width

746 L a n g u a g e R e f e r e n c e

C L A S S S P I N B O X

MyShape.ColorNormal = "W+/B"&& Bright white border, blue interior
MyForm.Open()

The Name property of the new Shape object contains "OURSHAPE".

See Also
CLASS IMAGE, CLASS RECTANGLE

CLASS SPINBOX
An object that lets the user enter values in a text box or change a value by clicking arrow
buttons.

Properties
The following table lists the properties of the Spinbox class. For more information on
each property, see Chapter 8.

Property Default Description

Before N/A Specifies which object the spin box precedes in the tabbing
order of the parent form

Border .T. Determines if the spin box is surrounded with a border
ClassName SPINBOX Identifies the spin box class

ColorHighLight WindowText
/Window

Sets the color of the spin box when it's highlighted

ColorNormal WindowText
/Window

Sets the color of the spin box when it isn't highlighted

Copy() N/A Copies selected text to the Windows clipboard
Cut() N/A Cuts selected text and places it on the Windows clipboard
DataLink Empty string Links the spin box to a field
Enabled .T. Determines if the spin box can be selected

FontBold .T. Determines if characters are displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type
Function Empty string Formats displayed text
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains context-

sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help topic in

a Windows Help file (.HLP)
hWnd N/A Returns the object handle of the spin box
ID –1 Identifies the spin box with a numeric value
Keyboard() N/A Passes a character string to the spin box, simulating typed user

input

C h a p t e r 7 , C l a s s e s 747

C L A S S S P I N B O X

Left N/A Sets the position of the left border

MousePointer 0 Specifies the mouse pointer type when the pointer is over the
spin box

Move() .F. Moves or sizes the spin box
Name SPINBOX1 Specifies the name of the spin box
OldStyle .F. Determines if the spin box is displayed in the default Windows

style or in dBase style
OnChange N/A Executes a subroutine when the user changes a value
OnGotFocus N/A Executes a subroutine when the spin box receives focus

OnHelp N/A Executes a subroutine when the user presses F1

OnLeftDblClick N/A Executes a subroutine when the user double-clicks the spin box
OnLeftMouseDown N/A Executes a subroutine when the user clicks the spin box with the

left mouse button
OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse

button while the pointer is over the spin box
OnLostFocus N/A Executes a subroutine when focus is removed

OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the spin box
with the middle mouse button

OnMiddleMouseDown N/A Executes a subroutine when the user clicks the spin box with the
middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle mouse
button while the pointer is on the spin box

OnMouseMove N/A Executes a subroutine when the user moves the mouse in the
spin box

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the spin box

with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the spin box with the

right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse

button while the pointer is on the spin box
PageNo N/A Specifies on which page of a multi-page form the spin box object

appears
Parent N/A An object reference that points to the parent form
Paste() N/A Copies text from the Windows clipboard to the current cursor

position
Picture Empty string Formats text
RangeMax 100.00 Determines the upper limit for the value linked to the spin box
RangeMin 1.00 Determines the lower limit for the value linked to the spin box
RangeRequired .F. Determines whether the range you specify with RangeMax and

RangeMin applies to all data(.T.) or to new or edited data only
(.F.)

Release() N/A Removes the spin box definition from memory
SelectAll .T. Determines if the initial value is selected (highlighted) when the

spin box receives focus
SetFocus() N/A Gives focus to the spin box
SpeedTip Empty string Specifies the text that appears when the mouse remains on the

spin box for more than one second

Property Default Description

748 L a n g u a g e R e f e r e n c e

C L A S S S P I N B O X

Description
Use a spin box to let users enter values by typing them in the text box or by increasing or
decreasing the current value using the up and down arrow buttons.

Spin boxes control the rate at which users change numeric or date values. For example,
one spin box might change an interest rate in increments of hundredths, while another
might change a date value in year increments. Set the size of each increment with the
Step property; for example, if you set Step to 5, each click on an arrow changes a
numeric value by 5 or a date value by 5 days.

Link a spin box to a numeric, float, or date field with the DataLink property. The Value
property contains the current value of the field.

To restrict entries to those within a particular range of values, set the RangeMin
property to the minimum value and RangeMax to the maximum value. If you want
users to only select values with the arrow buttons, set SpinOnly to true (.T.).

When you create a spin box with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
spin box. This value is optional.

For example, the following commands create a form and a spin box to display in it:

MyForm = NEW FORM()
MySpin = NEW SPINBOX(MyForm, "OurSpin")

SpinOnly .F. Enables or disables editing in the text box portion of the spin
box.

StatusMessage Empty string Specifies a message to display on the status bar while the spin
box has focus

Step 1 Determines how much a user can add to and subtract from a
value by clicking on the spin box button arrows

TabStop .T. Determines if the user can give focus to the spin box by pressing
Tab or Shift+Tab

Top N/A Sets the position of the top border
Undo() N/A Reverses the effect of the most recent Cut(), Copy() or Paste()

action
Valid N/A Specifies a condition that must evaluate to true (.T.) before the

user can remove focus from the spin box
ValidErrorMsg Empty string Specifies a character string to display on the status bar when the

Valid property returns false (.F.)
ValidRequired .F. Determines if the Valid property applies to all data or to new

data only
Value N/A Sets the value in the spin box
Visible .T. Determines whether the spin box is visible or hidden
When N/A Specifies a condition that must evaluate to true before the user

can give focus to the spin box
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , C l a s s e s 749

C L A S S T A B B O X

The Name property of the new spin box contains "OurSpin".

Example
The following example creates a form with a browse object displaying country
population data and a spin box object for incrementing population by intervals of 1000:

LOCAL f
f=NEW DISPLAY()
f.OPEN()
CLASS DISPLAY OF FORM

this.Top=2
this.Left=2
this.Width=36
this.Height=13
this.View = "Country.DBF"
this.Text= "Class SpinBox Demo"
DEFINE BROWSE BR1 OF THIS;

PROPERTY Fields "Name, Population, GNP",;
Top 1, Left 1.5, Width 32, Height 6

DEFINE SPINBOX Sp1 OF THIS;
PROPERTY;

Datalink "Country->Population",;
Top 10,;
Left 19,;
Height 2.0,;
Width 15,;
TabStop .F.,;
Step 1000

DEFINE TEXT Txt1 OF THIS;
PROPERTY Top 10.5, Left 2, Width 16,;

Text "Change Population:", ColorNormal "R/W"
ENDCLASS

See Also
CLASS SCROLLBAR

CLASS TABBOX
A class that makes available the type of tab-based control that is used in the SET dialog,
the Property Inspector and other places in dBASE.

Properties
The following table lists the properties of the TabBox class. For more information on
each property, see Chapter 8.

Property Default Description

Anchor 1 Specifies whether the tab box stays in the same relative
position when the form is resized

Before N/A Specifies which object the tab box precedes in the
tabbing order of the parent form

750 L a n g u a g e R e f e r e n c e

C L A S S T A B B O X

ClassName TABBOX Identifies the tab box class

ColorHighlight BtnText/BtnFace Sets the color of the tab box when it is selected
ColorNormal BtnText/BtnFace Sets the color of the tab box when it isn't selected
CurSel 1 Specifies the currently-selected prompt in the tab box
DataSource ARRAY

{"TABBOX1"}
Specifies the prompts to display in the tab box

Enabled .T. Determines if the tab box can be selected
FontBold .T. Determines if characters in the tab box prompt are

displayed in bold type

FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined

type
Height 1 Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains

context-sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help

topic in a Windows Help file (.HLP)
hWnd N/A Specifies the tab box handle
ID 100 Identifies the tab box with a numeric value
Left 0 Sets the position of the left border
Move() N/A Moves or sizes the tab box
Name TABBOX1 Specifies the tab box name
OnGotFocus N/A Executes a subroutine when the tab box receives focus

OnHelp N/A Executes a subroutine when the user presses F1
OnLeftDblClick N/A Executes a subroutine when the user double-clicks the

tab box
OnLeftMouseDown N/A Executes a subroutine when the user clicks the tab box

with the left mouse button
OnLeftMouseUp N/A Executes a subroutine when the user releases the left

mouse button while the pointer is over the tab box
OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the

tab box with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the tab box

with the middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle

mouse button while the pointer is on the tab box
OnMouseMove N/A Executes a subroutine when the user moves the mouse

pointer over the tab box
OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the

tab box with the right mouse button

OnRightMouseDown N/A Executes a subroutine when the user clicks the tab box
with the right mouse button

Property Default Description

C h a p t e r 7 , C l a s s e s 751

C L A S S T A B B O X

Description
A TabBox contains a number of tabs that users can select. The TabBox control behaves
like a list box. As with the list box, you can use the CurSel and OnSelChange()
properties to specify actions to perform.

By setting the PageNo property of a TabBox control to 0 (the default), you can
implement a tabbed multi-page form where the user can easily switch pages by
selecting tabs. Use the PageNo property of a control to determine on which page the
control appears, and use the CurSel and OnSelChange() properties of the TabBox to
switch between pages.

You can use the DataSource property with a literal array to specify the text prompts that
appear on the tabs. For example, to create three tabs that say January, February, and
March, use the following statement as the DataSource property:

Array {"January","February","March"}

Note There is a space between the word Array and the opening brace ({).

Tabs within a TabBox control are always situated horizontally.

Example

f = NEW Form()
DEFINE TABBOX t OF f;

PROPERTY;
DataSource ‘ARRAY {"Page 1", "Page 2", "Page 3"}’

f.Open()

See Also
CLASS ARRAY, CLASS LISTBOX

OnRightMouseUp N/A Executes a subroutine when the user releases the right
mouse button while the pointer is on the tab box

OnSelChange N/A Executes a subroutine when the highlight is moved from
one prompt to another

PageNo 0 Specifies on which page of a multi-page form the tab box
object appears; a value of 0 means it appears on all pages

Parent N/A An object reference that points to the parent form

Release() N/A Removes the tab box definition from memory
SetFocus() N/A Gives focus to the tab box
TabStop .T. Determines if the user can give focus to the tab box by

pressing Tab or Shift+Tab
Top N/A Sets the position of the top border
Visible .T. Determines whether the tab box is visible or hidden
When N/A Specifies a condition that must evaluate to true before

the user can give focus to the tab box
Width N/A Sets the width

Property Default Description

752 L a n g u a g e R e f e r e n c e

C L A S S T E X T

CLASS TEXT
A string of text characters.

Properties
The following table lists the properties of the Text class. For more information on each
property, see Chapter 8.

Property Default Description

Alignment 0 (Top Left) Positions text in the text object
Before N/A Specifies which object the text precedes in the tabbing order of

the parent form

Border .F. Determines if the text object is surrounded with a border
ClassName TEXT Identifies the text class
ColorNormal BtnText/

BtnFace
Sets the color of the text

FontBold .T. Determines if characters are displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined type

Function Empty string Formats displayed text
GetTextExtent N/A Returns the length of the text object based on a comparison

between the font of the text object and the font of the form
Height 1.00 Sets the height
hWnd N/A Returns the object handle of the text object
ID –1 Identifies the text object with a numeric value
Left N/A Sets the position of the left border
MousePointer 0 Specifies the mouse pointer type when the pointer is over the

text object
Move() N/A Moves or sizes the text object
Name TEXT1 Specifies the name of the text object
OldStyle .F. Determines if the text object is displayed in the default

Windows style or in dBase style
OnLeftDblClick N/A Executes a subroutine when the user double-clicks the text

object

OnLeftMouseDown N/A Executes a subroutine when the user clicks the text object with
the left mouse button

OnLeftMouseUp N/A Executes a subroutine when the user releases the left mouse
button while the pointer is over the text object

OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the text
object with the middle mouse button

OnMiddleMouseDown N/A Executes a subroutine when the user clicks the text object with
the middle mouse button

OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle mouse
button while the pointer is on the text object

C h a p t e r 7 , C l a s s e s 753

C L A S S T E X T

Description
Use a text object as a prompt, heading, label, or reminder. For example, a text object can
prompt the user to enter values in an entry field, or give brief instructions on using a
scroll bar.

Use the Text property to specify the character string to display. The displayed text is
read-only; the user can't give it focus or modify it directly.

When you create a text object with the NEW operator, you can specify two parameters:

• <parent form reference>—An object reference pointing to the parent form.

• <object name expC>—A character string assigned to the Name property of the new
text object. This value is optional.

For example, the following commands create a form and a text object to display in it:

MyForm = NEW FORM()
MyText = NEW TEXT(MyForm, "OurText")

The Name property of the new text object contains "OurText".

Example
The following example places three text line samples on the form. The first uses a font
predefined by #define; the second and third demonstrate alternative parameter options:

#define BIGFONT FontName "Arial", FontSize 26
LOCAL f
f=NEW Demo()
f.OPEN()
CLASS Demo OF FORM

this.Top=2

OnMouseMove N/A Executes a subroutine when the user moves the mouse in the
text object

OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the text

object with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the text object with

the right mouse button

OnRightMouseUp N/A Executes a subroutine when the user releases the right mouse
button while the pointer is on the text object

PageNo N/A Specifies on which page of a multi-page form the text object
appears

Parent N/A An object reference that points to the parent form
Picture Empty string Formats text
Release() N/A Removes the text object definition from memory

Text N/A Specifies the displayed character string
Top N/A Sets the position of the top border
Visible .T. Determines whether the text object is visible or hidden
Width N/A Sets the width

Property Default Description

754 L a n g u a g e R e f e r e n c e

C L A S S T E X T

this.Left=2
this.Width=50
this.Height=13
this.Text= "Class TEXT Demo"
DEFINE TEXT Txt1 OF THIS;

PROPERTY;
Top 1,;
Left 0,;
Alignment 4,;
Text "Visual dBASE 5.7",;
Height 3,;
Width 50,;
BIGFONT,;
ColorNormal "R/W"

DEFINE TEXT Txt2 OF THIS;
PROPERTY;

Top 5,;
Left 0,;
Alignment 4,;
Text "is here in '99",;
Height 2,;
Width 50,;
FontBold .T.,;
FontItalic .T.,;
FontSize 16

DEFINE TEXT Txt3 OF THIS;
PROPERTY;

Top 8,;
Left 10,;
Alignment 4,;
Text "from dBASE Inc.",;
Height 3,;
Width 30,;
FontBold .T.,;
FontSize 22,;
Border .T.,;
ColorNormal "GB/W"

ENDCLASS

See Also
DEFINE

P r o p e r t i e s 755

Part 0Properties

756 L a n g u a g e R e f e r e n c e

C h a p t e r 8 , P r o p e r t i e s 757

C h a p t e r

8
Chapter 8Properties

AbandonRecord()
Releases a newly-created record from memory.

Property of class
FORM

Description
Use AbandonRecord() to cancel the creation of a new record stored in a temporary
memory buffer you created with BeginAppend().
For more information, see BeginAppend().

Example
See BeginAppend() for an example.

See Also
BeginAppend(), IsRecordChanged(), SaveRecord()

ActiveControl
Contains a reference to the object that currently has focus.

Property of class
FORM

Data type
Object reference

758 L a n g u a g e R e f e r e n c e

A c t i v e C o n t r o l

Description
Use ActiveControl property to reference the object that currently has focus.

An object gets focus in three ways:

• The user tabs to the object.
• The user clicks the object.
• The SetFocus() method of the object is executed.

Use ActiveControl to find out which object currently has focus and make branching
decisions accordingly. For example, the following command looks at the Name
property of the current object:

? MyForm.ActiveControl.Name

You can also use ActiveControl to access or change a property of the object with focus.
For example, the following command disables whatever object currently has focus:

MyForm.ActiveControl.Enabled = .F.

Example
The following example uses ActiveControl and NextObj to return the name of the
current and next entry field objects when the right mouse is clicked on a form. This
would be useful on a form where entry fields had no accompanying text to identify the
fields:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS Entryform OF FORM

this.View="Company.DBF"
this.OnRightMouseDown={;Fcs="Current Field: " + ;

Form.ActiveControl.Name; Form.Txt1.Text=Fcs}
this.OnRightMouseUp={;Fcs2="Next Field: " + ;

Form.NextObj.Name; Form.Txt2.Text=Fcs2}
DEFINE ENTRYFIELD Company OF THIS;

PROPERTY Datalink "Company->Company",;
Top 3, Left 1, Width 20, Name "Company"

DEFINE ENTRYFIELD State OF THIS;
PROPERTY Datalink "Company->State_Prov",;
Top 5, Left 1, Name "State"

DEFINE TEXT Txt1 OF THIS;
PROPERTY Text " ",;
Top 8, Left 1, Width 25

DEFINE TEXT Txt2 OF THIS;
PROPERTY Text " ",;
Top 9, Left 1, Width 25

ENDCLASS

See Also
_curobj, First, ID, NextObj

C h a p t e r 8 , P r o p e r t i e s 759

A d d ()A
Add()

Adds an element to a one-dimensional array object.

Property of class
ARRAY

Description
Use the Add() method to add a single element to a one-dimensional array object.

Add() requires <expN>, a parameter that specifies what value to put in the new
element. For example, an array object with 10 elements acquires an eleventh element
containing 100 when <expN> is 100, as with:

MyArray = NEW ARRAY(10)
MyArray.Add(100)

See Insert() for another way to add elements to an array object.

Example

USE Customer.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT())
* Fill 1-dimensional array with values
* from Name field of Customer.DBF
GO TOP
FOR i=1 TO RECCOUNT()

ObjArr[i]= Customer->Name
SKIP

NEXT i
* Use ADD() to add an additional element
* to the 1-dimensional array and place
* a customer name in that element.
ObjArr.ADD(1)
Cnt=ObjArr.SIZE && Returns new number of elements
ObjArr[Cnt] = "George Benson Dive Works"
* Display Contents array
FOR i=1 TO Cnt
? ObjArr[i] AT 10
NEXT i

See Also
Grow(), Insert(), Resize()

760 L a n g u a g e R e f e r e n c e

A d v i s e ()

Advise()
Requests that a server application notify dBASE when an item in a server topic changes.

Property of class
DDELINK

Description
Use the Advise() method to create a hot link to an item in a server topic. A hot link
makes the server notify dBASE when the item changes.

A server topic can be anything that the server application understands, but it is usually a
document you open in the external application. For example, a data-exchange program
might start a session in Quattro Pro for Windows, open one of its spreadsheet files (the
topic), and use Advise() to establish a hot link to one of its cells.

Advise() requires the <item> parameter, which identifies the hot-linked item in the
server topic. This item can be any single element, such as a field in a table or a cell in a
spreadsheet. For example, you can specify cell C2 of Page A in a Quattro Pro
spreadsheet file by passing the parameter "A:C2". When the contents of the cell are
altered, Quattro Pro notifies dBASE and a subroutine (which you specify with the
OnNewValue property) is executed automatically.

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.OnNewValue = Valuehandler;

&& Codeblock or function pointer
LinkObj.Initiate("QPW","Demo.WB1")
LinkObj.Advise("A:A1");

&& Notified when cell A:A1 changes

See Also
Execute(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(), TimeOut,
Topic, Unadvise()

Alias
Determines the table that is accessed by a browse object.

Property of class
BROWSE

Data type
Character

C h a p t e r 8 , P r o p e r t i e s 761

A l i g n m e n tA
Default
The default for Alias is an empty string.

Description
Use the Alias property to identify a table to display in a browse object.

An alias is an alternate name given to an open table file, and can consist of

• A name you specify with the ALIAS option of the USE command.

• The file name of the table (if you did not assign the table an alias).

• The letter that corresponds to the work area of the table. This alias can be any letter
from A to J.

For example, when the parent form is based on a query that opens two or more files in a
parent-child relation, you can use Alias to determine which table appears in the browse
object.

For more information on aliases and work areas, see SELECT and USE.

Example
NEW operator syntax:

this.Alias = "Animals"

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS;
 PROPERTY Alias "Animals"

See Also
DataLink, DEFINE

Alignment
Positions a graphic in an image object or text in a text object.

Property of class
IMAGE, TEXT

Data type
Numeric

Default
The default for Alignment is 0 (Top Left).

Description
Use Alignment when an image object or a text object is larger than the image or text it
contains.

762 L a n g u a g e R e f e r e n c e

A l i g n m e n t

For example, if you store graphics in a binary field and link this field to an image object
through the DataSource property, the user can display each image by moving from
record to record. If the images vary in size, the smaller images might not fill the entire
object. Use alignment to position the images within the object.

You can assign the following settings to the Alignment property of a text object:

You can assign the following settings to the Alignment property of an image object:

Note Specify the dimensions of a text object or an image object with the Height and Width
properties.

Example
NEW operator syntax:

Heading = NEW Text(this)
Heading.Text = "Animals of the World"
Heading.Alignment = 7
Heading.Border = .T.

DEFINE object syntax:

DEFINE TEXT Heading OF THIS;
PROPERTY;

Text "Animals of the World",;
Alignment 7,;
Border .T.

See Also
Height, Width

Setting Description

0 (Top Left) Adjacent to the top edge and the left edge
1 (Top Center) Adjacent to the top edge and centered horizontally
2 (Top Right) Adjacent to the top edge and the right edge
3 (Center Left) Centered vertically and adjacent to left edge
4 (Center) Centered horizontally and vertically
5 (Center Right) Centered vertically and adjacent to right edge
6 (Bottom Left) Adjacent to the bottom edge and the left edge
7 (Bottom Center) Centered horizontally and adjacent to the bottom edge

8 (Bottom Right) Adjacent to the bottom edge and the right edge
9 (Wrap Left) Wraps strings that exceed the width of the text object

Setting Description

0 (Stretch) Enlarged to fill the entire image object
1 (Top Left) Adjacent to the left edge and the top edge
2 (Center) Centered
3 (Keep Aspect Stretch) Maintains the original height/width ratio when the

image is displayed or resized

C h a p t e r 8 , P r o p e r t i e s 763

A n c h o rA
Anchor

Specifies whether an object stays in the same relative position when the form is resized.

Property of class
TABBOX

Data type
Numeric

Default
The default for Anchor is 1 (Bottom).

Description
Use Anchor to specify whether a tab box should maintain its size and location even if
the parent form is resized. Acceptable values for Anchor are 1 (Bottom) and 0 (None).
Generally, you'll want tabs on a form to automatically resize and reposition themselves
as their parent form is resized, so you'll want to set Anchor to 1. For example, if you are
using a tab box to move between different pages in a form, one tab is equivalent to one
page, so the size of the tab and the size of the page (or form) should be the same.

However, if you want the tabs to retain a particular placement and size configuration
despite the size of the parent form, set Anchor to 0.

Example

f = NEW Form()
DEFINE TABBOX TABBOX1 OF f PROPERTY Anchor 1

See Also
PageCount(), PageNo

Append
Determines if records can be added to a table in a browse object.

Property of class
BROWSE

Data type
Logical

Default
The default for Append is true (.T.).

764 L a n g u a g e R e f e r e n c e

A u t o S i z e

Description
Set Append to false (.F.) when you want to prevent users from adding records to a table.
For example, an application might allow executives to view or even modify existing
customer accounts, without letting them add new accounts.

Example
NEW operator syntax:

CompanyBrowse = New BROWSE(this)
CompanyBrowse.Top = 3
CompanyBrowse.Left = 1
CompanyBrowse.Width = 60
CompanyBrowse.Alias = "Company"
CompanyBrowse.Append = .F.
CompanyBrowse.Delete = .F.
CompanyBrowse.Modify = .F.

DEFINE object syntax:

DEFINE BROWSE CompanyBrowse OF THIS;
FROM 3,1 TO 13,40;
Property;
Alias "Company",;
Append .F. ,;
Delete .F. ,;
Modify .F.

See Also
Delete, Modify

AutoSize
Determines if a form is automatically sized to contain its objects when the form is
opened.

Property of class
FORM

Data type
Logical

Default
The default for AutoSize is false (.F.).

Description
Use AutoSize to determine how a form is sized and proportioned.

C h a p t e r 8 , P r o p e r t i e s 765

B e f o r e+
B

If you set the AutoSize property of a form to true (.T.), the form is automatically
adjusted to contain its objects when it is opened. If you set AutoSize to false (.F.), the
form assumes its default dimensions when it is opened.

The default dimensions of a form are determined by the following:

• The settings you give to the Height and Width properties

• The FROM...TO clause of the DEFINE FORM command, if you used that command
to create the form

• The size and proportion the user last gave to the form with the mouse or the Size
option of the Control Menu

When you set the AutoSize property of a form to true, the default dimensions are
ignored. The user can still move or resize the form, but if the form is closed and
reopened it is automatically resized again to contain its objects.

Example
NEW operator syntax:

EntryForm = NEW Form()
EntryForm.Autosize = .F.

DEFINE object syntax:

DEFINE FORM EntryForm ;
Property;

Autosize .F.

See Also
Height, Left, Width

Before
Specifies which other object an object precedes in the tabbing order of the form.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, IMAGE, LINE,
LISTBOX, MENU, OLE, PAINTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE,
SCROLLBAR, SPINBOX, TABBOX, TEXT

Data type
Object reference

Description
Use the Before property to control the tabbing order of the objects in a form.

When a form holds two or more objects that users can select, the user can move from
object to object by pressing Tab or Shift+Tab. The order in which focus moves from object
to object is known as the tabbing order.

766 L a n g u a g e R e f e r e n c e

B e g i n A p p e n d ()

When you insert an object reference that points to one object (Object A) into the Before
property of another object (Object B), the tabbing order of the form is changed so that

• When the user presses Tab to move from object to object, Object B precedes Object A.

• When the user presses Shift+Tab to move from object to object, Object A precedes
Object B.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS Entryform OF FORM

this.View="Company.DBF"
this.Fld1 = NEW Entryfield(this)
this.Fld1.Top = 3
this.Fld1.Left = 1
this.Fld1.Width=20
this.Fld1.Datalink = "Company->Company"
this.Fld2 = NEW Entryfield(this)
this.Fld2.Top = 5
this.Fld2.Left = 1
this.Fld2.Datalink = "Company->State_Prov"
this.Fld2.Before = this.Fld1

ENDCLASS

DEFINE object syntax:

DEFINE ENTRYFIELD Company OF THIS;
Property Datalink "Company->Company",;
Top 3, Left 1, Width 20

DEFINE ENTRYFIELD State OF THIS;

Property Datalink "Company->State_Prov",;
Top 5, Left 1, Before this.Company

See Also
_curobj, CUATab

BeginAppend()
Creates a temporary buffer in memory for a record that is based on the structure of the
current table, letting the user input data to the record without automatically adding the
record to the table.

Property of class
FORM

C h a p t e r 8 , P r o p e r t i e s 767

B e g i n A p p e n d ()+
B

Description
BeginAppend() creates a single record buffer in the current table, without actually
adding the record to the table until SaveRecord() is issued. While this buffer exists, the
user can input data to the record with controls such as an entry field or a check box. Use
SaveRecord() to append the record to the currently active table, and use
AbandonRecord() to discard the record. Use IsRecordChanged() to determine if the
record has been changed since the BeginAppend() was issued.

For example, a form might contain two pushbuttons, one labeled Save and the other
labeled Abandon. The OnClick subroutine of the Save pushbutton might execute
SaveRecord() and the OnClick subroutine of the Abandon pushbutton might execute
AbandonRecord().

You might also attach a procedure to the Abandon pushbutton to check the status of
IsRecordChanged(). If it is true, you could ask the user to confirm that they want to
cancel the append operation.

Using BeginAppend() has different results than using either BEGINTRANS() and
APPEND BLANK or APPEND AUTOMEM. With these commands, if you cancel the
append operation, you have a record marked for deletion added to the table. If you use
AbandonRecord() to cancel the BeginAppend() operation, a new record is never added
to the table.

Example

local f
f = new ANIFORM()
f.Open()
CLASS ANIFORM OF FORM

this.Top = 3.5879
this.PageNo = 1
this.Width = 57.666
this.ColorNormal = "N/BTNFACE"
this.View = "animals.dbf"
this.Text = "Form"
this.TopMost = .F.
this.ScrollBar = 2
this.Height = 10.9404
this.Left = 24
this.OnOpen = CLASS::FORM_ONOPEN
DEFINE TEXT TITLE OF THIS;

PROPERTY;
Top 0.5,;
PageNo 1,;
Width 28,;
FontSize 18,;
ColorNormal "HIGHLIGHT/BTNFACE",;
Text "Animals",;
Border .F.,;
Height 2.0293,;
Left 1

DEFINE TEXT TEXT1 OF THIS;
PROPERTY;

Top 3,;

768 L a n g u a g e R e f e r e n c e

B e g i n A p p e n d ()

PageNo 1,;
Width 14,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "&Name",;
Border .T.,;
OldStyle .T.,;
Height 2,;
Left 1

DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;
PROPERTY;

ColorHighLight "WindowText/Window",;
Top 4,;
PageNo 1,;
Width 13.3672,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .F.,;
Height 0.8232,;
Left 1.2988,;
DataLink "ANIMALS->NAME"

DEFINE TEXT TEXT2 OF THIS;
PROPERTY;

Top 3,;
PageNo 1,;
Width 14,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "&Size",;
Border .T.,;
OldStyle .T.,;
Height 2,;
Left 15

DEFINE SPINBOX SPINBOX1 OF THIS;
PROPERTY;

ColorHighLight "WindowText/Window",;
Top 4,;
PageNo 1,;
Width 13.3672,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .F.,;
Rangemax 100,;
Rangemin 1,;
Height 0.8232,;
Left 15.2988,;
DataLink "ANIMALS->SIZE"

DEFINE TEXT TEXT3 OF THIS;
PROPERTY;

Top 3,;
PageNo 1,;
Width 28,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "We&ight",;
Border .T.,;
OldStyle .T.,;
Height 2,;
Left 29

DEFINE SPINBOX SPINBOX2 OF THIS;

C h a p t e r 8 , P r o p e r t i e s 769

B e g i n A p p e n d ()+
B

PROPERTY;
ColorHighLight "WindowText/Window",;
Top 4,;
PageNo 1,;
Width 13.3672,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .F.,;
Rangemax 100,;
Rangemin 1,;
Height 0.8232,;
Left 29.2988,;
DataLink "ANIMALS->WEIGHT"

DEFINE TEXT TEXT4 OF THIS;
PROPERTY;

Top 5,;
PageNo 1,;
Width 56,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "&Area",;
Border .T.,;
OldStyle .T.,;
Height 2,;
Left 1

DEFINE ENTRYFIELD ENTRYFIELD2 OF THIS;
PROPERTY;

ColorHighLight "WindowText/Window",;
Top 6,;
PageNo 1,;
Width 20.0342,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .F.,;
Height 0.8232,;
Left 1.2988,;
DataLink "ANIMALS->AREA"

DEFINE PUSHBUTTON PUSHBUTTON1 OF THIS;
PROPERTY;

Top 8,;
PageNo 1,;
Width 14.167,;
ColorNormal "BtnText/BtnFace",;
Text "&Save",;
Default .T.,;
OnClick CLASS::PUSHBUTTON1_ONCLICK,;
UpBitmap "RESOURCE #20",;
DownBitmap "RESOURCE #20",;
DisabledBitmap "RESOURCE #21",;
FocusBitmap "RESOURCE #20",;
Group .T.,;
Height 1.8818,;
Left 9.166

DEFINE PUSHBUTTON PUSHBUTTON2 OF THIS;
PROPERTY;

Top 8,;
PageNo 1,;
Width 14.167,;

770 L a n g u a g e R e f e r e n c e

B o r d e r

ColorNormal "BtnText/BtnFace",;
Text "&Abandon",;
OnClick CLASS::PUSHBUTTON2_ONCLICK,;
UpBitmap "RESOURCE #24",;
DownBitmap "RESOURCE #24",;
DisabledBitmap "RESOURCE #25",;
FocusBitmap "RESOURCE #24",;
Group .T.,;
Height 1.8818,;
Left 31.166

Procedure PUSHBUTTON1_OnClick
IF Form.IsRecordChanged()

Form.SaveRecord()
ENDIF
GOTO BOTTOM
SKIP
Form.BeginAppend()

RETURN

Procedure PUSHBUTTON2_OnClick
Form.AbandonRecord()
Form.Close()

RETURN

Procedure Form_OnOpen
GOTO BOTTOM
SKIP
This.BeginAppend()

RETURN

ENDCLASS

See Also

AbandonRecord(), APPEND AUTOMEM, BEGINTRANS(), IsRecordChanged(),
SaveRecord()

Border
Determines if an object is surrounded with a border.

Property of class
EDITOR, ENTRYFIELD, OLE, RECTANGLE, SPINBOX, TEXT

Data type
Logical

Default
The default for Border is different for different types of objects. See the individual
CLASS statement for an object to determine the default for that object.

C h a p t e r 8 , P r o p e r t i e s 771

B o r d e r S t y l e+
B

Description
You can prevent a rectangle object from having a border by setting the Border property
to false (.F.). To restore the border, set the Border property to true.

By default, the border is a single line that surrounds the object. If you set a related
property named BorderStyle to 1 (Raised), the object appears elevated, and if you set
BorderStyle to 2 (Lowered), the object appears lowered.

Example
NEW operator syntax:

Heading = NEW TEXT(this)
Text = "Data Entry Screen"
Top = 1
Left = 5
Border = .T.

DEFINE object syntax:

DEFINE TEXT Heading OF EntryForm;
Property;

Text "Data Entry Screen",;
Top 0,;
Left 5,;
Border .T.

See Also
CLASS RECTANGLE, BorderStyle

BorderStyle
Determines the border characteristics of a rectangle object.

Property of class
RECTANGLE

Data type
Numeric

Default
The default for BorderStyle is 0 (Normal).

772 L a n g u a g e R e f e r e n c e

B o t t o m

Description
Use BorderStyle to set the appearance of a rectangle object.

When you set BorderStyle to 1 or 2, the label that is displayed in the top left corner of the
rectangle disappears.

Example
NEW operator syntax:

Bx1 = NEW RECTANGLE(this)
Top = 1
Left = 5
Width = 30
Height = 15
BorderStyle = 2 && Lowered border style

DEFINE object syntax:

DEFINE RECTANGLE Bx1 OF THIS;
Property;

Top 1,;
Left 5,;
Width 30,;
Height 15,;
BorderStyle 1 && Raised border style

See Also
Border, CLASS RECTANGLE

Bottom
Sets the row position of the lower end of a line object.

Property of class
LINE

Data type
Numeric

Description
Use the Bottom property in combination with the Right, Left, and Top properties to
determine the position and length of a line object.

BorderStyle Result

0 (Normal) Rectangle is surrounded by a 3-D line with a title.
1 (Raised) Rectangle appears elevated.
2 (Lowered) Rectangle appears lowered.

C h a p t e r 8 , P r o p e r t i e s 773

C a n C l o s e+
+
C

Each unit of the value you assign to Bottom is the average height of characters in the
active font of the parent form. For example, if you set the Bottom property of a line
object to 17.5, the lower end of the line is positioned 17.5 characters down.

Example

DEFINE LINE Ln1 OF THIS;
PROPERTY;

Left 10,; && Vertical line from 3,10;
Top 3,; to 8,10
Width 4,;
Bottom 8,;
ColorNormal "RB/W"

DEFINE LINE Ln2 OF THIS;
PROPERTY;

Left 3,; && Horizontal line from 8,3
Top 8,; 8,33
Width 4,;
Bottom 8,;
Right 33,;
ColorNormal "RB/W"

See Also
CLASS FORM, Right, ScaleFontName, ScaleFontSize, Top, Width

CanClose
Executes a subroutine that determines if a form can be closed when an attempt is made
to close the form.

Property of class
FORM

Description

Use CanClose to prevent a form from closing until certain conditions are met. CanClose
can also be used to perform tasks when the form is about to close, but the form and its
objects are still in scope. This is different from OnClose which does not execute its
subroutine until the form is closed and the form’s object are out of scope. The subroutine
you assign to CanClose returns a value of true (.T.) which allows the form to close, or
false (.F.) which prevents the form from closing.

For example, when a form is based on a QBE that joins two tables on a key field, you
might want to prevent the key field of the parent table from containing blank or
duplicated values. The subroutine you assign to CanClose might search the parent table
for blank or duplicated values and return true (.T.) if no such values exist (allowing the
form to close) or return false (.F.) if such values do exist (preventing the form from
closing).

774 L a n g u a g e R e f e r e n c e

C h e c k e d

Example

f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM

* Form can only be closed if entryfield is not blank
this.CanClose = CLASS::FORM_CANCLOSE
DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;

PROPERTY;
Value " ",;
Top 2,;
Width 10,;
Height 1,;
Left 4

* Returns .T. only if TestField is not blank
Procedure Form_CanClose
RETURN IIF(ISBLANK(TRIM(THIS.ENTRYFIELD1.VALUE)), .F., .T.)

ENDCLASS

See Also
Close(), OnClose

Checked
Determines if a checkmark appears beside a menu command.

Property of class
MENU

Data type
Logical

Default
The default for Checked is false (.F.).

Description
Use Checked to indicate that a condition or a process is turned on or off.

The checkmark appears to the left of the menu command when you set the Checked
property to true (.T.); the checkmark is removed when you set the Checked property to
false. The user usually adds or removes a checkmark by clicking the menu item.

You can query the current Checked setting and make branching decisions accordingly.
For example, if Checked is true, you can execute a procedure or a codeblock; and if
Checked is false, you can execute a different procedure or codeblock (or none at all).

C h a p t e r 8 , P r o p e r t i e s 775

C l a s s N a m e+
+
C

Example
NEW operator syntax:

Edit = NEW MENU(this.Main.View)
Edit.Text = "Edit"
Edit.Checked = .T.

DEFINE object syntax;

DEFINE MENU Edit OF THIS;
PROPERTY ;
Text "Edit",;
Checked .T.

See Also
DEFINE

ClassName
A read-only property that identifies the class that the object is based on.

Property of class
ARRAY, ASSOCARRAY, BROWSE, CHECKBOX, COMBOBOX, DDELINK,
DDETOPIC, EDITOR, ENTRYFIELD, FORM, IMAGE, LINE, LISTBOX, MENU,
MENUBAR, OLE, PAINTBOX, POPUP, PUSHBUTTON, RADIOBUTTON,
RECTANGLE, SCROLLBAR, SHAPE, SPINBOX, TABBOX, TEXT

Data type
Character

Default
The name of the class the object is based on.

Description
Use ClassName to find out which class an object was created from. The ClassName
value is set when you create the object, and is read-only.

Example
NEW operator syntax:

this.Fld1 = NEW ENTRYFIELD(this)
this.Fld1.OnLostFocus = CheckIt

DEFINE object syntax:
DEFINE ENTRYFIELD Fld1 OF THIS;

PROPERTY OnLostFocus Checkit
PROCEDURE CheckIt
IF This.Classname = "ENTRYFIELD"

? this.Value && contents to Command window
ENDIF && results pane or printer

776 L a n g u a g e R e f e r e n c e

C l o s e ()

See Also
Name

Close()
Closes a form.

Property of class
FORM

Description
Use Close() to close an open form.

When you try to close a form, dBASE does the following:

1 Executes the Valid subroutine or codeblock of the current object. If it returns a value
of false (.F.), the form doesn't close.

2 Executes the OnLostFocus subroutine or codeblock of the current object.
3 Executes the CanClose subroutine or codeblock of the form. If it returns a value of

false (.F.), the form doesn’t close.
4 Executes the OnLostFocus subroutine or codeblock of the form.
5 Removes the form and the objects it contains from the screen.
6 Executes the OnClose subroutine or codeblock of the form.
7 Removes the form definition from memory if there are no object references pointing

to the form.

If the form definition is not removed from memory, you can open the form again with
Open() or OPEN FORM.

Example
NEW operator syntax:

this.Exit = NEW PUSHBUTTON(this)
this.Top=16
this.Left=14
this.Text="Exit"
this.Height=2
this.OnClick {;Form.Close()}

DEFINE object syntax:

DEFINE PUSHBUTTON Exit OF THIS;
PROPERTY Text "Exit", Height 2,;
Top 16, Left 14,;
OnClick {;Form.Close()}

See Also
CANCLOSE, CLOSE FORMS, Open(), OPEN FORM, ReadModal(), READMODAL()

C h a p t e r 8 , P r o p e r t i e s 777

C o l o r H i g h l i g h t+
+
C

ColorHighlight
Sets the color of the object that has focus.

Property of class
BROWSE, ENTRYFIELD, LISTBOX, SPINBOX, TABBOX

Data type
Character

Default
The default for ColorHighlight is different for different types of objects. See the
individual CLASS statement for an object to determine the default for that object.

Description
Use the ColorHighlight and ColorNormal properties of an object so that users can
differentiate visually when an object has focus and when it doesn't. For more
information, see ColorNormal.

Example
See Datalink for an example of ColorHighlight.

See Also
ColorNormal, DEFINE

ColorNormal
Sets the color of an object that is not currently selected.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LINE,
LISTBOX, PAINTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE,
SCROLLBAR, SHAPE, SPINBOX, TABBOX, TEXT

Data type
Character

Default
The default for ColorNormal is different for different types of objects. See the individual
CLASS statement for an object to determine the default for that object.

Description

Use the ColorNormal and ColorHighlight properties of an object so that users can
differentiate visually when an object has focus and when it doesn't.

778 L a n g u a g e R e f e r e n c e

C o l o r N o r m a l

You can specify two color settings with ColorNormal: a foreground color (for text), and
a background color. Color settings must be separated with a forward slash (/).

Default color settings are taken from the settings in the Windows Control Panel. If the
colors are changed in the Control Panel while a form is open, the form and any controls
that use these values will change automatically. You can use any of the following
Windows color settings for either the foreground or background color:

You can also use the following color codes:

These settings have no effect on monochrome monitors.

If you use color codes, you can also specify intensity (brightness) attributes. For both
color and monochrome monitors, the attribute code for high-intensity foreground is +,
and the tribute code for high-intensity background is *. For example, if you want the text
in an entry field to appear in bright blue over a white background, set the ColorNormal
property to B+/W.

For monochrome monitors, I is an alternate attribute code for high intensity.

Note You can specify a setting for ColorNormal with the Choose Color dialog box, in which
you choose a predefined color or design a color of your own. To access the Choose Color
dialog box, click on the Tool button next to the ColorNormal item in the Inspector.

Example
See Datalink for an example of ColorNormal.

See Also
ColorHighlight, DEFINE

ActiveBorder BtnText InactiveCaptionText
ActiveCaption CaptionText Menu
AppWorkspace GrayText MenuText
Background Highlight Scrollbar
BtnFace HighlightText Window
BtnHighlight InactiveBorder WindowFrame
BtnShadow InactiveCaption WindowText

Black N Magenta RB
Blue B Brown RG
Green G White W
Cyan GB Blank X

Red R

C h a p t e r 8 , P r o p e r t i e s 779

C o p y ()+
+
C

Copy()
Copies selected text to the Windows clipboard.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Copy() when the user has selected text and wants to copy it to the Windows
clipboard. The action of Copy() is identical to the Copy menu item on the standard
Windows Edit menu.

If you have assigned a menubar to the form, you can use the menubar's EditCopyMenu
property instead of using the Copy() property of individual objects on the form. For
more information, see EditCopyMenu.

Example

local f
f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM

this.Width = 51.833
this.Text = "Sample Form"
this.Height = 12.6465
this.OnOpen = CLASS::FORM_ONOPEN
DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;

PROPERTY;
OnGotFocus CLASS::ENTRYFIELD1_ONGOTFOCUS,;
Value "Sample Text",;
Border .T.,;
Top 3,;
PageNo 1,;
Width 25,;
ColorNormal "WINDOWTEXT/WINDOW",;
Height 1.5,;
ColorHighLight "WINDOWTEXT/WINDOW",;
Left 3

DEFINE PUSHBUTTON PUSHBUTTON1 OF THIS;
PROPERTY;

Group .T.,;
Top 1,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;
Text "&UnDo",;
OnClick CLASS::PUSHBUTTON1_ONCLICK,;
Height 1.5,;
Enabled .F.,;
Left 33.5

DEFINE PUSHBUTTON PUSHBUTTON2 OF THIS;
PROPERTY;

780 L a n g u a g e R e f e r e n c e

C o p y ()

Group .T.,;
Top 4,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;
Text "Cu&t",;
OnClick CLASS::PUSHBUTTON2_ONCLICK,;
Height 1.5,;
Left 33.5

DEFINE PUSHBUTTON PUSHBUTTON3 OF THIS;
PROPERTY;

Group .T.,;
Top 7,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;
Text "&Copy",;
OnClick CLASS::PUSHBUTTON3_ONCLICK,;
Height 1.5,;
Left 33.5

DEFINE PUSHBUTTON PUSHBUTTON4 OF THIS;
PROPERTY;

Group .T.,;
Top 10,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;
Text "&Paste",;
OnClick CLASS::PUSHBUTTON4_ONCLICK,;
Height 1.5,;
Enabled .F.,;
Left 33.5

DEFINE ENTRYFIELD ENTRYFIELD2 OF THIS;
PROPERTY;

OnGotFocus CLASS::ENTRYFIELD2_ONGOTFOCUS,;
Value "",;
Border .T.,;
Top 6,;
PageNo 1,;
Width 25,;
ColorNormal "WINDOWTEXT/WINDOW",;
Height 1.5,;
ColorHighLight "WINDOWTEXT/WINDOW",;
Left 3

DEFINE TEXT TEXT1 OF THIS;
PROPERTY;

Border .F.,;
Top 2,;
PageNo 1,;
Width 20.166,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "C&opy/Cut from here:",;
Height 0.7646,;
Left 3.5

DEFINE TEXT TEXT2 OF THIS;

C h a p t e r 8 , P r o p e r t i e s 781

C o p y ()+
+
C

PROPERTY;
Border .F.,;
Top 5,;
PageNo 1,;
Width 18.166,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "P&aste to here:",;
Height 0.7646,;
Left 3.5

Procedure PUSHBUTTON1_OnClick
Form.EntryLast.Undo()
This.Enabled = .F.

Return
Procedure PUSHBUTTON2_OnClick

IF .NOT. ISBLANK(TRIM(Form.EntryLast.Value))
Form.EntryLast.Cut()
Form.Pushbutton1.Enabled = .T.

ENDIF
RETURN
Procedure PUSHBUTTON3_OnClick

IF .NOT. ISBLANK(TRIM(Form.EntryLast.Value))
Form.EntryLast.Copy()

ENDIF
RETURN
Procedure PUSHBUTTON4_OnClick

Form.EntryLast.Paste()
Form.Pushbutton1.Enabled = .T.

RETURN
Procedure ENTRYFIELD1_OnGotFocus

Form.EntryLast = This
Form.Pushbutton1.Enabled = .F.
Form.Pushbutton2.Enabled = .T.
Form.Pushbutton3.Enabled = .T.
Form.Pushbutton4.Enabled = .F.

Return
Procedure ENTRYFIELD2_OnGotFocus

Form.EntryLast = This
Form.Pushbutton1.Enabled = .F.
Form.Pushbutton2.Enabled = .F.
Form.Pushbutton3.Enabled = .F.
Form.Pushbutton4.Enabled = .T.

RETURN
Procedure Form_OnOpen

This.EntryField1.SetFocus()
Return

ENDCLASS

See Also
Cut(), EditCopyMenu, Paste(), Undo()

782 L a n g u a g e R e f e r e n c e

C o u n t ()

Count()
Returns the number of prompts in a list box or the number of elements in an associated
array.

Property of class
ARRAY, LISTBOX

Description
Use Count() when you can't anticipate the number of prompts a list box might have at
run time. For example, when you specify FILE *.* for the DataSource property, the
number of prompts varies when files are added to or deleted from the default directory.

You can use Count() to control loops that evaluate user choices in a multiple-choice list
box. For example, you can see which prompts were chosen by evaluating each prompt
with the Selected() method in a DO...WHILE loop.

Make a list box multiple-choice by setting the Multiple property to true (.T.).

You can also use Count() to determine the number of elements in an associated array.

Example
The following example defines a form that contains a listbox that displays names from
the Animals.DBF table. Property Multiple .T. lets the user select more than one listbox
prompt. The OnRightMouseDown property calls procedure Checked, which uses the
methods Count() and Selected() to send the selected prompts to the Command
window results pane with each OnRightMouseDown:

LOCAL f
f = NEW XFORM()
f.Open()

CLASS XFORM OF FORM
this.Left = 52.80
this.Width = 40.60
this.Text = "Animals of the World"
this.HelpId = ""
this.OnRightMouseDown = CHECKED
this.HelpFile = ""
this.Top = 3.12
this.Height = 20.00

DEFINE LISTBOX LB1 OF THIS;
PROPERTY;

Left 10.00,;
ColorNormal "N/W*",;
Width 20.00,;
DataSource "FIELD ANIMALS->NAME",;
Multiple .T.,;
ColorHighLight "W+/B",;
Top 4.00,;
Height 12.00

ENDCLASS

C h a p t e r 8 , P r o p e r t i e s 783

C U A T a b+
+
C

PROCEDURE Checked
FOR i=1 TO Form.LB1.Count()

? Form.LB1.Selected(i)
NEXT i
RETURN

See Also
FOR...NEXT, LISTCOUNT(), LISTSELECTED(), Selected(), Multiple

CUATab
Determines cursor behavior when you press Tab while on a Browse or Editor object.

Property of class
BROWSE, EDITOR

Data type Logical

Default The default for CUATab is true (.T.).

Description
When CUATab is .T. (the default value), pressing Tab moves to the next control in the
Form's tab order. When CUATab is .F., pressing Tab moves to the next field in a Browse
object or moves the cursor to the next tab stop position in an Editor object.

Example

local f
f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM

this.Top = 2
this.Width = 76
this.Text = "Sample Form"
this.View = "animals.dbf"
this.Height = 20
this.Left = 11
DEFINE BROWSE BROWSE1 OF THIS;

PROPERTY;
Top 3,;
Width 56,;
Alias "ANIMALS",;
Height 16,;
CUATab .F.,;
Left 1

DEFINE OKBUTTON OKBUTTON1 OF THIS;
PROPERTY;

Group .T.,;
Top 3,;
Width 14,;
OnClick CLASS::OKBUTTON1_ONCLICK,;

784 L a n g u a g e R e f e r e n c e

C u r S e l

Height 1.5,;
Left 60

Procedure OKBUTTON1_OnClick
Form.Close()

Return
ENDCLASS

See Also
_curobj, Before, NextObj, SET CUAENTER

CurSel
Determines which prompt is selected in a list box or tab box.

Property of class
LISTBOX, TABBOX

Data type
Numeric

Default
The default for CurSel is 0 for a list box, 1 for a tab box.

Description
Use CurSel to specify which list box or tab box prompt is highlighted.

CurSel lets you place the highlight on a prompt other than the prompt last chosen by the
user. For example, an OnLostFocus subroutine might use CurSel to highlight the top
prompt each time the user moves focus to a different object.

Example
NEW operator syntax:

this.LB1 = NEW LISTBOX(this)
this.Lb1.Top=4
this.Lb1.Left=6
this.Lb1.Width=20
this.Lb1.Height=12
this.Lb1.DataSource="FIELD Animals->Name"
this.Lb1.CurSel= 3

DEFINE object syntax:

DEFINE LISTBOX LB1 OF THIS;
PROPERTY;
Top 4, Left 6, Width 20, Height 12,;
DataSource "FIELD Animals->Name",;
CurSel 3

C h a p t e r 8 , P r o p e r t i e s 785

C u t ()+
+
+
D

See Also
Count(), Selected()

Cut()
Cuts selected text and places it on the Windows clipboard.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Cut() when the user has selected text and wants to remove it from the edit control
and place it on the Windows clipboard. The action of Cut() is identical to the Cut menu
item on the standard Windows Edit menu.

If you have assigned a menubar to the form, you can use the menubar's EditCutMenu
property instead of using the Cut() property of individual objects on the form. For more
information, see EditCutMenu.

Example
See Copy() for an example.

See Also
Copy(), EditCutMenu, Paste(), Undo()

DataLink
Links an object in a form to a table field.

Property of class
CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, OLE, RADIOBUTTON,
SCROLLBAR, SPINBOX

Data type
Character

Default
The default for DataLink is an empty string.

Description
If you create a check box, entry field, radio button, or spin box to access table data, you
need to establish a link between the object and a field in the table with DataLink. Once
you've established the link, any changes entered through the object are inserted into the
field automatically.

786 L a n g u a g e R e f e r e n c e

D a t a S o u r c e

When the user moves from record to record, the change is reflected in the object. For
example, if an entry field is linked to a table field and the user moves to another record
while the form is open, the value in the entry field is updated with the current table field
value. If the form is closed when the user moves to another record, the value in the entry
field is not updated.

The DataLink property is similar to the DataSource property. However, data displayed
through the DataLink property can be changed, while data displayed through the
DataSource property is always read-only. For example, the DataSource property of a
combo box determines its prompts (which are read-only values), while the DataLink
property determines which field is affected by the user’s input.

Note You can select a field with the Choose Field dialog box. To access the Choose Field
dialog box, click the Tool button next to the DataLink item in the Inspector.

Example
NEW operator syntax:

Company = NEW ENTRYFIELD(this)
Company.Top = 3
Company.Left = 1
Company.Datalink = "Company"
Company.ColorHighlight = "B/W"
Company.ColorNormal = "W/B"
Company.Function = "@!"

DEFINE object syntax:

DEFINE Entryfield Company OF THIS;
AT 3,1;
Property;

Datalink "Company",;
ColorHighlight "B/W",;
ColorNormal "W/B",;
Function "@!"

See Also
Alias, DataSource, DEFINE, Fields, Refresh()

DataSource
Determines which data is displayed in a list box, a combo box, or an image object.

Property of class
COMBOBOX, IMAGE, LISTBOX, TABBOX

Data type
Character

C h a p t e r 8 , P r o p e r t i e s 787

D a t a S o u r c e+
+
+
D

Default
The default for DataSource is an empty string.

Description
You need to specify a valid value for the DataSource property to display an image in an
image object, or prompts in a list box or a combo box.

The DataSource property is similar to the DataLink property. However, data displayed
through the DataLink property can be changed, while data displayed through the
DataSource property is always read-only.

You can specify one of five DataSource values for a list box or a combo box:

1 FILE <filename skeleton expC> creates prompts from file names in the current default
directory.

2 FIELD <field name> creates prompts from all the values in a field in a table file. Each
prompt represents a record, and you can move from record to record by selecting
different prompts. To create prompts that don't move from record to record, copy the
field into an array object with COPY TO ARRAY, then use the DataSource ARRAY
<array name> option (described in this list).

3 STRUCTURE creates prompts from all the field names in a table.

4 ARRAY <array name> creates prompts from elements in an array object.

5 TABLES creates prompts from the names of all tables in the currently open database.
See OPEN DATABASE for information on databases.

To evaluate which prompts were chosen from a list box, use LISTSELECTED() or
Selected().

Note You can specify one of three DataSource values for an image object:

• RESOURCE <resource id><DLL name> designates a resource within a DLL file.
<resource id> is a numeric literal that identifies a bitmap image in the DLL file.
<DLL name> is the name of the DLL file and must include the file name extension if
the DLL file isn't already in memory.

• FILENAME <filename> is the name of a file containing a bitmap image.

• BINARY <binary field> is the name of a binary field containing bitmap images.

Example

NEW operator syntax:

this.COMBOBOX1 = NEW COMBOBOX(this)
this.COMBOBOX1.DataLink = "Company"
this.COMBOBOX1.Value = "General Consolidated"

DataSource = "FIELD COMPANY"
* or
* DataSource = "STRUCTURE"
* or
* DataSource = "FILE '*.PRG'"

788 L a n g u a g e R e f e r e n c e

D e f a u l t

* or
* DataSource = "TABLES"
* or
* DataSource = "Array 'ComboList'"

DEFINE object syntax:

DEFINE COMBOBOX COMBOBOX1 OF THIS;
PROPERTY;

DataLink "Company",;
Value "General Consolidated",;
DataSource "FIELD COMPANY"

* or
* DataSource "STRUCTURE"
* or
* DataSource "FILE '*.PRG'"
* or
* DataSource "TABLES"
* or
* DataSource "Array 'ComboList'"

See Also
DEFINE

Default
Determines if a pushbutton is a default pushbutton.

Property of class
PUSHBUTTON

Data type
Logical

Default
The default for Default is false (.F.).

Description
Use the Default property to make a pushbutton the default pushbutton when the user
submits a form by pressing Enter. Setting the Default property of a pushbutton to true
gives the pushbutton a visual highlight that identifies it as the default.

Setting the Default property to true (.T.) causes two things to happen when the user
presses Enter:

• The OnClick subroutine of the default pushbutton executes.

• The ID property of the default pushbutton is passed to the OnSelection routine of the
parent form.

C h a p t e r 8 , P r o p e r t i e s 789

D e l e t e+
+
+
D

The OnSelection subroutine can use the ID value to make branching decisions.

However, if the user clicks on any pushbutton, the OnClick subroutine of that
pushbutton executes. The ID value of that pushbutton is passed to the OnSelection
subroutine, even if the Default property of another pushbutton is true.

If you give more than one pushbutton a Default value of true, the last pushbutton to get
the value is the default. If you give all pushbuttons a Default value of false, the
pushbutton that you created first is the default.

Example
NEW operator syntax:

BUTTON1 = New PUSHBUTTON(this)
BUTTON1.Text = "BUTTON1"
BUTTON1.Top = 3.00
BUTTON1.Onclick = Push1
BUTTON2 = New PUSHBUTTON(this)
BUTTON2.Text = "BUTTON2"
BUTTON2.Top = 8.00
BUTTON2.Onclick = Push2
BUTTON2.Default = .T.

DEFINE object syntax:

DEFINE PUSHBUTTON BUTTON1 OF THIS;
PROPERTY;

Text "BUTTON1",;
Top 3.00,;
Onclick Push1

DEFINE PUSHBUTTON BUTTON2 OF THIS;
PROPERTY;

Text "BUTTON2",;
Top 8.00,;
Onclick Push2,;
Default .T.

See Also
DEFINE, OnClick

Delete
Determines if records in a browse object can be marked for deletion.

Property of class
BROWSE

Data type
Logical

790 L a n g u a g e R e f e r e n c e

D e l e t e ()

Default
The default for Delete is true (.T.).

Description
Set Delete to false to prevent users from marking records for deletion. For example, an
application might allow certain users to view records but, for reasons of security, not
allow them to delete records.

Note A record is not removed from a table when it is marked for deletion; it is removed only
when you execute the PACK command or when the user chooses the Utilities | Pack
command of the Table menu.

Example
NEW operator syntax:

DEFINE BROWSE Br1 OF this
this.Br1.Delete=.F.
this.Br1.Top=4
this.Br1.Left=3
this.Br1.Width=32
this.Br1.Height=12

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS FROM 4,3 TO 16,35;
PROPERTY;
Delete .F.

See Also
Append, Modify

Delete()
Deletes an element from a one-dimensional array object or a row or column from a two-
dimensional array object.

Property of class
ARRAY

Description
Use Delete() to delete selected elements from an array without changing the size of the
array. Delete() does the following:

• Deletes an element from a one-dimensional array, or deletes a row or column from a
two-dimensional array

• Moves all remaining elements toward the beginning of the array (up if a row is
deleted, to the left if an element or column is deleted)

• Inserts .F. values in the last position or positions

C h a p t e r 8 , P r o p e r t i e s 791

D e s i g n V i e w+
+
+
D

For information about deleting elements and moving remaining elements toward the
end of the array, see Insert(). For information about replacing elements without moving
remaining elements, see Fill(). To change the size of an array, use Grow() or Resize().

Example

USE Animals.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT(),3)
* Fill array with values from Animals.DBF
COPY TO ARRAY ObjArr FIELDS Name, Area, Weight
* Use DELETE() to remove the Weight values from
* column 3 and replace with false (.F.)
ObjArr.DELETE(3,2)
* Display results of DELETE()
FOR i=1 TO RECCOUNT()
? ObjArr[i,1],ObjArr[i,2],ObjArr[i,3]
NEXT i

See Also
ADEL(), Add(), Insert(), RemoveKey()

DesignView
Designates a view (.QBE or table) that is used when designing a form.

Property of class
FORM

Data type
Character

Default
The default for DesignView is an empty string.

Description

Use DesignView to facilitate creating and datalinking a form when you don’t want to
assign a View property to the form. The value in DesignView is ignored at runtime.

There are two main instances in which you may want to use DesignView instead of
View.

• If you know which tables will be open when the form is opened at runtime, use
DesignView to avoid opening the tables again when the form is opened. For
example, if you are designing a Search dialog box that will be opened only when a
specific table is already open, set the DesignView property of the dialog box instead
of the View property.

792 L a n g u a g e R e f e r e n c e

D i m e n s i o n s

• If you don’t know which tables will be open when the form is opened at runtime, but
need certain tables open to design the form, use DesignView to avoid specifying at
design time which tables will be open at runtime.

If you specify a View property for a form, you should not also specify a DesignView
property. If you want to design multiple forms having different DesignView properties,
you should design the forms in different sessions.

See Also
Alias, DataLink, DataSource, View

Dimensions
Specifies the number of dimensions in an array object.

Property of class
ARRAY

Data type
Numeric

Description
Use Dimensions to find out whether an array object is one-dimensional or multi-
dimensional.

Dimensions is a read-only property.

Example

USE Customer.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT())
* Fill 1-dimensional array with values
* from Name field of Customer.DBF
GO TOP
FOR i=1 TO RECCOUNT()

ObjArr[i] = Customer->Name
SKIP

NEXT i
* Use Dimensions to return array dimensions
* and GROW() to add a second column to the
* existing array and enter Ytd_Sales data
* in new second column.
IF ObjArr.Dimensions=1

ObjArr.GROW(2)
GO TOP
FOR i=1 TO RECCOUNT()

ObjArr[i,2]=Customer->Ytd_Sales
SKIP

C h a p t e r 8 , P r o p e r t i e s 793

D i r ()+
+
+
D

NEXT i
ENDIF
* Display Contents of 2-dimensional array
FOR i=1 TO RECCOUNT()
? ObjArr[i,1], ObjArr[i,2]
NEXT i

See Also
Add(), ALEN(), Delete(), Fields(), Insert(), Resize()

Dir()
Stores the name, size, date stamp, time stamp, and DOS attributes of files to an array
object.

Property of class
ARRAY

Description
Use the Dir() method to store file information to an array object. The Dir() method is
similar to the ADIR() function.

Dir() accepts two optional parameters:

• <filename skeleton expC> identifies file names with a wildcard character string. For
example, to return information on tables only, use "*.DBF" as <filename skeleton expC>.
If you omit <filename skeleton expC>, Dir() stores information about all files except
hidden or system files in the current directory.

• <file attribute list expC> specifies one or more DOS file attributes. The meaning of each
attribute is as follows:

When you specify more than one letter for <file attribute list expC>, include all the letters
between quotation marks. If you specify a value for <file attribute list expC>, also include
a value for <filename skeleton expC>.

When you include the letter V in <file attribute list expC>, Dir() ignores
<filename skeleton expC> and all other characters in the attribute list and stores the
volume label to a one-element array object.

The array object is dynamically sized to fit all returned information.

Character Meaning

D Include directories
H Include hidden files
S Include system files
V Include volume label only

794 L a n g u a g e R e f e r e n c e

D i r E x t ()

Example
The following example uses Array() to initialize an array object and Dir() to fill the
array with DOS directory file information. The FOR...NEXT loop traverses the array to
display the results of the Dir() operation. Note the use of Size to return the number of
elements in the array. Dividing the number of elements by the number of file attributes
that DIR() copies yields the number of rows in the array:

ObjArr=NEW ARRAY()
ObjArr.DIR("*.PRG","D")
FOR i=1 TO ObjArr.Size/5
? ObjArr[i,1],ObjArr[i,2] AT 20,;

ObjArr[i,3] AT 35,ObjArr[i,4] AT 45,;
ObjArr[i,5] AT 55

NEXT i

See Also
ADIR(), Fields()

DirExt()
Stores the name, size, date stamp, time stamp, and DOS and Windows 95 attributes of
files to an array object.

Property of class
ARRAY

Description

DirExt() is identical to Dir(), but with extra columns for Windows 95 file information.
For more information, see Dir().

Example

DirList = NEW ARRAY(1)
? DirList.DirExt()

See Also
Dir()

C h a p t e r 8 , P r o p e r t i e s 795

D i s a b l e d B i t m a p+
+
+
D

DisabledBitmap
Specifies the graphic image to display in a pushbutton when the pushbutton is disabled.

Property of class
PUSHBUTTON

Data type
Character

Default
The default for DisabledBitmap is an empty string.

Description
Use DisabledBitmap to indicate visually when a pushbutton is not available for use.

A pushbutton is disabled when

• Its Enabled property is set to false (.F.).
• Its When property returns a value of false.

The DisabledBitmap setting can take one of two forms:

1 RESOURCE <resource id> <dll name> specifies a bitmap resource and the DLL file that
holds it. (A DLL file is a precompiled library of external routines and resources
written in non-dBASE languages such as C and Pascal.) You can obtain the resource
ID with a resource editor such as Resource Workshop.

2 FILENAME <filename> specifies a bitmap file (which usually has the file-name
extension .BMP).

If you specify a character string with Text and an image with DisabledBitmap, the image
is displayed with the character string when the pushbutton is disabled. When you
specify no image with DisabledBitmap, the Text property character string is displayed
with low intensity when the pushbutton is disabled.

Note You can select a bitmap file with the Choose Bitmap dialog box, which you can access by
clicking the Tool button next to the DisabledBitmap item in the Inspector.

Example
NEW operator syntax:

Go = NEW PUSHBUTTON(this)
Go.DisabledBitmap = "RESOURCE 20 EntryIcn.dll"
* or
* Go.DisabledBitmap = "FILENAME PushDis.bmp"
* or
* Go.DisabledBitmap = "BINARY PushDis"

796 L a n g u a g e R e f e r e n c e

D o V e r b ()

DEFINE object syntax:

DEFINE PUSHBUTTON Go OF THIS;
Property;

DisableBitmap "RESOURCE 20 EntryIcn.dll"
* or
* DisableBitmap "FILENAME PushDis.bmp"
* or
* DisableBitmap "BINARY PushDis"

See Also
DEFINE, DownBitmap, Enabled, FocusBitmap, UpBitmap

DoVerb()
Starts an action in an OLE server application.

Property of class
OLE

Description
Use DoVerb() to initiate an action from an OLE document stored in an OLE field and to
specify what action to take.

Every OLE object accepts one or more verbs. Each verb determines which actions are
taken, and each is represented by a number. For example, most sound applications
accept one of two verbs:

• 0 (Play) plays a sound stored in an OLE field.
• 1 (Edit) opens the Sound Recorder to edit the sound.

Some OLE documents have only one verb. For example, Quattro Pro for Windows has
only 0 (The Edit verb).

DoVerb accepts two parameters:

• <OLE verb> The numeric value of the verb.

• <title> A text string to display in the title bar of the server window (if <OLE verb>
causes a window to appear).

Note You can determine which verbs are accepted by an OLE document with the following
steps:

1 In a browse object, double-click on the OLE field containing the document. This
opens the OLE viewer.

2 Open the Edit menu. The OLE object is the last menu item; for example, if the OLE
was created by the Windows Sound Recorder, the last menu item is Sound Object.

C h a p t e r 8 , P r o p e r t i e s 797

D o V e r b ()+
+
+
D

3 Click once on this menu item; if the OLE document accepts more than one verb, they
are displayed as menu items in a child menu. If the OLE document accepts only one
verb, that verb is executed.

You can also view OLE verbs through the Windows registration database, which you
can examine with the Registration Info Editor. You access the editor by starting a session
in Windows in verbose mode and specifying regedit as a parameter, as with:

win regedit /v

Example

The following program creates a form that displays an OLE object and a pushbutton.
The OnClick subroutine of the pushbutton uses DoVerb to start an action in an OLE
server.

LOCAL f
f = NEW XFORM()
f.Open()

CLASS XFORM OF FORM
 this.Left = 22.40
 this.Width = 103.60
 this.MousePointer = 1
 this.Text = "Form"
 this.HelpId = ""
 this.HelpFile = ""
 this.View = "PICTURES.QBE"
 this.Top = 1.06
 this.Height = 24.53

DEFINE OLE OLE1 OF THIS;
 PROPERTY;
 Left 2.00,;
 Width 100.00,;
 DataLink "PICTURES->BITMAPOLE",;
 Border .T.,;
 Top 1.00,;
 Height 20.00

DEFINE PUSHBUTTON BUTTON1 OF THIS;
 PROPERTY;
 Left 39.00,;
 ColorNormal "N/W",;
 Width 22.00,;
 OnClick CLASS::BUTTON1_ONCLICK,;
 Text "Click me to edit this image.",;
 Default .T.,;
 Top 22.00,;
 Height 2.00

Procedure BUTTON1_OnClick
form.OLE1.DoVerb(0, "This Title Is Optional")

ENDCLASS

798 L a n g u a g e R e f e r e n c e

D o w n B i t m a p

See Also
CLASS OLE

DownBitmap
Specifies the graphic image to display in a pushbutton when the user presses the button.

Property of class
PUSHBUTTON

Data type
Character

Default
The default for DownBitmap is an empty string.

Description
Use DownBitmap to give visual confirmation when the user clicks a pushbutton. When
the user releases the mouse button or moves the pointer off the pushbutton, the image
or text specified by UpBitmap or Text is displayed.

The DownBitmap setting can take one of two forms:

1 RESOURCE <resource id> <dll name> Specifies a bitmap resource and the DLL file
that holds it. (A DLL file is a precompiled library of external routines and resources
written in non-dBASE languages such as C and Pascal.) You can obtain the resource
ID with a resource editor such as Resource Workshop.

2 FILENAME <filename> specifies a bitmap file (which usually has the file-name
extension .BMP).

When you specify a character string for the pushbutton with Text and an image with
DownBitmap, the image is displayed with the character string when the user clicks the
pushbutton.

Note You can select a bitmap file with the Choose Bitmap dialog box. To access the Choose
Bitmap dialog box, click the Tool button next to the DownBitmap item in the Inspector.

Example
See UpBitmap for an example of DownBitmap.

See Also
DEFINE, DisabledBitmap, Enabled, FocusBitmap, Text, UpBitmap

C h a p t e r 8 , P r o p e r t i e s 799

D r o p D o w n H e i g h t+
+
+
D

DropDownHeight
Specifies the number of lines displayed in the list portion of the combo box.

Property of class
COMBOBOX

Data type
Numeric

Default
The default for DropDownHeight is 6.

Description
Use DropDownHeight to specify how much information will appear when a user drops
down a list from a combo box.

Example
In the following example, the dropdown portion of the list contains either 10 lines or the
total number of list items available, whichever is smaller.

cbarray=NEW ARRAY(5) && Create array containing 5 elements
cbarray2=NEW ARRAY(15) && Create array containing 15 elements

f = NEW FORM()
c1 = NEW COMBOBOX(f)
c1.DataSource = 'ARRAY cbarray' && Acceptable values come from array
c1.Style = 2 && Only array items can be selected
c1.DropDownHeight = IIF(cbarray.size<10,cbarray.size,10) && 5 lines
c2 = NEW COMBOBOX(f)
c2.Left = c1.Left+20
c2.DataSource = 'ARRAY cbarray2'
c2.Style = 2
c2.DropDownHeight = IIF(cbarray2.size<10,cbarray2.size,10) && 10 lines
f.Open()

See Also
Style

800 L a n g u a g e R e f e r e n c e

E d i t C o p y M e n u

EditCopyMenu
Specifies a menu item that copies selected text from a control to the Windows clipboard.

Property of Class
MENUBAR

Data type
Object reference

Description
EditCopyMenu contains a reference to a menu object users select when they want to
copy text.

You can use the EditCopyMenu property of a form's menubar to copy selected text to
the Windows clipboard from any edit control in the form, instead of using the control's
Copy() property. In effect, EditCopyMenu calls Copy() for the active control. This lets
you provide a way to copy text with less programming than would otherwise be
needed. The Copy menu item is automatically disabled (greyed out) when no text is
selected, and enabled when text is selected.

For example, suppose you have a Browse object (b) and an Editor object (e) on a form (f).
To implement text copying, you could specify actions that would call b.Copy() or
e.Copy() whenever a user wanted to copy text. However, if you use a menubar, you can
set the EditCopyMenu property to the menu item the user will select to copy text. Then,
when the user selects that menu item, the text is automatically copied to the Windows
clipboard from the currently active control. You don't need to use the control's Copy()
property at all.

If you use the Menu Designer to create a menubar, EditCopyMenu is automatically set
to an item named Copy on a pulldown menu named Edit when you add the Edit menu
to the menubar:

this.EditCopyMenu = this.Edit.Copy

Example
See WindowMenu for an example.

See Also
CLASS MENUBAR, Copy(), EditCutMenu, EditPasteMenu, EditUndoMenu,
WindowMenu

C h a p t e r 8 , P r o p e r t i e s 801

E d i t C u t M e n u+
+
+
+
E

EditCutMenu
Specifies a menu item that cuts selected text from a control and places it on the
Windows clipboard.

Property of Class
MENUBAR

Data type
Object reference

Description
EditCutMenu contains a reference to a menu object users select when they want to
cut text.

You can use the EditCutMenu property of a form's menubar to cut (delete) selected text
and place it on the Windows clipboard from any edit control in the form, instead of
using the control's Cut() property. In effect, EditCutMenu calls Cut() for the active
control. This lets you provide a way to copy text with less programming than would
otherwise be needed. The Cut menu item is automatically disabled (greyed out) when
no text is selected, and enabled when text is selected.

For more information, see EditCopyMenu.

Example
For an example of EditCutMenu, see WindowMenu.

See Also
CLASS MENUBAR, Cut(), EditCopyMenu, EditPasteMenu, EditUndoMenu,
WindowMenu

EditPasteMenu
Specifies a menu item that copies text from the Windows clipboard to the currently
active edit control.

Property of Class
MENUBAR

Data type
Object reference

Description
EditPasteMenu contains a reference to a menu object users select when they want to
paste text to the cursor position in the currently active edit control.

802 L a n g u a g e R e f e r e n c e

E d i t U n d o M e n u

You can use the EditPasteMenu property of a form's menubar to paste text from the
Windows clipboard into any edit control in the form, instead of using the control's
Paste() property. In effect, EditPasteMenu calls Paste() for the active control. This lets
you provide a way to paste text with less programming than would otherwise be
needed. The Paste menu item is automatically disabled (greyed out) when the clipboard
is empty, and enabled when text is copied or cut to the clipboard.

For more information, see EditCopyMenu.

Example
For an example of EditPasteMenu, see WindowMenu.

See Also
CLASS MENUBAR, Paste(), EditCopyMenu, EditCutMenu, EditUndoMenu,
WindowMenu

EditUndoMenu
Specifies a menu item that reverses the effects of the last Cut, Copy, or Paste action.

Property of Class
MENUBAR

Data type
Object reference

Description
EditUndoMenu contains a reference to a menu object users select when they want to
undo their last Cut, Copy, or Paste action.

You can use the EditUndoMenu property of a form's menubar to undo a Cut or Paste
action from any edit control in the form, instead of using the control's Undo() property.
In effect, EditUndoMenu calls Undo() for the active control. This lets you provide a way
to undo with less programming than would otherwise be needed.

For more information, see EditCopyMenu.

Example
For an example of EditUndoMenu, see WindowMenu.

See Also
CLASS MENUBAR, Undo(), EditCopyMenu, EditCutMenu, EditPasteMenu,
WindowMenu

C h a p t e r 8 , P r o p e r t i e s 803

E l e m e n t ()+
+
+
+
E

Element()
Returns the number of a specified element in an array object.

Property of class
ARRAY

Description
Use Element() when you know the subscripts of an element in a two-dimensional array
object and need the element number for use with another method, such as Scan(). The
Element() method is similar to the AELEMENT() function.

An element number indicates the sequential position of an element in the array. In one-
dimensional arrays, the element number is the same as the subscript, so there is no need
to use Element(); for example, Element(3) returns 3, Element(5) returns 5, and so on.

Element() accepts two parameters:

• <subscript1 expN> is the first subscript number of the element. In a one-dimensional
array, <subscript1 expN> is the same as the element number. In a two-dimensional
array, <subscript1 expN> identifies a row.

• <subscript2 expN> specifies the column of the element when the array object is two-
dimensional. If you omit <subscript2 expN>, dBASE assumes the value 1. If the array
object is one-dimensional, dBASE ignores <subscript2 expN>.

Element() is the inverse of Subscript(), which returns the row or column subscript
number of an element when you specify the element number.

Example

USE Animals.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT(),3)
* Fill array with values from Animals.DBF
COPY TO ARRAY ObjArr FIELDS Name, Area, Weight
* Use ELEMENT() to return the array element number
* of all Name values in the 1st column.
FOR i=1 TO RECCOUNT()
? ObjArr[i,1], ObjArr.Element(i,1)
NEXT i

See Also
AELEMENT(), Scan(), Subscript()

804 L a n g u a g e R e f e r e n c e

E n a b l e d

Enabled
Determines if an object can be selected.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX,
MENU, OLE, PAINTBOX, PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX,
TABBOX

Data type
Logical

Default
The default for Enabled is true (.T.).

Description
When you set the Enabled property of an object to true, the user can select and use the
object. When you set the Enabled property to false (.F.), the object is dimmed and the
user can't select or use the object.

You usually set the Enabled property to false when a required condition is not met. For
example, the Valid subroutine of an entry field might disable an OK pushbutton when
the user hasn't entered correct data into the entry field.

Example
NEW operator syntax:

Compcode = NEW ENTRYFIELD(this)
Compcode.Top = 3
Compcode.Left = 1
Compcode.Datalink = "CompCode"
Compcode.Enabled = .F.
* user cannot change Compcode

DEFINE object syntax:

DEFINE Entryfield Compcode OF THIS;
AT 3,1;
Property;

Datalink "CompCode",;
Enabled .F.

See Also
Visible

C h a p t e r 8 , P r o p e r t i e s 805

E s c E x i t+
+
+
+
E

EscExit
Determines if the user can close a form by pressing Esc.

Property of class
FORM

Data type
Logical

Default
The default for EscExit is true (.T.).

Description
Set EscExit to false (.F.) to prevent the user from closing a form by pressing Esc.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.Top=2
this.Left=2
this.Height=10
this.Width = 20
this.EscExit=.F.

DEFINE object syntax:

DEFINE FORM EntryForm ;
PROPERTY;
Top 2, Left 2, Height 10, Width 20,;
EscExit .F.

See Also
ON ESCAPE, SET ESCAPE

806 L a n g u a g e R e f e r e n c e

E x e c u t e ()

Execute()
Sends a command string to a DDE server application in its own language.

Property of class
DDELINK

Description
Use the Execute() method to send macro instructions to a server application.

Execute() requires the <command> parameter, which is a string consisting of at least one
command in the language of the server. Surround each command with the delimiters
required by the server application. For example, each Quattro Pro command is
surrounded with braces ({}). Some applications accept multiple commands separated by
brackets. For information, consult your DDE server documentation.

Before you can send a command string to a server, you must open the server
application, open the document, and establish a DDE link. For information on
establishing DDE links, see Initiate() and Chapter 26 in the Programmer's Guide.

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.Initiate("QPW","Demo.WB1")
? LinkObj.Execute('{||OPEN "C:INFO\Data.TXT",W}');
 && Creates text file Data.TXT
? LinkObj.Execute('{||WRITELN +A1}');
 && Send contents of QPW cell A1 to;

Data.TXT
? LinkObj.Execute('{||WRITELN +A2}');
 && Send contents of QPW cell A2 to;
 Data.TXT
? LinkObj.Execute('{||CLOSE}');
 && Closes Data.TXT

See Also
Advise(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(), TimeOut,
Topic, Unadvise()

C h a p t e r 8 , P r o p e r t i e s 807

F i e l d s+
+
+
+
+
F

Fields
Specifies the fields to display in a browse object, and the field options to apply to each
field.

Property of class
BROWSE

Data type
Character

Default
The default for Fields is an empty string.

Description
The value you place in Fields must be surrounded by quotation marks and should have
the following format:

 "<field 1> [<field option list 1>] |
 <calculated field 1> = <exp1> [<calculated field option list 1>]
 [, <field 2> [<field option list 2>] |
 <calculated field 2> = <exp1> [<calculated field option list 2>], ...]"

The fields are displayed in the order they're listed, and the field option lists affect the
way the fields are displayed. The options are as follows:

/<column width> The width of the column within which <field 1> appears
when <field 1> is character type

/B = <exp 1>, <exp 2> [/F] RANGE option; forces any value entered in <field 1> to fall
within <exp 1> and <exp 2>, inclusive.
RANGE REQUIRED option; the /F option prevents a
previously entered value from being accepted if it doesn't
fall between <exp 1> and <exp 2>, inclusive

/H = <expC> HEADER option; causes <expC> to appear above the field
column in the Table Records window, replacing the field
name

/P = <expC> PICTURE option; displays <field 1> according to the
PICTURE or FUNCTION clause <expC>

/R READ-ONLY option; specifies that <field 1> is read-only
and can't be edited

/V = <condition> [/F] [/E = <expC>] VALID option; allows a new <field 1> value to be entered
only when <condition> evaluates to .T.
VALID REQUIRED option; the /F option prevents the
user from leaving <field 1> and the editing session from
ending until <condition> evaluates to .T.
ERROR MESSAGE option; /E = <expC> causes <expC> to
appear when <condition> evaluates to .F.

/W = <condition> WHEN option; allows <field 1> to be edited only when
<condition> evaluates to .T.

808 L a n g u a g e R e f e r e n c e

F i e l d s ()

Read-only calculated fields are composed of an assigned field name and an expression
that results in the calculated field value, as with Commission = Rate * Saleprice. Options
for calculated fields affect the way these fields are displayed. These options are as
follows:

Calculated fields are read-only.

Note You can select a field with the Browse Field Picker. To access the Browse Field Picker,
click the Tool button next to the Fields item in the Inspector.

Example
NEW operator syntax:

this.Br1 = NEW BROWSE(this)
this.Br1.Alias="Contact"
this.Br1.Fields="CompCode /R,Contact"
this.Br1.Top=4
this.Br1.Left=3
this.Br1.Width=32
this.Br1.Height=12

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS;
PROPERTY;
Top 4, Left 3, Width 32, Height 12,;
Alias "Contact",;
Fields "CompCode /R, Contact"

See Also
Alias, DataLink, DataSource, SET FIELDS

Fields()
Stores the structure information of the current table to an array object and returns the
number of fields whose characteristics are stored.

Property of class
ARRAY

Description
Use the Fields() method to store information about the structure of the current table in
an array object. Each row in the array object contains information on a single field in the
current table. The Fields() method is similar to the AFIELDS() function.

/<column width> The width of the column within which <calculated field 1> is
displayed

/H = <expC> Causes <expC> to appear above the calculated field column
in the Table Records window, replacing the calculated field
name

C h a p t e r 8 , P r o p e r t i e s 809

F i e l d W i d t h+
+
+
+
+
F

Fields() dynamically sizes the array object so the number of rows is at least equal to the
number of fields in the current table, and the number of columns is at least four. If the
array contains more elements than are needed to store the table structure, the extra
elements are left unchanged.

The following table shows which field characteristics Fields() stores, and in which
column the information is placed:

dBASE uses the following codes for field types: C—character, D—date, L—logical, M—
memo, N—numeric, F—float, G—ole, B—binary.

Fields() stores the same information into an array object that COPY TO...STRUCTURE
EXTENDED stores into a table, except Fields() doesn't create a row containing
FIELD_IDX information.

Example

USE Customer.DBF
* Initialize an array object to hold
* the structure of Customer.DBF.
ObjArr=NEW ARRAY(FLDCOUNT(),4)
* Fill array with .DBF file structure
* information.
ObjArr.Fields()
* Display array contents in the Command
* window results pane.
FOR i=1 TO FLDCOUNT()
? ObjArr[i,1],ObjArr[i,2] AT 20,;

ObjArr[i,3] AT 25, ObjArr[i,4] AT 35
NEXT i

See Also
AFIELDS(), COPY TO...STRUCTURE EXTENDED, Dir(), Element(), Scan(), Sort(),
Subscript()

FieldWidth
Specifies the width of a character field in a browse object.

Property of class
BROWSE

Data type
Numeric

Column 1 Column 2 Column 3 Column 4

Field name
(character data type)

Field type
(character data type)

Field length
(numeric data type)

Decimal places
(numeric data type)

810 L a n g u a g e R e f e r e n c e

F i l l ()

Default
The default for FieldWidth is the length of the table field or the length of the field name,
whichever is greater.

Description
Use FieldWidth to limit the display width of a character field in a browse object.

If the text in a character field exceeds the field length, the user accesses the entire field by
scrolling within it.

Example
NEW operator syntax:

USE Animals.DBF
LOCAL f
f=NEW Brws()
f.OPEN()
CLASS Brws OF FORM

this.Width = 45
this.Br1=NEW BROWSE(this)
this.Br1.Top=2
this.Br1.Left=1
this.Br1.Width=40
this.Br1.Height=10
this.Br1.FieldWidth=10

ENDCLASS

DEFINE object syntax:

* Form definition
DEFINE BROWSE Br1 OF THIS;

PROPERTY;
Top 2, Left 1, Width 40,;
Height 10, FieldWidth 10

See Also
ShowHeading, ShowRecNo

Fill()
Inserts a specified value into one or more locations in an array object.

Property of class
ARRAY

Description
Use the Fill() method to insert a value into all or some elements of an array object. The
Fill() method is similar to the AFILL() function.

C h a p t e r 8 , P r o p e r t i e s 811

F i r s t+
+
+
+
+
F

Fill() accepts three parameters:

• <exp> is the value to insert into the array object.

• <start expN> is the element number at which to begin inserting <exp>. (If you know
only the elements subscripts, you can use Element() to determine the element
number.) If you do not specify <start expN>, dBASE begins at the first element in the
array object.

• <count expN> is the number of elements in which to insert <exp>, starting at element
<start expN>. If you do not specify <count expN>, Fill() inserts <exp> from
<start expN> to the last element in the Array. If you specify a value for <count expN>,
also specify a value for <start expN>.

If you do not specify <start expN> or <count expN>, Fill() fills all elements with <exp>.

Example

Use Animals.Dbf
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT(),3)
* Fill all elements with the string "Test" and
* display contents in Command window results pane
ObjArr.Fill("Test")
FOR i=1 TO RECCOUNT()
? ObjArr[i,1],ObjArr[i,2], ObjArr[i,3]
NEXT i

See Also
AFILL(), Dir(), Element(), Fields(), Subscript()

First
Determines which object is the first to get focus when its parent form is opened.

Property of class
FORM

Data type
Object reference

Description
Use the First property to reference the object that gets focus initially when you open a
form. First is a read-only property.

When a form holds two or more objects that users can select, the user can move from
object to object by pressing Tab or Shift+Tab. The order in which focus moves from object
to object is known as the tabbing order. The object reference variable contained in First
references the object at the beginning of the tabbing order.

812 L a n g u a g e R e f e r e n c e

F i r s t I n d e x

For more information on object reference variables, see Chapter 10 in the Programmer's
Guide.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS Entryform OF FORM

this.view="Company.DBF"
this.Fld1 = NEW Entryfield(this)
this.Fld1.Top = 3
this.Fld1.Left = 1
this.Fld1.Width=20
this.Fld1.Datalink = "Company->Company"
this.Fld2 = NEW Entryfield(this)
this.Fld2.Top = 5
this.Fld2.Left = 1
this.Fld2.Datalink = "Company->State_Prov"
this.Fld2.Before = this.First

ENDCLASS

DEFINE object syntax:

DEFINE Entryfield Company OF THIS;
Property Datalink "Company->Company",;
WIDTH 20, Top 3, Left 1

DEFINE Entryfield State OF THIS;
Property Datalink "Company->State_Prov",;
Before this.First, Top 5, Left 1

See Also
ActiveControl, _curobj, BEFORE, NextObj, SetFocus()

FirstIndex
Returns the subscript character string for an element of an associated array.

Property of class
ASSOCARRAY

Description
Use FirstIndex when you want to step through the elements in an associated array
object, starting from the first element in the array. Once you have issued FirstIndex and
are positioned on the first element, use NextIndex() to step through the elements in
order.

C h a p t e r 8 , P r o p e r t i e s 813

F o c u s B i t m a p+
+
+
+
+
F

Note Elements in associated array objects are not necessarily stored in the order in which you
add them to an array. This means you can't assume that the value returned by
FirstIndex will be consistent, or that it will return the first item you added to the array.

For more information, see CLASS ASSOCARRAY.

Example
The following example creates an associated array and displays its subscripts and
contents.

aa = NEW ASSOCARRAY()
aa["San Francisco"] = "49ers"
aa["Los Angeles"] = "Rams"
x = aa.FirstIndex
DO WHILE .NOT. EMPTY(x)

? x, aa[x] && display element subscript and contents
x = aa.NextIndex(x) && 'increments' index pointer

ENDDO

See Also
IsIndex(), NextIndex()

FocusBitmap
Specifies the graphic image to display in a pushbutton when the pushbutton has focus.

Property of class
PUSHBUTTON

Data type
Character

Default
The default for FocusBitmap is an empty string.

Description
Use FocusBitmap to indicate visually when a pushbutton is selected.

The FocusBitmap setting can take one of two forms:

1 RESOURCE <resource id> <dll name> specifies a bitmap resource and the DLL file that
holds it. (A DLL file is a precompiled library of external routines and resources
written in non-dBASE languages such as C and Pascal.) You can obtain the resource
ID with a resource editor such as Resource Workshop.

2 FILENAME <filename> specifies a bitmap file (which usually has the file-name
extension .BMP).

If you specify a character string with Text and an image with FocusBitmap, the image is
displayed with the character string when the pushbutton has focus.

814 L a n g u a g e R e f e r e n c e

F o l l o w

Note You can select a bitmap file with the Choose Bitmap dialog box. To access the Choose
Bitmap dialog box, click the Tool button next to the FocusBitmap item in the Inspector.

Example
See DownBitmap for an example of FocusBitmap.

See Also
DEFINE, DisabledBitmap, DownBitmap, Enabled, UpBitmap

Follow
Determines if the display in a browse object follows a record to its new index order
when a key field value is changed.

Property of class
BROWSE

Data type
Logical

Default
The default for Follow is true (.T.).

Description
Set Follow to true (.T.) to prevent the apparent disappearance of a record in a browse
object when the records are in indexed order and the user changes a value in a key field.

When records are in indexed order, changing a key field value in a record changes the
position of the record in the table. In a browse object, the changed record might
disappear from the display view.

Example
NEW operator syntax:

this.Br1 = NEW BROWSE(this)
this.Br1.Alias="Contact"
this.Br1.Fields="CompCode,Contact"
this.Follow=.F.
this.Br1.Top=4
this.Br1.Left=3
this.Br1.Width=32
this.Br1.Height=12

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS;
PROPERTY;
Top 4, Left 3, Width 32, Height 12,;

C h a p t e r 8 , P r o p e r t i e s 815

F o n t B o l d+
+
+
+
+
F

Alias "Contact", Follow .F.,;
Fields "CompCode, Contact"

See Also
Modify

FontBold
Determines if an object displays characters in bold type.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX,
PUSHBUTTON, RADIOBUTTON, RECTANGLE, SPINBOX, TABBOX, TEXT

Data type
Logical

Default
The default for FontBold is false (.F.) for all classes except EDITOR, ENTRYFIELD,
PUSHBUTTON, RADIOBUTTON, SPINBOX, and TEXT.

Description
Use FontBold when you want to draw attention to text in an object prompt or text in an
entry area.

For example, when you set FontBold property of a check box to true (.T.), the check box
prompt is displayed in bold type. When you set the FontBold property of an entry field
to true, the text in the entry field is displayed in bold type.

Example
See FontName for an example of FontBold.

See Also
FontItalic, FontName, FontSize, FontStrikeOut, FontUnderline

FontItalic
Determines if an object displays characters in italic type.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX,
PUSHBUTTON, RADIOBUTTON, RECTANGLE, SPINBOX, TABBOX, TEXT

816 L a n g u a g e R e f e r e n c e

F o n t N a m e

Data type
Logical

Default
The default for FontItalic is false (.F.).

Description
Use FontItalic when you want to give emphasis to text in an object prompt or text in an
entry area.

For example, when you set the FontItalic property of a check box to true (.T.), the
prompt is displayed in italic type. When you set the FontItalic property of an entry field
to true, the text in the entry field is displayed in italic type.

Example
See FontName for an example of FontItalic.

See Also
FontBold, FontName, FontSize, FontStrikeOut, FontUnderline

FontName
Determines which font is applied to characters displayed in an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX,
PUSHBUTTON, RADIOBUTTON, RECTANGLE, SPINBOX, TABBOX, TEXT

Data type
Character

Default
The default for FontName is MS Sans Serif.

Description
Use FontName to determine the visual appearance of characters in an object. For
example, you can display characters in Arial format by inserting "Arial" into the Name
property of a text object.

If the font you specify with FontName is not installed in your Windows environment,
dBASE uses the default font, MS Sans Serif.

Note You can select a font with the Font dialog box, which displays all installed fonts. To
access the Font dialog box, click on the Tool button next to the FontName item in the
Inspector. You can also open the Font dialog box with the GETFONT() function.

C h a p t e r 8 , P r o p e r t i e s 817

F o n t S i z e+
+
+
+
+
F

Example
NEW operator syntax:

Code = NEW ENTRYFIELD(this)
Code.Top = 5
Code.Left = 20
Code.Datalink = "Contact->CompCode"
Code.Height = 2
Code.FontBold = .T.
Code.FontSize = 12.00
Code.FontName = "Arial"
Code.FontItalic = .T

DEFINE object syntax:

DEFINE ENTRYFIELD Code OF THIS;
Property;

Top 5, Left 20
Datalink "Contact->CompCode",;
Height 2,;
FontBold .T.,;
FontSize 12.00,;
FontName "Arial",;
FontItalic .T.

See Also
FontBold, FontItalic, FontSize, FontStrikeOut, FontUnderline, ScaleFontName

FontSize
Specifies the size of text characters in an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX,
PUSHBUTTON, RADIOBUTTON, RECTANGLE, SPINBOX, TABBOX, TEXT

Data type
Numeric

Description
Use FontSize to adjust the size of characters displayed in an object. Character size is
given in point size; the higher the point size, the larger the characters in the font.

Example
NEW operator syntax:

this.Txt2 =NEW Text(this)
this.Txt2.Top = 5
this.Txt2.Left = 0

818 L a n g u a g e R e f e r e n c e

F o n t S t r i k e O u t

this.Txt2.Alignment = 4
this.Txt2.Text = "is here in '94"
this.Txt2.Height = 2
this.Txt2.Width = 50
this.Txt2.FontSize = 16

DEFINE object syntax:

DEFINE TEXT Txt2 OF THIS AT 5,4;
PROPERTY;

Alignment 4,;
Text "is here in '94",;
Height 2,;
Width 50,;
FontSize 16

See Also
FontBold, FontItalic, FontName, FontStrikeOut, FontUnderline, ScaleFontSize

FontStrikeOut
Determines if an object displays characters in strikeout type.

Property of class
CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX, PUSHBUTTON,
RADIOBUTTON, RECTANGLE, SPINBOX, TABBOX, TEXT

Data type
Logical

Default
The default for FontStrikeOut is false (.F.).

Description
Use FontStrikeOut when you want to draw a line through text in an object.

For example, when you set the FontStrikeOut property of a check box to true (.T.), the
check box prompt is displayed in strikeout type. When you set the FontStrikeOut
property of an entry field to true, the text in the entry field is displayed in strikeout type.

Example
NEW operator syntax:

LOCAL f
f=NEW StrkOut()
f.OPEN()
CLASS StrkOut OF FORM

this.ETF1 = NEW ENTRYFIELD(this)
this.ETF1.Top = 2

C h a p t e r 8 , P r o p e r t i e s 819

F o n t U n d e r l i n e+
+
+
+
+
F

this.ETF1.Left = 16
this.ETF1.Width=6
this.ETF1.Value = SPACE(6)
this.ETF1.FontStrikeOut=.T.

ENDCLASS

DEFINE object syntax:

* Form definition
DEFINE ENTRYFIELD ETF1 OF THIS;

PROPERTY Top 2, Left 16, Width 6,;
Value SPACE(6), FontStrikeOut .T.

See Also
FontBold, FontItalic, FontName, FontSize, FontUnderline

FontUnderline
Determines if an object displays characters in underlined type.

Property of class
CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX, PUSHBUTTON,
RADIOBUTTON, RECTANGLE, SPINBOX, TABBOX, TEXT

Data type
Logical

Default
The default for FontUnderline is false (.F.).

Description
Use FontUnderline when you want to underscore text in an object prompt or text in an
entry area.

For example, when you set a the FontUnderline property of a check box to true (.T.), the
check box prompt is underlined. When you set the FontUnderline property of an entry
field to true, the text in the entry field is underlined.

Example
See FontName for an example of FontUnderline.

See Also
FontBold, FontItalic, FontName, FontSize, FontStrikeOut

820 L a n g u a g e R e f e r e n c e

F u n c t i o n

Function
Formats text displayed in an object.

Property of class
ENTRYFIELD, SPINBOX, TEXT

Data type
Character

Default
The default for Function is an empty string.

Description
The argument you give to Function consists of one or more function symbols, which
should not be separated by spaces, commas, or other characters.

dBASE recognizes the following function symbols:

Example
See DataLink for an example of Function.

(Encloses negative numbers in parentheses.
! Converts letters to uppercase.
^ Displays numbers in exponential form.
$ Inserts a dollar sign or the symbol defined with SET CURRENCY TO instead of leading spaces.
A Restricts entry to alphabetic characters.
B Left-aligns a numeric entry.
C Displays CR (credit) after a positive number.
D Displays and accepts entry of a date in the current SET DATE format.
E Displays and accepts entry of a date in European (DD/MD/YY) format.
I Centers the entry.
J Right-aligns the entry.

L Displays numbers with leading zeros.
M Sequentially displays predefined options each time the user presses SpaceBar.

Specify the options by listing them (separated with commas) after @M.
R Inserts literal characters into the display without including them in the field.
S<n> Limits the width of the display to <n> characters and horizontally scrolls the characters within it in

<n> columns. <n> must be a positive integer.
T Removes leading and trailing spaces from character values.

V<n> Wraps a character string within a width specified by <n>. The width is measured in inches
multiplied by 10 (for example, an <n> value of 15.5 is equivalent to 1.55 inches).

X Displays DB (debit) after a negative number.
Z Displays zeros as a blanks.

C h a p t e r 8 , P r o p e r t i e s 821

G e t T e x t E x t e n t ()+
+
+
+
+
+
G

See Also
DEFINE, Picture

GetTextExtent()
Returns the length of a text string in units based on the font size of a parent form.

Property of class
TEXT

Description
Use GetTextExtent() to calculate a value for the Width property of a text object. For
example, you need to adjust the Width setting of a text object each time a new character
string is displayed, if the new string exceeds the current width of the text object.

GetTextExtent() compares the font of the text object with the font of the parent form and
returns the width of the character string in character units. The width of a character unit
is equal to the width of a column in the coordinate plane of the parent form. Placing the
character unit width of the string in the Width property of the text object resizes the
object to contain the string.

GetTextExtent() accepts the <text string> parameter, a character string.

Example
This example creates a form with two long entry fields. On leaving the second field,
OnLostFocus property calls a procedure that initializes a string variable from the
concatenation of both entry fields. The procedure then uses GetTextExtent() to return
the length of the string (according to the current font) so that the width property of text
object T1 can be changed to accommodate the concatenated string:

LOCAL f
f = NEW XFORM()
f.Open()

CLASS XFORM OF FORM
this.HelpFile = ""
this.Top = 2.76
this.Height = 11.71
this.Text = "Form"
this.Left = 53.00
this.Width = 41.80
this.HelpId = ""

DEFINE ENTRYFIELD FNAME OF THIS;
PROPERTY;

Top 3.00,;
Height 1.00,;
Value " ",;
Border .T.,;
Left 6.00,;
Width 20.00

822 L a n g u a g e R e f e r e n c e

G r o u p

DEFINE ENTRYFIELD LNAME OF THIS;
PROPERTY;

OnLostFocus CLASS::XLENGTH,;
Top 5.00,;
Height 1.00,;
Value " ",;
Border .T.,;
Left 6.00,;
Width 20.00

DEFINE TEXT T1 OF THIS;
PROPERTY;

Top 7.00,;
Height 1.00,;
Border .F.,;
Text "First and Last Name",;
ColorNormal "N/W",;
Left 6.00,;
Width 25.00

PROCEDURE xLength
ExtString =;
TRIM(form.Fname.Value)+" "+form.Lname.Value

See Also
FontName, FontSize, LEN(), ScaleFontName, ScaleFontSize

Group
Starts an object group in the tabbing order of the parent form.

Property of class
CHECKBOX, PUSHBUTTON, RADIOBUTTON

Data type
Logical

Description
Use Group to determine if an object is part of a group within which the user can move
focus with the arrow keys.

When you use Group to group two or more radio buttons together, the user can select
only one button from the group at a time. This is useful when you want the user to select
one out of several values.

To create a group, set the Group property of the first object in the group to true. For all
other objects that belong to the group, set Group to false (.F.). The next object with a
Group setting of true begins another group.

C h a p t e r 8 , P r o p e r t i e s 823

G r o w ()+
+
+
+
+
+
G

Example
NEW operator syntax:

Answer=""
Yes = New RADIOBUTTON(this)
Yes.Text = "Yes"
Yes.DataLink = "Answer"
Yes.Group = .F.
No = New RADIOBUTTON(this)
No.Top = 5
No.Text = "No"
No.DataLink = "Answer"

DEFINE object syntax:

Answer=""
DEFINE RADIOBUTTON Yes OF THIS;

PROPERTY;
Text "Yes",;
DataLink "Answer",;
Group .F.

DEFINE RADIOBUTTON No OF THIS;
PROPERTY;

Top 5,;
Text "No",;
DataLink "Answer"

See Also
_curobj, ID, TabStop

Grow()
Adds elements to an array object.

Property of class
ARRAY

Description
Use the Grow() method to add an element, row, or column to an array object. All new
elements have the value logical .F. The Grow() method is similar to the AGROW()
function.

Grow() accepts one required <expN> parameter, which can be 1 or 2. If you attempt to
assign a value other than 1 or 2, dBASE displays the error message "Invalid function
argument".

• If you set <expN> to 1, Grow() adds a single element to a one-dimensional array
object or a row to a two-dimensional array object.

824 L a n g u a g e R e f e r e n c e

H e a d e r 3 D

• If you set <expN> to 2, Grow() adds a column to the array object. If the array object is
one-dimensional, Grow() makes it two-dimensional; it moves existing elements to
the first column and fills the second column with .F. values.

If the array object is two-dimensional, Grow() adds a column at the end of the array
and fills the new elements with .F. values.

See Insert() for another way to add elements to an array object. To add multiple rows or
columns to an array object, use Resize().

Example

USE Customer.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT())
* Fill 1-dimensional array with values
* from Name field of Customer.DBF
GO TOP
FOR i=1 TO RECCOUNT()

ObjArr[i]=Customer->Name
SKIP

NEXT i
* Use GROW() to add a second column to the
* existing array and enter Ytd_Sales data
* in new second column.
ObjArr.GROW(2)
GO TOP
FOR i=1 TO RECCOUNT()

ObjArr[i,2]=Customer->Ytd_Sales
SKIP

NEXT i
* Display Contents of 2-dimensional array
FOR i=1 TO RECCOUNT()
? ObjArr[i,1], ObjArr[i,2]
NEXT i

See Also
AGROW(), Insert(), Resize()

Header3D
Specifies whether the top and left portions of a browse object appear raised (three-
dimensional).

Property of class
BROWSE

Data type
Logical

C h a p t e r 8 , P r o p e r t i e s 825

H e a d e r 3 D+
+
+
+
+
+
+
H

Default
The default for Header3D is true (.T.).

Description
Header3D affects the appearance of the top and left sides of a browse window when
ShowHeading and/or ShowRecNo (respectively) are true. If Header3D is true, the
Heading and Record number appear three-dimensional, making it easier to see that they
don't represent values contained in the table. If ShowHeading and ShowRecNo are
false, Header3D has no effect.

Example
The following example shows a form with browse windows having three different
display formats.

f=NEW FORM()
f.View = "CLIENTS.DBF"
f.Width=80
b = NEW BROWSE(f)

b.Alias = "clients"
b.ColorNormal = "WindowText/Window"
b.colorHighLight = "WindowText/Window"
b.Header3D=.T. && 3D top and left

b3d = NEW BROWSE(f)
b3d.Alias = "clients"
b3d.Left = b.left+20
b3d.ColorNormal = "WindowText/Window"
b3d.colorHighLight = "WindowText/Window"
b3d.Header3D=.F. && Normal top and left

b3da = NEW BROWSE(f)
b3da.Alias = "clients"
b3da.Left = b3d.left+20
b3da.ColorNormal = "WindowText/Window"
b3da.colorHighLight = "WindowText/Window"
b3da.Header3D=.T. && Ignored because
b3da.ShowRecNo=.F. && ShowRecNo and
b3da.ShowHeading=.F. && ShowHeading are false

f.open()

See Also
ShowHeading, ShowRecNo

826 L a n g u a g e R e f e r e n c e

H e i g h t

Height
Determines the height of an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Numeric

Description
Use the Height property in combination with the Width property to adjust the size of an
object. The setting you give to Height determines the distance from the base of an object
to its top.

Each unit of the value you assign to Height is the average height of characters in the
active font of the parent form. For example, if you set the Height property of an editor
object to 17.5, the editor object is 17.5 characters high.

Since Height accepts integer or non-integer values, you can adjust the height of an object
to a high degree of precision.

Example
NEW operator syntax:

Code = NEW ENTRYFIELD(this)
Code.Top = 5
Code.Left = 1
Code.Datalink = "Contact->CompCode"
Code.Height = 2
Code.Left = 20
* Because the default height for an
* entryfield is 1.17, setting height to
* 2 in this example merely offers additional
* space around the field value.

DEFINE object syntax:

DEFINE ENTRYFIELD Code OF THIS AT 5,1;
Property;

Datalink "CompCode",;
Height 2, Left 20

See Also
Left, Top, Width

C h a p t e r 8 , P r o p e r t i e s 827

H e l p F i l e+
+
+
+
+
+
+
H

HelpFile
Identifies a Windows Help file (.HLP) that contains context-sensitive Help topics.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX,
MENU, PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Data type
Character

Default
The default for HelpFile is an empty string.

Description
Use HelpFile in combination with HelpID to connect an object to a topic in a Windows
Help file. For example, HelpID might identify a Help topic that gives instructions on
using a combo box.

Enter the name of the Help file into the HelpFile property, and set the HelpID property
to the Help keyword of the topic. When the user gives focus to the object and presses F1,
Windows Help opens the Help file and displays the Help topic.

For information on creating Help files and Help topics, see your Windows
documentation.

Note Any subroutine you specify with the OnHelp property overrides the values you assign
to HelpFile and HelpID.

Example
NEW operator syntax:

Company = NEW ENTRYFIELD(this)
Company.Top = 3
Company.Left = 1
Company.Datalink = "Company"
Company.HelpFile = "DataEntr"
Company.HelpId = 100

DEFINE object syntax:

DEFINE ENTRYFIELD Company OF THIS AT 3,1;
Property;

Datalink "Company",;
HelpFile "DataEntr",;
HelpId 100

See Also
HELP, HelpID, OnHelp, SET HELP

828 L a n g u a g e R e f e r e n c e

H e l p I D

HelpID
Specifies the Help keyword of a Windows Help topic.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX,
MENU, PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Data type
Character

Default
The default for HelpID is an empty string.

Description
Use HelpID in combination with HelpFile to connect an object with a topic in a
Windows Help file (.HLP). For example, HelpFile might contain a Help topic that gives
instructions on using the objects in a form.

Set the HelpID property to the Help keyword of the topic and enter the name of the
Help file into the HelpFile property. When the user gives focus to the object and presses
F1, the Help system opens the Help file and displays the Help topic.

Note Any subroutine you specify with the OnHelp property overrides the values you assign
to HelpID and HelpFile.

Example
See HelpFile for an example of HelpId.

See Also
HELP, HelpFile, OnHelp, SET HELP

hWnd
Specifies an object handle.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Numeric

C h a p t e r 8 , P r o p e r t i e s 829

I c o n+
+
+
+
+
+
+
+
I

Default
There is no default for hWnd; Windows generates the value automatically.

Description
An object handle is a unique numeric value that Windows generates automatically for
each object you create. External functions written in other languages such as C, Pascal,
or ASM use this handle to identify the object. For example, you can pass the object
handle of a form as a parameter to an external function, perhaps allowing the function
to open or close the form.

Such external functions are held in external C libraries such as Windows API or a
customized DLL file you create yourself. For more information on external functions
and on DLL files, see EXTERN, LOAD DLL, and Chapter 25 in the Programmer's Guide.

The hWnd property is read-only.

Example

DEFINE FORM Entry FROM 2,2 TO 30,70
DEFINE ENTRYFIELD Company OF THIS;

PROPERTY;
Datalink "Company"
FormHandle=Entry.hwnd && e.g. 14260
CompanyHandle=Entry.Company.hwnd && e.g. 14348

See Also
EXTERN, LOAD DLL

Icon
Specifies an icon format file (.ICO) or resource that displays when a form is minimized.

Property of class
FORM

Data type
Character

Default
The default for Icon is an empty string.

Description
Use Icon to specify an image to be used when a form is minimized. You can specify a
resource (generally from a .DLL or .VBX file) or a file name.

830 L a n g u a g e R e f e r e n c e

I D

Example
In the following example, the form is minimized when it opens, and an icon from a
specified DLL file is displayed:

f = NEW Form()
f.Icon = "RESOURCE #20 C:\MYAPP\MYAPP.DLL"
f.WindowState=1

See Also
Minimize, WindowState

ID
Identifies an object with a numeric value.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, IMAGE, LISTBOX,
MENU, OLE, POPUP, PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX,
TABBOX, TEXT

Data type
Numeric

Default
The default for ID is –1.

Description
Use ID to give a unique identifier to an object.

For example, when the user chooses a pushbutton, the form is submitted, executing the
subroutine or codeblock you assigned with the OnSelection property or the ON
SELECTION FORM command. The value in ID is passed to the subroutine or
codeblock, identifying the pushbutton that submitted the form.

If you wish, you can use the ID value to make branching decisions based on which
object executed the OnSelection subroutine. To be sure that ID correctly identifies the
object it represents, give it a unique value for each object.

The ID values for menu objects are generated by dBASE automatically, and are read-
only.

Example
NEW operator syntax:

Date = NEW ENTRYFIELD(this)
Date.Datalink = "Clients->Baldate"
Date.Id = 10

C h a p t e r 8 , P r o p e r t i e s 831

I n i t i a t e ()+
+
+
+
+
+
+
+
I

DEFINE object syntax:

DEFINE ENTRYFIELD Date OF THIS;
PROPERTY Datalink "Clients->Baldate",;
ID 10

See Also
OnSelection, ON SELECTION FORM, PARAMETERS

Initiate()
Starts a conversation with an external application.

Property of class
DDELINK

Description
Use Initiate() to open a channel of communication (known as a DDE link) between
dBASE and an external Windows application.

Use a DDE link to exchange data and instructions with another application. For
example, a data-exchange program might use Initiate() to establish a link with Quattro
Pro for Windows and open one of its spreadsheet files, then copy data from the
spreadsheet to a dBASE table.

If the external application is not already running when you execute Initiate(), dBASE
tries to start the application before establishing the DDE link. If the attempt is
unsuccessful, Initiate() returns a value of false (.F.).

Initiate() requires two parameters:

• <server> is the main executable file of the server application.
• <topic> is the name of the data file to open in the server session.

To terminate the DDE link, use the Terminate() method.

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.Initiate("QPW","Demo.WB1");

&& Attempt to establish a link with a;
QPW server

See Also
Advise(), Execute(), OnNewValue, Peek(), Poke(), Server, Terminate(), TimeOut,
Topic, Unadvise()

832 L a n g u a g e R e f e r e n c e

I n s e r t ()

Insert()
Inserts a .F. value into an element in a one-dimensional array object, or inserts .F. values
into a row or column of elements in a two-dimensional array object.

Property of class
ARRAY

Description
Use Insert() to insert .F. values into selected elements in an array object without
changing the size of the array object. Insert() does the following:

• Inserts an element in a one-dimensional array, or inserts a row or column in a two-
dimensional array

• Moves all remaining elements toward the end of the array (down if a row is inserted,
to the right if an element or column is inserted)

• Inserts .F. values in the newly created element or elements

Insert() accepts two parameters:

• <position expN> specifies the number of the element at which to insert the new
element when the array object is one-dimensional. Specifies a row or column when
the array object is two-dimensional.

• 2 determines if Insert() inserts a row or a column in a two-dimensional array object.
If you specify 2, it inserts a row; otherwise, it inserts a column. Insert() ignores this
parameter if the array object is one-dimensional.

For information about inserting elements by moving remaining elements toward the
beginning of the array, see Delete(). For information about replacing elements without
moving remaining elements, see Fill(). To change a one-dimensional array to two-
dimensional, use Grow() or Resize().

Example

USE Animals.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT(),3)
* Fill array with values from Animals.DBF
COPY TO ARRAY ObjArr FIELDS Name, Area, Weight
* Use Insert() to replace weight values in
* column 3 with .F..
ObjArr.Insert(3,2)
* Display results to Command window results pane
FOR i=1 TO RECCOUNT()
? ObjArr[i,1],ObjArr[i,2],ObjArr[i,3]
NEXT i

See Also
Add(), Delete(), Resize()

C h a p t e r 8 , P r o p e r t i e s 833

I s I n d e x ()+
+
+
+
+
+
+
+
I

IsIndex()
Returns a logical value that indicates if the specified character expression is a subscript
of an element in an associated array.

Property of class
ASSOCARRAY

Description
Use IsIndex(<expC>) to determine if an associated array contains an element with a
subscript of <expC>. This might be useful if you want to add an item to the array only if
it is not already there, or if you want to remove an element that has been added to the
array.

Example
The following example creates an associated array based on an existing table. It then
uses IsIndex() to see if a specific element is in the array. If it isn't, it adds it to the array,
and to the table that was used to populate the array.

aa = NEW ASSOCARRAY()
USE customer
SCAN

cName = TRIM(name)
aa[cName] = city && Create element for each record

ENDSCAN
NewName = "Just Testing"
NewCity = "Anywhere"
IF aa.IsIndex(NewName) = .F. && No matching element in array

APPEND BLANK
REPL name WITH NewName, ;

city WITH NewCity && Add record to table
aa[NewName] = NewCity && Add element to array

ENDIF

See Also
FirstIndex, NextIndex(), RemoveKey()

IsRecordChanged()
Returns a logical value that indicates whether the current record in the append buffer,
created with BeginAppend(), has been modified.

Property of class
Form

Data type
Logical

834 L a n g u a g e R e f e r e n c e

K e y

Description
Use IsRecordChanged() to determine whether a user has modified a new record created
with BeginAppend(). For example, if a user tries to close the new record without saving
it, check for IsRecordChanged(). If it's true, you can prompt the user to confirm they
want to abandon their changes.

Example
See BeginAppend() for an example.

See Also
AbandonRecord(), BeginAppend(), SaveRecord()

Key
Executes a subroutine when the user enters a keystroke in an entry field.

Property of class
ENTRYFIELD

Data type
Function pointer or codeblock

Description
Use Key to evaluate and modify each character that the user enters in an entry field or
browse object. For example, an entry field that accepts passwords might convert each
character the user inputs to an asterisk.

Like other event properties, the Key property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

Key sends two parameters to its subroutine:

• <nChar> is the ASCII decimal number of the new character entered by the user.
• <nPosition> is the position of the new character in the string.

For example, when the third character entered in an entry field is "a", the <nChar>
parameter is 97 and the <nPosition> parameter is 3.

The subroutine you create for Key must return a numeric value or a logical value. A
numeric value is interpreted as the ASCII decimal number of a character, which
automatically replaces the character input by the user. A logical value is interpreted as a
decision to accept or reject the character input by the user.

C h a p t e r 8 , P r o p e r t i e s 835

K e y b o a r d ()+
+
+
+
+
+
+
+
+
+
K

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the Key item in the Inspector.

Example
NEW operator syntax:

Company = NEW ENTRYFIELD(this)
Company.Datalink = "Company->Company"
Company.Key = AnyKey
* A Function Anykey will be called
FUNCTION ANYKEY(nChar, nPosition)
* process the keystroke
RETURN nChar + 1

DEFINE object syntax:

DEFINE ENTRYFIELD Company OF THIS;
PROPERTY;

Datalink "Company->Company",;
Key AnyKey

See Also
OnChange, OnGotFocus

Keyboard()
Passes a character string to an edit control, simulating typed user input.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Keyboard() when you want to pass text to an entry control as if the user had typed
it in manually. For example, if you are writing a tutorial, you can ask the user for
information, then use Keyboard() to demonstrate where the user would type the
information in an editor object on a form.

Example

The following example illustrates using Keyboard() to simulate the typing of text in an
entry field.

f = new KBDFORM()
f.Open()
CLASS KBDFORM OF FORM

this.Text = "Form"
this.Top = 0
this.PageNo = 0
this.Width = 80

836 L a n g u a g e R e f e r e n c e

L e f t

this.ColorNormal = "BtnText/BtnFace"
this.OnOpen = CLASS::FORM_ONOPEN
DEFINE ENTRYFIELD EF1 OF THIS;

PROPERTY;
Border .T.,;
ColorHighLight "WINDOWTEXT/WINDOW",;
Top 6,;
PageNo 1,;
Width 30,;
ColorNormal "WINDOWTEXT/WINDOW",;
Height 1,;
Left 12

Procedure Form_OnOpen
this.ef1.setfocus()
this.ef1.keyboard("Type your name here")

ENDCLASS

See Also
Paste()

Left
Specifies the position of the left border of an object relative to its parent form, or the
position of a form relative to the desktop.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE, LINE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX

Data type
Numeric

Description
Use the Left property in combination with the Top property to position an object in a
form or position a form in the desktop. (The Top property specifies the position of the
top border.) Left and Top accept integer or non-integer values.

If you use the FROM or AT clauses of the DEFINE command and specify a value for the
Left property, dBASE positions the object with the Left property.

Each unit of the value you assign to Left is the average width of characters in the active
font of the parent form. For example, if you set the Left property of a line to 20, the left
end of the line is positioned 20 characters from the left edge of the form.

Example
See Height for an example of Left.

C h a p t e r 8 , P r o p e r t i e s 837

L i n e N o+
+
+
+
+
+
+
+
+
+
+
L

See Also
CLASS FORM, Bottom, Height, Right, ScaleFontName, ScaleFontSize, Top, Width

LineNo
Sets the current line in an editor object.

Property of class
EDITOR

Data type
Numeric

Default
The default for LineNo is 1.

Description
Use LineNo to move the cursor to a specified line in an editor object.

When you move the cursor to a line, the cursor maintains its original column position if
the new line is long enough. If the line is not long enough, the cursor is placed at the end
of the line.

Example

LOCAL f
f=NEW AdjustEdit()
f.OPEN()
CLASS AdjustEdit OF EDITOR

 this.LineNo = 15 && Move cursor to 15th line.
ENDCLASS

See Also
Wrap

LinkFileName
Identifies which OLE document file (if any) is linked with the current OLE field when
that field is displayed in an OLE viewer.

Property of class
OLE

Data type
Character

838 L a n g u a g e R e f e r e n c e

L i n k F i l e N a m e

Default
The default for LinkFileName is an empty string.

Description
Use LinkFileName to identify which OLE document file is linked with the current OLE
field when that field is displayed in an OLE viewer.

An OLE viewer displays an OLE document (sometimes called an OLE object). An OLE
document can be a graphic image, a document created by a word processor, or any
other data object created by an external application. This external application is known
as the OLE server. For example, a bitmap file (.BMP) created in Paintbrush can be an OLE
document, and Paintbrush can be an OLE server, if you link the bitmap file to an OLE
field with the Cut and Paste Link commands of the Edit menu. LinkFileName contains
the name of this file.

LinkFileName is a read-only property.

Example
The following program creates a form that displays an OLE object and a pushbutton.
The OnClick subroutine of the pushbutton uses LinkFileName to display the name of
the document file in a message box.

LOCAL f
f = NEW XFORM()
f.Open()

CLASS XFORM OF FORM
this.HelpFile = ""
this.Top = 0.47
this.Height = 26.00
this.Text = "Form"
this.View = "PICTURES.QBE"
this.MousePointer = 1
this.Left = 23.00
this.Width = 101.20
this.HelpId = ""

DEFINE OLE OLE1 OF THIS;
PROPERTY;

DataLink "PICTURES->BITMAPOLE",;
Top 1.00,;
Height 21.00,;
Border .T.,;
Left 1.00,;
Width 99.00

DEFINE PUSHBUTTON BUTTON1 OF THIS;
PROPERTY;

Top 23.00,;
Height 2.00,;
OnClick CLASS::BUTTON1_ONCLICK,;
Text "Push me to get name of bitmap file.",;
ColorNormal "N/W",;
Default .T.,;

C h a p t e r 8 , P r o p e r t i e s 839

M a x i m i z e+
+
+
+
+
+
+
+
+
+
+
+
M

Left 36.00,;
Width 31.00

Procedure BUTTON1_OnClick
MSGBOX(form.OLE1.LinkFileName, "Here's the file...")

ENDCLASS

See Also
OleType, ServerName

Maximize
Determines if a form can be maximized.

Property of class
FORM

Data type
Logical

Default
The default for Maximize is true (.T.).

Description
Like other windows, a form normally has a Minimize button and a Maximize button at
the upper right corner. Choosing Minimize reduces the form to an icon, and choosing
Maximize expands the form to fill the work area of the desktop.

Setting the Maximize property to false (.F.) removes the Maximize button, preventing
the user from maximizing the form. This is useful when you want portions of the work
area to be visible at all times, as when other forms are open or when the user needs
access to the Command window.

Note When you set the MDI property of a form to true, the Maximize setting is ignored and
the user can always maximize the form.

Example
NEW operator syntax:

f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.MDI = .F.
this.Maximize = .F.
this.Minimize = .F.

ENDCLASS

840 L a n g u a g e R e f e r e n c e

M a x L e n g t h

DEFINE object syntax:

DEFINE FORM Entry FROM 1,1 TO 30,35;
Property;

MDI = .F.,;
Maximize .F.,;
Minimize .F.

See Also
MDI, Moveable, Minimize, Sizeable

MaxLength
Specifies the scrolling width of an entry field.

Property of class
ENTRYFIELD

Data type
Numeric

Description
Use MaxLength to set a limit on how many columns the user can scroll text to the left in
an entry field.

For example, the user can input data into an entry field even if it isn't linked to a field. It
might be necessary to limit the number of characters the user can input so the contents
of the entry field can be placed in a character field later. Setting the MaxLength property
to a number at or below the length of the field ensures that the user can't enter too long
of a string.

The columns are as wide as the average width of characters of the active font.

Example
NEW operator syntax:

Company = NEW ENTRYFIELD(this)
Company.Top = 3
Company.Left = 1
Company.Datalink = "Company"
Company.MaxLength = 10

DEFINE object syntax:

DEFINE ENTRYFIELD Company OF THIS;
AT 3,1;
Property;

Datalink "Company",;
MaxLength 10

C h a p t e r 8 , P r o p e r t i e s 841

M D I+
+
+
+
+
+
+
+
+
+
+
+
M

See Also
Function, Height, Picture, ScaleFontName, ScaleFontSize, Width

MDI
Determines if a form conforms to the Windows Multiple Document Interface (MDI)
standard.

Property of class
FORM

Data type
Logical

Default
The default for MDI is true (.T.).

Description
MDI (Multiple-Documents Interface) is a Windows feature that lets you open multiple
document windows within the application window. An application such as dBASE uses
MDI to manage multiple documents or multiple views of the same document within the
main application window. These views or documents appear in separate document
windows. If you want your form to appear as a document window, set MDI to true.

The following lists some of the characteristics of document windows:

• Like application windows, they are moveable and sizeable

• They are listed on the Windows menu even when they are active.

• They have a Control-menu box, Maximize and Minimize buttons, and a title bar that
contains the window name.

• When they are active, their menus replace the menus in the main menu bar. (When
the MDI property is false (.F.), the menus are displayed in the menu bar of the form
instead.)

When you set the MDI property to true:

• The form is a child of the application window.

• The Minimize setting is ignored, so the user can always minimize the form.

• The Maximize setting is ignored, so the user can always maximize the form.

• The Sizeable setting is ignored, so the user can always resize the form.

• The Moveable setting is ignored, so the user can always move the form.

• The SysMenu setting is ignored, so the Control menu (also known as the system menu)
is always accessible from the Control Menu box, a button at the upper left corner of a
form.

842 L a n g u a g e R e f e r e n c e

M e n u F i l e

• The shortcut keystroke that closes the form is Ctrl+F4 instead of Alt+F4; that is, Alt+F4
closes the application window, while Ctrl+F4 closes the form.

An MDI form is modeless by definition, since focus can be removed from it.
Consequently, you can't open an MDI form with the READMODAL() function or the
ReadModal() method.

For more information on MDI, consult your Windows documentation.

Example
NEW operator syntax:

LOCAL f
f = NEW EntryForm()
f.MDI = .F.
f.Open()

DEFINE object syntax:

DEFINE FORM EntryForm ;
Property MDI .F.

OPEN FORM EntryForm

See Also
CLASS FORM, Maximize, Menu, Minimize, Moveable, Sizeable, SysMenu

MenuFile
Assigns a predefined menu system to a form.

Property of class
FORM

Data type
Character

Default
The default for MenuFile is an empty string.

Description
Use MenuFile to specify a menu definition file (.MNU) for a form.

A menu definition file is a text file that contains dBASE code for generating menus.
dBASE displays the menus in the form or the Application window (depending on the
MDI setting) when you open the form.

Note You can create a menu definition file with the Menu Designer, which you access by
clicking the Tool button next to the MenuFile property in the Inspector.

C h a p t e r 8 , P r o p e r t i e s 843

M i n i m i z e+
+
+
+
+
+
+
+
+
+
+
+
M

Example
NEW operator syntax:

LOCAL f
f=NEW Equipmnt()
CLASS Equipmnt OF FORM

this.MDI = .F.
this.ColorNormal = "W/B"
this.Text = "Flight Equipment Management"
this.Width = 78.00
this.Height = 40.00
this.View = "Equipmnt.QBE"
this.MenuFile = "Equipmnt.MNU"

* See Equipmnt.WFM and Equipmnt.MNU on the
* DBASEWIN\SAMPLES directory.

DEFINE object syntax:

DEFINE FORM Equipmnt;
PROPERTY;
MDI .F.,;
ColorNormal "W/B",;
Width 78, Height 40,;
View "Equipmnt.QBE",;
MenuFile "Equipmnt.MNU"

See Also
CLASS MENU

Minimize
Determines if a form can be minimized.

Property of class
FORM

Data type
Logical

Default
The default for Minimize is true (.T.).

Description
Like other windows, a form normally has a Minimize button and a Maximize button at
the upper right corner. Choosing Minimize reduces the form to an icon, and choosing
Maximize expands the form to fill the work area of the desktop.

Setting the Minimize property to false (.F.) removes the Minimize button, preventing the
user from minimizing the form. This is useful when you want the form to be visible any

844 L a n g u a g e R e f e r e n c e

M o d e

time it is open, as when it contains objects or information that must be dealt with
immediately.

Note When you set the MDI property of a form to true, the Minimize setting is ignored and
the user can always minimize the form.

Example
See Maximize for an example of Minimize.

See Also
MDI, Moveable, Maximize, Sizeable

Mode
Specifies the format of a browse object.

Property of class
BROWSE

Data type
Numeric

Default
The default for Mode is 0 (Browse).

Description
Use Mode to determine how data is displayed in a browse object.

You can assign Mode one of three values:

If the Toggle property is true (.T.), the user can switch between all of these formats by
pressing F2.

Example
NEW operator syntax:

CompanyBrowse = NEW BROWSE(this)
CompanyBrowse.Top = 3
CompanyBrowse.Left = 1
CompanyBrowse.Height = 10
CompanyBrowse.Width = 59
CompanyBrowse.Alias = "Company"

Mode value Display format Shows

0 (Browse) Row-and-column display Multiple records
1 (Form Edit) Form layout Single record
2 (Columnar Edit) Single-column layout Single record

C h a p t e r 8 , P r o p e r t i e s 845

M o d i f y+
+
+
+
+
+
+
+
+
+
+
+
M

CompanyBrowse.Mode = 2
CompanyBrowse.Fields="Company,Ytd_Sales;

:H='Sales,Ytd'"

DEFINE object syntax:

DEFINE BROWSE CompanyBrowse OF THIS;
FROM 3,1 TO 13,60;

PROPERTY;
Alias "Company", Mode 2,;
Fields "Company,Ytd_Sales:H='Sales, Ytd'"

See Also
BROWSE, CLASS BROWSE, EDIT

Modify
Determines if the user can alter records in a browse or editor object.

Property of class
BROWSE, EDITOR

Data type
Logical

Default
The default for Modify is true (.T.).

Description
Set Modify to false (.F.) when you want to prevent users from changing records in a
browse object. For example, a card catalog program might manage records on books in a
library, and each record might hold a book description in a memo field. The program
could let users view the descriptions in a browse object, but prevent users from altering
them.

Example
NEW operator syntax:

this.Br1=NEW BROWSE(this)
this.Br1.Alias="Contact"
this.Br1.Modify=.F.
this.Br1.Top=4
this.Br1.Left=3
this.Br1.Width=32
this.Br1.Height=12

846 L a n g u a g e R e f e r e n c e

M o u s e P o i n t e r

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS;
PROPERTY;

Alias "Contact", Modify .F.,;
Top 4, Left 3, Width 32, Height 12

See Also
Append, Delete

MousePointer
Changes the appearance of the mouse pointer.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TEXT

Data type
Numeric

Default
The default for MousePointer is 0 (Default).

Description
Use MousePointer to provide a visual cue when the user moves the mouse pointer over
an object. For example, one pointer style might mean an object is disabled, while another
pointer style might mean the object is ready for input.

You can specify the following settings for MousePointer:

Example
NEW operator syntax:

0 (Default) N/A 6 (Size NESW)

1 (Arrow) 7 (Size S)

2 (Cross) 8 (Size NWSE)

3 (I-Beam) 9 (Size E)

4 (Icon) 10 (UpArrow)

5 (Size) 11 (Wait)

C h a p t e r 8 , P r o p e r t i e s 847

M o v e ()+
+
+
+
+
+
+
+
+
+
+
+
M

DEFINE BROWSE Br1 OF THIS
this.MousePointer=1
this.Br1.Top=4
this.Br1.Left=3
this.Br1.Width=32
this.Br1.Height=12

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS FROM 4,3 TO 16,35;
PROPERTY MousePointer 1

See Also
OnMouseMove

Move()
Repositions and resizes an object in its parent form.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, RADIOBUTTON, PUSHBUTTON, RECTANGLE, SCROLLBAR, SPINBOX,
TABBOX, TEXT

Description
Use the Move() method to change an objects position and dimensions.

Move() uses four parameters:

• <left column expN> sets the position of the left border, affecting the value in the Left
property.

• <top row expN> sets the position of the top border, affecting the value in the Top
property.

• <width expN> sets the width, affecting the value in the Width property.

• <height expN> sets the height, affecting the value in the Height property.

The units of distance you specify for Move() are based on the average width and height
of characters in the active font.

Example
NEW operator syntax:

this.Lb1 = NEW LISTBOX(THIS)
this.Lb1.DataSource="FIELD Animals->Name"
this.Lb1.Top=4
this.Lb1.Left=6
this.Lb1.Width=20
this.Lb1.Height=12
this.Lb1.OnRightMouseDown {;Form.Move(6,10,15,5)}

848 L a n g u a g e R e f e r e n c e

M o v e a b l e

DEFINE object syntax:

DEFINE LISTBOX LB1 OF THIS;
PROPERTY;

DataSource "FIELD Animals->Name",;
Top 4,;
Left 6,;
Width 20,;
Height 12,;
OnRightMouseDown {;Form.Move(6,10,15,5)}

See Also
Height, Left, ScaleFontName, ScaleFontSize, Top, Width

Moveable
Determines if a form can be moved with the mouse.

Property of class
FORM

Data type
Logical

Default
The default for Moveable is true (.T.).

Description
When you set the Moveable property of a form to true, the form has a title bar at the top.
The user can place the mouse over the title bar, hold the left mouse button down, and
drag the form to another location. A form can be moved only if it has a title bar.

When you set the MDI property of a form to true, the Moveable setting is ignored and
the user can always move the form.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.Moveable = .F.
ENDCLASS

C h a p t e r 8 , P r o p e r t i e s 849

M u l t i p l e+
+
+
+
+
+
+
+
+
+
+
+
M

DEFINE object syntax:

DEFINE FORM EntryForm;
Property Moveable .F.

OPEN FORM EntryForm

See Also
Left, Sizeable, Top

Multiple
Determines if more than one item in a list box can be selected.

Property of class
LISTBOX

Data type
Logical

Default
The default for Multiple is false (.F.).

Description
When you set the Multiple property to true (.T.), the user can choose any number of the
list box items (or none at all), and the list box is said to be multiple-choice. If you set
Multiple to false, the user can choose only one prompt from the list box.

Multiple-choice list boxes are useful for allowing the user to make several choices at
once. For example, a program written for a Human Resources department might allow
the user to select several job applicants for interviewing. This program could let the user
choose one or more applicants from a multiple-choice list box. (Each chosen prompt is
tagged with a checkmark.)

Note To evaluate which prompts were chosen, use LISTSELECTED() or Selected().

Example
NEW operator syntax:

LB1 = NEW LISTBOX(this)
LB1.DataSource = "FIELD COMPANY->COMPANY"
LB1.Multiple = .T.
LB1.OnRightMouseDown = Checked
* Multiple companies can be chosen

DEFINE object syntax:

DEFINE LISTBOX LB1 OF THIS;
PROPERTY;

DataSource "FIELD COMPANY->COMPANY",;
Multiple .T., OnRightMouseDown Checked

850 L a n g u a g e R e f e r e n c e

N a m e

PROCEDURE Checked
FOR i=1 TO Form.LB1.Count()

? Form.LB1.Selected(i)
NEXT i
RETURN

See Also
Count(), LISTSELECTED(), Selected()

Name
A read-only property that specifies the name of an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, IMAGE, LINE,
LISTBOX, MENU, OLE, PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX,
TABBOX, TEXT

Data type
Character

Default
The default for Name is the name dBASE assigns to the object when you create it. For
example, dBASE automatically assigns "BUTTON1" to the Name property of the first
pushbutton you create with the Form Designer.

Description
Use the Name property to name an object.

When you create an object with the DEFINE command, you specify a name for the
object with the <object name> parameter. For more information, see DEFINE.

When you create an object with the NEW operator, you can specify a name for the object
with the second (optional) parameter. For example, the following commands create a
form and an image object to display in it:

MyForm = NEW FORM()
MyImage = NEW IMAGE(MyForm, "OurImage")

The Name property of the new image object contains "OurImage".

Example
NEW operator syntax:

XXX = NEW LISTBOX(this)
XXX.DataSource = "FIELD COMPANY->Zip_P_Code"
XXX.Name = "ZipList"
* ZipList overrides XXX as the name of the object

DEFINE object syntax:

C h a p t e r 8 , P r o p e r t i e s 851

N e x t C o l ()+
+
+
+
+
+
+
+
+
+
+
+
+
N

DEFINE LISTBOX XXX OF THIS;
PROPERTY;

DataSource "FIELD COMPANY->ZIP",;
Name "ZipList"

See Also
DEFINE, ID

NextCol()
Returns the number of the next highest column position where an object can be placed
in a form.

Property of class
FORM

Description
Use NextCol() in combination with NextRow() to prevent the overlapping of objects in
a form. For example, if you create an entry field, NextCol() returns the coordinate of the
next available column and NextRow() returns the coordinate of the next available row.
You can place a new object at these coordinates without covering the entry field.

The column coordinates returned by NextCol() are as wide as the average width of
characters in the active font of the form.

Example

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm of FORM
DEFINE ENTRYFIELD Fname OF this;

PROPERTY;
Top 3, Left 2, Width 20,;
Value SPACE(20)

DEFINE ENTRYFIELD Lname OF this;
PROPERTY;
Top 5, Left 2, Width 20,;
Value SPACE(20)

* Use NextRow() and NextCol() to define a
* pushbutton adjacent to and 4 columns to
* the right of the entry field Lname.
DEFINE PUSHBUTTON PB1 OF this;

PROPERTY Text "Proceed",;
Top this.NextRow()-2,;
Left this.NextCol()+4,;
Width 10

ENDCLASS

852 L a n g u a g e R e f e r e n c e

N e x t I n d e x ()

See Also
COL(), NextRow(), ROW(), ScaleFontName, ScaleFontSize

NextIndex()
Returns the subscript of the next element in an associated array.

Property of class
ASSOCARRAY

Description
Use NextIndex() to step through the elements in an associated array object, starting
from the first element in the array. Generally, you'll use FirstIndex to position yourself
on the first element in the array, and then use NextIndex() to step through the elements
in order. NextIndex() requires one parameter: the index of the element of the array to
start from when looking for the next element.

Example
See FirstIndex for an example of NextIndex().

See Also
FirstIndex, IsIndex()

NextObj
Contains a reference to the object that follows the current object in the tabbing order of a
parent form.

Property of class
FORM

Data type
Object reference

Description
Use NextObj to reference the next object to receive input focus when the user presses
Tab.

Use NextObj in Valid subroutines to determine if validation is needed before moving to
the next object. For example, the following commands determine if the next object is a
Cancel pushbutton:

IF (MyForm.NextObj.Name = "Cancel")
 RETURN .T. && No validation is required.

ELSE

C h a p t e r 8 , P r o p e r t i e s 853

N e x t R o w ()+
+
+
+
+
+
+
+
+
+
+
+
+
N

 RETURN Validate() && Validation routine
ENDIF

Example
The following example uses ActiveControl and NextObj to return the name of the
current and next entry field objects when the right mouse is clicked on a form. This
would be useful on a form where entry fields had no accompanying text to identify the
fields:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS Entryform OF FORM

this.View="Company.DBF"
this.OnRightMouseDown={;Fcs="Current Field: " + ;

Form.ActiveControl.Name; Form.Txt1.Text=Fcs}
this.OnRightMouseUp={;Fcs2="Next Field: " + ;

Form.NextObj.Name; Form.Txt2.Text=Fcs2}
DEFINE ENTRYFIELD Company OF THIS;

PROPERTY Datalink "Company->Company",;
Top 3, Left 1, Width 20, Name "Company"

DEFINE ENTRYFIELD State OF THIS;
PROPERTY Datalink "Company->State_Prov",;
Top 5, Left 1, Name "State"

DEFINE TEXT Txt1 OF THIS;
PROPERTY Text " ",;
Top 8, Left 1, Width 25

DEFINE TEXT Txt2 OF THIS;
PROPERTY Text " ",;
Top 9, Left 1, Width 25

ENDCLASS

See Also
ActiveControl, _curobj, CUATab, First, SetFocus()

NextRow()
Returns the number of the next highest row position where an object can be placed in a
form.

Property of class
Form

Description
Use NextRow() in combination with NextCol() to prevent the overlapping of objects in
a form. For example, if you create an entry field, NextRow() returns the coordinate of
the next available row, and NextCol() returns the coordinate of the next available
column; you can place a new object at these coordinates without covering the entry
field.

854 L a n g u a g e R e f e r e n c e

N o t i f y ()

The row coordinates returned by NextRow() are as wide as the average line of
characters in the active font of the form.

Example
See NextCol() for an example of using NextRow().

See Also
COL(), NextRow(), ROW()

Notify()
Notifies a client application that a dBASE item was changed.

Property of class
DDETOPIC

Description
Use Notify() in a DDE server program to tell a client application that an item in the
dBASE server session was changed.

OnPoke subroutines often execute Notify() when an external application sends dBASE
a Poke request. For example, a Quattro Pro data-exchange application might use its
{POKE} command to send dBASE a value, causing the OnPoke subroutine to execute.
The OnPoke subroutine could insert the value into a field, then execute Notify() to
inform Quattro Pro that the field changed.

Notify() accepts one parameter, <item>. Use this parameter to tell the client application
which field, variable, or array element changed. For example, if an OnPoke subroutine
changed the value in a field named LASTNAME, the subroutine might execute the
following command:

MyDDETopic.Notify("LASTNAME")

The client application must establish a hot link before Notify() has an effect. For
information on hot links, see OnAdvise().

Example
See CLASS DDETOPIC for an example of using Notify().

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(),
TimeOut, Topic, Unadvise()

C h a p t e r 8 , P r o p e r t i e s 855

O l d S t y l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OldStyle
Determines if a check box or a radio button is displayed in the default Windows style or
in 3-D style.

Property of class
CHECKBOX, ENTRYFIELD, LISTBOX, RADIOBUTTON, RECTANGLE, SPINBOX,
TEXT

Data type
Logical

Default
The default for OldStyle is false (.F.).

Description
Use OldStyle to determine the appearance of an object. When you set OldStyle to true
(.T.), the object is displayed in Windows style; when you set OldStyle to false, the object
is displayed in 3-D style.

Example
NEW operator syntax:

CheckOld = NEW CHECKBOX(this)
CheckOld.Oldstyle = .T.

DEFINE object syntax:

DEFINE CHECKBOX CheckOld OF THIS;
Property;

Oldstyle .T.

See Also
PatternStyle, BorderStyle

OleType
Returns a number that reveals whether an OLE field is empty, contains an embedded
document, or contains a link to a document file.

Property of class
OLE

Data type
Character

856 L a n g u a g e R e f e r e n c e

O n A d v i s e

Default
The default for OleType is 0 (empty).

Description
Use OleType to determine whether an OLE field is empty, contains a link to a document
file, or contains an embedded document.

An OLE viewer displays an OLE document (sometimes called an OLE object). An OLE
document can be a graphic image, a document created by a word processor, or any
other data object created by an external application. This external application is known
as the OLE server. (The OLE server must have OLE capability.)

For example, a graphic image created in Paintbrush can be an OLE document, and
Paintbrush can be an OLE server, if you do one of the following:

• Embed the document (or a portion of it) in an OLE field with the Cut and Paste
commands of the Edit menu.

• Link the file containing the document to an OLE field with the Cut and Paste Link
commands of the Edit menu.

When the current OLE field is empty-that is, when it contains no embedded OLE
document and no link to an OLE document-OleType contains 0. When the OLE field
contains an embedded document, OleType contains 1. When the OLE field contains a
link to a document file, OleType contains 2.

OleType is a read-only property.

Example
See DoVerb() for an example of using OleType.

See Also
LinkFileName, ServerName

OnAdvise
Executes a subroutine when an external application requests a DDE hot link to an item
in a dBASE server topic.

Property of class
DDETOPIC

Data type
Function pointer or codeblock

Description
Use OnAdvise in a DDE server program to respond to a request for a hot link and to
determine which dBASE data item the link applies to. (A hot link lets you use the
Notify() method to tell the client when the item changes.)

C h a p t e r 8 , P r o p e r t i e s 857

O n A p p e n d+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnAdvise receives <item>, a parameter that identifies the dBASE data item. Your server
program can use this item for any purpose. For example, it might identify a dBASE field,
variable, or array element.

Item names are often held in tables or array objects when multiple hot links are
established. For example, a client application might request a hot link to a field, passing
the field name through the <item> parameter. Each time, the OnAdvise subroutine
could place the field name in an array object.

The OnPoke subroutine could search this array object each time a field is changed; if the
name of the changed field is found in the array object, the routine could execute
Notify().

Example
See CLASS DDETOPIC for an example of using OnAdvise property.

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(),
TimeOut, Topic, Unadvise()

OnAppend
Executes a subroutine when a record is added to a table.

Property of class
BROWSE, FORM

Data type
Function pointer or codeblock

Description
Use OnAppend to perform an action each time a new record is created.

OnAppend lets your application respond each time new information is added to a table.
For example, a browse object might use an OnAppend subroutine to set a logical field
named NEWFIELD to true (.T.) automatically each time the user adds a new record.

Example
NEW operator syntax:

Browser = NEW BROWSE(this)
Browser.text = "Sample for OnAppend"
Browser.OnAppend = DataCheck

DEFINE object syntax:

DEFINE BROWSE Browser OF THIS;
PROPERTY;
Text "Sample for OnAppend",;

858 L a n g u a g e R e f e r e n c e

O n C h a n g e

OnAppend DataCheck
PROCEDURE DataCheck
IF LEN(Client->Name) = 0

? "You must add a name"
ENDIF

See Also
OnChange, OnNavigate

OnChange
Executes a subroutine when the user changes the value displayed in an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, OLE,
RADIOBUTTON, SCROLLBAR, SPINBOX

Data type
Function pointer or codeblock

Description
Use OnChange to execute a routine when the user performs any of the following
actions:

• Changes a value in a field and moves to another row in a browse object
• Inserts or removes a checkmark in a check box
• Changes a value in an entry field
• Changes a value in the text box portion of a combo box or a spin box
• Selects a different radio button
• Moves the slider button in a scrollbar object

The OnChange subroutine of an OLE object executes each time the record pointer
moves from one record to another.

For example, an application might let the user change a customer's social security
number through an entry field. To verify the change, you can assign to the OnChange
property a function that displays a dialog box prompting the user to confirm the change.

Like other event properties, the OnChange property accepts a

• Function
• Procedure
• Codeblock

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

C h a p t e r 8 , P r o p e r t i e s 859

O n C h a r+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnChange item in the Inspector.

Example
NEW operator syntax:

Company = NEW EntryField(this)
Company.Top = 3
Company.Left = 1
Company.Datalink = "Company->Company"
Company.OnChange = ChkChg

DEFINE object syntax:

DEFINE EntryField Company OF THIS;
PROPERTY Top 3, Left 1, ;
DataLink "Company->Company",;
OnChange ChkChg

See Also
OnAppend, OnNavigate

OnChar
Executes a subroutine when a “printable” key or key combination is pressed while the
control has focus.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
If you have created a paintbox object to develop a custom edit control, use OnChar to
determine actions that should take place when the object has focus and the user presses
a key or key combination that can be printed. (To specify actions triggered by other
keys, see OnKeyDown.)

OnChar is similar to OnKeyDown. However, OnChar returns nothing for non-printable
keys, such as Shift or CapsLock, while OnKeyDown returns a value for any key pressed.

Three numeric parameters are passed to the OnChar event:

• <nChar>: the scan code of the key or key combination

• <nReptCnt>: the number of times the keystroke is repeated based on how long the
key is held down

• <nFlags>: a parameter used to specify if the Shift or Ctrl key was pressed

860 L a n g u a g e R e f e r e n c e

O n C h a r

(For more information on nFlags, see any of the On Mouse events, such as
OnLeftMouseDown.)

Example

local f
f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM

this.TopMost = .F.
this.Height = 8.7051
this.Text = "Sample"
this.Left = 47.166
this.Top = 3.2344
this.PageNo = 1
this.Width = 27
this.ColorNormal = "N/BTNFACE"
DEFINE RECTANGLE RECTANGLE1 OF THIS;

PROPERTY;
Height 5.5,;
Text "",;
Left 4.5,;
Border .T.,;
Top 1.5,;
PageNo 1,;
Width 19,;
ColorNormal "BTNTEXT/BTNFACE"

DEFINE PAINTBOX PAINTBOX1 OF THIS;
PROPERTY;

OnKeyDown CLASS::PAINTBOX1_ONKEYDOWN,;
OnChar CLASS::PAINTBOX1_ONCHAR,;
Height 5,;
OnPaint CLASS::PAINTBOX1_ONPAINT,;
Left 6,;
Top 2,;
PageNo 1,;
OnFormSize CLASS::PAINTBOX1_ONFORMSIZE,;
Width 17,;
OnKeyUp CLASS::PAINTBOX1_ONKEYUP,;
ColorNormal "BTNTEXT/BTNFACE"

Procedure PAINTBOX1_OnChar(nChar, nRepCnt, nFlags)
? "OnChar values:"
? nChar
? nRepCnt
? nFlags
?

RETURN

Procedure PAINTBOX1_OnFormSize(sizeType, width, height)
? "OnFormSize values:"
? sizeType
? width
? height
?

RETURN

C h a p t e r 8 , P r o p e r t i e s 861

O n C l i c k+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

Procedure PAINTBOX1_OnKeyDown(nChar, nRepCnt, nFlags)
? "OnKeyDown values:"
? nChar
? nRepCnt
? nFlags
?

RETURN

Procedure PAINTBOX1_OnKeyUp(nChar, nRepCnt, nFlags)
? "OnKeyUp values:"
? nChar
? nRepCnt
? nFlags
?

Return

Procedure PAINTBOX1_OnPaint
? "PaintBox painted!"
?

RETURN

ENDCLASS

See Also
Key, OnKeyDown, OnKeyUp, OnLeftMouseDown

OnClick
Executes a subroutine when the user chooses a pushbutton or a menu item.

Property of class
MENU, PUSHBUTTON

Data type
Function pointer or codeblock

Description
Use OnClick to assign an action to a pushbutton or a menu item. A Quit pushbutton, for
example, might have a function assigned to its OnClick property that terminates
program execution.

Like other event properties, the OnClick property accepts a

• Function
• Procedure
• Codeblock

862 L a n g u a g e R e f e r e n c e

O n C l o s e

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnClick item in the Inspector.

The subroutine specified by OnClick is executed only if

• the Enabled property of the pushbutton is true
• the When property of the pushbutton evaluates to true (.T.)

Example
NEW operator syntax:

Next = NEW PUSHBUTTON(this)
Next.Text = "Next Entry"
Next.OnClick = {;SKIP}

DEFINE object syntax:

DEFINE PUSHBUTTON Next OF THIS;
Property;

Text "Next Entry",;
Onclick {;SKIP}

See Also
OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown,
OnRightMouseUp, OnSelection

OnClose
Executes a subroutine when a form is closed.

Property of class
FORM, OLE

Data type
Function pointer or codeblock

Description
Use OnClose to perform an action automatically when a form is closed. For example, the
OnClose property might perform clean-up operations such as closing procedure files,
restoring settings, closing tables, and releasing objects.

Like other event properties, the OnClose property accepts a

• Function

C h a p t e r 8 , P r o p e r t i e s 863

O n E x e c u t e+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

• Procedure
• Codeblock

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

Before executing the OnClose subroutine, dBASE does the following:

1 Executes the Valid subroutine (if any) of the object that currently has input focus. If it
returns a value of false (.F.), the form does not close.

2 Executes the OnLostFocus subroutine (if any) of the object that currently has input
focus.

3 Executes the OnLostFocus subroutine (if any) of the form.

After dBASE executes the OnClose subroutine, it closes the form, its objects, and all its
child forms.

The OnClose subroutine of an OLE object executes when the parent form is closed.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnClose item in the Inspector.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.OnClose Cleanup && Function that closes;
tables and other program;

 elements
ENDCLASS

DEFINE object syntax:

DEFINE FORM EntryForm;
PROPERTY OnClose Cleanup

See Also
OnChange, OnClick, OnGotFocus, OnHelp, OnLostFocus, OnMove, OnOpen, OnSize

OnExecute
Executes a subroutine when a client application sends a command string to a DDE
server program.

Property of class
DDETOPIC

864 L a n g u a g e R e f e r e n c e

O n F o r m S i z e

Data type
Function pointer or codeblock

Description
Use the OnExecute property to perform an action when an external application (known
as the client application) sends a directive to Visual dBASE. This directive can be any
string of characters.

OnExecute receives <cmd>, a parameter that contains the directive sent by the client
application. If the directive is a dBASE command, the subroutine can execute it. For
example, the client application might send the character string "CLOSE DATABASES".
The subroutine could execute the command using the macro substitution function, as
with

&Cmd

In this case, the macro substitution function (&) makes dBASE treat the contents of Cmd
as a command instead of a character string.

If the directive is not a command, the subroutine can use it to make branching decisions.
For example, a stock trading routine might receive either of two character strings, "BUY"
or "SELL". The routine could use an IF...ELSE...ENDIF statement to execute one
procedure or another accordingly.

For more information on the DDETopic object class, see CLASS DDETOPIC and
Chapter 26 in the Programmer's Guide.

Example
See CLASS DDETOPIC for an example of using OnExecute property.

See Also
Advise(), Execute(), Initiate(), OnNewValue, OnPeek, OnPoke, Peek(), Poke(), Server,
Terminate(), TimeOut, Topic, Unadvise()

OnFormSize
Executes a subroutine whenever the parent form of a paintbox object is resized.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
OnFormSize is called whenever the parent form of a paintbox object is resized, restored,
or maximized. This lets you reposition or resize the object based on the form's new size.
For example, you could use OnFormSize to implement behavior similar to the Anchor

C h a p t e r 8 , P r o p e r t i e s 865

O n G o t F o c u s+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

property of the TABBOX class. keeping the bottom of the paintbox object positioned
near the bottom of the form.

OnFormSize is similar to OnPaint. However, OnPaint is triggered when the parent form
is opened and when items covering the paintbox object are moved away, while
OnFormSize is not.

Example
See OnChar for an example.

OnGotFocus
Executes a subroutine when an object receives focus.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX, OLE,
PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Data type
Function pointer or codeblock

Description
Use OnGotFocus to perform an action automatically each time an object is selected. For
example, a browse object that accesses sensitive information might use its OnGotFocus
property to display a dialog box that prompts for a password. If the user fails to enter
the correct password, focus could be given to another object.

Like other event properties, the OnGotFocus property accepts a

• Function
• Procedure
• Codeblock

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnGotFocus item in the Inspector.

OnGotFocus differs from When, which specifies a condition that must evaluate to
true (.T.) before an object can receive focus.

Example
NEW operator syntax:

Company = NEW ENTRYFIELD(this)
Company.Top = 3
Company.Left = 1

866 L a n g u a g e R e f e r e n c e

O n H e l p

Company.Datalink = "Company"
Company.OnGotFocus = GetReady

DEFINE object syntax:

DEFINE Entryfield Company OF THIS;
Property;
Top 3, Left 1,;
Datalink "Company",;
OnGotFocus GetReady

See Also
OnClick, OnClose, OnHelp, OnLostFocus, OnMove, OnOpen, OnSize

OnHelp
Executes a subroutine when the user presses F1 while an object has focus.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX,
MENU, PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Data type
Function pointer or codeblock

Description
Use OnHelp to execute a dBASE routine (instead of a Help topic in a Windows Help
file) when the user presses F1. For example, a Human Resources program might allow
users to search for employee names in a combo box. The OnHelp property could open a
dialog box explaining how to find names quickly by entering characters instead of
scrolling the combo box prompts.

Like other event properties, the OnChange property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnHelp item in the Inspector.

The subroutine you specify with OnHelp overrides the compiled Help specified in
HelpID and HelpFile.

C h a p t e r 8 , P r o p e r t i e s 867

O n I n i t M e n u+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

Example
NEW operator syntax:

Resume = New EDITOR(this)
Resume.Top = 3
Resume.Left = 1
Resume.OnHelp = EditHelp

DEFINE object syntax:

DEFINE EDITOR Resume OF THIS;
AT 3,1;
Property;

OnHelp EditHelp

See Also
HELP, HelpFile, OnChange, OnClick, OnClose, OnGotFocus, OnLostFocus, OnMove,
OnOpen, OnSize

OnInitMenu
Specifies code that executes when a menubar or popup is opened.

Property of class
MENUBAR, POPUP

Data type
Function pointer or codeblock

Description
OnInitMenu is called whenever a menubar or popup is invoked, and is processed before
the menubar's child menus or the popup is displayed.

You can use OnInitMenu to determine the status of menu items that will be displayed.
For example, use OnInitMenu to determine if the Enabled or Checked property of a
menu item should be true or false.

Example

Parameter FormObj
NEW SAMPLEMENU(FormObj,"Root")
CLASS SAMPLEMENU(FormObj,Name) OF MENUBAR(FormObj,Name)

this.OnInitMenu = {; ? "Menu opened!"}
DEFINE MENU FILE OF THIS;

PROPERTY;
Text "&File"
DEFINE MENU EXIT OF THIS.FILE;

PROPERTY;
Text "E&xit",;

868 L a n g u a g e R e f e r e n c e

O n K e y D o w n

OnClick {; Form.Close()}
ENDCLASS

See Also
Checked, Enabled

OnKeyDown
Executes a subroutine when any key or key combination is pressed while the control has
focus.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
If you have created a paintbox object to develop a custom edit control, use OnKeyDown
to determine actions that should take place when the object has focus and the user
presses any key or key combination. (To specify actions triggered by printable keys, see
OnChar.)

OnChar is similar to OnKeyDown. However, OnChar returns nothing for non-printable
keys, such as Shift or CapsLock, while OnKeyDown returns a value for any key pressed.

Three numeric parameters are passed to the OnKeyDown event:

• nChar - the scan code of the key or key combination

• nReptCnt - the number of times the keystroke is repeated based on how long the key
is held down

• nFlags - a parameter used to specify if the Shift or Ctrl key was pressed

(For more information on nFlags, see any of the On Mouse events, such as
OnLeftMouseDown.)

Example
See OnChar for an example.

See Also
Key, OnKeyDown, OnKeyUp, OnLeftMouseDown

C h a p t e r 8 , P r o p e r t i e s 869

O n K e y U p+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnKeyUp
Executes a subroutine when any key or key combination is released while the control
has focus.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
If you have created a paintbox object to develop a custom edit control, use OnKeyUp to
determine actions that should take place when the object has focus and the user releases
a key. (To specify actions triggered when the user presses a key, see OnKeyDown.)

Three numeric parameters are passed to the OnKeyup event:

• nChar - the scan code of the key or key combination

• nReptCnt - the number of times the keystroke is repeated based on how long the key
is held down

• nFlags - a parameter used to specify if the Shift or Ctrl key was pressed

(For more information on nFlags, see any of the On Mouse events, such as
OnLeftMouseUp.)

Example
See OnChar for an example

See Also
OnChar, OnKeyDown, OnLeftMouseUp

OnLeftDblClick
Executes a subroutine when the user double-clicks a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, MENU, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Function pointer or codeblock

870 L a n g u a g e R e f e r e n c e

O n L e f t D b l C l i c k

Description
Use OnLeftDblClick to perform an action when the user double-clicks with the left
mouse button. OnLeftDblClick can also trap Shift, Ctrl, middle mouse button, or right
mouse button presses if they occur at the same time the user double-clicks the button.

OnLeftDblClick passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user double-clicked the button.

• <Col> is the horizontal position of the mouse when the user double-clicked the
button.

• <Row> is the vertical position of the mouse when the user double-clicked the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false (.F.), depending on whether a particular bit
in the value is on (1) or off (0). You give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while double-clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 1) both return true, Ctrl and right mouse button were pressed during the
event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the double-
click event occurred, letting you make decisions accordingly. For example, the
OnLeftDblClick property of a form might execute different actions, depending on
where the double-click event occurred in the form. The <Col> and <Row> coordinates
are expressed in character units.

Like other event properties, the OnLeftDblClick property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Simultaneous keypress Second parameter

Right mouse button 1
Shift 2
Ctrl 3
Middle mouse button 4

C h a p t e r 8 , P r o p e r t i e s 871

O n L e f t M o u s e D o w n+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click the Tool button next to the
OnLeftDblClick item in the Inspector.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm
f.OPEN()
CLASS EntryForm OF FORM

this.OnLeftDblClick = SelectEntry
ENDCLASS

DEFINE object syntax:

DEFINE FORM EntryForm;
Property OnLeftDblClick SelectEntry

See Also
BITSET(), OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown,
OnRightMouseUp

OnLeftMouseDown
Executes a subroutine when the user presses the left mouse button while the pointer is
over a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, MENU, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnLeftMouseDown to perform an action when the user presses the left mouse
button. OnLeftMouseDown can also trap Shift, Ctrl, middle mouse button, or right mouse
button presses if they occur at the same time the user presses the button.

OnLeftMouseDown passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user pressed the button.

• <Col> is the horizontal position of the mouse when the user pressed the button.

• <Row> is the vertical position of the mouse when the user pressed the button.

872 L a n g u a g e R e f e r e n c e

O n L e f t M o u s e D o w n

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false (.F.), depending on whether a particular bit
in the value is on (1) or off (0). You give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 1) both return true, Ctrl and the right mouse button were pressed during
the event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the click
event occurred, letting you make decisions accordingly. For example, the
OnLeftMouseDown property of a form might execute different actions, depending on
where the click event occurred in the form. The <Col> and <Row> coordinates are
expressed in character units.

Like other event properties, the OnLeftMouseDown property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click the Tool button next to the
OnLeftMouseDown item in the Inspector.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.OnLeftMouseDown = OkToMove
this.OnLeftMouseUp = StopMove

ENDCLASS

Simultaneous keypress Second parameter

Right mouse button 1
Shift 2
Ctrl 3
Middle mouse button 4

C h a p t e r 8 , P r o p e r t i e s 873

O n L e f t M o u s e U p+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

DEFINE object syntax:

DEFINE FORM EntryForm;
PROPERTY OnLeftMouseDown OkToMove,;

OnLeftMouseUp StopMove
OPEN FORM EntryForm

See Also
BITSET(), OnLeftDblClick, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown,
OnRightMouseUp

OnLeftMouseUp
Executes a subroutine when the user releases the left mouse button while the pointer is
over a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, MENU, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnLeftMouseUp to perform an action when the user releases the left mouse button.
OnLeftMouseUp can also trap Shift, Ctrl, middle mouse button, or right mouse button
presses if they occur at the same time the user releases the button.

OnLeftMouseUp passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user released the button.

• <Col> is the horizontal position of the mouse when the user released the button.

• <Row> is the vertical position of the mouse when the user released the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false (.F.), depending on whether a particular bit
in the value is on (1) or off (0). You give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

874 L a n g u a g e R e f e r e n c e

O n L e f t M o u s e U p

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 1) both return true, Ctrl and the right mouse button were pressed during
the event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the
upward-click event occurred, letting you make decisions accordingly. For example, the
OnLeftMouseUp property of a form might execute different actions, depending on
where the left upward-click event occurred in the form. The <Col> and <Row>
coordinates are expressed in character units.

Like other event properties, the OnLeftMouseUp property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnLeftMouseUp item in the Inspector.

Example
See OnLeftMouseDown for an example of OnLeftMouseUp.

See Also
BITSET(), OnLeftDblClick, OnLeftMouseDown, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown,
OnRightMouseUp

Simultaneous keypress Second parameter

Right mouse button 1
Shift key 2
Ctrl key 3
Middle mouse button 4

C h a p t e r 8 , P r o p e r t i e s 875

O n L o s t F o c u s+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnLostFocus
Executes a subroutine when focus is removed from an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX,
PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Data type
Function pointer or codeblock

Description
Use OnLostFocus to perform an action automatically when an object loses focus. For
example, an entry field might provide access to an important table field in which a valid
entry must be made. When the user attempts to move focus to another object, the
OnLostFocus property could present a dialog box containing the confirmation prompt
"Are you sure?" with two pushbuttons labeled Yes and Edit Again.

Like other event properties, the OnLostFocus property accepts a

• Function
• Procedure
• Codeblock

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnLostFocus item in the Inspector.

OnLostFocus differs from Valid, which specifies a condition that must evaluate to true
(.T.) before the object can lose focus.

Example
NEW operator syntax:

Spin1 = NEW SPINBOX(this)
Spin1.Datalink = "TaxRate"
Spin1.Top = 2
Spin1.Left = 4
Spin1.Height = 2
Spin1.OnLostFocus = Recompute
* Recompute is a FUNCTION that performs an
* action and returns .T. or some value.

876 L a n g u a g e R e f e r e n c e

O n M i d d l e D b l C l i c k

DEFINE object syntax:

DEFINE SPINBOX Spin1 OF THIS;
PROPERTY Datalink "Taxrate",;
Top 2, Left 4, Height 2,;
OnLostFocus Recompute

See Also
OnChange, OnClick, OnClose, OnGotFocus, OnHelp, OnMove, OnOpen, OnSize

OnMiddleDblClick
Executes a subroutine when the user double-clicks with the middle mouse button while
the pointer is on a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, MENU, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnMiddleDblClick to perform an action when the user double-clicks with the
middle mouse button. OnMiddleDblClick can also trap Shift, Ctrl, left mouse button, or
right mouse button presses if they occur at the same time the user double-clicks the
button.

OnMiddleDblClick passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user double-clicked the button.

• <Col> is the horizontal position of the mouse when the user double-clicked the
button.

• <Row> is the vertical position of the mouse when the user double-clicked the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false (.F.), depending on whether a particular bit
in the value is on (1) or off (0). You give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

C h a p t e r 8 , P r o p e r t i e s 877

O n M i d d l e D b l C l i c k+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 0) both return true, Ctrl and the left mouse button were pressed during the
event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the middle
double-click event occurred, letting you make decisions accordingly. For example, the
OnMiddleDblClick property of a form might execute different actions, depending on
where the double-click event occurred in the form. The <Col> and <Row> coordinates
are expressed in character units.

Like other event properties, the OnMiddleDblClick property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnMiddleDblClick item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnMiddleDblClick = AnimalKingdom

* AnimalKingdom is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

Simultaneous keypress Second parameter

Left mouse button 0
Right mouse button 1
Shift 2
Ctrl 3

878 L a n g u a g e R e f e r e n c e

O n M i d d l e M o u s e D o w n

DEFINE object syntax:

DEFINE FORM Trips;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18
OnMiddleDblClick AnimalKingdom

OPEN FORM Trips

See Also
BITSET(), OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown,
OnRightMouseUp

OnMiddleMouseDown
Executes a subroutine when the user presses the middle mouse button while the pointer
is over a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, MENU, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnMiddleMouseDown to perform an action when the user presses the middle
mouse button. OnMiddleMouseDown can also trap Shift, Ctrl, left mouse button, or right
mouse button presses if they occur at the same time the user presses the button.

OnMiddleMouseDown passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user pressed the button.

• <Col> is the horizontal position of the mouse when the user pressed the button.
• <Row> is the vertical position of the mouse when the user pressed the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false (.F.), depending on whether a particular bit
in the value is on (1) or off (0). You give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

C h a p t e r 8 , P r o p e r t i e s 879

O n M i d d l e M o u s e D o w n+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 0) both return true, Ctrl and the left mouse button were pressed during the
event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the middle
click event occurred, letting you make decisions accordingly. For example, the
OnMiddleMouseDown property of a form might execute different actions, depending
on where the middle click event occurred in the form. The <Col> and <Row>
coordinates are expressed in character units.

Like other event properties, the OnMiddleMouseDown property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnMiddleMouseDown item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnMiddleMouseDown = AnimalKingdom

* AnimalKingdom is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

Simultaneous keypress Second parameter

Left mouse button 0
Right mouse button 1
Shift 2
Ctrl 3

880 L a n g u a g e R e f e r e n c e

O n M i d d l e M o u s e U p

DEFINE object syntax:

DEFINE FORM Trips FROM 2,2 TO 20,40;
PROPERTY Text "Trip Schedule",;
OnMiddleMouseDown AnimalKingdom

OPEN FORM Trips

See Also
BITSET(), OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown, OnRightMouseUp

OnMiddleMouseUp
Executes a subroutine when the user releases the middle mouse button while the
pointer is over a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, MENU, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnMiddleMouseUp to perform an action when the user releases the middle mouse
button. OnMiddleMouseUp can also trap Shift, Ctrl, left mouse button, or right mouse
button presses if they occur at the same time the user releases the button.

OnMiddleMouseUp passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user released the button.

• <Col> is the horizontal position of the mouse when the user released the button.
• <Row> is the vertical position of the mouse when the user released the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false, depending on whether a particular bit in
the value is on (1) or off (0). You give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

C h a p t e r 8 , P r o p e r t i e s 881

O n M i d d l e M o u s e U p+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 0) both return true, Ctrl and the left mouse button were pressed during the
event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the middle
upward-click event occurred, letting you make decisions accordingly. For example, the
OnMiddleMouseUp property form might execute different actions, depending on
where the middle upward-click event occurred in the form. The <Col> and <Row>
coordinates are expressed in character units.

Like other event properties, the OnMiddleMouseUp property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnMiddleMouseUp item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnMiddleMouseUp = CostSched

* CostSked is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

Simultaneous keypress Second parameter

Left mouse button 0
Right mouse button 1
Shift key 2
Ctrl key 3

882 L a n g u a g e R e f e r e n c e

O n M o u s e M o v e

DEFINE object syntax:

DEFINE FORM Trips;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnMiddleMouseUp CostSched

OPEN FORM Trips

See Also
BITSET(), OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnRightDblClick, OnRightMouseDown, OnRightMouseUp

OnMouseMove
Executes a subroutine when the user moves the mouse in a form.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR, SPINBOX,
TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnMove to perform actions automatically when the user moves the mouse.

Like other event properties, the OnMouseMove property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

OnMouseMove passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which keys and mouse buttons were
pressed while the user moved the mouse. You can interpret this value with the
BITSET() function, which examines individual bits in numeric values.

• <Col> is the horizontal position of the mouse after the move.

• <Row> is the vertical position of the mouse after the move.

The <Col> and <Row> parameters reveal the new position, letting you make decisions
accordingly. For example, when the user moves the mouse to a restricted region of a
form, the OnMouseMove subroutine might use <Col> and <Row> to detect the action

C h a p t e r 8 , P r o p e r t i e s 883

O n M o u s e M o v e+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

and display a warning dialog box. The <Col> and <Row> coordinates are expressed in
character units.

For more information on interpreting the <Flags> parameter, see the mouse event
properties (such as OnLeftMouseDown and OnRightMouseDown).

Notes You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click the Tool button next to the
OnMouseMove item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnMouseMove = CostList

* CostList is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnMouseMove CostList

OPEN FORM Trips

See Also
OnClick, OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown,
OnRightMouseUp

884 L a n g u a g e R e f e r e n c e

O n M o v e

OnMove
Executes a subroutine after a form is opened and after the user moves the form.

Property of class
FORM, TABBOX

Data type
Function pointer or codeblock

Description
Use OnMove to perform actions automatically when a form is opened or moved.

Like other event properties, the OnMove property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

OnMove passes two parameters to its subroutine:

• <Left> is the new horizontal position of the upper left corner.
• <Top> is the new vertical position of the upper right corner.

Use the Left and Top parameters to make branching decisions. For example, when the
user moves a form over another form, the OnMove subroutine of the moved form might
use Left and Top to calculate a new position for the obscured form.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnMove item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnRightClick = {;Form.Move(10,10,20,10)}
this.OnMove = ShowCost

* ShowCost is a FUNCTION that performs
* an action and returns .T. or some value.

C h a p t e r 8 , P r o p e r t i e s 885

O n N a v i g a t e+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnRightClick {;Form.Move(10,10,20,10)},;
OnMove ShowCost

OPEN FORM Trips

See Also
OnChange, OnClick, OnClose OnGotFocus, OnHelp, OnLeftMouseDown,
OnLostFocus, OnOpen, OnSize

OnNavigate
Executes a subroutine when the record pointer in a table is moved.

Property of class
BROWSE, FORM

Data type
Function pointer or codeblock

Description
Use OnNavigate to make your application respond each time the user moves from one
record to another.

OnNavigate lets you detect the user's movements through a table. For example, a
browse object might use an OnNavigate subroutine to log user activity; each time the
user moves from one record to another, the subroutine could store the record number in
an array object or in another table.

Example
NEW operator syntax:

LOCAL f
f = NEW XFORM()
f.Open()

CLASS XFORM OF FORM
this.HelpFile = ""
this.Top = 5.71
this.Height = 15.82
this.Text = "Form"
this.Left = 39.00
this.Width = 72.60
this.HelpId = ""

886 L a n g u a g e R e f e r e n c e

O n N e w V a l u e

DEFINE BROWSE BROWSE1 OF THIS;
PROPERTY;

OnNavigate {;?Compcode+SPACE(5)+Contact},;
Top 3.00,;
Height 10.00,;
FontBold .F.,;
ColorNormal "N/W",;
Fields "CompCode, Contact",;
Left 7.00,;
Width 59.00

ENDCLASS

DEFINE object syntax:

USE Contact
SET PRINTER ON
DEFINE FORM Brws FROM 1,1 TO 15,40
DEFINE BROWSE Br1 OF Brws;

PROPERTY Alias "Contact",;
Height 15, Fields "CompCode, Contact",;
Top 1, Left 1, Width 40, Height 15,;
OnNavigate {;? Compcode+SPACE(5)+Contact}

OPEN FORM Brws

See Also
OnAppend, OnChange

OnNewValue
Executes a subroutine when a hot-linked item in a DDE server document changes.

Property of class
DDELINK

Data type
Function pointer or codeblock

Description
Use OnNewValue to perform an action when a hot-linked server item is changed. A hot
link, which you create with the Advise() method, tells the server to notify dBASE when
the item changes.

A server document is a file you open in an external application. For example, a data-
exchange application might start a session in Quattro Pro for Windows and open one of
its spreadsheet files (the server document). You can establish hot links to one or more
cells in the spreadsheet with Advise(), then use OnNewValue to specify a codeblock
that executes each time one of the cells is changed.

C h a p t e r 8 , P r o p e r t i e s 887

O n O p e n+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnNewValue receives two parameters:

• <item> identifies the server item written to. It can specify the hot-linked item, such as
a field in a table or a cell in a spreadsheet. For example, "A:H3" specifies cell H3 of
Page A in a Quattro Pro spreadsheet file.

• <value> is the new value of the hot-linked server item.

The codeblock can use these parameters to evaluate the change and make decisions
accordingly.

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.OnNewValue = Valuehandler && Codeblock or function pointer
LinkObj.Initiate("QPW","Demo.WB1")
LinkObj.Advise("A:A1") && Notified when cell A:A1 changes

See Also
Advise(), Execute(), Initiate(), Peek(), Poke(), Server, Terminate(), TimeOut, Topic,
Unadvise()

OnOpen
Executes a subroutine when a form is opened.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE, LINE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnOpen to execute an action when a form is opened.

The OnOpen subroutine of an object executes whenever the parent form is opened. The
OnOpen subroutine of a form executes any time the form itself is opened.

Like other event properties, the OnOpen property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

888 L a n g u a g e R e f e r e n c e

O n P a i n t

Notes You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnOpen item in the Inspector.

Any subroutine you assign to the OnMove property of the form also executes when the
form is opened.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnOpen = FltSched

* FltSched is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips FROM 2,2 TO 20,40;
PROPERTY Text "Trip Schedule",;
OnOpen FltSched

OPEN FORM Trips

See Also
OnClose, OnGotFocus, OnLostFocus, OnMove, OnSize

OnPaint
Executes a subroutine whenever a paintbox object needs to be redrawn.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
OnPaint is called whenever a paintbox object needs to be redrawn. Events that trigger
OnPaint include:
• the parent form is opened
• the parent form is resized

C h a p t e r 8 , P r o p e r t i e s 889

O n P e e k+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

• a minimized parent form is restored or maximized
• a window or object which has been covering the paintbox object is moved away

Example
See OnChar for an example.

See Also
OnFormSize

OnPeek
Executes a subroutine when a client application tries to read an item from a DDE server
application.

Property of class
DDETOPIC

Data type
Function pointer or codeblock

Description
Use the OnPeek property to send a value to a client application when the client
application makes a Peek request.

OnPeek receives <item>, a parameter that identifies the dBASE data item that the client
application wants to read.

Use the RETURN command to send the requested item to the client. For example, a
Quattro Pro for Windows application might execute a {PEEK} command, sending a field
name through <item>. The OnPoke subroutine could use RETURN to send the field
contents to the client, as with

RETURN &Item

In this case, the macro substitution function (&) makes dBASE treat the contents of Item
as a field name instead of a character string, so the contents of the field are sent to the
client.

For more information on the DDETopic object class, see CLASS DDETOPIC and
Chapter 26 in the Programmer's Guide.

Example
See CLASS DDETOPIC for an example of using OnPeek property.

See Also
Advise(), Execute(), Initiate(), OnNewValue, OnPoke, Peek(), Poke(), Server,
Terminate(), TimeOut, Topic, Unadvise()

890 L a n g u a g e R e f e r e n c e

O n P o k e

OnPoke
Executes a subroutine when a client application attempts to insert a value into a DDE
server item.

Property of class
DDETOPIC

Data type
Function pointer or codeblock

Description
Use the OnPoke property to receive a value from a client application and insert it in a
data element when the client application makes a Poke request.

OnPoke receives two parameters:

• <item> Identifies the data item in which the value is inserted. This item can be any
string.

• <value> Identifies the value to insert in the data item.

For example, a client application might send a field name and a value to put in the field.
The OnPoke subroutine might insert the value in the field using the REPLACE
command and the macro substitution function, as with:

REPLACE &Item WITH Value

In this case, the macro substitution function (&) makes dBASE treat the contents of Item
as a field name instead of a character string.

For more information on the DDETopic object class, see CLASS DDETOPIC and
Chapter 26 in the Programmer's Guide.

Note If a client established a hot link before sending the data, you can execute the Notify()
method from the OnPoke subroutine, informing the client application that a change
occurred. For information on hot links, see OnAdvise().

Example
See CLASS DDETOPIC for an example of using OnPoke property.

See Also
Advise(), Execute(), Initiate(), OnNewValue, OnPeek, Peek(), Poke(), Server,
Terminate(), TimeOut, Topic, Unadvise()

C h a p t e r 8 , P r o p e r t i e s 891

O n R i g h t D b l C l i c k+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnRightDblClick
Executes a subroutine when the user double-clicks with the right mouse button while
the pointer is on a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR, SPINBOX,
TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnRightDblClick to perform an action when the user double-clicks with the right
mouse button. OnRightDblClick can also trap Shift, Ctrl, left mouse button, or middle
mouse button presses if they occur at the same time the user double-clicks the button.

OnRightDblClick passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user double-clicked the button.

• <Col> is the horizontal position of the mouse when the user double-clicked the
button.

• <Row> is the vertical position of the mouse when the user double-clicked the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false, depending on whether a particular bit in
the value is on (1) or off (0). Give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 0) both return true, Ctrl and the left mouse button were pressed during the
event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

Simultaneous keypress Second parameter

Left mouse button 0
Shift 2
Ctrl 3
Middle mouse button 4

892 L a n g u a g e R e f e r e n c e

O n R i g h t D b l C l i c k

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the right
double-click event occurred, letting you make decisions accordingly. For example, the
OnRightDblClick property of a form might execute different actions, depending on
where the right double-click event occurred in the form. The <Col> and <Row>
coordinates are expressed in character units.

Like other event properties, the OnRightDblClick property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnRightDblClick item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnRightDblClick = AnimalKingdom

* AnimalKingdom is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnRightDblClick AnimalKingdom

OPEN FORM Trips

See Also
BITSET(), OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightMouseDown, OnRightMouseUp

C h a p t e r 8 , P r o p e r t i e s 893

O n R i g h t M o u s e D o w n+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnRightMouseDown
Executes a subroutine when the user presses the right mouse button while the pointer is
on a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR, SPINBOX,
TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnRightMouseDown to perform an action when the user presses the right mouse
button. OnRightMouseDown can also trap Shift, Ctrl, left mouse button, or middle mouse
button presses if they occur at the same time the user presses the button.

OnRightMouseDown passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user pressed the button.

• <Col> is the horizontal position of the mouse when the user pressed the button.

• <Row> is the vertical position of the mouse when the user pressed the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false, depending on whether a particular bit in
the value is on (1) or off (0). You give BITSET() two parameters:

• The <Flags> value itself
• The bit in <Flags> to evaluate

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 0) both return true, Ctrl and the left mouse button were pressed during the
event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

Simultaneous keypress Second parameter

Left mouse button 0
Shift 2

Ctrl 3
Middle mouse button 4

894 L a n g u a g e R e f e r e n c e

O n R i g h t M o u s e D o w n

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the right
click event occurred, letting you make decisions accordingly. For example, the
OnRightMouseDown property of a form might execute different actions, depending on
where the right click event occurred in the form. The <Col> and <Row> coordinates are
expressed in character units.

Like other event properties, the OnRightMouseDown property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnRightMouseDown item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnRightMouseDown = AnimalKingdom

* AnimalKingdom is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips ;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnRightMouseDown AnimalKingdom

OPEN FORM Trips

See Also
BITSET(), OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseUp

C h a p t e r 8 , P r o p e r t i e s 895

O n R i g h t M o u s e U p+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnRightMouseUp
Executes a subroutine when the user releases the right mouse button while the pointer is
on a form or an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE,
LISTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR, SPINBOX,
TABBOX, TEXT

Data type
Function pointer or codeblock

Description
Use OnRightMouseUp to perform an action when the user releases the right mouse
button. OnRightMouseUp can also trap Shift, Ctrl, left mouse button, or middle mouse
button presses if they occur at the same time the user releases the button.

OnRightMouseUp passes three parameters to its subroutine:

• <Flags> is a single-byte value that tells you which other keys and mouse buttons were
pressed when the user released the button.

• <Col> is the horizontal position of the mouse when the user released the button.
• <Row> is the vertical position of the mouse when the user released the button.

<Flags> parameter If you want, you can use the Flags parameter with the BITSET()
function to detect different key and mouse button combinations. BITSET() evaluates a
numeric value and returns true (.T.) or false (.F.), depending on whether a particular bit
in the value is on (1) or off (0). Give BITSET() two parameters:

• The <Flags> value itself.
• The bit in <Flags> to evaluate.

The values you can pass to BITSET() through the second parameter are as follows:

For example, to determine if the user pressed Shift while clicking the object, use
BITSET(Flags, 2). If the user did, BITSET() returns true. If BITSET(Flags, 3) and
BITSET(Flags, 0) both return true, Ctrl and the left mouse button were pressed during the
event. You can use such information in IF...ELSE...ENDIF or DO CASE...ENDCASE
statements to assign different actions to different key and mouse button combinations.

<Col> and <Row> parameters The <Col> and <Row> parameters indicate where the
upward-right click event occurred, letting you make decisions accordingly. For

Simultaneous keypress Second parameter

Left mouse button 0
Shift 2
Ctrl 3
Middle mouse button 4

896 L a n g u a g e R e f e r e n c e

O n R i g h t M o u s e U p

example, the OnRightMouseUp property of a form might execute different actions,
depending on where the upward-right click event occurred in the form. The <Col> and
<Row> coordinates are expressed in character units.

Like other event properties, the OnRightMouseUp property accepts:

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling subroutines, see Chapter 14 in the Programmer's
Guide.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnRightMouseUp item in the Inspector.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnRightMouseUp = AnimalKingdom

* AnimalKingdom is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips ;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnRightMouseUp AnimalKingdom

OPEN FORM Trips

See Also
BITSET(), OnLeftDblClick, OnLeftMouseDown, OnLeftMouseUp, OnMiddleDblClick,
OnMiddleMouseDown, OnMiddleMouseUp, OnRightDblClick, OnRightMouseDown

C h a p t e r 8 , P r o p e r t i e s 897

O n S e l C h a n g e+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnSelChange
Executes a subroutine when the highlight is moved from one prompt to another in a list
box.

Property of class
LISTBOX, TABBOX

Data type
Function pointer or codeblock

Description
Use OnSelChange to execute a response each time a new list box prompt is selected.

OnSelChange lets you detect the user's movements through a list box. For example, a list
box might use an OnSelChange subroutine to log the user's activity; the subroutine
could store the prompt number (the current CurSel value) in a table each time the user
moves from prompt to prompt.

Example
NEW operator syntax:

USE Contact
SET PRINTER TO FILE Record.Txt
* NEW Form definition (Lst)
Lst1=NEW LISTBOX(this)
Lst1.Width=40
Lst1.Height=15
Lst1.DataSource="FIELD Contact->Contact"
Lst1.OnSelChange={;? CompCode+SPACE(3)+Contact}

DEFINE object syntax:

USE Contact
SET PRINTER TO FILE Record.Txt
DEFINE FORM Lst FROM 1,1 TO 15,40
DEFINE LISTBOX Lst1 OF Lst;

PROPERTY Width 40, Height 15,;
DataSource "FIELD Contact->Contact",;
OnSelChange {;? CompCode+SPACE(3)+Contact}

OPEN FORM Lst

See Also
Selected(), Count(), CurSel

898 L a n g u a g e R e f e r e n c e

O n S e l e c t i o n

OnSelection
Executes a subroutine when the user submits a form.

Property of class
FORM

Data type
Function pointer or codeblock

Description
Use OnSelection to specify a subroutine or a codeblock to execute when the user
submits a form. When the user selects the form, the ID property of the last object to have
input focus is passed to the subroutine.

A form is submitted when the user

• Presses Enter when the form has focus and no browse object or editor object has focus.
• Presses Spacebar when a pushbutton has focus.
• Clicks a pushbutton.

When the subroutine you specify with OnSelection or ON SELECTION FORM finishes
executing, program control returns to the form. However, if the subroutine executes the
CLOSE FORM command, the form is closed.

OnSelection sends one parameter, controlid, to its subroutine. This parameter identifies
which pushbutton submitted the form. The value in controlid is the same as the value in
the ID property of the pushbutton.

Note You can use the ON SELECTION FORM command as an alternative to the OnSelection
property.

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnSelection = AnimalKingdom

* AnimalKingdom is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

C h a p t e r 8 , P r o p e r t i e s 899

O n S i z e+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

DEFINE object syntax:

DEFINE FORM Trips ;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnSelection AnimalKingdom

See Also
OnGotFocus, ON SELECTION FORM

OnSize
Executes a subroutine after the user resizes a form.

Property of class
FORM

Data type
Function pointer or codeblock

Description
Use OnSize to perform actions automatically when the user resizes a form.

Like other event properties, the OnSize property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

OnSize passes three parameters to its subroutine:

• <nType> is a numeric value that indicates how the user resizes the form. nType has
five possible values:
1 The user resized the form with the mouse or restored the form from a maximized

or minimized condition.
2 The user minimized the form.
3 The user maximized the form.
4 The form is not an MDI form, and the user maximized another non-MDI form.
5 The form is not an MDI form, and the user minimized another non-MDI form.

The UTILS.H file provided with dBASE contains #define variables representing
these <nType> values.

• <width> is the new width of the object.

• <height> is the new height of the object.

900 L a n g u a g e R e f e r e n c e

O n S i z e

The height and width parameters reveal the new size, letting you make decisions
accordingly.

Notes You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the OnSize item in the Inspector.

When the user resizes a form that does not have input focus initially, the When and
OnGotFocus subroutines are executed first.

Before the user can resize a form manually, the Sizeable property must be set to true
(.T.).

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.OnSize = Shuffle

* Shuffle is a FUNCTION that performs
* an action and returns .T. or some value.
ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips FROM 2,2 TO 20,40;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
OnSize Shuffle

OPEN FORM Trips

See Also
OnChange, OnClick, OnClose, OnGotFocus, OnHelp, OnLeftMouseDown,
OnLostFocus, OnMove, OnOpen, Sizeable

C h a p t e r 8 , P r o p e r t i e s 901

O n U n a d v i s e+
+
+
+
+
+
+
+
+
+
+
+
+
+
O

OnUnadvise
Executes a subroutine when dBASE is requested to stop notifying the client application
when a dBASE data item changes.

Property of class
DDETOPIC

Data type
Logical

Description
Use the OnUnAdvise method to respond to the termination of a hot link. (A hot link lets
you use the Notify() method to notify the client when an item changes.)

OnUnAdvise receives the <item> parameter, the name of a dBASE data item that the
client application monitored. This item can be any dBASE field, variable, or array
element.

Item names are often held in tables or array objects when multiple hot links are
established. For example, when a client application requests a hot link to a field, it
passes the field name to the OnAdvise subroutine. Each time, the OnAdvise subroutine
can place the field name in an array object.

An OnPoke subroutine can search this array object each time a field is changed. If the
name of the changed field is found in the array object, the routine can execute Notify().
The OnUnadvise() property can remove the field name from the array, preventing
further notifications for that field.

Example
See CLASS DDETOPIC for an example of using OnUnAdvise property.

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(),
TimeOut, Topic, Unadvise()

Open()
Opens a form as a modeless window.

Property of class
FORM

Description
Use the Open() method to open a form and display its objects.

The form you open with Open() is modeless, and has the following characteristics:

902 L a n g u a g e R e f e r e n c e

P a g e C o u n t ()

1 While the form is open, focus can be transferred to other forms.

2 Execution of the routine that opened the form continues after the form is opened and
active.

Open forms as modeless windows when you want more than one form open at once.

Notes To open a form as a modal window, use the ReadModal() method or the
READMODAL() function. For example, forms that serve as dialog boxes are modal,
since they halt program execution until the user inputs a response.

Open() is identical to the OPEN FORM command.

Example

LOCAL f
f = NEW XFORM()
f.Open()

CLASS XFORM OF FORM
this.HelpFile = ""
this.Top = 2.23
this.Height = 20.00
this.Text = "See..it opens"
this.Left = 35.00
this.Width = 73.80
this.HelpId = ""

ENDCLASS

See Also
CLOSE..., Close(), OPEN FORM, ReadModal(), READMODAL()

PageCount()
Returns the highest numbered page defined for a form.

Property of class
FORM

Description
Use PageCount() to determine how many pages a multi-page form contains. For
example, if you have a "Next Page" button or menu choice, you can use PageCount() in
conjunction with PageNo to determine if you are already on the last page of a form.

If you have a form that is set up as a result of user input or other program activities, you
might use PageCount() in conjunction with CLASS TABBOX to define a series of tabs
for the defined pages.

C h a p t e r 8 , P r o p e r t i e s 903

P a g e N o+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Example

f = NEW Form()
DEFINE PUSHBUTTON p OF f;

PROPERTY;
Height 2,;
Left 2,;
Top 2,;
Text "Push",;
Width 10

f.Open()
? f.PageCount()

See Also
CLASS TABBOX

PageNo
PageNo Returns the active page of a form or the page on which a control appears.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMGE, LINE,
LISTBOX. OLE, PAINTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE,
SCROLLBAR, SHAPE, SPINBOX, TABBOX, TEXT

Data Type
Numeric

Default
There is no default for the PageNo property of a form. However, when you create a new
form using the Form Designer, PageNo is set to 1.

The default for PageNo is 0 for a TabBox object and 1 for all other objects.

Description
The PageNo property of a form returns which page of the form is currently active. If you
set a form's PageNo property to 0 (zero), all controls on all pages are displayed.

For all controls other than forms, the PageNo property specifies on which page of a
multi-page form the control appears. A value of 0 (zero) means the control will appear
on every page of the form.

You may want to implement multi-page forms whenever a single form contains a large
number of objects. Dividing the objects logically among two or more pages helps
organize the objects, and may make the form easier to use.

If you want to use tabs to let users switch pages, set the PageNo property of the TabBox
to 0 (the default). This ensures that the tabs are visible while the user is on any page of
the form. If you want any other control to appear on all pages (such as a Close button),
set the PageNo property of the control to 0.

904 L a n g u a g e R e f e r e n c e

P a g e N o

Example
The following example shows a form that contains two pages. The user switches
between them by using buttons labeled Next Page and Previous Page. A Close button
appears on every page.

LOCAL f
f = new MULTIPGFORM()
f.Open()
CLASS MULTIPGFORM OF FORM

this.Top = 0
this.Width = 60
this.OnOpen = {;form.pageno=1}&& Make sure page 1 displays first
DEFINE PUSHBUTTON PUSHBUTTON1 OF THIS;

PROPERTY;
Top 15,;
PageNo 1,;
Width 15,;
Text "Next Page",;
OnClick {;form.PageNo=2},;
Left 42

DEFINE PUSHBUTTON PUSHBUTTON2 OF THIS;
PROPERTY;

Top 15,;
PageNo 2,;
Width 15,;
Text "Previous Page",;
OnClick {;form.PageNo=1},;
Left 42

DEFINE PUSHBUTTON PUSHBUTTON3 OF THIS;
PROPERTY;

Top 17,;
PageNo 0,;
Width 10,;
Text "Close",;
OnClick {;form.Close()},;
Left 42

DEFINE TEXT TEXT1 OF THIS;
PROPERTY;

Top 4,;
PageNo 1,;
Width 34,;
Text "This appears on page 1",;
Height 2, ;
Left 13

DEFINE TEXT TEXT2 OF THIS;
PROPERTY;

Top 4,;
PageNo 2,;
Width 34,;
Text "This appears on page 2",;
Height 2, ;
Left 13

ENDCLASS

C h a p t e r 8 , P r o p e r t i e s 905

P a r e n t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

See Also
CLASS TABBOX, PageCount(), SpeedBar

Parent
An object reference that points to the parent form of an object or a menu.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, IMAGE, LINE,
LISTBOX, MENU, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE,
SCROLLBAR, SPINBOX, TABBOX, TEXT

Data type
Object reference

Description
Use Parent to reference the parent form of an object.

Set the Parent property with the OF <form name> clause of the DEFINE or REDEFINE
command when you create the object. You can also set the Parent property with the
<form name> parameter you specify for the object when you create the object with the
NEW operator.

You can move a menu object from one form to another by changing the Parent property
of the menu object. The Parent property is read-only for all other classes.

Example
The following example creates a form with a main menu presenting the text string "File".
A submenu selection of File is "Change Parent Text", which uses the Parent property to
change "File" to the string "New Text":

DEFINE FORM f1
DEFINE MENU Main OF f1
DEFINE MENU mFile OF f1.Main;

PROPERTY;
Text "File"

DEFINE MENU mCp OF f1.Main.mFile;
PROPERTY;
Text "Change Parent Text",;
OnClick {;this.Parent.Text = "New Text"}

OPEN FORM f1

See Also
ActiveControl, Before, First

906 L a n g u a g e R e f e r e n c e

P a s t e ()

Paste()
Copies text from the Windows clipboard to the currently active edit control.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Paste() when the user wants to copy text from the Windows clipboard to the cursor
position in the currently active edit control. The action of Paste() is identical to the Paste
menu item on the standard Windows Edit menu.

If you have assigned a menubar to the form, you can use the menubar's EditPasteMenu
property instead of using the Paste() property of individual objects on the form. For
more information, see EditPasteMenu.

Example
See Copy() for an example.

See Also
Copy(), Cut(), EditPasteMenuUndo()

PatternStyle
Specifies a predefined Windows background hatching pattern.

Property of class
RECTANGLE

Data type
Numeric

Default
The default for PatternStyle is 0.

Description
Use PatternStyle to select a predefined Windows background hatching pattern for a
rectangle object.

You can specify the following settings for PatternStyle

Table 8.1 Fill patterns

Number Description Example

0 Solid
1 BDiagonal

C h a p t e r 8 , P r o p e r t i e s 907

P e e k ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Example
NEW operator syntax:

Comp = NEW ENTRYFIELD(this)
Comp.Datalink = "Clients->Company"
Comp.PatternStyle = 3

DEFINE object syntax:

DEFINE ENTRYFIELD Comp OF THIS;
PROPERTY Datalink "Clients->Company",;
PatternStyle 3

See Also
ColorHighlight, ColorNormal

Peek()
Retrieves a data item from a DDE server.

Property of class
DDELINK

Description
Use the Peek() method to read data from a DDE server topic.

A server topic is usually a file you open in an external application. For example, a data-
exchange program might start a session in Quattro Pro for Windows, open one of its
spreadsheet files (the topic), and use Peek() to read one of its cells.

Peek() requires <item>, a parameter that identifies a data item in the server topic. This
item can be any single element, such as a field in a table or a cell in a spreadsheet. For
example, you can read cell C2 of Page A in a Quattro Pro spreadsheet file by passing the
<item> parameter "A:C2".

Before you can query data from a server topic, you need to establish a DDE link to it. For
information on establishing DDE links, see Initiate() and Chapter 26 in the Programmer's
Guide.

2 Cross
3 Diagcross
4 FDiagonal
5 Horizontal
6 Vertical

Table 8.1 Fill patterns

Number Description Example

908 L a n g u a g e R e f e r e n c e

P e n

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
IF LinkObj.Initiate("QPW","Demo.WB1")

? "Connection to QPW initiated"
ELSE

? "Connection to QPW failed"
ENDIF
mValue1=LinkObj.Peek("A:A1")
? mValue1

See Also
Advise(), Execute(), Initiate(), OnNewValue, Poke(), Server, Terminate(), TimeOut,
Topic, Unadvise()

Pen
Specifies the pattern of a line object.

Property of class
LINE

Data type
Numeric

Default
The default for Pen is 0 (Solid).

Description
Use Pen to control the appearance of a line object.

You can specify any of five settings for Pen:

Table 8.2 Pen patterns

Number Description Example

0 Solid
1 Dash
2 Dot
3 Dash Dot
4 DashDotDot

C h a p t e r 8 , P r o p e r t i e s 909

P e n S t y l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Example
NEW operator syntax:

Ln2=NEW LINE(this)
Ln2.Left=3
Ln2.Top=8
Ln2.Bottom=8
Ln2.Right=33
Ln2.Pen = 3 && Dash Dot

DEFINE object syntax:

DEFINE LINE Ln2 OF THIS;
PROPERTY Left 3, Top 8, Bottom 8,;

Right 33, Pen 3 && Dash Dot

See Also
PatternStyle

PenStyle
Specifies the type of line to be used as the border of a shape object.

Property of class
SHAPE

Data type
Numeric

Default
The default for PenStyle is 0 (Solid).

Description
Use PenStyle to control the appearance of the border of a shape object.

You can specify any of five settings for PenStyle:

Number Description Example

0 Solid

1 Dash
2 Dot
3 Dash Dot
4 DashDotDot

910 L a n g u a g e R e f e r e n c e

P e n W i d t h

Example
NEW operator syntax:

Sh2=NEW SHAPE(this)
Sh2.Left=3
Sh2.Top=8
Sh2.PenStyle = 3 && Dash Dot
DEFINE object syntax:
DEFINE SHAPE Sh2 OF THIS;
 PROPERTY Left 3, Top 8, PenStyle 3 &&Dash Dot

See Also
PenWidth, ShapeStyle

PenWidth
Specifies the width in pixels of the line used as the border of a shape object.

Property of class
SHAPE

Data type
Numeric

Default
The default for PenWidth is 1.

Description
Use PenWidth to specify the thickness of the line used to border a shape object.
If you set PenWidth to a value greater than 1, then PenSyle can only be set to 0.

Example
NEW operator syntax:

Sh2=NEW SHAPE(this)
Sh2.Left=3
Sh2.Top=8
Sh2.PenWidth = 3 && 3 pixels
DEFINE object syntax:
DEFINE SHAPE Sh2 OF THIS;

PROPERTY Left 3, Top 8, PenWidth 3 && 3 pixels

See Also
PenStyle, ShapeStyle

C h a p t e r 8 , P r o p e r t i e s 911

P i c t u r e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Picture
Formats text in an entry field, a spin box, or a text object.

Property of class
ENTRYFIELD, SPINBOX, TEXT

Data type
Character

Default
The default for Picture is an empty string.

Description
Specify the picture setting with a character string called a template. A template can
consist of

1 Picture template characters, which represent and modify individual characters in the
text string.

2 Function symbols, which usually modify the entire text string. (For information on
function symbols, see the Function property.)

3 Literal characters, which are inserted into the text string.

Here are the picture template characters:

If you use function symbols in a template, precede them with the @ symbol. If you
combine template characters and function symbols in the same template, list function
symbols first and separate them from the template characters with a space.

Note You can specify a picture template with the Choose Template dialog box, which lets you
enter picture templates. To access the Choose Template dialog box, click the Tool button
next to the Picture item in the Inspector.

9 Restricts entry of character data to numbers, and restricts entry of numeric data to numbers and +
and - signs

Restricts entry to numbers, spaces, periods, and signs
! Converts letters to uppercase
$ Inserts a dollar sign or the symbol defined with SET CURRENCY TO instead of leading blanks

* Inserts asterisks in place of leading spaces
Marks the position of the decimal point

, Separates thousands with a comma (or with another character indicated by SET SEPARATOR)
A Restricts entry to alphabetic characters
L Restricts entry to T, t, F, f, Y, y, N, or n, and converts it to uppercase
N Restricts entry to letters and numbers
X Allows any character
Y Restricts entry to Y, y, N, or n, and restricts display to Y and N

912 L a n g u a g e R e f e r e n c e

P o k e ()

Example
NEW operator syntax:

FLD1.Picture = "@!"
* or
FLD1.Picture = "$999,999,999.99"
* or
FLD1.Picture = "99:99:99"

DEFINE object syntax:

DEFINE ENTRYFIELD FLD1 OF THIS;
PROPERTY Datalink "<char, numeric or date field>",;
Picture "@!"

* or
Picture "$999,999,999.99"

* or
Picture "99:99:99"

See Also
@...SAY...GET, DEFINE, Function, TRANSFORM()

Poke()
Inserts data into a server document.

Property of class
DDELINK

Description
Use the Poke() method to write data to a server document.

A server document is a file you open in an external application. For example, a data-
exchange program might start a session in Quattro Pro for Windows, open one of its
spreadsheet files, and use Poke() to write a value into one of its cells.

Poke() requires two parameters:

• <item> is the element you write to in the server document. It can be any single item,
such as a field in a table or a cell in a spreadsheet. For example, "B:G2" specifies Cell
G2 of Page B in a Quattro Pro spreadsheet file.

• <value> is the value you write to the server document. For example, you can pass a
literal or the value stored in a field.

Before you can send data to a server document, you need to open the server application,
open the document, and establish a DDE link to it. For information on establishing DDE
links, see Initiate() and Chapter 26 in the Programmer's Guide.

C h a p t e r 8 , P r o p e r t i e s 913

P o p u p M e n u+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
P

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
IF LinkObj.Initiate("QPW","Demo.WB1")

? "Connection to QPW initiated"
ELSE

? "Connection to QPW failed"
ENDIF
LinkObj.Poke("A:A3","198")
mValue2=LinkObj.Peek("A:A3")
? mValue2 && Confirm success of .POKE()

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Server, Terminate(), TimeOut,
Topic, Unadvise()

PopupMenu
Specifies a popup menu for a form.

Property of class
FORM

Data Type
Object reference

Description
Assign the PopupMenu property to an existing popup menu to have the popup appear
when the user right clicks on the form.

Example
The following example creates a form and attaches an existing popup menu
(Pop0328.pop) to the form's OnOpen property. It then opens the form and the Inspector,
so you can inspect the form's PopupMenu property. If you right-click while the form is
open, the popup menu is displayed.

f = new POPFORM()
f.Open()
INSPECT(f)
CLASS POPFORM OF FORM

this.TopMost = .F.
this.Height = 20
this.Left = 53
this.Top = 0
this.PageNo = 1
this.Width = 60
this.OnOpen = CLASS::FORM_ONOPEN
Procedure Form_OnOpen

914 L a n g u a g e R e f e r e n c e

P r i n t ()

IF TYPE("This.PopupMenu") # "O"
DO Pop0328.pop with this,"MyPopTest"
form.PopupMenu = form.MyPopTest

ENDIF
Return

ENDCLASS

The code in Pop0328.pop was generated by the Menu Designer:

* Pop0328.pop
Parameter FormObj,PopupName
NEW POP0328MENU(FormObj,PopupName)
CLASS POP0328MENU(FormObj,PopupName) OF POPUP(FormObj,PopupName)

this.Top = 0
this.Left = 0
this.TrackRight = .T.
DEFINE MENU CLOSE OF THIS;

PROPERTY;
Text "Close",;
OnClick {;form.close()}

ENDCLASS

See Also
OnOpen, TrackRight

Print()
Prints a form and the objects it contains.

Property of class
FORM

Description
Use the Print() method to print a form on a selected printer.

Executing the Print() method opens the Print dialog box, which lets the user determine:

• The number of pages to print
• The print quality
• The number of copies to print
• If the output goes to the printer or to a file
• If the output is collated

The user clicks the OK button to print the form.

Executing the Print() method is equivalent to selecting File | Print. To determine which
printer receives the output, execute the CHOOSEPRINTER() function.

C h a p t e r 8 , P r o p e r t i e s 915

R a n g e M a x+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Example
The following example defines a form that includes a browse object. When the user has
located a record or subset of records to print, clicking the right mouse calls a codeblock
that uses PRINT() to send currently displayed records to the printer:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS EntryForm OF FORM

this.Top=2
this.Left=2
this.Width=72
this.Height=20
this.View = "Animals.DBF"
this.OnRightMouseDown = {;this.Print()}

DEFINE BROWSE Br1 OF THIS;
PROPERTY Top 2, Left 1,;
Width 50, Height 10

ENDCLASS

See Also
CHOOSEPRINTER(), PRINTJOB...ENDPRINTJOB, SET PRINTER

RangeMax
Determines the upper limit for values the user can enter in a spin box.

Property of class
SCROLLBAR, SPINBOX

Data type
Date or numeric

Default
The default for RangeMax is 100.00.

Description
Use RangeMax in combination with RangeMin to specify a range restriction for values
entered into a scroll bar or a spin box. (RangeMax sets the upper limit and RangeMin
sets the lower limit.) For example, an application that lets the user input a percentage
might prevent the input of a value less than 0 or greater than 100.

Users must enter a value within the specified range before they can give focus to
another object.

Note Range restrictions have effect only when the RangeRequired property is true (.T.).

916 L a n g u a g e R e f e r e n c e

R a n g e M i n

Example
NEW operator syntax:

SPNBX1.RangeMax = 100
* or
SPNBX1.RangeMax = {12/31/94}

DEFINE object syntax:

DEFINE SpinBox Spn1 OF THIS;
PROPERTY DataLink "<numeric or date field>",;
RangeMax 100
* or
RangeMax {12/31/94}

See Also
RangeMin, RangeRequired, Valid, ValidErrorMsg, ValidRequired

RangeMin
Determines the lower limit for values the user can enter in a spin box.

Property of class
SCROLLBAR, SPINBOX

Data type
Date or numeric

Default
The default for RangeMin is 1.

Description
Use RangeMin in combination with RangeMax to specify a range restriction for values
entered into a scroll bar or a spin box. (RangeMin sets the lower limit and RangeMax
sets the upper limit.) For example, an application that lets the user input a percentage
might prevent the input of a value less than 0 or greater than 100.

Users must enter a value within the specified range before they can give focus to
another object.

Note Range restrictions have effect only when the RangeRequired property is true (.T.).

Example
NEW operator syntax:

SPNBX1.RangeMin = 1
* or
SPNBX1.RangeMin = {||01/01/94}

C h a p t e r 8 , P r o p e r t i e s 917

R a n g e R e q u i r e d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

DEFINE object syntax:

DEFINE SpinBox Spn1 OF THIS;
PROPERTY DataLink "<numeric or date field>",;
RangeMin 1
* or
RangeMin {||01/01/94}

See Also
RangeMax, RangeRequired, Valid, ValidErrorMsg, ValidRequired

RangeRequired
Determines whether the range you specify with the RangeMax and RangeMin
properties is enforced every time the control receives focus, or only when the user
makes changes.

Property of class
SPINBOX

Data type
Logical

Default
The default for RangeRequired is false (.F.).

Description
Set RangeRequired to true (.T.) when you want to enforce a range limitation specified by
the RangeMax and RangeMin properties on previously entered data as well as on new
data. When RangeRequired is false (the default), RangeMin and RangeMax settings are
not checked if the user doesn’t change existing values.

For example, when the RangeRequired property of a spin box is set to true, dBASE
detects any range error and forces the user to correct the problem. Users must enter a
value within the specified range before they can give focus to another object.

Example
NEW operator syntax:

Date = NEW ENTRYFIELD(this)
Date.Datalink = "Clients->Baldate"
Date.RangeRequired = .T.
Date.RangeMax = {||12/31/95}

DEFINE object syntax:

DEFINE ENTRYFIELD Date OF THIS;
PROPERTY Datalink "Clients->Baldate",;
RangeRequired .T., RangeMax {||12/31/95}

918 L a n g u a g e R e f e r e n c e

R e a d M o d a l ()

See Also
RangeMax, RangeMin, Valid, ValidErrorMsg

ReadModal()
Opens a form as a modal window.

Property of class
FORM

Description
Use ReadModal() to open a form as a modal window. A modal window has the
following characteristics:

1 While the form is open, focus can't be transferred to other forms.

2 Execution of the routine that opened the form stops until the form is closed. When the
form is closed, control transfers to the command line after the one that opened the
form.

Many applications use modal forms as dialog boxes, which typically require users to
take an action before the dialog box can be closed.

You can't open a form with the ReadModal() method or the READMODAL() function
when the MDI property is set to true.

To open a form as a modeless window, use the Open() method or the OPEN FORM
command.

The ReadModal() method is identical to the READMODAL() function.

Example

LOCAL f
f=NEW EntryForm()
f.readmodal()
CLASS EntryForm OF FORM

this.MDI=.F.
this.Top=2
this.Left=2
this.Width=38
this.Height=13

* subsequent object definitions
ENDCLASS

See Also
Close(), CLOSE..., OPEN FORM, Open(), READMODAL()

C h a p t e r 8 , P r o p e r t i e s 919

R e c o n n e c t ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Reconnect()
Attempts to restart a terminated conversation with a DDE server application and
returns true (.T.) if successful.

Property of class
DDELINK

Description
Use Reconnect() to restore a DDE link that was terminated with the Terminate()
method.

Use a DDE link to exchange data and instructions with another application. For
example, a data-exchange program might establish a link with Quattro Pro for
Windows and open one of its spreadsheet files, then copy data from the spreadsheet to a
dBASE table.

When you terminate a DDE link with Terminate(), you can restore it with Reconnect.
When you terminate the link with the Release() method, the link can't be restored and
you need to create the DDELink object again.

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.Initiate("QPW","Demo.WB1")
* Subsequent program operations completed; link
* do longer required
LinkObj.Terminate()
* Later in program, DDE link object again needed
LinkObj.Reconnect()

See Also
Initiate(), Release(), Terminate()

Refresh()
Updates data displayed in control objects within a form.

Property of class
FORM

Description
Use Refresh() to update data displayed in a form to reflect the current state of the data
as it exists on disk. For example, you can use Refresh() in a multi-user environment to
ensure that the displayed data reflects all recent changes made by other users.

920 L a n g u a g e R e f e r e n c e

R e f r e s h ()

Example
The following example lets you use a scrollbar or an entry field to change the data in the
StartBal field of the Clients table. Because Refresh() is assigned to the scrollbar's
OnChange property, the value in the entry field and the table always reflect the value as
chosen with the scrollbar.

LOCAL f
f = NEW SBAR2FORM()
f.Open()
CLASS SBAR2FORM OF FORM

this.Top = 0
this.PageNo = 1
this.Width = 49
this.View = "CLIENTS.DBF"
this.Height = 20
this.Left = 50
DEFINE BROWSE BROWSE1 OF THIS;

PROPERTY;
Top 2,;
PageNo 1,;
Width 25.835,;
CUATab .T.,;
Alias "CLIENTS",;
ScrollBar 2,;
Fields "CLIENT_ID,STARTBAL",;
Height 11,;
Left 6,;
ShowRecNo .F.

DEFINE SCROLLBAR SCROLLBAR1 OF THIS;
PROPERTY;

Top 16,;
PageNo 1,;
Width 20,;
ColorNormal "ScrollBar",;
OnChange {;form.refresh()},;
DataLink "CLIENTS->STARTBAL",;
Height 1,;
Vertical .F.,;
Left 9, ;
Rangemax 32766

DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;
PROPERTY;

Top 15,;
PageNo 1,;
Width 11,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .T.,;
DataLink "CLIENTS->STARTBAL",;
Height 1,;
Left 14.5

Procedure SCROLLBAR1_OnChange

form.refresh()
ENDCLASS

C h a p t e r 8 , P r o p e r t i e s 921

R e l e a s e ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

See Also
REFRESH, SHOW OBJECT

Release()
Removes an object definition from memory.

Property of class
BROWSE, DDELINK, DDETOPIC, CHECKBOX, COMBOBOX, EDITOR,
ENTRYFIELD, FORM, IMAGE, LINE, LISTBOX, MENU, OLE, PUSHBUTTON,
RADIOBUTTON, RECTANGLE, SCROLLBAR, SPINBOX, TABBOX, TEXT

Description
Use Release() to conserve memory resources when an object is no longer needed. For
example, when an application doesn't need a form, removing the form from memory
frees up memory for other purposes.

Note When a form is closed, dBASE releases it from memory automatically if there is no
object reference pointing to it.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()

CLASS EntryForm OF FORM
this.Top=2
this.Left=2
this.Width=38
this.Height=13
this.OnClose={;Form.Release()}

* Subsequent object definitions
ENDCLASS

DEFINE object syntax:

DEFINE FORM EntryForm;
PROPERTY Top 2, Left 2, Width 38, Height 13,;
OnClose {;Form.Release()}

* Other control definitions
OPEN FORM EntryForm

See Also
RELEASE OBJECT

922 L a n g u a g e R e f e r e n c e

R e m o v e A l l ()

RemoveAll()
Deletes all elements from an associated array object.

Property of class
ASSOCARRAY

Description
Use the RemoveAll() method to remove all elements from an associated array. You
might want to do this if you want to repopulate the array with new values.

Example
The following example removes all elements from an associated array.

aa = NEW ASSOCARRAY()
aa["USA"] = "Washington, DC"
aa["Spain"] = "Madrid" && Array contains two elements
aa.RemoveAll() && Array now contains no elements

See Also
IsIndex(), RemoveKey()

RemoveKey()
Deletes an element from an associated array object.

Property of class
ASSOCARRAY

Description
Use the RemoveKey() method to remove elements from an associated array object.
RemoveKey() accepts a character string as its parameter. This string represents the
subscript of the associated array element you want to remove.

Example
The following example removes an element from an associated array.

aa = NEW ASSOCARRAY()
aa["USA"] = "Washington, DC"
aa["Spain"] = "Madrid" && Array contains two elements
aa.RemoveKey("USA") && Array now contains one element

See Also
Delete(), IsIndex(), RemoveAll()

C h a p t e r 8 , P r o p e r t i e s 923

R e s i z e ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
R

Resize()
Increases or decreases the number of elements in an array object.

Property of class
ARRAY

Description
Use the Resize() method to add or remove rows and columns from an array object. The
Resize() method is similar to the ARESIZE() function.

Resize() accepts three parameters:

• <new rows expN>—The number of rows in the resized array object. <new rows expN>
must always be a positive, nonzero value.

• <new cols expN>—The number of columns in the resized array object. <new
cols expN> must always be 0 or a positive value. If you omit this option, Resize()
changes the number of rows and leaves the number of columns the same.

• <retain values expN>—Determines how the array elements are rearranged when rows
are added or removed. To see the effect of <retain values expN>, see ARESIZE().

Example
USE Customer.DBF

* Initialize array object
ObjArr=NEW ARRAY(RECCOUNT())
* Fill 1-dimensional array with values
* from Name field of Customer.DBF
GO TOP
FOR i=1 TO RECCOUNT()

ObjArr[i]=Customer->Name
SKIP

Next i
* Use RESIZE() to add two additional columns to the
* existing array and enter Ytd_Sales and phone data
* in the new columns.
ObjArr.RESIZE(RECCOUNT(),3,1)
GO TOP
FOR i=1 TO RECCOUNT()

ObjArr[i,2]=Customer->YTD_Sales
ObjArr[i,3]=Customer->Phone
SKIP

Next i
* Display Contents of 3-dimensional array
FOR i = 1 TO RECCOUNT()
? ObjArr[i,1], ObjArr[i,2], ObjArr[i,3]
Next i

924 L a n g u a g e R e f e r e n c e

R i g h t

See Also
Add(), Insert(), GROW(), ARESIZE(), INSERT()

Right
Specifies the position of the right end of a line object relative to its parent form.

Property of class
LINE

Data type
Numeric

Description
Use the Right property in combination with the Bottom, Left, and Top properties to
determine the position and length of a line object.

Each unit of the value you assign to Right is the average width of characters in the active
font of the parent form. For example, if you set the Right property of a line to 20, the
right end of the line is positioned 20 characters to the right.

Example

DEFINE LINE Ln1 OF THIS;
PROPERTY;

Left 10,; && Vertical line from 3,10
Top 3,; && to 8,10
Width 4,;
Bottom 8,;
ColorNormal "RB"

DEFINE LINE Ln2 OF THIS;
PROPERTY;

Left 3,; && Horizontal line from 8,3
Top 8,; && to 8,33
Width 4,;
Bottom 8,;
Right 33,;
ColorNormal "RB"

See Also
Height, ScaleFontName, ScaleFontSize, Top, Width

C h a p t e r 8 , P r o p e r t i e s 925

S a v e R e c o r d ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SaveRecord()
Saves a temporary record by appending it to the currently active table.

Property of class
FORM

Description
Use SaveRecord() to add to the currently active table a new record stored in a
temporary memory buffer you created with BeginAppend().

For more information, see BeginAppend().

Example
See BeginAppend() for an example.

See Also
AbandonRecord(), BeginAppend(), IsRecordChanged()

ScaleFontName
Determines which font the coordinate plane of the form is based on.

Property of class
FORM

Data type
Character

Default
The default for ScaleFontName is MS Sans Serif.

Description
Use ScaleFontName in combination with ScaleFontSize to determine the height of rows
and the width of columns in the coordinate plane of a form.

The coordinate plane is a two-dimensional grid of row and column coordinates. The
height of rows and the width of columns in the coordinate plane depend primarily on

• The active font of the form, which you specify with ScaleFontName. Different fonts
have different widths and heights, so changing the specification in ScaleFontName
can alter the height of rows and the width of columns.

• The size of the font, which you specify with ScaleFontSize. (The value you specify for
ScaleFontSize is in points).

926 L a n g u a g e R e f e r e n c e

S c a l e F o n t S i z e

Together, the row height and column width of a coordinate plane make up a character
unit. Properties such as Height and Width use character units to determine object size
and position. For example, the Height property expresses height by character units, as
with:

MyForm.MyObj.Height = 2.4 && 2.4 character units

The actual height of the object depends on the number of character units and on
character unit size.

For more information on the coordinate plane, see Chapter 16 in the Programmer's Guide.

Note You can select a font with the Font dialog box, which displays all installed fonts. To
access the Font dialog box, click on the Tool button next to the ScaleFontName item in
the Inspector. You can also open the Font dialog box with the GETFONT() function.

Example

LOCAL f
f=NEW Scale()
f.OPEN()
CLASS Scale OF FORM

this.ScaleFontName = "Courier"
this.ScaleFontSize = 15
DEFINE TEXT Txt1 OF THIS;
PROPERTY Text "Visual dBASE",;
Width 40, Top 5, Alignment 4

ENDCLASS

See Also
Bottom, GetTextExtent(), Height, Right, Top, Width

ScaleFontSize
Determines the height of each row and the width of each column in the coordinate plane
of a form.

Property of class
FORM

Data type
Numeric

Default
The default for ScaleFontSize is 8.00.

Description
Use ScaleFontSize in combination with ScaleFontName to determine the height of rows
and the width of columns in the coordinate plane of a form.

C h a p t e r 8 , P r o p e r t i e s 927

S c a n ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

The coordinate plane is a two-dimensional grid of row and column coordinates. The
height of rows and the width of columns in the coordinate plane depend primarily on

• The active font of the form, which you specify with ScaleFontName. Different fonts
have different average widths and heights, so changing the specification in
ScaleFontName can alter the height of rows and the width of columns.

• The size of the font, which you specify with ScaleFontSize. (The value you specify for
ScaleFontSize is in points).

Together, the row height and column width of a coordinate plane make up a character
unit. Properties such as Height and Width use character units to determine object size
and position. For example, the Height property expresses height by character units, as
with:

MyForm.MyObj.Height = 4.5 && 4.5 Character units

The actual height of the object depends on the number of character units and on
character unit size.

For more information on the coordinate plane, see Chapter 16 in the Programmer's Guide.

Example

LOCAL f
f=NEW Scale()
f.OPEN()
CLASS Scale OF FORM

this.ScaleFontName = "Courier"
this.ScaleFontSize = 15
DEFINE TEXT Txt1 OF THIS;
PROPERTY Text "dBASE for Windows",;
Width 40, Top 5, Alignment 4

ENDCLASS

See Also
Bottom, Height, Right, Top, Width

Scan()
Searches an array object for a specified value.

Property of class
ARRAY

Description
Use the Scan() method to search an array object for a value. For example, if an array
object contains customer names, use Scan() to find the location in which a particular
name appears. The Scan() method is similar to the ASCAN() function.

928 L a n g u a g e R e f e r e n c e

S c a n ()

Scan() returns the element number of the first element that matches the expression if the
search is successful, or 0 if the search is unsuccessful. If necessary, use Subscript() to
determine the subscript numbers of the element. For more information about element
numbers and subscripts, see Element() and Subscript().

Scan() accepts three parameters:

• <exp> is the expression to search for.

• <starting element expN> is the element number of the element at which to start
searching. Without <starting element expN>, Scan() starts searching at the first
element.

• <elements expN> is the number of elements that Scan() searches. Without
<elements expN>, Scan() searches the array object from <starting element expN> to the
last element. If you specify a value for <elements expN>, also specify a value for
<starting element expN>.

When <exp> contains string data, Scan() is case-sensitive, so you might want to use
UPPER(), LOWER(), or PROPER() to match the case of <exp> with the case of the data
stored in the array object.

When <exp> contains string data, Scan() searches for an expression following the rules
established by SET EXACT. If SET EXACT is ON, dBASE returns 0 if the value in <exp>
is not identical to the data in an element of the array object. If SET EXACT is OFF,
dBASE returns 0 if the characters in <expN> do not match the beginning characters in
the data in an element of the array object. For more information, see SET EXACT.

Example

USE Animals.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT(),3)
* Fill array with values from Animals.DBF
COPY TO ARRAY ObjArr FIELDS Name, Area, Weight
* Use SCAN() to search the array for the string
* "Parrot" and return the array element number.
* SUBSCRIPT() is used to return the row and column
* of the element number returned by SCAN():
String = "Parrot"
aElement = ObjArr.Scan(String)
aRow = ObjArr.SUBSCRIPT(aElement,1)
aCol = ObjArr.SUBSCRIPT(aElement,2)
? String +" is located at Row " + ;

LTRIM(STR(aRow)) + ", Column " + ;
LTRIM(STR(aCol))

See Also
ASCAN(), Element(), LOWER(), PROPER(), SET EXACT, Sort(), Subscript(),
UPPER()

C h a p t e r 8 , P r o p e r t i e s 929

S c r o l l B a r+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

ScrollBar
Determines if an object has a scroll bar.

Property of class
BROWSE, EDITOR, FORM

Data type
Numeric

Default
The default for Scrollbar is 1 (On) for editor objects, 0 (Off) for forms, and 2 (Auto) for
browse objects.

Description
Create a scroll bar to let the user page through a form or through a browse or editor
object, when its contents exceed its size. For example, if an editor object contains twenty
lines of text and the editor object is only ten lines high, a scroll bar lets the user page up
and down through the text.

Scrollbar can have any of four settings:

Example

USE Contact.DBF
LOCAL f
f=NEW ENTRY()
f.OPEN()
CLASS Entry OF FORM

this.Top=2
this.Left=2
this.Width=72
this.Height=20
this.ScrollBar=1
DEFINE EDITOR ED1 OF THIS;

PROPERTY Top 4,Left 37,Width 32,;
Height 12,ScrollBar 0,;
DataSource "MEMO Contact->Notes"

ENDCLASS

See Also
CLASS SCROLLBAR

ScrollBar value Description

0 (Off) The object has no scroll bar.
1 (On) The object has a scroll bar.
2 (Auto) Displays the scroll bar only when needed.
3 (Disabled) The scroll bar is visible but it's not usable.

930 L a n g u a g e R e f e r e n c e

S e l e c t A l l

SelectAll
Determines if the value contained in an entry field or a spin box initially appears
selected (highlighted).

Property of class
ENTRYFIELD, SPINBOX

Data type
Logical

Default
The default for SelectAll is true (.T.).

Description
Set SelectAll to true (.T.) to give the user a shortcut for deleting or replacing the initial
value in an entry field or a spin box. The value (which you specify with the DataLink or
Value property) is highlighted when the user gives the object focus, and the first
character the user enters overwrites the value. Pressing Del or Backspace deletes the
value. Pressing a direction key (such as Left arrow or Right arrow) removes the highlight
without erasing the value.

Example
NEW operator syntax:

Date = NEW ENTRYFIELD(this)
Date.Datalink = "Clients->Baldate"
Date.SelectAll = .T.

DEFINE object syntax:

DEFINE ENTRYFIELD Date OF THIS;
PROPERTY Datalink "Clients->Baldate",;
SelectAll .T.

See Also
Mode, Style

C h a p t e r 8 , P r o p e r t i e s 931

S e l e c t e d ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Selected()
Returns the currently selected prompt in a list box.

Property of class
LISTBOX

Description
Use Selected() in combination with Count() to evaluate user choices in a multiple-
choice list box. For example, you can see which prompts were chosen by evaluating
each prompt with the Selected() method in a FOR...NEXT loop. (If the list box has an
uncertain number of prompts, use Count() to determine the number of times to execute
the loop.)

Selected() accepts one optional parameter, <item>, a numeric value that identifies an
item by its relative position in the list box.

Make a list box multiple-choice by setting the Multiple property to true (.T.).

Example
See Count() for an example of using Selected().

See Also
FOR...NEXT, Count(), Multiple

Separator
Determines if a menu item is a line that the user can't select.

Property of class
MENU

Data type
Logical

Default
The default for Separator is false (.F.).

Description
Set Separator to true (.T.) when you want to use a menu item as a separator between
groups of menu commands. For example, a menu titled Accounting might use a
separator to emphasize the distinction between Accounts Receivable items and
Accounts Payable items.

932 L a n g u a g e R e f e r e n c e

S e r v e r

Example

DEFINE FORM f1
DEFINE MENU Main OF f1
DEFINE MENU mOpt1 OF f1.Main;

PROPERTY;
Text "Option 1"

DEFINE MENU mSlct1 OF f1.Main.mOpt1;
PROPERTY;
Text "Select 1"

DEFINE MENU mLine1 OF f1.Main.mOpt1;
PROPERTY;
Separator .T.

DEFINE MENU mSlct2 OF f1.Main.mOpt1;
PROPERTY;
Text "Select 2"

DEFINE MENU mLine2 OF f1.Main.mOpt1;
PROPERTY;
Separator .T.

DEFINE MENU mSlct3 OF f1.Main.mOpt1;
PROPERTY;
Text "Select 3"

OPEN FORM f1

See Also
CLASS MENU

Server
Holds the name of a DDE server application.

Property of class
DDELINK

Data type
Character

Description
Use Server to identify the server application that you established a DDE link to.

Create a DDE link with the Initiate() method. For example, Initiate() might establish a
link to Quattro Pro for Windows, open one of its spreadsheet files, and copy data from
its cells into a dBASE table.

Server holds the value of the first parameter you passed to Initiate(), which is the name
of the main executable file of the server application.

C h a p t e r 8 , P r o p e r t i e s 933

S e r v e r N a m e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.Initiate("QPW","Demo.WB1")
* Subsequent program operations
IF LinkObj.Server="QPW" .AND. ;

LinkObj.Topic = "Demo.WB1"
mValue1=LinkObj.Peek("A:A1")

ENDIF

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Terminate(), TimeOut,
Topic, Unadvise()

ServerName
Identifies the server application that is invoked when the user double-clicks an OLE
viewer object.

Property of class
OLE

Data type
Character

Default
The default for ServerName is an empty string.

Description
Use ServerName to anticipate which server application is activated if the user double-
clicks the current OLE viewer object.

An OLE viewer object displays an OLE document. An OLE document can be a graphic
image, a document created by a word processor, or any other data object created by an
external application. This external application is known as the OLE server. For example,
a graphic image created in Paintbrush can be an OLE document, and Paintbrush can be
an OLE server, if you embed the graphic image (or a portion of it) in an OLE field with
the Cut and Paste commands of the Edit menu.

ServerName is a read-only property.

Example
See DoVerb() for an example of using ServerName.

See Also
LinkFileName, OleType

934 L a n g u a g e R e f e r e n c e

S e t F o c u s ()

SetFocus()
Gives focus to a form or an object in a form.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX, OLE,
PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Description
Use SetFocus() to make a form or an object in a form ready to receive user input.

When a form has focus, its title bar is highlighted. When an object in a form has focus, its
border is highlighted. A form or object with focus is sometimes said to be current.

Example
NEW operator syntax:

LOCAL f
f=NEW EntryForm()
f.OPEN()
CLASS Entryform OF FORM

this.View="Company.DBF"
this.Fld1 = NEW Entryfield(this)
this.Fld1.Top = 3
this.Fld1.Left = 1
this.Fld1.Width=20
this.Fld1.Datalink = "Company->Company"
this.Fld2 = NEW Entryfield(this)
this.Fld2.Top = 5
this.Fld2.Left = 1
this.Fld2.Datalink = "Company->State_Prov"

* to shift focus to Fld2 when you move the mouse
* over the second field:

this.Fld2.OnMouseMove = {;this.SetFocus()}
ENDCLASS

DEFINE object syntax:

DEFINE ENTRYFIELD Company OF THIS;
Property Datalink "Company->Company",;
Top 3, Left 1, Width 20

DEFINE ENTRYFIELD State OF THIS;
Property Datalink "Company->State_Prov",;
Top 5, Left 1,;

* to shift focus to Fld2 when you move the mouse
* over the second field:

OnMouseMove {;this.SETFOCUS()}

See Also
ActiveControl, _curobj, Nextobj, SET CUAENTER

C h a p t e r 8 , P r o p e r t i e s 935

S h a p e S t y l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

ShapeStyle
Determines the shape of a shape object.

Property of class
SHAPE

Data type
Numeric

Default
The default for ShapeStyle is 3 (Circle).

Description
Use ShapeStyle to specify a shape for a shape object.

The shapes you can specify are as follows:

For example, if you want to provide a square, colored background for an area on a form,
you can create a shape object with a ShapeStyle value of 5, which specifies a square
shape. Use the ColorNormal property to specify the color of the shape object.

Example
The following example creates a form and places an elliptical blue object with a bright
white border inside the form.

MyForms = NEW FORM("Shape Display")
MyShape = NEW SHAPE(MyForm, "OURSHAPE" &&Name property = "OURSHAPE"
MyShape.ShapeStyle = 2 && Elliptical shape
MyShape.ColorNormal = "W+/B" && Bright white border, blue interior
MyForm.Open()

The Name property of the new Shape object contains "OURSHAPE".

See Also
ColorNormal, PenStyle, PenWidth

Value Shape

0 Rectangle with rounded corners
1 Rectangle
2 Ellipse
3 Circle
4 Square with rounded corners
5 Square

936 L a n g u a g e R e f e r e n c e

S h o r t C u t

ShortCut
Specifies a key combination that executes the OnClick subroutine of a menu object.

Property of class
MENU

Data type
Character

Default
The default for ShortCut is an empty string.

Description
Use ShortCut to provide a quick way to execute a menu command with the keyboard.
For example, if you assign the character string "CTRL+S" to ShortCut, the user can
execute the OnClick subroutine by pressing Ctrl+S or Ctrl+s.

The value you specify with ShortCut is displayed next to the prompt you specify with
the Text property.

Example
NEW operator syntax:

FileMnt= NEW MENU ITEM(this)
FileMnt.ShortCut = "Alt+F"

DEFINE object syntax:

DEFINE MENU ITEM FileMnt OF THIS;
PROPERTY ShortCut "Alt+F"

See Also
OnClick

ShowDeleted
Determines if the delete box column in a browse object is displayed.

Property of class
BROWSE

Data type
Logical

Default
The default for ShowDeleted is true (.T.).

C h a p t e r 8 , P r o p e r t i e s 937

S h o w H e a d i n g+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Description
Use ShowDeleted to display or omit delete boxes at the left of each record in a browse
object.

The setting you give to ShowDeleted has an effect only when SET DELETED is OFF.
When SET DELETED is ON, the delete boxes are never displayed.

Example
NEW operator syntax:

Br1=NEW BROWSE(this)
Br1.Fields="CompCode,Contact"
Br1.ShowDeleted=.T.

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS;
PROPERTY Fields "CompCode, Contact",;

ShowDeleted .T.

See Also
ShowHeading, ShowRecno

ShowHeading
Determines if field name headings are displayed at the top of each column in a browse
object.

Property of class
BROWSE

Data type
Logical

Default
The default for ShowHeading is true (.T.).

Description
Use ShowHeading to determine whether the top line in a browse object displays a
record or a heading line.

Example
NEW operator syntax:

Br1 NEW BROWSE(this)
Br1.Fields = "Compcode,Contact"
Br1.Width = 38
Br1.Height = 17
Br1.Showheading = .F.

938 L a n g u a g e R e f e r e n c e

S h o w R e c N o

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS;
PROPERTY;

Fields "CompCode, Contact",;
Width 38,;
Height 17,;
ShowHeading .F.

See Also
ShowDeleted, ShowRecno

ShowRecNo
Determines if the record number column in a browse object is displayed.

Property of class
BROWSE

Data type
Logical

Default
The default for ShowRecNo is true (.T.)

Description
Use ShowRecNo to display or hide record numbers at the left of each record in a browse
object.

The ShowRecNo setting affects space allocation in the browse object display. For
example, setting ShowRecNo to false (.F.) removes the record number column, leaving
more room for displaying fields.

Example
NEW operator syntax:

Br1=NEW BROWSE(this)
Br1.Fields="CompCode,Contact"
Br1.ShowRecNo=.F.

DEFINE object syntax:

DEFINE BROWSE Br1 OF THIS;
PROPERTY Fields "CompCode, Contact",;

ShowRecNo .F.

See Also
ShowDeleted, ShowHeading

C h a p t e r 8 , P r o p e r t i e s 939

S h o w S p e e d T i p+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

ShowSpeedTip
Determines if tips about a control on a form appear in a balloon near the control when
the mouse rests on those controls. The controls must have tips text defined via the
SpeedTip property for tips to appear.

Property of class
FORM

Data type
Logical

Default
The default for ShowSpeedTip is true (.T.).

Description
Use ShowSpeedTip to determine whether tip messages appear for a control on a form. If
ShowSpeedTip is .T., and controls have tips defined via the SpeedTip property, the tip
will appear when the mouse comes to rest on the control. If ShowSpeedTip is .F., the tips
will not appear. ShowSpeedTip has no effect on controls where no tip has been defined.

Example
In the following example, the tips won't be displayed because ShowSpeedTip has been
set to false.

f = NEW Form()
f.ShowSpeedTip = .F.
DEFINE Pushbutton PSpeedTip OF f;
Property;

SpeedTip "Push to close",;
OnClick {; Form.Close()},;
Text "&Close" f.Open()

See Also
SpeedTip StatusMessage

940 L a n g u a g e R e f e r e n c e

S i z e

Size
Contains the number of elements in an array object.

Property of class
ARRAY

Data type
Numeric

Description
Use Size to find out how many elements an array object has.

Knowing the number of elements in an array lets you execute a FOR...NEXT loop to
traverse the array and either read its elements or insert values into them. For more
information on array traversal, see Dir().

Example
See Dir() for an example of using Size with array objects.

See Also
ALEN(), Delete(), Dimensions, Grow(), Insert(), Resize()

Sizeable
Determines if the user can resize a form.

Property of class
FORM

Data type
Logical

Default
The default for Sizeable is true (.T.).

Description
Set the Sizeable property to false to prevent the user from resizing a form.

When you set Sizeable to true, the form is bordered by a bold line, indicating that the
user can change its size and dimensions with the mouse. When you set Sizeable to false
(.F.), the form is bordered by a thin line. The pointer does not change when the user
places it on the border, and the form can't be resized.

Note When you set the MDI property of a form to true, the Sizeable setting is ignored and the
user can always resize the form.

C h a p t e r 8 , P r o p e r t i e s 941

S o r t ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
NEW operator syntax:

LOCAL F1
F1=NEW Trips()
F1.OPEN()
CLASS Trips OF FORM

this.MDI = .F.
this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.Sizeable = .F.

ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips ;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18,;
Sizeable .F., MDI .F.

See Also
Moveable, Maximize, Minimize

Sort()
Sorts the elements in a one-dimensional array object or sorts rows in a two-dimensional
array object.

Property of class
ARRAY

Description
Use the Sort() method to arrange array object elements in alphabetical, numerical,
chronological, or logical order.

The Sort() method is similar to the ASORT() function.

The elements to sort in a one-dimensional array object must be of the same data type,
and the elements of the column by which rows are to be sorted in a two-dimensional
array object must be of the same data type.

Sort() accepts three parameters:

• <starting element expN> is the number of an element at which to start sorting if the
array object is one-dimensional, or the number (subscript) of the column on which to
sort if the array object is two-dimensional. If you omit <starting element expN>, Sort()
starts sorting at the first element or column in the array.

942 L a n g u a g e R e f e r e n c e

S o r t e d

• <elements to sort expN> is the number of elements to sort if the array object is one-
dimensional, or the number of rows to sort if the array object is two-dimensional. If
you omit <elements to sort expN>, Sort() sorts the rows starting at the row containing
element <starting element expN> to the last row. If you specify a value for <elements to
sort expN>, also need to specify a value for <starting element expN>.

• <sort order expN2> is the sort order. 0 specifies ascending order (the default), and 1
specifies descending order.

For more information on sorting elements in an array object, see ASORT().

Example

USE Animals.DBF
* Initialize an array object
ObjArr=NEW ARRAY(RECCOUNT(),3)
* Fill array with values from Animals.DBF
COPY TO ARRAY ObjArr FIELDS Name, Area, Weight
* Use SORT() to order by the area values in
* column 2 of the array.
ObjArr.Sort(2)
* Display sorted array contents
FOR i=1 TO RECCOUNT()

? ObjArr[i,1], ObjArr[i,2], ObjArr[i,3]
NEXT i

See Also
ASORT(), Dir(), Fields(), Scan()

Sorted
Determines whether the prompts in a list box or a combo box are listed in sorted order
or in natural order.

Property of class
COMBOBOX, LISTBOX

Data type
Logical

Default
The default for Sorted is false (.F.).

Description
Set Sorted to true (.T.) when you want the prompts in a list box or a combo box to appear
in sorted order (alphabetically, numerically, or chronologically). For example, a list of
names is more accessible if it is sorted alphabetically.

C h a p t e r 8 , P r o p e r t i e s 943

S p e e d B a r+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

The natural order of a list box or a combo box depends on the order in which the
prompts are generated. For example, when you specify "FILE *.*" for the DataSource
property of a list box, the prompts consist of the file names in the default directory. The
prompts are created in the order in which the files are listed in the directory, so they are
not necessarily arranged alphabetically when you set Sorted to false.

Sorted is non-operational when the DataSource property of the list box or combo box
specifies "FIELD" followed by a field name. In this case, the order of prompts in the list
box or combo box depends on the record sequence in the table containing the specified
field.

Example
NEW operator syntax:

LST1 = NEW LISTBOX(this)
LST1.DataSource = "File"
LST1.Sorted = .T.

DEFINE object syntax:

DEFINE LISTBOX LST1 OF FORM THIS;
PROPERTY DataSource "File",;
Sorted .T.

See Also
Multiple

SpeedBar
Determines whether a pushbutton behaves like a SpeedBar button or a standard
pushbutton.

Property of class
PUSHBUTTON

Data type
Logical

Default
The default for SpeedBar is false (.F.).

Description
Set SpeedBar to true (.T.) when you want a pushbutton to behave like a SpeedBar
button. A SpeedBar button is not included in the tabbing order of a form; consequently,
it can't receive focus with Tab or Shift+Tab.

In Windows applications, SpeedBar buttons are quick alternatives to menu commands.
They are typically used for common operations such as Cut, Copy, and Print.

944 L a n g u a g e R e f e r e n c e

S p e e d T i p

Example
NEW operator syntax:

Advance = NEW PUSHBUTTON(this)
Advance.Onclick = ChngRecno
Advance.Text = "Forward"
Advance.SpeedBar = .T.

DEFINE object syntax:

DEFINE PUSHBUTTON Advance OF THIS;
PROPERTY Onclick ChngRecno,;
Text "Forward", SpeedBar .T.

See Also
DEFINE, OnClick

SpeedTip
Specifies the text that appears when the mouse remains on a control for more than one
second.

Property of class
CHECKBOX, ENTRYFIELD, PUSHBUTTON, RADIOBUTTON, SPINBOX

Data type
Character

Default
The default for SpeedTip is an empty string.

Description
Use SpeedTip to create a brief text message which appears in a balloon when the mouse
rests on a control. Usually this message gives the user a clue as to the function of the
control. To suppress the display of Speed Tips, set the ShowSpeedTip property of the
form to false (.F.).

Example

f = NEW Form()
DEFINE PUSHBUTTON PSpeedTip OF f;

Property;
SpeedTip "Push to close",;
OnClick {; Form.Close()},;
Text "&Close" f.Open()

See Also
ShowSpeedTip, StatusMessage

C h a p t e r 8 , P r o p e r t i e s 945

S p i n O n l y+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

SpinOnly
Determines if users can enter a value in the text box portion of a spin box.

Property of class
SPINBOX

Data type
Logical

Default
The default for SpinOnly is false (.F.).

Description
A spin box lets users enter values in a text box or select values with arrow buttons.
When you set the SpinOnly property to false, the text box is enabled. When you set the
SpinOnly property to true (.T.) the text box is disabled, restricting input to the
predefined values offered by the arrow buttons.

Example
NEW operator syntax:

SP1 = NEW SPINBOX(this)
SP1.DataLink = "Country->GNP"
SP1.SpinOnly = .T.,;
SP1.Height = 2

DEFINE object syntax:

DEFINE SPINBOX SP1 OF THIS;
PROPERTY;

DataLink "Country->GNP",;
SpinOnly .T., Height 2

See Also
CLASS SPINBOX

StatusMessage
Specifies a message to display on the status bar while an object has focus.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, LISTBOX,
MENU, OLE, PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX

Data type
Character

946 L a n g u a g e R e f e r e n c e

S t e p

Default
The default for StatusMessage is an empty string.

Description
Use StatusMessage to provide instructions to the user when the user selects an object.

Example
NEW operator syntax:

Exit = NEW PUSHBUTTON(this)
Exit.Onclick = Compute
Exit.Text = "Exit"
Exit.StatusMessage = "Click on Exit to compile;

results"
* Compute is a FUNCTION that performs
* an action and returns .T. or some value.

DEFINE object syntax:

DEFINE PUSHBUTTON Exit OF THIS;
PROPERTY Onclick Compute,;
Text "Exit",;
StatusMessage "Click on Exit to compile results"

See Also
SpeedTip, Text, ValidErrorMsg

Step
Determines how much a user can increment or decrement a value by clicking an arrow
in a spin box.

Property of class
SPINBOX

Data type
Numeric

Default
The default for Step is 1.

Description
Use Step to control the rate at which a user can increase or decrease a numeric or date
value. For example, a program that expresses large dollar values only in increments of
$500.00 might give a spin box a Step value of 500.

C h a p t e r 8 , P r o p e r t i e s 947

S t y l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

Example
NEW operator syntax:

Spin1 = NEW SPINBOX(this)
Spin1.Datalink = "Country->GNP"
Spin1.Top = 2
Spin1.Left = 4
Spin1.Height = 2
Spin1.Step = 10

DEFINE object syntax:

DEFINE SPINBOX Spin1 OF THIS;
PROPERTY Datalink "Country->GNP",;
Top 2, Left 4, Height 2, Step 10

See Also
RangeMax, RangeMin

Style
Specifies which parts of a combo box are usable and which parts are displayed
automatically.

Property of class
COMBOBOX

Data type
Numeric

Default
The default for Style is 1 (DropDown).

Description
Use Style to determine how the user selects values in a combo box.

The user selects a value from a combo box by entering initial characters in a text box or
by selecting the value directly from the prompt list. The setting you give to Style
determines whether the text box is usable and whether the prompt list is displayed
automatically.

You can give Style one of three values:

Style value Description

0 (Simple) The dropdown list is displayed automatically.
1 (DropDown) The user has to click the arrow to display the dropdown list.
2 (DropDownList) The user has to click the arrow to display the dropdown list, and the text box does

not accept input.

948 L a n g u a g e R e f e r e n c e

S u b s c r i p t ()

Example
NEW operator syntax:

DEFINE COMBOBOX Cb1 OF THIS
this.Cb1.Style=1
this.Cb1.Datasource="FIELD Animals->Name"
this.Cb1.Top=4
this.Cb1.Left=6
this.Width=20
this.Height=12

DEFINE object syntax:

DEFINE COMBOBOX Cb1 OF THIS FROM 4,6 TO 26,16;
PROPERTY;

DataSource "FIELD Animals->Name",;
Style 1

See Also
Enabled

Subscript()
Returns the row number or the column number of a specified element in an array object.

Property of class
ARRAY

Description
Use the Subscript() method when you know the number of an element in a two-
dimensional array object and want to reference the element by using its subscripts. The
Subscript() method is similar to the ASUBSCRIPT() function.

Subscript() accepts two parameters:

• <element expN> is the element number.

• <row/column expN> is a number, either 1 or 2, that determines whether you want to
return the row or column subscript of an array object. If <row/column expN> is 1,
Subscript() returns the number of the row subscript. If <row/column expN> is 2,
Subscript() returns the number of the column subscript.

To determine both the row and column number of an element in a two-dimensional
array object, issue Subscript() twice, once with a value of 1 for <row/column expN> and
once with a value of 2 for <row/column expN>. For example, if the element number is 13,
the following returns its subscripts:

Subscript(Form.aArray,13,1) && Returns row subscript
Subscript(Form.aArray,13,2) && Returns col subscript

C h a p t e r 8 , P r o p e r t i e s 949

S y s M e n u+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
S

In one-dimensional array objects, the number of an element is the same as its subscript,
so there is no need to use Subscript(). That is, Subscript(3) returns 3, Subscript(5)
returns 5, and so on.

Subscript() is the inverse of Element(), which returns the element number when you
specify the subscripts of the element.

Example
See Scan() for an example of using Subscript() with array objects.

See Also
ASUBSCRIPT(), Element()

SysMenu
Determines if a form has a Control menu.

Property of class
FORM

Data type
Logical

Default
The default for SysMenu is true (.T.).

Description
Set SysMenu to true to create a Control menu for a form. A standard Windows feature,
the Control menu is accessible from the Control-menu box, a button at the upper left
corner of a form.

The Control menu provides the following options:

• Restore, which restores the form to its original size after the user maximizes it.
• Move, which lets the user move the form with the arrow keys.
• Size, which lets the user resize the form with the arrow keys.
• Minimize, which reduces the form to an icon.
• Maximize, which enlarges the form.
• Close, which closes the form.

When you open a form with the ReadModal() property or the READMODAL()
function, the Control menu contains only the Move and Close options.

It's customary to set SysMenu to false when you create a dialog box in a Windows
application.

Note When the MDI property of a form is true, the SysMenu setting is ignored and the form
always has the Control menu.

950 L a n g u a g e R e f e r e n c e

T a b S t o p

Example
NEW operator syntax:

F1=NEW EntryForm()
CLASS EntryForm OF FORM

this.MDI = .F.
this.Text = "Entry"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.SysMenu = .F.

ENDCLASS

DEFINE object syntax:

DEFINE FORM EntryForm ;
Property SysMenu .F., MDI .F.,;
Top 2, Left 2, Width 38, Height 18

See Also
Moveable, Sizeable

TabStop
Determines if the user can select an object by pressing Tab or Shift+Tab.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX, OLE,
PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Data type
Logical

Default
The default for TabStop is true (.T.).

Description
Set the TabStop property to false (.F.) when you want to remove an object from the
tabbing order of the parent form. For example, a form might contain a pushbutton that
executes a rarely used utility routine. Setting the TabStop property of the pushbutton to
false prevents the pushbutton from being selected with Tab or Shift+Tab.

Example
NEW operator syntax:

Comp = NEW ENTRYFIELD(this)
Comp.Datalink = "Clients->Company"
Comp.TabStop = .F.

C h a p t e r 8 , P r o p e r t i e s 951

T e r m i n a t e ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

DEFINE object syntax:

DEFINE ENTRYFIELD Comp OF THIS;
PROPERTY Datalink "Clients->Company",;
TabStop .F.

See Also
Before, _curobj, Group

Terminate()
Terminates a conversation with a DDE server application.

Property of class
DDELINK

Description
Use Terminate() to close a DDE link between dBASE and a server application.

Terminate() stops communication between dBASE and the server application, but
doesn't close the server application itself.

When you terminate a DDE link with Terminate(), you can restore it with Reconnect.
When you terminate the link with the Release() method, the link can't be restored and
you need to create the DDELink object again.

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.Initiate("QPW","Demo.WB1")
* Subsequent program operations completed; link
* do longer required
LinkObj.Terminate()

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Reconnect(), Server,
TimeOut, Topic, Unadvise()

952 L a n g u a g e R e f e r e n c e

T e x t

Text
Specifies a character string to display in or next to an object.

Property of class
BROWSE, CHECKBOX, FORM, MENU, PUSHBUTTON, RADIOBUTTON,
RECTANGLE, TEXT

Data type
Character

Default
The default for Text is a character string dBASE assigns to the object when you create it.
For example, dBASE automatically assigns "BUTTON1" to the Text property of the first
pushbutton you create.

Description
Use Text to label objects or display command labels in menu items. For example, if a
pushbutton closes a form, you might set the Text property to "Close" or "Cancel". To
display a character string on a form, create a text object and set its Text property to the
desired string.

Use a pick character to let the user give focus to an object or select a menu item. To
designate a character as a pick character, precede it with an ampersand (&). For
example, the following command designates C as a pick character:

MyForm.MyMenu.FirstItem.Text = "&Close"

The pick character is underlined when the object is displayed.

Example
NEW operator syntax:

Exit = NEW PUSHBUTTON(this)
Exit.Text = "E&xit"
Exit.Width = 15
Exit.Onclick = {;Form.Close()}

DEFINE object syntax:

DEFINE PUSHBUTTON Exit OF THIS AT 11,13 ;
PROPERTY Text "E&xit", Width 15,;
OnClick {;Form.Close()}

See Also
StatusMessage

C h a p t e r 8 , P r o p e r t i e s 953

T i m e O u t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

TimeOut
Specifies the amount of time in milliseconds that dBASE waits on a transaction before
returning an error.

Property of class
DDELINK

Data type
Numeric

Default
The default for TimeOut is 1000 (1 second).

Description
Use TimeOut to set a limit on the length of time dBASE waits for a DDE transaction to
complete successfully.

Errors sometimes occur when dBASE tries to exchange data with a server application or
send instructions to it. Each time an attempt is made, dBASE waits for the amount of
time you specify (in milliseconds) with TimeOut. When the transaction fails to complete
in the allotted time, dBASE generates an error message.

When using DDE over a network, you may need to set TimeOut to a larger value.

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.Timeout = 30
LinkObj.Initiate("QPW","Demo.WB1")

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(),
Topic, Unadvise()

Toggle
Determines if the user can switch between two display modes in a browse object.

Property of class
BROWSE

Data type
Logical

954 L a n g u a g e R e f e r e n c e

T o p

Default
The default for Toggle is True (.T.).

Description
Set Toggle to false (.F.) to restrict users to one display mode in a browse object.

A browse object can display multiple records (Browse mode) or one record at a time
(Edit mode). By pressing F2, the user can toggle between these modes. The default mode
is Browse when you set the Mode property to 0; the default mode is Edit when you set
Mode to 1 or 2. When you set Toggle to false, the user is restricted to the default mode.

Example
NEW operator syntax:

CompanyBrowse = New BROWSE(this)
CompanyBrowse.Top = 3
CompanyBrowse.Left = 1
CompanyBrowse.Width = 60
CompanyBrowse.Alias = "Company"
CompanyBrowse.Toggle = .F.

DEFINE object syntax:

DEFINE BROWSE CompanyBrowse OF THIS;
FROM 3,1 TO 13,40;
Property;
Alias "Company",;
Toggle .F.

See Also
Browse, Append, Delete

Top
Specifies a position for the top border of an object relative to its parent form or (if the
object has no parent form) to the Windows desktop.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE, LINE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Numeric

C h a p t e r 8 , P r o p e r t i e s 955

T o p i c+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Description
Use the Top property in combination with the Left property to position an object in a
form or on the Windows desktop. (The Left property specifies the position of the left
border.) Top and Left accept integer or non-integer values.

If you used the FROM or AT clause of the DEFINE command and specified a value for
the Top property, dBASE positions the object with the Top property.

Each unit of the value you assign to Top is the average height of characters in the active
font of the parent form. For example, if you increase the Top property of an entry field
by 5.5, the entry field is 5.5 character heights above its previous position.

Example
NEW operator syntax:

Exit=NEW PUSHBUTTON(this)
Exit.Top = 5
Exit.Left = 2
Exit.Width = 17
Exit.Text = "Exit Program"
Exit.OnClick = {;Form.Close()}

DEFINE object syntax:

DEFINE PUSHBUTTON Exit OF Entry;
PROPERTY Top 5, Left 2, Width 17,;
Text "Exit Program", OnClick {;Form.Close()}

See Also
Bottom, Height, Left, Right, ScaleFontName, ScaleFontSize, Width

Topic
Holds the name of the server document accessed by a DDELink object or the topic of a
DDETopic object.

Property of class
DDELINK, DDETOPIC

Data type
Character

Default
The default for Topic is an empty string.

Description
Use Topic to

956 L a n g u a g e R e f e r e n c e

T o p M o s t

• Find the server document name that was passed to the Initiate() method of a
DDELink object

• Identify the topic of a DDETopic object

Using Topic with DDELink objects
The Initiate() method of a DDELink object opens a channel of communication (known
as a DDE link) between dBASE and an external Windows application (known as a server)
and opens one of the data files used by that application (known as a server document).

Initiate() requires two parameters:

• <server> is the main executable file of the server application
• <topic> is the file name of the server document

The Topic property holds the name you pass through <topic>.

Using Topic with DDETopic objects
The topic property of a DDETopic object distinguishes the object from other DDETopic
objects. For example, a dBASE server application might create two DDETopic objects,
one with a topic of NASDAQ and the other with a topic of AMEX:

xServer1 = NEW DDETOPIC("NASDAQ")
xServer2 = NEW DDETOPIC("AMEX")

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.Initiate("QPW","Demo.WB1")
* Subsequent program operations
IF LinkObj.Server="QPW" .AND. ;

LinkObj.Topic = "Demo.WB1"
mValue1=LinkObj.Peek("A:A1")

ENDIF

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(),
TimeOut, Unadvise()

TopMost
Specifies whether forms display on top of all other forms

Property of class
FORM

C h a p t e r 8 , P r o p e r t i e s 957

T o p M o s t+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T

Description
Use the TopMost property to determine if a form stays in the foreground while focus
transfers to other windows.

For example, when an application displays an image object in its own form, it might be
desirable to keep the image visible while the user gives focus to other forms. Assigning a
value of true (.T.) to the TopMost property keeps the form in the foreground regardless
of which form has focus.

TopMost has an effect only when the MDI property is false (.F.).

Example
The following example displays a form containing an image on top of another form. The
form with the image is visible even when the other form has focus.

f = new TOPMOSTFORM()
f2= new OTHERFORM()
f.open()
f2.open()
CLASS TOPMOSTFORM OF FORM

this.Top = 18
this.PageNo = 1
this.Width = 50
this.Text = "Modal TopMost"
this.TopMost = .T.
this.MDI = .F.
this.Height = 15
this.Left = 90
DEFINE IMAGE IMAGE1 OF THIS;

PROPERTY;
Top 2,;
PageNo 1,;
DataSource "FILENAME C:\WINDOWS\LEAVES.BMP",;
Width 30,;
Alignment 3,;
Height 10,;
Left 11

ENDCLASS
CLASS OTHERFORM OF FORM

this.Top = 4
this.PageNo = 1
this.Width = 87
this.Text = "Other form"
this.TopMost = .F.
this.MDI = .T.
this.Height = 26
this.Left = 63

ENDCLASS

See Also
MDI, WindowState

958 L a n g u a g e R e f e r e n c e

T r a c k R i g h t

TrackRight
Determines if the user can select a popup menu item with a right mouse click.

Property of class
POPUP

Date type
Logical

Default
The default for TrackRight is true(.T.).

Description
When TrackRight is true (the default), users can select popup menu items with either
the right mouse button or the left mouse button.

Set TrackRight to false if you don't want users to be able to select items from a popup
menu with a right mouse click.

Example

f = NEW Form()
DEFINE POPUP p OF f;

PROPERTY;
TrackRight .F.

See Also
OnLeftMouseDown, OnRightMouseDown

Unadvise()
Asks the server to stop notifying the client when an item in the server document
changes.

Property of class
DDELINK

Description
Use the Unadvise() method to terminate a hot link to an item in a server document. A
hot link, which you create with the Advise() method, tells the server to notify dBASE
when the item changes.

A server document is a file you open in an external application. For example, a data-
exchange program might start a session in Quattro Pro for Windows, open one of its
spreadsheet files, and establish a hot link to one of its cells. When the hot link is no
longer necessary, remove it with Unadvise().

C h a p t e r 8 , P r o p e r t i e s 959

U n d o ()+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

Unadvise() requires the <item> parameter, which identifies the item in the server
document. This item can be any single element, such as a field in a table or a cell in a
spreadsheet. For example, you can remove a hot link from cell C2 of Page A in a Quattro
Pro spreadsheet file by passing the parameter "A:C2".

Example

PUBLIC LinkObj
LinkObj = NEW DDELINK()
LinkObj.OnNewValue = Valuehandler;

&& Codeblock or function pointer
LinkObj.Initiate("QPW","Demo.WB1")
LinkObj.Advise("A:A1");

&& Notified when cell A:A1 changes
* Subsequent program operations completed
LinkObj.UnAdvise("A:A1")

See Also
Advise(), Execute(), Initiate(), OnNewValue, Peek(), Poke(), Server, Terminate(),
TimeOut, Topic

Undo()
Reverses the effects of the last Cut or Paste action.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Undo() when the user wants reverse the effects of the last Copy, Cut or Paste
action. The action of Undo() is identical to the Undo menu item on the standard
Windows Edit menu.

If you have assigned a menubar to the form, you can use the menubar's EditUndoMenu
property instead of using the Undo() property of individual objects on the form. For
more information, see EditUndoMenu.

Example
See Copy() for an example.

See Also
Copy(), Cut(), EditUndoMenu, Paste()

960 L a n g u a g e R e f e r e n c e

U p B i t m a p

UpBitmap
Specifies the graphic image to display in a pushbutton when it isn't selected.

Property of class
PUSHBUTTON

Data type
Character

Default
The default for UpBitmap is an empty string.

Description
Use UpBitmap to give visual confirmation that a pushbutton is enabled and the user is
not clicking it.

The UpBitmap setting can take one of three forms:

1 RESOURCE <resource id> <dll name> specifies a bitmap resource and the DLL file that
holds it. (A DLL file is a precompiled library of external routines and resources
written in non-dBASE languages such as C and Pascal.) You can obtain the resource
ID with a resource editor such as Resource Workshop.

2 FILENAME <filename> specifies a bitmap file (which usually has the file-name
extension .BMP).

3 BINARY <binary field> specifies a binary field containing bitmap images. If you use
this option, the parent form must be based on a table or a query containing the field.
You specify this table or query with the View property of the form. The image
displayed always comes from the current record, so moving from record to record
changes the image.

When you specify a character string for the pushbutton with Text and an image with
UpBitmap, the image is displayed with the character string.

Note You can select a bitmap file with the Choose Bitmap dialog box. To access the Choose
Bitmap dialog box, click the Tool button next to the UpBitmap item in the Inspector.

Example
NEW operator syntax:

Advance = NEW PUSHBUTTON(this)
Advance.Onclick = ShowInfo
Advance.Text = "Database"
Advance.UpBitmap = "Resource #1904 Bwcc.dll"
Advance.DownBitmap = "Resource Empty Resource.dll"
Advance.StatusMessage = "Click on 'Database' for;

country info"

C h a p t e r 8 , P r o p e r t i e s 961

V a l i d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

DEFINE object syntax:

DEFINE PUSHBUTTON Advance OF THIS;
PROPERTY Onclick ShowInfo,;
Text "Database",;
UpBitmap "Resource #1904 Bwcc.dll",;
DownBitmap "Resource Empty Resource.dll",;
StatusMessage "Click on 'Database' for ;

country info"

See Also
DEFINE, DisabledBitmap, DownBitmap, Enabled, FocusBitmap

Valid
Specifies a condition that must evaluate to true (.T.) before the user can remove focus
from an object.

Property of class
EDITOR, ENTRYFIELD, SPINBOX

Data type
Function pointer or codeblock

Description
Use Valid to validate data. For example, an application might use the Valid property of
an entry field to detect and prevent invalid account numbers; when a user enters an
incorrect value, focus can't be given to another object until the user corrects the entry.

Like other event properties, the Valid property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling routines, see Chapter 14 in the Programmer's
Guide.

The subroutine you specify for Valid must return a logical value (true or false).

The Valid property resembles the RangeMax and RangeMin properties. However,
RangeMax and RangeMin set only upper and lower limits, while Valid can apply other
conditions. For example, an upper or lower limit can't exclude nonconsecutive values
such as 2, 7, and 9, so a Valid subroutine is required.

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the Valid item in the Inspector.

962 L a n g u a g e R e f e r e n c e

V a l i d E r r o r M s g

Example
NEW operator syntax:

Date = NEW ENTRYFIELD(this)
Date.Datalink = "Clients->Baldate"
Date.Valid = Valchk

DEFINE object syntax:

DEFINE ENTRYFIELD Date OF THIS;
PROPERTY Datalink "Clients->Baldate",;
Valid Valchk

See Also
RangeMax, RangeMin, RangeRequired, ValidErrorMsg, ValidRequired, When

ValidErrorMsg
Specifies a character string to display on the status bar when the Valid property of an
entry field returns false (.F.).

Property of class
ENTRYFIELD, SPINBOX

Data type
Character

Default
The default for ValidErrorMsg is "Invalid input".

Description
Use the ValidErrorMsg property to display instructions or a warning when the user
enters an incorrect value.

For example, an application might use the Valid property to detect and prevent invalid
account numbers. When a user enters an invalid number, the Valid property returns
false (.F.) and the message in ValidErrorMsg is displayed in the status bar.

Example
NEW operator syntax:

Date = NEW ENTRYFIELD(this)
Date.Datalink = "Clients->Baldate"
Date.Valid = Valchk
Date.ValidErrorMsg = "Invalid date"
* Valchk is a FUNCTION that performs an
* action and returns .T. or some value.

DEFINE object syntax:

C h a p t e r 8 , P r o p e r t i e s 963

V a l i d R e q u i r e d+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

DEFINE ENTRYFIELD Date OF THIS;
PROPERTY Datalink "Clients->Baldate",;
Valid Valchk,;
ValidErrorMsg "Invalid date"

See Also
StatusMessage, Valid, ValidRequired

ValidRequired
Determines if the Valid event property applies to all data or to new data only.

Property of class
ENTRYFIELD, SPINBOX

Data type
Logical

Default
The default for ValidRequired is false (.F.).

Description
Set ValidRequired to true to validate existing data as well as new data. For
ValidRequired to take effect, you need to set a validation condition with the Valid event
property.

You typically set ValidRequired to true (.T.) when you change a validation condition
and need to verify and update existing data. For example, a business might add a digit
to its account numbers and change the Valid property of an entry field to require the
new digit. If the ValidRequired property is set to true, dBASE also detects any existing
account numbers that lack the digit and forces the user to make appropriate changes.

The Valid property resembles the RangeMax and RangeMin properties. However,
RangeMax and RangeMin set only upper and lower limits, while Valid can apply other
conditions. For example, an upper or lower limit can't exclude nonconsecutive values
such as 2, 7, and 9, so a Valid subroutine is required.

Example
NEW operator syntax:

Date = NEW ENTRYFIELD(this)
Date.Datalink = "Clients->Baldate"
Date.Valid = Valchk
Date.ValidRequired = .T.
Date.ValidErrorMsg = "Invalid date"
* Valchk is a FUNCTION that performs an
* action and returns .T. or some value

964 L a n g u a g e R e f e r e n c e

V a l u e

DEFINE object syntax:

DEFINE ENTRYFIELD Date OF THIS;
PROPERTY Datalink "Clients->Baldate",;
Valid Valchk, ValidRequired .T.,;
ValidErrorMsg "Invalid date"

See Also
RangeMax, RangeMin, RangeRequired, Valid, ValidErrorMsg

Value
The value contained in an object.

Property of class
CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX, RADIOBUTTON,
SCROLLBAR, SPINBOX

Data type
Numeric, float, character, or date

Default
The default for Value varies for each object. For example, the default for an entry field is
the value stored in the table field (that the entry field is linked to) for the first record. For
a check box, the default is .F. (a check box is unchecked by default).

Description
Use Value to initialize data in an object or query a user's input. For example, you can use
the Value property of a spin box to set the default value that appears in the text box. You
can also query the Value property of an entry field to obtain the value entered by the
user.

Example
NEW operator syntax:

BDate = NEW ENTRYFIELD(this)
BDate.Datalink = "Clients->Baldate"
BDate.Value = DATE()

DEFINE object syntax:

DEFINE ENTRYFIELD BDate OF THIS;
PROPERTY Datalink "Clients->Baldate",;
Value DATE()

See Also
DataLink, DataSource, LISTSELECTED(), Selected(), STORE

C h a p t e r 8 , P r o p e r t i e s 965

V e r t i c a l+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

Vertical
Determines whether a scroll bar is vertical or horizontal.

Property of class
SCROLLBAR

Data type
Logical

Default
The default for Vertical is true (.T.).

Description
Use Vertical to make a scroll bar fit with other objects on a form or to enhance the design
of the form. For example, a form might not have space for a horizontal scroll bar, or a
vertical scrollbar might look awkward next to a spin box.

Example
NEW operator syntax:

IncNum = NEW SCROLLBAR(this)
IncNum.Top = 7
IncNum.Left = 3
IncNum.Datalink = "Num"
IncNum.Vertical = .F.

DEFINE object syntax:

DEFINE SCROLLBAR IncNum OF THIS;
PROPERTY DataLink "Num", Vertical .F.,;
Top 7, Left 3

See Also
DataLink, Height, Left, Top, Width

View
Specifies the name of a query or a table on which a form is based.

Property of class
FORM

Data type
Character

966 L a n g u a g e R e f e r e n c e

V i e w

Default
The default for View is an empty string.

Description
Use View to determine which tables are automatically opened whenever the form is
opened. You can assign multiple tables with a query (.QBE, .VUE), or you can assign a
single table (.DBF). Although you're not required to set the View property, you should if
the form accesses table data. Otherwise, every time you open the form, you need to
open the table or query first.

Once you associate the form with a table or tables, you need to link objects such as entry
fields and check boxes with specific fields in the table.

If you want certain tables open while you design a form, but may not want the same
tables open at runtime, use DesignView instead of View. For more information, see
DesignView.

Notes You can specify a value for the View property with the Choose View dialog box, which
lets you choose a query or a table. To access the Choose View dialog box, click on the
Tool button next to the View item in the Inspector.

Example
NEW operator syntax:

LOCAL
F1=NEW EntryForm()
CLASS EntryForm OF FORM
this.Text = "Entry Form"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.View = "Company94.QBE"
* Company94.QBE is a Query file name on which
* the Form Entry is based.
ENDCLASS

DEFINE object syntax:

DEFINE FORM EntryForm;
Property Text "Entry Form",;
View "Company94.QBE",;
Top 2, Left 2, Width 38, Height 18

See Also
Alias, DataLink, DataSource, DesignView

C h a p t e r 8 , P r o p e r t i e s 967

V i s i b l e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
u

Visible
Determines whether an object is visible or hidden.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE, LINE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Logical

Default
The default for Visible is true (.T.).

Description
Use Visible when you want to display an object only if a specified condition is met or a
specified action is taken. For example, you can specify conditions with event properties
(such as OnClick and Valid) that set Visible to true when the user clicks an object or
enters certain values.

Example
NEW operator syntax:

Spin1 = NEW SPINBOX(this)
Spin1.Datalink = "Value1"
Spin1.Top = 2
Spin1.Left = 4
Spin1.Height = 2
Spin1.Visible = .F.

DEFINE object syntax:

DEFINE SPINBOX Spin1 OF THIS;
PROPERTY Datalink "Value1",;
Top 2, Left 4, Height 2, Visible .F.

See Also
Enabled

968 L a n g u a g e R e f e r e n c e

W h e n

When
Specifies a condition that must evaluate to true (.T.) before the user can give focus to an
object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, LISTBOX,
PUSHBUTTON, RADIOBUTTON, SCROLLBAR, SPINBOX, TABBOX

Data type
Function pointer or codeblock

Description
Use When to determine when an object is available to users. For example, an application
that manages sensitive customer accounts might prevent a browse object from receiving
focus until the user enters the proper password into an entry field.

Like other event properties, the When property accepts

• Functions
• Procedures
• Codeblocks

For information on these subroutines, see Chapter 4 in the Programmer's Guide. For
information on writing event-handling code, see Chapter 14 in the Programmer's Guide.

The subroutine you specify for When must return a logical value (true or false).

Note You can write a subroutine with the Procedure Editor, a window in which you enter
dBASE program code. To access the Procedure Editor, click on the Tool button next to
the When item in the Inspector.

Example
NEW operator syntax:

USE Company
* Form declaration

NextRec = NEW PUSHBUTTON(this)
NextRec.Text = "Next"
NextRec.When = {;.NOT. EOF()}
NextRec.OnClick = {;SKIP}

DEFINE object syntax:

DEFINE PUSHBUTTON NextRec OF THIS;
PROPERTY;

Text "Next",;
When {;.NOT. EOF()},;
OnClick {;SKIP}

C h a p t e r 8 , P r o p e r t i e s 969

W i d t h+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
w

See Also
Valid

Width
Specifies the width of an object.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMAGE, LINE,
LISTBOX, OLE, PUSHBUTTON, RADIOBUTTON, RECTANGLE, SCROLLBAR,
SPINBOX, TABBOX, TEXT

Data type
Numeric

Description
Use the Width property in combination with the Height property to adjust the size of an
object.

Width determines the distance from the left border to its right border. You can assign an
integer or non-integer value to Width.

Each unit of the value you assign to Width is the average width of characters in the
active font of the parent form. For example, if you set the Width property of an entry
field to 15.5, the entry field is as wide as 15.5 characters.

Example
NEW operator syntax:

Action1 = NEW PUSHBUTTON(this)
Action1.Text = "Search for Open Accounts"
Action1.Onclick = Search
Action1.Width = 22
Action1.Top = 11
Action1.Left = 13

DEFINE object syntax:

DEFINE PUSHBUTTON Action1 OF THIS ;
PROPERTY Text "Search for Open Accounts",;
Top 11, Left 13, Width 22
OnClick Search

See Also
Left, Height, ScaleFontName, ScaleFontSize, Top

970 L a n g u a g e R e f e r e n c e

W i n d o w M e n u

WindowMenu
Specifies a menu object that displays a list of all open MDI windows.

Property of Class
MENUBAR

Data type
Object reference

Description
WindowMenu contains a reference to a menu object that has a menubar as its parent.
When users open this menu object, dBASE displays a pulldown list of all open MDI
windows.

WindowMenu automatically places a separator line on the pulldown list between any
menu prompts and the list of open windows. The currently active window shows a
check next to the window name.

If you use the Menu Designer to create a menubar, WindowMenu is automatically set to
an item named Window on the menubar:

this.WindowMenu = this.Window

Example

NEW SAMPLEMENU(FormObj,"Root")
CLASS SAMPLEMENU(FormObj,Name) OF MENUBAR(FormObj,Name)

DEFINE MENU FILE OF THIS;
PROPERTY;

Text "&File"
DEFINE MENU EXIT OF THIS.FILE;

PROPERTY;
Text "E&xit"

DEFINE MENU EDIT OF THIS;
PROPERTY;

Text "&Edit"
DEFINE MENU UNDO OF THIS.EDIT;

PROPERTY;
Text "&Undo"

DEFINE MENU CUT OF THIS.EDIT;
PROPERTY;

Text "Cu&t"
DEFINE MENU COPY OF THIS.EDIT;

PROPERTY;
Text "&Copy"

DEFINE MENU PASTE OF THIS.EDIT;
PROPERTY;

Text "&Paste"
DEFINE MENU WINDOW OF THIS;

PROPERTY;
Text "&Window"

C h a p t e r 8 , P r o p e r t i e s 971

W i n d o w S t a t e+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
w

DEFINE MENU ARRANGE OF THIS.WINDOW;
PROPERTY;

Text "&Arrange"
DEFINE MENU HELP OF THIS;

PROPERTY;
Text "&Help"
DEFINE MENU ABOUT OF THIS.HELP;

PROPERTY;
Text "&About"

This.EditUndoMenu = This.Edit.Undo
This.EditCutMenu = This.Edit.Cut
This.EditCopyMenu = This.Edit.Copy
This.EditPasteMenu = This.Edit.Paste
This.WindowMenu = This.Window

ENDCLASS

See Also
CLASS MENUBAR, EditCopyMenu, MDI

WindowState
Determines if a form is minimized, maximized, or displayed in its original size.

Property of class
FORM

Data type
Numeric

Default
The default for WindowState is 0 (Normal).

Description
Use WindowState to maximize, minimize, or restore a form.

The WindowState property accepts the following values:

When you set the WindowState property to 0, the form is said to be restored.

Setting Effect on window

0 (Normal) Returns the form to its original size
1 (Minimized) Reduces the form to an icon
2 (Maximized) Enlarges the form to cover the work area of the desktop

972 L a n g u a g e R e f e r e n c e

W r a p

Example
NEW operator syntax:

LOCAL f
f=NEW Trips()
f.OPEN()
CLASS Trips OF FORM

this.Text = "Trip Schedule"
this.Top = 2
this.Left = 2
this.Width = 38
this.Height = 18
this.WindowState = 2

ENDCLASS

DEFINE object syntax:

DEFINE FORM Trips FROM 2,2 TO 20,40;
PROPERTY Text "Trip Schedule",;
Top 2, Left 2, Width 38, Height 18.;
WindowState 2

OPEN FORM TRIPS

See Also
Moveable, Sizeable

Wrap
Determines if an editor object wraps input text automatically.

Property of class
EDITOR

Data type
Logical

Default
The default for Wrap is true (.T.).

Description
Set Wrap to false (.F.) when you want the user to control the width of each line of text.
Set Wrap to true (the default) if you want dBASE to execute a carriage return
automatically when a text string exceeds the width of an editor object.

C h a p t e r 8 , P r o p e r t i e s 973

W r a p+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
w

Example
NEW operator syntax:

Ed1=NEW EDITOR(this)
Ed1.Wrap = .T.
Ed1.Top = 4
Ed1.Left = 37
Ed1.Height = 12
Ed1, Width = 32
Ed1.DataSource = "MEMO Contact->Notes"

DEFINE object syntax:

DEFINE EDITOR Ed1 OF THIS;
PROPERTY Top 4, Left 37, Height 12, Width 32,;

Wrap .T.,;
DataSource "MEMO Contact->Notes"

See Also
Width, Height

974 L a n g u a g e R e f e r e n c e

P r o p e r t i e s 975

Part 0SQL

976 L a n g u a g e R e f e r e n c e

C h a p t e r 9 , L o c a l S Q L 977

C h a p t e r

9
Chapter 9Local SQL

Visual dBASE provides the ability to mix dBASE and SQL commands for operations
against both local and remote data. This chapter describes the syntax of SQL commands
that can be used within dBASE when working with non-database server data (i.e.
dBASE and Paradox tables).

Note that the syntax described here is for use against dBASE/Paradox tables only.
Database servers (such as Interbase or Oracle) have their own implementations of SQL
syntax. When working with server data, the server’s syntax must be used. For detailed
information on SQL support in Visual dBASE, see the Programmer’s Guide. For
information on the SQL dialect and extensions used at your server, see your SQL server
documentation.

Memory variable substitution in SQL queries
dBASE supports the substitution of memvar values in SQL queries. dBASE memory
variables are indicated with a colon, as in the following example

x = "Robert"
SELECT * FROM customers WHERE firstname = :x

The memory variable x is resolved and "Robert" is substituted in its place.

Naming conventions

Table names
Table names may be comprised of alphanumeric characters, underscores (_), and the
period (.). They may include full file and path specifications or BDE alias specifications
(in the format :ALIASNAME:TABLENAME). They may even duplicate SQL keywords.

However, table names which include anything other than alphanumeric characters and
underscores, or include file or alias specifications, must always be enclosed in single or
double quotes. For example:

978 L a n g u a g e R e f e r e n c e

A L T E R T A B L E

SELECT * FROM 'C:\SAMPLE.DAT\TABLE' includesfull path specification
SELECT * FROM "TABLE.DBF" includes a period
SELECT PASSID FROM "PASSWORD" duplicates an SQL keyword
SELECT BID_DATE FROM “:FSFDBASE:BIDS” includes BDE alias specification

Column names
Column names may be comprised of alphanumeric characters, underscores (_), and
spaces ().They may also duplicate SQL keywords.

However, column names that include spaces or duplicate SQL keywoads must
always be:

• enclosed in single or double quotes

• prefaced with an SQL table name or table correlation name, in the format
TABLENAME.COLUMNNAME.

For example:

SELECT E."EMP ID" FROM EMPLOYEE includes a space
SELECTDATELOG."DATE" FROM TABLE duplicates an SQL keyword

ALTER TABLE
Adds or drops (deletes) one or more columns (fields) from a table.

Syntax
ALTER TABLE <table name> ADD <column name><data type> | DROP <column name>
[, ADD <column name><data type> ...] [,DROP <column name>...]

Description
Use ALTER TABLE to modify the structure of an existing table. ALTER TABLE with the
ADD clause adds the column <column name> of the type <data type> to <table name>. Use
the DROP clause to remove the existing column <column name> from <table>.

Warning Data stored in a dropped column is lost without warning, regardless of the SET SAFETY
setting.

Multiple columns may be added and/or dropped in a single ALTER TABLE command.

Use ALTER TABLE as a means of modifying the structure of a table without using the
dBASE Table Structure dialog.

Example
The following statement adds two columns (REFER and LASTCALL) and deletes one
column (FIRST_CONT) from a the table CUSTOMER.DBF:

ALTER TABLE CUSTOMER ADD REFER CHAR(20), ADD LASTCALL DATE, DROP FIRST_CONT

See also
CREATE TABLE, DROP TABLE, INSERT, MODIFY STRUCTURE (dBASE)

C h a p t e r 9 , L o c a l S Q L 979

C R E A T E I N D E X

CREATE INDEX
Creates a new index on a table.

Syntax
CREATE INDEX <index name> ON <table name> <column name> [, <column name>...]

Description
Use CREATE INDEX to create a new index <index name>, in ascending order, based on
the values in one or more columns <column name> of <table name>. Unlike the dBASE
language, expressions cannot be used to create an index, only columns.

When working with dBASE .DBF tables, the index can only be created for a single
column. The new index is created as a new index tag in the production index. A
production index is created if it does not exist.

CREATE INDEX is equivalent to the INDEX ON <field list> TAG <tag name> syntax in
the dBASE language.

Example
The following statement adds an index called ZIP on the ZIP_POSTAL column of the
CUSTOMER.DBF table:

CREATE INDEX ZIP ON CUSTOMER ZIP_POSTAL

See also
DROP INDEX, INDEX (dBASE)

CREATE TABLE
Creates a new table.

Syntax
CREATE TABLE tablename (<column name> <data type> [,<column name> <data type>...])

Usage
Use CREATE TABLE to create a new table. The type of table produced (dBASE or
Paradox) depends on the current setting of SET DBTYPE.

At least one <column name> <data type> must be defined. The column definition list must
be enclosed in parentheses.

980 L a n g u a g e R e f e r e n c e

C R E A T E T A B L E

The following table lists SQL syntax for data types used with CREATE TABLE, and
describes how they are mapped to dBASE and Paradox types.

CREATE TABLE is a alternate way of creating a table without using the dBASE Table
Structure dialog or the dBASE CREATE STRUCTURE EXTENDED, CREATE FROM
commands.

Examples
The following example creates a dBASE table called SALES with the following
structure:

Table 9.1 Data type mappings for CREATE1

1. Parameters
x = length; if omitted, to 20 for dBASE
y = decimal places; if omitted, defaults to 4 for dBASE
n = length; if omitted, length defaults to 1
s = subtype; if a blob subtype is omitted, the subtype defaults to Memo

SQL Syntax dBASE Paradox

SMALLINT Numeric Short
INT Numeric Long
DECIMAL(x,y) N/A BCD
NUMERIC(x,y) Numeric(x,y) Number
FLOAT(x,y) Numeric(x,y) Number
CHARACTER(n) Character Alpha

DATE Date Date
BOOLEAN Logical Logical
BLOB(n,s)2

2. Blob subtypes
BINARY
FMTMEMO (Paradox only)
GRAPHIC (Paradox only)
MEMO
OLE

Memo/Binary Memo/Binary
TIME N/A Time
TIMESTAMP N/A TimeStamp
MONEY Numeric(20,4) Money
AUTOINC N/A Autoincrement
BYTES(n) N/A Bytes

Table 9.2 SALES.DBF structure

Field name Field type Field length Decimal places

SALESID Character 6
CUSTOMERID Character 10
ORDERDATE Date 8

ORDERNMBR Numeric 7 0

C h a p t e r 9 , L o c a l S Q L 981

D E L E T E F R O M

CREATE TABLE SALES (
SALESID CHAR(6),
CUSTOMERID CHAR(10),
ORDERDATE DATE,
ORDERNMBR NUMERIC(7,0),
ORDERAMT NUMERIC(9,2),
DELIVERED BOOLEAN)

See also
ALTER TABLE, CREATE (dBASE), CREATE FROM (dBASE), CREATE STRUCTURE
EXTENDED (dBASE), DROP TABLE

DELETE FROM
Deletes rows (records) from a table.

Syntax
DELETE FROM <table name> [WHERE <search condition>]

Usage
Use DELETE FROM to delete rows, or records, from <table name>. Without the WHERE
clause, all the rows in the table are deleted. Use the WHERE clause to specify a <search
condition>. Only records matching the <search condition> are deleted.

When DELETE FROM is run against dBASE .DBF tables the following rules apply:

1 If a WHERE clause is used, DELETE FROM only marks rows for deletion, even if all
the rows match the <search condition>. In this way, DELETE FROM behaves like the
dBASE DELETE command. The rows are recallable unless the table is packed.

2 Without the WHERE clause, all the rows in the table are actually deleted. In this case,
DELETE FROM behaves like the dBASE ZAP command. The rows are not recallable,
and the table will have zero rows.

When DELETE FROM is run against a Paradox table, all the rows matching the <search
condition> are actually deleted. If no WHERE clause is used, all the rows in the table are
deleted. The data in the deleted rows in not recallable.

Example
The following example deletes all the rows in a dBASE table called CUSTOMER and
results in a table with zero rows.

DELETE FROM CUSTOMER

ORDERAMT Numeric 9 2
DELIVERED Logical 1

Table 9.2 SALES.DBF structure (continued)

Field name Field type Field length Decimal places

982 L a n g u a g e R e f e r e n c e

D R O P I N D E X

The following example marks all the rows in a dBASE table called CUSTOMER for
deletion, but does not actually delete the rows from the table.

DELETE FROM CUSTOMER WHERE CUSTOMER_N > 0

The following example marks all the rows where the CITY field is equal to “Freeport”
for deletion in a dBASE table called CUSTOMER.

DELETE FROM CUSTOMER WHERE CITY = “Freeport”

The following example deletes all the rows where the CITY field is equal to “Freeport”
in a Paradox table called CUSTOMER.

DELETE FROM “CUSTOMER.DB” WHERE CITY = “Freeport”

See also
DELETE (dBASE), PACK (dBASE), SELECT, ZAP (dBASE)

DROP INDEX
Drops (deletes) an existing index from a table.

Syntax
DROP INDEX <table name>.<index name>

Usage
Use DROP INDEX to drop, or delete, the index <index name> from <table name>. For
dBASE .DBF tables <index name> must be the name of a tag in the production index.

Example
The following statement drops the index tag NAME from the production index of a
dBASE table called EMPLOYEE:

DROP INDEX EMPLOYEE.NAME

The following statement drops a primary index on the Paradox table, EMPLOYEE.DB:

DROP INDEX “EMPLOYEE.DB”.PRIMARY

See also
CREATE INDEX, DELETE TAG (dBASE), DROP TABLE

DROP TABLE
Drops (deletes) a table.

Syntax
DROP TABLE <table name>

C h a p t e r 9 , L o c a l S Q L 983

I N S E R T I N T O

Usage
Use DROP TABLE to delete the table <table name> from disk. The associated production
index file and memo file, if any, are also deleted.

Example
The following statement drops a dBASE table call EMPLOYEE:

DROP TABLE EMPLOYEE

See also
CREATE TABLE, DELETE FROM, DELETE TABLE (dBASE)

INSERT INTO
Adds new rows (records) to a table.

Syntax
INSERT INTO <table name> [(<column list>)] VALUES (<value list>) | SELECT <command>

Usage
Use INSERT INTO to add rows, or records, to a table. There are two forms of this
command. In the first form, you use <value list> to specify individual column values that
are to be inserted for the new row. The values to be inserted must match in number,
order, and type with the columns specified in <column list>, if <column list> is specified.
Columns in the new row for which no value is given are left blank. If no <column list> is
given, the order of the columns as they appear in the table is assumed. Without a
<column list> a value must be provided for each column in the <value list>.

In the second form, the SELECT clause is executed just like a SELECT command. The
row or rows returned by the SELECT are inserted into <table name>. The columns of the
rows returned by the SELECT are matched up with the columns listed in <column list>.
Therefore, the columns returned by SELECT must match in number, order, and type
with the columns specified in <column list>, if <column list> is specified. If no <column
list> is given, the number, order, and type of the columns returned by the SELECT must
match the number, order, and type of the columns in <table name>.

Example
The following example makes a copy of the structure of the dBASE table
CUSTOMER.DBF called CACUST.DBF, then adds customers to the new file.

USE CUSTOMER && open the customer table
COPY STRUCTURE TO CACUST && copy the structure
USE && close customer
* The next line adds a new row (record) to CACUST and inserts John Smith, Riverside, CA
* in the NAME, CITY, and STATE_PROV columns (fields) respectively
INSERT INTO CACUST (NAME, CITY, STATE_PROV) VALUES (“John Smith”, “Riverside”, “CA”)
* The next line retrieves all the records where the state is CA from CUSTOMER and adds
them to CACUST
INSERT INTO CACUST SELECT * FROM CUSTOMER WHERE STATE_PROV = “CA”

984 L a n g u a g e R e f e r e n c e

S E L E C T

See also
APPEND (dBASE), APPEND BLANK (dBASE), APPEND FROM (dBASE), COPY
(dBASE), COPY TABLE (dBASE), CREATE TABLE, REPLACE (dBASE), SELECT

SELECT
Retrieves data from one or more tables.

Syntax
SELECT <column list> FROM <table list> [WHERE <search condition>] [GROUP BY <column list>]
[ORDER BY <column list>] [HAVING <search condition>] [SAVE TO <filename>]
[ALIAS <alias name>]

Usage
Use SELECT to retrieve data from a table or set of tables based on some criteria.

The <column list> is a comma-delimited list of columns in the table(s) that you wish to
retrieve. The columns are retrieved in the order given in the list. If two or more tables
used by SELECT use the same field names, distinguish the tables by using the table
name and a dot (“.”). For example, if you’re SELECTing from the CUSTOMER table and
the PRODUCT table, and they both have a field called NAME, enter the fields as
CUSTOMER.NAME and PRODUCT.NAME in <column list>. To retrieve all the
columns from <table list>, use an asterisk (*) for <column list>. To eliminate rows
containing duplicate values within the same column, precede the <column list> with the
keyword DISTINCT.

FROM <table list> The FROM clause specifies the table or tables from which to retrieve
data. <table list> can be a single table or a comma-delimited list of tables.

WHERE <search condition> The optional WHERE clause reduces the number of rows
returned by a SELECT to those that match the criteria specified in <search condition>.

GROUP BY <column list> The optional GROUP BY clause specifies how retrieved rows are
grouped for aggregate functions. Any column names that appear in the GROUP BY
<column list> must also appear in the SELECT <column list>.

ORDER BY <column list> The optional ORDER BY clause specifies the column to order the
retrieved rows by.

HAVING <search condition> The optional HAVING clause specifies a <search condition> that
evaluates to being true of false for each row in the group.

SAVE TO <filename> The optional SAVE TO clause specifies that the results of the SELECT
are to be saved to a new table called <filename>.

ALIAS <alias name> The optional ALIAS clause specifies the name of the alias given to the
work area the results of the SELECT appear in. If not specified, ALIAS defaults to
SQL_<integer>.

The default output of SELECT statements produces an open workarea (similar to USE).
All dBASE commands and functions can be used on the result of a SELECT. If the query
produced a temporary table, the temporary table is deleted when the answer set is

C h a p t e r 9 , L o c a l S Q L 985

U P D A T E

closed. If you wish to save the results, use the SAVE TO option of SELECT or use the
COPY TO command after the SELECT.

SELECT opens the answer set in the first unused workarea, starting from area 1. If the
query was successful, the currently selected area is changed to the workarea where the
answer set was produced.

Examples
The following examples show simple SELECTs:

SELECT NAME, PHONE FROM CUSTOMER WHERE STATE_PROV = “CA”
SELECT CUSTOMER_NO FROM CUSTOMER WHERE LAST_NAME = “Johnson”
SELECT PART_NO, SUM(QUANTITY) AS PQTY FROM PARTS GROUP BY PART_NO

The following example shows a join in which fields from each table are involved in
some type of equality check require a WHERE clause:

SELECT DISTINCT PARTS.PART_NO, PARTS.QUANTITY, GOODS.CITY FROM PARTS, GOODS
WHERE PARTS.PART_NO = GOODS.PART_NO AND PARTS.QUANTITY > 20
ORDER BY PARTS.QUANTITY, GOODS.CITY, PARTS.PART_NO

The following example shows the use of the DESCENDING keyword in the ORDER BY
clause. Note that in this case you must also specify DISTINCT.

SELECT DISTINCT CUSTOMER_NO FROM CUSTOMER ORDER BY CUSTOMER_NO DESCENDING

See also
CREATE QUERY(dBASE), DELETE FROM, INSERT FROM, SET FILTER (dBASE), SET
KEY (dBASE), SET RELATION (dBASE), UPDATE

UPDATE
Adds or changes values in existing columns in existing rows of a table.

Syntax
UPDATE <table name> SET <column name> = <expression> [, <column name> = <expression>...]
WHERE <search condition>

Usage
Use UPDATE to update (change) values within existing columns in existing rows of a
table. The column specified by <column name> is updated with the value of <expression>
in all rows that match the <search criteria> of the WHERE clause. If the WHERE clause is
omitted, the column is updated in all rows in the table. Multiple columns may be
updated in a single UPDATE command. A given column of a table may only appear
once to the left of a “=” in the SET clause.

986 L a n g u a g e R e f e r e n c e

U P D A T E

Example
The following command updates that YTD sales to zero for each customer that was
contacted in the previous calendar year:

UDATE CUSTOMER SET YTD_SALES = 0 WHERE FIRST_CONT < {01/01/95}

See also
INSERT FROM, REPLACE (dBASE) SELECT

A p p e n d i x e s 987

Part 0Appendixes

988 L a n g u a g e R e f e r e n c e

A p p e n d i x A , C h a n g e s s i n c e d B A S E I V 2 . 0 989

A p p e n d i x

A
Appendix AChanges since dBASE IV 2.0

This appendix describes changes in the dBASE language from dBASE IV version 2.0 to
Visual dBASE. It lists the new, changed, and unsupported language elements.

New language elements

New language elements
Element Description

ACOPY() Copies elements from one array to another.
ADEL() Deletes an element, row, or column from an array.
ADIR() Stores file characteristics of files in a directory (name, size, date

stamp, time stamp, and DOS attributes) to an array.
AELEMENT() Returns the number of a specified element in a one- or two-

dimensional array.
AFIELDS() Stores structural information about a table in an array.
AFILL() Inserts a specified value into one or more elements of an array.

AGROW() Adds an element, row, or column to an array.
AINS() Inserts .F. values into an array.
ALEN() Returns the number of elements, rows, or columns of an array.
ANSI() Returns the ANSI value that corresponds to a specified OEM (DOS

code page) character expression.
ARESIZE() Increases or decreases the array size.
ASCAN() Searches an array for an expression, returning the number of the

first element that matches the expression.

ASORT() Sorts the elements in an array.
ASUBSCRIPT() Returns the row or column number of a specified element in an

array.
BEGINTRANS() Replaces BEGIN TRANSACTION and END TRANSACTION.
BINTYPE() Returns the predefined type number of a specified binary field.

990 L a n g u a g e R e f e r e n c e

BITAND() Performs an AND comparison of the bits in two specified
expressions.

BITLSHIFT() Returns a number generated by left-shifting the bits in a specified
expression.

BITRSHIFT() Returns a number generated by right-shifting the bits in a specified
expression.

BITOR() Performs an OR comparison of the bits in two specified
expressions.

BITSET() Indicates whether a bit in a specified expression is set.
BITXOR() Performs an exclusive OR (XOR) comparison of the bits in two

specified expressions.
BOOKMARK() Returns a bookmark (similar to a record pointer) for the current

record of a dBASE, Paradox, or SQL table.
BUILD Links object code files (.PRO, .WFO) and resources into a

Windows executable file (.EXE) if the optional Visual dBASE
Compiler is installed.

CD Changes the current default drive or directory.
CENTER() Returns a character string that contains a string centered in a line

of specified length.
CHARSET() Returns the name of the character set that the current or specified

table is using.
CHOOSEPRINTER() Lets you choose a printer or specify print options, also resetting the

appropriate system memory variables.
CLASS...ENDCLASS Declares a class of objects and optionally specifies the member

properties and methods for that class.
CLEAR AUTOMEM Initializes a set of automem variables corresponding to fields in the

current table.
CLEAR PROGRAM Clears from memory all compiled program files that aren't

currently executing and aren't currently open with SET FORMAT,
SET PROCEDURE, or SET LIBRARY.

CLOSE FORMS Clears forms from the screen without releasing their definitions
from memory.

CLOSE TABLES Closes tables in all work areas, or close all tables in the current
database, if one is selected.

COMMIT() Ends a transaction and writes to the open files any changes made
during the transaction.

COPY BINARY Copies the contents of the specified binary field to a file.
COPY TABLE Copies a specified table to a file.
CREATE CATALOG Creates a new catalog.
CREATE COMMAND Displays a specified program file for editing, or displays an empty

editing window.
CREATE FILE Displays a specified text file for editing, or displays an empty

editing window.

CREATE FORM Opens the Form Designer to create or modify a form (.WFM) file.
CREATE MENU Opens the Menu Designer to create or modify a menu (.MNU) file.
CREATE SESSION Creates a new session, which lets you open the same table again as

if you were working in a multiuser environment.

New language elements (continued)
Element Description

A p p e n d i x A , C h a n g e s s i n c e d B A S E I V 2 . 0 991

CREATE...STRUCTURE
EXTENDED

Creates and opens a table that you can use as a template for a new
table.

DATABASE() Returns the name of the current database from which tables are
accessed.

DBERROR() Returns the number of the last IDAPI error.
DBMESSAGE() Returns the error message of the last or a specified IDAPI error.
DEFINE Creates an object from a built-in or custom class.
DEFINE COLOR Creates and names a customized color.

DELETE TABLE Deletes a specified table.
DISPLAY/LIST COVERAGE Displays the contents of a coverage file (.COV).
DO...UNTIL Executes the statements between DO and UNTIL as long as a

specified condition is false or until dBASE encounters an EXIT
command.

DOS Temporarily passes control to the DOS prompt, allowing
execution of DOS commands.

ELAPSED() Returns the number of seconds elapsed between two specified
times.

EMPTY() Returns .T. if a specified expression or field is blank, .F. if it
contains data.

EXTERN Declares a prototype for a non-dBASE function contained in a DLL
file. A prototype tells dBASE to convert its arguments to data types
the external function can use, and to convert the value returned by
the external function into a data type dBASE can use.

FACCESSDATE() Returns the last date a file was opened under Windows 95.
FCREATEDATE() Returns the date a file was created under Windows 95.
FCREATETIME() Returns the time a file was created under Windows 95.
FDECIMAL() Returns the number of decimal places in a specified field of a table.
FLENGTH() Returns the length of the field in a specified position of a table.

FNAMEMAX() Returns the maximum allowable file-name length on a given drive
or volume.

FOR...NEXT Executes the statements between FOR and NEXT the number of
times indicated by the FOR statement.

FSHORTNAME() Returns the short name (i.e. the DOS compatible name) of a file
created under Windows 95.

FUNIQUE() Creates a unique file name.
GENERATE Adds records containing random data to the current table.
GETCOLOR() Lets you define a custom color or select a color from the color

palette.
GETDIRECTORY() Displays a dialog box from which you can select a directory for use

with subsequent commands.
GETEXPR() Displays the Create an Expression or the Edit an Expression dialog

box, and returns the expression you specify.
GETFILE() Displays a dialog box from which you can choose a file name.
GETFONT() Calls a dialog box from which you can select character fonts.
HTOI() Returns the decimal-number equivalent of a specified

hexadecimal number.

New language elements (continued)
Element Description

992 L a n g u a g e R e f e r e n c e

INSPECT() Displays a dialog box that displays all the properties of a specified
object and the current values of the properties.

ISTABLE() Tests for the existence of a table in a specified database.
ITOH() Returns the hexadecimal equivalent of a specified decimal number

as a character string.
LDRIVER() Returns the name of the language driver the current table or a

specified table is using.

LENNUM() Returns the display length of a specified number, including
leading blanks.

LISTCOUNT() Returns the number of prompts in a list box.
LISTSELECTED() Returns the prompt of a list box item or combobox item selected by

the user.
LOAD DLL Initiates a DLL file, a precompiled library of external routines

written in non-dBASE languages like C and Pascal.
LOCAL Declares memory variables that are visible only in the subroutine

where they're declared.
MD Creates a new DOS directory.
MKDIR Creates a new DOS directory.
MODIFY FORM Opens the Form Designer, which creates or modifies a form file.
MODIFY MENU Opens the Menu designer to modify a menu (.MNU) file.
NEXTKEY() Returns the decimal value of a key or key combination held in the

keyboard typeahead buffer.
OEM() Returns a character string that is the OEM (code page) value of a

specified ANSI character expression.
ON NETERROR Executes a specified command when a multiuser-specific error

occurs.
ON SELECTION FORM Executes a subroutine or a codeblock when the user submits a

form.
OPEN DATABASE Establishes a connection to a database server.
OPEN FORM Displays and enables forms and the objects they contain.
PLAY SOUND Restores a sound from a .WAV file or from a memo field and plays

it.
PROPER() Converts a character string to proper-noun format.
PUTFILE() Displays a dialog box in which you can create a new file name.
RANDOM() Returns a random decimal value between 0 and 1.

READMODAL() Opens a form as a modal window, and returns the name of the
object that has input focus when the user submits the form.

REDEFINE Modifies the settings made originally by the DEFINE command.
REFRESH Updates the current or specified work area data buffers to reflect

the latest changes to data.
RELATION() Returns the key expression defined with the SET RELATION

command for the current or specified work area.
RELEASE AUTOMEM Clears all stored automem variables from memory.
RELEASE DLL Deactivates DLL files, precompiled libraries of external routines

that were previously initialized with LOAD DLL.
RELEASE OBJECT Removes object definitions from memory.

New language elements (continued)
Element Description

A p p e n d i x A , C h a n g e s s i n c e d B A S E I V 2 . 0 993

RENAME TABLE Changes the name of a specified table.

REPLACE AUTOMEM Transfers contents of memory variables into corresponding fields
of the current record in the current table.

REPLACE BINARY Replaces the contents of a binary field with the contents of a binary
file.

REPLACE MEMO Replaces the text of a memo field with the contents of an array.
REPLACE MEMO...FROM Inserts a text file in a memo field.
REPLACE OLE Inserts an OLE document into an OLE field.

RESOURCE() Returns a Windows resource number found in a DLL file.
RESTORE IMAGE Displays an image stored in a file or in a memo field.
ROLLBACK() Replaces the ROLLBACK command.
SECONDS() Returns the number of seconds that have elapsed since 12 AM

(midnight).
SET COVERAGE Determines whether dBASE creates or updates a .COV coverage

file.
SET CUAENTER Determines whether the Enter key works in Windows mode or

dBASE DOS mode.
SET DATABASE Sets the default database where tables are accessed from.
SET DATE TO Sets the system date.
SET DBTYPE Sets the default table type to either Paradox or dBASE.
SET DEVICE ? and <filename skeleton> options added.
SET EDITOR Specifies the text editor to use when creating and editing programs

and text files.
SET ERROR Specifies one character expression to precede error messages and

another character expression to follow them.
SET HELP Determines which help file (.HLP) the dBASE help system uses.
SET KEY Assigns a program or procedure to a specified key or key

combination.
SET LDCONVERT Determines whether data read from and written to character and

memo fields is transliterated when the table character set does not
match the global language driver.

SET PCOL Sets the printing column position of a printer, which is the value of
PCOL().

SET PROW Sets the current row position of a printer's print head, which is the
value of PROW().

SET TIME Sets the system time.
SET TOPIC Determines the help information that initially displays in the help

window when you issue the HELP command or press F1.
SET WP Specifies the text editor to use for viewing and editing memo

fields.
SETTO() Returns the current setting of a SET...TO command or function

key.
SHELL() Removes or restores the dBASE interactive environment.
SHOW OBJECT Refreshes an object on the screen.
SLEEP Pauses a program for a specified interval or until a specified time.
SQLERROR() Returns the number of the last server error.

New language elements (continued)
Element Description

994 L a n g u a g e R e f e r e n c e

dBASE also provides standard classes that let you create common windows controls
such as pushbuttons, radio buttons, and entry fields. (See Chapter 7, “Classes” for a
description of each class.)

Enhanced language elements

SQLMESSAGE() Returns the most recent server error message.

SQLEXEC() Executes an SQL statement in the current database.
STATIC Declares memory variables active only in the subroutine where

they're declared but whose values remain in memory until the end
of a dBASE session.

STORE AUTOMEM Stores the contents of all the current record's fields to a set of
memory variables.

STORE MEMO Stores the text of a memo field to an array-type memory variable.
TARGET() Returns the name of a table linked to the current or specified work

area.
UPDATED() Indicates whether you changed the contents of any @...GET fields

or memory variables in the Command window.
VALIDDRIVE() Indicates whether a specified drive exists and can be read.

New language elements (continued)
Element Description

Enhanced language elements
Element Change

ACTIVATE MENU RETRACTED option added; causes a pop-up menu associated
with a pad to be displayed only when the user presses Enter or
clicks on a highlighted pad. Without RETRACTED, the pop-up
menu is displayed as soon as the associated pad is highlighted.

ACTIVATE SCREEN SAVE option added; prevents dBASE IV-style windows in the
result pane of the Command window from scrolling up and out
of the results pane of the Command window.

APPEND NOWAIT and COLUMNAR options added.

APPEND FROM <filename skeleton> and POSITION options added.
PARADOX and DBASE types added.
dBASE II, RPD, FW2, SYLK, DIF, and WKS options dropped.

APPEND MEMO ? and <filename skeleton> options added.
AT() Memo field search no longer limited to the first 64K of data.
BROWSE <browse name> option added.

FOR and WHILE options added.
COLOR option added.
KEY...[EXCLUDE] option added.
NOFOLLOW, NOINIT, NOMODIFY, NORMAL, NOTOGGLE,
and NOWAIT options added.
TITLE option added.

CHANGE Same as EDIT.

A p p e n d i x A , C h a n g e s s i n c e d B A S E I V 2 . 0 995

CLEAR CHARACTER <expC> option added; fills the results pane of the
Command window, or the current dBASE IV-style window, with
the first character of the expression <expC>.

CLOSE DATABASES Besides closing open tables, also closes open databases.
COPY PARADOX and DBASE types added.

dBASE II, RPD, FW2, SYLK, DIF, and WKS options dropped.
COPY FILE ? and <filename skeleton>
COPY INDEXES ? option added.
COPY MEMO ? option added.

COPY STRUCTURE [TYPE] PARADOX | DBASE option added.
COPY TO...STRUCTURE EXTENDED [TYPE] PARADOX | DBASE option added.
CREATE ? option added.

[TYPE] PARADOX | DBASE option added.
CREATE...FROM ? and <filename skeleton> options added.

[TYPE] PARADOX | DBASE option added.
CREATE LABLE <filename skeleton> option added.
CREATE QUERY Invokes the Query Designer. Update (.UPD) queries no longer

supported.

CREATE REPORT <filename skeleton> option added.
CREATE VIEW Invokes the Query Designer. Update (.UPD) queries no longer

supported.
DEFINE BAR SKIP [FOR <condition expL>] option added; makes the pop-up

menu item conditionally unavailable for selection.
DEFINE PAD SKIP [FOR <condition expL>] option added; makes the menu pad

conditionally unavailable for selection.
DEFINE POPUP PROMPT ARRAY added; PROMPT ARRAY <array name>

causes the pop-up menu to display the value of each element in
the specified array.

DELETE FILE <filename skeleton> option added.
DIFFERENCE() <memo field> option added.
DISKSPACE() <drive expN> option added; specifies a drive number from 1 to 26.

For example, the numbers 1 and 2 correspond to drives A and B,
respectively.

DISPLAY FILES ON <drive> and TO FILE ? options added.
DISPLAY MEMORY ? and <filename skeleton> options added.
DISPLAY STRUCTURE ? and IN <alias> options added.
DISPLAY STATUS ? and <filename skeleton> options added.
DO calling a UDF with DO is supported.
EDIT FOR and WHILE options added.

 <bookmark> option added.
COLOR option added.
COLUMNAR, NOFOLLOW, NOINIT, NOMODIFY, NORMAL,
NOTOGGLE, and NOWAIT options added.
TITLE option added.

ERASE <filename skeleton> option added.
GO/GOTO <bookmark> option added.

Enhanced language elements (continued)
Element Change

996 L a n g u a g e R e f e r e n c e

IF ELSEIF option added (ELSE IF also allowed).

IMPORT WB1 option added.
dBASE II, RPD, FW2, FW3, PFS, and WKS options dropped.

INDEX ? and <filename skeleton> options added.
PRIMARY key added to allow creating primary indexes on
Paradox tables.

INKEY() <mouse expC> option added.
ISALPHA() <memo field> option added.
ISLOWER() <memo field> option added
ISUPPER() <memo field> option added

JOIN ? option added.
[TYPE] PARADOX | DBASE option added.

LABEL FORM <filename skeleton> option added.
LEFT() Return value no longer limited to 254 characters; memo field

option added.
LEN() Null characters are counted.
LIKE() <memo field> option added.
LIST STRUCTURE ? and IN <alias> options added.
LOCK() <bookmark> option added.
LOWER() <memo field> option added.

LTRIM() <memo field> option added. Return value no longer limited to 254
characters.

MAX() Logical expressions supported.
MEMLINES() <line length exp> option added.
MIN() Logical expressions supported.
MLINE() <line length exp> option added.
MODIFY COMMAND ? and <filename skeleton> options added.
MODIFY QUERY Invokes the Query Designer. Update (.UPD) queries no longer

supported.
MODIFY VIEW Invokes the Query Designer. Update (.UPD) queries no longer

supported.
OS() Optional <expN> argument returns the version of Windows

currently running.
PRIVATE LIKE and EXCEPT supported in the same statement.
QUIT Allowable <expN> value now 1 to 254 instead of 0 to 255.

RELEASE LIKE and EXCEPT supported in the same statement.
REPLICATE() <memo field> option added.

Return value no longer limited to 254 characters.
REPORT FORM <filename skeleton> option added.
RESTORE ? and <filename skeleton> options added.
RESTORE WINDOW ? and <filename skeleton> options added
RIGHT() <memo field> option added.

 Return value no longer limited to 254 characters.
RLOCK() <bookmark> option added

Enhanced language elements (continued)
Element Change

A p p e n d i x A , C h a n g e s s i n c e d B A S E I V 2 . 0 997

RTRIM() <memo field> option added.
 Return value no longer limited to 254 characters.

SAVE ? and <filename skeleton> option added.
Both LIKE and EXCEPT supported in the same SAVE statement.

SAVE SCREEN TO FILE option added, and TO <memvar> is no longer a required
option.

SCAN Nested SCAN loops
SEEK <exp list> to allow searching for composite field keys.
SET Automatically writes changes to DBASEWIN.INI.
SET ALTERNATE ? and <filename skeleton> options added

SET CURRENCY <exp C> option added; sets the characters that display as a
currency sign.

SET DEVICE ? and <filename skeleton> options added
SET FILTER <filename skeleton> option added.
SET INDEX <filename skeleton> option added.

TAG keyword option added.
SET KEY TO LOW, HIGH, and EXCLUDE keyword options added.
SET LIBRARY ? and <filename skeleton> options added.
SET MESSAGE The AT option is not supported.
SET PRECISION dBASE now provides 19 digits of precision for both numeric and

float data types.
SET PROCEDURE ?, <filename skeleton>, and ADDITIVE options supported;

ADDITIVE opens the procedure file(s) without closing any
you've opened with previous SET PROCEDURE statements.

SET RELATION <exp list> option added to allow setting relation on composite
field keys.
CONSTRAIN and INTEGRITY[CASCADE] options added to
ensure data integrity in linked tables.

SET VIEW Activates a query created with Query Designer.
SPACE() Return value no longer limited to 254 characters.
STUFF() <memo field> option added.
SORT ? option added.

[TYPE] PARADOX | DBASE option added.

SOUNDEX() <memo field> option added.
STR() <exp C> option added; sets the character to pad the beginning of

the returned character string with.
STUFF() <memo field> option added.
SUBSTR() <memo field> option added.

Return value no longer limited to 254 characters. Different
behavior if <start expN> or <length expN> is zero or if <length
expN> is a negative number.

TRIM() <memo field> option added.
Return value no longer limited to 254 characters.

TYPE MORE, ?, and <filename skeleton> options added

Enhanced language elements (continued)
Element Change

998 L a n g u a g e R e f e r e n c e

UPPER() <memo field> option added

USE <filename skeleton> and SHARED options added.
[TYPE] PARADOX | DBASE option added.
NOLOG option dropped.

Enhanced language elements (continued)
Element Change

A p p e n d i x A , C h a n g e s s i n c e d B A S E I V 2 . 0 999

Unsupported language elements

Unsupported language elements
Element If used, dBASE...

_pecode Returns a null string
_pscode Returns a null string
_pwait Returns .F.
ASSIST Returns a warning
BEGIN...END TRANSACTION Returns a warning
CALL Returns a warning
CALL() Returns a warning
COMPLETED() Returns .T.

DEXPORT Returns a warning
DGEN() Returns 0
DISPLAY HISTORY Ignores this command
DISPLAY USERS Ignores this command
EXPORT Returns a warning
FIXED() Returns the value that was

passed to it
ISMARKED() Returns .F.
LIST HISTORY Ignores this command
LIST USERS Ignores this command

LOAD Returns a warning
LOGOUT Ignores this command
PLAY MACRO Returns a warning
RELEASE MODULE Returns a warning
RESET Returns a warning
RESTORE MACROS Returns a warning
ROLLBACK Returns a warning
SAVE MACROS Returns a warning
SET CLOCK Returns a warning
SET COLOR ON|OFF Returns a warning
SET DBTRAP Returns a warning

SET DEBUG Returns a warning
SET HELP ON|OFF Returns a warning
SET HISTORY Returns a warning
SET HOURS Returns a warning
SET INSTRUCT Returns a warning
SET PAUSE Returns a warning
SET SCOREBOARD Returns a warning
SET SQL Returns a warning
SET STATUS Returns a warning
SET TRAP Returns a warning

1000 L a n g u a g e R e f e r e n c e

A p p e n d i x B , V i s u a l d B A S E s p e c i f i c a t i o n s 1001

A p p e n d i x

B
Appendix BVisual dBASE specifications

This appendix outlines the specifications for Visual dBASE files and operations.

.DBF tables

Indexes

Table B.1

Item description dBASE IV limit Visual dBASE limit

Maximum number of records 1 billion 1 billion
Maximum size of .DBF table file (in bytes) 2 billion 2 billion
Maximum record size (in bytes) 4000 (not including

_DBASELOCK field)
32,767 (including
_DBASELOCK field)

Maximum number of fields in .DBF table file 255 1024

Table B.2

Item description dBASE IV limit Visual dBASE limit

Maximum index key expression length (in
bytes)

220 220

Maximum index FOR expression length (in
bytes)

220 220

Maximum evaluated index key length (in bytes) 100 100
Maximum blocksize in .MDX index file (in
bytes)

16,384 32,256 (default 1024)

Maximum number of index tags in .MDX index
file

47 47

Fixed blocksize of .NDX index file (in bytes) 512 512

1002 L a n g u a g e R e f e r e n c e

Fields

Multiuser

Procedures

Table B.3

Item description dBASE IV limit Visual dBASE limit

Maximum size of character fields (in bytes) 254 254
Size of date fields (in bytes) 8 8
Size of logical fields (in bytes) 1 1

Maximum size of numeric fields (in digits) 20 20
Maximum size of memo fields (in bytes);
includes OLE and binary type fields

Memo fields limited
only by available
memory

Limited only by available
memory

Maximum characters in field names 10 10
Numeric accuracy of type F numbers (digits) 15.9 19
Largest type F number 0.9xE+308 0.9xE+308

Smallest type F number 0.1xE-307 0.1xE-307
Numeric accuracy of type N numbers (digits) 20 19
Largest type N number 0.9xE+308 0.9xE+308
Smallest type N number 0.1xE-307 0.1xE-307

Table B.4

Item description dBASE IV limit Visual dBASE limit

Maximum number of locks (files and records) 200 total 100 per work area
Maximum number of reprocess counts 32,000 32,000
Maximum number of seconds for refresh 3600 3600

Table B.5

Item description dBASE IV limit Visual dBASE limit

Maximum length of command line in programs
(in bytes)

1024 4096

Maximum number of active .PRO files 32 147
Maximum size of a procedure (in bytes) 65,520 Limited only by available

memory
Maximum number of procedures per file 963 1931

Maximum number of open procedure files 1 Limited only by available
memory

1. Because you can open multiple procedure files with the ADDITIVE option, the maximum number of
procedures available is limited only by available memory.

A p p e n d i x B , V i s u a l d B A S E s p e c i f i c a t i o n s 1003

Files

Miscellaneous

Table B.6

Item description dBASE IV limit Visual dBASE limit

Maximum number of open files (of all types) 99 250
Maximum number of open tables 40 225
Maximum number of open .DBT memo files per
active .DBF table

1 1

Maximum number of open .MDX index files per
active .DBF table

1 production .MDX
plus additional non-
production indexes
allowed.

1 production .MDX plus
additional non-production
indexes allowed

Maximum number of open .NDX index file per
active .DBF table

10 10

Maximum number of open .FMT format files
per active .DBF table

1 1

Maximum width of a report 255 characters 22.75 inches
Maximum number of tables per report 9 225

Maximum number of reports per table Unlimited Unlimited
Maximum number of pages in a report 32,767 Unlimited
Maximum number of nested report group
bands

44 Unlimited

Maximum number of fields in a report Limited only by
available memory

Unlimited

Table B.7

Item description dBASE IV limit Visual dBASE limit

Maximum number of lines in Text Editor 32,000 Unlimited
Maximum line length in Text Editor 1024 32,767
Maximum width of a form 80 characters 32767 pixels (the number of

characters depends on the pixel
width of the font)

Maximum number of rows in a form 32,767 32,767 pixels
Maximum command line length entered in the
Command window

255 4096

Maximum number of lines stored in input
pane of Command window

N/A 1000 lines

Maximum number of simultaneous sort levels 16 16
Maximum number of printer drivers 4 Unlimited
Maximum number of fonts per printer driver 5 9 (total maximum; not per

driver)
Maximum number of work areas 40 225
Number of programmable function keys 29 29
Maximum memory variable size 32,767 32,767
Maximum number of array dimensions 2 255

1004 L a n g u a g e R e f e r e n c e

Maximum elements per dimension 65,525 Unlimited
Maximum total size of array Depends on available

memory
Limited only by available
memory

Table B.7 (continued)

Item description dBASE IV limit Visual dBASE limit

A p p e n d i x C , F i l e s t r u c t u r e s 1005

A p p e n d i x

C
Appendix CFile structures

This appendix provides information on the structure of the dBASE table (.DBF) and the
memo (.DBT) files.

Table header and records
A dBASE table file (.DBF) is composed of a header, data records, deletion flags, and an
end-of-file marker. The header contains information about the file structure, and the
records contain the actual data. One byte of each record is reserved for the deletion flag.

Table header structure
The header structure, detailed in Table C.1 and Table C.2, provides information that
Visual dBASE uses to maintain the table file.

Table C.1 dBASE table file header

Byte Contents Description

0 1 byte Valid Visual dBASE table file; bits 0–2 indicate version number; bit 3
indicates presence of a dBASE IV or Visual dBASE memo file; bits 4–6
indicate the presence of a dBASE IV SQL table; bit 7 indicates the presence
of any .DBT memo file (either a dBASE III PLUS type or a dBASE IV or
Visual dBASE memo file)

1–3 3 bytes Date of last update; in YYMMDD format
4–7 32-bit number Number of records in the table
8–9 16-bit number Number of bytes in the header
10–11 16-bit number Number of bytes in the record
12–13 2 bytes Reserved; filled with zeros

14 1 byte Flag indicating incomplete dBASE IV transaction1

15 1 byte dBASE IV encryption flag2

16–27 12 bytes Reserved for multi-user processing

1006 L a n g u a g e R e f e r e n c e

Table records
The records follow the header in the table file. Data records are preceded by one byte,
that is, a space (20H) if the record is not deleted, an asterisk (2AH) if the record is
deleted. Fields are packed into records without field separators or record terminators.
The end of the file is marked by a single byte, with the end-of-file marker, an OEM Code
Page character value of 26 (1AH). You can input OEM code page data as indicated in
Table C.3.

28 1 byte Production .MDX flag; 01H stored in this byte if a production .MDX file
exists for this table; 00H stored if no .MDX file exists

29 1 byte Language driver ID
30–31 2 bytes Reserved; filled with zeros
32 – n3 32 bytes each Field descriptor array (the structure of this array is shown in Table C-2).
n + 1 1 byte 0DH stored as the field terminator

1. Flag not used by Visual dBASE; in dBASE IV, BEGIN TRANSACTION sets this flag to 01H, END
TRANSACTION and ROLLBACK resets it to 00H.

2. Encryption not supported in Visual dBASE; in dBASE IV, if flag is set to 01H, the table is encrypted.

3. n is the last byte in the field descriptor array. The size of the array depends on the number of fields in the table
file.

Table C.2 Table field descriptor bytes

Byte Contents Description

0–10 11 bytes Field name in ASCII (zero-filled)

11 1 byte Field type in ASCII (B, C, D, F, G, L, M, or N)
12–15 4 bytes Reserved
16 1 byte Field length in binary
17 1 byte Field decimal count in binary
18–19 2 bytes Reserved
20 1 byte Work area ID
21–30 10 bytes Reserved
31 1 byte Production .MDX field flag; 01H if field has an index tag in the production

.MDX file; 00H if field is not indexed

Table C.1 dBASE table file header (continued)

Byte Contents Description

Table C.3 Allowable input for dBASE data types

Data type Data input

B (Binary) All OEM code page characters (stored internally as 10 digits
representing a .DBT block number)

C (Character) All OEM code page characters
D (Date) Numbers and a character to separate month, day, and year

(stored internally as 8 digits in YYYYMMDD format)

A p p e n d i x C , F i l e s t r u c t u r e s 1007

Binary, memo, and OLE fields and .DBT files
Binary, memo, and OLE fields store data in .DBT files consisting of blocks numbered
sequentially (0, 1, 2, and so on). SET BLOCKSIZE determines the size of each block. The
first block in the .DBT file, block 0, is the .DBT file header.

Each binary, memo, or OLE field of each record in the .DBF file contains the number of
the block (in OEM code page values) where the field's data actually begins. If a field
contains no data, the .DBF file contains blanks (20H) rather than a number.

When data is changed in a field, the block numbers may also change and the number in
the .DBF may be changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field (or binary and OLE fields),
Visual dBASE (like dBASE IV) may reuse the space from the deleted text when you
input new text. dBASE III PLUS always appends new text to the end of the .DBT file. In
dBASE III PLUS, the .DBT file size grows whenever new text is added, even if other text
in the file is deleted.

G (General or OLE) All OEM code page characters (stored internally as 10 digits
representing a .DBT block number)

N (Numeric) and F (Floating Point) – . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized)
M (Memo) All OEM code page characters (stored internally as 10 digits

representing a .DBT block number)

Table C.3 Allowable input for dBASE data types (continued)

Data type Data input

1008 L a n g u a g e R e f e r e n c e

A p p e n d i x D , I N K E Y () a n d R E A D K E Y () v a l u e s 1009

A p p e n d i x

D
Appendix DINKEY() and READKEY() values

This appendix provides information on the values returned by the INKEY() and
READKEY() functions.

Table D.1 INKEY() return values

Key pressed Return value
Shift+key
return value

Ctrl+Key
return value

Alt+key1

return value

0 48 Depends on
keyboard

-404 -452

1 49 Depends on
keyboard

-404 -451

2 50 Depends on
keyboard

-404 -450

3 51 Depends on
keyboard

-404 -449

4 52 Depends on
keyboard

-404 -448

5 53 Depends on
keyboard

 0 -447

6 54 Depends on
keyboard

-30 -446

7 55 Depends on
keyboard

-404 -445

8 56 Depends on
keyboard

-404 -444

9 57 Depends on
keyboard

-404 -443

a 97 65 1 -435
b 98 66 2 -434
c 99 67 3 -433
d 100 68 4 -432
e 101 69 5 -431

1010 L a n g u a g e R e f e r e n c e

f 102 70 6 -430
g 103 71 7 -429
h 104 72 8 -428
i 105 73 9 -427
j 106 74 10 -426
k 107 75 11 -425
l 108 76 12 -424

m 109 77 13 -423
n 110 78 14 -422
o 111 79 15 -421
p 112 80 16 -420
q 113 81 17 -419
r 114 82 18 -418
s 115 83 19 -417
t 116 84 20 -416
u 117 85 21 -415
v 118 86 22 -414
w 119 87 23 -413

x 120 88 24 -412
y 121 89 25 -411
z 122 90 26 -410
F1 (Ctrl+\) 28 -20 -10 -30
F2 -1 -21 -11 -31
F3 -2 -22 -12 -32
F4 -3 -23 -13 -33
F5 -4 -24 -14 -34
F6 -5 -25 -15 -35
F7 -6 -26 -16 -36
F8 -7 -27 -17 -37
F9 -8 -28 -18 -38

F10 -9 -29 -19 -39
F11 -544 -546 -548 -550
F12 -545 -547 -549 -551
Left Arrow 19 -500 1 0
Right Arrow 4 -501 6 0
Up Arrow 5 5 5 0
Down Arrow 24 24 24 0
Home (Ctrl+]) 26 26 29 0
End 2 2 23 0
Tab 9 -400 0 0
Enter 13 0 -402 0

Table D.1 INKEY() return values (continued)

Key pressed Return value
Shift+key
return value

Ctrl+Key
return value

Alt+key1

return value

A p p e n d i x D , I N K E Y () a n d R E A D K E Y () v a l u e s 1011

Esc (Ctrl+[) 27 27 - -
Ins 22 0 0 0
Del 7 -502 7 7
Backspace 127 127 -401 -403
PgUp 18 18 31 0
PgDn 3 3 30 0

1. The Alt+key value returned for all character keys, except lower-case letters a through z, is the character value
minus 500. For lower-case letters, the Alt+key values are the same as those for upper-case letters.

Table D.2 READKEY() values

Non-updated
code number

Updated code
number Key pressed Description

0 256 Ctrl+S,
Left-arrow,
Ctrl+H

Move back one character

— 256 Backspace Move back one character
1 257 Ctrl+D,

Right-arrow,
Ctrl+L

Move forward one character

2 258 Ctrl+A,
Ctrl+Left arrow

Move to beginning of previous word

3 259 Ctrl+F,
Ctrl+Right arrow

Move to beginning of next word

4 260 Ctrl+E,
Ctrl+K,
Up-arrow

Move back one field

5 261 Ctrl+J,
Ctrl+X,
Down-arrow

Move forward one field

6 262 Ctrl+R,
PgUp

Move back one screen

7 263 Ctrl+C,
PgDn

Move forward one screen

12 — Ctrl+Q,
Esc

Terminate without saving

— 270 Ctrl+W,
Ctrl+End

Terminate with save

15 271 Enter,
Ctrl+M

Return or fill last record

16 — Enter,
Ctrl+M

Move to beginning of record in an
APPEND window

33 289 Ctrl+Home Menu display toggle
34 290 Ctrl+PgUp Zoom out
35 291 Ctrl+PgDn Zoom in
36 292 F1 Help function key

Table D.1 INKEY() return values (continued)

Key pressed Return value
Shift+key
return value

Ctrl+Key
return value

Alt+key1

return value

1012 L a n g u a g e R e f e r e n c e

A p p e n d i x E , A S C I I c h a r a c t e r c h a r t (c o d e p a g e 4 3 7) 1013

A p p e n d i x

E
Appendix EASCII character chart

(code page 437)
Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 <null> 32 20 <space> 64 40 @ 96 60 `
1 01 A 33 21 ! 65 41 A 97 61 a
2 02 B 34 22 " 66 42 B 98 62 b
3 03 C 35 23 # 67 43 C 99 63 c
4 04 D 36 24 $ 68 44 D 100 64 d
 5 05 E 37 25 % 69 45 E 101 65 e
6 06 F 38 26 & 70 46 F 102 66 f
7 07 G 39 27 ' 71 47 G 103 67 g
8 08 H 40 28 (72 48 H 104 68 h
9 09 I 41 29) 73 49 I 105 69 i

10 0A J 42 2A * 74 4A J 106 6A j
11 0B K 43 2B + 75 4B K 107 6B k
12 0C L 44 2C , 76 4C L 108 6C l
13 0D M 45 2D - 77 4D M 109 6D m
14 0E N 46 2E . 78 4E N 110 6E n
15 0F O 47 2F / 79 4F O 111 6F o
16 10 P 48 30 0 80 50 P 112 70 p
17 11 Q 49 31 1 81 51 Q 113 71 q
18 12 R 50 32 2 82 52 R 114 72 r
19 13 S 51 33 3 83 53 S 115 73 s
20 14 T 52 34 4 84 54 T 116 74 t
21 15 U 53 35 5 85 55 U 117 75 u
22 16 V 54 36 6 86 56 V 118 76 v
23 17 W 55 37 7 87 57 W 119 77 w
24 18 X 56 38 8 88 58 X 120 78 x
25 19 Y 57 39 9 89 59 Y 121 79 y
26 1A Z 58 3A : 90 5A Z 122 7A z
27 1B [59 3B ; 91 5B [123 7B {
28 1C \ 60 3C < 92 5C \ 124 7C ¦
29 1D] 61 3D = 93 5D] 125 7D }
30 1E ^ 62 3E > 94 5E ^ 126 7E ~
31 1F _ 63 3F ? 95 5F _ 127 7F

1014 L a n g u a g e R e f e r e n c e

Appendix E

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
128 80 Ç 160 A0 á 192 C0 À 224 E0 à

129 81 ü 161 A1 í 193 C1 Á 225 E1 á

130 82 é 162 A2 ó 194 C2 Â 226 E2 â

131 83 â 163 A3 ú 195 C3 Ã 227 E3 ã

132 84 ä 164 A4 ñ 196 C4 Ä 228 E4 ä

133 85 à 165 A5 Ñ 197 C5 Å 229 E5 å

134 86 å 166 A6 ¦ 198 C6 Æ 230 E6 æ

135 87 ç 167 A7 § 199 C7 Ç 231 E7 ç

136 88 ê 168 A8 ¿ 200 C8 È 232 E8 è

137 89 ë 169 A9 © 201 C9 É 233 E9 é

138 8A è 170 AA ª 202 CA Ê 234 EA ê

139 8B ï 171 AB « 203 CB Ë 235 EB ë

140 8C î 172 AC ¬ 204 CC Ì 236 EC ∞

141 8D ì 173 AD ¡ 205 CD Í 237 ED í

142 8E Ä 174 AE ® 206 CE Î 238 EE î

143 8F Å 175 AF ¯ 207 CF Ï 239 EF ï

144 90 É 176 B0 ° 208 D0 Ð 240 F0 ≡
145 91 æ 177 B1 ± 209 D1 Ñ 241 F1 ±
146 92 Æ 178 B2 ² 210 D2 Ò 242 F2 ≥
147 93 ô 179 B3 ³ 211 D3 Ó 243 F3 ≤

148 94 ö 180 B4 ´ 212 D4 Ô 244 F4 ⌠
149 95 ò 181 B5 µ 213 D5 Õ 245 F5 ⌡

150 96 û 182 B6 ¶ 214 D6 Ö 246 F6 ÷

151 97 ù 183 B7 · 215 D7 × 247 F7 ≈

152 98 ÿ 184 B8 ¸ 216 D8 Ø 248 F8 °

153 99 Ö 185 B9 ¹ 217 D9 Ù 249 F9 •
154 9A Ü 186 BA º 218 DA Ú 250 FA •

155 9B › 187 BB » 219 DB Û 251 FB √

156 9C £ 188 BC ¼ 220 DC Ü 252 FC n

157 9D ¥ 189 BD ½ 221 DD Ý 253 FD ²
158 9E Pt 190 BE ¾ 222 DE Þ 254 FE Ý

159 9F ƒ 191 BF ¿ 223 DF ß 255 FF

A p p e n d i x F , E r r o r c o d e s 1015

A p p e n d i x

F
Appendix FError codes

Table F.1 Error codes and associated messages

Code Message

1 Error creating file
2 Error opening file
3 Error closing file
4 End of table encountered
5 Record out of range
6 Error positioning in file
7 File does not exist
8 File already exists
9 File already open
10 Unable to rename file

11 Structure invalid
12 Invalid COV file
13 dBASE IV binary report file not supported - use component builder to convert it
14 Invalid label file
15 dBASE IV binary label file not supported - use component builder to convert it
16 Invalid memory variable file
17 Invalid PRO / FMO file
18 Invalid query file
19 Invalid report file
20 Invalid driver name or insufficient system resources
21 Invalid view file
22 Invalid window file

23 Operation not allowed for calculated fields
24 Operation not allowed on read-only files
25 Bad field name
26 Bad field type

1016 L a n g u a g e R e f e r e n c e

28 Duplicate field name
29 Error writing file
30 Not a valid dBASE table
31 No such record in index
32 Illegal key
33 WindowMenu must be on child of MenuBar
34 No table in use in area
35 Table is not indexed
36 Maximum number of fields reached
40 Field not found

41 Cyclic RELATION not allowed
42 Work area already used in relation
44 Too many RELATIONs in this chain
47 Too many index files
48 Invalid order number
49 No fields were found to process
50 Field must be a memo field
51 Field must be a binary field
53 Tag not found
54 Unrecognized command verb
55 Command too large
56 Expression expected

57 Expression too large
58 Too few arguments. Expecting at least
59 Too many arguments. Expecting at most
61 Unterminated string
62 Unbalanced parentheses
63 Syntax error
67 Something is missing. Expecting
68 Unknown keyword
70 PARAMETERS command must be at top of function or procedure
71 Invalid name character
74 ENDIF encountered without preceding IF

75 Missing ENDIF
76 ENDDO encountered without preceding WHILE
77 Missing ENDDO
78 NEXT encountered without preceding FOR
79 Missing NEXT
80 ENDSCAN encountered without preceding SCAN
81 Missing ENDSCAN
82 UNTIL encountered without preceding DO
83 Missing UNTIL

Table F.1 Error codes and associated messages (continued)

Code Message

A p p e n d i x F , E r r o r c o d e s 1017

84 ENDCASE encountered without preceding CASE
85 Missing ENDCASE
86 ENDPRINTJOB command encountered without previous PRINTJOB command
87 Missing ENDPRINTJOB
88 ENDCLASS/PROTECT command encountered without previous CLASS command
89 Missing ENDCLASS
90 ENDTEXT command encountered without previous TEXT command
91 Missing ENDTEXT
94 Loop stack overflow.
95 Too many nested FOR loops.

96 Too many nested SCAN loops.
97 Unallowed phrase/keyword in command
98 Keyword Repeated

100 UDF must return a value
101 Too many dimensions
102 Too many UDF/PROCEDUREs defined in program
103 Invalid FUNCTION or PROCEDURE name
104 Invalid CLASS name
105 Invalid MEMBER name
106 Program too big to compile
107 Not enough memory for this operation
108 In use by another

109 Record is in use by another
110 Command requires exclusive use of table
111 Memory variable space exhausted
112 Not enough memory for DOS
114 Filename space exhausted
115 Only valid in program files
116 No PARAMETERS statement found
117 Unmatched parameters
118 Program not SUSPENDed
119 No such bar
120 No such menu

121 No such pad
122 No such popup
124 No such window
125 No such window
126 No such form object
127 Menu already active
128 Popup already active
129 Unable to add data while constraints active
130 Windows print file name longer than 31 characters

Table F.1 Error codes and associated messages (continued)

Code Message

1018 L a n g u a g e R e f e r e n c e

131 Printer is either not connected or turned off
132 Window out of range
133 Unauthorized access level
134 No bars defined for popup/pulldown
135 Bars already defined for popup.
136 Bars must have a positive value.
139 Cannot release active
140 Datasource/Prompt cannot be MEMO/OLE/BINARY
142 Cannot change property while form is open
143 Expecting reference to MENU object

144 First class in menu file is not derived from MENU
145 Cannot have more than one form object with the same name
146 Internal stack overflow
147 Internal stack underflow
148 Stack overflow
149 Runtime buffer overflow
150 String buffer overflow
151 Attempt to free a bad memory block
152 Attempt to load a bad icode block
153 Macros cannot expand flow of control commands
154 Expanded macro variable does not return a valid identifier
155 Cannot assign to reserved word NULL

156 Numbers are not allowed in the CURRENCY symbol
157 Illegal work area number or alias
158 Illegal value
159 UDF or procedure already exists
160 Unable to execute DOS
161 Too many nested expressions
162 Nested views not allowed
163 Data type mismatch. Expecting
164 Out of range
167 Variable undefined
168 Not an array

169 Illegal Opcode
172 Maximum number of nested FOR NEXT loops exceeded
175 Maximum number of DO or UDF parameters exceeded
178 Alias not found
179 MEMO field not allowed here
180 ALIAS already in use
181 Processing would exceed maximum allowed string length
182 Procedure not found
185 Illegal file name

Table F.1 Error codes and associated messages (continued)

Code Message

A p p e n d i x F , E r r o r c o d e s 1019

186 Beginning of table encountered
187 Error reading file
188 Unexpected type
189 Printer error
190 Memory variable already defined - cannot make PUBLIC
191 CONTINUE without previous LOCATE
192 Value out of range
193 Invalid subscript reference
196 Invalid printer redirection
197 Cannot execute this command when DESIGN is off

198 Command not functional in this release of dBASE for Windows
199 Restricted command: not allowed in this context
200 Command will never be reached
201 Command not functional in dBASE for Windows
202 Extra characters ignored at end of command
203 Program was previously compiled with SET COVERAGE OFF
206 Drive not ready
207 UDF or PROCEDURE not found
209 Too many files open
210 Invalid directory
211 Invalid disk drive
212 Cannot redefine active menu

214 No such listbox
215 Window not active
217 Symbol table space exhausted. Increase to
218 SET FIELDS space exhausted
219 No previous DO WHILE/SCAN/PRINTJOB/FOR to match this command
221 Too many nested DO/UDF
222 Maximum number of locked records exceeded
223 Sharing buffers are full
224 Error unlocking file
225 Unmatched #else
226 Unmatched #endif

227 Maximum #ifdef nesting exceeded
228 Expecting #endif
229 Preprocessor expansion too large
230 Include file not found
231 Table already open
232 Database already open
234 Operation not allowed in transaction
236 Operation not allowed on this table
237 Index is not open

Table F.1 Error codes and associated messages (continued)

Code Message

1020 L a n g u a g e R e f e r e n c e

239 IDAPI Error
240 Server Error
241 Database not opened
242 Invalid value for convert size (8-24)
243 Invalid file Handle
244 IDAPI Not Initialized
245 Cannot UPDATE a table with itself
246 Invalid Catalog
247 Invalid password
248 Access denied

249 Can only change draft mode on page boundaries
250 Can only change page orientation on page boundaries
251 Already in printjob
252 Wrong version of IDAPI01.DLL
253 No print driver selected
254 No pads defined for
255 AUTOEXTERN not supported for this database
256 Output parameter required
257 Attempting to call a method as a function
258 Method is not available on object
259 No Records Selected
260 Internal Exception Error

261 Stored procedures not supported
262 Form cannot be MDI
265 Resource not found
266 Cannot load print driver
267 Cannot paste more than one file
268 Cannot recognize dropped file
269 Cannot Paste selection
270 Cannot Copy selection
271 Cannot Package file
272 Cannot activate object. OLE server is busy
273 Cannot update linked object

274 Unknown error saving window contents
275 Cannot perform operation on static object
276 Error connecting to OLE server. May be bad object path if a link.
277 Invalid command verb for OLE object
278 OLE object error
279 OLE BLOB field is corrupted
280 OLE BLOB field data is from an incompatible version
281 Attempt to access released object
282 Property is read only

Table F.1 Error codes and associated messages (continued)

Code Message

A p p e n d i x F , E r r o r c o d e s 1021

283 only 1 or 2 dimensional array is allowed in this operation
284 Report Engine Error
285 Property not found
286 Operation not allowed on read-only fields
287 Operation not allowed on read-only tables
288 An Editor or Viewer of a memo field is still open
289 Not member of Class or Base class
290 SUPER not allowed when THIS is undefined
291 Unable to open form
292 Unable to create control

293 No such form
294 The system registry does not contain an OLE server for a file with extension
295 OLE: cannot create link
298 Constant is already #defined
299 Field must be an OLE field
301 Position not in window
302 Invalid Color
303 Parameter type '...' can only be used with CDECL calling convention
304 DLL does not support Multiple Instances
305 Error loading DLL
306 Extern
307 Parent is not a REPORT

308 Parent is not a PAGETEMPLATE or BANDBODY
309 Error Saving VBX
310 BINARY field not allowed here
311 OLE field not allowed here
312 Popup too small
313 Error creating palette
314 OLE Error
315 only 1 dimensional array is allowed in this operation
316 Incomplete link specification
317 Selected tables cannot be related
318 Too many symbols in this module

319 Cannot create directory
320 Invalid table name
321 Invalid preprocessor identifier
322 DLL not Loaded
323 Invalid key label
324 Only allowed in function or procedure scope
325 Not a valid table
326 Port not configured for a printer
327 #includes nested too deeply

Table F.1 Error codes and associated messages (continued)

Code Message

1022 L a n g u a g e R e f e r e n c e

328 Index expressions not allowed for INTEGRITY rules
329 Related records still exist in alias
330 SET KEY active in alias
331 Relation using CONSTRAIN
332 No matching parent record
333 Operation not allowed across different databases or table types
334 Key already exists in parent
335 First class in .WFM file is not derived from FORM
336 Relation expression and active index expression must be the same
337 Memo file does not exist

338 Production index file does not exist
339 Invalid file privileges
340 Form already open
341 Error reading from binary field
342 Must convert report before modifying
343 Class does not exist
344 Fix or remove errors before running query
345 PRIMARY must start with first field
346 Fields must be in consecutive order
347 Report writer has not been installed
348 VBX dlls cannot be RELEASED
349 VBStream file Missing or Corrupt

350 Cannot JOIN table with itself
351 Cannot assign to reserved word THIS
352 OLE Unknown interface
353 OLE Member Not found
354 OLE Parameter Not found
355 OLE Data Type Mismatch
356 OLE Unknown name
357 OLE No Named arguments
358 OLE Bad Variable Type
359 OLE Dispatch Exception
360 OLE Overflow

361 OLE Invalid Subscript
362 OLE Unknown Class
363 OLE Array is locked
364 OLE Bad parameter count
365 OLE Parameter not optional
366 OLE Bad call
367 OLE Not a collection
368 OLE Unknown error
369 OLE Object does not support automation

Table F.1 Error codes and associated messages (continued)

Code Message

A p p e n d i x F , E r r o r c o d e s 1023

370 OLE Unable to create object
371 OLE Class name not in registry
372 In use by another
373 Record is in use by another
374 Property is not accessible

Table F.2 Error codes in alphabetical order

Message Code

#includes nested too deeply 327
Access denied 248
ALIAS already in use 180
Alias not found 178

Already in printjob 251
An Editor or Viewer of a memo field is still open 288
Attempt to access released object 281
Attempt to free a bad memory block 151
Attempt to load a bad icode block 152
Attempting to call a method as a function 257
AUTOEXTERN not supported for this database 255
Bad field name 25
Bad field type 26
Bars already defined for popup. 135
Bars must have a positive value. 136
Beginning of table encountered 186

BINARY field not allowed here 310
Can only change draft mode on page boundaries 249
Can only change page orientation on page boundaries 250
Cannot activate object. OLE server is busy 272
Cannot assign to reserved word NULL 155
Cannot assign to reserved word THIS 351
Cannot change property while form is open 142
Cannot Copy selection 270
Cannot create directory 319
Cannot execute this command when DESIGN is off 197
Cannot have more than one form object with the same name 145

Cannot JOIN table with itself 350
Cannot load print driver 266
Cannot Package file 271
Cannot paste more than one file 267
Cannot Paste selection 269
Cannot perform operation on static object 275

Table F.1 Error codes and associated messages (continued)

Code Message

1024 L a n g u a g e R e f e r e n c e

Cannot recognize dropped file 268
Cannot redefine active menu 212
Cannot release active 139
Cannot UPDATE a table with itself 245
Cannot update linked object 273
Class does not exist 343
Command not functional in dBASE for Windows 201
Command not functional in this release of dBASE for Windows 198
Command requires exclusive use of table 110
Command too large 55

Command will never be reached 200
Constant is already #defined 298
CONTINUE without previous LOCATE 191
Cyclic RELATION not allowed 41
Data type mismatch. Expecting 163
Database already open 232
Database not opened 241
Datasource/Prompt cannot be MEMO/OLE/BINARY 140
dBASE IV binary label file not supported - use component builder to convert it 15
dBASE IV binary report file not supported - use component builder to convert it 13
DLL does not support Multiple Instances 304
DLL not Loaded 322

Drive not ready 206
Duplicate field name 28
End of table encountered 4
ENDCASE encountered without preceding CASE 84
ENDCLASS/PROTECT command encountered without previous CLASS command 88
ENDDO encountered without preceding WHILE 76
ENDIF encountered without preceding IF 74
ENDPRINTJOB command encountered without previous PRINTJOB command 86
ENDSCAN encountered without preceding SCAN 80
ENDTEXT command encountered without previous TEXT command 90
Error closing file 3

Error connecting to OLE server. May be bad object path if a link. 276
Error creating file 1
Error creating palette 313
Error loading DLL 305
Error opening file 2
Error positioning in file 6
Error reading file 187
Error reading from binary field 341
Error Saving VBX 309

Table F.2 Error codes in alphabetical order (continued)

Message Code

A p p e n d i x F , E r r o r c o d e s 1025

Error unlocking file 224
Error writing file 29
Expanded macro variable does not return a valid identifier 154
Expecting #endif 228
Expecting reference to MENU object 143
Expression expected 56
Expression too large 57
Extern 306
Extra characters ignored at end of command 202
Field must be a binary field 51

Field must be a memo field 50
Field must be an OLE field 299
Field not found 40
Fields must be in consecutive order 346
File already exists 8
File already open 9
File does not exist 7
Filename space exhausted 114
First class in .WFM file is not derived from FORM 335
First class in menu file is not derived from MENU 144
Fix or remove errors before running query 344
Form already open 340

Form cannot be MDI 262
IDAPI Error 239
IDAPI Not Initialized 244
Illegal file name 185
Illegal key 32
Illegal Opcode 169
Illegal value 158
Illegal work area number or alias 157
In use by another 108
In use by another 372
Include file not found 230

Incomplete link specification 316
Index expressions not allowed for INTEGRITY rules 328
Index is not open 237
Internal Exception Error 260
Internal stack overflow 146
Internal stack underflow 147
Invalid Catalog 246
Invalid CLASS name 104
Invalid Color 302

Table F.2 Error codes in alphabetical order (continued)

Message Code

1026 L a n g u a g e R e f e r e n c e

Invalid command verb for OLE object 277
Invalid COV file 12
Invalid directory 210
Invalid disk drive 211
Invalid driver name or insufficient system resources 20
Invalid file Handle 243
Invalid file privileges 339
Invalid FUNCTION or PROCEDURE name 103
Invalid key label 323
Invalid label file 14

Invalid MEMBER name 105
Invalid memory variable file 16
Invalid name character 71
Invalid order number 48
Invalid password 247
Invalid preprocessor identifier 321
Invalid printer redirection 196
Invalid PRO / FMO file 17
Invalid query file 18
Invalid report file 19
Invalid subscript reference 193
Invalid table name 320

Invalid value for convert size (8-24) 242
Invalid view file 21
Invalid window file 22
Key already exists in parent 334
Keyword Repeated 98
Loop stack overflow. 94
Macros cannot expand flow of control commands 153
Maximum #ifdef nesting exceeded 227
Maximum number of DO or UDF parameters exceeded 175
Maximum number of fields reached 36
Maximum number of locked records exceeded 222

Maximum number of nested FOR NEXT loops exceeded 172
MEMO field not allowed here 179
Memo file does not exist 337
Memory variable already defined - cannot make PUBLIC 190
Memory variable space exhausted 111
Menu already active 127
Method is not available on object 258
Missing ENDCASE 85
Missing ENDCLASS 89

Table F.2 Error codes in alphabetical order (continued)

Message Code

A p p e n d i x F , E r r o r c o d e s 1027

Missing ENDDO 77
Missing ENDIF 75
Missing ENDPRINTJOB 87
Missing ENDSCAN 81
Missing ENDTEXT 91
Missing NEXT 79
Missing UNTIL 83
Must convert report before modifying 342
Nested views not allowed 162
NEXT encountered without preceding FOR 78

No bars defined for popup/pulldown 134
No fields were found to process 49
No matching parent record 332
No pads defined for 254
No PARAMETERS statement found 116
No previous DO WHILE/SCAN/PRINTJOB/FOR to match this command 219
No print driver selected 253
No Records Selected 259
No such bar 119
No such form 293
No such form object 126
No such listbox 214

No such menu 120
No such pad 121
No such popup 122
No such record in index 31
No such window 124
No such window 125
No table in use in area 34
Not a valid dBASE table 30
Not a valid table 325
Not an array 168
Not enough memory for DOS 112

Not enough memory for this operation 107
Not member of Class or Base class 289
Numbers are not allowed in the CURRENCY symbol 156
OLE Array is locked 363
OLE Bad call 366
OLE Bad parameter count 364
OLE Bad Variable Type 358
OLE BLOB field data is from an incompatible version 280
OLE BLOB field is corrupted 279

Table F.2 Error codes in alphabetical order (continued)

Message Code

1028 L a n g u a g e R e f e r e n c e

OLE Class name not in registry 371
OLE Data Type Mismatch 355
OLE Dispatch Exception 359
OLE Error 314
OLE field not allowed here 311
OLE Invalid Subscript 361
OLE Member Not found 353
OLE No Named arguments 357
OLE Not a collection 367
OLE Object does not support automation 369

OLE object error 278
OLE Overflow 360
OLE Parameter Not found 354
OLE Parameter not optional 365
OLE Unable to create object 370
OLE Unknown Class 362
OLE Unknown error 368
OLE Unknown interface 352
OLE Unknown name 356
OLE: cannot create link 295
only 1 dimensional array is allowed in this operation 315
only 1 or 2 dimensional array is allowed in this operation 283

Only allowed in function or procedure scope 324
Only valid in program files 115
Operation not allowed across different databases or table types 333
Operation not allowed for calculated fields 23
Operation not allowed in transaction 234
Operation not allowed on read-only fields 286
Operation not allowed on read-only files 24
Operation not allowed on read-only tables 287
Operation not allowed on this table 236
Out of range 164
Output parameter required 256

Parameter type '...' can only be used with CDECL calling convention 303
PARAMETERS command must be at top of function or procedure 70
Parent is not a PAGETEMPLATE or BANDBODY 308
Parent is not a REPORT 307
Popup already active 128
Popup too small 312
Port not configured for a printer 326
Position not in window 301
Preprocessor expansion too large 229

Table F.2 Error codes in alphabetical order (continued)

Message Code

A p p e n d i x F , E r r o r c o d e s 1029

PRIMARY must start with first field 345
Printer error 189
Printer is either not connected or turned off 131
Procedure not found 182
Processing would exceed maximum allowed string length 181
Production index file does not exist 338
Program not SUSPENDed 118
Program too big to compile 106
Program was previously compiled with SET COVERAGE OFF 203
Property is not accessible 374

Property is read only 282
Property not found 285
Record is in use by another 109
Record is in use by another 373
Record out of range 5
Related records still exist in alias 329
Relation expression and active index expression must be the same 336
Relation using CONSTRAIN 331
Report Engine Error 284
Report writer has not been installed 347
Resource not found 265
Restricted command: not allowed in this context 199

Runtime buffer overflow 149
Selected tables cannot be related 317
Server Error 240
SET FIELDS space exhausted 218
SET KEY active in alias 330
Sharing buffers are full 223
Something is missing. Expecting 67
Stack overflow 148
Stored procedures not supported 261
String buffer overflow 150
Structure invalid 11

SUPER not allowed when THIS is undefined 290
Symbol table space exhausted. Increase to 217
Syntax error 63
Table already open 231
Table is not indexed 35
Tag not found 53
The system registry does not contain an OLE server for a file with extension 294
Too few arguments. Expecting at least 58
Too many arguments. Expecting at most 59

Table F.2 Error codes in alphabetical order (continued)

Message Code

1030 L a n g u a g e R e f e r e n c e

Too many dimensions 101
Too many files open 209
Too many index files 47
Too many nested DO/UDF 221
Too many nested expressions 161
Too many nested FOR loops. 95
Too many nested SCAN loops. 96
Too many RELATIONs in this chain 44
Too many symbols in this module 318
Too many UDF/PROCEDUREs defined in program 102

UDF must return a value 100
UDF or procedure already exists 159
UDF or PROCEDURE not found 207
Unable to add data while constraints active 129
Unable to create control 292
Unable to execute DOS 160
Unable to open form 291
Unable to rename file 10
Unallowed phrase/keyword in command 97
Unauthorized access level 133
Unbalanced parentheses 62
Unexpected type 188

Unknown error saving window contents 274
Unknown keyword 68
Unmatched #else 225
Unmatched #endif 226
Unmatched parameters 117
Unrecognized command verb 54
Unterminated string 61
UNTIL encountered without preceding DO 82
Value out of range 192
Variable undefined 167
VBStream file Missing or Corrupt 349

VBX dlls cannot be RELEASED 348
Window not active 215
Window out of range 132
WindowMenu must be on child of MenuBar 33
Windows print file name longer than 31 characters 130
Work area already used in relation 42
Wrong version of IDAPI01.DLL 252

Table F.2 Error codes in alphabetical order (continued)

Message Code

I n d e x 1031

Symbols
! command 41

DOS vs. 224
RUN vs. 467

operator 21
$ operator 21
& (ampersand), comments 41
&& command 41

* vs. 42
NOTE vs. 42

* (asterisk)
comment symbol 42, 43
in fields 440
wildcard character

directory listings 9, 204,
210

fields list 516
pattern matching 332

* command 42
&& vs. 42

* operator 20
** operator 20
+ operator 20

concatenation 22
/ operator 20
:: operator 25
; (semicolon)

command separator 519
comment symbol 42
continuation character 406

< operator 21
<= operator 21
<> operator 21
= operator 20, 21, 511
=< operator 21
== operator 21
=> operator 21
> operator 21
>= operator 21
? (question mark)

temporary files 283
wildcard character

directory listings 9, 204,
210

fields list 516
pattern matching 332

? command 43
DEFINE BOX and 193
ON PAGE and 380
SET PRINTER and 547
SET SPACE and 561

?? command 46

? command vs. 45
ON PAGE and 380
SET ALTERNATE and 480
SET PRINTER and 547
SET SPACE and 561

??? command 46
@...CLEAR 47
@...FILL 47
@...SAY...GET 47

ON READERROR and 381
SET CONSOLE and 489
SET DEVICE and 504
SET WINDOW OF MEMO

and 568
STORE AUTOMEM and 595

@...SCROLL 47
@...TO 48
^ operator 20
– operator 20

concatenation 22

A
AbandonRecord() property 757
abbreviating keywords 7

SET() and 569
ABS() 48
absolute values

defined 48
returning 48

accelerators 936
ACCEPT 48
ACCESS() 49
accessing

alternate text editors 506
arrays 274
browse objects 760
client/server

applications 831, 951, 956
OLE 796, 933

data 131
files 270
multiuser

environments 369
file-sharing modes 513
setting locks 265, 344,

461
read-only restrictions 516,

532
sequentially 274
specific fields 514

files See low-level access
commands

functions 531
procedures 531

ACOPY() 49
ACOS() 50

RTOD() and 465
actions See events
ACTIVATE MENU 51
ACTIVATE POPUP 51
ACTIVATE SCREEN 52
ACTIVATE WINDOW 52
activating online Help 296, 521
activating the Debugger 185,

506, 562
active indexes, returning 606
ActiveControl property 757
ADD clause 978
Add() property 759
adding fields 363, 978
adding records 70, 72, 309, 310,

484, 766, 925, 983
arrays and 75
events and 857
restricting 763

addition 111, 602, 611
addition operator 20
ADEL() 52
ADIR() 55

Dir() vs. 793
Advise() property 760

Unadvise() and 958
AELEMENT() 57

AFILL() and 60
ASUBSCRIPT() vs. 88
Element() vs. 803

AFIELDS() 59
Fields() vs. 808

AFILL() 60
Fill() vs. 810
STORE vs. 594

aggregation 111, 602, 611
AGROW() 61

Grow() vs. 823
AINS() 64

AGROW() vs. 62
ALEN() 67
alerts 125, 482
ALIAS clause 984
alias pointer 555
Alias property 760
ALIAS() 68
aliases

automatically assigning 9

Index

1032 L a n g u a g e R e f e r e n c e

catalogs 163
defined 9
field names 10, 441, 515
indexes 528
tables 760

linking 555
work areas 9, 68, 477, 623

_alignment 635
_wrap and 663

alignment
graphics 761
objects 836, 954

Alignment property 761
ALTER TABLE 978
alternate text editors 164, 697

accessing 506
alternate text files 479
Alt-key combinations

See also keyboard; keystrokes
command execution 375

ampersand (&), comments 41
Anchor property 763
anchoring objects 763
AND bitwise operator 97
angles 395

arccosecant 84
arccosine 50
arccotangent 90
arcsecant 51
arcsine 84
arctangent 90, 91
converting

degrees to radians 226
radians to degrees 465

cosecant 578
cosine 157
cotangent 608
measuring 226
secant 157
sine 577
tangent 608

ANSI conversions 69
ANSI date format 496
ANSI() 69

OEM() and 370
Answer tables 588

See also Paradox tables
_app 636
APPEND 70

APPEND AUTOMEM vs. 72
INSERT vs. 309
KEYMATCH() and 325
SET CARRY and 484

APPEND AUTOMEM 72
CLEAR AUTOMEM and 130
INSERT AUTOMEM vs. 311
SET CARRY and 484

APPEND BLANK 71
BLANK vs. 102
SET CARRY and 484

APPEND FROM 73
APPEND FROM ARRAY 75
APPEND MEMO 77
Append property 763
application object 636
applications

See also programs
client/server See DDE server

applications; OLE server
applications

copying 388
external 693, 796, 831, 919
MDI 841, 842
multiuser See multiuser

environments
sound 396, 796
standalone 573, 707
Windows, running 467

arccosecant, returning 84
arccosine, returning 50
arccotangent, returning 90
arcsecant, returning 51
arcsine, returning 84
arctangent, returning 90, 91
ARESIZE() 78

Resize() vs. 923
arguments 7, 29

See also parameters
automem variables 442
color 194
file-name skeletons 11

arithmetic operations
arithmetic mean,

returning 92, 111
remainders, returning 360
type conversions 625

array elements 11, 187
adding to arrays 61, 759, 823,

832, 923
copying 49
counting 57, 803, 940
deleting 52, 790, 922
numbers 187
referencing 87, 948
returning 67, 78
sorting 84, 941
subscripts 187, 922, 923

adding 759, 823
deleting 790
finding 87, 812, 833, 852,

948
array objects 679, 681
arrays 11, 75, 792

accessing 274

adding elements 61, 823, 832,
923

assigning values 60, 64, 188,
810

copying data 154, 445
declaring 187, 412
deleting 431
deleting elements 922
expressions

finding 82, 927
storing 593

file information 55, 793, 794
initializing 60, 596
LOCAL and 341
maximums and limits 1003
memo fields 447, 596
multi-dimensional,

creating 62
passing as parameters 404
size, changing 61, 78
storing values 93, 112
table structures 59, 808
two-dimensional, creating 62
updating 79

arrow keys
See also keyboard; keystrokes
assigning

command execution 376
input focus 822

ASC() 81
CHR() vs. 124

ASCAN() 82
Scan() vs. 927

ascending sort order 304, 582
ASCII chart 1013
ASCII text files See text files
ASCII values

See also decimal values
converting to characters 124
returning 81

ASIN() 84
RTOD() and 465

ASORT() 84
Sort() vs. 941

assigning keystrokes
command execution 372, 375,

519, 526
interrupts 510

assignment 4
assignment operator 20
asterisk (*)

comment symbol 42, 43
in fields 440
wildcard character

directory listings 9, 204,
210

fields list 516

I n d e x 1033

pattern matching 332
ASUBSCRIPT() 87

AELEMENT() vs. 58
Subscript() vs. 948

AT() 89
RAT() and 420

ATAN() 90
ATN2() vs. 91
RTOD() and 465

ATN2() 91
ATAN() vs. 90
RTOD() and 465

attributes
color codes 778
file (DOS) 56, 248, 270, 793
file (Windows95) 794
fonts 815, 818, 819
objects See properties
text 44

size 817, 926
automatic backup 205
automatic compiling 503
automatic file locks 265, 339, 461

disabling 532
automatically saving data 481
automatically updating

indexes 305
automem variables

See also memory variables
arguments 442
clearing 129, 433
creating 129, 595
defined 72
storing data 595

AutoSize property 764
AVERAGE 92

SET HEADINGS and 520
averages, returning 92, 111

B
backgrounds

blended (hatched) 106, 229,
906

colors 778
setting 106, 229

high intensity 778
backup files

changing tables 362
disk space, checking 205

backward compatibility 989
See also dBASE IV commands

BAR() 93
BARCOUNT() 93
BARPROMPT() 94
BDE See IDAPI
beeps 125, 482

Before property 765
BeginAppend() property 766
beginning-of-file indicator 103
BEGINTRANS() 94
BELL parameter 482

See also alerts
benchmarks 235, 472
binary data types 15

combining 146
user-defined 145

binary fields 77
changing 443
copying 145
data type, returning 96
sound effects 395

binary files
coverage analysis 490
creating 145
reading from 443

binary operators 20
BINTYPE() 96
BITAND() 97
BITLSHIFT() 98
bitmaps 145

See also graphics
pushbuttons 795, 813, 960

BITOR() 99
BITRSHIFT() 99
BITSET() 100

OnLeftDblClick and 870
OnLeftMouseDown and 872
OnLeftMouseUp and 873,

895
OnMiddleDblClick and 876
OnMiddleMouseDown

and 878
OnMiddleMouseUp and 880
OnRightDblClick and 891
OnRightMouseDown

and 893
bitwise operators 100

AND 97
OR 99
shift bits 98, 99
XOR 101

BITXOR() 101
BLANK 102
blank dates 14, 225
blank expressions See EMPTY();

ISBLANK()
blank fields 102, 260
blank records 71, 309

averaging numeric fields 93
blank values 102

calculations 112

blended (hatched)
backgrounds 106, 229, 906

BOF() 103
RECNO() and 425
SKIP and 579

bold type 44, 815
bookmark data types 105
BOOKMARK() 104

GO vs. 295
bookmarks 15, 294

See also record pointers
returning 104

Boolean expressions See logical
expressions

Border property 770
borders 740, 745, 909, 910

adding to objects 770, 771
disabling 771
forms, setting 836, 954

BorderStyle property 771
Border vs. 771

Bottom property 772
Right and 924

_box 638
boxes, drawing 193
branching commands See loops
breakpoints

See also debugging
defined 603

British date format 496
BROWSE 105

EDIT vs. 232
exiting 109
SET CARRY and 484
SET REFRESH and 552

browse objects 684, 824
accessing tables 761
changing data 845

key fields 814
delete boxes 936
deleting records 789, 936
displaying data 807, 844, 953
losing data 814
record number column 938
restricting data entry 763
viewing field names 937

BROWSE window See Table
Editor

browsing 230
buffers

data
updating 428
writing to disk 268

file, flushing 255
typeahead 324

clearing 134

1034 L a n g u a g e R e f e r e n c e

information, getting 306,
369

size, setting 566
BUILD 110
built-in classes 5
built-in functions 4

C
C calling conventions 242
CALCULATE 111
CALCULATE AVG() 111
CALCULATE CNT() 111
CALCULATE MAX() 111
CALCULATE MIN() 111
CALCULATE NPV() 111
CALCULATE STD() 111
CALCULATE SUM() 111
CALCULATE VAR() 111
calculated fields

accessing 516
displaying 108, 231, 808
editing 232
indexing 305

call chain 218
preprocessor 674

call operator 23
call stack (defined) 458
calls See function calls; procedure

calls
CANCEL 113

QUIT vs. 417
RETURN vs. 459
SUSPEND vs. 603

canceling program
execution 113

CanClose property 773
capital gains 284

present value 415
capitalization 408

See also uppercase letters
carriage returns

automatic 972
character, counting 328, 330,

460
substrings 89, 601

files 256
case

See also lowercase letters;
uppercase letters

converting 304, 348, 620
first letter 408

testing 314, 317, 320
case sensitivity 351, 358

program code 28
searches 82, 89, 420, 928

pattern matching 332

sorting data 582
catalog files 564

adding new files 486
creating 162
names, returning 114
opening 485
updating 486

CATALOG() 114
CATALOG.CAT 486
catalogs, defined 162
CD 115

RUN and 467
SET DIRECTORY vs. 505

CDOW() 116
CEILING() 117

compared 313
CENTER() 118
centering graphics 762
centering text 118
century 487
CENTURY parameter 487
CERROR() 120
CHANGE 121

EDIT vs. 233
SET REFRESH and 552

CHANGE window See Table
Editor

CHANGE() 122
CONVERT and 142

changes, undoing 802, 959
multiuser environments 463

changing
See also editing
binary fields 443
data 404, 429, 439, 619

automatically 785
browse objects 814, 845
DDE applications 760,

854, 856, 958
multiple fields 440
multiuser

environments 122, 265,
344, 461

specific records 440
data types 362
drive and directory 9, 115

current working 504
fields

names 362
widths 362

file names 437
fonts 45
forms 161, 165, 171
key fields 440

browse objects 814
memo fields 440, 447
mouse pointers 846, 882

numeric fields 440
objects, definitions 427
property settings 312
SET command values 478
tables 160

names 438
structures 161, 362

text, spin boxes 945
character codes (data types) 59,

809
character constants 13
character data

case, testing 314, 317, 320
converting dates 225, 227
converting numbers 363, 598
deleting specific

characters 599
finding 474, 475

DLLs 452
formatting 612
key expressions 304
returning logical 363
returning numbers 363, 625

character data types 13
character expressions

assigning to keystrokes 519
deleting spaces 349, 466, 613
phonetic values 203, 584
picture templates 43, 612
repeating 450
writing to files 286

character fields 13, 141, 440
display widths 109, 232
indexing 630
structure-extended tables 178
text files 144

character sets 529, 530
converting 69
current, returning 123

character strings See strings
character types 597
characters

ASCII values 81
returning from 124

carriage return 256, 276
continuation lines 406
converting to dates 363
currency symbol 493
date separators 535, 580

changing 496
decimal separator 545
function templates 44, 820
linefeeds 256, 276
literal 332
null 330
padding 119
pattern matching 332

I n d e x 1035

program comments 42
space 586
thousands separator 559
time separators 580
wildcard

directory listings 9, 204,
210

fields list 516
pattern matching 332
temporary files 283

CHARSET() 123
check boxes 686

displaying 855
Checked property 774
checkmarks, adding to

menus 774
child tables 554

moving through 560
CHOOSEPRINTER()

_pdriver and 649
_porientation and 656
_ppitch and 657

choosing
See also selecting
menu commands 936

CHR() 124
ASC() vs. 81
SET BELL and 482

circles 394
circular functions See

trigonometric functions
CLASS ARRAY 679
CLASS ASSOCARRAY 681
CLASS BROWSE 682
CLASS CHECKBOX 686
CLASS COMBOBOX 690
CLASS DDELINK 693
CLASS EDITOR 697
CLASS ENTRYFIELD 700
CLASS FORM 704
CLASS IMAGE 708
CLASS LINE 710
CLASS LISTBOX 712
CLASS MENU 716
CLASS MENUBAR 719
CLASS OBJECT 721
CLASS OLE 721
CLASS OLEAUTOCLIENT 725
CLASS PAINTBOX 726
CLASS POPUP 729
CLASS PUSHBUTTON 731
CLASS RADIOBUTTON 735
CLASS RECTANGLE 739
CLASS SCROLLBAR 742
CLASS SHAPE 745
CLASS SPINBOX 746

CLASS TABBOX 749
CLASS TEXT 752
CLASS...ENDCLASS 125
classes See object classes
ClassName property 775
CLEAR 128
CLEAR ALL

RELEASE AUTOMEM
and 433

CLEAR AUTOMEM 129
RELEASE AUTOMEM

and 433
STORE AUTOMEM vs. 595

CLEAR FIELDS 131
CLEAR GETS 131
CLEAR MEMORY 131
CLEAR MENUS 132
CLEAR POPUPS 133
CLEAR PROGRAM 133
CLEAR SCREENS 134
CLEAR TYPEAHEAD 134
CLEAR WINDOWS 134
clearing memory

object definitions 921
unallocated 268

clearing memory variables 131,
432, 453

non-public 458
program execution and 113,

417
system 5

clearing typeahead buffers 134
client/server applications

See also DDE server
applications; OLE server
applications

MDI forms 841, 842
clock 181, 610

See also time
setting 497, 563
time elapsed 235, 472

CLOSE 135
CLOSE ALL 135

FLUSH and 268
CLOSE ALTERNATE 135

SET ALTERNATE and 480
CLOSE DATABASES 135

FLUSH and 268
CLOSE FORM

READMODAL() and 422
CLOSE FORMAT 135
CLOSE FORMS 135
CLOSE INDEXES 135

FLUSH and 268
CLOSE PRINTER 135
CLOSE PROCEDURE 135

CLOSE TABLES 135
Close() property 776
closing

databases 135
files 135, 247, 417

text 135
forms 135, 773, 776, 805, 862
indexes 135
procedures 135
program files 113, 549
tables 135, 136

work areas 135
CMONTH() 137
code

See also program files
adding comments 41, 42

temporarily 43
case sensitivity 28
compiling See compiling
constructor 126
coverage analysis 675
editing 140, 504
optimizing 669
protecting 140
repeating statements See

loops
testing 120, 490

code pages 1007
codeblocks 17–19

calling 23
executing, forms 898

COL() 137
collation values

See also language drivers
comparing 351, 358

color and attribute codes 778
color arguments 194
color palettes 288
ColorHighlight property 777
ColorNormal property 745, 777

ColorHighlight vs. 777
colors

background 106, 229
defining 106, 194, 229

custom 288
dBASE IV windows 488
objects 777

redefining 194
selecting 288

colors commands
DEFINE COLOR 194
GETCOLOR() 288
ISCOLOR() 317
SET COLOR OF 488
SET COLOR TO 488

columns See fields
combo boxes 690, 799, 947

1036 L a n g u a g e R e f e r e n c e

displaying data 786
prompts 942

command processing 458
See also program execution

Command window
clearing results pane 128
colors, setting 488
coverage analysis 209, 490
creating files 564
debugging programs 186
displaying files 209, 614
displaying messages 211, 562

current environment 212
entering expressions 291
maximums and limits 1003
pausing program

execution 580
restoring memory

variables 454
resuming program

execution 456
returning table structures 214
saving output 479
shelling to DOS 573
suspending program

execution 603
writing to 206, 334, 489, 548

commands 3–4, 479
See also specific dBASE

commands
abbreviating 7
executing

page formatting 379
shortcuts 372, 519, 526

implicit 4
menu See menu commands

comments 41, 42
temporary 43

COMMIT() 138
committing transactions 138

DDE applications 953
common logarithms 345
comparing

dates 350, 358
expressions 350, 357
float values 117, 267
logical expressions 350, 357
multi-table records 322
numeric data, equality 117,

267
record counters 122
strings See string comparisons

comparison operator (=) 511
COMPILE 139
compiler errors 120
compiler See preprocessor
compiling 5, 667, 675, 676

automatically 503
canceling 140
conditional 668, 670, 671, 672
format files 503, 518
multiple programs 674
options, setting 675
specified files 140
unrelated files 140

compound index files See .MDX
files

concatenation operator 22
concatenation, date fields 227
conditional execution 219, 299,

301
OS() 388
VERS() 627

conditions 470
evaluating 299
events 804, 967
exceptions 219
search operations 342
setting 516, 668, 961, 968
testing 272, 300

multiple 300
cones, measuring volume 395
confirmation messages 558
connecting tables See linking and

relating
constants

See also numbers
changing 667, 669
character 13
identifiers 668
pi 395

constructor code 126
context-sensitive help 565, 827
continuation lines

comments 42
procedures 406

CONTINUE 140
EOF() and 238
FIND vs. 260
FOUND() and 274
LOCATE and 343

continuing search
operations 140

control codes (printer) 544
control keys See Ctrl keys
Control menu 949
control structures

linear 219, 299, 301
loops 220, 222, 272, 470

controlling table access 409
controls See objects
CONVERT 141

COPY and 144
COPY STRUCTURE and 150

converting
ASCII values to

characters 124
case 304, 348, 620

first letter 408
characters to ASCII 81
characters to dates 179
characters to numbers 363,

625
dates to characters 225, 227
dates to strings 216, 353
decimal to hexadecimal 320
degrees to radians 226
external functions 244
hexadecimal to decimal 297
incompatible data types 363
index files to tags 147, 152
logical fields to

characters 363
memo fields to character 440
numbers to characters 363,

598
numbers to logical values 363
radians to degrees 465
strings See string conversions

coordinates See screen
coordinates

COPY 143
PACK and 389
SET ESCAPE and 510

COPY BINARY 145
COPY FILE 146
COPY INDEXES 147

See also COPY TAG
COPY MEMO 148
COPY STRUCTURE 150
COPY TABLE 151
COPY TAG 152

See also COPY INDEXES
COPY TO ARRAY 153
COPY TO clause 985
COPY TO...STRUCTURE

EXTENDED 155
AFIELDS() vs. 59
CREATE...FROM and 175
CREATE...STRUCTURE

EXTENDED vs. 178
Fields() vs. 809

Copy() property 779
copying

applications 388
array elements 49
binary fields 145
data 71, 73

arrays and 153, 445
automatically 143
multiple fields 144, 150

I n d e x 1037

to specific records 484
files 146, 626
index files 144, 152
memo fields 76, 144, 148

to text files 144
memory variables 453
tables 143, 151

structures 150, 155, 176
text 779, 800
text files 77, 448

COS() 157
ACOS() and 51
DTOR() and 226
PI() and 395

cosecant 578
inverse 84

cosine 157
inverse, returning 50
reciprocal 157

cotangent 608
inverse 90

COUNT 159
RECCOUNT() vs. 424

Count() property 782
Selected() and 931

counting array elements 57, 803,
940

counting fields 262
counting records 111, 204, 210,

424
coverage files 208

creating 490
updating 490

CREATE 160
CREATE...FROM vs. 176

CREATE... commands
SET DESIGN and 502

Create an Expression dialog
box 291

CREATE APPLICATION 161
CREATE CATALOG 162
CREATE COMMAND 164
CREATE FILE 165
CREATE FORM 165
CREATE INDEX 979
CREATE LABEL 167

LABEL FORM and 326
CREATE MENU 168
CREATE POPUP 168
CREATE QUERY 169

CREATE VIEW vs. 174
CREATE REPORT 169

REPORT FORM and 452
CREATE SCREEN 171
CREATE SESSION 171
CREATE TABLE 979

CREATE VIEW 174
CREATE QUERY vs. 169

CREATE VIEW...FROM
ENVIRONMENT 174

CREATE...FROM 175
COPY TO...STRUCTURE

EXTENDED and 156
CREATE...STRUCTURE

EXTENDED and 178
CREATE...STRUCTURE

EXTENDED 177
CREATE...FROM and 175

CTOD() 179
SEEK and 474
SEEK() and 475

Ctrl keys
See also keyboard; keystrokes
command execution 375, 519

CUATab property 783
_curobj 639
CURRENCY parameter 494
currency symbols 493
current database 495

name, returning 180
current date

returning 181
setting 497

current form 386, 934
current object 422

colors, setting 777
finding 757

current record
number, returning 425
updating 442

current settings 569, 571
character set 123
environment 212
language driver 327

current work areas 629
current working directory See

directories
current working drive See disk

drives
current working

environment 175
See also views; work areas

CurSel property 784
cursors

controlling 492, 783
hiding 494
moving 489

custom classes 126
custom editing controls 726
custom formats

See also format files
custom Help 866

Cut() property 785
cylinders, measuring

volume 395

D
data

accessing 131
files 270
multiuser

environments 369
file-sharing modes 513
setting locks 265, 344,

461
read-only restrictions 516,

532
sequentially 274
specific fields 514

changes, undoing, multiuser
environments 463

changing 404, 429, 439, 619
automatically 785
browse objects 814, 845
DDE applications 760,

854, 856, 958
multiple fields 440
multiuser

environments 122, 265,
344, 461

specific records 440
converting See converting
copying 71, 73

arrays and 153, 445
automatically 143
multiple fields 144, 150
to specific records 484

deleting See deleting
displaying 45, 489, 526

compressing records 229
memo fields 232, 538
objects and 786, 807, 844,

953
specific records 206
with BROWSE 105
with CHANGE 121

editing See deleting
exchanging See DDE links
filtering 117

setting filters 517
formatting See formats
losing 255, 362, 389, 440

browse objects 814
minimizing loss 481

manipulating 117, 581
organizing 304, 583
overwriting 440

binary fields 145
confirmation

messages 558

1038 L a n g u a g e R e f e r e n c e

memo fields 77, 149, 447,
448

printing See printing
processing 11, 375

optimizing 481
specific records 516, 527
specified ranges 526

protecting 409, 502
retrieving 984
sample 288
saving 268

automatically 481
multiuser

environments 138
searching See searching
similar spellings, finding 584
sorting See sorting data
updating 350, 619, 985
validating 963

data buffers 268
updating 428

data entry
See also entry fields
controlling 72, 595, 961
cursors, moving 489
DDE applications 912
DO...UNTIL and 223
errors, trapping 381
invalid 482, 962
restricting 502, 763, 875
templates 820, 911
validating 72, 595

data integrity 268
data types 12–19, 1006

arrays and 50
binary fields 96, 145
blank values 102
bookmark 105
changing 362
character codes 59, 809
conversions See converting;

type conversions
DLLs 242
external functions 244
finding 324
incompatible 363
local SQL 980
memo fields 597
returning 615
user-defined 145

database servers
See also DDE server

applications; OLE server
applications

connecting to 385, 796, 831,
919

disconnecting 951
DATABASE() 180

databases 9
See also tables
closing 135

associated files 135
current, specifying 495
maximums and limits 1001
names, returning 180
opening 385
SQL See SQL databases
transactions, rolling back 138,

463
DataLink property 785

DataSource vs. 787
SelectAll and 930

DataSource property 786
DataLink vs. 786

date and time commands
CDOW() 116
CMONTH() 137
DATE() 181
DAY() 181
DMY() 216
DOW() 224
ELAPSED() 235
MDY() 353
MONTH() 364
SECONDS() 472
SET CENTURY 487
SET DATE 496
SET DATE TO 497
SET MARK 535
SET TIME 563
TIME() 610
YEAR() 630

date and time stamps 497, 563
returning 251, 281

date data types 14
date fields

concatenating 227
converting characters 363
indexing 227, 630

date formats 487
current 116
returning 216, 225, 227, 353
SLEEP 580
specifying 496

DATE parameter 496
DATE() 181

DTOC() and 225
SET DATE TO and 497

dates 496, 946
blank 14, 225
comparing 350, 358
converting to characters 225,

227
converting to strings 216, 353
default settings 496, 535

finding 474, 475
formatting 612
invalid 381
key expressions 304
literal 14
manipulating 179, 225
resetting 497
returning 137, 181, 350, 364

character expressions
as 179

system 181
weekdays 116, 224
year 487, 630

separators 535, 580
changing 496

sorting 227
subtracting 20
valid range 498

DAY() 181
dBASE

data types 980
exiting 417
home directory 640
maximums and limits 1001
online help See Help system
version numbers,

returning 627
dBASE III PLUS files 143, 174,

517
dBASE IV commands (backward

compatible)
@...CLEAR 47
@...FILL 47
@...SAY...GET 47
@...SCROLL 47
@...TO 48
ACCEPT 48
ACTIVATE SCREEN 52
CLEAR GETS 131
CLEAR SCREENS 134
CLEAR TYPEAHEAD 134
COL() 138
FUNCTION 282
INPUT 307
ISCOLOR() 317
KEYBOARD 324
LASTKEY() 327
MCOL() 351
MDOWN() 352
MROW() 365
ON MOUSE 378
PARAMETERS 391
READ 421
READKEY() 421
RELEASE SCREENS 436
RESTORE SCREEN 456
ROW() 465
SAVE SCREEN 470

I n d e x 1039

SET BORDER 484
SET COLOR OF 488
SET COLOR TO 488
SET DEFAULT 501
SET DELIMITERS 502
SET DEVICE 504
SET DISPLAY 506
SET ECHO 506
SET FORMAT 518
SET INTENSITY 526
SET MESSAGE 539
SET MOUSE 539
SET ODOMETER 540
SET STEP 562
SET TYPEAHEAD 566
TEXT 610
UPDATED() 620
VARREAD() 627

dBASE IV menu commands
ACTIVATE MENU 51
ACTIVATE POPUP 51
BAR() 93
BARCOUNT() 93
BARPROMPT() 94
CLEAR MENUS 132
CLEAR POPUPS 133
DEACTIVATE MENU 184
DEACTIVATE POPUP 185
DEFINE BAR 193
DEFINE MENU 195
DEFINE PAD 195
DEFINE POPUP 196
MENU() 356
ON BAR 371
ON EXIT BAR 374
ON EXIT MENU 374
ON EXIT PAD 374
ON EXIT POPUP 374
ON MENU 377
ON PAD 379
ON POPUP 381
ON SELECTION BAR 382
ON SELECTION MENU 384
ON SELECTION PAD 384
ON SELECTION POPUP 384
PAD() 390
PADPROMPT() 390
POPUP() 397
PROMPT() 407
RELEASE MENUS 435
RELEASE POPUPS 436
SHOW MENU 574
SHOW POPUP 576

dBASE IV printing commands
??? command 46
_alignment 635
_box 638
DEFINE BOX 193

_indent 640
_lmargin 642
_padvance 643
_pageno 644
_pbpage 645
_pcolno 646
_pcopies 647
_pdriver 648
_peject 649
_pepage 650
_pform 651
_plength 653
_plineno 654
_ploffset 656
_porientation 656
_ppitch 657
_pquality 658
_pspacing 659
_rmargin 661
_tabs 662
_wrap 663

dBASE IV SQL commands 977–
986

dBASE IV windows commands
ACTIVATE WINDOW 52
CLEAR WINDOWS 134
DEACTIVATE

WINDOW 185
DEFINE WINDOW 196
MOVE WINDOW 365
RELEASE WINDOWS 437
RESTORE WINDOW 456
SAVE WINDOW 470
WINDOW() 629

_dbaselock fields 122, 141, 144
accessing 339
copying 150, 156

_dbasewin
#ifdef and 671

DBASEWIN directory 640
DBASEWIN.EXE

path, returning 297
DBASEWIN.EXE directory 297
DBASEWIN.INI, changing

settings 478
DBERROR() 182
DBF() 183
DBMESSAGE() 184
_dbwinhome 640
DDE links

disabling 951
information, getting 932, 955
setting 831

DDE server applications 693
accessing 831, 951, 956
changing data 854, 856, 958

events, trapping 863, 886,
889, 890, 901

name, returning 932, 955
reading from 907
transactions, committing 953
writing to 806, 912

DdeServiceName 636
DEACTIVATE MENU 184
DEACTIVATE POPUP 185
DEACTIVATE WINDOW 185
DEBUG 185
Debugger 506, 562

opening 185
debugging 670

comments, temporary 43
coverage analysis 208, 490
procedures 185, 186, 406
program flow, tracking 333
programs, stepping

through 186
records, stepping

through 470
suspending program

execution 603
UDFs 185, 186, 406

debugging commands
See also error handling
DEBUG 185
DISPLAY COVERAGE 208
GENERATE 288
LIST COVERAGE 334
RESUME 456
SET COVERAGE 490
SET ECHO 506
SET STEP 562
SUSPEND 603

decimal digits 598
decimal separator 545
deleting 313
equality 117, 267

decimal places 500
returning 252, 464

decimal values
See also ASCII values
converting to

hexadecimal 320
keystrokes, returning 306,

369
returning 297

random numbers 417
DECIMALS parameter 500
declarations

arrays 187, 412
external functions 244
object classes 125
procedures 401
UDFs 282

1040 L a n g u a g e R e f e r e n c e

variables 412
local 341
private 399
static 591

DECLARE 187
STORE MEMO and 596

decreasing spin box values 946
Default property 788
defaults

date and time 496, 535
separators 580

decimal places 500
file names 143
forms 71, 765
function keys 519
sort order 582
system bell 482
tables 499
working directory 505

DEFINE 189
Left and 836
REDEFINE and 427
Top and 955

#define 667
DEFINE BAR 193
DEFINE BOX 193

_box and 638
_pspacing and 660

DEFINE COLOR 194
DEFINE MENU 195
DEFINE PAD 195
DEFINE POPUP 196
DEFINE WINDOW 196
defining fields lists 514
degrees

converting to radians 226
returning 465

delaying program execution 580
DELETE 196

PACK vs. 389
RECALL and 423

DELETE ALL
ZAP vs. 630

DELETE FILE 198
ERASE vs. 239

DELETE FROM 981
Delete property 789
DELETE TABLE 198
DELETE TAG 199
Delete() property 790
DELETED() 200
deleting

See also erasing
arrays 431

elements 52, 790, 922
decimal digits 313
fields 363, 978

files 198, 239
index files 199, 983
index tags 199
indexes 982
leading spaces 349
memo files 983
memory variables 431
records 196, 200, 389, 630,

757, 981
confirming 558
controlling 501
marking prevented 108,

231, 789, 936
specified characters 599
tables 198, 982
text 785, 801
trailing spaces 466, 613
trailing zeros 464

delimited text files 144
delimiters

command execution 519
date 535, 580

changing 496
directory paths 542
nested strings 13
thousands 559
time 580

delineating output 193
derived classes 6
descending sort order 304, 582
DESCENDING() 201
designing forms 791
designing table structures 177
DesignView property 791
desktop, aligning objects 836,

954
development tools 490
dialog box objects See check

boxes; entry fields; radio
buttons

dialog boxes 365, 422, 918
DIFFERENCE() 202

LIKE() vs. 332
SOUNDEX() and 584

Dimensions property 792
Dir() property 793
DIR/DIRECTORY 203

SET SEPARATOR and 559
directives See preprocessor

directives
directories

changing 9, 115
current working 504

creating 352, 359
dBASE home 640
searching 543

directory lists 203, 210

directory paths
See also search path
returning 407, 518

DBASEWIN.EXE 297
separators 542

DirExt() property 794
DisabledBitmap property 795
disk and file management See file

management commands
disk and file utilities See file

utilities and information;
system utilities and
information

disk drives
changing 115

current working 504
disk space, returning 204,

205, 210
freeing memory See memory
invalid 505
valid, returning 626

disk files See files
DISKSPACE() 205
DISPLAY 206

? command vs. 45
SET HEADINGS and 520
TRANSFORM() and 613

DISPLAY COVERAGE 208
DISPLAY FILES 209

SET SEPARATOR and 559
DISPLAY MEMORY 211

LOCAL and 341
PRIVATE and 399

display options 107, 230
See also fonts
browse objects 807, 953

DISPLAY STATUS 212
IMPORT and 302

DISPLAY STRUCTURE 214
IMPORT and 302
RECSIZE() and 426

display widths
character fields 109, 232
numeric fields 331

displaying
See also viewing
check boxes 855
data 45, 489, 526

compressing records 229
field names 520
memo fields 232, 538
objects and 786, 807, 844,

953
specific records 206
with BROWSE 105
with CHANGE 121

editing windows 164

I n d e x 1041

field definitions 214
forms 971
graphics 454, 709
labels 326
messages 489, 562, 580

current environment 212
in status bars 539, 945, 962
memory variables 211

prompts 787
radio buttons 855
reports 452
table structures 214
text files 614
windows 580

displays
See also screens
color attributes 778
intensity, setting 778
mode, setting 506
slowing 235

DISTINCT keyword 984
division operator 20
division, remainders,

returning 360
DLLs 813

character strings, getting 452
defined 340
files, search path 243
initializing 340
prototype functions 242, 637
releasing 434
return values 97, 98, 99, 100,

101
DMY() 216
DO 217

COMPILE vs. 140
SET DEVELOPMENT

and 503
SUSPEND and 604

DO CASE 219
IF vs. 300

DO WHILE 220
DO CASE and 220
DO...UNTIL vs. 223
SCAN vs. 471
SLEEP vs. 580

DO...UNTIL 222
DO WHILE vs. 221

documentation, printing
conventions 2, 7

documenting programs 41, 42
DOS

commands, executing 41,
223, 467

environment variables 290
file attributes 56, 248, 270, 793
return codes 417

DOS command 223
RUN vs. 467
RUN() vs. 468

DoVerb() property 796
DOW() 224
DownBitmap property 798
drawing lines 710, 908
drawing shapes 909, 910, 935
drives See disk drives
DROP clause 978
DROP INDEX 982
DROP TABLE 982
DropDownHeight property 799
DTOC() 225

DTOS() vs. 227
DTOR() 226

COS() and 157
SIN() and 577

DTOS() 227
duplicate values 325

keys 560
duplicating character strings 450
duration (bell) 482
dynamic-link libraries See DLLs

E
EDIT 228

CHANGE vs. 121
exiting 232
GO and 295
SET CARRY and 484
SET REFRESH and 552

Edit An Expression dialog
box 291

Edit menu, adding to forms 800
Edit window See Table Editor
EditCopyMenu property 800
EditCutMenu property 801
editing 107

See also changing
calculated fields 232
code 140, 504
data 228, 595

with BROWSE 105
with CHANGE 121

expressions 291
memo fields 232, 447, 568,

596
programs 164
restricting 108, 231
text files 165, 697

editing controls 726
editing tool 682
editing windows

displaying 164, 165
setting 568

editor objects
scroll bars 929
wordwrapping text 972

editors, text, alternate 164
See also Text Editor

EditPasteMenu property 801
EditUndoMenu property 802
EJECT 233

_peject and 650
EJECT PAGE 234

EJECT vs. 233
ON PAGE and 380

ELAPSED() 235
SECONDS() vs. 473

Element() property 803
Subscript() vs. 949

elements, array See array
elements

#else 670
embedded null characters 330
empty character strings 330

comparing 511
empty date strings 14, 225
empty memo fields 330
EMPTY() 237

See also ISBLANK()
BLANK and 102

Enabled property 804
encrypting tables 508
end-of-file indicator 238, 253
end-of-line characters 256, 275

returning 277
Enter key, simulating Tab 492
entry fields 700

backgrounds 906
formatting text 911
keystrokes, evaluating 834
moving to 489
scrolling width 840
values, changing 930

environment commands
CHARSET() 123
CLEAR 128
CREATE SESSION 171
DISPLAY MEMORY 211
DISPLAY STATUS 212
LDRIVER() 327
LIST MEMORY 334
LIST STATUS 334
MEMORY() 356
SET 478
SET BELL 482
SET BORDER 484
SET CONFIRM 489
SET CONSOLE 489
SET DESIGN 502
SET DISPLAY 506

1042 L a n g u a g e R e f e r e n c e

SET EDITOR 506
SET FULLPATH 518
SET INTENSITY 526
SET LDCHECK 529
SET LDCONVERT 530, 993
SET MESSAGE 539
SET ODOMETER 540
SET SAFETY 558
SET TALK 562
SET() 569
SETTO() 571
SHELL() 573
VERSION() 627

environment variables
(DOS) 290

environments
current working 175

See also views; work areas
information, getting 212
multiuser See multiuser

environments
settings, retrieving 175

EOF() 238
FIND and 260
LOCATE and 343
RECNO() and 425
SEEK and 474
SET RELATION and 555
SKIP and 579

equality 21, 117, 267
comparing character

strings 511
equal-to operator 21
ERASE 239

DELETE FILE vs. 198
erasing memo fields 77, 149, 447,

448
See also deleting

error codes, portability 241, 357
Error dialog box 140
error handling

See also debugging commands
CERROR() 120
DBERROR() 182
DBMESSAGE() 184
ERROR() 240
FERROR() 254
LINENO() 333
MESSAGE() 357
ON ERROR 371
ON NETERROR 378
ON READERROR 381
PROGRAM() 406
RETRY 457
SET ERROR 509
SQLERROR() 587
SQLMESSAGE() 589

error messages 489, 962, 1015–
1030

customizing 371, 509
returning 184, 357

ERROR() 240
resetting 457, 459

errors
compiler, returning 120
data entry 381, 962
DDE applications 953
fixing 140
multiuser environments 378
resolving 457
run-time 371, 378, 509

IDAPI 182, 184
line numbers,

returning 333
server 587, 589

syntax 140
trapping data entry 381

Esc key 510
See also keyboard; keystrokes
disabling 372, 510, 805

escape sequences 544
EscExit property 805
evaluating expressions 615
evaluating user choices 336, 782
events 834

adding records 857
assigning pushbuttons 789,

861
closing forms 862
conditions 804, 967
executing automatically 858,

865
keyboard See keyboard event

commands
mouse See mouse event

commands
moving forms 848, 884
moving record pointers 885
opening forms 887
providing help 866
resizing forms 899
selecting objects 804, 875
sizing forms 940
trapping

DDE applications 863,
886, 889, 890, 901

multiuser
environments 265, 461

exact matches (searches) 260,
473

failing 539
exactly equal to operator 21
exchanging data See DDE links
exclusive mode 513

exclusive OR operations 101
Execute() property 806
executing dBASE commands

page formatting 379
shortcuts 372, 375, 519, 526

executing DOS commands 41,
223, 467

executing events
automatically 858, 865
closing forms 862

executing macros, DDE
applications 806

executing programs See program
execution

executing SQL statements 588
exit codes, returning 467
exiting dBASE 417
exiting loops 221, 222, 273
exiting programs 113
EXP() 241
exponentiation

base e 241
exponents, returning 345
square roots and 590

exponentiation operators 20
exporting tables with COPY 144
Expression Builder 291
expression commands

GETEXPR() 291
MAX() 350
MIN() 357
TYPE() 615

expressions 12
blank See empty
changing 667
character strings 82, 928
comparing 350, 357
editing 291
empty 316

testing for 237, 316
evaluating 43, 301, 615
fields list 263
filters 517
finding 82, 346, 927
grouping 17
identifiers 668
key See key expressions
literal 615
logical 350, 357
replacing data 439
results, viewing 43, 46, 561
storing 593

EXTERN 242
BITAND() and 97, 98, 99,

100, 101
LOAD DLL and 341

I n d e x 1043

external applications 693, 796,
831, 919

external functions 244, 829

F
FACCESSDATE() 247
FCLOSE() 247
FCREATE() 248

FCLOSE() and 248
FEOF() and 253
FFLUSH() and 255
FGETS() and 256
FPUTS() and 275
FREAD() and 277
FSEEK() and 278

FCREATEDATE() 250
FCREATETIME() 250
FDATE() 251
FDECIMAL() 252
FEOF() 253

FGETS() and 257
FERROR() 254

FGETS() and 257
FFLUSH() 255
FGETS() 256

FREAD() and 277
field commands

See also record commands
APPEND MEMO 77
BINTYPE() 96
CLEAR FIELDS 131
COPY BINARY 145
COPY MEMO 148
FDECIMAL() 252
FIELD() 258
FLDCOUNT() 262
FLDLIST() 263
FLENGTH() 264
ISBLANK() 316
MEMLINES() 354
MLINE() 360
REPLACE BINARY 443
REPLACE MEMO 447
REPLACE

MEMO...FROM 448
REPLACE OLE 449
SET BLOCKSIZE 483
SET FIELDS 514
SET MBLOCK 536
SET MEMOWIDTH 538
SET WINDOW OF

MEMO 568
STORE MEMO 596

field controls See entry fields
field descriptor bytes 1006
field names 8, 10

aliases 10, 441, 515
automem variables and 433
browse objects 937
changing 362
display, suppressing 206
displaying 520
getting 258
passing as parameters 404

field widths, changing 362
FIELD() 258
fields

accessing specific 515
adding 363
asterisks in 440
binary See binary fields
browse objects 807
calculated See calculated

fields
changing data 404, 440
contents, storing 593
copying 154, 445

multiple 144, 150
counting 262
definitions, displaying 214
deleting 363
empty 316
filling with blanks 102, 260
freezing 108, 231
key See key fields
length 264
maximums and limits 1002
memo See memo fields
passing as parameters 404
sorting on multiple 582
structure-extended tables 178
type, returning 615
updating 442
variable-length 15

fields list 206
adding fields 484
browse objects 807
clearing 131, 515
defining 514
new tables 322, 612
returning 263

Fields property 807
Fields() property 808
FieldWidth property 809
file attributes

(DOS) 56, 248, 270, 793
(Windows95) 794

file buffers, flushing 255
file indicators

beginning 103
end 238, 253

file names 8, 162, 414
changing 437

creating 283
default 143
returning 114, 293

full paths 518
file pointers 249, 253, 270

files 257
text files 275, 277, 278, 286

file utilities and information
! command 41
COPY FILE 146
CREATE FILE 165
DELETE FILE 198
DISPLAY FILES 209
ERASE 239
FDATE() 251
FILE() 259
FSIZE() 280
FTIME() 281
FUNIQUE() 283
GETDIRECTORY() 289
GETFILE() 292
LIST FILES 334
PUTFILE() 414
RENAME 437
TYPE 614

FILE() 259
FCREATE() and 249
FDATE() and 251
FSIZE() and 280
FTIME ()and 281

files
adding to catalogs 486
backing up 205, 362
binary 145

coverage analysis 490
reading from 443

closing 135, 247, 346, 417
copying 146, 626
coverage 208, 490
creating 248, 564
date and time stamps 497,

563
returning 251, 281

deleting 198, 239
directory listings 203, 204
end-of-line indicator 256
file pointer, moving 277, 278
finding 501, 542

checking existence 259
format See format files
header 674
header structures 1005, 1007
include 674
index See index files
information, getting 55, 204,

793, 794
file handle numbers 249
identifier numbers 269

1044 L a n g u a g e R e f e r e n c e

locks 141, 338
size 280

linking 110
locking automatically 265,

339, 461
disabling locks 532

low-level 135
maximums and limits 1003
memory 453, 469
menu definition 842
naming 414
object 139
opening 248, 269
overwriting 558
position, returning 103, 238
program See program files
protecting 409
query 169, 174, 567
referencing 8
renaming 437
saving 255
selecting 292
temporary 283, 623

SORT and 582
text See text files
types, supported 73, 302
unlocking 552, 618
view 175
writing to 45, 286

streaming output 547
files list 210, 239, 334
file-sharing modes 513
Fill() property 810
filtering data 117

setting filters 517
filters, queries, and views

CREATE QUERY 169
CREATE VIEW 174
CREATE VIEW...FROM

ENVIRONMENT 174
DISPLAY 206
LIST 334
MODIFY QUERY 362
MODIFY VIEW 362
SET FILTER 516
SET VIEW 567

financial transactions 111
future value 284
payments 391
present value 415

FIND 259
EOF() and 238
FOUND() and 274
INDEX and 305
LOCATE vs. 343
SEEK vs. 473, 474
SET EXACT and 512
SET NEAR and 539

SOUNDEX() and 584
finding data See search

operations
First property 811
FirstIndex property 812
fixed-length records 143
FKLABEL() 261
FKMAX() 262
FLDCOUNT() 262
FLDLIST() 263
FLENGTH() 264
float data types 14
float values

adding 602
averaging 92, 111
blank 103
comparing 117, 267
finding 474, 475
key expressions 304
length, returning 331
replacing 440
returning 298, 625

absolute values 48
angles 51, 84, 90, 91, 157,

226, 577, 608
future value 284
integer portion 313
logarithms 345

base e 241
pi 395
present value 415
principal 391
sign 576
square root 590

rounding 464
FLOCK() 265

RLOCK() vs. 461
SET REPROCESS and 557
UNLOCK and 618

FLOOR() 267
compared 313

FLUSH 268
FTIME() and 281

FNAMEMAX() 269
focus 422, 811

forms 386
getting 757, 865
moving 492, 765, 875, 950

arrow keys and 822
restricting 961

setting 934
FocusBitmap property 813
Follow property 814
FontBold property 815
FontItalic property 815
FontName property 816
fonts 44

changing 45
selecting 294, 816, 925
text attributes 44
text, objects 815, 818, 819

size 817, 926
fonts commands

DEFINE COLOR 194
GETFONT() 294
ISCOLOR() 317
SET COLOR OF 488
SET COLOR TO 488

Fonts dialog box 294
FontSize property 817
FontStrikeOut property 818
FontUnderline property 819
footers, printing 380
FOPEN() 269

FCLOSE() and 248
FEOF() and 253
FFLUSH() and 255
FGETS() and 256
FPUTS() and 275
FREAD() and 277
FSEEK() and 278

FOR() 271
FOR...NEXT 272

SLEEP vs. 580
foregrounds

high intensity 778
form commands

CLOSE FORMS 135
CREATE

APPLICATION 161
CREATE FORM 165
CREATE MENU 168
CREATE POPUP 168
CREATE SCREEN 171
_curobj 639
MODIFY

APPLICATION 362
MODIFY FORM 362
MODIFY MENU 362
MODIFY SCREEN 362
MSGBOX() 365
ON SELECTION FORM 383
OPEN FORM 386
READMODAL() 421
REDEFINE 427
SET CUAENTER 492

Form Designer 161, 165, 171
Form Expert 166
form files 166
form objects

See also objects
activating 934
aligning 836, 955
current 422

I n d e x 1045

definitions
changing 427
clearing from memory 435

grouping 822
linking 785
placing 851, 853
referencing 811
tabbing order 639, 765, 852

format files 71
BROWSE and 108
closing 135
EDIT and 231, 232

formats
character data 612
date 487, 612

current 116
returning 216, 225, 227,

353
SLEEP 580
specifying 496

file, supported 302
function templates 44, 820
international 496
labels 167
logical fields 612
numeric data 331, 612

currency symbols 493
decimal separator 545
thousands separator 559

picture templates 43, 559,
612, 911

text 44, 820, 911
size 817, 926

time 496, 563, 610
SLEEP 580

formfeeds 233
forms 952, 965

See also form commands
activating 934
adding Edit and Windows

menus 719
adding menus 168, 716, 719
adding popups 168
anchoring objects 763
borders 836, 954
changing 161, 165, 171
closing 135, 773, 776, 805, 862
Control menu 949
control tips 939
creating 161, 165, 171, 704
default 71
designing 791
displaying 956, 971
formatting data 612
maximums and limits 1003
MDI 707, 841, 842
menu definition files 168, 842
modal 386, 421, 918

moving 848, 884
moving through 903, 929
multi-page 751
multiple pages 902, 903
non-modal 386, 901
objects See form objects
opening 386, 421, 887, 901,

918
parent See parent forms
popup definition files 168
pop-up menus 729, 913
printing 914
scroll bars 929
SET DESIGN and 502
sizing 764, 839, 843, 899, 971

preventing 940
specifying text 944
submitting 383, 898

FOUND() 274
CONTINUE and 141
FIND and 260
LOCATE and 343
SEEK and 473
SEEK() vs. 476
SELECT and 476
SET NEAR and 540

FPUTS() 275
FWRITE() vs. 287

FREAD() 277
FGETS() and 257
FGETS() vs. 257

freeing memory 113, 133, 268,
431

indexes and 200
French date format 496
frequency (bell) 482
FROM clause 984
FSEEK() 278

FGETS() and 257
FOPEN() and 270
FPUTS() and 276
FREAD() and 277

FSHORTNAME() 279
FSIZE() 280
FTIME() 281
FUNCTION 282
function calls 23

C conventions 242
debugging See debugging
external 244
forms, submitting 898
Pascal conventions 242
retrying 457

function keys
assigning

character strings 519

command execution 375,
519

current setting 569, 571
default assignments 519
name, returning 261
number, returning 262
programmable 1003

function operators 23
function pointers 17
Function property 820
function symbols 612, 820
function templates 44, 820
functions 4

See also specific dBASE
functions

abbreviating 7
executing 519
external 829
inline 668, 669
key expressions and 304
prototypes, DLLs 242, 637
referencing 17
user-defined See UDFs

FUNIQUE() 283
future value, returning 284
FV() 284
FWRITE() 286

FPUTS() vs. 276

G
GENERATE 288
generating random

numbers 283, 417
German date format 496
GETCOLOR() 288

DEFINE COLOR and 194
GETDIRECTORY() 289
GETENV() 290
GETEXPR() 291
GETFILE() 292
GETFONT() 294

? and 44
GetTextExtent property 821
GO 294

BOOKMARK() and 104
EOF() and 238
implicit GOTO 4
SET FILTER and 517
SET KEY and 528

graphics 145
aligning 761
centering 762
displaying 454, 709
printing 455
pushbuttons 795, 798, 813,

960

1046 L a n g u a g e R e f e r e n c e

storing
binary fields 146
memo fields 149

greater-than operator 21
GROUP BY clause 984
Group property 822
grouping expressions 17
grouping objects 822
Grow() property 823

H
hard drives See disk drives
hatched (blended)

backgrounds 106, 229, 906
HAVING clause 984
header files 674

changing 674
header structures (file) 1005,

1007
Header3D property 824
headers, printing 380
headings See field names
Height property 826

Alignment vs. 762
Width and 969

HELP 296
Help system

activating 296, 521
customizing 866
keywords, specifying 828
topics, specifying 565, 827

HelpFile property 827
HelpID and 828
OnHelp and 866

HelpID property 828
HelpFile and 827
OnHelp and 866

hexadecimal numbers
decimal equivalents 297
returning 320

hiding cursors 494
high-intensity attributes 778
home directory 640
HOME() 297
horizontal scroll bars 965
HTOI() 297

FGETS() and 256
FPUTS() and 276
ITOH() vs. 321

hWnd property 828

I
I/O 704

delineating 193
display

enabling/disabling 489
widths, memo fields 538

environment messages 212,
562

interrupting 510
outlining 193
printing 233

page formatting 379
table structures 214

I/O commands
? command 43
?? command 46
CLOSE ALTERNATE 135
CLOSE FORMAT 135
CREATE LABEL 167
CREATE REPORT 169
INPUT 307
LABEL FORM 325
MODIFY LABEL 362
MODIFY REPORT 362
REPORT FORM 451
SET ALTERNATE 479
SET HEADINGS 520
SET SPACE 561
WAIT 628

Icon property 829
icons 829
ID checking, language

drivers 529, 530, 993
ID property 830
ID() 298

NETWORK() and 369
IDAPI errors 182, 184
identifiers

See also names
defining 667

without replacement
text 668

multiple programs 674
objects 830
replacing with specified

values 668
undefining 669, 676

IF 299
See also #if
DO CASE vs. 219
IIF() vs. 301
multiple ELSEIFs 299, 300

#if 670
#ifdef 671
#ifndef 672
IIF() 301
image objects 708

See also graphics
aligning graphics 761
displaying data 786

implicit commands 4

IMPORT 302
importing tables 302
#include 674
INCLUDE directory 674
include files 674

changing 674
incompatible data types 363
incrementing spin box

values 946
_indent 640

_rmargin and 661
_wrap and 663

INDEX 303
FIND and 260
FOR() and 271
REINDEX and 430
SEEK and 474
SET ESCAPE and 510
SET EXCLUSIVE and 513
SET INDEX and 525
SET UNIQUE and 566
SORT vs. 583
UNIQUE() and 617

index call operator 24
index files

See also .MDX files; .NDX files
allocating memory 483, 522
closing 135
copying 144, 152
creating 150, 176
deleting 199, 983
information, getting 212
moving through 295
multiple 606
names, returning 353, 368,

387, 605
opening 524, 622
temporary 582

indexes
See also key expressions; key

fields
aliases 528
copying tables 144
creating 271, 303, 323, 979
date fields 227, 630
deleting 982
identical keys 566
master 304, 347

returning 368
names 387, 605

specifying 525, 541, 622
maximums and limits 1001
multiuser environments 200
number of active 606
numeric fields 598
order, reversing 304
processing speed 522

I n d e x 1047

rebuilding 440
replacing data 440
SCAN and 471
sort order, setting 304
sorting data vs. 583
SOUNDEX codes 584
tags 305

creating 147, 152
deleting 199
number, returning 607
returning 605

unique 566, 617
updating 363, 429, 566

APPEND and 71
automatically 305
EDIT and 231
INSERT and 309

indexing and sorting
CLOSE INDEXES 135
COPY INDEXES 147
COPY TAG 152
DELETE TAG 199
FOR() 271
INDEX 303
KEY() 323
MDX() 352
NDX() 368
ORDER() 387
REINDEX 429
SET IBLOCK 522
SET INDEX 524
SET KEY TO 527
SET ORDER 541
SET UNIQUE 566
SORT 581
TAG() 605
TAGCOUNT() 606
TAGNO() 607
UNIQUE() 617

indicator, record See record
pointers

indirect reference 8
infinity, returning 608
initializing

arrays 60, 596
DLLs 340
memory variables 129, 341,

399, 412, 593, 624
during program

suspension 604
system 5

Initiate() property 831
Server and 932

initiation handlers 637
INKEY() 306, 1009

NEXTKEY() and 370
inline functions 668, 669
INPUT 307

input focus See focus
input/output See I/O
INSERT 309

SET CARRY and 484
INSERT AUTOMEM 310

SET CARRY and 484
INSERT BLANK 309

INSERT AUTOMEM vs. 311
SET CARRY and 484

INSERT INTO 983
Insert() property 832

Add() vs. 759
Grow() vs. 824

INSPECT() 312
Inspector

opening 312
View and 685

INT() 313
integers

See also numbers
decimal separator 545
returning 313, 576

equality 117, 267
interest rates

future value 284
payments 391
present value 415

international date/time
formats 496

interrupting SLEEP 580, 581
interrupts, Esc key 510
invalid data entry 482, 962
investments See financial

transactions
involution 241

exponents, returning 345
square roots and 590

ISALPHA() 314
ISBLANK() 316

AVERAGE and 93
BLANK and 102

ISCOLOR() 317
IsIndex() property 833
ISLOWER() 317
ISMOUSE() 318
IsRecordChanged()

property 833
ISTABLE() 319
ISUPPER() 320
Italian date format 496
italic type 44, 815
ITOH() 320

HTOI() vs. 298

J
Japanese date format 496
JOIN 321
joining tables See linking and

relating
justification See alignment

K
key codes 376
key expressions 303, 528

linking tables 554
matching 260, 473, 540
returning 323, 324, 430

key fields
See also indexes
changing 440

browse objects 814
displaying 108, 231
key values

duplicate 560
restricting 527, 566

searching on 475
Key property 834
KEY() 323

SET INDEX and 525
KEYBOARD 324
keyboard

accelerators 936
default assignments 519
programmable keys 1003

keyboard event commands
FKLABEL() 261
FKMAX() 262
INKEY() 306
NEXTKEY() 369
ON ESCAPE 372
ON KEY 375
SET CURSOR 494
SET ESCAPE 510
SET FUNCTION 519
SET KEY 526

Keyboard() property 835
KeyHigh 809
KEYMATCH() 324
keystrokes

assigning
command execution 372,

375, 519, 526
interrupts 510

evaluating 834, 859, 868, 869
simulating 492, 835
values, returning 306, 369

keywords 4
abbreviating 7

SET() and 569

1048 L a n g u a g e R e f e r e n c e

alternatives 29
scope 11

L
label files 167
LABEL FORM 325
labels

See also field names; file
names

displaying 326
formatting 167, 612
objects 952
printing 326
SET DESIGN and 502

landscape orientation 124
language drivers 123, 327

current, returning 327
ID checking 529, 530, 993
ISALPHA() and 315
ISLOWER() and 317
ISUPPER() and 320
LIKE() and 332
LOWER() and 348
primary/secondary

weights 511
PROPER() and 408
SOUNDEX() and 584
UPPER() and 621

language elements 3
backward compatibility 989
unsupported 998

large numbers 440, 613
LASTKEY() 327
LDRIVER() 327
leading spaces 260, 331

deleting 349
Left property 836

Bottom and 772
Right and 924
Top and 955

LEFT() 328
LEN() 330

LEFT() and 328
SUBSTR() and 601

LENNUM() 331
LEN() vs. 330

less-than operator 21
LIKE() 331

DIFFERENCE() vs. 203
SOUNDEX() and 584

line lengths, memo fields 354,
360

line objects 710, 772, 924
patterns 908

linear control structures 219,
299, 301

linefeeds 233
automatic 234
character, counting 328, 330,

460
substrings 89, 601

files 256
LineNo property 837
LINENO() 333

PROGRAM() and 407
LinkFileName property 837
linking and relating

JOIN 321
RELATION() 430
SET RELATION 553
SET SKIP 560, 619
TARGET() 609
UPDATE() 619

linking files 110
links

DDE 831, 932, 955
disabling 951

form objects to tables 785
OLE 449, 837
setting 554

LIST 334
DISPLAY vs. 206, 207
EOF() and 238
SET HEADINGS and 520
SET PRINTER and 547
TRANSFORM() and 613

list boxes 712
displaying data 786
multiple choices 849
prompts 782, 942

current 784, 931
returning 335, 337
selecting 714, 897

LIST COVERAGE 334
DISPLAY COVERAGE

vs. 209
LIST FILES 334

DISPLAY FILES vs. 210
SET DATABASE and 210
SET DBTYPE and 210
SET SEPARATOR and 559

LIST MEMORY 334
DISPLAY MEMORY vs. 212
LOCAL and 341
PRIVATE and 399

LIST STATUS 334
DISPLAY STATUS vs. 213

LIST STRUCTURE 334
DISPLAY STRUCTURE

vs. 215
RECSIZE() and 426

LISTCOUNT() 335
LISTSELECTED() and 337

LISTSELECTED() 337
DataSource and 787
Multiple and 849

literal array object 680
literal character strings 13
literal characters 332
literal statements 17
literal values 9

dates 14
literals, expressions 615
LKSYS() 338

CONVERT and 142
_lmargin 642

_alignment and 635
_ploffset and 656
_rmargin and 661
_wrap and 663

LOAD DLL 340
RELEASE DLL and 435

LOCAL 341
PRIVATE vs. 400
procedures and 401

local SQL commands 977–986
local variables

See also memory variables
declaring 341

as static 591
initializing 341
scope, resetting 459

LOCATE 342
CONTINUE and 140
EOF() and 238
FIND vs. 260
FOUND() and 274
SEEK vs. 473, 474
SET KEY and 528
SOUNDEX() and 584

locating data See search
operations

LOCK() 344
RLOCK() vs. 462
SET REPROCESS and 557
UNLOCK and 618

locks
record 344, 461

information, getting 141,
338

releasing 552, 618
retry messages 557
table 265, 532

information, getting 141,
338

releasing 552, 618
LOG() 344

EXP() vs. 241, 345
LOG10() 345
logarithms 345

I n d e x 1049

base e 241
logical data types 14
logical expressions

comparing 350, 357
returning values 301

logical fields 14
blank values 103
converting to character 363
converting to numeric 363
formatting 612
text files 144

logical operators 21
LOGOUT 346
LOOKUP() 346

EOF() and 238
FOUND() and 274
INDEX and 305

loops 220, 222, 272, 336, 337, 470,
782

losing data 255, 362, 389, 440
browse objects 814
minimizing loss 481

losing text 597
LOWER() 348

ASCAN() and 82
AT() and 89
LIKE() and 332
RAT() and 420
Scan() and 928

lowercase letters 348
converting to uppercase 304,

620
first letter 408

sorting data 582
testing 317

low-level access commands
FCLOSE() 247
FCREATE() 248
FEOF() 253
FERROR() 254
FFLUSH() 255
FGETS() 256
FOPEN() 269
FPUTS() 275
FREAD() 277
FSEEK() 278
FWRITE() 286

low-level files 135
LTRIM() 349

TRIM() vs. 613
LUPDATE() 350

M
macros

executing, DDE
applications 806

macro expansion
(defined) 669

nesting 669
magnitude (defined) 48
manipulating data 117, 581

See also searching and
summarizing; sorting data

manipulating dates 179, 225
margins, setting 534
marking records for

deletion 196, 200
preventing 108, 231, 789, 936
removing marks 423

master index 304, 347
See also .MDX files
returning 368

names 387, 605
specifying 525, 541, 622

master procedures (defined) 458
MAX() 350
Maximize buttons, enabling 839
Maximize property 839
maximum values, returning 111
MaxLength property 840
MCOL() 351
MD 352
MDI (Multiple Document

Interface) 841
MDI forms 573, 707, 841, 842
MDI property 841

Maximize and 839
Minimize and 844
Moveable and 848
Sizeable and 940
SysMenu and 949

MDOWN() 352
.MDX files

allocating memory 522
converting to tags 152
copying 144, 152
creating 150, 176
deleting tags 199
name, returning 352

MDX() 352
MDY() 353
member call operator 24
members See object classes
MEMLINES() 354

LEN() vs. 330
STORE MEMO and 597

memo data types 15
memo fields 15, 147, 362, 437

allocating memory 483, 536
case

converting 348, 620
first letter only 408

testing 314, 317, 320

changing 440, 447
combining records 322
contents, storing 594
converting to character

fields 440
copying 76, 144, 148

text files to 77, 448
to text files 144

creating 483, 537
deleting

spaces 349, 466, 613
specific characters 599

display width, setting 538
displaying 232
editing 232, 447, 568, 596
empty 330
line lengths 354, 360
number of characters 328,

330, 460
number of lines 354
overwriting 77, 149, 447, 448
phonetic values 203, 584
repeating 450
special effects See binary

fields
substrings, finding 89, 419,

601
text

See also text
centering 118
losing 597
returning 360
storing 596

types 597
memo files

deleting 983
opening 621

memory
allocating 268

indexes 483, 522
memo fields 483, 536

checking available 356
clearing

object definitions 921
unallocated 268

freeing 113, 133, 268, 431
indexes and 200

managing 133
running out of 604

memory blocks 537
size, changing 522

memory files, creating 453, 469
memory variables 4, 5, 307, 441

arrays 187, 596
assigning to expressions 291
automem See automem

variables
clearing 131, 432, 453

1050 L a n g u a g e R e f e r e n c e

non-public 458
program execution

and 113, 417
copying 453
current settings,

program 569, 571
decrementing/

incrementing 273
defined 10
deleting 431
evaluating 615
information, getting 211
initializing 129, 341, 399, 412,

593, 624
during program

suspension 604
local See local variables
maximums and limits 1003
objects 190, 427
overriding 668
passing as parameters 403
prefixes 10, 594
preserving 412, 453
private See private variables
public 412, 453
releasing See clearing
resetting 129
saving 453, 469
scope 10, 341, 399, 412, 591,

593
resetting 459

sessions and 593
static 459, 591
storing 679
storing data 595
storing expressions 593
storing values 92, 112
substituting 977
testing 272
values

finding 474
retaining in memory 591

memory variables commands
ACOPY() 49
ADEL() 52
ADIR() 55
AELEMENT() 57
AFIELDS() 59
AFILL() 60
AGROW() 61
AINS() 64
ALEN() 67
ARESIZE() 78
ASCAN() 82
ASORT() 84
ASUBSCRIPT() 87
CLEAR MEMORY 131
DECLARE 187

LOCAL 341
PRIVATE 399
PUBLIC 412
RELEASE 431
RESTORE 453
SAVE 469
STATIC 591
STORE 593

MEMORY() 356
memory-intensive tasks 133
Menu Builder 842
menu commands

choosing 936
shortcuts 943

menu definition files 168, 842
Menu Designer 168
menu objects 716
MENU() 356
MenuFile property 842
menus

See also pop-up menus
adding checkmarks 774
generating 168, 716, 719, 842
initializing 867
separators 931

MESSAGE() 357
messages

See also error messages;
prompts

confirmation 558
displaying 489, 562, 580

current environment 212
in status bars 945, 962
memory variables 211

environment
information 212, 562

file locking 557
invalid data entry 962
status bar 539

methods 5
See also procedures
object classes 126

MIN() 357
Minimize buttons, enabling 843
Minimize property 843
minimum values, returning 111
MKDIR 359

MD vs. 352
MLINE() 360

LEN() and 330
LTRIM() and 349

MOD() 360
modal forms 386, 421, 918, 956
Mode property 844

Toggle and 954
modeless windows See non-

modal forms

MODIFY 361
MODIFY... commands

SET DESIGN and 502
MODIFY APPLICATION 362
MODIFY COMMAND

CREATE FILE vs. 165
SET DEVELOPMENT

and 503
MODIFY FORM 362
MODIFY LABEL 362

CREATE LABEL and 167
LABEL FORM and 326

MODIFY MENU 362
Modify property 845
MODIFY QUERY 362
MODIFY REPORT 362

REPORT FORM and 452
MODIFY SCREEN 362
MODIFY STRUCTURE 362

CREATE...FROM vs. 176
MODIFY VIEW 362
modifying table structures 978
modulus, returning 360
monetary values 493
monitors

See also screens
color attributes 778
display modes 506
intensity, setting 778

monochrome monitors
intensity, setting 778

MONTH() 364
mouse buttons

clicking 871
middle button 876, 878,

893
twice 869, 876, 891

releasing 873, 880, 895
mouse drivers 318
mouse event commands

INKEY() 306
ISMOUSE() 318
ON MOUSE 378

mouse events
assigning 871, 873, 878, 880,

893, 895
double-clicks 870, 876, 891

moving forms 848
sizing forms 940

mouse pointer
changing 846, 882
moving 846, 882

MousePointer property 846
MOVE WINDOW 365
Move() property 847
Moveable property 848
moving

I n d e x 1051

file pointers 257, 275, 277,
278, 286

forms 848, 884
objects 847
record pointers 294, 471, 481,

578
linked tables 560

moving between records 109
Table Editor 232

moving through forms 903, 929
moving through tables 294, 560
MROW() 365
MSGBOX() 365
multi-dimensional arrays See

arrays
multi-line comments 42
multi-page forms 751
multiple conditions, testing 300
Multiple Document Interface

(MDI) 841
multiple documents,

opening 707, 841
multiple ELSEIF statements 299,

300
multiple fields

changing data 440
copying 144, 150
sorting data 582

multiple forms, opening 386
multiple index files,

returning 606
multiple programs

compiling 674
identifiers 674

Multiple property 849
multiple-choice list boxes 336,

337, 782, 849
multiplication operator 20
multi-tables, comparing

records 322
multiuser environments

See also shared data
commands

changing data 122, 265, 344,
461

counting records 159
deleting records 630
errors 378
file-sharing modes 513
indexes 200
releasing locks 552, 618
saving data 138
screens, refreshing 552
setting locks 265, 344, 461,

532
retry messages 557

testing for 369

transactions 94
committing 138
rolling back 463

undoing changes 463
updating data 138, 265, 461
user names, returning 298

N
Name property 850
names 8

See also aliases; identifiers
catalog files 114
databases 180
DDE applications,

returning 932, 955
directory 359
field See field names
file See file names
index files, returning 353,

368, 387, 605
objects, returning 850
procedures 401
table

changing 438
default 144
returning 183, 609

work areas 69
natural logarithms 345

base e 241
.NDX files

converting to tags 147
copying 152
name, returning 368
specifying as master 622

NDX() 368
SET INDEX and 525

negative values
absolute 48
finding 576

nested DOs 217
nesting

character strings 13
DO CASE structures 220
DO WHILE loops 221
DO...UNTIL loops 222
FOR...NEXT loops 274
macros 669
SCAN loops 471

net present values 111
network drives 626
NETWORK() 369
networks See multiuser

environments; shared data
commands

NEW operator 19, 22, 741
REDEFINE and 427

new tables, creating 178
NextCol() property

NextRow() and 853
NextCol() property 851
NextIndex() property 852
NEXTKEY() 369

INKEY() and 306
NextObj property 852
NextRow() property 853

NextCol() and 851
non-dBASE formats 302
non-modal forms 386, 901
not equal to operator 21
NOTE 42

&& vs. 42
Notify() property 854
null characters 330
numbers

See also decimal digits;
integers

adding 111, 602, 611
averaging 92, 111
constants 668
dividing 360
hexadecimal

decimal equivalents 297
returning 320

incrementing 946
large 440, 613
negative 576

absolute values 48
random 283, 417
rounding 464, 598
sign, determining 576

numeric data
bitwise operations 97, 99

exclusive OR 101
return values, getting 100
shift bits 98, 99

comparing 350, 358
equality 117, 267

converting characters 363
converting to character 598
converting to strings 598
finding 474, 475
formatting 331, 612

currency symbols 493
decimal separator 545
thousands separator 559

key expressions 304
precision, setting 546
replacing 440
returning

absolute values 48
characters as 363, 625
integer portion 313
logical 363

1052 L a n g u a g e R e f e r e n c e

truncating 313
numeric data commands

ABS() 48
ACOS() 50
ASIN() 84
ATAN() 90
ATN2() 91
CEILING() 117
COS() 157
DTOR() 226
EXP() 241
FLOOR() 267
FV() 284
INT() 313
LENNUM() 331
LOG() 344
LOG10() 345
MOD() 360
PAYMENT() 391
PI() 394
PV() 415
RANDOM() 417
ROUND() 464
RTOD() 465
SET CURRENCY 493
SET DECIMALS 500
SET POINT 545
SET PRECISION 546
SET SEPARATOR 559
SIGN() 576
SIN() 577
SQRT() 590
TAN() 608

numeric data types 14
numeric fields

blank values 103
changing 440
indexing 598
length, returning 331
structure-extended tables 178
text files 144

numeric operators 20

O
object classes 5–6, 189, 775

CLASS ARRAY 679
CLASS ASSOCARRAY 681
CLASS BROWSE 682
CLASS CHECKBOX 686
CLASS COMBOBOX 690
CLASS DDELINK 693
CLASS DDETOPIC 694
CLASS EDITOR 697
CLASS ENTRYFIELD 700
CLASS FORM 704
CLASS IMAGE 708
CLASS LINE 710

CLASS LISTBOX 712
CLASS MENU 716
CLASS MENUBAR 719
CLASS OBJECT 721
CLASS OLE 721
CLASS

OLEAUTOCLIENT 725
CLASS PAINTBOX 726
CLASS POPUP 729
CLASS PUSHBUTTON 731
CLASS RADIOBUTTON 735
CLASS RECTANGLE 739
CLASS SCROLLBAR 742
CLASS SHAPE 745
CLASS SPINBOX 746
CLASS TABBOX 749
CLASS TEXT 752
creating 126, 721
creating new 6
declaring 125
derived 6

object files 139
object handles 829
object operators 22
object pointers 811
object reference variables 19

NEW operator 22
object-reference data types 19
objects 636

adding borders 770, 771
aligning 836, 954
anchoring 763
attributes See properties
browse 824
clearing from memory 921

CLEAR MEMORY
and 131

colors, setting 777
creating 5, 22, 189, 726
current 422

finding 757
default 788
definition

changing 427
clearing from memory 435

dimensions, setting 826, 969
displaying data 786, 807, 844,

953
editing tool 682
focus 811, 934

getting 757, 865
moving 492, 765, 875, 950

arrow keys and 822
restricting 961

fonts 815, 818, 819
selecting 816, 925

grouping 822
labeling 952

linking 785
moving 847
names, returning 850
overlapping, preventing 851
parent form 905
placing in forms 851, 853, 903
read-only 787
referencing 19, 830

forms 811
selecting 804, 968

See also focus, moving
sizing 847
tabbing order 639, 765, 852
text

formatting 820, 911
size, setting 817, 926

values, changing 930
viewing 967

objects commands
_app 636
CLASS...ENDCLASS 125
DEFINE 189
INSPECT() 312
LISTCOUNT() 335
LISTSELECTED() 337
PLAY SOUND 395
RELEASE OBJECT 435
RESTORE IMAGE 454
SHOW OBJECT 575

OEM conversions 69
OEM()

ANSI() and 69
OldStyle property 855
OLE data types 15
OLE documents

adding 449
defined 838

OLE fields
adding OLE documents 449
information, getting 855
writing to 449

OLE files 837
OLE links 449, 837
OLE objects 722
OLE server applications 721, 725

accessing 796, 933
OleType property 855
ON BAR 371
ON ERROR 371

LINENO() and 333
ON ESCAPE vs. 373
ON NETERROR vs. 378
PROGRAM() and 407
RETRY and 457
SET ERROR vs. 509

ON ESCAPE 372
ON ERROR vs. 371

I n d e x 1053

ON KEY vs. 375
ON EXIT BAR 374
ON EXIT MENU 374
ON EXIT PAD 374
ON EXIT POPUP 374
ON KEY 375

FKLABEL() and 261
ON ERROR vs. 371
ON ESCAPE vs. 373
SET KEY and 526

ON MENU 377
ON MOUSE 378
ON NETERROR 378
ON PAD 379
ON PAGE 379

EJECT PAGE and 234
ON POPUP 381
ON READERROR 381
ON SELECTION BAR 382
ON SELECTION FORM 383

ID property and 830
OnSelection vs. 898

ON SELECTION MENU 384
ON SELECTION PAD 384
ON SELECTION POPUP 384
OnAdvise property 856
OnAppend property 857
OnChange property 858
OnChar property 859
OnClick property 861

ShortCut and 936
OnClose property 862
one-dimensional arrays See

arrays
one-to-many relationships 560
OnExecute property 863
OnFormSize property 864
OnGotFocus property 865

OnSize and 900
OnHelp property 866

HelpFile and 827
HelpID and 828

OnInitiate 636
OnInitMenu property 867
OnKeyDown property 868
OnKeyUp property 869
OnLeftDblClick property 869
OnLeftMouseDown

property 871
OnLeftMouseUp property 873
online Help See Help system
OnLostFocus property 875
OnMiddleDblClick

property 876
OnMiddleMouseDown

property 878

OnMiddleMouseUp
property 880

OnMouseMove property 882
OnMove property 884
OnNavigate property 885
OnNewValue property 886

Advise() and 760
OnOpen property 887
OnPaint property 888
OnPeek property 889
OnPoke property 890
OnRightDblClick property 891
OnRightMouseDown

property 893
OnRightMouseUp property 895
OnSelChange property 897
OnSelection property 898

ID property and 830
OnSize property 899
OnUnadvise property 901
OPEN DATABASE 385

SET DATABASE and 495
Open File dialog box 9
OPEN FORM 386

Close and 776
Open() and 902

Open() property 901
opening

catalog files 485
databases 385
Debugger 185, 506, 562
Expression Builder 291
files 248, 269
Form Designer 161, 165, 171
forms 386, 421, 887, 901, 918
index files 524, 622
Inspector 312
memo files 621
Menu Designer 168
program files 531, 549
query files 567
Report Designer 167, 169
Table Designer 161, 362
tables 9, 478, 621

default, setting 499
file-sharing modes 513

operands (defined) 20
operating system 388

See also DOS; system
operators 19–26

assignment 20
binary 20
bitwise 100

AND 97
OR 99
shift bits 98, 99
XOR 101

comparison 511
exponentiation 20
function 23
logical 21
numeric 20
object 22
precedence 26
relational 20
string 22
unary 20

optimizing
data processing 481
memory allocation 268, 537
program execution 133, 504
search operations 260, 347,

474
source code 669

option buttons See radio buttons
options

command 4, 7, 28
compiler, setting 675

OR bitwise operator 99
ORDER BY clause 984
ORDER() 387
organizing data 304, 583
orientation, print, setting 124
OS() 388
outlining output 193
output devices 398
output See I/O; streaming output
overlapping objects,

preventing 851
overstriking text 44, 45, 818
overwriting data 440

binary fields 145
confirmation messages 558
memo fields 77, 149, 447, 448

P
PACK 389

DELETE vs. 196
RECALL and 423
SET ESCAPE and 510

PAD() 390
padding characters 119
padding strings 598
PADPROMPT() 390
_padvance 643
page orientation 124
PageCount() property 902
page-handling routines 234
_pageno 644
PageNo property 903
paging through text 929
paintbox objects

redrawing 864, 888

1054 L a n g u a g e R e f e r e n c e

paper size, setting 124
Paradox data types 980
Paradox tables 15, 144

copying 152
creating 161, 176, 322
deleting 199
deleting records 196
indexing 199, 303, 528, 541

key expressions,
finding 324

primary indexes 200, 303
secondary indexes 200,

622
linking 554
moving to specific

records 104
opening 622
querying 588
renaming 438
sorting data 582
structures

changing 362
copying 150, 155
designing 177

PARAMETERS 391
parameters 401–406

See also arguments
finding number of 394
passing 185, 401, 403

arrays as 404
DLL function

prototypes 243
fields as 404
memory variables as 403
properties as 403

returning information on 394
parent forms 905

aligning objects 954
moving objects 847
opening 887
sizing objects 847

Parent property 905
parent tables 554

moving through 560
Pascal calling conventions 242
passing arrays as

parameters 404
passing fields as parameters 404
passing memory variables as

parameters 403
passing properties as

parameters 403
Paste() property 906
pasting text 801, 906
paths, directory See directory

paths
pattern matching 332

PatternStyle property 906
pausing program execution See

suspending program execution
PAYMENT() 391
payments

future value 284
present value 415
principal balance 391

_pbpage 645
_pepage and 651

PCOL() 393
_pcolno and 647
SET PCOL and 543

_pcolno 646
_pcopies 647
PCOUNT() 394
_pdriver 648
Peek() property 907
_peject 649
Pen property 908
PenStyle property 909
PenWidth property 910
_pepage 650

_pbpage and 645
performance See optimizing;

processing speed
_pform 651
phonetic matches 202, 584
PI() 394

ACOS() and 51
Picture property 911
picture templates 43, 559, 612,

911
placing objects in forms 851, 853
PLAY SOUND 395
_plength 653

_padvance and 643
_porientation and 657

_plineno 654
_plength and 644

_ploffset 656
POINT parameter 545
pointers

alias 555
file 249, 253, 270

moving 257, 275, 277, 278,
286

function 17
object 811
record 309

linked tables 560
moving 294, 471, 481, 578

events and 885
position, returning 103,

238
work areas 476

Poke() property 912

population statistics 111
pop-up controls See list boxes
popup definition files 168
pop-up menus 729, 958

See also menus
initializing 867

POPUP() 397
PopupMenu property 913
popups, generating 168
_porientation 656
portrait orientation 124
positive values, finding 576
_ppitch 657

_pcolno and 647
_rmargin and 661
_tabs and 662

_pquality 658
#pragma 675

COVERAGE and 490
precedence 26
predefined table structures 162
prefixes, memory variables 10,

594
preprocessor

See also compiling
call chain 674
macros, nesting 669
search-and-replace

operations 669, 676
preprocessor directives 667–676

defined 5
present value, returning 415
preserving memory

variables 412, 453
primary keys See key fields
principal 391

future value 284
present value 415

Print() property 914
printer control codes 544
printer drivers 1003
Printer Setup dialog box 123
printers

escape sequences 544
horizontal printing

position 393, 543
specifying 123, 547
vertical printing position 411,

551
printing

boxes 193
conventions,

documentation 2
syntax 7

data 45, 206, 397
advancing paper 233, 234
page formatting 379

I n d e x 1055

print options 123
setting margins 534

environment
information 212, 562

files list 210
forms 914
graphics 455
headers and footers 380
labels 326
reports 233, 452
text files 614

printing commands
See also dBASE IV printing

commands
CHOOSEPRINTER() 123
DEFINE BOX 193
EJECT 233
EJECT PAGE 234
ON PAGE 379
PCOL() 393
PRINTJOB 397
PROW() 411
SET MARGIN 534
SET PCOL 543
SET PRINTER 547
SET PROW 551

printing data 206
PRINTJOB

_pcopies and 648
_peject and 649

PRINTJOB...ENDPRINTJOB 397
PRINTSTATUS() 398
PRIVATE 399

LOCAL vs. 341
procedures and 402

private variables
See also memory variables
clearing 113, 432, 453
declaring 399
initializing 399
scope, resetting 459

PROCEDURE 401
procedure calls 23, 401

call chain 218
debugging See debugging
forms, submitting 898
recursive 217
retrying 457

procedures 401–406
accessing 531
closing 135
compiling automatically 503
coverage analysis 208, 490
debugging 185, 186, 406
declaring 401
execution, stopping 458
master, defined 458

maximums and limits 1002
naming 401
referencing 17
returning to 458
running 217, 458, 549

shortcuts 526
processing data 11, 375

optimizing 481
specific records 516, 527
specified ranges 526

processing speed 504, 562
CLEAR PROGRAM and 133
FLUSH and 268
indexes 522
returning 235

program calls 218
recursive 371, 378

program commands
See also Windows

programming commands
&& 41
* 42
BUILD 110
CANCEL 113
CLEAR PROGRAM 133
COMPILE 139
CREATE COMMAND 164
DO 217
DO CASE 219
DO WHILE 220
DO...UNTIL 222
FOR...NEXT 272
FUNCTION 282
IF 299
IIF() 301
PCOUNT() 394
PROCEDURE 401
QUIT 417
RETURN 458
SCAN 470
SET DEVELOPMENT 503
SET LIBRARY 531
SET PROCEDURE 549
SLEEP 580

program execution 139, 217, 458
benchmarks 235, 472
canceling 113
conditional 219, 299, 301

OS() 388
VERS() 627

coverage analysis 675
delaying 580
interrupting 510
optimizing 133, 504
problems with 490
repeating 220
resuming 456, 458, 604
retrying 457

shortcuts 526
stopping 113, 417, 458, 603
submitting forms 383
suspending 113, 603

for specified duration 580
viewing 186

program files 139
catalogs and 163
closing 113, 549
creating 164
opening 531, 549
procedures and 404
recompiling 503

PROGRAM() 406
LINENO() and 333

programmable function
keys 1003

programs
calling See program calls
changing suspended 604
clearing from memory 113,

133
compiling See compiling
coverage analysis 208, 490
creating 506
current settings 569, 571
debugging See debugging
developing 490, 504
documenting 41, 42
editing 164
executing See program

execution
exiting 113
flow, tracking 333
interrupting SLEEP 580, 581
multiple, identifiers 674
names, returning 406
recompiling 674
running See program

execution
stepping through 186
testing 120, 288, 490
version control 670, 674
viewing 45

progress bars See record counters
PROMPT() 407
prompts 489

combo boxes 691, 787
list boxes 335, 337, 714, 782

current 784, 931
displaying 787
selecting 897

tab boxes, current 784
PROPER() 408

ASCAN() and 82
Scan() and 928

properties

1056 L a n g u a g e R e f e r e n c e

See also specific dBASE
property

changing 312
custom classes 126
defined 5, 190, 427
passing as parameters 403
viewing 312

property names 28
property sheets See Object

Inspector
PROTECT 409
protecting code 140
protecting data 409, 502
protecting files 409
prototypes

defined 244
DLL functions 242, 637

PROW() 411
_plineno and 654
SET PROW and 551

pseudo-functions See inline
functions

_pspacing 659
PUBLIC 412
public variables

See also memory variables
clearing 453
declaring 412

pushbuttons 731, 943
adding graphics 795, 798,

813, 960
assigning actions 789, 861
default 788
disabling 795
submitting forms 898

PUTFILE() 414
PV() 415

Q
.QBE files 169, 174

linking tables 554
names, returning 965
opening 567

qualified field names 10
Quattro Pro 760, 796, 831, 854,

886, 889, 907, 912, 919, 932, 958
queries

See also filters, queries, and
views

DDE applications 907
SET DESIGN and 502
SQL 977
tables, accessing 761

Query Designer 169, 174
question mark (?)

temporary files 283

wildcard character 332
directory listings 9, 204,

210
fields list 516

QUIT 417
quitting dBASE 417
quitting loops 221, 222, 273

R
radians

arccosine 51
arcsine 84
arctangent 90, 91
converting degrees 465
cosine 157
returning 226
sine 577
tangent 608

radio buttons 735
displaying 855

random access memory
(RAM) 356

random numbers 283, 417
random records 288
RANDOM() 417
RangeMax property 915

RangeMin and 916
RangeRequired and 917
Valid vs. 961

RangeMin property 916
RangeMax and 915
RangeRequired and 917
Valid vs. 961

RangeRequired property 917
ranges

key fields 527
out-of-bounds 381
spin boxes 915, 916, 917

RAT() 419
AT() and 89

READ 421
VARREAD() and 627

READKEY() 421, 1009
ReadModal() property 918

READMODAL() vs. 422
READMODAL() 421

MDI and 842
ReadModal() and 918

read-only access 516, 532
objects 787

RECALL 423
RECCOUNT() 424

COUNT vs. 160
DISKSPACE() and 205

RECNO() 425
GO vs. 295

SET RELATION and 554
recompiling programs 503, 674
Reconnect() property 919
record commands

See also field commands
APPEND 70
APPEND AUTOMEM 72
APPEND BLANK 71
APPEND FROM ARRAY 75
BLANK 102
BOF() 103
BOOKMARK() 104
BROWSE 105
CHANGE 121
CLEAR AUTOMEM 129
COPY TO ARRAY 153
COUNT 159
DELETE 196
DELETED() 200
EDIT 228
EOF() 238
FLUSH 268
GO 294
INSERT 309
INSERT AUTOMEM 310
INSERT BLANK 309
LUPDATE() 350
PACK 389
RECALL 423
RECCOUNT() 424
RECNO() 425
RECSIZE() 426
RELEASE AUTOMEM 433
REPLACE 439
REPLACE AUTOMEM 441
REPLACE FROM

ARRAY 445
SET AUTOSAVE 481
SET CARRY 484
SET DELETED 501
SKIP 578
STORE AUTOMEM 595
ZAP 630

record counters 540
comparing 122

record indicator See record
pointers

record numbers 4, 423
browse objects 938
display, suppressing 206
returning 425

record pointers 309
moving 294, 471, 481, 578

events and 885
linked tables 560

position, returning 103, 238
work areas 476

I n d e x 1057

records 1006
accessing sequentially 274
adding 70, 72, 309, 310, 484,

766, 925, 983
arrays and 75
events and 857
restricting 763

blank 71, 309
return values 93

browsing 230
changing 833

browse objects 814, 845
specific 440

combining 321
comparing multi-table 322
compressing 229
copying 73, 154, 445

automatically 143
counting 111, 204, 210, 424
deleting 196, 200, 389, 630,

757, 981
confirming 558
controlling 501
marking prevented 108,

231, 789, 936
displaying 206
editing 105, 107, 121
filling with blanks 102
fixed-length 143
locking 344, 461

information, getting 141,
338

retry messages 557
manipulating 581
moving between 109

Table Editor 232
moving through 295
processing 501, 516, 527
random 288
size, returning 426
stepping through 470
unlocking 552, 618
unmarking 423
updating 442

RECSIZE() 426
DISKSPACE() and 205
RECCOUNT() and 424

rectangle objects 740
adding borders 772

recursive calls
DO 217
ON ERROR and 371
ON NETERROR and 378

REDEFINE 427
redefining colors 194
referencing array elements 87,

948
referencing files 8

referencing objects 19, 830
forms 811

referencing procedures and
functions 17

REFRESH 428
Refresh() property 919
refreshing screens 552, 919
REINDEX 429

CONVERT and 142
INSERT and 309
REPLACE and 440
SET UNIQUE and 566

RELATION() 430
relational operators 20
relationships (tables) 560

defining 554
restoring 430

RELEASE 431
CLEAR MEMORY vs. 132
RELEASE AUTOMEM

and 433
RELEASE AUTOMEM 433

CLEAR MEMORY vs. 132
RELEASE DLL 434
RELEASE MENUS 435
RELEASE OBJECT 435
RELEASE POPUPS 436
RELEASE SCREENS 436
RELEASE WINDOWS 437
Release() property 921

Reconnect and 919, 951
releasing memory variables See

clearing memory variables
remainders (division) 360
RemoveAll() property 922
RemoveKey() property 922
RENAME 437
RENAME TABLE 438
renaming files 437
renaming tables 438
repeating character strings 450
repeating program

execution 220
REPLACE 439

BLANK vs. 103
REPLACE AUTOMEM

vs. 442
SET KEY and 528

REPLACE AUTOMEM 441
REPLACE BINARY 443
REPLACE FROM ARRAY 445
REPLACE MEMO 447

STORE MEMO and 596
REPLACE MEMO...FROM 448
REPLACE OLE 449

replacement character
strings 599

REPLICATE() 450
SPACE() vs. 586

Report Designer 167, 169
report files 170
REPORT FORM 451
reports

creating 170
displaying 452
formatting data 612
printing 233, 452
SET DESIGN and 502

Resize() property 923
Grow() vs. 824

resizing objects 847
RESOURCE() 452
RESTORE 453

SAVE and 469
RESTORE IMAGE 454
RESTORE SCREEN 456
RESTORE WINDOW 456
restoring memory variables 453
restoring table relationships 430
restricting data entry 502, 763,

875
RESUME 456

SUSPEND vs. 603
resuming program

execution 456, 458, 604
retrieving data 984
RETRY 457
RETURN 458

QUIT vs. 417
return codes (DOS) 417
return values 301

absolute 48
angles 50, 84, 157, 577

tangents 90, 91, 608
averages 92, 111
blank records 93
characters as dates 179
decimal places 464
DLLs 97, 98, 99, 100, 101
hexadecimals 320
infinity 608
integers 313, 576

expressing equality 117,
267

maximum 111
minimum 111
modulus 360
seed values and 418
square roots 590
standard deviation 111
TYPE() 616
UDFs 458

1058 L a n g u a g e R e f e r e n c e

variance 111
version numbers 627
Windows API 97, 98, 99, 100,

101
Right property 924

Bottom and 772
RIGHT() 460
RLOCK() 461

FLOCK() vs. 265
LOCK() vs. 344
SET REPROCESS and 557
UNLOCK and 618

_rmargin 661
_alignment and 635
_wrap and 663

ROLLBACK() 463
rolling back transactions 463
ROUND() 464

compared 313
rounding 464, 598
routines

See also procedures
calling 458, 866
forms 383
returning control 458

row selector See record pointers
ROW() 465
rows See records
RTOD() 465

ACOS() and 51
ASIN() and 84
ATAN() and 90
ATN2() and 91

RTRIM() 466
LTRIM() vs. 349

RUN 467
! vs. 41
DOS vs. 224

RUN() 467
DOS vs. 224
RUN vs. 467

running dBASE commands
page formatting 379
shortcuts 372, 519, 526

running out of memory 604
running programs See program

execution
running Windows

applications 467
run-time errors 371

IDAPI 182, 184
line numbers, returning 333
messages, customizing 371,

509
multiuser environments 378
server 587, 589

S
sample data 288
SAVE 469

RESTORE and 453
SAVE SCREEN 470

CLEAR SCREENS and 134
RELEASE SCREENS and 436
RESTORE SCREEN and 456

SAVE TO clause 984
SAVE WINDOW 470
SaveRecord() property 925
saving

data 268
automatically 481
multiuser

environments 138
files 255
output 480

ScaleFontName property 925
ScaleFontSize property 926
SCAN 470

EOF() and 238
Scan() property 927
scientific notation 241, 345, 440,

613
scope 11

memory variables 10, 341,
399, 412, 591, 593

resetting 459
system memory variables 5,

459
scope resolution operator 25
screens

See also displays
displays, slowing 235
refreshing 552

scroll bars 742, 929, 965
ScrollBar property 929
search operations 11

arrays and 82, 927
case-insensitive 348, 620
case-sensitive 82, 89, 420, 928

pattern matching 332
combo boxes 691
conditions 342
continuing 140
data types, finding 324
dates 475
exact matches 260, 473

failing 539
expressions, finding 346
files 501, 542

checking existence 259
key values and 304, 475, 528,

566
matches, finding 274

optimizing 260, 347, 474
phonetic matches 202, 584
sequential 260, 343, 473
substrings 89, 419

search order
files 218
preprocessor 674

search path 218, 501, 542
DLL files 243
preprocessor 674
procedures and 405

search-and-replace
operations 599

preprocessor 669, 676
string comparisons 511

searching and summarizing
AVERAGE 92
CALCULATE 111
CONTINUE 140
DESCENDING() 201
FIND 259
FOUND() 274
KEYMATCH() 324
LOCATE 342
LOOKUP() 346
SEEK 473
SEEK() 475
SET NEAR 539
SUM 602
TOTAL 611

secant 157
inverse 51

SECONDS() 472
security

ACCESS() 49
LOGOUT 346
PROTECT 409
SET ENCRYPTION 508
USER() 625

seed values 417
SEEK 473

EOF() and 238
FIND vs. 260
FOUND() and 274
INDEX and 305
LOCATE vs. 343
SET EXACT and 512
SET NEAR and 539
SOUNDEX() and 584

SEEK() 475
EOF() and 238
FOUND() and 274
INDEX and 305
SEEK vs. 474
SET NEAR and 539

SELECT 476, 984
SELECT clause 983

I n d e x 1059

SELECT() 477
SelectAll property 930
Selected() property 931

DataSource and 787
Multiple and 849

selecting
See also choosing
colors 288
files 292
fonts 294, 816, 925
objects 804, 968

See also focus, moving
prompts 714, 897

combo boxes 691
sessions 172
work areas 476, 477

semicolons (;)
command separator 519
comment symbol 42
continuation character 406

SEPARATOR parameter 559
Separator property 931
separators

command execution 519
date 535, 580

changing 496
decimal digits 545
directory paths 542
menus 931
thousands 559
time 580

sequential access (data) 274
sequential searches 260, 343, 473
server errors 587, 589
Server property 932
ServerName property 933
servers

See also DDE server
applications; OLE server
applications

connecting to 385, 725, 796,
831, 919

disconnecting 951
sessions, memory variables

and 593
SET 478
SET... commands

changing interactively 478
CREATE SESSION and 173
current setting 569
information, getting 212

SET ALTERNATE 479
? command and 45
CLOSE ALTERNATE

and 135
SET TALK and 562

SET AUTOSAVE 481

SET BELL 482
CHR() and 125

SET BLOCKSIZE 483
overriding 537
SET IBLOCK and 522
SET MBLOCK vs. 537

SET BORDER 484
SET CARRY 484

APPEND and 71
SET CATALOG 485

CATALOG() and 114
CREATE CATALOG

and 162
SET TITLE and 564

SET CENTURY 487
LUPDATE() and 350
YEAR() and 630

SET clause 985
SET COLOR OF 488
SET COLOR TO 488

DEFINE COLOR and 194
SET CONFIRM 489
SET CONSOLE 489

overriding 489
SET COVERAGE 490

#pragma vs. 675
SET CUAENTER 492
SET CURRENCY 493
SET CURSOR 494
SET DATABASE 495

BEGINTRANS() and 94
COMMIT() and 138
DATABASE() and 180
DIR and 204
DISPLAY FILES and 210
ISTABLE() and 319
ROLLBACK() and 463

SET DATE 181, 496
LUPDATE() and 350
SET MARK and 535

SET DATE TO 497
SET DBTYPE 499, 979

CREATE and 160, 161
DIR and 204
DISPLAY FILES and 210
ISTABLE() and 319

SET DECIMALS 500
ACOS() and 51
ASIN() and 84
ATAN() and 90
ATN2() and 91
AVERAGE and 93
COS() and 157
DTOR() and 226
EXP() and 241
FLOOR() and 267
FV() and 284

LOG() and 345
LOG10() and 345
PAYMENT() and 392
PI() and 395
PV() and 416
RANDOM() and 418
ROUND() and 464
RTOD() and 466
SET PRECISION vs. 546
SIGN() and 576
SIN() and 577
SQRT() and 590
TAN() and 608

SET DEFAULT 501
SET DIRECTORY and 505

SET DELETED 501
CONVERT and 142
GO and 295
KEYMATCH() and 325
PACK vs. 389
RECALL and 423
RECNO() and 425
ShowDeleted and 937

SET DELIMITERS 502
SET DESIGN 502
SET DEVELOPMENT 503
SET DEVICE 504

CLOSE ALL and 135
PCOL() and 393
PROW() and 411
SET ALTERNATE vs. 479
SET TALK and 562

SET DIRECTORY 504
CD vs. 115

SET DISPLAY 506
SET ECHO 506
SET EDITOR 506
SET ENCRYPTION 508
SET ERROR 509
SET ESCAPE 510

ON ESCAPE and 373
WAIT and 628

SET EXACT 21, 511
ASCAN() and 82
FIND and 260
LIKE() and 332
LOCATE and 343
Scan() and 928
SEEK and 474
SEEK() and 475
SET KEY and 528

SET EXCLUSIVE 513
FLOCK() vs. 265

SET FIELDS 514
CLEAR FIELDS and 131
COPY and 144
COPY STRUCTURE and 150

1060 L a n g u a g e R e f e r e n c e

FLDLIST() and 263
JOIN and 322
SET CARRY vs. 485

SET FILTER 516
GO and 295
KEYMATCH() and 325
RECNO() and 425
SET KEY and 528

SET FORMAT 518
APPEND and 71
CLEAR PROGRAM and 133
COMPILE vs. 140

SET FULLPATH 518
_dbwinhome and 640
DBF() and 183
HOME() and 297
MDX() and 353
NDX() and 368

SET FUNCTION 519
FKLABEL() and 261

SET HEADINGS 520
DISPLAY and 206

SET HELP 521
SET IBLOCK 522

SET BLOCKSIZE vs. 483
SET INDEX 524

FLUSH and 268
REINDEX and 429
REPLACE and 440
SET EXCLUSIVE and 513
SET ORDER and 541
TAG() and 605

SET INTENSITY 526
SET KEY 526

FKLABEL() and 261
KEYMATCH() and 325
ON KEY and 375

SET KEY TO 527
SET KEY and 526

SET LDCHECK 529
SET LDCONVERT 530
SET LIBRARY 531

CLEAR PROGRAM and 133
SET LOCK 532
SET MARGIN 534

_ploffset and 656
SET MARK 535

LUPDATE() and 350
SET DATE and 496

SET MBLOCK 536
SET BLOCKSIZE vs. 483

SET MEMOWIDTH 538
MLINE() and 360

SET MESSAGE 539
SET MOUSE 539
SET NEAR 539

FOUND() 275

SEEK and 474
SET RELATION and 555

SET ODOMETER 540
SET ORDER 541

ORDER() and 387
SET PATH 542

CD vs. 115
ERASE and 240
FSIZE() and 280
FTIME() and 281
ISTABLE() and 319
SET DIRECTORY vs. 505

SET PCOL 543
SET POINT 545
SET PRECISION 546
SET PRINTER 547

? command and 45
CHOOSEPRINTER()

and 124
CLOSE ALL and 135
CLOSE PRINTER and 135
PCOL() and 393
_pcolno and 647
PRINTJOB and 397
PROW() and 411

SET PROCEDURE 549
CLEAR PROGRAM and 133
COMPILE vs. 140
SET LIBRARY vs. 531

SET PROW 551
SET REFRESH 552
SET RELATION 553

CALCULATE and 112
COPY STRUCTURE and 151
FLOCK() and 266
FOUND() and 275
JOIN vs. 322
LOOKUP() and 347
RELATION() and 430
RLOCK() and 462
SET DELETED and 501
SET SKIP and 560
TARGET() and 609
UNLOCK and 618

SET REPROCESS 557
FLOCK() and 266
RLOCK() and 462

SET SAFETY 558
COPY BINARY and 146
COPY FILE and 147
COPY MEMO and 149
COPY STRUCTURE and 150
FCREATE() and 249
RENAME and 437
SAVE and 469
SET ALTERNATE and 480
STORE and 594

TYPE and 615
ZAP and 630

SET SEPARATOR 559
DIR/DIRECTORY and 559

SET SKIP 560
SET RELATION and 556

SET SPACE 561
? command and 45

SET STEP 562
SET TALK 562

AVERAGE and 93
CALCULATE and 112
CONTINUE and 141
LOCATE and 343
SET SAFETY and 558

SET TIME 563
SET TITLE 564

SET CATALOG and 486
SET TOPIC 565
SET TYPEAHEAD 566
SET UNIQUE 566

INDEX and 305
REINDEX and 429
UNIQUE() and 617

SET VIEW 567
CREATE VIEW...FROM

ENVIRONMENT and 175
SET WINDOW OF MEMO 568

overriding 568
SET() 569

SETTO() vs. 569
SET...TO commands, current

setting 571
SetFocus() property 934
setting DDE links 831, 919
SETTO() 571
shape objects 745, 935

borders 909, 910
ShapeStyle property 745, 935
shared data commands

BEGINTRANS() 94
CHANGE() 122
COMMIT() 138
CONVERT 141
FLOCK() 265
ID() 298
LKSYS() 338
LOCK() 344
NETWORK() 369
ON NETERROR 378
RLOCK() 461
ROLLBACK() 463
SET EXCLUSIVE 513
SET LOCK 532
SET REFRESH 552
SET REPROCESS 557
UNLOCK 618

I n d e x 1061

shared mode 513
SHELL() 573
shift bits operators 98, 99
Shift-key combinations

See also keyboard; keystrokes
command execution 375, 519

ShortCut property 936
SHOW MENU 574
SHOW OBJECT 575
SHOW POPUP 576
ShowDeleted property 936
ShowHeading property 937
ShowRecNo property 938
ShowSpeedTip property 939
SIGN() 576
similar spellings, finding 584
SIN() 577

ASIN() and 84
DTOR() and 226
PI() and 395

sine 577
inverse 84
reciprocal 578

single-line comments 42, 43
Size property 940
Sizeable property 940

OnSize and 900
SKIP 578

EOF() and 238
FIND vs. 260
SCAN and 471
SEEK and 473
SEEK() and 475
SET KEY and 528

SLEEP 580
interrupting 580, 581

SORT 581
ASORT() vs. 85
INDEX vs. 305

sort order 85
default 582
indexes 304

Sort() property 941
Sorted property 942
sorting array elements 84, 941
sorting data 85, 529, 581

See also indexing and sorting
combo boxes 942
indexing vs. 583
list boxes 942
maximums and limits 1003
multiple fields 582

sorting dates 227
sound applications 796
sound effects 145

playing 396

SOUNDEX() 584
DIFFERENCE() and 203

source code See code
space characters 586
SPACE() 586

REPLICATE() vs. 450
spaces

leading 331
deleting 349

trailing, deleting 466, 613
speakers 145, 482
specifying Help topics 565
specifying text in forms 944
SpeedBar buttons 943
SpeedBar property 943
SpeedTip property 944
spin boxes 746

formatting text 911
ranges, setting 915, 916, 917
text, changing 945
values, changing 930, 946

spinners See spin boxes
SpinOnly property 945
spreadsheets 302
SQL data types 980
SQL databases 15

BEGINTRANS() and 94
indexing 199, 303, 528, 541

key expressions,
finding 324

master index,
specifying 622

linking tables 554
moving to specific

records 104
statements, executing 588
structures, changing 362

SQL, local commands 977–986
SQLERROR() 587
SQLEXEC() 588
SQLMESSAGE() 589
SQRT() 590
square root, returning 590
standalone applications 573, 707
standard classes 6
standard deviation,

returning 111
statements 3, 6

See also code
grouping 17
literal 17

STATIC 591
static variables 591

See also memory variables
scope, resetting 459

statistical operations 111

status bars
displaying messages 539,

945, 962
messages 562
record counters 540

StatusMessage property 945
Step property 946
stepping through programs 186
stepping through records 470
stopping program

execution 113, 417, 458, 603
STORE 593

implicit 4
STORE AUTOMEM 595

CLEAR AUTOMEM and 129
RELEASE AUTOMEM

and 433
STORE MEMO vs. 596

STORE MEMO 596
REPLACE MEMO and 447
STORE vs. 594

storing graphics
binary fields 146
memo fields 149

storing text 145
STR() 598

YEAR() and 630
streaming output

See also I/O
writing to files 547

string comparisons 21, 350, 358
case sensitivity 351, 358
expressing equality 511
pattern matching 331
phonetic matching 202, 584

string conversions
characters to dates 179, 363
characters to numbers 625
dates to characters 216, 225,

227, 353, 363
lowercase to uppercase 304,

620
first letter 408

numbers to strings 598
OEM characters to ANSI 69
uppercase to lowercase 348

string data commands
ANSI() 69
AT() 89
CENTER() 118
DIFFERENCE() 202
ISALPHA() 314
ISLOWER() 317
ISUPPER() 320
LEFT() 328
LEN() 330
LIKE() 331

1062 L a n g u a g e R e f e r e n c e

LOWER() 348
LTRIM() 349
PROPER() 408
RAT() 419
REPLICATE() 450
RIGHT() 460
RTRIM() 466
SET EXACT 511
SOUNDEX() 584
SPACE() 586
STUFF() 599
SUBSTR() 601
TRANSFORM() 612
TRIM() 613
UPPER() 620

string operators 22
substring comparison 21

strings
assigning to keystrokes 519
duplicating 450
empty 225, 330, 511
expressions and 82, 928
leading spaces, deleting 349
literal 13
nesting 13
padding 598
processing 274
replacing specific

characters 599
returning 450, 599, 615

case 314, 317, 320
centered 118
dates 116, 137, 610

current 181
DLLs 452
formatted 612
number of characters 328,

330, 460
spaces 586
substrings 89, 419, 601

subscripts 681
trailing spaces, deleting 466,

613
writing to files 287

structure-extended tables 156
creating 178

structures See control structures;
table structures

STUFF() 599
Style property 947
subclasses 6
subroutines See functions;

procedures
Subscript() property 948

Element() vs. 803
Scan() and 928

subscripts 44, 681, 812

array See array elements
substituting memory

variables 977
SUBSTR() 601
substring operator 21
substrings

finding 89, 419
replacing characters 599
returning 601

subtracting dates 20
subtraction operator 20
SUM 602

SET HEADINGS and 520
TOTAL vs. 612

superscripts 44
SUSPEND 603

PROGRAM() and 407
suspending program

execution 113, 603
for specified duration 580

syntax 7, 27
codeblocks 18
errors 140
NEW operator 22

SysMenu property 949
system

bell, setting 482
clock 181, 610

setting 497, 563
time elapsed 235, 472

date
changing 496
returning 181

system memory variables 4, 397,
459

_alignment 635
_app 636
_box 638
_curobj 639
_dbwinhome 640
_indent 640
_lmargin 642
_padvance 643
_pageno 644
_pbpage 645
_pcolno 646
_pcopies 647
_pdriver 648
_peject 649
_pepage 650
_pform 651
_plength 653
_plineno 654
_ploffset 656
_porientation 656
_ppitch 657
_pquality 658

_pspacing 659
_rmargin 661
_tabs 662
_wrap 663

system utilities and information
CD 115
_dbwinhome 640
DIR/DIRECTORY 203
DISKSPACE() 205
DOS 223
GETENV() 290
HOME() 297
MD 352
MKDIR 359
OS() 388
RUN 467
RUN() 467
SET DEFAULT 501
SET DIRECTORY 504
SET PATH 542
VALIDDRIVE() 626

T
tab boxes

prompts
current 784

Tab key 492, 950
tabbing order 639, 765, 852

See also focus
SpeedBar buttons 943

table basics commands
ALIAS() 68
APPEND FROM 73
CATALOG() 114
CLOSE ALL 135
CLOSE DATABASES 135
CLOSE TABLES 135
COPY 143
COPY STRUCTURE 150
COPY TABLE 151
COPY TO...STRUCTURE

EXTENDED 155
CREATE 160
CREATE CATALOG 162
CREATE...FROM 175
CREATE...STRUCTURE

EXTENDED 177
DATABASE() 180
DBF() 183
DELETE TABLE 198
DISPLAY STRUCTURE 214
IMPORT 302
ISTABLE() 319
LIST STRUCTURE 334
MODIFY STRUCTURE 362
OPEN DATABASE 385
REFRESH 428

I n d e x 1063

RENAME TABLE 438
SELECT 476
SELECT() 477
SET CATALOG 485
SET DATABASE 495
SET DBTYPE 499
SET TITLE 564
SQLEXEC() 588
USE 621
WORKAREA() 629

Table Designer 161, 362
Table Editor

activating 109, 232
colors, setting 106, 229
display, compressing 229

Table Expert 161
table names

aliases 9
changing 438
default 144
returning 183, 609

table organization commands
filters See filters, queries, and

views
indexing See indexing and

sorting
linking See linking and

relating
queries See filters, queries,

and views
relations See linking and

relating
searching See searching and

summarizing
sorting See indexing and

sorting
summarizing See searching

and summarizing
views See filters, queries, and

views
table structures 1005

catalogs 163
changing 161, 362
copying 150, 155, 176
designing 177
displaying 214
modifying 978
predefined 162
storing 59, 808

tables
accessing, browse objects 760
adding fields 363, 978
adding records 71, 72, 309,

310, 484, 983
events and 857
restricting 763

aliases 760

changing 160
closing 135, 136, 346

work areas 135
controlling access 409
copying 143, 151
creating 143, 150, 155, 175,

321, 582, 979
related 151
temporary 611

default type 499
deleting 198, 982
deleting fields 978
deleting indexes 982
deleting records 981
directory listings 203
encrypting 508
existing 319
exporting with COPY 144
importing 302
indexing See indexes
information, getting 59, 212,

808
linking 553

See also links
locking 265, 532

information, getting 141,
338

retry messages 557
maximums and limits 1001
moving through 294

linked 560
opening 9, 478, 621

file-sharing modes 513
Paradox See Paradox tables
relations 560

defining 554
restoring 430

retrieving data 984
SET DESIGN and 502
size, returning 424
structure-extended 156, 178
temporary 611
unlocking 552, 618
updating data 985

_tabs 662
tabs 751, 763
TabStop property 950
TAG() 605

SET INDEX and 525
TAGCOUNT() 606
TAGNO() 607

FOR() AND 271
TAN() 608

DTOR() and 226
PI() and 395

tangent 608
inverse 90, 91
reciprocal 608

TARGET() 609
TEDIT setting 164
template characters 559, 612,

820, 911
temporary files 283, 623

SORT and 582
temporary tables 611
Terminate() property 951

Initiate() and 831
Reconnect and 919

testing case 314, 317, 320
testing conditions 272, 300
testing memory variables 272
testing programs 120, 288, 490
TEXT 610
text

See also memo fields
centering 118
copying 779, 800
deleting 785, 801
fonts 815, 818, 819
formatting 44, 820

size 817, 926
with spaces 586

losing 597
offset margins 534
overstriking 44, 45, 818
paging through 929
pasting 801, 906
SET DESIGN and 502
specifying 944
spin boxes 945
storing 145
underlining 44, 819
wordwrapping 972

Text Editor
activating 164
memo fields 538, 697

text editors, alternate 164
specifying 507, 697

text files
closing 135
copying to memo fields 77,

448
creating 506
displaying 614
editing 165, 697
printing 614
writing to 206, 614

alternate 479
environment

information 212, 562
files list 209
from memo fields 149
streaming output 547

text objects 753
aligning graphics 761

1064 L a n g u a g e R e f e r e n c e

backgrounds 906
colors, setting 778
formatting text 911

Text property 952
DisabledBitmap and 795
DownBitmap and 798
FocusBitmap and 813
UpBitmap and 960

text strings See strings
This variable 126
thousands separator 559
time 497, 610

See also clock
default settings 496, 535
elapsed 235, 472
resetting 563
separators 580

time commands See date and
time commands

time formats 563, 610
SLEEP 580
specifying 496

time stamps 497, 563
returning 281

TIME() 610
ELAPSED() and 235
SECONDS() vs. 472
SET TIME and 563

TimeOut property 953
Toggle property 953
Top property 954

Bottom and 772
Left and 836
Right and 924

Topic property 955
TopMost property 956
TOTAL 611

SUM vs. 603
TrackRight property 958
trailing spaces, deleting 466, 613
trailing zeros, deleting 464
transactions 94

committing 138
DDE applications 953

rolling back 463
TRANSFORM() 612

SET CURRENCY and 493
trigonometric functions

ACOS() 50
ASIN() 84
ATAN() 90
ATN2() 91
COS() 157
DTOR() 226
RTOD() 465
SIN() 577
TAN() 608

TRIM() 613
LTRIM() vs. 349
RTRIM() vs. 466

truncating numeric data 313
two-dimensional arrays See

arrays
TYPE 614
type conversions

ASC() 81
CHR() 124
CTOD() 179
DTOD() 225
DTOS() 227
EMPTY() 237
HTOI() 297
ITOH() 320
STR() 598
VAL() 625

TYPE() 615
typeahead buffer 324

clearing 134
information, getting 306, 369
size, setting 566

types
See also data types
field, returning 615

typographical conventions 2, 7

U
UDFs 4

accessing 531
coverage analysis 208, 490
debugging 185, 186, 406
declaring 282
executing 519
execution, stopping 458
return values 458
running 549

Unadvise() property 958
unallocated memory,

clearing 268
unary operators 20
#undef 676
undefined identifiers 669, 676
underlining text 44, 819
Undo() property 959
undoing changes, multiuser

environments 463
unique indexes 566, 617
UNIQUE() 617
UNLOCK 618
unlocking files 552, 618
unmarking records 423
unrelated tasks 386
unsupported language

elements 998

UpBitmap property 960
DownBitmap and 798

UPDATE 619, 985
UPDATED() 620
updating arrays 79
updating catalogs 486
updating data 350, 619

multiuser environments 138,
265, 461

updating data buffers 428
updating indexes 363, 429, 566

APPEND and 71
automatically 305
EDIT and 231
INSERT and 309

UPPER() 620
ASCAN() and 82
AT() and 89
INDEX and 304
LIKE() and 332
RAT() and 420
Scan() and 928

uppercase letters 304, 408, 620
converting to lowercase 348
sorting data 582
testing 320

USA date format 496
USE 9, 621

ALIAS() and 69
FLUSH and 268
REINDEX and 429
SET INDEX and 524
TAG() and 605

USE...AUTOMEM
APPEND AUTOMEM

and 72
RELEASE AUTOMEM

and 433
STORE AUTOMEM vs. 595

USE...EXCLUSIVE
CONVERT and 142
FLOCK() vs. 265
NETWORK() and 369
SET EXCLUSIVE and 513

user choices, evaluating 336, 782
user names, getting 298
USER() 625
user-defined functions See UDFs
user-defined memory

variables 131
user-defined types, binary 145
user-defined windows 6

V
VAL() 625
Valid property 961

I n d e x 1065

OnLostFocus vs. 875
ValidErrorMsg and 962
ValidRequired and 963

validating data 963
VALIDDRIVE() 626

CD and 115
SET DIRECTORY and 505

ValidErrorMsg property 962
ValidRequired property 963
Value property 964

SelectAll and 930
values 10, 12

absolute 48
arrays 93, 112
assigning to arrays 60, 64,

188, 810
averaging 92, 111
blank 102

calculations 112
comparing

logical 350, 358
multi-table 322

decimal 297
converting to

hexadecimal 320
keystrokes, returning 306,

369
duplicate

checking 325
keys 560

entry fields, changing 930
finding 347, 475
float See float values
literal 9

dates 14
memory variables 92, 112

finding 474
monetary 493
net present 111
retaining in memory 591
return See return values
returning from UDFs 458
seed, defined 417
specifying specific 301, 668
spin boxes 917, 930, 946

setting 915, 916
zero See zero values

VALUES clause 983
variable-length fields 15
variables See memory variables;

system variables
variance 111
VARREAD() 627
version control, programs 670,

674
version numbers, returning 388,

627

VERSION() 627
Vertical property 965
vertical scroll bars 965
view files 175
View property 965
viewing

See also displaying
field names in browse

objects 937
objects 967
programs 45

executing 186
property settings 312

views 791
Visible property 967
volume, measuring 395

W
WAIT 628

SLEEP vs. 580
warning beeps 125, 482
warnings 962

See also messages
When property 968

OnClick and 862
OnGotFocus vs. 865
OnSize and 900

WHERE clause 981, 984, 985
whole numbers 313, 464

See also integers
thousands separator 559

Width property 969
Alignment vs. 762
Height and 826

widths See display widths
wildcard characters

directory listings 9, 204, 210
fields list 516
pattern matching 332
temporary files 283

Window menu, adding to
forms 970

WINDOW() 629
WindowMenu property 970
windows 704

BROWSE See Table Editor
clearing 128
Command See Command

window
displaying 580
EDIT See Table Editor
modeless See non-modal

forms
setting 568
user-defined 6

Windows 95 247, 250, 269, 279,
991

file attributes 794
Windows 95 commands

FACCESSDATE() 247
FCREATEDATE() 250
FCREATETIME() 250
FNAMEMAX() 269
FSHORTNAME() 279

Windows API 298, 321
return values 97, 98, 99, 100,

101
Windows applications,

running 467
See also applications

Windows Multiple Document
Interface 841

Windows programming
commands

BITAND() 97
BITLSHIFT() 98
BITOR() 99
BITRSHIFT() 99
BITSET() 100
BITXOR() 101
EXTERN 242
HELP 296
LOAD DLL 340
RELEASE DLL 434
RESOURCE() 452
SET HELP TO 521
SET TOPIC 565
SET TOPIC TO 565

Windows Sound Recorder 396
WindowState property 971
wordwrap editor 1003
wordwrapping text 972
work areas

active indexes 606
aliases 9, 623

returning 68, 477
catalog files 162, 163, 486
closing files 135
closing tables 135
current, returning 629
data buffers 428
maximums and limits 1003
naming 69
opening files 524
opening tables 9, 623
record pointers 476
returning tables 183
search operations 274
selecting 476, 477

WORKAREA() 629
working directory, current See

directories

1066 L a n g u a g e R e f e r e n c e

working drive, current See disk
drives

working environment 175
See also views; work areas

_wrap 663
_alignment and 635
_indent and 640
_tabs and 662

Wrap property 972

X
XOR bitwise operator 101

Y
YEAR() 630

Z
ZAP 630

DELETE vs. 197
PACK vs. 389
RECALL and 423
SET SAFETY and 558

zero values
blank vs. 103
equality comparisons 267
finding 576
random numbers 418
trailing, deleting 464

