
dBL Language
Reference

VERSION 7 .5

for Windows 98, 2000,
NT ME XP Vista and
Windows7

dataBased Intelligence, Inc. ˘ Vestal, NY
http://www.dbase.com ˘ news://news.dbase.com

release ®2.62

dataBased Intelligence, Inc. or Borland International may have patents and/or pending patent applications
covering subject matter in this document. The furnishing of this document does not give you any license to
these patents.
COPYRIGHT © 2008 dataBased Intelligence, Inc. All rights reserved. All dBASE product names are
trademarks or registered trademarks of dataBased Intelligence, Inc. All Borland product names are
trademarks or registered trademarks of Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Printed in the U.S.A.

Contents

Chapter 1
Introduction 1
How this book is organized 1
Typographical conventions 2
Using the online version 2

Chapter 2
Language definition 3
Basic attributes. 3
Data types . 4

Simple data types. 4
String data 4
Numeric data 4
Logical data 5
Date data . 5
Null values 5

Database-specific data types 5
Memo data 5
Binary and OLE data 6

Programming data types 6
Operators and symbols. 6
Names . 6
Expressions . 7

Basic expressions. 7
Variables . 7

Assigning variables 7
Using variables and field names in expressions 7

Type conversion 8
Automatic type conversion 8
Explicit type conversion 8

Arrays . 8
Literal arrays 8

Complex expressions. 9
Statements . 9

Basic statements 9
Control statements 10

Functions and codeblocks 10
Function pointers 11
Codeblocks . 11

Codeblocks vs. functions 12
Objects and classes 12

Dynamic subclassing 12
Methods . 13
A simple class 13

Programs . 13
Program files . 13
Program execution 14

Functions and classes 14
Comments . 14
Preprocessor directives 15
A simple program 15

Chapter 3
Syntax conventions 16
Syntax notation . 16
Syntax example . 17
Capitalization guidelines. 17
SET command defaults 18

Chapter 4
Operators and symbols 19
Operator precedence 20
Assignment operators 20
+ (“plus”) operator 21
- (“minus”) operator 22
Numeric operators 22
Logical operators 23
Comparison operators. 24
Object operators 25

NEW operator 25
Index operator 26
Dot operator . 26
Scope resolution operator 26

Call, indirection, grouping operator 27
Alias operator . 27
Macro operator . 28
Non-operational symbols 30

String delimiters 30
Name/database delimiters 30
Comment symbols. 30
Statement separator, line continuation 31
Codeblock, literal date, literal array symbol . . . 31
Preprocessor directive symbol 32

Chapter 5
Core language 33
class Designer. 33
class Exception . 34
class Object . 35
ARGCOUNT() . 36
ARGVECTOR() 36
baseClassName . 36
beforeRelease . 37
CASE . 37
CATCH . 37
CLASS . 37
className. 38
CLEAR MEMORY 39
CLEAR PROGRAM 39
CLOSE PROCEDURE 39
DEFINE. 40
DO . 41
DO CASE . 42
DO WHILE . 43
DO...UNTIL . 44
ELSE . 45
ELSEIF . 45
EMPTY(). 46
ENUMERATE() 46
EXIT . 47
FINALLY . 48
FINDINSTANCE(). 48
FOR...ENDFOR 48
FUNCTION. 49
IF . 50
IIF() . 51
isInherited() . 52
i

LOCAL . 52
LOOP . 53
OTHERWISE . 53
PARAMETERS . 53
parent . 56
PCOUNT() . 56
PRIVATE. . 56
PROCEDURE . 57
PROCREFCOUNT 57
PUBLIC . 58
QUIT . 59
REDEFINE . 59
REFCOUNT(). . 59
RELEASE . 60
RELEASE OBJECT 60
RESTORE . 61
RETURN . 61
SAVE . 62
SET LIBRARY . 62
SET PROCEDURE 63
SET() . 64
SETTO() . 65
STATIC . 65
STORE . 66
THROW . 66
TRY . 67
TYPE() . 70
WITH . 71

Chapter 6
String objects 74
class String . 74
ASC () . 76
asc () . 76
AT () . 77
CENTER() . 77
charAt () . 78
CHR () . 78
chr () . 79
DIFFERENCE() 79
getByte () . 79
indexOf () . 80
ISALPHA () . 81
isAlpha () . 81
ISLOWER () . 81
isLower () . 82
ISUPPER () . 82
isUpper () . 82
lastIndexOf () . 82
LEFT () . 83
left () . 83
leftTrim () . 84
LEN() . 84
length . 84
LENNUM() . 84
LIKE() . 85
LOWER () . 85
LTRIM () . 86
PROPER () . 86
RAT () . 86
REPLICATE () . 87
replicate () . 88

RIGHT () . 88
right () . 88
rightTrim () . 89
RTRIM () . 89
setByte () . 89
SOUNDEX() . 90
SPACE () . 91
space () . 91
STR() . 91
STUFF () . 92
stuff () . 93
SUBSTR () . 93
substring () . 93
toLowerCase () . 94
toProperCase (). 94
toUpperCase () . 94
TRANSFORM() 94
TRIM () . 95
UPPER () . 95
VAL() . 96

Chapter 7
Math / Money 97
abs () . 97
acos () . 97
asin () . 97
atan () . 98
atan2 () . 98
ceil () . 99
cos () . 99
dtor () . 99
exp () . .100
floor () .100
FV() .100
int () .101
log () .101
log10() . .102
max () .102
min () . .102
MOD() . .103
PAYMENT() . .103
PI() . .104
PV() .104
random () . .105
round () . .105
rtod () . .106
SET CURRENCY 106
SET DECIMALS107
SET POINT . .107
SET PRECISION107
SET SEPARATOR 108
SIGN() . .109
sin () .109
sqrt () .109
tan () . 110

Chapter 8
Bitwise 111
BITAND() . 111
BITLSHIFT() . 112
BITNOT() . 113
BITOR() . 113
ii

BITRSHIFT() . 113
BITSET() . 114
BITXOR() . 114
BITZRSHIFT() 114
HTOI() . 115
ITOH() . 115

Chapter 9
Date and time objects 117
class Date . 117
class Timer . 120
CDOW(). . 121
CMONTH() . 121
CTOD() . 122
CTODT() . 122
CTOT() . 123
DATE() . 123
DATETIME() . 123
DAY() . 124
DMY() . 124
DOW() . 124
DTOC() . 125
DTODT() . 125
DTOS() . 126
DTTOC() . 126
DTTOD() . 126
DTTOT() . 127
ELAPSED() . 127
enabled . 128
getDate () . 128
getDay () . 128
getHours () . 129
getMinutes () . 129
getMonth () . 130
getSeconds () . 130
getTime () . 130
getTimezoneOffset () 131
getYear () . 131
interval . 132
MDY() . 132
MONTH() . 132
onTimer . 133
parse () . 134
SECONDS(). . 134
SET CENTURY 134
SET DATE . 135
SET DATE TO 136
SET EPOCH . 136
SET HOURS. . 136
SET MARK . 136
SET TIME . 137
setDate () . 137
setHours () . 137
setMinutes () . 138
setMonth () . 138
setSeconds () . 138
setTime () . 138
setYear () . 139
TIME() . 139
toGMTString () 139
toLocaleString () 140
toString () . 140

TTIME() .140
TTOC() . .141
UTC () .141
YEAR() .141

Chapter 10
Array objects 143
Array functions143
class Array .144
class AssocArray 146
ACOPY(). .147
add () .148
ADEL(). .148
ADIR() . .150
AELEMENT()152
AFIELDS() . .153
AFILL() .153
AGROW() .154
AINS() .156
ALEN(). .158
ARESIZE() . .158
ASCAN(). .161
ASORT() . .162
ASUBSCRIPT() 164
count () .165
DECLARE .166
delete () . .167
dimensions .169
dir () .169
dirExt () . .171
element () . .172
fields() .173
fill (). .174
firstKey .175
getFile() .175
grow () .177
insert () .179
isKey () .181
nextKey () . .181
removeAll (). .182
removeKey () .182
resize () . .183
scan (). .186
size .187
sort () . .188
subscript () .190

Chapter 11
File/OS 192
File commands and functions. 192

File utility commands192
File information functions. 192
Low-level file functions193

Dynamic External Objects - DEO 193
Source Aliasing195
class File .196
! . .198
accessDate () . .198
CD .199
close () .199
copy () .200
COPY FILE .201
iii

create () . 201
createDate (). . 202
createTime (). . 202
date () . 203
delete () . 203
DELETE FILE 204
DIR . 204
DISKSPACE() 205
DISPLAY FILES 205
DOS . 205
eof () . 206
ERASE . 206
error () . 207
exists (). . 207
FILE() . 208
flush () . 208
FNAMEMAX() 209
FUNIQUE() . 209
GETDIRECTORY() 209
GETENV() . 210
GETFILE() . 210
gets () . 212
handle . 213
HOME() . 213
LIST FILES . 214
MD . 214
MKDIR . 214
open () . 214
OS() . 215
path . 216
position. . 216
PUTFILE() . 216
puts () . 218
read () . 219
readln () . 220
RENAME . 220
rename (). . 220
RUN . 221
RUN() . 221
seek () . 222
SET DIRECTORY. 222
SET FULLPATH 223
SET PATH . 223
shortName () . 223
size () . 224
time () . 224
TYPE . 224
VALIDDRIVE(). 225
write () . 226
writeln () . 226
_dbwinhome . 226

Chapter 12
Xbase 228
Common command elements 228

Filenames. . 228
Aliases . 229
Command scope 229

ALIAS() . 230
APPEND . 230
APPEND AUTOMEM 231
APPEND FROM 232

APPEND FROM ARRAY233
APPEND MEMO 234
AVERAGE . .235
BEGINTRANS()235
BINTYPE() .236
BLANK .236
BOF(). .237
BOOKMARK() 238
BROWSE .238
CALCULATE .240
CHANGE() .241
CLEAR AUTOMEM 241
CLEAR FIELDS242
CLOSE DATABASES 242
CLOSE INDEXES 242
CLOSE TABLES242
COMMIT() . .243
CONTINUE .243
COPY .243
COPY BINARY 245
COPY MEMO .245
COPY STRUCTURE 246
COPY STRUCTURE EXTENDED 246
COPY TABLE .247
COPY TO ARRAY 248
COUNT .249
CREATE SESSION. 250
CREATE...FROM 251
CREATE...STRUCTURE EXTENDED252
DATABASE() .252
DBF() .253
DELETE .253
DELETE TABLE 254
DELETE TAG .254
DELETED() . .255
DESCENDING() 255
DISPLAY .255
EDIT .256
EOF() .257
FDECIMAL() .257
FIELD() .258
FLDCOUNT()258
FLDLIST() .259
FLENGTH() . .259
FLOCK() .260
FLUSH . .260
FOR() .261
FOUND() .261
GENERATE .262
GO .262
INDEX .263
ISBLANK() .266
ISTABLE() . .266
KEY() .266
KEYMATCH() 267
LIST. .268
LKSYS() . .268
LOCATE .269
LOCK() .270
LOOKUP() .270
LUPDATE() .271
MDX() . .271
iv

MEMLINES() 273
MLINE() . 273
NDX() . 274
OPEN DATABASE 274
ORDER() . 275
PACK . 275
RECALL . 276
RECCOUNT() 276
RECNO() . 277
RECSIZE() . 277
REFRESH . 277
REINDEX . 278
RELATION() . 278
RELEASE AUTOMEM 278
RENAME TABLE 279
REPLACE . 279
REPLACE AUTOMEM 281
REPLACE BINARY 281
REPLACE FROM ARRAY 282
REPLACE MEMO 283
REPLACE OLE 284
RLOCK() . 284
ROLLBACK() 285
SCAN . 286
SEEK . 287
SEEK() . 288
SELECT . 288
SELECT() . 289
SET AUTOSAVE 289
SET DATABASE 289
SET DBTYPE . 290
SET DELETED 290
SET EXACT . 290
SET EXCLUSIVE 291
SET FIELDS . 291
SET FILTER . 293
SET HEADINGS 294
SET INDEX . 294
SET KEY TO . 295
SET LOCK . 296
SET MEMOWIDTH. 297
SET NEAR . 297
SET ODOMETER 297
SET ORDER. . 298
SET REFRESH 298
SET RELATION. 298
SET REPROCESS 300
SET SAFETY . 300
SET SKIP . 301
SET UNIQUE . 301
SET VIEW. . 302
SKIP . 302
SORT . 302
STORE AUTOMEM 304
SUM . 304
TAG() . 305
TAGCOUNT() 305
TAGNO() . 306
TARGET() . 306
TOTAL . 307
UNIQUE() . 307
UNLOCK . 308

UPDATE .308
USE .309
WORKAREA() 311
ZAP . 311

Chapter 13
Local SQL 312
Naming conventions 312

Tables .312
Columns . .313

Operators .313
Reserved words313
Data definition .314
Data manipulation 315

Parameter substitutions in DML statements . . .315
Aggregate functions315
String functions 315
Date function 316
Updatable queries316

Restrictions on live queries 316
Restrictions on live joins 317
Constraints317

Statements supported317

Chapter 14
Data objects 325
Understanding the data object hierarchy 325

Accessing tables. 326
Putting the data objects together. 326

Using stored procedures. 326
class Database. .326
class DataModule329
class DataModRef 331
class DbError . .332
class DbException 332
class DbfField. .333
class DBFIndex333
class Field . .334
class Index .336
class LockField337
class Parameter .337
class PdxField. .338
class Query .339
class Rowset .341
class Session .345
class SqlField . .346
class StoredProc 346
class TableDef .348
class UpdateSet349
abandon () .350
abandonUpdates ()351
access (). .352
active .352
addPassword ()353
append () .353
appendUpdate () 354
applyFilter () .354
applyLocate () .355
applyUpdates (). 356
atFirst() .356
atLast() . .357
autoEdit . .357
v

autoLockChildRows 357
autoNullFields . 358
beforeGetValue. 358
beginAppend () 359
beginEdit () . 360
beginFilter () . 361
beginLocate () . 361
beginTrans () . 362
bookmark () . 362
bookmarksEqual () 363
cacheUpdates . 363
canAbandon . 364
canAppend . 364
canChange . 365
canClose . 366
canDelete . 366
canEdit . 366
canGetRow. . 367
canNavigate . 367
canOpen . 368
canSave . 368
changedTableName 368
clearFilter () . 369
clearRange () . 369
close() . 369
codePage. . 369
commit (). . 370
constrained. . 370
copy () . 370
copyTable () . 371
copyToFile (). . 371
count (). . 371
createIndex() . 372
database . 372
databaseName . 372
dataModClass . 373
decimalLength . 373
default . 373
delete () [Rowset] 373
delete () [UpdateSet]. 374
destination . 374
driverName . 374
dropIndex() . 375
dropTable () . 375
emptyTable () . 375
endOfSet . 375
exactMatch. . 376
execute(). . 376
executeSQL () . 376
fieldName . 377
fields . 377
filename . 377
filter . 377
filterOptions . 378
findKey() . 379
findKeyNearest() 379
first () . 380
flush() . 380
getSchema() . 380
goto () . 381
handle . 382
indexName [Rowset]. 382

indexName [UpdateSet]. 382
isolationLevel . .383
isRowLocked .383
isSetLocked .383
keyViolationTableName384
languageDriver384
last () .384
length .384
live .385
locateNext () .385
locateOptions . .385
lock .386
lockRetryCount .386
lockRetryInterval 387
lockRow () .387
lockSet () .388
lockType . .388
logicalSubType .389
logicalType .389
login () .390
loginDBAlias .391
loginString .391
lookupRowset . .391
lookupSQL .392
lookupTable . .393
lookupType .393
masterChild . .394
masterFields .394
masterRowset . .395
masterSource .395
maximum .396
minimum .396
modified . .396
name .397
navigateByMaster. 397
navigateMaster .399
next () . .399
notifyControls . .400
onAbandon .400
onAppend . .400
onChange . .401
onClose .401
onDelete. .402
onEdit . .402
onGotValue .402
onNavigate .402
onOpen .403
onProgress .404
onSave .404
open(). .405
packTable (). .405
params .406
picture . .406
precision .406
prepare () . .407
problemTableName407
procedureName407
readOnly .408
ref . .409
refresh () .409
refreshControls ()409
refreshRow () .409
vi

reindex (). . 410
renameTable () . 410
replaceFromFile () 411
requery () . 411
requestLive . 412
required . 412
rollback () . 412
rowCount() . 413
rowNo() . 413
rowset . 413
save () . 414
scale . 414
session . 414
setRange (). . 415
share . 415
source . 416
sql . 416
state . 417
tableDriver . 418
tableExists () . 418
tableLevel . 418
tableName . 418
tempTable . 418
type [Field] . 419
type [Parameter] 419
unidirectional . 419
unlock () . 419
unprepare() . 420
update . 420
update () . 420
updateWhere . 421
usePassThrough 421
user. . 422
user () . 422
value [Field] . 422
value [Parameter] 423
version . 424

Chapter 15
Form objects 425
Common visual component properties 425
class ActiveX . 427
class Browse . 427
class CheckBox 429
class ColumnCheckBox 430
class ColumnComboBox 431
class ColumnEditor 432
class ColumnEntryfield 434
class ColumnHeadingControl 435
class ColumnSpinBox 436
class ComboBox 437
class Container . 438
class Editor. . 439
class Entryfield 441
class Form . 442
class Grid . 445
class GridColumn 448
class Image. . 449
class Line . 450
class ListBox. . 451
class NoteBook 453
class OLE . 454

class PaintBox .455
class Progress . .457
class PushButton 457
class RadioButton. 458
class Rectangle .459
class ReportViewer460
class ScrollBar .461
class Shape .462
class Slider .463
class SpinBox . .464
class SubForm .466
class TabBox .468
class Text .469
class TextLabel .471
class TreeItem. .472
class TreeView .473
abandonRecord()475
activeControl .476
alias .476
alignHorizontal476
alignment [Image] 477
alignment [Text] 477
alignVertical .478
allowAddRows .478
allowColumnMoving 478
allowColumnSizing479
allowDrop. .479
allowEditing .479
allowEditLabels. 479
allowEditTree . .479
allowRowSizing480
alwaysDrawCheckBox 480
anchor. .480
append .481
appSpeedBar .481
autoCenter .481
autoDrop .481
autoSize . .482
autoTrim .482
background .482
before . .482
beforeCellPaint483
beforeCloseUp .484
beforeDropDown 484
beforeEditPaint484
beforeRelease . .484
beginAppend() .486
bgColor . .486
bitmapAlignment 486
bold .487
border . .487
borderStyle .487
bottom . .488
buttons .488
canChange .488
canClose .489
canEditLabel .489
canExpand .490
canNavigate. .491
canSelChange . .491
cellHeight . .492
checkBoxes .492
vii

checked. . 492
checkedImage . 493
classId . 493
clearTics() . 493
clientEdge . 493
close () . 494
colorColumnLines 494
colorHighlight . 494
colorNormal . 495
colorRowHeader 499
colorRowLines . 499
colorRowSelect 500
columnCount . 500
columnNo . 500
columns . 500
contextHelp . 501
copy() . 502
count() . 502
CUATab . 502
currentColumn . 503
curSel . 503
cut() . 503
dataLink . 504
dataSource [options] 504
dataSource [Image] 506
default . 506
description . 507
designView . 507
disabledBitmap 507
disablePopup . 507
doVerb() . 508
downBitmap . 508
drag() . 508
dragEffect . 509
dragScrollRate . 510
drawMode . 510
dropDownHeight. 511
dropDownWidth 511
editorControl. . 511
editorType . 511
elements . 512
enabled . 512
enableSelection 513
endSelection . 513
ensureVisible() 513
escExit . 513
evalTags . 513
expanded . 514
fields . 514
filename . 515
first . 515
firstChild . 515
firstColumn . 516
firstRow() . 516
firstVisibleChild 516
focus . 517
focusBitmap . 517
fontBold . 517
fontItalic . 517
fontName . 518
fontSize. . 518
fontStrikeout . 518

fontUnderline . .519
form . .519
frozenColumn . .519
function .520
getColumnObject()520
getColumnOrder() 521
getItemByPos()521
getTextExtent()521
gridLineWidth . .522
group .522
handle . .522
hasButtons .522
hasColumnHeadings 523
hasColumnLines 523
hasIndicator. .523
hasLines. .523
hasRowLines .523
hasVScrollHintText 523
headingColorNormal524
headingControl524
headingFontBold 524
headingFontItalic524
headingFontName 524
headingFontSize 525
headingFontStrikeout525
headingFontUnderline 525
height .525
helpFile . .525
helpId . .526
hScrollBar. .526
hWnd .527
hWndClient .527
hWndParent . .527
icon .528
ID . .528
image .528
imageScaleToFont 529
imageSize . .529
imgPixelHeight .529
imgPixelWidth .529
indent .530
inDesign. .530
integralHeight .530
isRecordChanged(). 530
key. .531
keyboard() .531
lastRow() . .532
left . .532
level . .532
lineNo . .533
linesAtRoot .533
linkFileName .533
loadChildren() .533
lockedColumns .533
maximize .534
maxLength .534
MDI . .534
memoEditor . .535
menuFile .535
metric . .535
minimize. .536
modify . .536
viii

mousePointer . 536
move (). . 537
moveable . 537
multiple . 538
multiSelect . 538
name . 538
nativeObject . 539
nextObj. . 539
nextSibling . 540
noOfChildren . 540
OLEType . 540
onAppend . 540
onCellPaint . 541
onChange . 541
onChangeCommitted 542
onChangeCancel. 542
onChar . 543
onCheckBoxClick 543
onClick . 544
onClose . 544
onDesignOpen . 544
onDragBegin. . 545
onDragEnter . 545
onDragLeave . 546
onDragOver . 546
onDrop . 546
onEditLabel . 548
onEditPaint . 548
onExpand . 548
onFormSize . 549
onGotFocus . 549
onHelp . 549
onKey . 549
onKeyDown . 550
onKeyUp . 551
onLastPage . 551
onLeftDblClick. 551
onLeftMouseDown 552
onLeftMouseUp 552
onLostFocus . 553
onMiddleDblClick 553
onMiddleMouseDown 553
onMiddleMouseUp. 553
onMouseMove . 553
onMouseOut . 554
onMouseOver . 555
onMove. . 555
onNavigate . 556
onOpen. . 556
onPaint. . 557
onRightDblClick 557
onRightMouseDown 557
onRightMouseUp 557
onSelChange . 557
onSelection. . 558
onSize . 558
open () . 559
pageCount() . 559
pageNo . 559
params . 560
paste() . 561
patternStyle . 561

pen .561
penStyle . .562
penWidth .562
persistent .562
phoneticLink .563
picture . .563
popupEnable .564
popupMenu .564
prefixEnable .565
prevSibling .565
print(). .565
printable .565
rangeMax . .566
rangeMin .566
rangeRequired .566
readModal() .566
reExecute() . .567
ref . .568
refresh() .568
refreshAlways . .568
release () .568
releaseAllChildren ()569
right . .569
rowHeight. .569
rowSelect .569
rowset . .570
saveRecord() . .570
scaleFontBold. .570
scaleFontName .571
scaleFontSize . .571
scroll() .571
scrollBar .572
scrollHOffset .572
scrollVOffset .572
select() .572
selectAll . .573
selected .573
selected() . .573
selectedImage . .574
serverName . .574
setAsFirstVisible() 574
setFocus () .575
setTic() .575
setTicFrequency() 575
shapeStyle . .575
showFormatBar() 576
showMemoEditor()576
showSelAlways .576
showSpeedTip . .577
showTaskBarButton577
sizeable .577
smallTitle .577
sortChildren() .578
sorted .578
speedBar .578
speedTip. .578
spinOnly. .579
startSelection .579
statusMessage. .579
step .579
streamChildren()580
style . .580
ix

sysMenu . 581
systemTheme . 581
tabStop . 581
text . 581
textLeft . 582
tics . 582
ticsPos . 583
toggle . 583
toolTips. . 583
top . 584
topMost . 584
trackSelect . 584
transparent . 584
uncheckedImage 584
undo() . 585
upBitmap . 585
useTablePopup . 585
valid . 586
validErrorMsg . 586
validRequired . 587
value . 587
vertical . 588
view . 588
visible . 588
visibleCount() . 589
visualStyle . 589
vScrollBar . 589
when . 590
width . 590
windowState . 591
wrap . 591

Chapter 16
Application shell 593
_app . 593
_app.frameWin . 594
class Menu . 595
class MenuBar . 597
class Popup . 599
class ToolBar. . 600
class ToolButton 601
addToMRU() . 602
allowDEOExeOverride 603
allowYieldOnMsg 603
attach() . 604
charSet . 604
checked. . 604
checkedBitmap . 605
CLEAR TYPEAHEAD 605
databases . 606
ddeServiceName 606
DEFINE COLOR 606
detach() . 607
detailNavigationOverride 607
editCopyMenu . 608
editCutMenu . 608
editPasteMenu . 609
editUndoMenu . 609
errorAction. . 609
errorHTMFile . 610
errorLogFile . 610
errorLogMaxSize 611

errorTrapFilter . 611
executeMessages() 611
exeName .612
GETCOLOR()612
GETFONT() . .613
hasHScrollBar() 613
hasVScrollBar() 613
INKEY() .614
KEYBOARD . .617
language .618
lDriver .618
MSGBOX() .618
NEXTKEY() .620
ON ESCAPE . .621
ON KEY .622
onInitiate .624
onInitMenu .624
onUpdate .624
separator .625
SET CONFIRM 625
SET CUAENTER 625
SET ESCAPE .626
SET FUNCTION627
SET MESSAGE 628
SET TYPEAHEAD 628
SHELL() .629
shortCut . .630
SLEEP .631
sourceAliases .632
speedBar .632
terminateTimerInterval632
trackRight . .632
uncheckedBitmap633
WAIT . .633
web .634
WindowMenu .634

Chapter 17
Report objects 636
A simple report example 637
How a report is rendered 638
class Band. .638
class Group .639
class PageTemplate640
class Report . .641
class StreamFrame 642
class StreamSource643
agAverage() .644
agCount(). .645
agMax() .645
agMin() . .646
agStdDeviation()646
agSum() .647
agVariance() .648
autoSort . .648
beginNewFrame 649
beginNewFrame () 649
context .649
canRender. .649
choosePrinter(). 650
detailBand .650
drillDown . .651
x

endPage . 651
expandable . 651
firstOnFrame . 652
firstPageTemplate 652
fixed . 652
footerBand . 652
groupBy . 653
headerBand . 654
headerEveryFrame 654
isLastPage() . 655
leading . 655
marginBottom . 655
marginHorizontal 656
marginLeft . 656
marginRight . 656
marginTop . 657
marginVertical . 657
maxRows . 657
nextPageTemplate 657
onPage . 658
onRender . 658
output . 659
outputFilename 659
preRender . 660
printer . 660
render() . 661
renderOffset . 662
reportGroup . 662
reportPage . 662
reportViewer . 663
rotate . 663
startPage . 663
streamFrame . 663
streamSource. . 663
supressIfBlank . 664
supressIfDuplicate 664
title . 664
tracking . 665
trackJustifyThreshold 665
variableHeight . 665
verticalJustifyLimit 665

Chapter 18
Text streaming 666
? . 666
?? . 669
??? . 669
CHOOSEPRINTER() 670
CLEAR . 670
CLOSE ALTERNATE 670
CLOSE PRINTER 670
EJECT . 671
EJECT PAGE . 671
ON PAGE . 672
PCOL() . 673
PRINTJOB...ENDPRINTJOB 673
PRINTSTATUS() 674
PROW() . 675
SET ALTERNATE 675
SET CONSOLE 676
SET MARGIN 676
SET PCOL . 677

SET PRINTER678
SET PROW .679
SET SPACE .679
_alignment .680
_indent .680
_lmargin. .681
_padvance. .681
_pageno . .682
_pbpage . .683
_pcolno .683
_pcopies. .684
_pdriver . .684
_pecode . .685
_peject .685
_pepage . .686
_pform .686
_plength . .687
_plineno . .688
_ploffset. .689
_porientation .689
_ppitch .690
_pquality .691
_pscode . .691
_pspacing . .691
_rmargin .692
_tabs. .693
_wrap .693

Chapter 19
Extending dBASE Plus
with DLLs, OLE and DDE 695

class DDELink .695
class DDETopic699
class OleAutoClient. 700
advise() . .702
execute() .702
extern . .703
initiate() .705
LOAD DLL .706
notify() .706
onAdvise .707
onExecute . .707
onNewValue . .708
onPeek .708
onPoke .708
onUnadvise .708
peek() . .709
PLAY SOUND709
poke(). .710
reconnect() . .710
RELEASE DLL 711
RESOURCE() . 711
RESTORE IMAGE 712
server .712
terminate() .713
timeout .713
topic . .713
unadvise() .714

Chapter 20
IDE 715
BUILD .715
xi

CLEAR ALL. . 716
CLOSE ALL . 716
CLOSE DATABASES. 717
CLOSE FORMS 717
CLOSE INDEXES. 717
CLOSE PRINTER 717
CLOSE PROCEDURE 718
CLOSE TABLES 718
COMPILE . 718
CONVERT . 719
CREATE . 720
CREATE COMMAND 721
CREATE DATAMODULE 721
CREATE FILE. 722
CREATE FORM 722
CREATE LABEL 723
CREATE MENU 723
CREATE POPUP 723
CREATE PROJECT 724
CREATE QUERY 724
CREATE REPORT 724
DEBUG . 725
DISPLAY COVERAGE 725
DISPLAY MEMORY 726
DISPLAY STATUS 727
DISPLAY STRUCTURE 728
HELP . 729
INSPECT() . 730
LIST... . 730
MODIFY... . 730
MODIFY PROJECT. 731
MODIFY STRUCTURE 731
SET . 732
SET AUTONULLFIELDS 732
SET BELL . 733
SET BLOCKSIZE 733
SET COVERAGE 734
SET DESIGN . 735
SET DEVELOPMENT 735
SET ECHO . 736
SET EDITOR . 736
SET HELP . 737
SET IBLOCK . 737
SET MBLOCK 738
SET STEP . 739
SET TALK . 739

Chapter 21
Everything Else
(Except Preprocessor) 741

ACCESS(). . 741
ANSI() . 741
CANCEL . 742
CERROR() . 742
CHARSET() . 743
DBASE_SUPPRESS_STARTUP_DIALOGS . . . 743
DBERROR() . 744
DBMESSAGE(). 744
ERROR() . 744
fileName . 745
ID() . 745
LDRIVER() . 746

LINENO() . .746
LOGOUT . .747
MEMORY() .747
MESSAGE() . .747
NETWORK() .748
OEM() . .748
ON ERROR .749
ON NETERROR749
PROGRAM() .750
PROTECT .751
RESUME . .751
RETRY . .752
SET ENCRYPTION 752
SET ERROR .753
SET LDCHECK 753
SET LDCONVERT. 754
SQLERROR() .754
SQLEXEC() .755
SQLMESSAGE() 756
SUSPEND .756
USER() . .757
VERSION() .757

Chapter 22
Preprocessor 758
#define .758
#else .761
#endif . .761
#if . .762
#ifdef . .763
#ifndef .763
#include .764
#pragma .765
#undef .766
Preprocessor Identifiers. 766

Appendix A
ASCII character chart
(code page 437) 768

Appendix B
File structures 770
Table header and records 770

Table header structure770
Table records 771

Binary, memo, and OLE fields and .DBT files771

Appendix C
Error codes 772

Default US English Error.HTM785

Appendix D
BDE Limits 786
xii

C h a p t e r

Chapter 1Introduction
The dBASE dBL Language Reference describes the classes, objects, properties, events, methods, functions, and
preprocessor directives available in the dBL™ language.

How this book is organized
• Chapter 2, “Language definition,” covers the basic concepts and components of the dBL language.

• Chapter 3, “Syntax conventions,” describes the conventions used in presenting the syntax of language
elements, and provides guidelines for interpreting the syntax notation.

• Chapter 4, “Operators and symbols,” describes the operators and symbols used in the language.

• Chapter 5, “Core language,” is a topical reference to the individual core elements of the language.

• Chapter 6, “String objects,” describes the classes, methods and properties that relate to the use of strings in
dBL code.

• Chapter 7, “Math / Money,” lists the classes, methods and properties associated with mathematical
operations, including trigonometrical and logarithmic operations.

• Chapter 9, “Date and time objects,” guides you through the elements of date and time objects in dBL code.

• Chapter 8, “Bitwise,” covers the language elements that deal with bit manipulation and base conversion for
unsigned 32-bit values.

• Chapter 10, “Array objects,” details dBASE Plus’s support for a wide variety of array types.

• Chapter 11, “File/OS,” describes the File class, which provides byte-level access to files, as well as other file
and operating system-related functions.

• Chapter 12, “Xbase,” is a reference to legacy dBASE data manipulation and utility commands and functions.
Entries include an object-oriented DML equivalent, if one exists.

• Chapter 13, “Local SQL,” summarizes the SQL commands that can be used within dBASE Plus when
working with BDE Standard dBASE Plus and Paradox tables.

• Chapter 14, “Data objects,” specifies the various elements that provide access to database tables and are used
to link tables to the user interface.

• Chapter 15, “Form objects,” covers the classes, methods, events and properties related to dBASE Plus forms.

• Chapter 16, “Application shell,” describes the supporting application elements such as menus, popups, toolbars,
standard dialogs, keyboard behavior, and the _app object.

• Chapter 17, “Report objects,” helps you understand the elements of dBASE Plus’s new reporting
capabilities.

• Chapter 18, “Text streaming,” covers the dBL language elements that control text streaming to the Command
window, a file, or a printer.
Introduction 1

• Chapter 19, “Extending dBASE Plus with DLLs, OLE and DDE,” contains the information you need to
extend dBASE Plus with OLE Automation, Dynamic Data Exchange, Dynamic Linked Libraries, and other
Windows resources and mechanisms.

• Chapter 20, “IDE,” describes language elements that you use within the dBASE Plus integrated development
environment (IDE) to programatically create, modify, compile and build applications.

• Chapter 21, “Everything Else (Except Preprocessor),” covers dBL language elements that pertain to errors,
security, and locale.

• Chapter 22, “Preprocessor,” describes the separate built-in utility that processes the text of your dBASE Plus
programs and prepares them for compilation.

Typographical conventions
The dBASE dBL Language Reference uses specific typographical conventions to help you distinguish among
the various language and syntax elements. These conventions are used to make the manual more readable.

Convention Applies to Examples
Italic/Camel cap Property names, events, methods,

arguments
length property, lockRow() method,
<start expN> argument

ALL CAPS Legacy dBASE commands and
other language elements from
previous versions. Also used in file
and directory references.

APPEND BLANK,
CUSTOMER.DBF

Roman/Initial cap/
Camel camp

Class names (including legacy
classes), table names, field names,
menu commands

class File, class OleAutoClient,
Members table, Price field

Monospaced font Code examples a = new Array(5, 6)

In addition to the typographical conventions listed in this table, Chapter 3, “Syntax conventions,” explains the
various symbols, conventions and syntactical options used in the language.

Using the online version
The complete Language Reference is also available as part of your online Help system. The online version also
includes updated entries, expanded examples and other language information not available when this printed
version went to press.

You can find language elements in the online Help system using any of the standard Help search mechanisms,
including the Help contents and index, Help buttons in dialogs, F1 on windows and controls, and through full
text searches.

In addition, you can get instant Help on any property, event or method by selecting it in the Inspector and
pressing F1. You can also highlight any language element (or any other word or phrase) in the Source editor,
Command window, and most other text entry windows, and press F1. If the highlighted word or phrase is part
of the documentation, Help appears.

For general usage information or an introduction to how the Windows Help system works , choose How to Use
Help from the dBASE Plus Help menu.

Additional dBASE Plus information, technical notes, white papers, resource lists, examples, Help updates and
corrections are posted regularly to the dataBased Intelligence, Inc. web site. For details and site addresses, see
the README file on your CD or in your main dBASE Plus directory.
2 dBL Language Reference

C h a p t e r

Chapter 2Language definition
dBL™ is a dynamic object-oriented programming language. It features dozens of built-in classes that represent
forms, visual components, reports, and databases in an advanced integrated development environment with Two-
Way Tool designers.

This chapter defines the language elements in dBL. After a brief overview of basic language attributes, which is
geared toward those with previous programming experience, the language is described from its most fundamental
elements, data types, to the most general.

Basic attributes
If you’re familiar with another programming language, knowing the following attributes will help orient you to
dBL. If dBL is your first programming language, you may not recognize some of the terminology below. Keep the
rules in mind; the terminology will be explained later in this chapter.

• dBL is not case-sensitive.

Although language elements are capitalized using certain conventions in the Language Reference, you are
not required to follow these conventions.

Rules of thumb for how things are capitalized are listed in Chapter 3, “Syntax conventions.” You are
encouraged to follow these rules when you create your own names for variables and properties.

• dBL is line-oriented.

By default, there is one line per statement, and one statement per line. You may use the semicolon (;) to
continue a statement on the next line, or to combine multiple statements on the same line.

• Most structural language elements use keyword pairs.

Most structual language elements start with a specific keyword, and end with a paired keyword. The ending
keyword is usually the word starting keyword preceded by the word END; for example IF/ENDIF, CLASS/
ENDCLASS, and TRY/ENDTRY.

• Literal strings are delimited by single quotes, double quotes, or square brackets.

• dBL is weakly typed with automatic type conversion.

You don’t have to declare a variable before you use it. You can change the type of a variable at any time.

• dBASE Plus’s object model supports dynamic subclassing.

Dynamic subclassing allows you to add new properties on-the-fly, properties that were not declared in the
class structure.
Language definition 3

Data types
Data types
Data is both the means and the end for both programming and databases. Because dBASE Plus is designed to
manipulate databases, there are three categories of data types:

• Simple data types common to both the language and databases
• Database-specific data types
• Data types used in programming

Simple data types
There are five simple data types common to both dBL and databases:

• String
• Numeric
• Logical or boolean
• Date
• Null

Keep in mind that different table formats support different data types to varying degrees.

For each of these data types, there is a way to designate a value of that type in dBL code. This is known as the literal
representation.

String data
A string is composed of zero or more characters: letters, digits, spaces, or special symbols. A string with no
characters is called an empty string or a null string (not to be confused with the null data type).

The maximum number of characters allowed in a string depends on where that string is stored. In dBL, the
maximum is approximately 1 billion characters, if you have enough virtual memory. For DBF (dBASE®) tables,
you may store 254 characters in a character field and an unlimited number in a memo field. For DB (Paradox) tables,
the limit is 255 characters in an alpha field, and no limit with memo fields. Different database servers on different
platforms each have their own limits.

Literal character strings must be enclosed in matching single or double quotation marks, or square brackets, as
shown in the following examples:

'text'
"text"
[text]

A literal null string, or empty string, is indicated by two matching quotation marks or a set of square brackets with
nothing in between.

Numeric data
dBL supports a single numeric data type. It does not distinguish between integers and non-integers, which are
also referred to as floating-point numbers. Table formats vary in the types of numbers they store. Some support
short (16-bit) and long (32-bit) integers or currency in addition to a numeric format. When these numbers are
read into dBL, they are all treated as plain numbers. When numbers are stored into tables, they are automatically
truncated to fit the table format.

In dBL, a numeric literal may contain a fractional portion, or be multiplied by a power of 10. The following are all
valid numeric literals:

• 42
• 5e7
• .315
• 19e+4
• 4.6
• 8.306E–2

As the examples show, the “E” to designate a power of 10 may be uppercase or lowercase, and you may include a
plus sign to indicate a positive power of 10 even though it is unnecessary.
4 dBL Language Reference

Data types
In addition to decimal literals, you may use octal (base 8) or hexadecimal (base 16) literal integers. If an integer
starts with a zero (0), it is assumed to be octal, with digits from 0 to 7. If it starts with 0x or 0X, it is hexadecimal,
with the digits from 0 to 9 and the letters A to F, uppercase or lowercase. For example,

Literal Base Decimal value
031 Octal 25
0x64 Hexadecimal 100

Logical data
A logical, or boolean, value can be only one of three things: true, false or null. These logical values are
expressed literally in dBL by the keywords true, false and null.

For compatibility with earlier versions of dBASE Plus, you may also express true as .T. or .Y., and false as .F. or .N.

Date data
dBASE Plus features native support for dates, including date arithmetic. To specify a literal date, enclose the
date in curly braces. The order of the day, month, and year depends on the current setting of SET DATE, which
derives its default setting from the Regional Settings in the Windows Control Panel. For example, if SET DATE
is MDY (month/day/year), then the literal date:

{10/02/97}

is October 2nd, 1997. The way dBASE Plus handles two-digit years depends on the setting of SET EPOCH. The
default is to interpret two-digit years between 50 and 99 as a year in the 1900s. Two-digit years between 00 and 49
will be interpreted as a year in the 2000s. Curly braces with nothing between them represent a special date value,
known as a blank date.

Null values
dBL supports a special value represented by the keyword null. It is its own data type, and is used to indicate a
nonexistent or undefined value. A null value is different from a blank or zero value; null is the absence of a
value.

The new DBF7 (dBASE) table type support nulls, as do most other tables, including DB (Paradox). Older DBF
formats do not. A null value in a field would indicate that no data has been entered into the field, like in a new row,
or that the field has been emptied on purpose. In certain summary operations, null fields are ignored. For example, if
you are averaging a numeric field, rows with a null value in the field are ignored. If instead a null value was
considered to be zero or some other value, it would affect the average.

null is also used in dBL to indicate an empty function pointer, a property or variable that is supposed to refer to a
function, but doesn’t contain anything.

Database-specific data types
There are a number of data types supported by different databases that do not have a direct equivalent in dBL. The
following list is not exhaustive; a new or upgraded table format may introduce new types. In any case, the type is
represented by the closest matching dBL data type, with the string type being the catchall, since all data can be
represented as a bunch of bytes.

The common database-specific types are:
• Memo
• Binary and OLE

Memo data
As far as dBASE Plus is concerned, a memo is just a character string; potentially a very long one. For tables, it
is important to distinguish between a character field, which is of fixed and usually small size, and a memo field,
which is unlimited in size. For example, a character field might contain the title of a court decision, and the
memo field contain the actual text of that court decision.
Language definition 5

Operators and symbols
Binary and OLE data
Binary and OLE data are similar to memos except they are usually meant to be modified by external programs,
not dBASE Plus. For example, a binary field might contain a graphic bitmap, which dBASE Plus can display,
but you cannot edit the bitmap with dBASE Plus.

Programming data types
There are three data types used specifically for programming:

• Object reference
• Function pointer
• Codeblock

These types are explained later, in the context in which they are used.

Operators and symbols
An operator is a symbol, set of symbols, or keyword that performs an operation on data. dBL provides many types
of operators, used throughout the language, in the following categories:

Operator category Operator symbols
Assignment = := += -= *= /= %=
Comparison = == <> # > < >= <= $
String concatenation + -
Numeric + - * / %

^ ** ++ --
Logical AND OR NOT
Object . [] NEW ::
Call, Indirection ()
Alias ->
Macro &

All operators require either one or two arguments, called operands. Those that require a single operand are called
unary operators; those requiring two operands are called binary operators. For example, the logical NOT operator
is a unary operator:

not endOfSet

The (*) is the binary operator for multiplication, for example,
59 * 436

If you see a symbol in dBL code, it’s probably an operator, but not all symbols are operators. For example, quote
marks are used to denote literal strings, but are not operators, since they do not act upon data—they are part of the
representation of a data type.

Another common symbol is the end-of-line comment symbol, a double slash. It and everything on the line after it are
ignored in dBL. For example,

calcAverages() // Call the function named calcAverages

All operators and symbols are described in full in this Chapter.

Names
Names are given to variables, fields in work areas, properties, events, methods, functions, and classes. The following
rules are the naming conventions in dBL:
6 dBL Language Reference

Expressions
• A name begins with an underscore or letter, and contains any combination of underscores, letters, spaces, or
digits.

• If the name contains spaces, it must be enclosed in colons.

• The letters may be uppercase or lowercase. dBL is not case-sensitive.

• With dBL, only the first 32 characters in a name are significant. There can be more than 32, but the extra
characters are ignored. For example, the following two names are considered to be the same:

theFirst_32_CharactersAreTheSameButTheRestArent
theFirst_32_CharactersAreTheSameAndTheRestDontMatter

The following are some examples of valid names:
x
:First name:
DbException
Form
messages1_onOpen

Expressions
An expression is anything that results in a value. Expressions are built from literal data, names, and operators.

Basic expressions
The simplest expression is a single literal data value; for example,

6 // The number 6
"eloign" // The string "eloign"

You can use operators to join multiple literals; for example,
6 + 456 * 3 // The number 1374
"sep" + "a" + "rat" + "e" // The string "separate"

To see the value of an expression in the Command window, precede the expression with the ? symbol:
? 6 + 456 * 3 // Displays 1374

Variables
Variables are named locations in memory where you store data values: strings, numbers, logical values, dates, nulls,
object references, function pointers, and codeblocks. You assign each of these values a name so that you can later
retrieve them or change them.

You can use these values to store user input, perform calculations, do comparisons, define values that are used as
parameters for other statements, and much more.

Assigning variables
Before a variable can be used, a value must be assigned to it. Use a single equal sign to assign an expression to
a variable; for example,

alpha = 6 + 456 * 3 // alpha now contains 1374

If the variable does not exist, it is created. There are special assignment operators that will assign to existing
variables only, and others that combine an arithmetic operation and an assignment.

Using variables and field names in expressions
When a variable is not the target (on the left side) of an assignment operator, its value is retrieved. For example,
type the following lines in the Command window, without the comments:

alpha = 6 // Assigns 6 to alpha
beta = alpha * 4 // Assigns values of alpha (6) times 4 to beta
Language definition 7

Expressions
? beta // Displays 24

In the same way, when the name of a field in a work area is used in an expression, its value for the current record is
retrieved. (Note that assignment operators do not work on fields in work areas; you must use the REPLACE
command.) Continuing the previous example:

use FISH // Open Fish table in current work area
? Name // Display value of Name field in first record
? :Length CM: // Display value of Length CM field in first record
 // Colons required around field name because it contains spaces
? :Length CM: * beta // Display value of field multiplied by variable

For information on referencing fields in different work areas and resolving name conflicts between variables and
field names, see “Alias operator” on page 4 - 27.

Type conversion
When combining data of two different types with operators, they must be converted to a common type. If the type
conversion does not occur automatically, it must be done explicitly.

Automatic type conversion
dBL features automatic type conversion between its simple data types. When a particular type is expected,
either as part of an operation or because a property is of a particular type, automatic conversion may occur. In
particular, both numbers and logical values are converted into strings, as shown in the following examples:

"There are " + 6 * 2 + " in a dozen" // The string "There are 12 in a dozen"
"" + 4 // The string "4"
"2 + 2 equals 5 is " + (2 + 2 == 5) // The string "2 + 2 equals 5 is false"

As shown above, to convert a number into a string, simply add the number to an empty string. Be careful, though;
the following expression doesn’t work as you might expect:

"The answer is " + 12 + 1 // The string "The answer is 121"

The number 12 is converted to a string and concatenated, then the number 1 is converted and concatenated, yielding
“121”. To concatenate the sum of 12 plus 1, use parentheses to force the addition to be performed first:

"The answer is " + (12 + 1) // The string "The answer is 13"

Explicit type conversion
In addition to automatic type conversion, there are a number of functions to convert from one type to another:

• String to number: use the VAL() function

• Number to formatted string: use the STR() function

• Date to string: use the DTOC() function

• String to date: use the CTOD() function

Arrays
dBASE supports a rich set of array classes. An array is an n-dimensional list of values stored in memory. Each entry
in the array is called an element, and each element in an array can be treated like a variable.

To create an array, you can use the object syntax detailed in Chapter 10, “Array objects,” but for a one-dimensional
array, you can also use the literal array syntax.

Literal arrays
A literal array declares and populates an array in a single expression. For example,

aTest = { 4, "yclept", true }

creates an array with three elements:

• The number 4
• The string “yclept”
8 dBL Language Reference

Statements
• The logical value true

and assigns it to the variable aTest. The three elements are enclosed in curly braces (the same curly braces used for
dates) and separated by commas.

Array elements are referenced with the index operator, the square brackets ([]). Elements are numbered from one.
For example, the third element is element number 3:

? aTest[3] // Displays true

You can assign a new value directly to an element, just like a variable:
aTest[3] = false // Element now contains false

Complex expressions
The following is an example of a complex expression that uses multiple names, operators, and literal data. It is
preceded by a question mark so that when it’s typed into the Command window, it displays the resulting value:

? {"1st","2nd","3rd","4th"}[ceiling(month(date()) / 3)] + " quarter"

Except for the question mark, the entire line is a single complex expression, made up of many smaller basic
expressions. The expression is evaluated as follows:

• A literal array of literal strings is enclosed in braces, separated by commas. The strings are enclosed in
double quotation marks.

• The resulting array is referenced using the square brackets as the index operator. Inside the square brackets is
a numeric expression.

• The numeric expression uses nested functions, which are evaluated from the inside out. First, the DATE()
function returns the current date. The MONTH() function returns the month of the current date.

• The month is divided by the number 3, then the CEILING() function rounds the number up to the nearest
integer.

• The string containing the ordinal number for the calendar quarter that corresponds to the month of the current
date is extracted from the array, which is then added to the literal string “quarter”.

The value of this complex expression is a string like “4th quarter”.

Statements
A statement is an instruction that directs dBASE Plus to perfom a single action. This action may be simple or it may
be complex, causing other actions to occur. You may type and execute individual statements in the Command
window.

Basic statements
There are four types of basic statements:

• dBL commands

These commands make up a significant portion of the entries in the Language Reference. For example:
clear // Clears the Command window
erase TEMP.TXT // Erases a file on the disk
build from FISHBASE // Creates an executable
? time() // Displays the current time

• Assignment statements

A statement may include only one assignment operator, although the value assigned may be a very complex
expression. For example:
clear = 14 // Assign 14 to variable named clear
f = new Form() // NEW and call operator on class name Form, assigned to variable f
Language definition 9

Functions and codeblocks
Note that the first example uses the word “clear”, but because the syntax of the statement a variable is created
instead of executing the command. While creating variables with the same name as a command keyword is
allowed, it is strongly discouraged.

• dBL expressions

An expression is a valid statement. If the expression evaluates to a number, it is equivalent to a GO
command. For example:
6 // Goto record 6
3 + 4 // Goto record 7
date() // Get today's date and throw it away
f.open() // Call object f's open() method

• Embedded SQL statements

dBASE Plus features native support for SQL statements. You may type an SQL statement in the Command
window, or include them in programs. If the command results in an answer table, that table is opened in the
current work area. For example:
select * from FISH // Open FISH table in current work area

Control statements
dBASE Plus supports a number of control statements that can affect the execution of other statements. Control
statements fall into the following categories:

• Conditional execution

• IF
• DO CASE

• Looping

• FOR
• DO WHILE
• DO...UNTIL

• Object manipulation

• WITH

• Exception handling

• TRY

These control statements are fully documented in Chapter 5, “Core language.”

Functions and codeblocks
In addition to the built-in functions, you may create your own. A function is a code module—a set of statements—to
which a name is assigned. The statements can be called by the function name as often as needed. Functions also
provide a mechanism whereby the function can take one or more parameters that are acted upon by the function.

A function is called by following the function name with a set of parentheses, which act as the call operator. When
discussing a function, the parentheses are included to help distinguish functions from other language elements like
variables.

For example, the function LDoM() takes a date parameter dArg and returns the last day of the month of that date.
function LDoM(dArg)
 local dNextMonth
 dNextMonth = dArg - date(dArg) + 45 // Day in the middle of next month
 return dNextMonth - day(dNextMonth)

Functions are identified by the keyword FUNCTION in a program file; they cannot be typed into the Command
window. While many functions use RETURN to return a value, they are not required to do so.
10 dBL Language Reference

Functions and codeblocks
Function pointers
The name of a function that you create is actually a pointer to that function. Applying the call operator () to a
function pointer calls that function. (Built-in functions work differently; there is no function pointer.)

Function pointers are a distinct data type, and can be assigned to other variables or passed as parameters. The
function can then be called through that function pointer variable.

Function pointers enable you to assign a particular function to a variable or property. The decision can be made up
front and changed as needed. Then that function can be called as needed, without having to decide which function to
call every time.

Codeblocks
While a function pointer points to a function defined in a program, a codeblock is compiled code that can be stored
in a variable or property. Codeblocks do not require a separate program; they actually contain code. Codeblocks are
another distinct data type that can be stored in variables or properties and passed as parameters, just like function
pointers.

Codeblocks are called with the same call operator that functions use, and may receive parameters.

There are two types of codeblocks:

• Expression codeblocks
• Statement codeblocks

Expression codeblocks return the value of a single expression. Statement codeblocks act like functions; they contain
one or more statements, and may return a value.

In terms of syntax, both kinds of codeblocks are enclosed in curly braces ({ }) and

• Cannot span multiple lines.

• Must start with either two pipe characters (||) or a semicolon (;)

• If ; it must be a statement codeblock with no parameters
• If || it may be either an expression or statement codeblock

• The || are used for parameters to the codeblock, which are placed between the two pipe characters. They may
also have nothing in-between, meaning no parameters for either an expression or statement codeblock.

• Parameters inside the ||, if any, are separated by commas.

• For an expression codeblock, the || must be followed by one and only one expression, with no ; These are
valid expression codeblocks:

{|| false}
{|| date()}
{|x| x * x}

• Otherwise, it is a statement codeblock. A statement codeblock may begin with || (again, with or without
parameters in-between).

• Each statement in a statement codeblock must be preceded by a ; symbol. These are valid statement
codeblocks (the first two are functionally the same):

{; clear}
{||; clear}
{|x|; ? x}
{|x|; clear; ? x}

• You may use a RETURN inside a statement codeblock, just like with any other function. (A RETURN is
implied with an expression codeblock.) For example,

{|n|; for i=2 to sqrt(n); if n % i == 0; return false; endif; endfor; return true}

Because codeblocks don’t rely on functions in programs, you can create them in the Command window. For
example,

square = {|x| x * x} // Expression codeblock
? square(4) // Displays 16
Language definition 11

Objects and classes
// A statement codeblock that returns true if a number is prime
p = {|n|; for i=2 to sqrt(n); if n % i == 0; return false; endif; endfor; return true}
? p(23) // Displays true
? p(25) // Displays false

As mentioned previously, curly braces are also used for literal dates and literal arrays. Compare the following:
{10} // A literal array containing one element with the value 10
{10/5} // A literal array containing one element with the value 2
{10/5/97} // A literal date
{||10/5} // An expression codeblock that returns 2

Codeblocks vs. functions
A codeblock is a convenient way to create a small anonymous function and assign it directly to a variable or
property. The code is physically close to its usage and easy to see. In contrast, a function pointer refers to a
function defined elsewhere, perhaps much later in the same program file, or in a different program file.

Functions are easier to maintain. Their syntax is not cramped like codeblocks, and it’s easier to include readable
comments in the code. In a class definition, all FUNCTION definitions are all together at the bottom. Codeblocks
are scattered throughout the constructor. If you want to run the same code from multiple locations, using function
pointers that point to the same function means that changing the code requires changing the function once; multiple
codeblocks would require changing each codeblock individually.

You can create a codeblock at runtime by constructing a string that looks like a codeblock and using the macro
operator to evaluate it.

Objects and classes
An object is a collection of properties. Each of these properties has a name. These properties may be simple data
values, such as numbers or strings, or references to code, such as function pointers and codeblocks. A property that
references code is called a method. A method that is called by dBASE Plus in response to a user action is called an
event.

Objects are used to represent abstract programming constructs, like arrays and files, and visual components, like
buttons and forms. All objects are initially based on a class, which acts as a template for the object. For example, the
PushButton class contains properties that describe the position of the button, the text that appears on the button, and
what the button should do when it is clicked. All these properties have default values. Individual button objects are
instances of the PushButton class that have different values for the properties of the button.

dBASE Plus contains many built-in, or stock, classes, which are documented throughout the Language Reference.
You can extend these stock classes or build your own from scratch with a new CLASS definition.

While the class acts as a formal definition of an object, you can always add properties as needed. This is called
dynamic subclassing.

Dynamic subclassing
To demonstrate dynamic subclassing, start with the simplest object: an instance of the Object class. The Object class
has no properties. To create an object, use the NEW operator, along with the class name and the call operator, which
would include any parameters for the class (none are used for the Object class).

obj = new Object()

This statement creates a new instance of the Object class and assigns an object reference to the variable obj. Unlike
variables that contain simple data types, which actually contain the value, an object reference variable contains only
a reference to the object, not the object itself. This also means that making a copy of the variable:

copy = obj

does not duplicate the object. Instead, you now have two variables that refer to the same object.

To assign values to properties, use the dot operator. For example,
obj.name = "triangle"
obj.sides = 3
obj.length = 4
12 dBL Language Reference

Programs
If the property does not exist, it is added; otherwise, the value of the property is simply reassigned. This behavior can
cause simple bugs in your programs. If you mistype a property name during an assignment, for example,

obj.wides = 4 // should be s, not w

a new property is created instead of changing the value of the existing property you intended. To catch these kinds of
problems, use the assignment-only := operator when you know you are not initializing a property or variable. If you
attempt to assign a value to a property or variable that does not exist, an error occurs instead of creating the property
or variable. For example:

obj.wides := 4 // Error if wides property does not already exist

Methods
A method is a function or codeblock assigned to a property. The method is then called through the object via the dot
and call operators. Continuing the example above:

obj.perimeter = {|| this.sides * this.length}
? obj.perimeter() // Displays 12

As you may have deduced by now, the object referred to by the variable obj represents a regular polygon. The
perimeter of such a polygon is the product of the length of each side and the number of sides.

The reference this is used to access these values. In the method of an object, the reference this always refers to the
object that called the method. By using this, you can write code that can be shared by different objects, and even
different classes, as long as the property names are the same.

A simple class
Here is a class representing the polygon:

class RegPolygon
 this.sides = 3 // Default number of sides
 this.length = 1 // and default length

 function perimeter()
 return this.sides * this.length
endclass

The top of the CLASS definition, up to the first FUNCTION, is called the class constructor, which is executed when
an instance of the class is created. In the constructor, the reference this refers to the object being created. The sides
and length properties are added, just as they were before.

The function in the class definition is considered a method, and the object automatically has a property with the
same name as the method that points to the method. The code is the same, but now instead of a codeblock, the
method is a function in the class. Methods have the advantage of being easier to maintain and subclass.

Programs
A program contains any combination of the following items:

• Statements to be executed
• Functions and classes that may be called
• Comments

The dBASE Plus compiler also supports a standard language preprocessor, so a program that is run by dBASE Plus
may contain preprocessor directives. These directives are not part of the dBL language; instead they form a separate
simple language that can affect the code compilation process, and are explained later.

Program files
A program file may have any file-name extension, although there are a number of defaults:

• A program containing a form is .WFM
• A program containing a report is .REP
Language definition 13

Programs
• Any other program is .PRG

These file-name extensions are assumed by the Navigator and the Source Editor.

When dBASE Plus compiles a program into byte code, it stores the byte code in a file with the same name and
extension, but it changes the last character of the extension to the letter “O”: .PRG becomes .PRO, .WFM becomes
.WFO, and .REP becomes .REO.

Program execution
Use the DO command to run a program file, or double-click the file in the Navigator. If you run the program through
the Navigator, the equivalent DO command will be streamed out to the Command window and executed. You can
also call a .PRG program by name with the call operator, the parentheses, in the Command window; for example,

sales_report()

will attempt to execute the file SALES_REPORTS.PRG. Since the operating system is not case-sensitive about file
names when searching for files, neither is dBASE Plus.

A basic program simply contains a number of dBL statements, which are executed once in the order that they appear
in the program file, from the top down. For example, the following four statements remember the current directory,
switch to another directory, execute a report, and switch back to the previous directory:

cDir = set("DIRECTORY")
cd C:\SALES
do DAILY.REP
cd &cDir

Control statements, discussed earlier, are acted upon as they occur; they may affect the execution of the code that
they contain. Some statements may be executed only when a certain condition is true and other statements may be
executed more than once in a loop. But even within these control statements, the execution is still basically the same,
from the top down.

When and if there are no more statement to execute, the program ends, and control returns to where the program was
called. For example, if the program was executed from the Command window, then control returns to the Command
window and you can do something else.

Functions and classes
Functions and classes affect execution in two ways. First, when a function or class definition is encountered in
the straight top-down execution of a program, execution in that program is terminated.

The second effect is that when a function, class constructor, or method is called, execution jumps into that function
or class, executes that code in the usual top-down fashion, then goes back to where the call was made and continues
where it left off.

Comments
Use comments to include notes to yourself or others. The contents of a comment do not follow any dBL rules;
include anything you want. Comments are stripped out at the beginning of the program compilation process.

A program will typically contain a group of comments at the beginning of the file, containing information like the
name of the program, who wrote it and when, version information, and instructions for using it. But the most
important use for comments is in the code itself, to explain the code—not obvious things like this:

n++ // Add one to the variable n

(unless you’re writing example code to explain a language) but rather things like what you’re doing in the overall
scheme of the program, or why you decided to do something in a particular way. Decisions that are obvious to you
when you write a statement will often completely bewilder you a few months later. Write comments so that they can
be read by others, and put them in as you code, since there’s rarely time to add them in after you’re done, and you
may have forgotten what you did by then anyway.
14 dBL Language Reference

Programs
Preprocessor directives
A preprocessor directive must be on its own line, and starts with the number sign (#).

Because preprocessor directives are not part of the dBL language, you cannot execute them in the Command
window.

For more information about using preprocessor directives, see Chapter 22, “Preprocessor.”

A simple program
Here is a simple program that creates an instance of the RegPolygon class, changes the length of a side, and displays
the perimeter:

// Polygon.prg
// A simple program example
//
local poly
poly = new RegPolygon()
poly.length = 4
? poly.perimeter() // Displays 12

class RegPolygon
 this.sides = 3 // Default number of sides
 this.length = 1 // and default length

 function perimeter()
 return this.sides * this.length
endclass
Language definition 15

C h a p t e r

Chapter 3Syntax conventions
The Language Reference uses specific symbols and conventions in presenting the syntax of dBL language
elements. This chapter describes the symbols used in syntax and provides information on interpreting the syntax
conventions.

Syntax notation
Statements, methods, and functions are described with syntax diagrams. These syntax diagrams consist of a
least one fixed language element—the one being documented—and may include arguments, which are enclosed
in angle brackets (< >).

The dBL language is not case-sensitive.

The following table describes the symbols used in syntax:

Symbol Description
< > Indicates an argument that you must supply
[] Indicates an optional item
| Indicates two or more mutually exclusive options
… Indicates an item that may be repeated any number of times

Arguments are often expressions of a particular type. The description of an expression argument will indicate
the type of argument expected, as listed in the following table:

Descriptor Type
expC A character expression
expN A numeric expression
expL A logical or boolean expression; that is, one that evaluates to true or false
expD A date expression
exp An expression of any type
oRef An object reference

All the arguments and optional elements are described in the syntax description.

Unlike legacy dBASE command and function keywords, which are shown in uppercase letters, property names
are capitalized differently. Property names are camel-capped, that is, they contain both uppercase and lowercase
letters if the name consists of more than one word. If the property is a method, the name is followed by
parentheses. Examples of properties include onAppend, onRightMouseDown, checked, and close().

These conventions help you differentiate the language elements; for example,

• DELETE is a command
16 dBL Language Reference

Syntax example
• delete is a property

• DELETED() is a function

• delete() is a method

These typographical conventions are for readability only. When writing code, you can use any combination of
uppercase and lowercase letters.

Note In dBL, you must refer to classes and properties by their full names. However, you can still abbreviate some
keywords in the dBL language to the first four characters, though for reasons of readability and clarity such
abbreviation is not recommended.

Syntax example
The syntax entries for the extern statement illustrate all of the syntax symbols:

extern [cdecl | pascal | stdcall] <return type> <function name>
([<parameter type> [, <parameter type> …]])
<filename>

• The square brackets enclosing the calling convention, [cdecl | pascal | stdcall], means the item is optional.
The pipe character between the three calling conventions is an "or" indicator. In other words, if you want to
use a calling convention, you must choose one of the three.

• <return type> and <function name> are both required arguments.

• The parentheses are fixed language elements, and thus also required. Inside the parentheses are optional
<parameter type> arguments, as indicated by the square brackets.

• The location of the comma inside the second square bracket indicates that the comma is needed only if
more than one <parameter type> is specified.

• The ellipsis (…) at the end means that any number of parameter type arguments may be specified (with a
comma delimiter, if more than one is used).

• <filename> is a required argument.

A simple extern statement with neither of the two optional elements would look like this:
extern CINT angelsOnAPin() ANSWER.DLL

The <return type> argument is int, and the <function name> is angelsOnAPin.

A more complicated extern statement with a calling convention and parameters would look like this:
extern PASCAL CLONG wordCount(CPTR, CLOGICAL) ANSWER.DLL

Capitalization guidelines
The following guidelines describe the standard capitalization of various language elements. Although dBL is
not a case-sensitive language, you are encouraged to follow these guidelines in your own scripts.

• Commands and built-in functions are shown in uppercase in descriptions so that they stand out, but are all
lowercase in code examples.

• Class names start with a capital letter. Multiple-word class names are joined together without any separators
between the words, and each word starts with a capital letter. For example,

Form
PageTemplate

• Property, event, and method names start with a lowercase letter. If they are multiple-word names, the words
are joined together without any separators between the words, and each word (except the first) starts with a
capital letter. They also appear italicized in the Language Reference. For example,

color
dataLink
Syntax conventions 17

Syntax example
showMemoEditor()

• Variable and function names are capitalized like property names.

• Manifest constants created with the #define preprocessor directive are all uppercase, with underscores
between words. For example,

ARRAY_DIR_NAME
NUM_REPS

• Field names and table names from DBF tables are in all uppercase in code so that they stand out.

SET command defaults
If a SET... command has a default setting, it is shown in uppercase in its syntax entry; the other options are
shown in lowercase. For example, with:
SET DELETED ON | off

SET DELETED may be either ON or OFF. It is ON by default.

In some cases, a setting may depend on the Regional Settings in the Windows Control Panel, so there is no
explicit default. For example:
SET CURRENCY left | right

Note that the SET command saves all settings to the PLUS.ini file. Those settings then become the default when
you start dBASE or issue CREATE SESSION.
18 dBL Language Reference

C h a p t e r

Chapter 4Operators and symbols
An operator is a symbol, set of symbols, or keyword that specifies an operation to be performed on data. Data is
supplied in the form of arguments, or operands.

For example, in the expression “total = 0”, the equal sign is the operator and “total” and “0” are the operands. In
this expression, the numeric operator “=” takes two operands, which makes it a binary operator. Operators that
require just one operand (such as the numeric increment operator “++”) are known as unary operators.

Operators are categorized by type. dBL’s operators are classified as follows:

Operator symbols Operator category
= := += -= *= /= %= Assignment
= == <> # > < >= <= $ Comparison
+ - String concatenation
+ - * / % ^ ** ++ -- Numeric
AND OR NOT Logical
. [] NEW :: Object
() Call, Indirection
-> Alias
& Macro

Most symbols you see in dBL code are operators, but not all. Quotation marks, for example, are used to denote
literal strings and thus are part of the representation of a data type. Since they don’t act upon data, they’re a
“non-operational” symbol.

You can use the following non-operational symbols in dBL code:

Symbols Name/meaning
; Statement separator, line continuation
// && End-of-line comment
* Full-line comment
/* */ Block comment
{} {;} {||} Literal date/literal array/codeblock markers
"" '' [] Literal strings
:: Name/database delimiters
Preprocessor directive
Operators and symbols 19

Operator precedence
Finally, the following symbols are used as dBL commands when they are used to begin a statement:

Symbols Name/meaning
? ?? Displays streaming output (page 18-666)
! Runs program or operating system command (page 11-198)

Operator precedence
dBL applies strict rules of precedence to compound expressions. In expressions that contain multiple operations,
parenthetical groupings are evaluated first, with nested groupings evaluated from the “innermost” grouping
outward. After all parenthetical groupings are evaluated, the rest of the expression is evaluated according to the
following operator precedence:

Order of precedence (highest to
lowest) Operator description or category
& Macro
(expression) Parenthetical grouping, all expressions
-> Alias
() [] . NEW :: Object operators: call; member (square bracket or

dot); new; scope resolution
+ – ++ – – Unary plus/minus, increment/decrement
^ ** Exponentiation
* / % Multiply, divide, modulus
+ – Addition, subtraction
= == <> # < <= > >= $ Comparison
NOT Logical Not
AND Logical And
OR Logical Or
= := += –= *= /= %= Assignment

In compound expressions that contain operators from the same precedence level, evaluation is conducted on a
literal left-to-right basis. For example, no operator precedence is applied in the expressions 21/7*3 and 3*21/7
(both
return 9).

Here’s another example:
4+5*(6+2*(8-4)-9)%19>=11

This example is evaluated in the following order:
8–4=4
2*4=8
6+8=14
14-9=5
5*5=25
25%19=6
4+6=10

The result is the logical value false.

Assignment operators
Assign/create operator: =

Assignment-only operator: :=

Arithmetic assignment operators: += –= *= /= %=

Syntax x = n
20 dBL Language Reference

+ (“plus”) operator
y = x
x += y

Description Assignment operators are binary operators that assign the value of the operand on the right to the operand on the
left.

The standard assignment operator is the equal sign. For example, x = 4 assigns the value 4 to the variable x, and
y = x assigns the value of the variable x (which must already have an assigned value) to the variable y. If the
variable or property on the left of the equal sign does not exist, it is created.

To prevent the creation of a variable or property if it does not exist, use the assignment-only := operator. This
operator is particularly useful when assigning values to properties. If you inadvertently misspell the name of the
property with the = operator, a new property is created; your code will run without error, but it will not behave
as you intended. By using the := operator, if the property (or variable) does not exist, an error occurs.

The arithmetic assignment operators are shortcuts to self-updating arithmetic operations. For example, the
expression x += y means that x is assigned its own value plus that of y (x = x + y). Both operands must already
have assigned values, or an error results. Thus, if the operand x has already been assigned the value 4 and y has
been assigned the value 6, the expression x += y returns 10.

+ (“plus”) operator
Addition, concatenation, unary positive operator.

Syntax n + m
date + n
"str1" + "str2"
"str" + x
x + "str"
+n

Description The “plus” operator performs a variety of additive operations:

• It adds two numeric values together.

• You may add a number to a date (or vice-versa). The result is the day that many days in the future (or the past
if the number is negative). Adding any number to a blank date always results in a blank date.

• It concatenates two strings.

• You may concatenate any other data type to a string (or vice versa). The other data type is converted into its
display representation:

• Numbers become strings with no leading spaces. Integer values eight digits or less have no decimal point
or decimal portion. Integer values larger than eight digits and non-integer values have as many decimals
places as indicated by SET DECIMALS.

• The logical values true and false become the strings “true” and “false”.

• Dates (primitive dates and Date objects) are converted using DTOC().

• Object references to arrays are converted to the word “Array”.

• References to objects of all other classes are converted to the word “Object”.

• Function pointers take on the form “Function: “ followed by the function name.
Note Adding the value null to anything (or anything to null) results in the value null.

The plus sign may also be used as a unary operator to indicate no change in sign, as opposed to the unary minus
operator, which changes sign. Of course, it is generally superfluous to indicate no change in sign; the unary plus
is rarely used.

Example These examples demonstrate addition and concatenation.
"this &" + " that" // = the string "this & that"
5 + 5 // = the number 10
"this & " + 5 + " more" // = the string "this & 5 more"
Operators and symbols 21

- (“minus”) operator
5 + "-5" // = the string "5-5"
date() + 7 // = same day next week
"" + Form::open // = the string "Function: FORM::OPEN"
? 3 + 4 + "abc" + false // = the string "7abcfalse"
? false + 3 + 4 + "abc" // Error: unexpected type

The last two examples demonstrate the standard left-to-right precedence of the + operator. In the first example,
4 is added to 3, which yields 7. The string “abc” is added, so the number is converted to its display
representation, resulting in the string “7abc”. Then the value false is added, which is also converted to string,
yielding “7abcfalse”. But in the second example, the first addition attempts to add 3 to the value false, which is
not allowed; an error occurs.

See also - (“minus”) operator

- (“minus”) operator
Subtraction, concatenation, unary negative operator.

Syntax n - m
date - n
date - date
"str1" - "str2"
"str" - x
x - "str"
-n

Description The “minus” operator is similar to the “plus” operator. It subtracts two numbers, and subtracts days from a date.
You may also subtract one date from another date; the result is the number of days between the two dates. If you
subtract a blank date from another date, the result is always zero.

The minus symbol is also used as the unary negation operator, to change the sign of a numeric value.

You may concatenate two strings, or a string with any other data type, just like with the plus operator. The
difference is that with the minus operator, the trailing blanks from the first operand are removed before the
concatenation, and placed at the end of the result. This means that the concatenation with either the plus or
minus results in a string with the same length, but with the minus operator, the trailing blanks are combined at
the end of the result.

If you want to trim field values when creating an expression index for a DBF table, use the minus operator.

Example Suppose you have a DBF table with last name and first name fields, both 16 characters wide. Compare the result
of the plus and minus operators:

"Bailey-Richter " + "Gwendolyn " ==> "Bailey-Richter Gwendolyn "

"Bailey-Richter " - "Gwendolyn " ==> "Bailey-RichterGwendolyn "

It may be more useful to include a comma between the last name and first name:
"Bailey-Richter " - "," - "Gwendolyn " ==> "Bailey-Richter,Gwendolyn "

The last name and comma are concatenated, moving the trailing blanks after the comma, then that is
concatenated to the first name, moving the trailing blanks after the last name. By separating the last name and
first name, the comma ensures that the names are sorted correctly, and it makes searching—particularly
interactive incremental searching—easier. The command to create such an index tag would look like:

index on upper(LAST_NAME - "," - FIRST_NAME) tag FULL_NAME

The minus operator results in index keys that are all the same length, something that you wouldn’t get by using
the TRIM() function.

See also + (“plus”) operator

Numeric operators
Binary numeric operators: + – * / % ^ **
22 dBL Language Reference

Logical operators
Unary numeric operators: ++ – –

Syntax n + m
n++
n – –
++n
n - m
n * m
n / m
n % m
n ^ m
n ** m
--n

Description Perform standard arithmetic operations on two operands, or increment or decrement a single operand.

All of these operators take numeric values as operands. The + (plus) and - (minus) symbols can also be used to
concatenate strings.

As binary numeric operators, the +, –, *, and / symbols perform the standard arithmetic operations addition,
subtraction, multiplication and division.

The modulus operator returns the remainder of an integral division operation on its two operands. For example,
50%8 returns 2, which is the remainder after dividing 50 by 8.

You may use either ^ or ** for exponentiation. For example, 2^5 is 32.

The increment/decrement operators ++ and – – take a variable or property and increase or decrease its value by
one. The operator may be used before the variable or property as a prefix operator, or afterward as postfix
operator. For example,

n = 5 // Start with 5
? n++ // Get value (5), then increment
? n // Now 6
? ++n // Increment first, then get value (7)
? n // Still 7

If the value is not used immediately, it doesn’t matter whether the ++/– – operator is prefix or postfix, but the
convention is postfix.

Logical operators
Binary logical operators: AND OR

Unary logical operator: NOT

Syntax a AND b
a OR b
NOT b

Description The AND and OR logical operators return a logical value (true or false) based on the result of a comparison of
two operands. In a logical AND, both expressions must be true for the result to be true. In a logical OR, if either
expression is true, or both are true, the result is true; if both expressions are false, the result is false.

When dBASE Plus evaluates an expression involving AND or OR, it uses short-circuit evaluation:

• false AND <any expL> is always false
• true OR <any expL> is always true

Because the result of the comparison is already known, there is no need to evaluate <any expL>. If <any expL>
contains a function or method call, it is not called; therefore any side effects of calling that function or method
do not occur.

The unary NOT operator returns the opposite of its operand expression. If the expression evaluates to true, then
NOT exp returns false. If the expression evaluates to false, NOT exp returns true.

You may enclose the logical operators in dots, that is: .AND., .OR., and .NOT. The dots are required in earlier
versions of dBASE.
Operators and symbols 23

Comparison operators
Comparison operators
Comparison operators compare two expressions. The comparison returns a logical true or false value.
Comparing logical expressions is allowed, but redundant; use logical operators instead.

dBASE Plus automatically converts data types in a comparison, using the following rules:

1 If the two operands are the same type, they are compared as-is.

2 If either operand is a numeric expression, the other operand is converted to a number:

• If a string contains a number only (leading spaces are OK), that number is used, otherwise it is interpreted
as an invalid number.

• The logical value true becomes one; false becomes zero.

• All other data types are invalid numbers.

All comparisons between a number and an invalid number result in false.

3 If either operand is a string, the other operand is converted to its display representation:

• Numbers become strings with no leading spaces. Integer values eight digits or less have no decimal point
or decimal portion. Integer values larger than eight digits and non-integer values have as many decimals
places as indicated by SET DECIMALS.

• The logical values true and false become the strings “true” and “false”.

• Dates (primitive dates and Date objects) are converted using DTOC().

• Object references to arrays are converted to the word “Array”.

• References to objects of all other classes are converted to the word “Object”.

• Function pointers take on the form “Function: “ followed by the function name.

4 All other comparisons between mismatched data types return false.

These are the comparison operators:

Operator Description
== Exactly equal to
= Equal to or Begins with

<> or # Not equal to or Doesn’t begin with
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
$ Contained in

When comparing dates, a blank date comes after (is greater than) a non-blank date.

When comparing Date objects, the date/time they represent are compared; they may be earlier, later, or exactly
the same. For all other objects, only the equality tests makes sense. It tests whether two object references refer to
the same object.

String equality comparisons are case-sensitive and follow the rules of SET EXACT. The == operator always
compares two strings as if SET EXACT is ON. The other equality operators (=, <>, #) use the current setting of
SET EXACT. When SET EXACT is ON, trailing blanks in either string are ignored in the comparison. When
SET EXACT is OFF (the default), the = operator act like a “begins with” operator: the string on the left must
begin with the string on the right. The <> and # operators act like “does not begin with” operators. Note that
there is no single genuinely exactly equal comparison for strings in dBL.

It is recommended that you leave SET EXACT OFF so that you have the flexibility of doing an “exact”
comparison or a “begins with” comparison as needed. By definition, all strings “begin with” an empty string, so
when checking if a string is empty, always put the empty string on the left of the equality operator.
24 dBL Language Reference

Object operators
Warning For compatibility with earlier versions of dBASE, if the string on the right of the = operator is (or begins with)
CHR(0) and SET EXACT is OFF, then the comparison always returns true. When checking for CHR(0), always
use the == operator.

The $ operator determines if one string is contained in, or is a substring of, another string. By definition, an
empty string is not contained in another string.

Example To see these examples in action, type them into the Command window.
// The usual numeric and string comparisons
? 3 < 4 // true
? "cat" > "dog" // false

// String comparisons demonstrate SET EXACT rules
set exact off
? "abc" == "abc" // Obviously true
? "abc" == "abc " // Trailing space in second operand is ignored: true
? "abc" = "ab" // 1st operand begins with the characters in the 2nd: true
? "abc" = "" // true by definition
? "" = "abc" // false
? "abc" # "" // false
? "" # "abc" // true

// Logical comparisons are redundant
valid = true
? valid == true // true, but so is
? valid // this
? valid == false // false, but it's simpler to
? not valid // use the logical NOT operator

// Date objects compare the date/time they represent
x = new Date()
y = new Date() // Should be a few seconds later
? x < y // true, date/time in x is before y
x = new Date("25 Sep 1996")
y = new Date("25 Sep 1996")
? x == y // true: objects are different, but date/time is the same

// Other objects test for equality only
a = new Form()
b = new Form()
c = b
? a == b // false, different objects
? b == c // true, references to same object

Object operators
Object operators are used to create and reference objects, properties, and methods. Here are the Object
operators:

Operator Description
NEW Creates a new instance of an object
[] Index operator, which accesses the contents of an object through a numeric or

string value
. (period) Dot operator, which accesses the contents of an object through an identifier

name
:: Scope resolution operator, to reference a method in a class or call a method from

a class.

NEW operator
The NEW operator creates an object or instance of a specified class.

The following is the syntax for the NEW operator:
Operators and symbols 25

Object operators
[<object reference> =] new <class name>([<parameters>])

The <object reference> is a variable or property in which you want to store a reference to the newly created
object.

Note that the reference is optional syntactically; you may create an object without storing a reference to it. For
most classes, this results in the object being destroyed after the statement that created it is finished, since there
are no references to it.

The following example shows how to use the NEW operator to create a Form object from the Form class. A
reference to the object is assigned to the variable customerForm:

customerForm = new Form()

This example creates and immediately uses a Date object. The object is discarded after the statement is
complete:

? new Date().toGMTString()

Index operator
The index operator, [], accesses an object’s properties or methods through a value, which is either a number or
a character string. The following shows the syntax for using the index operator (often called the array index
operator):

<object reference>[<exp>]

You typically use the index operator to reference elements of array objects, as shown in the following example:
aScores = new Array(20) // Create a new array object with 20 elements
aScores[1] = 10 // Change the value of the 1st element to 10
? aScores[1] // Displays 10 in results pane of Command window

Dot operator
The dot operator, (“.”), accesses an object’s properties, events, or methods through a name. The following shows
the syntax for using the dot operator:

<object reference>[.<object reference> ...].<property name>

Objects may be nested: the property of an object may contain a reference to another object, and so on.
Therefore, a single property reference may include many dots.

The following statements demonstrate how you use the dot operator to assign values:
custForm = new Form() // Create a new form object
custForm.title = "Customers" // Set the title property of custForm
custForm.height = 14 // Set the height property of custForm

If an object contains another object, you can access the child object’s properties by building a path of object
references leading to the property, as the following statements illustrate:

custForm.addButton = new Button(custForm) // Create a button in the custForm form
custForm.addButton.text = "Add" // Set the text property of addButton

Scope resolution operator
The scope resolution operator (::, two colons, no space between them) lets you reference methods directly from
a class or call a method from a class.

The scope resolution operator uses the following syntax:
<class name>|class|super::<method name>

The operator must be preceded by either an explicit class name, the keyword CLASS or the keyword SUPER.
CLASS and SUPER may be used only inside a class definition. CLASS refers to the class being defined and
SUPER refers to the base class of the current class, if any.

<method name> is the method to be referenced or called.
26 dBL Language Reference

Call, indirection, grouping operator
Scope resolution searches for the named method, starting at the specified class and back through the class’s
ancestry. Because SUPER starts searching in a class’s base class, it is used primarily when overriding methods.

Call, indirection, grouping operator
Parentheses are used to call functions and methods, and to execute codeblocks. For example:

MyClass::MyMethod

is a function pointer to a method in the class, while
MyClass::MyMethod()

actually calls that method. Any parameters to include in the call are placed inside the parentheses. Multiple
parameters are separated by commas. Here is an example using a codeblock:

rootn = {|x,n| x^(1/n)} // Create expression codeblock with two parameters
? rootn(27, 3) // Displays cube root of 27: 3

Some commands expect the names of files, indexes, aliases, and so forth to specified directly in command—
”bare”—not in a character expression. Therefore, you cannot use a variable directly. For example, the ERASE
command erases a file from disk. The following code will not work:

cFile = getfile("*.*", "Erase file") // Store filename to variable
erase cFile // Tries to erase file named "cFile"

because the ERASE command tries to erase the file with the name of the variable, not the contents of the
variable. To use the variable name in the file, enclose the variable in parentheses. In these commands, the
parentheses evaluate the indirect file reference, and when used in this way, they are referred to as indirection
operators:

erase (cFile) // Spaces inside parentheses optional

Macro substitution also works in these cases, but macro substitution can be ambiguous. Indirection operators are
recommended in commands where they are allowed.

Finally, parentheses are also used for grouping in expressions to override or emphasize operator precedence.
Emphasizing precedence simply means making the code more readable by explicitly grouping expressions in
the normal order they are evaluated, so that you don’t need to remember all the precedence rules to understand
an expression. Overriding precedence uses the parentheses to change the order of evaluation. For example:

? 3 + 4 * 5 // Multiplication first, result is 23
? (3 + 4) * 5 // Do addition first, result is 35

See also Macro operator

Alias operator
Designates a field name in a specific work area, or a private or public variable.

Syntax alias->name

Description When using a name that may be a variable or the name of a field in the current work area, the name is matched in the
following order:

1 Local or static variable
2 Field name
3 Private or public variable

To resolve the ambiguity, or to refer to a field in another work area, use the alias operator. Aliases are not case-
sensitive.

Private and public variables are referenced by the alias M. Use the alias of the specific work area to identify a
particular field. Local and static variables cannot use the alias operator; you must use the variable alone.

Example The following program opens two tables that both have a field named City and creates both private and local
variables named City:

use CUSTOMER // Open in current work area
Operators and symbols 27

Macro operator
use CUSTOMER // Open in current work area
use VENDOR2 in select() alias VENDOR // Open in another work area with alias
private city // Names are not case-sensitive
city = "Peoria" // Alias not required because assignment does not assign to fields
? "No alias:", city // Field from current table
exerciseAliasOp()
use in VENDOR // Close tables
use

function exerciseAliasOp()
 local city
 city = "Louisville"
 ? "Local defined, no alias:", city // Local variable
 ? "M alias:", m->city // Private variable hidden by local
 ? "Customer:", customer->city // Field from table
 ? "Vendor:", vendor->city // Field from other table

Macro operator
Substitutes the contents of a private or public string variable during the evaluation of a statement.

Syntax &<character variable>[.]

Description Macro substitution with the & operator allows you to change the actual text of a program statement at runtime.
This capabilities allows you to overcome certain syntactic and architectural limitations in dBASE Plus.

The mechanics of macro substitution are as follows. When compiling a statement, in a program or for
immediate execution in the Command window, dBASE Plus looks for any single & symbols in the statement.
(Double ampersands [&&] denote end-of-line comments.) If something that looks like it could be a variable
name—that is, a word made up of letters, numbers, and underscores—immediately follows the & symbol, its
location is noted during compilation. If a period (.) happens to immediately follow the word, that period is
considered to be a macro terminator.

When the statement is executed, dBASE Plus searches for a private or public variable with that name. If that
variable exists, and that variable is a character variable, the contents of that variable are substituted in the
statement in the place of the & symbol, the variable name, and the terminating period, if any. This is referred to
as macro substitution. If no private or public variable with that name can be found, or if the variable is not a
character variable, nothing happens; the statement is executed as-is.

Note The & character is also used as the pick character in the text property of some form and menu components. For
example, if you use the string “&Close” to designate the letter C as the pick character, if you happen to have a
private or public variable named close, it will be substituted.

If macro substitution occurs, one of two things can happen:

• Some commands expect certain kinds macro substitution. If the substitution is one of those cases, the
command can immediately use the substituted value. For example, SET commands which expect either ON
or OFF as the final word in the statement are optimized in this way.

• If the substituted value is not an expected case, or if the command or statement does not expect macro
substitution, the entire statement in its new form is recompiled on-the-fly and executed.

Recompiling the statement takes a small amount of time that is negligible unless you are constantly recompiling
in a loop. Also, local and static variables may be out-of-scope when a recompiled statement is executed.

You cannot use the & operator immediately after a dot operator. You also cannot have the & and dot operators
on the left side of an assignment operator; that is, you cannot assign to a property that is partially resolved with
macro substitution. If you do either of these, a compile-time error occurs. You can assign to a property that is
completely resolved with macro substitution, or use the STORE command instead of an assignment operator.

The macro terminator (a period, the same character as the dot operator) is required if you want to abut the macro
variable name with a letter, number, underscore or dot operator. Compare the following examples:

&ftext // The macro variable ftext
&f.text // The macro variable f followed by the word text
&f..text // The macro variable f followed by the dot operator and the word text

Example The first example stores the value of a setting at the beginning of a function, and restores it at the end.
28 dBL Language Reference

Macro operator
function findMatch(xArg)
 local lRet
 private cExact // Can't be local for macro substitution
 cExact = set("EXACT") // Store "ON" or "OFF" to character variable
 set exact on
 lRet = seek(xArg) // Does exact match exist?
 set exact &cExact // Either "set exact ON" or "set exact OFF"
 return lRet

The second example converts the value of a control in a form into a literal value to be used in a filter. The filter
cannot refer to the control directly, because the value of the form reference varies depending on what form has
focus at any given moment.

function setFilter_onClick()
 private cFltr
 cFltr = form.cityCombobox.value // Store string in private variable
 set filter to CITY == "&cFltr"

Note the use of macro substitution inside a quoted string. For example, if the value of the combobox is “Dover”,
then the variable is assigned the value “Dover”. The result of the macro substitution would then be the
statement:

set filter to CITY == "Dover"

The third example uses macro substitution to refer to a control by name through a variable.
local f
private c, g
f = new Form()
g = f // g and f both point to same form
f.button1 = new PushButton(f)
c = "1"
? g.button&c..className // Displays "PUSHBUTTON"
? f.button&c..className // Error: Variable undefined: F

This creates a form with a single button. Two variables refer to this form, one private variable, and one local
variable. In the first macro substitution statement, the value of the variable c is substituted. There are two
periods following the variable. The first is to terminate the macro, and the second is the actual dot operator. This
results in:

? g.button1.className

The second macro substitution works the same, but the statement fails because the local variable f is not in scope
when the statement is executed. However, this approach is actually unnecessary because you can refer to
controls by name with a variable through the form’s elements array:

? f.elements["button" + c].className

Without macro substitution, you avoid potential problems with local variables.

Finally, continuing the previous example, compare these statements that attempt to assign to a property using
macro substitution:

local cText
cText = "OK"
g.button&c..text := cText // Has both & and . to left of assignment; won't compile
private cVar
cVar = "g.button" + c + ".text"
&cVar := cText // Compiles, but fails at runtime; local variable out-of-scope
private cStmt
cStmt = cVar + " := cText" // Try macro substituting entire statement
&cStmt // Fails; local variable out-of-scope
cStmt = cVar + [:= "] + cText + ["] // Build entire statement with no locals
&cStmt // This works
g.elements["button" + c].text = cText // But this is still easier to use
Operators and symbols 29

Non-operational symbols
Non-operational symbols
Though they don’t act upon data or hold values in themselves, non-operational symbols have their own purpose
in dBL code and in the interpretation of programs. The following is a summary of these symbols and their
usage.

String delimiters
Enclose literal strings in either:

• A set of single quote marks,
• A set of double quote marks, or
• A set of square brackets

The following example simply assigns the string “literal text” to the variable xString:
xString = "literal text"

To use a string delimiter in a literal string, use a different set of delimiters to delimit the string. For example:
? [There are three string delimiters: the ', the ",] + " and the []"

Note that the literal string had to be broken up into two separate strings, because all three kinds of delimiters
were used.

Name/database delimiters
If the name of a variable or a field in a work area contains a space, you may enclose the name in colons, for
example:

local :a var:
:a var: = 4
? :a var: // Displays 4

Creating variables with spaces in them is strongly discouraged, but for some table types, it is not unlikely to get
field names with spaces. If you create automem variables for that table, those variables will also have spaces.

However, if you’re using the data objects instead of the Xbase DML, the fields are contained in a fields array
and are referenced by name. The field name is a character expression, so you don’t have to do anything different
if the field name contains a space. The colons are not used.

You may also use colons when designating a table in a database. The name of the database is enclosed in colons
before the name of the table, in the form:

:database:table

For example:
use :IBLOCAL:EMPLOYEE // IBLOCAL is sample Interbase database

Comment symbols
Two forward slashes (//, no space between them) indicate that all text following the slashes (until the next
carriage return) is a comment. Comments let you provide reference information and notes describing your code:

x = 4 * y // multiply the value of y by four and assign the result to variable x

Two ampersands (&&) can also be used for an end-of-line comment, but they are usually seen in older code.

If an asterisk (*) is the first character in a statement, the entire line is considered a comment.

A pair of single forward slashes with “inside” asterisks (/* */) encloses a block comment that can be used for a
multi-line comment block:

/* this is the first line of a comment block
this is more of the comment
this is the last line of the comment block */
30 dBL Language Reference

Non-operational symbols
You can also use the pair for a comment in the middle of a statement:
x = 1000000 /* a million! */ * y

Comment blocks cannot be nested. This example shows improper usage:
/* this is the first line of a comment block
this is more of the the same /* this nested comment will cause problems*/
this is the last line of the comment block */

After the opening block marker, a dBL comment ends at the next closing block marker it finds, which means
that only the section of the comment from “this is the first line” to the word “problems” will be interpreted as a
comment. The unenclosed remainder of the block will generate an error.

Statement separator, line continuation
There is normally one statement per line in a program file. Use the semicolon to either:

• Combine multiple statements on a single line, or

• Create a multi-line statement

For example, a DO...UNTIL loop usually takes more than two lines: one for the DO, one for the UNTIL
condition, and one or more lines in the loop body. But suppose all you want to do is loop until the condition is
true; you can combine them using the semicolon as the statement separator:

do ; until rlock() // Wait for record lock

Long statements are easier to read if you break them up into multiple lines. Use the semicolon as the last non-
comment character on the line to indicate that the statement continues on the next line. When the program is
compiled, the comments are stripped; then any line that ends with a semicolon is tacked onto the beginning of
the next line. For example, the program:

? "abc" + ; // A comment
 "def" + ;
 ghi

is compiled as
? "abc" + "def" + ghi

on line 3 of the program file. Note that the spaces before the semicolons and the spaces used to indent the code
are not stripped. If an error occurs because there is no variable named ghi, the error will be reported on line 3.

Codeblock, literal date, literal array symbol
Braces ({ }) enclose codeblocks, literal dates, and literal array elements. They must always be paired. The
following examples show how braces may be used in dBL code.

Literal dates are interpreted according to the current settings of SET DATE and SET EPOCH:
dMoon = {07/20/69} // July 20, 1969 if SET DATE is MDY and SET EPOCH is 1950

To enclose arrays
a = {1,2,3}
? a[2] // displays 2

To assign a statement codeblock to an object’s event handling property
form.onOpen = {;msgbox("Warning: You are about to enter a restricted area.")}

To assign an expression codeblock to a variable, and pass parameters to it
c = {|x| x*9}
? c(4) // returns 36

// or

q = {|n| {"1st","2nd","3rd"}[n]}
? q(2) // displays "2nd"

To assign an expression codeblock to a variable, without passing parameters
Operators and symbols 31

Non-operational symbols
c = {|| 4*9} // pipes (||) must be included in an expression codeblock,
 // even if a parameter is not being passed
? c() // returns 36

Preprocessor directive symbol
The number sign (#) marks preprocessor directives, which provide instructions to the dBASE Plus compiler.
Preprocessor directives may be used in programs only.

Use directives in your dBL code to perform such compile-time actions as replacing text throughout your
program, perform conditional compilations, include other source files, or specify compiler options.

The symbol must be the non-blank first character on a line, followed by the directive (with no space), followed
by any conditions or parameters for the directive.

For example, you might use this statement:
#include "IDENT.H"

to include a source file named IDENT.H (the “H” extension us generally used to identify the file as a “header”
file) in the compilation. The included file might contain its own directives, such as constant definitions:

//file IDENT.H: constant definitions for MYPROG
#define COMPANY_NAME "Nobody's Business"
#define NUM_EMPLOYEES 1
#define COUNTRY "Liechtenstein"

For a complete listing of all dBL preprocessor directives, along with syntax and examples for each, see Chapter
22, “Preprocessor.”
32 dBL Language Reference

C h a p t e r

Chapter 5Core language
This chapter describes the core features of the dBL programming language, primarily:

• Structural elements
• Function linking/loading
• Program flow
• Variable scoping
• Global properties and methods

Basic understanding of programming concepts such as loops and variables is assumed.

class Designer
An object that provides access to the Inspector, Source Editor and streaming engine.

Syntax [<oRef> =] new Designer([<object>] [,<filename expC>])

<oRef> A variable or property in which to store a reference to the newly created Designer object.

<object> The object currently being designed

<filename expC> The name of the file to which the designed object will be saved.

Properties The following tables list the properties, events, and methods of the Session class

Property Default Description
baseClassName DESIGNER Identifies the object as an instance of the Designer class
className (DESIGNER) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
custom false Whether the designed object will have a custom keyword
filename Empty string The name of the file to which the object's class definition is saved. This should be set

before the SAVE method is called
inspector false Whether the Designer's inspector is displayed
object null The object currently being designed
selection null The currently selected object displayed in the inspector
sourceChanged false Whether a change has been made to the object class by the source editor
unsaved false Whether changes have been saved

Event Parameters Description
beforeStream Just before editor calls the designer object to stream code into the editor.
onMemberChange <expC> After a change has been made to a member- property, event or method-of the

currently selected object in the Inspector. The parameter, <expC>, is the name of
the property, event or method.
Core language 33

class Exception
Description Use Designer objects to gain access to the Inspector, Source editor or streaming engine during RunMode. While
the Designer's parameters, OBJECT and FILENAME, are listed as optional, they must be used in certain
situations.

• When modifying a custom class, the filename parameter must be used to specify the file from which the
object was loaded. The filename parameter is not necessary when a new class is being derived from the
custom class.

• When creating a new custom class from a base class, the filename parameter is optional. However, if no
parameters are specified, the Designer must subsequently be intialized using it's properties and/or methods.

• When designing a new class, the OBJECT and FILENAME parameters must be set.

• When modifying an existing class, the loadObjectFromFile method must be called.

class Exception
An object that describes an exception condition.

Syntax [<oRef> =] new Exception()

<oRef> A variable or property in which to store a reference to the newly created Exception object.

Properties The following table lists the properties of the Exception class. (No events or methods are associated with this
class.)

Property Default Description
className EXCEPTION Identifies the object as an instance of the Exception class
code 0 A numeric code to identify the type of exception
filename The name of the file in which a system-generated exception occurs.
lineNo 0 The line number in the file in which a system-generated exception

occurs.
message Text to describe the exception

Event Parameters Description
none

Description

onNotify <source name expC>,
<filename expC>

When notification is received from another object. Currently, this event fires when
the Table Designer or SQL Designer closes and the first parameter is,
"TABLE_DESIGNER_CLOSE", or "SQL_DESIGNER_CLOSE". The second
parameter is the filename that was being designed.

onSelectChange After a different object has been selected in the inspector and the selection
property modified.

Method Parameters Description
editor() Opens a source editor to display the current object.
isInherited() <oRef1>,<oRef2> Determines if an object, <oRef2>, in the designer <oRef1> is inherited from a

superclass. By doing so, the isInherited()method can be used to
programatically enforce rules of inheritance.

loadObjectFromFile() <filename expC> Loads the object property of an existing file. Resets the filename property to
<filename expC>

reloadFromEditor() Reloads the object from the current editor contents. Resets the sourceChanged
property.

save() Saves the current object to filename.
update() Causes the source editor to reflect changes made to an object or any of it's

components.

Event Parameters Description
34 dBL Language Reference

class Object
An Exception object is automatically generated by dBASE Plus whenever an error occurs. The object’s
properties contain information about the error.

You can also create an Exception object manually, which you can fill with information and THROW to manage
execution or to jump out of deeply nested statements.

You may subclass the Exception class to create your own custom exception objects. A TRY block may be
followed by multiple CATCH blocks, each one looking for a different exception class.

Example Suppose you are using exceptions to manage execution in a deeply nested set of conditional statements and
loops. You create your own exception class:

class JumpException of Exception
endclass

Then in the code, you create the JumpException object and THROW it if needed:
try
 local j
 j = new JumpException()
 // User developed code

if lItsNoGood
throw j // Deep in the code, you want out

endif
// User developed code

 catch (JumpException e)
 // Do nothing; JumpException is OK
catch (Exception e)
 // Normal error
 logError(new Date(), e.message) // Record error message
 // and continue
endtry

If there is a normal error, the second CATCH block saves it to a log file, using a function you wrote, and
execution continues.

See also THROW, TRY...ENDTRY

class Object
An empty object.

Syntax [<oRef> =] new Object()

<oRef> A variable or property in which to store a reference to the newly created object.

Properties An object of the Object class has no initial properties, events, or methods.

Description Use the Object class to create your own simple objects. Once the new object is created, you may add properties
and methods through assignment. You cannot add events.

This technique of adding properties and methods on-the-fly is known as dynamic subclassing. In dBASE Plus,
dynamic subclassing supplements formal subclassing, which is achieved through CLASS definitions.

The Object class is the only class in dBL that does not have the read-only baseClassName or className
properties.

Example The following statements create a simple object with a few properties—some referenced by name and some
referenced by number—and a codeblock as a method.

o = new Object()
o.title = "Summer"
o[2000] = "Sydney"
o[1996] = "Atlanta"
o.cityInYear = {|y| this[y]}
? o.cityInYear(2000) // Displays "Sydney"

See also CLASS
Core language 35

ARGCOUNT()
ARGCOUNT()
Returns the number of parameters passed to a routine.

Syntax ARGCOUNT()

Description Use ARGCOUNT() to determine how many parameters, or arguments, have been passed to a routine. You may
alter the behavior of the routine based on the number of parameters. If there are fewer parameters than expected,
you may provide default values.

ARGCOUNT() returns 0 if no parameters are passed.

The function PCOUNT() is identical to ARGCOUNT(). Neither function recognizes parameters passed to
codeblocks. If called within a codeblock, the function will return the parameter information for the currently
executing FUNCTION or PROCEDURE.

Example The following function returns someone’s age. The first required parameter is the birthdate. The second optional
parameter is the date to calculate the age. If the second parameter is not specified, the current date is used.

function age(dBirth, dCheck)
 if argcount() < 2
 dCheck = date()
 endif
 return floor((val(dtos(dCheck)) - val(dtos(dBirth))) / 10000)

See Also ARGVECTOR(), DO, FUNCTION, PARAMETERS

ARGVECTOR()
Returns the specified parameter passed to a routine.

Syntax ARGVECTOR(<parameter expN>)

<parameter expN> The number of the parameter to return. 1 returns the first parameter, 2 returns the
second parameter, etc.

Description Use ARGVECTOR() to get a copy of the value of a parameter passed to a routine. Because it is a copy, there is
no danger of modifying the parameter, even if it was a variable that was passed by reference. For more
information on parameter passing, see PARAMETERS.

ARGVECTOR() can be used in a routine that receives a variable number of parameters, where declaring the
parameters would be difficult. ARGVECTOR(_) cannot be used within a codeblock.

Example The following function returns the mean average of all the parameters passed to it, skipping any with a null
value:

function mean()
 local nRet, nArg, nCnt
 nTot = 0
 nCnt = 0
 for nArg = 1 to argcount()
 if argvector(nArg) # null
 nTot += argvector(nArg)
 nCnt++
 endif
 endfor
 return nTot / nCnt

See Also ARGCOUNT(), DO, FUNCTION, PARAMETERS

baseClassName
Identifies towhich class the object belongs.

Property of All classes except Object.
36 dBL Language Reference

beforeRelease
Description The baseClassName property identifies the class constructor that originally created the object. Although you
may dynamically subclass the object by adding new properties, the baseClassName property does not change.

The baseClassName property is read-only.

See also CLASS, FINDINSTANCE()

beforeRelease
fires before the object has been released and is about to be destroyed..

Property of Most dBASE Form object classes.

Description Use beforeRelease to perform any extra manual cleanup, if necessary, before an object is released.
beforeRelease will fire when calling the release() method of an object or when issuing the RELEASE command.
fires when an object is about to be destroyed.

beforeRelease will fire under the following conditions:

When an object is run without being assigned to a memVar then closing the object. This will destroy the object
from memory causing the the beforeRelease event to fire.

When using a memVar that is assigned to one of these objects and subsequently releasing the memVar. Simply
closing the object in this instance does not fire beforeRelease. The beforeRelease event will fire in this case only
when the memVar itself is destroyed either by using the RELEASE command, when the application is closed, or
any other circumstance that results in the memVar being released from memory.

CASE
Designates a block of code in a DO CASE block.

Description See DO CASE for details.

CATCH
Designates a block of code to execute if an exception occurs inside a TRY block.

Description See TRY...ENDTRY for details.

CLASS
A class declaration including constructor code, which typically creates member properties, and class methods.

Syntax CLASS <class name>[(<parameters>)]
[OF <superclass name>[(<parameters>)]

[CUSTOM]
[FROM <filename expC>]]

[PROTECT <propertyList>]
[<constructor code>]
[<methods>]

ENDCLASS

<class name> The name of the class.
Core language 37

className
OF <superclass name> Indicates that the class is a derived class that inherits the properties defined in
the superclass. The superclass constructor is called before the <constructor code> in the current CLASS is
called, which means that any properties created in the superclass are inherited by the class.

<parameters> Optional parameters to pass to the class, and through to the superclass.

CUSTOM Identifies the class as a custom component class, so that its predefined properties are not streamed
out by the visual design tools.

FROM <filename> <filename> specifies the file containing the definition code for the <superclass>, if the
<superclass> is not defined in the same file as the class.

PROTECT <propertyList> <propertyList> is a list of properties and/or methods of the class which are
to be accessible only by other members of the class, and by classes derived from the class.

<constructor code> The code that is called when a new instance of the class is created with the NEW
operator or a DEFINE statement. The constructor consists of all the code at the top of the class declaration up to
the first method.

<methods> Any number of functions designed for the class.

ENDCLASS A required keyword that marks the end of the CLASS structure.

Description Use CLASS to create a new class.

A class is a specification, or template, for a type of object. dBL provides many stock classes, such as Form and
Query; for example, when you create a form, you are creating a new Form object that has the standard properties
and methods from the Form class. However, when you declare a class with CLASS, you specify the properties
and methods that objects derived from the new class will have.

A CLASS declaration formalizes the creation of an object and its methods. Although you can always add
properties to an object and assign methods dynamically, a CLASS simplifies the task and allows you to build a
clear class hierarchy.

Another benefit is polymorphism. Every FUNCTION (or PROCEDURE) defined in the CLASS becomes a
method of the class. An object of that class automatically has a property with the same name as each
FUNCTION that contains a reference to that FUNCTION. Because a method is part of the CLASS, different
functions may use the same name as long as they are methods of different classes. For example, you can have
multiple copy() functions in different classes, with each one applying to objects of that class. Without classes,
you would have to name the functions differently even if they performed the same task conceptually.

Before the first statement in the constructor is executed, if the CLASS extends another class, the constructor for
that superclass has already been executed, so the object contains all the superclass properties. Any properties
that refer to methods, as described in the previous paragraph, are assigned. This means that if the CLASS
contains a method with the same name as a method in a superclass, the method in the CLASS overrides the
method in the superclass. The CLASS constructor, if any, then executes.

In the constructor, the variable this refers to the object being created. Typically, the constructor creates
properties by assigning them to this with dot notation. However, the constructor may contain any code at all,
except another CLASS—you can’t nest classes—or a FUNCTION, since that FUNCTION would become a
method of the class and indicate the end of the constructor.

Properties and methods can be protected to prevent the user of the class from reading or changing the protected
property values, or calling the protected methods from outside of the class.

See also class Object, className, FUNCTION

className
Identifies an object as an instance of a custom class. When no custom class exists, the className property
defaults to the baseClassName.

Property of All classes except Object.
38 dBL Language Reference

CLEAR MEMORY
Description The className property identifies a custom object derived from a standard dBL class. The className property
is read-only.

CLEAR MEMORY
Clears all user-defined memory variables.

Syntax CLEAR MEMORY

Description Use CLEAR MEMORY to release all memory variables (except system memory variables), including those
declared PUBLIC and STATIC and those initialized in higher-level routines. CLEAR MEMORY has no effect
on system memory variables.

Note CLEAR MEMORY does not explicitly release objects. However, if the only reference to an object is in a
memory variable, releasing the variable with CLEAR MEMORY will in turn release the object.

Issuing RELEASE ALL in the Command window has the same effect as CLEAR MEMORY. However, issuing
RELEASE ALL in a program clears only memory variables created at the same program level as the RELEASE
ALL statement, and has no effect on higher-level, public, or static variables. CLEAR MEMORY, whether issued
in a program or in the Command window, always has the same effect, releasing all variables.

To clear only selected memory variables, use RELEASE.

See Also RELEASE

CLEAR PROGRAM
Clears from memory all program files that aren't currently executing and aren't currently open with SET
PROCEDURE or SET LIBRARY.

Syntax CLEAR PROGRAM

Description Program files are loaded into memory when they are executed with DO, and when they are loaded as library or
procedure files with SET LIBRARY and SET PROCEDURE. When dBASE Plus is done with the program—
the execution is complete, or the file is unloaded—the program file is not automatically cleared from memory.
This allows these files to be quickly reloaded without having to reread them from disk. dBASE Plus's internal
dynamic memory management will clear these files if it needs more memory; for example, when you create a
very large array.

You may use CLEAR PROGRAM to force the clearing of all inactive program (object code) files from
memory. The command doesn't clear files that are currently executing or files that are currently open with SET
PROCEDURE or SET LIBRARY. However, if you close a file (for example, with CLOSE PROCEDURE), a
subsequent CLEAR PROGRAM clears the closed file from memory.

CLEAR PROGRAM is rarely used in a deployed application. Because of the event-driven nature of dBASE,
program files must remain open to handle events; these files are not affected by CLEAR PROGRAM anyway.
Also, the amount of memory used by dormant program files is small compared to the total amount of memory
available. You are more likely to use CLEAR PROGRAM during development, for example to ensure that you
are running the latest version of a program file, and not one that is stuck in memory.

See Also DO, CLEAR MEMORY, CLOSE PROCEDURE, SET LIBRARY, SET PROCEDURE

CLOSE PROCEDURE
Closes one or more procedure files, preventing further access and execution of its functions, classes, and methods.

Syntax CLOSE PROCEDURE [<filename list>] | [PERSISTENT]

<filename list> A list of procedure files you want to close, separated by commas. If you specify a file
without including its extension, dBASE Plus assumes PRG. If you omit <filename list>, all procedure files are
closed, regardless of their load count.
Core language 39

DEFINE
PERSISTENT When <filename list> is omitted, CLOSE PROCEDURE PERSISTENT will close all files,
including those tagged PERSISTENT. Without the PERSISTENT designation, these files would not be
affected.

Description CLOSE PROCEDURE reduces the load count of each specified program file by one. If that reduces its load
count to zero, then that program file is closed, and its memory is marked as available for reuse.

When you specify more than one file in <filename list>, they are processed in reverse order, from right to left. If
a specified file is not open as a procedure file, an error occurs, and no more files in the list are processed.

Closing a program file does not automatically remove the file from memory. If a request is made to open that
program file, and the file is still in memory and its source code has not been updated, it will be reopened without
having to reread the file from disk. Use CLEAR MEMORY to release a closed program file from memory.

In a deployed application, it is not unusual to open program files as procedure files and never close them.
Because of the event-driven nature of dBASE, program files must remain open to respond to events. The
memory used by a procedure file is small in comparison to the amount of system memory.

See SET PROCEDURE for a description of the reference count system used to manage procedure files. You
may issue SET PROCEDURE TO or CLOSE PROCEDURE with no <filename list> to close all open
procedure files, not tagged PERSISTENT, regardless of their load count.

See Also CLEAR PROGRAM, SET LIBRARY, SET PROCEDURE

DEFINE
Creates an object from a class.

Syntax DEFINE <class name> <object name>
[OF <container object>]
[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <stock property list>]
[CUSTOM <custom property list>]

<class name> The class of the object to create.

<object name> The identifier for the object you create. <object name> will become an object reference
variable, or a named property of the container if a <containter object> is specified.

OF <container object> Identifies the object that contains the object you define.

FROM <row>, <col> TO <row>, <col> | AT <row>, <col> Specifies the initial location and size
of the object within its container. FROM and TO specify the upper left and lower right coordinates of the object,
respectively. AT specifies the position of the upper left corner.

PROPERTY <stock property list> Specifies values you assign to the built-in properties of the object.

CUSTOM <custom property list> Specifies new properties you create for the object and the values
you assign to them.

Description Use DEFINE to create an object in memory. DEFINE provides an alternate, shorthand syntax for creating
objects that directly maps to using the NEW operator. The equivalence depends on whether the object created
with DEFINE is created inside a container object. With no container,

define <class name> <object name>

is equivalent to:
<object name> = new <class name>()

With a container,
define <class name> <object name> of <container object>

is equivalent to:
new <class name>(<container object>, "<object name>")

where <object name> becomes an all-uppercase string containing the specified name. These two parameters,
the container object reference and the object name, are the two properties expected by the class constructors for
40 dBL Language Reference

DO
all stock control classes such as PushButton and Entryfield. For example, these two sets of statements are
functionally identical (and you can use the first statement in one set with the second statement of the other set):

define Form myForm
define PushButton cancelButton of myForm

myForm = new Form()
new PushButton(myForm, "CANCELBUTTON")

The FROM or AT clause of the DEFINE command provide a way to specify the top and left properties of an
object, and the TO coordinates are used to calculate the object’s height and width.

The PROPERTY clause allows assignment to existing properties only. Attempting to assign a value to a non-
existent property generates an error at runtime. This will catch spelling errors in property names, when you want
to assign to an existing property; it prevents the creation of a new property with the misspelled name. Using the
assignment-only (:=) operator has the same effect when assigning directly to a property in a separate assignment
statement. In contrast, the CUSTOM clause will create the named property if it doesn’t already exist.

While the DEFINE syntax offers some amenities, it is not as flexible as using the NEW operator and a WITH
block. In particular, with DEFINE you cannot pass any parameters to the class constructor other than the two
properties used for control containership, and you cannot assign values to the elements of properties that are
arrays.

See Also CLASS, REDEFINE, WITH

DO
Runs a program or function.

Syntax DO <filename> | ? | <filename skeleton> |
<function name>

[WITH <parameter list>]

<filename> | ? | <filename skeleton> The program file to execute. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without including its path,
dBASE Plus looks for the file in the current directory, then in the search path in search order. See "Search path
and order" later in this section for more information.

If you specify a file without including its extension, dBASE Plus assumes a .PRO extension (a compiled object
file). If dBASE Plus can't find a .PRO file, it looks for a .PRG file (a source file), which, if found, it compiles.
By default, dBASE Plus creates the .PRO in the same directory as the .PRG, which might not be the current
directory.

<function name> The function name in an open program file to execute. The function must be in the
program file containing the DO command that calls it, or in a separate open file on the search path. The search
path is described later in this section.

WITH <parameter list> Specifies memory variable values, field values, or any other valid expressions to
pass as parameters to the program or function. See the description of PARAMETERS for information on
parameter passing.

Description Use DO to run program files from the Command window or to run other programs from a program. If you enter
DO in the Command window, control returns to the Command window when the program or function ends. If
you use DO in a program to execute another program, control returns to the program line following the DO
statement when the program ends.

Although you may use DO to execute functions, common style dictates the use of the call operator (the
parentheses) when calling functions, and the DO command when running a program file. The DO command
supports the use of a file path and extension, and the ? and <filename skeleton> options. The call operator
supports calling a function by name only. In the not-recommended situation where you have a program file that
has the same name as a function loaded into memory, the DO command will execute the program file, and the
call operator will executed the loaded function. Other than these differences, the two calling methods behave the
same, and follow the same search rules described later in this section.

You may nest routines; that is, one routine may call another routine, which may call another routine, and so on.
This series of routines, in the order in which they are called, is referred to as the call chain.
Core language 41

DO CASE
When dBASE Plus executes or loads a program file, it will automatically compile the program file into object
code when either:

• There is no object code file, or

• SET DEVELOPMENT is ON, and program file is newer than the object code file (the source code file’s last
update date and time is later than the object code file’s)

When dBASE Plus encounters a function call in a program file, it looks in that file for a FUNCTION or
PROCEDURE of the specified name. If the current program file contains a FUNCTION and a PROCEDURE
with the same name, dBASE Plus executes the first one declared. If dBASE Plus doesn't find a FUNCTION or
PROCEDURE definition of the specified name in the same program file, it looks for a program file,
FUNCTION, or PROCEDURE of the specified name on the search path in search order.

Search path and order If the name you specify with DO doesn't include a path or a file-name extension,
it can be a file, FUNCTION, or PROCEDURE name. To resolve the ambiguity, dBASE Plus searches for the
name in specific places (the search path) in a specific order (the search order) and runs the first program or
function of the specified name that it finds. The search path and order dBASE Plus uses is as follows:

1 The executing program's object file (.PRO)

2 Other open object files (.PRO) in the call chain, in most recently opened order

3 The file specified by SYSPROC = <filename> in dB2K.INI

4 Any files opened with SET PROCEDURE, SET PROCEDURE...ADDITIVE, or SET LIBRARY statements,
in the order in which they were opened

5 The object file (.PRO) with the specified name in the search path

6 The program file (.PRG) with the specified name in the search path, which dBASE Plus automatically
compiles

The search path is controlled with the SET PATH command. It is not used when you are running a compiled
EXE (a deployed application)—all program files must be linked into the executable. All path information is lost
during linking and ignored during execution, which means that you cannot have more than one file with the
same name, even if they originally came from different directories.

Because program files must be compiled into object code to be linked into a compiled EXE, the last search step,
#6, does not apply when running a compiled EXE.

See Also CLEAR PROGRAM, COMPILE, RETURN, SET DEVELOPMENT, SET ESCAPE, SET LIBRARY, SET
PATH, SET PROCEDURE

DO CASE
Conditionally processes statements by evaluating one or more conditions and executing the statements following the
first condition that evaluates to true.

Syntax DO CASE
CASE <condition expL 1>

 <statements>
[CASE <condition expL 2>

 <statements>...]
[OTHERWISE

 <statements>]
ENDCASE

CASE <condition expL> If the condition is true, executes the set of commands between CASE and the
next CASE, OTHERWISE, or ENDCASE command, and then transfers control to the line following
ENDCASE. If the condition is false, control transfers to the next CASE, OTHERWISE, or ENDCASE
command.

<statements> Zero or more statements to execute if the preceding CASE statement evaluates to true.

OTHERWISE Executes a set of statements if all the CASE statements evaluate to false.

ENDCASE A required keyword that marks the end of the DO CASE structure.
42 dBL Language Reference

DO WHILE
Description DO CASE is similar to IF...ELSE...ENDIF. As with IF conditions, dBASE Plus evaluates DO CASE conditions
in the order they're listed in the structure. DO CASE acts on the first true condition in the structure, even if
several apply. In situations where you want only the first true instance to be processed, use DO CASE instead of
a series of IF commands.

Also, use DO CASE when you want to program a number of exceptions to a condition. The CASE <condition>
statements can represent the exceptions, and the OTHERWISE statement the remaining situation.

Starting with the first CASE condition, dBASE Plus does the following.

• Evaluates each CASE condition until it encounters one that's true
• Executes the statements between the first true CASE statement and the next CASE, OTHERWISE, or

ENDCASE (if any)
• Exits the DO CASE structure without evaluating subsequent CASE conditions
• Moves program control to the first line after the ENDCASE command

If none of the conditions are true, dBASE Plus executes the statements under OTHERWISE if it's included. If no
OTHERWISE statement exists, dBASE Plus exits the structure without executing any statements and transfers
program control to the first line after the ENDCASE command.

DO CASE is functionally identical to an IF...ELSEIF...ENDIF structure. Both specify a series of conditions and
an optional fallback (OTHERWISE and ELSE) if none of the conditions are true. Common style dictates the use
of DO CASE when the conditions are dependent on the same variable, for example what key was pressed, while
IF...ELSEIF...ENDIF is used when the conditions are not directly related. In addition, DO CASE usually
involves more indenting of code.

Example The following is a key event handler for a custom entryfield that handles dates. It recognizes special keystrokes
to move the date forward or backward one day, to the first and last day of the month, and so forth:

function key(nChar, nPosition)
 local c1
 c1 = upper(chr(nChar))
 do case
 case c1 == "T" // Today
 this.value := date()
 case c1 == "-" or c1 == "_" // Next day
 this.value--
 case c1 == "+" or c1 == "=" // Previous day
 this.value++
 case c1 == "M" // First day of the month
 this.value := FDoM(iif(this.lastKey == "M", --this.value, this.value))
 case c1 == "H" // Last day of the month
 this.value := LDoM(iif(this.lastKey == "H", ++this.value, this.value))
 case c1 == "Y" // First day of the year
 this.value := FDoY(iif(this.lastKey == "Y", --this.value, this.value))
 case c1 == "R" // Last day of the year
 this.value := LDoY(iif(this.lastKey == "R", ++this.value, this.value))
 otherwise
 this.lastKey := null // Clear stored keystroke
 return true // Handle key normally
 endcase
 this.lastKey := c1 // Store as property for comparison next time
 return false // Ignore key

The functions FDoM(), LDoM(), FDoY(), and LDoY() are defined elsewhere.

See Also IF, IIF()

DO WHILE
Executes the statements between DO WHILE and ENDDO while a specified condition is true.

Syntax DO WHILE <condition expL>
[<statements>]

ENDDO
Core language 43

DO...UNTIL
<condition expL> A logical expression that is evaluated before each iteration of the loop to determine
whether the iteration should occur. If it evaluates to true, the statements are executed. Once it evaluates to false,
the loop is terminated and execution continues with the statement following the ENDDO.

<statements> Zero or more statements executed in each iteration of the loop.

ENDDO A required keyword that marks the end of the DO WHILE loop.

Description Use a DO WHILE loop to repeat a statement or block of statements while a condition is true. If the condition is
initially false, the statements are never executed.

You may also exit the loop with EXIT, or restart the loop with LOOP.

Example The following loop deletes all the orders for a particular customer, using the customer ID number to find their
orders in the Order table:

function deleteAllOrders
 do while form.orders1.rowset.findKey(form.custID.value)
 form.orders1.rowset.delete()
 enddo

Note that if there are no orders in the table initally, the DO WHILE condition will fail, and nothing will happen.

See also DO...UNTIL, EXIT, FOR...ENDFOR, LOOP

DO...UNTIL
Executes the statements between DO and UNTIL at least once while a specified condition is false.

Syntax DO
[<statements>]

UNTIL <condition expL>

<statements> Zero or more statements executed in each iteration of the loop.

UNTIL <condition expL> The statement that marks the end of the DO...UNTIL loop. <condition expL>
is a logical expression that is evaluated after each iteration of the loop to determine whether the iteration should
occur again. If it evaluates to false, the statements are executed. Once it evaluates to true, the loop is terminated
and execution continues with the statement following the UNTIL.

Description Use a DO...UNTIL loop to repeat a block of statements until a condition is true (in other words, while the
condition is false). Because the condition is evaluated at the end of the loop, a DO...UNTIL loop always
executes at least once, even when the condition is initially true.

You may also exit the loop with EXIT, or restart the loop with LOOP.

DO...UNTIL is rarely used. In most condition-based loops, you don’t want to execute the loop at all if the
condition is initially invalid. DO WHILE loops are much more common, because they check the condition
before they begin.

In a DO WHILE loop, the condition fails—that is, the loop should not be executed—when it evaluates to false;
in a DO...UNTIL loop, the condition fails when it evaluates to true. This is simply the result of the wording of
the looping commands. You can easily reverse any logical condition by using the logical NOT operator or the
opposite comparison operator (for example, less than instead of greater than or equal, or not equal instead of
equal).

Example The first example shows a loop that goes through all the checkboxes on a form and sets their value to false. An
object reference to the form’s first control is assigned to a variable, and the reference is updated at the end of the
loop to point to the next control in the tab order.

local oCtrl
oCtrl = form.first
do
 if oCtrl.className == "CHECKBOX"
 oCtrl.value := false
 endif
 oCtrl := oCtrl.before
until oCtrl == form.first
44 dBL Language Reference

ELSE
Because the DO...UNTIL checks the condition at the end of the loop, after the object reference has been
updated, you can simply test if the reference has looped back to the beginning. To use the same test with a DO
WHILE loop, you would have to maintain an extra flag to allow the loop to proceed the first time through.

The next example shows a basic loop that traverses all the rows in a rowset, referenced by the variable r:
if r.first()
 do
 // Something to do to each row
 until not r.next()
endif

To traverse the rowset, you must start at the first row. The first() method attempts to reposition the row cursor
to the first row in the rowset, returning true to indicate success. It would return false if there are no rows in the
rowset—no rows at all, or no rows that match any active filter conditions—in which case the IF fails and the
DO...UNTIL loop is not executed at all. If it returns true, then there must be at least one row, and the
DO...UNTIL loop body is executed.

After the loop body is executed, the rowset’s next() method is called. It returns true unless it reaches the end-of-
set. As long as it returns true, the logical NOT operator reverses the logical condition so that the UNTIL
condition evaluates to false, and the loop continues. When it reaches the end-of-set, next() returns false, which
gets reversed to true, satisfying the UNTIL condition and terminating the loop.

Compare the DO...UNTIL loop with the equivalent structure using DO WHILE:
r.first()
do while not r.endOfSet
 // Something to do to each row
 r.next
enddo

The rowset’s endOfSet property is true if the rowset is at the end-of-set. The return value from the first()
method is not checked, because the endOfSet property is checked at the beginning of the DO WHILE loop. If
first() fails, it leaves the rowset cursor at the end-of-set. The return value of next() is also not checked, for the
same reason. However, this loop is slightly less efficient because it goes through the extra step of checking the
endOfSet property instead of simply using the return value of next(), which must be called to move to the next
row.

This next example may look a bit odd:
do
until form.rowset.rlock()

but it simply retries the rlock() until it is successful. Note that the loop body is empty. You may want put a
comment in the loop so you won’t have to think about it in the future:

do
 // Wait for lock
until form.rowset.rlock()

or you can use the semicolon to put two statements on the same line:
do; until form.rowset.rlock()

See Also DO WHILE, EXIT, FOR...ENDFOR, LOOP

ELSE
Designates an alternate statement to execute if the condition in an IF statement is false.

Description See IF for details.

ELSEIF
Designates an alternate condition to test if the condition in an IF statement is false.

Description See IF for details.
Core language 45

EMPTY()
EMPTY()
Returns true if a specified expression is empty.

Syntax EMPTY(<exp>)

<exp> An expression of any type.

Description Use EMPTY() to determine if an expression is empty. The definition of empty depends on the type of the
expression:

Expression
type Empty if value is
Numeric 0 (zero)
String empty string (““) or a string of just spaces (“ “)
Date blank date ({ / / })
Logical false
Null null is always considered empty
Object reference Reference points to object that has been released

Note that event properties that have not been assigned handlers have a value of null, and are therefore
considered empty. In contrast, an object reference pointing to an object that has been released is not null; you
must use EMPTY().

EMPTY() is similar to ISBLANK(). However, ISBLANK() is intended to test field values; it differentiates
between zero and blank values in numeric fields, while EMPTY() does not. EMPTY() understands null values
and object references, while ISBLANK() does not. For more information, see ISBLANK().

See Also ISBLANK(), TYPE()

ENUMERATE()
Returns a listing of the member names of an object.

Syntax ENUMERATE(<oRef>)

<oRef> Object reference to any valid object

Description Use ENUMERATE() to retrieve a listing of the member names of an object with each member name identified
as property, event, or method of the specified object.

ENUMERATE() returns an AssocArray object. Each index into the AssocArray is a member name for the
enumerated object. The value of the index is filled with one of the following values:

Value Description
P The type of member is a property.
E The type of member is an event.
M The type of member is a method.

Example The following code uses ENUMERATE() to obtain an AssocArray filled with member names and types for an
object reference. It then lists each member name, member type, member data type, and member value for each
member of the object.

// Filename..: QuikList.PRG
// Parameters: oRef - Object reference to list.
// Usage.....: Set Procedure To My.WFM Additive
//: f = New MyForm()
//: Do QuikList With f
//
PARAMETERS oRef
PRIVATE cTemp, xTemp
LOCAL aa, cMember
46 dBL Language Reference

EXIT
Try
aa = Enumerate(oRef) // Enumerate the passed object
cMember = aa.FirstKey // Get first member name
Do While Not Empty(cMember)

? cMember // Display the member name
?? aa[cMember] At 30 // Display the member type
cTemp = "oRef." + cMember
xTemp = &cTemp. // Get the value of the member
?? Type("xTemp") At 33 // Display the data type
If xTemp # Null

?? Transform(xTemp, "@T") At 37 // Display the member value
EndIf
cMember = aa.NextKey(cMember) // Get next member name

EndDo
Catch(exception e)

MsgBox(e.Message, "QuikList") // Show any error that occurred
EndTry
// EOF: QuikList.PRG

See Also class AssocArray

EXIT
Immediately terminates the current loop. Execution continues with the statement after the loop.

Syntax EXIT

Description Normally, all of the statements in the loop are executed in each iteration of the loop; in other words, the loop
always exits after the last statement in the loop. Use EXIT to exit a loop from the middle of a loop, due to some
extra or abnormal condition.

In most cases, you don’t have to resort to using EXIT; you can code the condition that controls the loop to
handle the extra condition. The condition is tested between loop iterations, after the last statement, but that
usually means that there are some statements that should not be executed because of this condition. Those
statements would have to be conditionalized out with an IF statement. Therefore, often it’s simpler to EXIT out
of a loop immediately once the condition occurs.

Example The following function counts the number of words in a string by counting spaces between words. Multiple
spaces between two words are counted as a single space and therefore a single word:

function wordCount(cArg)
 local nRet, cRemain, nPos
 nRet = 0
 cRemain = ltrim(trim(cArg))
 do while "" # cRemain
 nRet++
 nPos = at(" ", cRemain)
 if nPos == 0
 exit
 else
 cRemain := ltrim(substr(cRemain, nPos))
 endif
 enddo
 return nRet

The condition in the DO WHILE loop is really needed only once, the first time the loop is entered. It makes sure
that there is some text to search through. If the argument is an empty string or all spaces, the loop is not
executed and the word count is zero. After the first loop, it is used simply to keep the loop going, since there
would always be text to check.

The loop is terminated when there are no more spaces in the string. This is determined by the return value of the
AT() function. Because the position returned is out of range for the SUBSTR() function, it should be called if
there are no more spaces in the string. By using EXIT, the loop is immediately terminated once no more spaces
are found. Execution continues with the RETURN statement following the DO WHILE loop.
Core language 47

FINALLY
See also DO WHILE, DO...UNTIL, LOOP, FOR...ENDFOR

FINALLY
Designates a block of code that always executes after a TRY block, even if an exception occurs.

Description See TRY...ENDTRY for details.

FINDINSTANCE()
Returns an object of the specified class from the object heap.

Syntax FINDINSTANCE(<classname expC> [, <previous oRef>])

<classname expC> The name of the class you want to find an instance of. <classname expC> is not
case-sensitive.

<previous oRef> When omitted, FINDINSTANCE() returns the first instance of the specified class.
Otherwise, it returns the instance following <previous oRef> in the object heap.

Description Use FINDINSTANCE() to find any instance of a particular class, or to find all instances of a class in the object
heap.

Objects are stored in the object heap in no predefined order. Creating a new instance of a class or destroying an
instance may reorder all other instances of that class. A newly created object is not necessarily last in the heap.

Sometimes you will want to make sure there is only one instance of a class, and reuse that instance; a particular
toolbar is the prime example. To see if there is an instance of that class, call FINDINSTANCE() with the class
name only. If the return value is null, there is no instance of that class in memory.

Other times, you may want to iterate through all instances of a class to perform an action. For example, you may
want to close all data entry forms, which are all instances of the same class. Call FINDINSTANCE() with the
class name only to find the first instance of the class. Then call FINDINSTANCE() in a loop with the class
name and the object reference to get the next instance in the object heap. When FINDINSTANCE() returns
null, there are no more instances.

Example The first example checks if there is already an instance of the the EditToolbar class. If not, one is created.
function attachEditToolbar(formObj)
 local t
 t = findinstance("EditToolbar")
 if empty(t) // If null, no instance exists, so
 t = new EditToolbar() // Create one (defined in this file)
 set procedure to program(1) additive // Load this file as procedure file
 endif
 t.attach(formObj)

The second example finds all instances of the OrderForm class and closes them.
function closeAllOrders()
 local f
 f = findinstance("OrderForm")
 do while not empty(f)
 f.close()
 f := findinstance("OrderForm", f)
 enddo

See also className, REFCOUNT()

FOR...ENDFOR
Executes the statements between FOR and ENDFOR the number of times indicated by the FOR statement.
48 dBL Language Reference

FUNCTION
Syntax FOR <memvar> = <start expN> TO <end expN> [STEP <step expN>]
[<statements>]

ENDFOR | NEXT

<memvar> The loop counter, a memory variable that's incremented or decremented and then tested each
time through the loop.

<start expN> The initial value of <memvar>.

<end expN> The final allowed value of <memvar>.

STEP <step expN> Defines a step size (<step expN>) by which dBASE Plus increments or decrements
<memvar> each time the loop executes. The default step size is 1.

When <step expN> is positive, dBASE Plus increments <memvar> until it is greater than <end expN>. When
<step expN> is negative, dBASE Plus decrements <memvar> until it is less than <end expN>.

<statements> Zero or more statements executed in each iteration of the loop.

ENDFOR | NEXT A required keyword that marks the end of the FOR loop. You may use either ENDFOR
(preferred) or NEXT.

Description Use FOR...ENDFOR to execute a block of statements a specified number of times. When dBASE Plus first
encounters a FOR loop, it sets <memvar> to <start expN>, and reads the values for <end expN> and
<step expN>. (If <end expN> or <step expN> are variables and are changed inside the loop, the loop will not
see the change and the original values will still be used to control the loop.)

The loop counter is checked at the beginning of each iteration of the loop, including the first iteration. If
<memvar> evaluates to a number greater than <end expN> (or less than <end expN> if <step expN> is
negative), dBASE Plus exits the FOR loop and executes the line following ENDFOR (or NEXT). Therefore, it’s
possible that the loop body is not executed at all.

If <memvar> is in the range from <start expN> through <end expN>, the loop body is executed. After executing
the statements in the loop, <step expN> is added to <memvar>, and the loop counter is checked again. The
process repeats until the loop counter goes out of range.

You may also exit the loop with EXIT, or restart the loop with LOOP.

The <memvar> is usually used inside the loop to refer to numbered items, and continues to exist after the loop is
done, just like a normal variable. If you do not want the variable to be the default private scope, you should
declare the scope of the variable before the FOR loop.

Example The following event handler creates a new row, carrying over the values in the current row. The values in the
current row are copied to a temporary array, a new row is created, and the values are copied from the array.

function newButton_onClick
 local a, n
 a = new Array()
 for n = 1 to form.rowset.fields.size
 a.add(form.rowset.fields[n].value)
 endfor
 form.rowset.beginAppend()
 for n = 1 to form.rowset.fields.size
 form.rowset.fields[n].value := a[n]
 endfor

See also DO WHILE, EXIT, LOOP

FUNCTION
Defines a function in a program file including variables to represent parameters passed to the function.

Syntax FUNCTION <function name>[([<parameter list>])]
[<statements>]

<function name> The name of the function. Although dBASE Plus imposes no limit to the length of
fucnction names, it recognizes only the first 32 characters.
Core language 49

IF
(<parameter list>) Variable names to assign to data items (or parameters) passed to the function by the
statement that called it. The variables in <parameter list> are local in scope, protecting them from modification
in lower-level subroutines. For more information about the local scope, see LOCAL.

The number of variables assigned can be different from the number of parameters passed. You can use
PCOUNT() to identify the number of parameters a procedure has received. You can include up to 255 variable
names in <parameter list>.

<statements> Any statements that you want the function to execute. You can call functions recursively.

Description Use functions to create code modules. By putting commonly used code in a function, you can easily call it
whenever needed, pass parameters to the function, and optionally return a value. You also create more modular
code, which is easier to debug and maintain.

When a FUNCTION is defined inside a CLASS definition, the FUNCTION is considered a method of that
CLASS. You cannot nest functions.

The keywords FUNCTION and PROCEDURE are interchangable in dBL.

A single program file can contain a total of 184 functions and methods. Each class also counts as one function
(for the class constructor). To access more functions simultaneously, use SET PROCEDURE...ADDITIVE. The
maximum size of a function is limited to the maximum size of a program file.

When a function is called via an object, usually as a method or event handler, the variable this refers to the
object that called the function.

Function naming restrictions Do not give a function the same name as the file in which it’s contained.
Statements at the beginning of the file, before any FUNCTION, PROCEDURE, or CLASS statement, are
considered to be a function (not counted against the total limit) with the same name as the file. (This function is
sometimes referred to as the “main” procedure in the program file.) Multiple functions with the same name do
not cause an error, but the first function with that name is the only one that is ever called.

Don't give the function the same name as a built-in dBL function. You cannot call such a function with the DO
command, and if you call the function with the call operator (parentheses), dBASE Plus always executes its
built-in function instead.

Also do not give the function a name that matches a dBL command keyword. For example, you should not name
a function OTHER() because that matches the beginning of the keyword OTHERWISE. When you call the
OTHER() function, the compiler will think it’s the OTHERWISE keyword and will generate an error, unless
you happen to be in a DO CASE block, in which case it will be treated like the OTHERWISE keyword, instead
of calling the function.

These function naming restrictions do not apply to methods, because calling a method through the dot or scope
resolution operator clearly indicates what is being called. However, you may run into problems calling methods
inside a WITH block. See WITH for details.

Making procedures available You can include a procedure in the program file that uses it, or place it
in a separate program file you access with SET PROCEDURE or SET LIBRARY. If you include a procedure in
the program file that uses it, you should place it at the end of the file and group it with other procedures.

When you call a procedure, dBASE Plus searches for it in the search path in search order. If there is more than
one procedure available with the same name, dBASE Plus runs the first one it finds. For this reason, avoid using
the same name for more than one procedure. See the description of DO for an explanation of the search path and
order dBASE Plus uses.

See also PARAMETERS, RETURN

IF
Conditionally executes statements by evaluating one or more conditions and executing the statements following the
first condition that evaluates to true.

Syntax IF <condition expL 1>
[<statements>]
50 dBL Language Reference

IIF()
[ELSEIF <condition expL 2>
<statements>

[ELSEIF <condition expL 3>
<statements>...]]

[ELSE
[<statements>]]

ENDIF

<condition expL> A logical expression that determines if the set of statements between IF and the next
ELSE, ELSEIF, or ENDIF command execute. If the condition is true, the statements execute. If the condition is
false, control passes to the next ELSE, ELSEIF, or ENDIF.

<statements> One or more statements that execute depending on the value of <condition expL>.

ELSEIF <condition expL> <statements> Specifies that when the previous IF or ELSEIF condition
is false, control passes to this ELSEIF <condition expL>. As with IF, if the condition is true, only the set of
statements between this ELSEIF and the next ELSEIF, ELSE, or ENDIF execute. If the condition is false,
control passes to the next ELSEIF, ELSE, or ENDIF.

You can enter this option as either ELSEIF or ELSE IF. The ellipsis (...) in the syntax statement indicates that
you can have multiple ELSEIF statements.

ELSE <statements> Specifies statements to execute if all previous conditions are false.

ENDIF A required keyword that marks the end of the IF structure.

Description Use IF to evaluate one or more conditions and execute only the set of statements following the first condition
that evaluates to true. For the first true condition, dBASE Plus executes the statements between that program
line and the next ELSEIF, ELSE, or ENDIF, then skips everything else in the IF structure and executes the
program line following ENDIF. If no condition is true and an associated ELSE command exists, dBASE Plus
executes the set of statements after ELSE and then executes the program line following ENDIF.

Use IF...ENDIF to test one condition and IF...ELSEIF...ENDIF to test two or more conditions. If you have more
than three conditions to test, consider using DO CASE instead of IF. Compare the example in this section with
the example for DO CASE.

If you’re evaluating a condition to decide which value you want to assign to a variable or property, you may be
able to use the IIF() function, which involves less duplication (you don’t have to type the target of the
assignment twice).

You can nest IF statements to test multiple conditions; however, the ELSEIF option is an efficient alternative.
When you use ELSEIF, you don't need to keep track of which ELSE applies to which IF, nor do you have to put
in an ending ENDIF.

You can put many statements for each condition. If the number of statements in a set makes the code hard to
read, consider putting them in a function and calling the function from the IF statement instead.

See also DO CASE, IIF()

IIF()
Returns one of two values depending on the result of a specified logical expression.

Syntax IIF(<expL>, <exp1>, <exp2>)

<expL> The logical expression to evaluate to determine whether to return <exp1> or <exp2>.

<exp1> The expression to return if <expL> evaluates to true.

<exp2> The expression to return if <expL> evaluates to false. The data type of <exp2> doesn't have to be the
same as that of <exp 1>.

Description IIF() stands for "immediate IF" and is a shortcut to the IF...ELSE...ENDIF programming construct. Use IIF()
as an expression or part of an expression where using IF would be cumbersome or not allowed. In particular, if
Core language 51

isInherited()
you’re evaluating a condition to decide which value you want to assign to a variable or property, using IIF()
involves less duplication (you don’t have to type the target of the assignment twice).

If <exp1> and <exp2> are true and false, in either order, using IIF() is redundant because <expL> must evaluate
to either true or false anyway.

See Also IF

isInherited()
Returns true if the object reference passed in to it refers to an object that is part of a superclass, otherwise, the
isInherited() method returns false.

Syntax <oRef1>.isInherited(<oRef2>)

<oRef1> An object reference to a designer object

<oRef2> An object reference to an object contained within the Form, Report, or Datamodule currently
loaded into the designer object (oRef1).

Property of Designer

Description Use the isInherited() method to programatically enforce rules of inheritance, such as deleting an inherited
Query object from a subclassed dataModule

Take the case of a dataModule (dmd2), subclassed from another dataModule (dmd1), containing Query object 1
and Query object 2, and currently being designed in dQuery.

If Query object 1, currently containted in dmd2, was inherited from its superclass, dmd1, you would not be able
to remove it (delete it) from the dataModule dmd2. Should a user attempt such a delete, the isInherited()
method would determine that:

• In the current designer // dQuery (<oRef1>)

• An object // Query object 1 (<oRef2>)

• Was inherited from a superClass // (dmd1)

The isInherited() method would return true, and the removal of Query object 1 could be disallowed.

LOCAL
Declares memory variables that are visible only in the routine where they're declared.

Syntax LOCAL <memvar list>

<memvar list> The list of memory variables to declare local.

Description Use LOCAL to declare a list of memory variables available only to the routine in which the command is issued.
Local variables differ from those declared PRIVATE in the following ways:

• Private variables are available to lower-level subroutines, while local variables are not. Local variables are
accessible only to the routine—the program or function—in which they are declared.

• TYPE() does not “see” local variables. If you want to determine the TYPE() of a local variable, you must
copy it to a private (or public) variable and call TYPE() with that variable name in a string.

• You cannot use a local variable for macro substitution with the & operator. Again, you must copy it to a
private (or public) variable first.

Despite these limitations, local variables are generally preferred over private variables because of their limited
visibilty. You cannot accidentally overwrite them in a lower-level routine, which would happen if you forget to
hide a public variable; nor can you inadvertently use a variable created in a higher-level routine, thinking that
it’s one declared in the current routine, which would happen if you misspell the variable name in the current
routine.

Note The special variables this and form are local.
52 dBL Language Reference

LOOP
You must declare a variable LOCAL before initializing it to a particular value. Declaring a variable LOCAL
doesn't create it, but it does hide any higher-level variable with the same name. After declaring a variable
LOCAL, you can create and initialize it to a value with STORE or =. (The := operator will not work at this point
because the variable hasn’t been created yet.) Local variables are erased from memory when the routine that
creates them finishes executing.

For more information, see PUBLIC for a table that compares the scope of public, private, local, and static
variables.

See Also CLEAR MEMORY, PARAMETERS, PRIVATE, PUBLIC, RELEASE, STATIC, STORE

LOOP
Skips the remaining statements in the current loop, causing another loop iteration to be attempted.

Syntax LOOP

Description Conditional statements are often used inside a loop to control which statements are executed in each loop
iteration. For example, in a loop that processes the rows in an employee table, you might want to increase the
monthly salary of non-managers and the annual bonus for managers, all in the same loop.

There can be many different sets of statements in the loop, each with a different combination of conditions
dictating whether they should be executed. Sometimes you can be in the middle of a loop, and none of the
remaining statements apply. The condition that determines this may be nested a few levels deep. While it would
be possible to code the rest of the loop with conditional statements to take this condition into account, often it’s
simpler to use a LOOP statement when this condition is encountered. This causes the remaining statements in
the loop to be skipped, and the next iteration of the loop to be attempted.

See also DO WHILE, DO...UNTIL, EXIT, FOR...ENDFOR

OTHERWISE
Designates a block of code in a DO CASE block to execute if there are no matching CASE blocks.

Description See DO CASE for details.

PARAMETERS
Assigns data passed from a calling routine to private variables.

Syntax PARAMETERS <parameter list>

<parameter list> The memory variable names to assign, separated by commas.

Description There are three ways to access values passed to program or function:

• Variable names may be declared on the FUNCTION (or PROCEDURE) line in parentheses. These variables
are local to that routine.

• Variable names may be declared in a PARAMETERS statement. These variables are private in scope.

• The values may be retrieved through the ARGVECTOR() function.

Passed values may be assigned to variables only once in a routine. You may either create local variables on the
FUNCTION line or use the PARAMETERS statement, and you may only use the PARAMETERS statement
once.

The ARGVECTOR() function returns copies of the passed values, and has no effect nor is affected by the other
two techniques.

Parameters passed to the main procedure of a dB2K application .exe, such as from a DOS command line, will be
received as character strings.

For example:
Core language 53

PARAMETERS
 someApp abcd efgh

In someApp.prg,
 PARAMETERS var1, var2

var1 will be received as, "abcd", and var2 as, "efgh".

To pass a string containing an embedded space, use quotes around the string. Such as:
 someApp "abcd efgh" ijk

var1 will be received as, "abcd efgh", and var2 as, "ijk".

In general, local variables are preferred because they cannot be accidentally overwritten by a lower-level
routine. Reasons to use PARAMETERS instead include:

• Using values passed to a program file: a program file may contain statements that are not part of a function or
class, like the statements in the Header of a WFM file. Because there is no FUNCTION or PROCEDURE
line, there is no place to declare local parameters. A PARAMETERS statement must be used instead.

• You specifically want the parameters to be private, so they can for example be modified by a lower-level
routine, or be used in a macro substitution.

For more information on the difference between local and private variable scope, see LOCAL.

If you specify more variables in the <parameter list> than values passed to the routine, the extra variables
assume a value of false. If you specify fewer variables, the extra values do not get assigned.

The PARAMETERS statement should be at or near the top of the routine. This is good programming style; there
is no rule requiring this.

Passing mechanisms There are two ways to pass parameters, by reference or by value. This section
uses the term "variable" to refer to both memory variables and properties.

• If you pass variables by reference, the called function has direct access to the variable. Its actions can change
(overwrite) the value in that variable. Pass variables by reference if you want the called function to
manipulate the values stored in the variables it receives as parameters.

• If you pass variables by value, the called function gets a copy of the value contained in the variable. Its
actions can't change the contents of the variable itself. Pass variables by value if you want the called function
to use the values in the variables without changing their values—on purpose or by accident—in the calling
subroutine.

The following rules apply to parameter passing mechanisms:

• Literal values (like 7) and calculated expression values (like xVar + 3) must be passed by value—there is no
reference for the called function to manipulate, nor is there any way to tell that the parameter has been
changed.

• Memory variables and properties may be passed by reference or by value. The default is pass-by-reference.

• The scope declaration of a variable (local, private, etc.) does not have any effect on whether the variable is
passed by reference or by value. The scope declaration protects the name of the variable. That name is used
inside the calling routine; the called function assigns its own name (which is often different but sometimes
happens to be the same) to the parameter, making the scope declaration irrelevant.

• To pass a variable or property by value, enclose it in parentheses when you pass it.

Passing objects Because an object reference is itself a reference, passing one as a parameter is a bit more
complicated:

• Passing a variable (or property) that contains an object reference by reference means that you can change the
contents of that variable, so that it points to another object, or contains any other value.

• Even if you pass an object reference by value, you can access that object, and change any of its properties.
This is because the value of a object reference is still a reference to that object.

Passing this and form When passing the special object references this and form as parameters to the
method of another object, they must be enclosed in parentheses to be passed by value. If not, the value of the
this and form parameters take on the corresponding values for the target object, and no longer refer to the calling
objects.
54 dBL Language Reference

PARAMETERS
Passing fields in XBase DML With the XBase DML, fields are accessed directly by name (instead of a
Field object’s value property). When used as parameters, they are always passed by value, so the called function
can't change their contents.

There are two ways to alter the contents of an XBase field with a function:

• Store its contents to a memory variable and call the function with that variable. When control returns to the
calling routine, REPLACE the field contents with the memory variable contents.

• Design the function to accept a field name. Pass the name of the field, and have the function REPLACE the
contents of the named field, using macro substitution to convert the field name to a field reference.

Protecting parameters from change Because the decision whether to pass by reference or by value
is made by the caller, the called function doesn’t know whether it’s safe to modify the parameter. It’s a good
idea to copy parameters to work variables and to use those variables instead if their values are going to be
changed, unless the intent of the function is specifically to modify the parameters.

Example The following contrived examples demonstrate the various aspects of the parameter passing mechanism. With
the following program file, DOUBLE.PRG:

parameters arg
arg *= 2 // Double passed parameter

from the Command window, typing the following statements results in the values shown in the comments:
x = 7
double(x) // Call as variable
? x // Displays 14, pass by reference
double(x + 0) // Call as an expression
? x // Displays 14, pass by value
double((x)) // Call with parentheses around variable name
? x // Displays 14, pass by value

o = new Object()
o.x = 5
double(o.x) // Call as property
? o.x // Displays 10, pass by reference
double((o.x)) // Call with parentheses around property name
? o.x // Displays 10, pass by value

With the following program DOUBLEX.PRG, designed specifically to modify the property x of the passed
object:

parameters oArg
oArg.x *= 2

typing the following statements in the Command window results in the values shown in the comments:
doublex(o) // Pass by reference
? o.x // Displays 10, property modified
doublex((o)) // Pass by value
? o.x // Displays 20, property still modified

With the following program ILIKEAPP.PRG:
parameter oArg
oArg := _app

passing by value will prevent the object reference itself from being changed:
f = new Form()
ilikeapp((f)) // Pass by value
? f.className // Displays FORM
ilikeapp(f) // Pass by reference
? f.className // Displays APPLICATION, object reference changed
g = "test" // Another variable, this one with a string
ilikeapp(g) // Pass by reference
? g.className // Displays APPLICATION, variable changed to an object reference

Note that you when assigning to a variable that was passed by reference, you are free to change the type of the
variable.
Core language 55

parent
This example demonstrates what happens if you don’t enclose the special object reference this in parentheses
when it is passed to the method of another object. (Codeblocks are used for the methods; codeblocks declare
their parameters in-between pipe characters instead of using a PARAMETERS statement.)

f = new Form("F") // text property is "F"
g = new Form("G") // text property is "G"
f.test1 = {; g.meth(this)} // Pass-by-reference
f.test2 = {; g.meth((this))} // Pass-by-value
g.meth = {|o|; ? o.text} // Display text property of passed object
f.test1() // Pass-by-reference displays "G"
f.test2() // Pass-by-value displays "F"

Whenever an object’s method is called, the value of this is automatically updated to point to that object. If the
parameter this is passed by reference from the caller, the value of this changes to the called object before it is
assigned to the parameter variable. By enclosing the parameter this in parentheses to make it pass-by-value, this
does not change, and the parameter value is passed as expected.

See Also ARGVECTOR(), FUNCTION, LOCAL, PRIVATE

parent
The immediate container of an object.

Property of Most data access, form, and report objects

Description Many objects are related in a containership hierarchy. If the container object— referred to as the parent—is
destroyed, all the objects it contains—referred to as child objects—are also destroyed. Child objects may be
parents themselves and contain other objects. Destroying the highest-level parent destroys all the descendant
child objects.

An object’s parent property refers to its parent object.

For example, a form contains both data objects and visual components. A Query object in a form has the form as
its parent. The Query object contains a rowset, which contains an array of fields, which in turn contains Field
objects. Each object in the hierarchy has a parent property that refers back up the chain, up to the form, which
has no parent. A button on the form also has a parent property that refers to the form. If the form is destroyed,
all of the objects it contains are destroyed.

The parent property is often used to refer to sibling objects—other objects that are contained by the parent. For
example, one Field object can refer to another by using the parent reference to go one level up in the hierarchy,
then use the name of the other field to go back down one level to the sibling object.

The parent property is read-only.

PCOUNT()
Returns the number of parameters passed to a routine.

Syntax PCOUNT()

Description PCOUNT() is identical to ARGCOUNT().

PRIVATE
Declares variables that you can use in the routine where they're declared and in all lower-level subroutines.

Syntax PRIVATE <memvar list> |
ALL

 [LIKE <memvar skeleton 1>]
 [EXCEPT <memvar skeleton 2>]

<memvar list> The list of memory variables you want to declare private, separated by commas.
56 dBL Language Reference

PROCEDURE
ALL Makes private all memory variables declared in the subroutine.

LIKE <memvar skeleton 1> Makes private the memory variables whose names are like the memory
variable skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the wildcards
* and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2> Makes private all memory variables except those whose names are
like the memory variable skeleton you specify for <memvar skeleton 2>. Use characters of the variable names
and the wildcards * and ? to create <memvar skeleton 2>. You can use LIKE and EXCEPT in the same
statement, for example, PRIVATE ALL LIKE ?_* EXCEPT c_*.

Description Use PRIVATE in a function to avoid accidentally overwriting a variable with the same name that was declared
in a higher-level routine. Normally, variables are visible and changeable in lower-level routines. In effect,
PRIVATE hides any existing variable with the same name that was not created in the current routine.It’s a good
practice to always use LOCAL or PRIVATE. For example, if you write a function that someone else might use,
you probably won’t know what variables they’re using. If you don’t use LOCAL or PRIVATE, you might
accidentally change the value of one of their variables when they call your function.

Although they have some limitations, local variables are generally preferred over private variables because of
their more limited visibilty. You cannot accidentally overwrite them in a lower-level routine, which would
happen if you forget to hide a public variable; nor can you inadvertently use a variable created in a higher-level
routine, thinking that it’s one declared in the current routine, which would happen if you misspell the variable
name in the current routine. Also, private variables may be macro-substituted inadvertently with the & operator.
For example, if you specify the text of a menu item as “&Close” to designate the letter C as the pick character
and you happen to have a private variable named close, the variable with be macro-substituted when the menu is
created. If the variable was declared local, this wouldn’t happen.

You must declare a variable PRIVATE before initializing it to a particular value. Declaring a variable
PRIVATE doesn't create it, but it does hide any higher-level variable with the same name. After declaring a
variable PRIVATE, you can create and initialize it to a value with STORE or =. (The := operator will not work
at this point because the variable hasn’t been created yet.) Private variables are erased from memory when the
routine that creates them finishes executing.

Unless declared otherwise, variables you initialize in programs are private. If you initialize a variable that has
the same name as a variable created in the Command window or declared PUBLIC or PRIVATE in an earlier
routine—in other words, a variable that is visible to the current routine—and don't declare the variable
PRIVATE first, it is not created as a private variable. Instead, the routine uses and alters the value of the existing
variable. Therefore, you should always declare your private variables, even though that is the default.

For more information, see PUBLIC for a table that compares the scope of public, private, local, and static
variables.

See also LOCAL, PUBLIC, STATIC

PROCEDURE
Defines a function in a program file including variables to represent parameters passed to the function.

Description PROCEDURE is identical to FUNCTION. While earlier versions of dBASE differentiated between the two,
these differences have been removed. The descriptive terms “function” and “procedure” are used interchangably
in dBL. (The term “procedure file” refers to a program file opened with the SET PROCEDURE command,
which is not restricted to a file that contains PROCEDUREs only.)

See FUNCTION for details.

PROCREFCOUNT
Returns the number of references to a procedure file..

Syntax PROCREFCOUNT(<procedure file expC>)

<procedure file expC> TThe filename or the path and filename of a procedure file.
Core language 57

PUBLIC
Description Use PROCREFCOUNT() to find the number of references to a procedure file. PROCREFCOUNT() accepts a
single parameter which is the name of the procedure file or the full path and name of the procedure file for
which you want the count returned.

The returned value is numeric.

Each time a procedure file is loaded it's reference count is incremented by one.

Each time a procedure file is closed it's reference count is decremented by one.

When a procedure file's reference count reaches zero, the procedure file is removed from memory and its
contents are no longer accessible.

Use SET PROCEDURE TO <procedure file expC> to load a procedure file.

Use CLOSE PROCEDURE <procedure file expC> to close a procedure file.

PUBLIC
Declares global memory variables.

Syntax PUBLIC <memvar list>

<memvar list> The memory variables to make public.

Description A variable’s scope is determined by two factors: its duration and its visibility. A variable’s duration determines
when the variable will be destroyed, and its visibility determines in which routines the variable can be seen.

Use PUBLIC to declare a memory variable that has an indefinite duration and is available to all routines and to
the Command window.

You must declare a variable PUBLIC before initializing it to a particular value. Declaring a variable PUBLIC
creates it and initializes it to false. Once declared, a public variable will remain in memory until it is explicitly
released.

By default, variables you initialize in the Command window are public, and those you initialize in programs
without a scope declaration are private. (Variables initialized in the Command window when a program is
suspended are private to that program.) The following table compares the characteristics of variables declared
PUBLIC, PRIVATE, LOCAL and STATIC in a routine called CreateVar.

PUBLIC PRIVATE LOCAL STATIC
Created when it is declared and initialized
to a value of false

Y N N Y

Can be used and changed in CreateVar Y Y Y Y
Can be used and changed in lower-level
routines called by CreateVar

Y Y N N

Can be used and changed in higher-level
routines that call CreateVar

Y N N N

Automatically released when CreateVar
ends

N Y Y N

Public variables are rarely used in programs. To maintain global values, it’s better to create properties of the
_app object. As properties, they will not conflict with variables that you might have with the same name, and
they can communicate with each other more easily.

See Also CLEAR MEMORY, LOCAL, PRIVATE, RELEASE, RESTORE, SAVE, STATIC, STORE
58 dBL Language Reference

QUIT
QUIT
Closes all open files and terminates dBASE Plus.

Syntax QUIT [WITH <expN>]

WITH <expN> Passes a return code, <expN>, to the operating system when you exit dBASE Plus.

Description Use QUIT to end your dBASE Plus work. It has the same effect as closing the dBASE Plus application.

If you include QUIT in a program file, dBASE Plus halts the program's execution and exits dBASE Plus. To end
a program's execution without leaving dBASE Plus, use CANCEL or RETURN.

Use QUIT WITH <expN> to pass a return code to Windows or to another application.

Example At the end of a long day, suppose you want to exit dBASE Plus and run the latest 3-D video game, which
requires 128 MB of RAM. Your hands are already on the home keys of the keyboard, so instead of reaching to
press Alt-F4 or using the mouse to click the close button, you type the following in the Command window.

quit

REDEFINE
Assigns new values to an object’s properties.

Syntax REDEFINE <class name> <object name>
[OF <container object>]
[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <changed property list>]
[CUSTOM <new property list>]

<class name> The class of the object you want to redefine.

<object name> The identifier for the object you want to modify. <object name> is either an object
reference variable, or a named property of the container if a <containter object> is specified.

OF <container object> Identifies the object that contains the object you want to redefine.

FROM <row>, <col> TO <row>, <col> | AT <row>, <col> Specifies the new location and size of
the object within its container. FROM and TO specify the upper left and lower right coordinates of the object,
respectively. AT specifies the position of the upper left corner.

PROPERTY <changed property list> Specifies new values you assign to the existing properties of
the object.

CUSTOM <new property list> Specifies new properties you create for the object and the values you
assign to them.

Description Use REDEFINE to assign new values to the properties of an existing object.

While the REDEFINE syntax offers some amenities (like DEFINE), it is not as flexible as assigning values in a
WITH block. In particular, with REDEFINE you cannot assign values to the elements of properties that are
arrays.

See Also CLASS, DEFINE, WITH

REFCOUNT()
Returns the number of references to an object.

Syntax REFCOUNT(<oRef>)

<oRef> Object reference to any valid object

Description Use REFCOUNT() to find the number of references to an object. REFCOUNT() accepts a single parameter
which is the object reference for which you want the count returned. The returned value is numeric.
Core language 59

RELEASE
Example f = New Form()
? REFCOUNT(f) // Returns 1
g = f
? REFCOUNT(f) // Returns 2
? REFCOUNT(g) // Returns 2
f = Null
? REFCOUNT(g) // Returns 1

See Also FINDINSTANCE()

RELEASE
Deletes specified memory variables.

Syntax RELEASE <memvar list> |
ALL

 [LIKE <memvar skeleton 1>]
 [EXCEPT <memvar skeleton 2>]

<memvar list> The specific memory variables to release from memory, separated by commas.

ALL Removes all variables in memory (except system memory variables).

LIKE <memvar skeleton 1> Removes from memory all memory variables whose names are like the
memory variable skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the
wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2> Removes from memory all memory variables except those whose
names are like the memory variable skeleton you specify for <memvar skeleton 2>. Use characters of the
variable names and the wildcards * and ? to create <memvar skeleton 2>. You can use LIKE and EXCEPT in
the same statement, for example, RELEASE ALL LIKE ?_* EXCEPT c_*.

Description Use RELEASE to clear memory variables. To remove large groups of variables, use the option ALL [LIKE
<memvar skeleton 1>] [EXCEPT <memvar skeleton 2>].

If you issue RELEASE ALL [LIKE <memvar skeleton 1>] [EXCEPT <memvar skeleton 2>] in a program or
function, dBASE Plus releases only the local and private variables declared in that routine. It doesn't release
public or static variables, or variables declared in higher-level routines.

To release a variable by name, that variable must be in scope. For example, you may release a private variable
declared in a higher-level routine by name, because the private variable is still visible; but you cannot release a
local variable the same way because the local variable is not visible outside its routine.

Note RELEASE does not explicitly release objects. However, if the only reference to an object is in a memory
variable, releasing the variable with RELEASE will in turn release the object. In contrast, RELEASE OBJECT
will explicitly release an object, but it does not release any variables that used to point to that object.

When control returns from a subroutine to its calling routine, dBASE Plus clears from memory all variables
initialized in the subroutine that weren't declared PUBLIC or STATIC. Thus, you don't have to release a
routine's local or private variables explicitly with RELEASE before the routine terminates.

See Also CLEAR MEMORY, LOCAL, PRIVATE, PUBLIC, QUIT, RELEASE OBJECT, RESTORE, RETURN,
SAVE, STATIC

RELEASE OBJECT
Explicitly releases an object from memory.

Syntax RELEASE OBJECT <oRef>

<oRef> An object reference to the object you want to release.

Description RELEASE OBJECT functions identically to the release() method. See page 15-568 for details.
60 dBL Language Reference

RESTORE
Because release() is a method, its use is preferred, especially when called from a method. But release() is not a
method in all classes. Use RELEASE OBJECT when the object does not have a release() method, or to release
an object regardless of its class.

If <oRef> is a variable, RELEASE OBJECT does not release that variable, or any other variables that point to
the just-released object. Testing these variables with EMPTY() will return true once the object has been
released.

See Also release()

RESTORE
Copies the memory variables stored in the specified disk file to active memory.

Syntax RESTORE FROM <filename> | ? | <filename skeleton>
[ADDITIVE]

<filename> | ? | <filename skeleton> The file of memory variables to restore. RESTORE FROM ?
and RESTORE FROM <filename skeleton> display a dialog box, from which you can select a file. If you
specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the path
you specify with SET PATH. If you specify a file without including its extension, dBASE Plus assumes MEM.

ADDITIVE Preserves existing memory variables when RESTORE is executed.

Description Use RESTORE with SAVE to retrieve and store important memory variables. All local and private variables are
cleared at the end of execution of the routine that created them, while all public and static variables are cleared
when you exit dBASE Plus. To preserve these values for future use, store them in a memory file by using SAVE.
You can then retrieve these values later by using RESTORE.

SAVE saves simple variables only—those containing numeric, string, logical, or null values—and objects of
class Array. It ignores all other object reference variables. Therefore you can neither SAVE nor RESTORE
objects (other than arrays).

Without the ADDITIVE option, RESTORE clears all existing user memory variables before returning to active
memory the variables stored in a memory file. Use ADDITIVE when you want to restore a set of variables
while retaining those already in memory.

Note If you use ADDITIVE and a restored variable has the same name as an existing variable, the restored variable
will replace the existing one.

If you issue RESTORE in the Command window, dBASE Plus makes all restored variables public. When
dBASE Plus encounters RESTORE in a program file, it makes all restored variables private to the currently
executing function.

See Also CLEAR MEMORY, RELEASE, SAVE, STORE

RETURN
Ends execution of a program or function, returning control to the calling routine—program or function—or to the
Command window.

Syntax RETURN [<return exp>]

<return exp> The value a function returns to the calling routine or the Command window.

Description Programs and functions return to their callers when there are no more statements to execute. When ended this
way, they do not return a value.

Use RETURN in a program or function to return a value, or to return before the end of the program or function.

If the RETURN is inside a TRY block, the corresponding FINALLY block, if any, is executed before returning.
If there is a RETURN inside that FINALLY block, whatever it returns is returned instead.

See also CANCEL, FUNCTION
Core language 61

SAVE
SAVE
Stores memory variables to a file on disk.

Syntax SAVE TO <filename> | ? | <filename skeleton>
[ALL]
[LIKE <memvar skeleton 1>]
[EXCEPT <memvar skeleton 2>]

TO <filename> | ? | <filename skeleton> Directs the memory variable output to be saved to the
target file <filename>. By default, dBASE Plus assigns a MEM extension to <filename> and saves the file in the
current directory. The ? and <filename skeleton> options display a dialog box in which you specify the name of
the target file and the directory to save it in.

ALL Stores all memory variables to the memory file. If you issue SAVE TO <filename> with no options,
dBASE Plus also saves all memory variables to the memory file.

LIKE <memvar skeleton 1> Stores in the target file the memory variables whose names are like the
memory variable skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the
wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2>] Stores in the target file all memory variables except those whose
names are like the memory variable skeleton you specify for <memvar skeleton 2>. Use characters of the
variable names and the wildcards * and ? to create <memvar skeleton 2>.

Description Use SAVE with RESTORE to store and retrieve important memory variables. Local and private variables are
cleared at the end of the routine that created them, while public and static variables are cleared when you exit
dBASE Plus. To preserve these values for future use, store them in a memory file with SAVE. Use RESTORE to
retrieve them.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE Plus displays a dialog box
asking if you want to overwrite the file. If SET SAFETY is OFF, any existing file with the same name is
overwritten without warning.

Note SAVE saves simple variables only—those containing numeric, string, logical, or null values—and objects of
class Array. It ignores all other object reference variables. Therefore you can neither SAVE nor RESTORE
objects (other than arrays). SAVE also does not save function pointer, bookmark, or system memory variables.

See Also RELEASE, RESTORE, STORE

SET LIBRARY
Opens a dBASE Plus program file as the library file, making its functions, classes, and methods available for
execution.

Syntax SET LIBRARY TO [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The program file to open. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without including its path,
dBASE Plus looks for the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including its extension, dBASE Plus assumes .PRO (a compiled object file). If dBASE
Plus can't find a .PRO file, it looks for a .PRG file (a source file). If dBASE Plus finds a .PRG file, it compiles it.

Description SET LIBRARY is similar to SET PROCEDURE. Both commands open a program file, allowing access to the
functions, classes, and methods the file contains. The difference is that while SET PROCEDURE can add a
program file to a list of procedure files, there can be only one library file open at any time. The library file
cannot be closed with the SET PROCEDURE command.

Otherwise, the library file is treated like a procedure file. The library and procedure files are searched in the
order they were opened. You may want to designate a stable program file with core functionality as the library
file, and all other program files as procedure files.

Issue SET LIBRARY TO without a file name to close the open library file.

See Also DO, FUNCTION, PROCEDURE, SET(), SET PROCEDURE
62 dBL Language Reference

SET PROCEDURE
SET PROCEDURE
Opens a dBASE Plus program file as a procedure file, making its functions, classes, and methods available for
execution.

Syntax SET PROCEDURE TO[<filename> | ? |<filenameskeleton>][ADDITIVE][PERSISTENT]

<filename> | ? | <filename skeleton> The procedure file to open. The ? and <filename skeleton>
options display a dialog box, from which you can select a file. If you specify a file without including its path,
dBASE Plus looks for the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including its extension, dBASE Plus assumes .PRO (a compiled object file). If dBASE
Plus can't find a .PRO file, it looks for a .PRG file (a source file). If dBASE Plus finds a .PRG file, it compiles it.

ADDITIVE
Prior to dBASE Plus version 2.50 Opens the procedure file(s) without closing any you've opened with
previous SET PROCEDURE statements. SET PROCEDURE TO < filename> (without the ADDITIVE option)
closes all procedure files you've opened with previous SET PROCEDURE statements other than those tagged
PERSISTENT.

Starting with dBASE Plus version 2.50 SET PROCEDURE TO <filename> acts as if ADDITIVE was
included. In other words, SET PROCEDURE TO <filename> (without specifying ADDITIVE) will NOT close
any open procedure files

PERSISTENT Opens the procedure file with the PERSISTENT designation and, unless it is specifically
referenced in the CLOSE PROCEDURE<filename list>, prevents it from being closed by any means other than
CLOSE PROCEDURE PERSISTENT or CLOSE ALL PERSISTENT.

All SET PROCEDURE TO statements, streamed in the form class definition, will have a PERSISTENT
designation when the form's persistent property is set to true in The Form Designer.

Description To execute a function or method, that function must be loaded in memory. To be more precise, a simple pointer
to that function must be in memory. The contents of the function itself are not necessarily in memory at any
given time; if not, the contents get loaded into memory automatically when the function is executed. But if that
function’s pointer is in memory, it is considered to be loaded.

Whenever you execute a program file with DO (or with the call operator), it is loaded implicitly; pointers to all
of the functions, classes, and methods in that file are loaded into memory. Therefore, code in a program file may
always call any other functions or methods in the same file.

To access functions, classes, and methods in other program files, load the program file with SET PROCEDURE
first. Its function pointers stay in memory until the program file is unloaded with CLOSE PROCEDURE or SET
PROCEDURE TO (with no options).

dBASE Plus uses a reference count system to manage program files in memory. Each loaded program file has a
counter for the number of times it has been loaded, either explicitly with SET PROCEDURE or implicitly. As
long as the count is greater than zero, the file stays loaded. Calling CLOSE PROCEDURE reduces the count by
one. Therefore, if you issue SET PROCEDURE twice, you need to issue CLOSE PROCEDURE twice to close
the program file.

A program file’s load count has no impact on memory; it is simply a counter. Loading a program file 10 times
uses the same amount of memory as loading it once.

Whenever a function is called, dBASE Plus looks for the routine in specific places in a specific order. After
searching the program files in the call chain, dBASE Plus looks in files opened with SET PROCEDURE. See
the DO command for an explanation of the search path and order.

To make the file containing the currently executing routine a procedure file—for example, after creating an
object, to make the object’s methods which are defined in the same file available to it—execute the following
statement:

set procedure to program(1) additive

Some operations, such as assigning a menuFile to a form or opening a form defined in a WFM file,
automatically open the associated file as a procedure file, and that statement is not necessary.
Core language 63

SET()
If you issue SET PROCEDURE TO with no options, dBASE Plus closes all procedure files you've opened with
SET PROCEDURE other than those tagged PERSISTENT. If you want to close only specific procedure files, use
CLOSE PROCEDURE. The maximum number of open procedure files depends on available memory.

Note A common mistake is to forget the ADDITIVE clause when opening a procedure file. This will close all other
open procedure files not tagged PERSISTENT.

When dBASE Plus executes or loads a program file, it will automatically compile the program file into object
code when either:

• There is no object code file, or

• SET DEVELOPMENT is ON, and program file is newer than the object code file (the source code file’s last
update date and time is later than the object code file’s)

If a file is opened as a procedure file and the file is changed in the Source editor, the file is automatically
recompiled so that the changed code takes effect immediately.

Use TYPE() to detect whether a function, class, or method is loaded into memory. If so, TYPE() will return
“FP” (for function pointer), as shown in the following IF statements:

if type("myfunc") # "FP" // Function name
if type("myclass::myclass") # "FP" // Class constructor name
if type("myclass::mymethod") # "FP" // Method name

See Also CLOSE PROCEDURE, COMPILE, DO, FUNCTION, SET(), SET LIBRARY

SET()
Returns the current setting of a SET command or function key.

Syntax SET(<expC> [,<expN>])

<expC> A character expression that is the SET command or function key whose setting value to return.

<expN> The nth such setting to return.

Description Use SET() to get a SET or function key setting so that you can change it or save it. For example, you can issue
SET() at the beginning of a routine to get current settings. You can then save these settings in memory
variables, change the settings, and restore the original settings from the memory variables at the end of the
routine.

When dBASE Plus supports a SET and a SET…TO command that use the same keyword, SET() returns the
ON|OFF setting and SETTO() returns the SET…TO setting. For example, you can issue SET FIELDS ON,
SET FIELDS OFF, or SET FIELDS TO <field list>. SET("FIELDS") returns "ON" or "OFF" and
SETTO("FEILDS") returns the field list as a character expression.

If dBASE Plus supports a SET…TO command but not a corresponding SET command, SET() and SETTO()
both return the SET…TO value. For example, SET("BLOCKSIZE") and SETTO("BLOCKSIZE") both return
the same value.

When <expC> is a function key name, such as "F4", SET() returns the function key setting. To return the value
of a Ctrl+function key setting, add 10 to the function key number; to return the value of a Shift+function key
setting, add 20 to the function key number. That is, to return the value of Ctrl+F4, use SET("F14"), and to
return the value of Shift+F4, use SET("F24").

If a procedure file is open, SET("PROCEDURE") returns the name of the procedure file. If more than one
procedure file is open, SET("PROCEDURE") returns the name of the first one loaded. To return the name of
another open procedure file, enter a number as the second argument; for example, SET("PROCEDURE",2)
returns the name of the second procedure file that was loaded. If no procedure files are open,
SET("PROCEDURE") returns an empty string ("").

The command you specify for <expC> can be abbreviated to four letters in most cases, following the same rules
as those for abbreviating keywords. For example, SET("DECI") and SET("DECIMALS") have the same
meaning. The <expC> argument is not case-sensitive.

Example The following example stores the value of a setting at the beginning of a function, and restores it at the end.
function findMatch(xArg)
64 dBL Language Reference

SETTO()
 local lRet
 private cExact // Can't be local for macro substitution
 cExact = set("EXACT") // Store "ON" or "OFF" to character variable
 set exact on
 lRet = seek(xArg) // Does exact match exist?
 set exact &cExact // Either "set exact ON" or "set exact OFF"
 return lRet

See Also DISPLAY STATUS, SET, SET FUNCTION, SETTO()

SETTO()
Returns the current setting of a SET...TO command or function key.

Syntax SETTO(<expC> [,<expN>])

<expC> A character expression that is the SET...TO command whose setting value to return.

<expN> The nth such setting to return.

Description Use SETTO() to get a SET or function key setting so that you can change it or save it. For example, you can
issue SETTO() at the beginning of a routine to get current settings. You can then save these settings in memory
variables, change the settings, and restore the original settings from the memory variables at the end of the
routine.

When dBASE Plus supports a SET and a SET…TO command that use the same keyword, SET() returns the
SET setting and SETTO() returns the SET…TO setting. For example, you can issue SET FIELDS ON, SET
FIELDS OFF, or SET FIELDS TO <field list>. SET("FIELDS") returns the ON or OFF setting and
SETTO("FIELDS") returns the field list as a character expression.

SETTO() is almost identical to SET(). For more information, see SET().

See Also DISPLAY STATUS, SET, SET(), SET FUNCTION

STATIC
Declares memory variables that are local in visibility but public in duration.

Syntax STATIC <variable 1> [= <value 1>] [,<variable 2> [= <value>] ...]

<variable> The variable to declare static.

<value> The value to assign to the variable.

Description Use STATIC to declare memory variables that are visible only to the routine where they’re declared but are not
automatically cleared when the routine ends. Static variables are different from other scopes of memory
variables in two important ways:

• You can declare and assign a value to a static variable in a single statement, referred to as an in-line
assignment.

• Static variables initialized in a single statement are assigned the initialization value whenever the variable is
undefined, including the first time the routine is executed and after the variable is cleared.

You must declare a variable STATIC before initializing it to a particular value. Declaring a variable STATIC
without an in-line assignment creates it and initializes it to false. Once declared, a static variable will remain in
memory until it is explicitly released (usually with CLEAR MEMORY).

Because static variables are not released when the routine in which they are created ends, you can use them to
retain values for subsequent times that routine runs. To do this, use an in-line assignment. The first time dBASE
Plus encounters the STATIC declaration, the variable is initialized to the in-line value. If the subroutine is run
again, the variable is not reinitialized; instead, it retains whatever value it had when the routine last ended.

Because dBL is a dynamic object-oriented language, you usually assign new properties to an object to retain
values between method calls. For example, if you’re calculating a running total in a report, you can create a
property of the Report or Group object to store that number.
Core language 65

STORE
Static variables are only useful for truly generic functions that are not associated with objects, functions that
might be called from different objects that need to share a persistent value, or for values that are maintained by
a class—not each object. In this last case, the variables are referred to as static class variables.

For more information, see PUBLIC for a table that compares the scope of public, private, local, and static
variables.

Example The following is a stopwatch function that returns the number of seconds since the last time it was called.
function stopwatch()
 local thisTime, nSecs
 thisTime = new Date().getTime()
 static lastTime = thisTime
 nSecs = (thisTime - lastTime) / 1000
 lastTime := thisTime
 return nSecs

The function uses a Date object’s getTime() method, which keeps time in milliseconds. Whenever the function
is called, the variable thisTime is set to the current time in milliseconds. The first time through the function, the
lastTime variable is set to that same time. The difference is calculated, and then the value of thisTime is saved in
the static variable lastTime for the next function call.

To reset the timer, call the function; you may ignore the return value. Then the next time you call the function,
you will get the elapsed time. If you’re measuring a series of intervals, call the function once between intervals.
For example:

stopwatch() // Reset timer
// Process 1
time1 = stopwatch() // Time for first process
// Process 2
time2 = stopwatch() // Time for second process
// etc.

The static variable lastTime maintains its value between function calls. The in-line assignment makes sure it has
a value the first time the function is called (the function will return zero the first time), and is ignored from then
on, unless the variable is explicitly released. The static variable is hidden to all other functions, so you can’t
accidentally overwrite it.

See Also CLEAR MEMORY, LOCAL, PRIVATE, PUBLIC, RELEASE

STORE
Stores an expression to specified memory variables or properties.

Syntax STORE <exp> TO <memvar list>

<exp> The expression to store.

TO <memvar list> The list of memory variables and/or properties to store <exp>, separated by commas.

Description Use STORE to store any valid expression to one or more variables or properties.

Common style dictates the use of STORE only when storing a single value to multiple locations. When storing
to a single variable or property, an assignment operator, either = or :=, is preferred.

To specify the scope of a variable, use LOCAL, PRIVATE, PUBLIC, or STATIC before assigning a value to the
variable.

See Also LOCAL, PRIVATE, PUBLIC, RESTORE, SAVE, STATIC

THROW
Generates an exception.

Syntax THROW <exception oRef>

<exception oRef> A reference to the Exception object you want to pass to the CATCH handler.
66 dBL Language Reference

TRY
Description Use THROW to manually generate an exception. THROW must pass a reference to an existing Exception
object that describes the exception.

Example Suppose you are using exceptions to manage execution in a deeply nested set of conditional statements and
loops. You create your own exception class:

class JumpException of Exception
endclass

Then in the code, you create the JumpException object and THROW it if needed:
try
 local j
 j = new JumpException()

 // User developed code
if lItsNoGood

throw j // Deep in the code, you want out
 endif

 // User developed code
 catch (JumpException e)
 // Do nothing; JumpException is OK
catch (Exception e)
 // Normal error
 logError(new Date(), e.message) // Record error message
 // and continue
endtry

If there is a normal error, the second CATCH block saves it to a log file, using a function you wrote, and
execution continues.

See also class Exception, TRY...ENDTRY

TRY
A control statement used to handle exceptions and other deviations of program flow.

Syntax TRY
<statement block 1>

CATCH(<exception type1> <exception oRef1>)
<statement block 2>

[CATCH(<exception type2> <exception oRef2>)
<statement block 3>]

[CATCH …]
[FINALLY

<statement block 4>]
ENDTRY

TRY <statement block 1> A statement block for which the following CATCH or FINALLY block—or
both—will be used if an exception occurs during execution. A TRY block must be followed by either a CATCH
block, a FINALLY block, or both.

CATCH <statement block 2> A statement block that is executed when an exception occurs.

<exception type> The class name of the exception to look for—usually, Exception.

<exception oRef> A formal parameter to receive the Exception object passed to the CATCH block.

CATCH… Catch blocks for other types of exceptions.

FINALLY <statement block 4> A statement block that is always executed after the TRY block, even if
an exception or other deviation of program flow occurs. If there is both a CATCH and a FINALLY, the
FINALLY block executes after the CATCH block.

ENDTRY A required keyword that marks the end of the TRY structure.

Description An exception is a condition that is either generated by dBASE Plus, usually in response to an error, or by the
programmer. By default, dBASE Plus handles an exception by displaying an error dialog and terminating the
Core language 67

TRY
currently executing program. You can use FINALLY to make sure some code gets executed even if there is an
exception, and CATCH to handle the exception yourself, in the following combinations:

• For a block of code that may generate an exception, place the code inside a TRY block. To prevent the
exception from generating a standard error dialog and terminating execution, place exception handling code
in a CATCH block after the TRY. If an exception occurs, execution immediately jumps to the CATCH
block; no more statements in the TRY block are executed. If no exception occurs, the CATCH block is not
executed.

• If there’s some code that should always be executed at the end of a process, whether or not the process
completes successfully, place that code in a FINALLY block. With TRY and FINALLY but no CATCH, if
an exception occurs during the TRY block, execution immediately jumps to the FINALLY block; no more
statements in the TRY block are executed. Since there was no CATCH, you would still have an exception,
which if not handled by a higher-level CATCH as described later, dBASE Plus would handle as usual, after
executing the FINALLY block. If no exception occurs, the FINALLY block is executed after the TRY.

• If you have all three—TRY, CATCH, and FINALLY—if an exception occurs, execution immediately jumps
to the CATCH block; after the CATCH block executes, the FINALLY block is executed. If there is no
exception during the TRY, then the CATCH block is skipped, and the FINALLY block is executed.

The code that is covered by TRY doesn’t have to be inside the statement block physically; the coverage exists
until that entire block of code is executed. For example, you may have a function call inside a TRY block, and if
an exception occurs while that function is executing—even if that function is defined in another
programfile—execution jumps back to the corresponding CATCH or FINALLY.

A TRY block may be followed by multiple CATCH blocks, each with its own <exception type>. When an
exception occurs, dBASE Plus compares the <exception type> with the className property of the Exception
object. If they match, that CATCH block is executed and all others are skipped. If the className does not
match, dBASE Plus searches the class hierarchy of that object to find a match. If no match is found, the next
CATCH block is tested. Class name matches are not case-sensitive. For example, the DbException class is a
subclass of the Exception class. If the blocks are arranged like this:

try
 // Statements
catch (DbException e)
 // Block 1
catch (Exception e)
 // Block 2
endtry

and a DbException occurs, execution goes to Block 1, because that’s a match. If an Exception occurs, execution
goes to Block 2, because Block 1 doesn’t match, but Block 2 does. If the blocks are arranged the other way
around, like this:

try
 // Statements
catch (Exception e)
 // Block 1
catch (DbException e)
 // Block 2
endtry

then all exceptions always go to Block 1, because all Exceptions are derived from the Exception class.
Therefore, when using multiple CATCH blocks, list the most specific exception classes first.

You can generate exceptions on purpose with the THROW statement to control program flow. For example, if
you enter deeply nested control structures or subroutines from a TRY block, you can THROW an exception
from anywhere in the nested code. This would cause execution to jump back to the corresponding CATCH or
FINALLY, instead of having to exit each control structure or subroutine one-by-one.

You may also nest TRY structures. An exception inside the TRY block causes execution to jump to the
corresponding CATCH or FINALLY, but an exception in a CATCH or FINALLY is simply treated as an
exception. Also, if you have a TRY and FINALLY but no CATCH, that leaves you with an unhandled
exception. If the TRY/CATCH/FINALLY is itself inside a TRY block, then that exception would be handled at
that next higher level, as illustrated in the following code skeleton:

try
 // exception level 1
68 dBL Language Reference

TRY
 try
 // exception level 2
 catch (Exception e)
 // handler for level 2
 // but exception level 1
 finally
 // level 2
 endtry
catch (Exception e)
 // handler for level 1
endtry

Note that if an exception occurs in the level 2 CATCH, the level 2 FINALLY is still executed before going to
the level 1 CATCH, because a FINALLY block is always executed after a TRY block.

In addition to exceptions, other program flow deviations—specifically EXIT, LOOP, and RETURN—are also
caught by TRY. If there is a corresponding FINALLY block, it’s executed before control is transferred to the
expected destination. (CATCH catches only exceptions.)

Example The following example illustrates how to code a transaction, which is an all-or-nothing attempt at multiple
database changes. If any of the changes should fail—for example, attempting to write a new record to disk,
which would fail if there was no more disk space—the entire transaction must be rolled back:

try
 form.rowset.parent.database.beginTrans() // Begin the transaction
 //
 // make changes
 //
 form.rowset.parent.database.commit() // If you got this far, there were no
 // errors, so commit the changes
catch (Exception e) // The parameter receives the Exception object that describes
 // the error (not used in this example, but required)
 form.rowset.parent.database.rollback() // Undo any changes that did take
 // display an error message
endtry

This example runs a process in a subdirectory, the name of which is passed as the parameter cDir. It uses two
TRY blocks to create the subdirectory if necessary, and return to the previous directory even if there is an error
in the process:

try
 // Instead of bothering to see if the directory already exists
 md &cDir // Go ahead and try to create the directory
catch (Exception e) // If there's an error creating the directory,
 // execution goes here.
 // Do nothing -- this assumes the error is because the directory already exists.
 // By using a CATCH, the error is ignored.
finally
 cd &cDir // Now try and go to that directory
 // At this point, if you can't go to the directory, then that's a real error.
 // That would be handled normally, since the error occurred in the FINALLY and
 // is not nested inside another TRY.
endtry

try
 //
 // Run the process
 //
// No CATCH, so if there's an error, there will be a dialog
finally
 // But because of this FINALLY, the previous directory will be restored regardless.
 // This makes the code easier to re-test, since you don’t have to switch back to
 // your main directory manually after an error.
 cd ..
endtry

Note that in the first TRY block, the statement to switch to the subdirectory doesn’t have to be in a FINALLY
block. Unlike the second TRY block, where the FINALLY will switch back to the parent directory even if there
Core language 69

TYPE()
is an error, the switch to the subdirectory would work just as well between the two TRY blocks. It’s shown in
the FINALLY as an example of what would happen if there is an exception in a FINALLY block.

See also EXIT, LOOP, RETURN, THROW

TYPE()
Returns a character string that indicates a specified expression's data type.

Syntax TYPE(<expC>)

<expC> A character string containing the expression whose type to evaluate and return.

Description Use TYPE() to determine the data type of an expression, including whether a variable is undefined.

TYPE() expects a character string containing the expression. This allows you to specify a variable name that
may not exist. (If you were to use an actual expression with an undefined variable instead of putting the
expression in a string, the expression would cause an error.) The <expC> may be any valid character expression,
including a variable or a literal string representing the expression to evaluate.

TYPE() returns a character string containing a one- or two- letter code indicating the data type. The following
table lists the values TYPE() returns.

Expression type TYPE() code
Array object A
DBF or Paradox binary field (BLOB) B
Bookmark BM
Character field or string value, Paradox alphanumeric field C
Codeblock CB
Date field or value, Paradox date field D
Float field, Paradox numeric or currency field F
Function pointer FP
OLE (general) field G
Logical field or value L
DBF or Paradox memo field M
DBF numeric field or value N
Object reference (other than Array) O
Undefined variable, field, invalid expression, or null U

Note that an object of class Array is a special case. Unlike other objects, its code is “A” (this is for backward
compatibility with earlier versions of dBASE).

TYPE() cannot “see” variables declared as local or static. If there is a public or private variable hidden by a
local or static variable of the same name, then TYPE() will return the code for that hidden variable. Otherwise,
that variable and any expression using that variable is considered undefined.

Use TYPE() to detect whether a function, class, or method is loaded into memory. If so, TYPE() will return
“FP” (for function pointer), as shown in the following IF statements, which detect if the named function is not
loaded (this is done to determine if the specified function needs to be loaded):

if type("myfunc") # "FP" // Function name
if type("myclass::myclass") # "FP" // Class constructor name
if type("myclass::mymethod") # "FP" // Method name

Example The following statements demonstrate that TYPE() expects a character string containing an expression:
dVar = date() // Create a date variable
? type(dVar) // Error: Data type mismatch. Expecting: Character
? type("dVar") // Displays "D" for Date, as do the next two statements
? type("D" + "var") // Any expression containing the variable name works
 // (and variable names are not case-sensitive)
? type("date()") // String can contain any expression, not just single variable
70 dBL Language Reference

WITH
The following routine is used to read the data in a generated text file into the corresponding fields of a table.
Character fields in the text file are the same length as in the table. Dates are formatted in six characters as
MMDDYY (which matches the current SET DATE format). Numbers are always twelve characters and
represent currency stored in cents, so it needs to be divided by 100.

function decodeLine(cLine, aDest)
 #define YEAR_LEN 2
 #define NUM_LEN 12
 local nPtr, nFld, cFld, nLen
 nPtr = 1 // Pointer into string
 for nFld = 1 to fldcount()
 cFld = field(nFld) // Store name of field in string variable for reuse
 do case
 case type(cFld) == "C"
 aDest[nFld] = substr(cLine, nPtr, flength(nFld))
 nPtr += flength(nFld)
 case type(cFld) == "D"
 aDest[nFld] = ctod(substr(cLine, nPtr, 2) + "/" + ;
 substr(cLine, nPtr + 2, 2) + "/" + ;
 substr(cLine, nPtr + 4, YEAR_LEN))
 nPtr += 2 + 2 + YEAR_LEN
 case type(cFld) == "N"
 aDest[nFld] = val(substr(cLine, nPtr, NUM_LEN)) / 100
 nPtr += NUM_LEN
 endcase
 endfor

An array is passed to the routine along with the line to read. The field values are stored in the array, which is
appended to the table with APPEND FROM ARRAY in the calling routine (not shown here). The function
defines some manifest constants for the size of a numeric field and whether the year is two or four digits in case
this changes in the future. A FOR loop goes through each field in the table. The name of each field is stored in a
variable for convenience; it’s used repeatedly in the DO CASE structure. The variable is a string containing the
name of the field, which TYPE() expects. In contrast, TYPE("cFLD") would always return “C”.

The following function is a slight variation on the TYPE() function. It returns the type of a value, but it expects
the expression itself as a parameter instead of a string containing the expression. It therefore cannot handle
undefined or invalid expressions, but it can handle local and static variables. It also returns the character “0”
(zero) when the expression contains the value null, to differentiate it from expressions that have no value. For
example, if you have a function that does not RETURN a value, that function call has an undefined value.

function valType
 parameter x
 return iif(x == null, "0", type("x"))

The function works by taking the parameter as a private variable named x. Then if it’s not null, the TYPE()
function is used with the string “x” to return the type of the parameter.

See Also EMPTY(), STORE,

WITH
A control statement that causes all the variable and property references within it to first assume that they are
properties of the specified object.

Syntax WITH <oRef>
<statement block>

ENDWITH

<oRef> A reference to the default object.

<statement block> A statement block that assumes that the specified object is the default.

ENDWITH A required keyword that marks the end of the WITH structure.

Description Use WITH when working with multiple properties of the same object. Instead of using the object reference and
the dot operator every time you refer to a property of that object, you specify the object reference once. Then
Core language 71

WITH
every time a variable or property name is used, it is first checked to see if that name is a property of the specified
object. If it is, then that property is used. If not, then the variable or property name is used as-is.

You cannot take advantage of the WITH syntax to create properties. For example:
with someObject
 existingProperty = 2
 newProperty = existingProperty
endwith

Suppose that existingProperty is an existing property of the object, and newProperty is not. In the first statement
in the WITH block, the value 2 is assigned to the existing property. Then in the second statement, newProperty
is treated like a variable, because it does not exist in the object. The statement creates a variable named
newProperty, assigning to it the value of the existingProperty property.

Method name conflicts You may encounter naming conflicts when calling methods inside a WITH
block in two ways:

The name of the method matches the name of a built-in function. The built-in function takes precedence.
For example, you create a class with a method center() and try to call it within a WITH block:

with x
 center()
 // other code
endwith

The CENTER() function would be called. It expects parameters, so you’ll get a runtime error. You might check
your center() method, which has no parameters, and wonder what’s going on.

It may be possible to call your method by using the explicit object reference, which is normally redundant in a
WITH block, and will not work if the object happens to have a property with the same name as the object
reference. For example, you could call your center() method like this:

with x
 x.center()
 // other code
endwith

If the object x happens to have a property named x, then you would have to create a temporary duplicate
reference that does not have the same name as the any other property of x outside the WITH block first:

y = x
with x
 y.center()
 // other code
endwith

The name of the method matches the first word of a command. For example, if the object f has a method
named open(), the method call with the dot operator would look like:

f.open()

Using WITH, it would be:
with f
 open()
endwith

but that code will not work because the name of the method matches the first word in a dBL command; there are
some commands that start with the word OPEN. When the compiler sees the word OPEN, it considers that
statement to be a command starting with that keyword, and looks for the rest of the command; for example,
OPEN DATABASE. When it doesn’t find the rest of the command, it considers the statement to be incorrect
and generates a compile-time error.

To call such a method inside a WITH block, you may use an explicit object reference as shown above, or change
the statement from a direct method call to an indirect method call—an assignment or through the EMPTY()
function. Many methods return values. By assigning the return value of the method call to variable, even a
dummy variable, you bypass the naming conflict. For example, with another object that has a copy() method
(there are several commands that begin with the word COPY):

with x
 dummy = copy() // As long as x does not have property named dummy!
72 dBL Language Reference

endwith

For methods that don’t return values, you may use the EMPTY() function, which will safely “absorb” the
undefined value:

with x
 empty(copy())
endwith

Example The following code from a WFM file assigns values to the properties of a newly created Query object inside a
WITH block. In this excerpted code, this refers to the form:

this.messages1 = new Query()
with this.messages1
 left = 55.25
 top = 4.9
 sql = "select * from MESSAGES.DB"
 active = true
endwith

Without the WITH block, the code would have looked like this:
this.messages1 = new Query()
this.messages1.left = 55.25
this.messages1.top = 4.9
this.messages1.sql = "select * from MESSAGES.DB"
this.messages1.active = true
Core language 73

C h a p t e r

Chapter 6String objects
dBASE Plus supports two types of strings:

• A primitive string compatible with earlier versions of dBASE

• A JavaScript-compatible String object.

dBASE Plus will convert one type of string to the other on-the-fly as needed. For example, you may use a String
class method on a primitive string value or a literal string:

? version().toUpperCase()
? "peter piper pickles".toProperCase()

This creates a temporary String object from which the method or property is called. You may also use a string
function on a String object.

Many string object methods have built-in string functions that are practically identical, while others are merely
similar with subtle differences.

Note JavaScript is zero-based; dBL is one-based. For example, to extract a substring starting with the third character,
you would use the parameter 2 with the substring() method, and the parameter 3 with the SUBSTR() function.

The maximum length of a string in dBL is approximately 1 billion characters, or the amount of virtual memory,
whichever is less.

class String
A string of characters.

Syntax [<oRef> =] new String([<expC>])

<oRef> A variable or property in which you want to store a reference to the newly created String object.

<expC> The string you want to create. If omitted or null, the resulting string is empty.

Properties The following tables list the properties and methods of the String class. (No events are associated with this
class.)

Property Default Description
baseClassName STRING Identifies the object as an instance of the String class
className STRING Identifies the object as an instance of a custom class.

When no custom class exists, defaults to baseClassName
length The number of characters in the string
string The value of the String object
74 dBL Language Reference

class String
Method Parameters Description
anchor() <expC> Tags the string as an anchor <A NAME>
asc() <expC> Returns the ASCII value of the first character in the

designated string
big() Tags the string as big <BIG>
blink() Tags the string as blinking <BLINK>
bold() Tags the string as bold <BOLD>
charAt() <index expN> Returns the character in the string at the designated

position
chr() <expN> Returns the character equivalent of the specified

ASCII value
fixed() Tags the string as fixed font <TT>
fontcolor() <expC> Tags the string as the designated color
fontsize() <expN> Tags the string as the designated font size
getByte() <index expN> Returns the value of the byte at the specified index in

the string
indexOf() <expC>

[, <start index expN>]
Returns the position of the search string inside the
string

isAlpha() Returns true if the first character of the string is
alphabetic

isLower() Returns true if the first character of the string is
lowercase

isUpper() Returns true if the first character of the string is
uppercase

italics() Tags the string as in italics <I>
lastIndexOf() <expC>

[, <start index expN>]
Returns the position of the search string inside the
string, searching backwards

left() <expN> Returns the specified number of characters from the
beginning of the string

leftTrim() Returns the string with all leading spaces removed
link() <expC> Tags the string as a link <A HREF>
replicate() <expC>

[, <expN>]
Returns the specified string repeated a number of
times

right() <expN> Returns the specified number of characters from the
end of the string

rightTrim() Returns the string with all trailing spaces removed
setByte() <index expN>,

<value expN>
Assigns a new value to the byte at the specified index
in the string

small() Tags the string as small <SMALL>
space() <expN> Returns a string comprising the specified number of

spaces
strike() Tags the string as strikethrough <STRIKE>
stuff() <start expN>

, <quantity expN>
[, <replacement expC>]

Returns the string with specified characters removed
and others inserted in their place

sub() Tags the string as subscript <SUB>
substring() <start index expN>

, <end index expN>
Returns a substring derived from the string

sup() Tags the string as superscript <SUP>
toLowerCase() Returns the string in all lowercase
toProperCase() Returns the string in proper case
toUpperCase() Returns the string in all uppercase

Description A String object contains the actual string value, stored in the property string, and methods that act upon that
value. The methods do not modify the value of string; they use it as a base and return another string, number, or
true or false.
75 dBL Language Reference

ASC ()
The methods are divided into three categories: those that simply wrap the string in HTML tags, those that act
upon the contents of the string, and static class methods that do not operate on the string at all.

Because the return values for most string methods are also strings, you can call more than one method for a
particular string by chaining the method calls together. For example,

cSomething.substring(4, 7).toUpperCase()

Example When you concatenate a null to a string, the result is null. By passing a value that may be null through the String
class constructor, you can safely concatenate two values without using cumbersome conditional constructs. For
example, suppose you are combining, first name, middle initial, and last name. The middle initial field may be
null. You can safely combine the three like this:

fullName = firstName + " " + new String(middleInitial + " ") + lastName

If the middle initial is null, adding a space to it results in null, and the String object will be an empty string. If
the middle initial is not null, adding a space will result in a space between the middle initial and the last name.

ASC ()
Returns the numeric ASCII value of a specified character.

Syntax ASC(<expC>)

<expC> The character whose ASCII value you want to return. You can specify a string with more than one
character, but dBASE Plus uses only the first one.

Description ASC() is the inverse of CHR(). ASC() accepts a character and returns its ASCII value—a number from 0 to
255, inclusive. CHR() accepts an ASCII value and returns its character.

See the ASCII table in Appendix A for a listing of ASCII values and their corresponding characters.

Other than the syntactic difference of being a method instead of a function, the asc() method behaves
identically to the ASC() function.

Example Executing the following statements in the Command window demonstrates the relation between ASC() and
CHR():

? asc("A") // 65
? chr(asc("A") + 32) // "a"
? asc(chr(asc("A") + 32)) // 97

In the following example, if the variable cDrive contains a drive letter, ASC() is used to convert the drive letter
to a number suitable for the DISKSPACE() function.

nDiskSpace = diskspace(asc(cDrive) - asc("A") + 1)

See also asc(), CHR()

asc ()
Returns the numeric ASCII value of a specified character.

Syntax <oRef>.asc(<expC>)

<oRef> A reference to a String object.

<expC> The character whose ASCII value you want to return. You can specify a string with more than one
character, but dBASE Plus uses only the first one.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ASC() function.

See also ASC(), chr()
String objects 76

AT ()
AT ()
Returns a number that represents the position of a string within another string.

Syntax AT(<search expC>, <target expC> [, <nth occurrence expN>])

<search expC> The string you want to search for in <target expC>.

<target expC> The string in which to search for <search expC>.

<nth occurrence expN> Which occurrence of the string to find. By default, dBASE Plus searches for
the first occurrence. You can search for other occurrences by specifying the number, which must be greater than
zero.

Description AT() returns the numeric position where a search string begins in a target string. AT() searches one character
at a time from left to right, beginning to end, from the first character to the last character. The search is case-
sensitive. Use UPPER() or LOWER() to make the search case-insensitive.

You can specify which occurrence of the search string to find by specifying a number for <nth
occurrence expN>. If you omit this argument, AT() returns the starting position of the first occurrence of the
search string.

AT() returns 0 when

• The search string isn’t found.
• The search string or target string is empty.
• The search string is longer than the target string.
• The <nth occurrence expN> occurrence doesn't exist.

When AT() counts characters in a memo field, it counts two characters for each carriage-return and linefeed
combination (CR/LF) in the memo field.

Use RAT() to find the starting position of <search expC>, searching from right to left, end to beginning. Use
the substring operator ($) to learn if one string exists within another.

The indexOf() method is similar to the AT() function, but in addition to the syntactic difference of being a
method instead of a function and the fact that the position is zero-based, the method’s optional parameter
specifies where to start searching instead of the nth occurrence to find.

Example The following function removes characters from a string by looking for the search string with the $ operator and
replacing it with nothing.

? strip("banana", "an") // Displays "ba"

function strip(cArg, cStrip)
 local cRet, nLen
 cRet = cArg
 nLen = len(cStrip)
 do while cStrip $ cRet
 cRet := stuff(cRet, at(cStrip, cRet), nLen, "")
 enddo
 return cRet

All the loop needs know is whether the substring is in the main string, not where it is, so the $ operator is
slightly more convenient that using the AT() function. If the substring is in the main string, then STUFF() is
used to remove it, using the position returned by AT(). The length of the substring is stored in a variable before
the loop; it never changes so there’s no need to get it repeatedly in the loop.

See also indexOf(), RAT(), STUFF(), SUBSTR()

CENTER()
Returns a character string that contains a string centered in a line of specified length.

Syntax CENTER(<expC> [, <length expN> [, <pad expC>]])

<expC> The text to center.
77 dBL Language Reference

charAt ()
<length expN> The length of the resulting line of text. The default is 80 characters.

<pad expC> The single character to pad the string with if <length expN> is greater than the number of
characters in <expC>. If <length expN> is equal to or less than the number of characters in <expC>,
<pad expC> is ignored.

If <pad expC> is more than one character, CENTER() uses only the first character. If <pad expC> isn't
specified, CENTER() pads with spaces.

Description CENTER() returns a character expression with the requisite number of leading and trailing spaces to center it in
a line that is a specified number of characters wide.

To create the resulting string, CENTER() performs the following steps.

• Subtracts the length of <expC> or <memo field> from <length expN>

• Divides the result in half and rounds up if necessary

• Pads <expC> on either side with that number of spaces or the first character in <pad expC>

If the length of <expC> or <memo field> is greater than <length expN>, CENTER() does the following:

• Subtracts <length expN> from the length of <expC>
• Divides the result in half and rounds up if necessary
• Truncates both sides of <expC> by that many characters

When the result of subtracting the length of <expC> from <length expN> is an odd number, CENTER() pads
one less space on the left if the difference is positive, or truncates one less character on the left if the difference
is negative.

See Also LEN(), REPLICATE(), TRANSFORM()

charAt ()
Returns the character at the specified position in the string.

Syntax <expC>.charAt(<expN>)

<expC> A string.

<expN> Index into the string, which is indexed from left to right. The first character of the string is at index 0
and the last character is at index <expC>.length – 1.

Property of String

Description charAt() returns the character in a String object at the specified index position. If the index position is after the
last character in the string, charAt() returns an empty string.

See also indexOf(), SUBSTR(), substring()

CHR ()
Returns the character equivalent of a specified ASCII value.

Syntax CHR(<expN>)

<expN> The numeric ASCII value, from 0 to 255, inclusive, whose character equivalent you want to return.

Description CHR() is the inverse of ASC(). CHR() accepts an ASCII value and returns its character, while ASC() accepts
a character and returns its ASCII value.

See the ASCII table in Appendix A for a listing of ASCII values and their corresponding characters.

Other than the syntactic difference of being a method instead of a function, the chr() method behaves
identically to the CHR() function.

Example Executing the following statements in the Command window demonstrates the relation between ASC() and
CHR():
String objects 78

chr ()
? asc("A") // 65
? chr(asc("A") + 32) // "a"
? asc(chr(asc("A") + 32)) // 97

See also ASC(), chr()

chr ()
Returns the character equivalent of a specified ASCII value.

Syntax <oRef>.chr(<expN>)

<oRef> A reference to a String object.

<expN> The numeric ASCII value, from 0 to 255, inclusive, whose character equivalent you want to return.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the CHR() function.

See also asc(), CHR()

DIFFERENCE()
Returns a number that represents the phonetic difference between two strings.

Syntax DIFFERENCE(<expC1>, <expC2>)

<expC1> The first character expression to evaluate the SOUNDEX() of and compare to the second value.

<expC2> The second character expression to evaluate the SOUNDEX() of and compare to the first value.

Description SOUNDEX() returns a four-character code that represents the phonetic value of a character expression.
DIFFERENCE() compares the SOUNDEX() codes of two character expressions, and returns an integer from 0
to 4 that expresses the difference between the codes.

A returned value of 0 indicates the greatest difference in SOUNDEX() codes—the two expressions have no
SOUNDEX() characters in common. A returned value of 4 indicates the least difference—the two expressions
have all four SOUNDEX() characters in common. However, using DIFFERENCE() on short strings can
produce unexpected results, as shown in the following example.

? soundex("Mom") // Displays M500
? soundex("Dad") // Displays D300
? difference("Mom", "Dad") // Displays 2

To compare the character-by-character similarity between two strings rather than the phonetic similarity, use
LIKE().

Example The following example sets a filter in the current work area to show those records whose Title field sounds like
the word typed in the entryfield soundsLike:

function showTitlesLike_onClick()
 private cArg
 cArg = form.soundsLike.value
 set filter to difference(TITLE, "&cArg") == 4 // Best matches only

Macro substitution is used to convert the value in the entryfield into a literal string for the filter expression.

See Also LIKE(), SOUNDEX()

getByte ()
Returns the value of the byte at the specified index in the string.

Syntax <oRef>.getByte(<index expN>)
79 dBL Language Reference

indexOf ()
<oRef> A reference to the String object that you’re using as a structure.

<index expN> The index number of the desired byte. The first byte is at index number zero.

Property of String

Description Strings in dBL are Unicode strings, which use double-byte characters. Use getByte() when using a string as a
structure that is passed to a DLL function that you have prototyped with extern, to get the values of the bytes in
the structure.

Example The GetClientRect() API function returns the coordinates of a window’s client rectangle (the area inside the
window borders) in a structure made up of four long integers: left, top, right, and bottom. A long integer is 32
bits, or 4 bytes. Therefore the rectangle structure is 16 bytes long. In a dBL string, each character is two bytes,
so a string must be 8 characters long to store the rectangle structure.

The client rectangle coordinates are relative to the window’s client area, so the left and top are always zero; the
right and bottom coordinates contain the width and height of the client area. The following example displays the
width of the client area of a default form in pixels:

if type("GetClientRect") # "FP"
 extern CLOGICAL GetClientRect(CHANDLE, CPTR) USER32
endif
c = space(8) // 16-byte structure
f = new Form()
f.open() // Form must be open to have valid hWnd
if GetClientRect(f.hWnd, c)

n = c.getByte(8) + ;
 bitlshift(c.getByte(9), 8) + ;
 bitlshift(c.getByte(10), 16) + ;
 bitlshift(c.getByte(11), 24)

if bitset(n, 31)
 n := - bitnot(n)

endif
 ? n
endif
f.close()

The SPACE() function is used to create a string of the desired length. The entire structure will be overwritten
by the function, so it doesn’t matter that the string initially contains spaces.

After the function call, getByte() is used to extract the coordinate, byte-by-byte. The right coordinate starts at
offset 8 (the left starts at offset 0, the top at offset 4, and the bottom at offset 12) with the low byte first. The
second byte is shifted 8 bits to the left and added to the first byte. Only the first two bytes are used, because the
width will always be well under 64 K pixels, the maximum number that can be represented by two bytes (16
bits).

See also setByte(), EXTERN

indexOf ()
Returns a number that represents the position of a string within another string.

Syntax <target expC>.indexOf(<search expC> [, <from index expN>])

<target expC> The string in which you want to search for <search expC>.

<search expC> The string you want to search for in <target expC>.

<from index expN> Where you want to start searching for the string. By default, dBASE Plus starts
searching at the beginning of the string, index 0.

Property of String

Description This method is similar to the AT() function, but in addition to the syntactic difference of being a method instead
of a function and the fact that the position is zero-based, the optional parameter specifies where to start
searching instead of the nth occurrence to find.
String objects 80

ISALPHA ()
indexOf() returns an index representing where a search string begins in a target string. The first character of the
string is at index 0 and the last character is at index <target expC>.length – 1. indexOf() searches one character
at a time from left to right, beginning to end, from the character at <from index expN> to the last character. The
search is case-sensitive. Use toUpperCase() or toLowerCase() to make the search case-insensitive.

indexOf() returns –1 when

• The search string isn’t found.
• The search string or target string is empty.
• The search string is longer than the target string.

Use lastIndexOf() to find the starting position of <search expC>, searching from right to left, end to beginning.

See also AT(), lastIndexOf(), stuff(), substring()

ISALPHA ()
Returns true if the first character of a string is alphabetic.

Syntax ISALPHA(<expC>)

<expC> The string you want to test.

Description ISALPHA() tests the first character of the string and returns true if it’s an alphabetic character. ISALPHA()
returns false if the character isn’t alphabetic or if that character position is empty.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the isAlpha() method behaves
identically to the ISAPLHA() function.

See also isAlpha(), ISLOWER(), ISUPPER(), LOWER(), UPPER()

isAlpha ()
Returns true if the first character of a string is alphabetic.

Syntax <expC>.isAlpha()

<expC> The string you want to test.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ISAPLHA() function.

See also ISALPHA(), isLower(), isUpper(), toLowerCase(), toUpperCase()

ISLOWER ()
Returns true if the first character of a string is alphabetic and lowercase.

Syntax ISLOWER(<expC>)

<expC> The string you want to test.

Description ISLOWER() tests the first character of the string and returns true if it’s a lowercase alphabetic character.
ISLOWER() returns false if the character isn’t lowercase or if the character expression is empty.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.
81 dBL Language Reference

isLower ()
Other than the syntactic difference of being a method instead of a function, the isLower() method behaves
identically to the ISLOWER() function.

See also ISALPHA(), isLower(), ISUPPER(), LDRIVER(), LOWER(), UPPER()

isLower ()
Returns true if the first character of a string is alphabetic and lowercase.

Syntax <oRef>.isLower()

<expC> The string you want to test.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ISLOWER() function.

See also isAlpha(), ISLOWER(), isUpper(), toLowerCase(), toUpperCase()

ISUPPER ()
Returns true if the first character of a string is alphabetic and uppercase.

Syntax ISUPPER(<expC>)

<expC> The string you want to test.

Description ISUPPER() tests the first character of the string and returns true if it’s an uppercase alphabetic character.
ISUPPER() returns false if the character isn’t uppercase or if the character expression is empty.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the isUpper() method behaves
identically to the ISUPER() function.

See also ISALPHA(), ISLOWER(), isUpper(), LOWER(), UPPER()

isUpper ()
Returns true if the first character of a string is alphabetic and uppercase.

Syntax <expC>.isUpper()
expCThe string you want to test.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ISUPPER() function.

See also isAlpha(), isLower(), ISUPPER(), toLowerCase(), toUpperCase()

lastIndexOf ()
Returns a number that represents the starting position of a string within another string. lastIndexOf() searches
backward from the right end of the target string, and returns a value counting from the beginning of the target.

Syntax <target expC>.lastIndexOf(<search expC> [, <from index expN>])

<target expC> The string in which you want to search for <search expC>.
String objects 82

LEFT ()
<search expC> The string you want to search for in <target expC>.

<from index expN> Where you want to start searching for the string. By default, dBASE Plus starts
searching at the end of the string, index <target expC>.length – 1.

Property of String

Description This method is similar to the RAT() function, but in addition to the syntactic difference of being a method
instead of a function and the fact that the position is zero-based, the optional parameter specifies where to start
searching instead of the nth occurrence to find.

Use lastIndexOf() to search for the <search expC> in a target string, searching right to left, end to beginning, from
the character at <from index expN> to the first character. The search is case-sensitive. Use toUpperCase() or
toLowerCase() to make the search case-insensitive.

Even though the search starts from the end of the target string, lastIndexOf() returns an index representing where
a search string begins in a target string, counting from the beginning of the target. The first character of the string
is at index 0 and the last character is at index <target expC>.length – 1. If <search expC> occurs only once in the
target, lastIndexOf() and indexOf() return the same value. For example, “abcdef”.lastIndexOf(“abc”) and
“abcdef”.indexOf(“abc”) both return 0.

lastIndexOf() returns –1 when:

• The search string isn’t found
• The search string or target string is empty
• The search string is longer than the target string

To find the starting position of <search expC>, searching from left to right, beginning to end, use indexOf().

See also indexOf(), RAT(), stuff(), substring(), toLowerCase(), toUpperCase()

LEFT ()
Returns a specified number of characters from the beginning of a string.

Syntax LEFT(<expC>, <expN>)

<expC> The string from which you want to extract characters.

<expN> The number of characters to extract from the beginning of the string.

Description Starting with the first character of a character expression, LEFT() returns <expN> characters. If <expN> is
greater than the number of characters in the specified string, LEFT() returns the string as it is, without adding
spaces to achieve the specified length. You can use LEN() to determine the actual length of the returned string.

If <expN> is less than or equal to zero, LEFT() returns an empty string. If <expN> is greater than or equal to
zero, LEFT(<expC>, <expN>) achieves the same results as SUBSTR(<expC>, 1, <expN>).

When LEFT() returns characters from a memo field, it counts two characters for each carriage-return and
linefeed combination (CR/LF).

Other than the syntactic difference of being a method instead of a function, the left() method behaves
identically to the LEFT() function.

Example See REPLICATE()

See also AT(), LEN(), left(), RIGHT(), SUBSTR()

left ()
Returns a specified number of characters from the beginning of a character string.

Syntax <expC>.left(<expN>)

<expC> The string from which you want to extract characters.

<expN> The number of characters to extract from the beginning of the string.
83 dBL Language Reference

leftTrim ()
Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the LEFT() function.

See also indexOf(), LEFT(), length, right(), substring()

leftTrim ()
Returns a string with no leading space characters.

Syntax <expC>.leftTrim()

<expC> The string from which you want to remove the leading space characters.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the LTRIM() function.

See also left(), LTRIM(), right(), rightTrim(), substring()

LEN()
Returns the number of characters in a specified character string.

Syntax LEN(<expC>)

<expC> The character string whose length you want to find.

Description LEN() returns the number of characters (the length) of a character string or memo field. The length of an empty
character string or empty memo field is zero. When LEN() calculates the length of a memo field, it counts two
characters for each carriage-return and linefeed combination (CR/LF).

Other than the syntactic difference of reading a property instead of calling a function, length contains the same
value that LEN() returns.

See also length, TRIM()

length
The number of characters in a specified character string.

Syntax <expC>.length

<expC> The character string whose length you want to find.

Property of String

Description A string’s length property reflects the number of characters (the length) of a character string. The length of an
empty character string is zero.

length is a read-only property.

Other than the syntactic difference of reading a property instead of calling a function, length contains the same
value that LEN() returns.

See also LEN(), rightTrim()

LENNUM()
Returns the display length (in characters) of a numeric expression.

Syntax LENNUM(<expN>)
String objects 84

LIKE()
<expN> The numeric or float number whose display length to return.

Description Use LENNUM() before formating a display involving numeric values of varying lengths.

If you pass LENNUM() the name of a numeric field, it returns the length of the field.

If a number has eight or fewer whole-number digits and no decimal point, it is by default a numeric-type
number; the default display length for numeric-type numbers is 11. For example:

?LENNUM(123)

returns 11.

If a number contains a decimal point, the value returned by LENNUM() will depend on the value of SET
DECIMALS TO. The minimum value returned will be comprised of the minimum default length (11), a
character for the decimal point (1) plus the value of SET DECIMALS TO (regardless of how many decimal
places are actually utilized). Therefore, where SET DECIMALS TO = 2;

?LENNUM(122.1)

 and
?LENNUM(122.11)

both return 14.

The maximum length returned by LENNUM() is 39.
If a number passed to LENNUM() is null, LENNUM() returns a null “value”.

See Also LEN(), SET DECIMALS, STR()

LIKE()
Returns true if a specified string matches a specified skeleton string.

Syntax LIKE(<skeleton expC>, <expC>)

<skeleton expC> A string containing a combination of characters and wildcards. The wildcards are ?
and *.

<expC> The string to compare to the skeleton string.

Description Use LIKE() to compare one string to another. The <skeleton expC> argument contains wildcard characters and
represents a pattern; the <expC> argument is compared to this pattern. LIKE() returns true if <expC> is a string
that matches <skeleton expC>. To compare the phonetic similarity between two strings rather than the
character-by-character similarity, use DIFFERENCE().

Use the wildcard characters ? and * to form the pattern for <skeleton expC>. An asterisk (*) stands for any
number of characters, including zero characters. The question mark (?) stands for any single character. Both
wildcards can appear anywhere and more than once in <skeleton expC>. Wildcard characters in
<skeleton expC> can stand for uppercase or lowercase letters.

If * or ? appears in <expC>, they are interpreted as literal, not wildcard, characters, as shown in the following
example.

? LIKE("a*d", "abcd") // Displays true
? LIKE("a*d", "aBCd") // Displays true
? LIKE("abcd", "a*d") // Displays false

LIKE() is case-sensitive. Use UPPER() or LOWER() for case-insensitive comparisons with LIKE(). LIKE()
returns true if both arguments are empty strings. LIKE() returns false if one argument is empty and the other
isn't.

See Also AT(), DIFFERENCE()

LOWER ()
Converts all uppercase characters in a string to lowercase and returns the resulting string.
85 dBL Language Reference

LTRIM ()
Syntax LOWER(<expC>)

<expC> The string you want to convert to lowercase.

Description LOWER() converts the uppercase alphabetic characters in a character expression or memo field to lowercase.
LOWER() ignores digits and other characters.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the toLowerCase() method behaves
identically to the LOWER() function.

See also ISLOWER(), PROPER(), toLowerCase(), UPPER()

LTRIM ()
Returns a string with no leading space characters.

Syntax LTRIM(<expC>)

<expC> The string from which you want to remove the leading space characters.

Description LTRIM() returns <expC> with no leading space characters.

To remove trailing space characters from a string or memo field, use RTRIM() or TRIM().

Other than the syntactic difference of being a method instead of a function, the leftTrim() method behaves
identically to the LTRIM() function.

See also leftTrim(), RTRIM(), STR(), TRIM()

PROPER ()
Converts a character string to proper-noun format and returns the resulting string.

Syntax PROPER(<expC>)

<expC> The character string to convert to proper-noun format.

Description PROPER() returns <expC> with the first character in each word capitalized and the remaining letters set to
lowercase. PROPER() changes the first character of a word only if it is a lowercase alphabetic character.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the toProperCase() method behaves
identically to the PROPER() function.

See also LOWER(), toProperCase(), UPPER()

RAT ()
Returns a number that represents the starting position of a string within another string. RAT() searches backward
from the right end of the target string, and returns a value counting from the beginning of the target.

Syntax RAT(<search expC>, <target expC> [, <nth occurrence expN>])

<search expC> The string you want to search for in <target expC>.

<target expC> The string in which to search for <search expC>.
String objects 86

REPLICATE ()
<nth occurrence expN> Which occurrence of the string to find. By default, dBASE Plus searches for
the first occurrence from the end. You can search for other occurrences by specifying the number (based on
starting from the end), which must be greater than zero.

Description Use RAT() to search for the first or <nth occurrence expN> occurrence of <search expC> in a target string,
searching right to left, end to beginning, from the last character to the first character. The search is case-
sensitive. Use UPPER() or LOWER() to make the search case-insensitive.

Even though the search starts from the end of the target string or memo field, RAT() returns the numeric
position where a search string begins in a target string, counting from the beginning of the target. If
<search expC> occurs only once in the target, RAT() and AT() return the same value. For example,
RAT("abc","abcdef") and AT("abc","abcdef") both return 1.

RAT() returns 0 when:

• The search string isn’t found
• The search string or target string is empty
• The search string is longer than the target string
• The nth occurrence you specify with <nth occurrence expN> doesn't exist

To find the starting position of <search expC>, searching from left to right, beginning to end, use AT(). To
learn if one string exists within another, use the substring operator ($).

The lastIndexOf() method is similar to the RAT() function, but in addition to the syntactic difference of being
a method instead of a function and the fact that the position is zero-based, the optional parameter specifies
where to start searching instead of the nth occurrence to find.

Example Here is a simple file name extraction function that extracts a file name for a path by looking for the last
backslash character with RAT(). Everything that follows in the string is extracted with SUBSTR(). If there is
no backslash, the entire string is returned.

? getFileName("C:\\WINDOWS\\SOL.EXE")

function getFileName(cArg)
 local nPos
 nPos = rat("\", cArg)
 return iif(nPos>= 0, substr(cArg, ++nPos), cArg)

Note that the position returned by RAT() is incremented before it is passed to SUBSTR(). Otherwise, the last
backslash would be returned as well.

See also AT(), lastIndexOf(), LOWER(), STUFF(), SUBSTR(), UPPER()

REPLICATE ()
Returns a string repeated a specified number of times.

Syntax REPLICATE(<expC>, <expN>)

<expC> The string you want to repeat.

<expN> The number of times to repeat the string.

Description REPLICATE() returns a character string composed of a character expression repeated a specified number of
times.

If the character expression is an empty string, REPLICATE() returns an empty string. If the number of repeats
you specify for <expN> is 0 or less, REPLICATE() returns an empty string.

To repeat space characters, use SPACE().

The replicate() method is almost identical to the REPLICATE() function, but in addition to the syntactic
difference of being a method instead of a function, the repeat count is optional and defaults to 1.

Example The following function pads the left side of a string with a specified character to make the result at least as long
as needed.

? padl("Test", 7, "*") // Displays ***Test

function padl(cArg, nLen, cPad)
87 dBL Language Reference

replicate ()
 if argcount() < 3
 cPad = ""
 endif
 return replicate(left(cPad + " ", 1), nLen - len(cArg)) + cArg

To make sure only one character is repeated, a space is added to the parameter (in case the parameter is an
empty string or was omitted), and the LEFT() function is used to extract the first character (in case the
parameter was more than one character).

See also replicate(), SPACE()

replicate ()
Returns a string repeated a specified number of times.

Syntax <oRef>.replicate(<expC> [, <expN>])

<oRef> A reference to a String object.

<expC> The string you want to repeat.

<expN> The number of times to repeat the string; by default, 1.

Property of String

Description This method is almost identical to the REPLICATE() function, but in addition to the syntactic difference of
being a method instead of a function, the repeat count is optional and defaults to 1.

See also REPLICATE(), space()

RIGHT ()
Returns characters from the end of a character string.

Syntax RIGHT(<expC>, <expN>)

<expC> The string from which you want to extract characters.

<expN> The number of characters to extract from the string.

Description Starting with the last character of a character expression, RIGHT() returns a specified number of characters. If
the number of characters you specify for <expN> is greater than the number of characters in the specified string
or memo field, RIGHT() returns the string as is, without adding spaces to achieve the specified length. If
<expN> is less than or equal to zero, RIGHT() returns an empty string.

Strings often have trailing blanks. You may want to remove them with TRIM() before using RIGHT().

When RIGHT() returns characters from a memo field, it counts two characters for each carriage-return and
linefeed combination (CR/LF).

Other than the syntactic difference of being a method instead of a function, the right() method behaves
identically to the RIGHT() function.

See also AT(), LEFT(), RAT(), right(), SUBSTR(), TRIM()

right ()
Returns characters from the end of a character string.

Syntax <expC>.right(<expN>)

<expC> The string from which you want to extract characters.

<expN> The number of characters to extract from the string.

Property of String
String objects 88

rightTrim ()
Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the RIGHT() function.

See also indexOf(), left(), lastIndexOf(), RIGHT(), substring()

rightTrim ()
Returns a string with no trailing space characters.

Syntax <expC>.rightTrim()

<expC> The string from which you want to remove the trailing space characters.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the TRIM() function.

See also left(), leftTrim(), right(), substring(), TRIM()

RTRIM ()
Returns a string with no trailing space characters.

Syntax RTRIM(<expC>)

<expC> The string from which you want to remove the trailing space characters.

Description RTRIM() is identical to TRIM(). See TRIM() for details.

See also LTRIM(), rightTrim(), TRIM()

setByte ()
Assigns a new value to the byte at the specified index in the string.

Syntax <oRef>.setByte(<index expN>, <value expN>)

<oRef> A reference to the String object that you’re using as a structure.

<index expN> The index number of the byte to set. The first byte is at index number zero.

<value expN> The new byte value, from 0 to 255.

Property of String

Description Strings in dBL are Unicode strings, which use double-byte characters. Use setByte() when using a string as a
structure that is passed to a DLL function that you have prototyped with extern, to set the values of the bytes in
the structure.

The length of the structure string should be one-half the number of bytes in the structure, rounded up. Setting the
individual bytes of a Unicode string will most likely cause the string to become unprintable.

Example Suppose you need to copy a string into a structure that is used by a function. The function expects the string to
be composed of single-byte characters. dBL strings are double-byte, so you will need to use setByte() to copy
each character of the string into the structure string, byte-by-byte.

The following function copies a string into a structure string at the specified offset, and pads the rest of the
length in the structure will null characters.

function setStructString(cStruct, nIndex, cValue, nChars)
 if argcount() < 4
 nChars = len(cValue) // Default length is length of string
 endif
 local n
 for n = 0 to min(len(cValue), nChars) - 1
89 dBL Language Reference

SOUNDEX()
 cStruct.setByte(nIndex + n, asc(cValue.charAt(n)))
 endfor
 do while n < nChars // Pad length with null characters
 cStruct.setByte(nIndex + n++, 0)
 enddo

In the FOR loop, the MIN() function is used to copy all the characters in the string, or the specified number of
characters, whichever is less. This means that you can safely pass a string of any length to the function, and as
long as you specify the correct length, you don’t have to worry about the string being too long. Each character is
extracted with the charAt() method and converted to its ASCII value (a number from 0 to 255) with the ASC()
function.

See also getByte(), EXTERN

SOUNDEX()
Returns a four-character string that represents the SOUNDEX (sound-alike) code of another string.

Syntax SOUNDEX(<expC>)

<expC> The string for which to calculate the soundex code.

Description SOUNDEX() returns a four-character code that represents the phonetic value of a character expression. The
code is in the form "letter digit digit digit," where "letter" is the first alphabetic character in the expression being
evaluated. The more phonetically similar two strings are, the more similar their SOUNDEX codes.

Use SOUNDEX() to find words that sound similar, or are spelled similarly, such as names like "Smith,"
"Smyth," and "Smythe." Using the U.S. language driver, these all evaluate to S531.

SOUNDEX() returns "0000" if the character expression is an empty string or if the first nonblank character isn't
a letter. SOUNDEX() returns 0's for the first digit encountered and for all following characters, regardless of
whether they're digits or alphabetic characters.

To compare the SOUNDEX values of two character expressions or memo fields, use DIFFERENCE(). If you
want to compare the character-by-character similarity between two strings rather than the phonetic similarity,
use LIKE().

SOUNDEX() is language driver-specific. If the current language driver is U.S., SOUNDEX() does the
following to calculate the phonetic value of a string:

• Ignores leading spaces.

• Ignores the letters A, E, I, O, U, Y, H, and W.

• Ignores case.

• Converts the first nonblank character to uppercase and makes it the first character in the SOUNDEX code.

• Converts B, F, P, and V to 1.

• Converts C, G, J, K, Q, S, X, and Z to 2.

• Converts D and T to 3.

• Converts L to 4.

• Converts M and N to 5.

• Converts R to 6.

• Removes the second occurrence of any adjacent letters that receive the same digits as phonetic values.

• Pads the end of the resulting string with zeros if fewer than three digits remain.

• Truncates the resulting string to three digits if more than three digits remain.

• Concatenates the first character of the code to the remaining three digits to create the "letter digit digit digit"
soundex code.

Example To perform a sound-alike match for the Last_name field of a table, first create an index using SOUNDEX():
index on soundex(LAST_NAME) tag LAST_SNDX
String objects 90

SPACE ()
Then to perform the search, use SOUNDEX() on the search value entered, like this:
function searchButton_onClick()
 set order to LAST_SNDX
 if not seek(soundex(form.soundsLike.value))
 msgbox("No names similar", "Search failed")
 endif

See Also DIFFERENCE(), LIKE()

SPACE ()
Returns a specified number of space characters.

Syntax SPACE(<expN>)

<expN> The number of spaces you want to return.

Description SPACE() returns a character string composed of a specified number of space characters. The space character is
ASCII code 32.

If <expN> is 0 or less, SPACE() returns an empty string.

To create a string using a character other than the space character, use REPLICATE().

Other than the syntactic difference of being a method instead of a function, the space() method behaves
identically to the SPACE() function.

See also REPLICATE(), space()

space ()
Returns a specified number of space characters.

Syntax <oRef>.space(<expN>)

<oRef> A reference to a String object.

<expN> The number of spaces you want to return.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the SPACE() function.

See also replicate(), SPACE()

STR()
Returns the character string equivalent of a specified numeric expression.

Syntax STR(<expN> [, <length expN> [, <decimals expN> [, <expC>]]])

<expN> The numeric expression to return as a character string.

<length expN> The length of the character string to return. The valid range is 1 to 20, inclusive, and
includes a decimal point, decimal digits, and minus sign characters. The default is 10. If <length expN> is
smaller than the number of integer digits in <expN>, STR() returns asterisks (*).

<decimals expN> The number of characters to reserve for decimal digits. The default and lowest
allowable value is 0. If you do not specify a value for <decimals expN>, STR() rounds <expN> to the nearest
whole number. If you want to specify a value for <decimals expN>, you must also specify a value for
<length expN>.

<expC> The character to pad the beginning of the returned character string with when the length of the
returned string is less than <length expN> digits long. The default pad character is a space. If you want to
91 dBL Language Reference

STUFF ()
specify a value for <expC>, you must also specify values for <length expN> and <decimals expN>. You can
specify more than one character for <expC>, but STR() uses only the first one.

Description Use STR() to convert a number to a string, so you can manipulate it as characters. For example, you can index
on a numeric field in combination with a character field by converting the numeric field to character with
STR().

dBASE Plus rounds and pads numbers to fit within parameters you set with <length expN> and
<decimals expN>, following these rules:

• If <decimals expN> is smaller than the number of decimals in <expN>, STR() rounds to the most accurate
number that will fit in <length expN>. For example, STR(10.765,5,1) returns " 10.8" (with a single leading
space), and STR(10.765,5,2) returns "10.77".

• If <length expN> isn't large enough for <decimals expN> number of decimal places, STR() rounds <expN>
to the most accurate number that will fit in <length expN>. For example, STR(10.765,4,3) returns "10.8".

• If <decimals expN> is larger than the number of decimals in <expN>, and <length expN> is larger than the
returned string, STR() adds zeros (0) to the end of the returned string. dBASE Plus only adds enough zeros
to bring the number of decimal digits to a maximum of <decimals expN>.

• If the returned string is still shorter than <length expN>, dBASE Plus pads the left to fill to the length of
<length expN>. For example, STR(10.765,8,6) returns "10.76500" for a returned length of 8;
STR(10.765,7,6) returns "10.7650" for a returned length of 7; and STR(10.765,12,6) returns " 10.765000"
(with three leading spaces) for a returned length of 12.

To remove the leading spaces created by STR(), use LTRIM(). If you concatenate a number to a string with the
+ or - operators, dBASE Plus automatically converts the number to a string, using the number of decimal places
specified by SET DECIMALS, and removes the leading spaces.

See Also LTRIM(), VAL()

STUFF ()
Returns a string with specified characters removed and others inserted in their place.

Syntax STUFF(<target expC>, <start expN>, <quantity expN>, <replacement expC>)

<target expC> The string you want to remove characters from and replace with new characters.

<start expN> The character position in the string at which you want to start removing characters.

<quantity expN> The number of characters you want to remove from the string.

<replacement expC> The characters you want to insert in the string.

Description STUFF() returns a target character expression with a replacement character string inserted at a specified
position. Starting at the position you specify, <start expN>, STUFF() removes a specified number,
<quantity expN>, of characters from the original string.

If the target character expression is an empty string, STUFF() returns the replacement string.

If <start expN> is less than or equal to 0, STUFF() treats <start expN> as 1. If <quantity expN> is less than or
equal to 0, STUFF() inserts the replacement string at position <start expN> without removing any characters
from the target.

If <start expN> is greater than the length of the target, STUFF() doesn’t remove any characters and appends the
replacement string to the end of the target.

If the replacement string is empty, STUFF() removes the characters specified by <quantity expN> from the
target, starting at <start expN>, without adding characters.

The stuff() method is almost identical to the STUFF() function, but in addition to the syntactic difference of
being a method instead of a function and the fact that the position is zero-based, the replacement string is
optional, and defaults to an empty string.

See also AT(), LEFT(), RAT(), REPLICATE(), RIGHT(), SPACE(), STUFF(), SUBSTR()
String objects 92

stuff ()
stuff ()
Returns a string with specified characters removed and others inserted in their place.

Syntax <expC>.stuff(<start expN>, <quantity expN> [, <replacement expC>])

<expC> The string in which you want to remove and replace characters.

<start expN> The character position in the string at which you want to start removing characters.

<quantity expN> The number of characters you want to remove from the string.

<replacement expC> The characters you want to insert in the string. By default, this is an empty string.

Property of String

Description This method is almost identical to the STUFF() function. However, the stuff() method is zero-based (the
function is one-based), a replacement string is optional, and the method defaults to an empty string.

See also indexOf(), left(), lastIndexOf(), replicate(), right(), space(), STUFF(), substring()

SUBSTR ()
Returns a substring derived from a specified character string.

Syntax SUBSTR(<expC>, <start expN> [, <length expN>])

<expC> The string you want to extract characters from.

<start expN> The character position in the string to start extracting characters.

<length expN> The number of characters to extract from the string.

Description Starting in a character expression at the position you specify for <start expN>, SUBSTR() returns the number
of characters you specify for <length expN>. If <start expN> is greater than the length of <expC>, or
<length expN> is zero or a negative number, SUBSTR() returns an empty string.

If you don't specify <length expN>, SUBSTR() returns all characters starting from position <start expN> to the
end of the string. If <length expN> is greater than the number of characters from <start expN> to the end of the
string, SUBSTR() returns only as many characters as are left in the string, without adding space characters to
achieve the specified length. You can use LEN() to determine the actual length of the returned string.

When SUBSTR() returns characters from a memo field, it counts two characters for each carriage-return and
linefeed combination (CR/LF) in the memo field.

The substring() method is similar to the SUBSTR() function, but in addition to the syntactic difference of
being a method instead of a function and the fact that the position is zero-based, the method takes a starting and
ending position, while the function takes a start position and the number of character to extract.

Example See RAT()

See also AT(), LEFT(), LEN(), RAT(), RIGHT(), STUFF(), substring().

substring ()
Returns a substring derived from a specified character string.

Syntax <expC>.substring(<index1 expN>, <index2 expN>)

<expC> The string you want to extract characters from.

<index1 expN>, <index2 expnN> Indexes into the string, which is indexed from left to right. The first
character of the string is at index 0 and the last character is at index <expC>.length – 1.

Property of String
93 dBL Language Reference

toLowerCase ()
Description This method is similar to the SUBSTR() function, but in addition to the syntactic difference of being a method
instead of a function and the fact that the position is zero-based, the method takes a starting and ending position,
while the function takes a start position and the number of character to extract.

<index1 expN> and <index2 expN> determine the position of the substring to extract. substring() begins at the
lesser of the two indexes and extracts up to the character before the other index. If the two indexes are the same,
substring() returns an empty string.

If the starting index is after the last character in the string, substring() returns an empty string.

See also indexOf(), left(), length, toProperCase(), lastIndexOf(), right(), stuff(), SUBSTR()

toLowerCase ()
Converts all uppercase characters in a string to lowercase and returns the resulting string.

Syntax <expC>.toLowerCase()

<expC> The string you want to convert to lowercase.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the LOWER() function.

See also isLower(), isUpper(), LOWER(), toProperCase(), toUpperCase()

toProperCase ()
Converts a character string to proper-noun format and returns the resulting string.

Syntax <expC>.toProperCase()

<expC> The string you want to convert to proper-noun format.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the PROPER() function.

See also PROPER(), toLowerCase(), toUpperCase()

toUpperCase ()
Converts all lowercase characters in a string to uppercase and returns the resulting string.

Syntax <expC>.toUpperCase()

<expC> The string you want to convert to uppercase.

Property of String

Description Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the UPPER() function.

See also isLower(), isUpper(), toLowerCase(), toProperCase(), UPPER()

TRANSFORM()
Applies a formatting template to an expression, returning a formatted string.

Syntax TRANSFORM(<exp>, <picture expC>)

<exp> The expression to be formatted.
String objects 94

TRIM ()
<picture expC> The string containing the template characters necessary to format <exp>. The template
characters are the same characters used in the picture property of an entryfield.

Description TRANSFORM() returns an expression in the template format you indicate with <picture expC>.

Example Suppose you store phone numbers as ten digits only to save storage space. You can display the number with the
usual characters using a formatting template:

? transform("8005551234", "@R (999) 999-9999") // Displays "(800) 555-1234"

Negative numbers can be displayed enclosed in parentheses:
? transform(-45, "@(9999") // Displays "(45)"
? transform(123, "@(9999") // Displays " 123 "

See Also picture, function, STR()

TRIM ()
Returns a string with no trailing space characters.

Syntax TRIM(<expC>)

<expC> The string from which you want to remove the trailing space characters.

Description TRIM() returns a character expression with no trailing space characters. TRIM() is identical to RTRIM().

To remove trailing blanks before concatenating a string to another string, use the - operator instead of the +
operator.

Warning Do not create index expression with TRIM() that result in key values that vary in length from record to record.
This results in unbalanced indexes that may become corrupted. Use the - operator, which relocates trailing
blanks without changing the resulting length of the concatenated string.

To remove leading space characters from a string, use LTRIM().

Other than the syntactic difference of being a method instead of a function, the rightTrim() method behaves
identically to the TRIM() function.

See also LEFT(), LTRIM(), RIGHT(), rightTrim()

UPPER ()
Converts all lowercase characters in a string to uppercase and returns the resulting string.

Syntax UPPER(<expC>)

<expC> The character string you want to convert to uppercase.

Description UPPER() converts the lowercase alphabetic characters in a character expressionor memo field to uppercase.
UPPER() ignores digits and other characters.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the toUpperCase() method behaves
identically to the UPPER() function.

Example UPPER() is frequently used to make searches case-insensitive. First you create an index using UPPER(), for
example:

index on upper(LAST_NAME - "," - FIRST_NAME) tag FULL_NAME

Then when searching, convert the search value to uppercase to match:
seek upper(form.search.value)

See also ISLOWER(), ISUPPER(), LOWER(), PROPER(), toUpperCase()
95 dBL Language Reference

VAL()
VAL()
Returns the number at the beginning of a character string.

Syntax VAL(<expC>)

<expC> The character expression that contains the number.

Description Use VAL() to convert a string that contains a number into an actual number. Once you convert a string to a
number, you can perform arithmetic operations with it.

If the character string you specify contains both letters and numbers, VAL() returns the value of the entire
number to the left of the first nonnumeric character. If the string contains a nonnumeric character other than a
blank space in the first position, VAL() returns 0. For example, VAL("ABC123ABC456") returns 0,
VAL("123ABC456ABC") returns 123, and VAL(" 123") also returns 123.

See Also STR()
String objects 96

C h a p t e r

Chapter 7Math / Money
dBASE Plus supports a wide range of mathematic, trigonometric, and financial functions.

abs ()
Returns the absolute value of a specified number.

Syntax abs(<expN>)

<expN> The number whose absolute value you want to return.

Description abs() returns the absolute value of a number. The absolute value of a number represents its magnitude.
Magnitude is always expressed as a positive value, so the absolute value of a negative number is its positive
equivalent.

See also ceil(), floor(), int(), round()

acos ()
Returns the inverse cosine (arccosine) of a number.

Syntax acos(<expN>)

<expN> The cosine of an angle, from –1 to +1.

Description acos() returns the radian value of the angle whose cosine is <expN>. acos() returns a number from 0 to pi
radians. acos() returns zero when <expN> is 1. For values of x from 0 to pi, acos(y) returns x if cos(x) returns y.

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, acos(.5) returns 1.05 radians while rtod(acos(.5)) returns 60.00 degrees.

Use SET DECIMALS to set the number of decimal places acos() displays.

To find the arcsecant of a value, use the arccosine of 1 divided by the value. For example, the arcsecant of 2 is
acos(1/2), or 1.05 radians.

See also asin(), atan(), atan2(), cos(), dtor(), rtod(), SET DECIMALS

asin ()
Returns the inverse sine (arcsine) of a number.

Syntax asin(<expN>)

<expN> The sine of an angle, from –1 to +1.
Math / Money 97

atan ()
Description asin() returns the radian value of the angle whose sine is <expN>. asin() returns a number from –pi/2 to pi/2
radians. asin() returns zero when <expN> is 0. For values of x from –pi/2 to pi/2, asin(y) returns x if sin(x)
returns y.

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, asin(.5) returns .52 radians while rtod(asin(.5)) returns 30.00 degrees.

Use SET DECIMALS to set the number of decimal places asin() displays.

To find the arccosecant of a value, use the arcsine of 1 divided by the value. For example, the arccosecant of
1.54 is asin(1/1.54), or .71 radians.

See also acos(), atan(), atan2(), dtor(), rtod(),SET DECIMALS, sin()

atan ()
Returns the inverse tangent (arctangent) of a number.

Syntax atan(<expN>)

<expN> Any positive or negative number representing the tangent of an angle.

Description atan() returns the radian value of the angle whose tangent is <expN>. atan() returns a number from –pi/2 to pi/
2 radians. atan() returns 0 when <expN> is 0. For values of x from –pi/2 to pi/2, atan(y) returns x if tan(x)
returns y.

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, atan(1) returns 0.79 radians, while rtod(atan(1)) returns 45.00 degrees.

Use SET DECIMALS to set the number of decimal places atan() displays.

atan() differs from atan2() in that atan() takes the tangent as the argument, but atan2() takes the sine and
cosine as the arguments.

To find the arccotangent of a value, subtract the arctangent of the value from pi/2. For example, the
arccotangent of 1.73 is PI/2 – atan(1.73), or .52.

See also acos(), asin(), atan2(), rtod(),SET DECIMALS, tan()

atan2 ()
Returns the inverse tangent (arctangent) of a given point.

Syntax atan2(<sine expN>, <cosine expN>)

<sine expN> The sine of an angle. If <sine expN> is 0, <cosine expN> can't also be 0.

<cosine expN> The cosine of an angle. If <cosine expN> is 0, <sine expN> can't also be 0. When
<cosine expN> is 0 and <sine expN> is a positive or negative (nonzero) number, atan2() returns +pi/2 or –pi/2,
respectively.

Description atan2() returns the angle size in radians when you specify the sine and cosine of the angle. atan2() returns a
number from –pi to +pi radians. atan2() returns 0 when <sine expN> is 0. When you specify 0 for both
arguments, dBASE Plus returns an error.

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, atan2(1,0) returns 1.57 radians while rtod(atan2(1,0)) returns 90.00 degrees.

Use SET DECIMALS to set the number of decimal places atan2() displays.

atan2() differs from atan() in that atan2() takes the sine and cosine as the arguments, but atan() takes the
tangent as the argument. See atan() for instructions on finding the arccotangent.

See also acos(), asin(), atan(), cos(), rtod(), SET DECIMALS, sin(), tan()
Math / Money 98

ceil ()
ceil ()
Returns the nearest integer that is greater than or equal to a specified number.

Syntax ceil(<expN>)

<expN> A number, from which to determine and return the integer that is greater than or equal to it.

Description ceil() returns the nearest integer that is greater than or equal to <expN>; in effect, rounding positive numbers up
and negative numbers down towards zero. If you pass a number with any digits other than 0 as decimal digits,
ceil() returns the nearest integer that is greater than the number. If you pass an integer to ceil(), or a number
with only 0s for decimal digits, it returns that number.

For example, if the default number of decimal places is 2,

• ceil(2.10) returns 3.00
• ceil(–2.10) returns –2.00
• ceil(2.00) returns 2.00
• ceil(2) returns 2
• ceil(–2.00) returns –2.00

Use SET DECIMALS to set the number of decimal places ceil() displays.

See the table in the description of int() that compares int(), floor(), ceil(), and round().

See also floor(), int(), round(), SET DECIMALS

cos ()
Returns the trigonometric cosine of an angle.

Syntax cos(<expN>)

<expN> The size of the angle in radians. To convert an angle's degree value to radians, use dtor(). For
example, to find the cosine of a 30-degree angle, use cos(dtor(30)).

Description cos() calculates the ratio between the side adjacent to an angle and the hypotenuse in a right triangle. cos()
returns a number from –1 to +1. cos() returns 0 when <expN> is pi/2 or 3*pi/2 radians.

Use SET DECIMALS to set the number of decimal places cos() displays.

The secant of an angle is the reciprocal of the cosine of the angle. To return the secant of an angle, use 1/cos().

See also acos(), dtor(), PI(), rtod(), SET DECIMALS, sin(), tan()

dtor ()
Returns the radian value of an angle whose measurement is given in degrees.

Syntax dtor(<expN>)

<expN> A negative or positive number that is the size of the angle in degrees.

Description dtor() converts the measurement of an angle from degrees to radians. To convert degrees to radians, dBASE
Plus

• Multiplies the number of degrees by pi
• Divides the result by 180
• Returns the quotient

A 180-degree angle is equivalent to pi radians.

Use dtor() in the trigonometric functions sin(), cos(), and tan() because these functions require the angle value
in radians. For example, to find the sine of a 45-degree angle, use sin(dtor(45)), which returns .71 if the default
number of decimal places is 2.

Use SET DECIMALS to set the number of decimal places dtor() displays.
99 dBL Language Reference

exp ()
See also acos(), asin(), atan(), atan2(), cos(), PI(), rtod(), SET DECIMALS, sin(), tan()

exp ()
Returns e raised to a specified power.

Syntax exp(<expN>)

<expN> The positive, negative, or zero power (exponent) to raise the number e to.

Description exp() returns a number equal to e (the base of the natural logarithm) raised to the <expN> power. For example,
exp(2) returns 7.39 because e^2 = 7.39.

exp() is the inverse of log(). In other words, if y = exp(x), then log(y) = x.

Use SET DECIMALS to set the number of decimal places exp() displays.

See also log(), log10(), SET DECIMALS

floor ()
Returns the nearest integer that is less than or equal to a specified number.

Syntax floor(<expN>)

<expN> A number from which to determine and return the integer that is less than or equal to it.

Description floor() returns the nearest integer that is less than or equal to <expN>; in effect, rounding positive numbers
down and negative numbers up away from zero. If you pass a number with any digits other than zero (0) as
decimal digits, floor() returns the nearest integer that is less than the number. If you pass an integer to floor(),
or a number with only zeros for decimal digits, it returns that number.

For example, if the default number of decimal places is 2,

• floor(2.10) returns 2.00
• floor(–2.10) returns –3.00
• floor(2.00) returns 2.00
• floor(2) returns 2
• floor(–2.00) returns –2.00

Use SET DECIMALS to set the number of decimal places floor() displays.

When you pass a positive number to it, floor() operates exactly like int(). See the table in the description of
int() that compares int(), floor(), ceil(), and round().

See also ceil(), int(), round(), SET DECIMALS

FV()
Returns the future value of an investment.

Syntax FV(<payment expN>, <interest expN>, <term expN>)

<payment expN> The amount of the periodic payment. Specify the payment in the same time increment
as the interest and term. The payment can be negative or positive.

<interest expN> The interest rate per period expressed as a positive decimal number. Specify the interest
rate in the same time increment as the payment and term.

<term expN> The number of payments. Specify the term in the same time increment as the payment and
interest.

Description Use FV() to calculate the amount realized (future value) after equal periodic payments (deposits) at a fixed
interest rate. FV() returns a float representing the total of the payments plus the interest generated and
compounded.
Math / Money 100

int ()
Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%, <interest expN> is .095
(9.5/100) for payments made annually.

Express <payment expN>, <interest expN>, and <term expN> in the same time increment. For example, if the
payment is monthly, express the interest rate per month, and the number of payments in months. You would
express an annual interest rate of 9.5%, for example, as .095/12, which is 9.5/100 divided by 12 months.

The formula dBASE Plus uses to calculate FV() is as follows:

fv pmt * 1 int+ term 1–
int

-----------------------------------=

where int = rate / 100

For the future value an investment of $350 made monthly for five years, earning 9% interest, the formula
expressed as a dBASE Plus expression looks like this:

? FV(350,.09/12,60) // Returns 26398.45
? 350*((1+.09/12)^60-1)/(.09/12) // Returns 26398.45

In other words, if you invest $350/month for the next five years into an account that pays an annual interest rate
of 9%, at the end of five years you will have $26398.45.

Use SET DECIMALS to set the number of decimal places FV() displays.

See Also PAYMENT(), PV(), SET DECIMALS

int ()
Returns the integer portion of a specified number.

Syntax int(<expN>)

<expN> A number whose integer value you want to determine and return.

Description Use int() to remove the decimal digits of a number and retain only the integer portion, the whole number.

If you pass a number with decimal places to a function, command, or method that uses an integer as an
argument, such as SET EPOCH, dBASE Plus automatically truncates that number, in which case you don't need
to use int().

The following table compares int(), floor(), ceil(), and round(). (In these examples, the value of the second
round() argument is 0.)

<expN> int() floor() ceil() round()
 2.56 2 2 3 3
–2.56 –2 –3 –2 –3
 2.45 2 2 3 2
–2.45 –2 –3 –2 –2

See also abs(), ceil(), floor(), round()

log ()
Returns the logarithm to the base e (natural logarithm) of a specified number.

Syntax log(<expN>)

<expN> A positive nonzero number that equals e raised to the log. If you specify 0 or a negative number for
<expN>, dBASE Plus generates an error.

Description log() returns the natural logarithm of <expN>. The natural logarithm is the power (exponent) to which you raise
the mathematical constant e to get <expN>. For example, log(5) returns 1.61 because e^1.61= 5.

log() is the inverse of exp(). In other words, if log(y) = x, then y = exp(x).

Use SET DECIMALS to set the number of decimal places log() displays.
101 dBL Language Reference

log10()
See also exp(), log10(), SET DECIMALS

log10()
Returns the logarithm to the base 10 of a specified number.

Syntax log10(<expN>)

<expN> A positive nonzero number which equals 10 raised to the log. If you specify 0 or a negative number
for <expN>, dBASE Plus returns an error.

Description log10() returns the common logarithm of <expN>. The common logarithm is the power (exponent) to which
you raise 10 to get <expN>. For example, log10(100) returns 2 because 10^2=100.

Use SET DECIMALS to set the number of decimal places log10() displays.

See also exp(), log(), SET DECIMALS

max ()
Compares two numbers (or two date, character, or logical expressions) and returns the greater value.

Syntax max(<exp1>, <exp2>)

<exp1> A numeric, date, character, or logical expression to compare to a second expression of the same
type.

<exp2> The second expression to compare to <exp1>.

Description Use max() to compare two numbers to determine the greater of the two values. You can use max() to ensure
that a number is not less than a particular limit.

max() may also be used to compare two dates, character strings, or logical values, in which case max() returns:

• The later of the two dates. In dBASE Plus, a blank date is considered later than a non-blank date.

• The character string with the higher collation value. Collation values are determined by the language driver
in use, and are case-sensitive. For example, with the DB437US driver, the letter “B” is higher than the letter
“A”, but “a” is higher than “B” (all lowercase letters are collated higher than uppercase letters).

• true if one or both logical expressions evaluate to true. (The logical OR operator has the same effect.)

If <exp1> and <exp2> are equal, max() returns their value.

See also CALCULATE, IIF(), min()

min ()
Compares two numbers (or two date, character, or logical expressions) and returns the lesser value.

Syntax min(<exp1>, <exp2>)

<exp1> A numeric, date, character, or logical expression to compare to a second expression of the same
type.

<exp2> The second expression to compare to <exp1>.

Description Use min() to compare two numbers to determine the lesser of the two values. You can use min() to ensure that
a number is not greater than a particular limit.

min() may also be used to compare two dates, character strings, or logical values, in which case min() returns:

• The earlier of the two dates. In dBASE Plus, a non-blank date is considered earlier than a blank date.

• The character string with the lower collation value. Collation values are determined by the language driver in
use, and are case-sensitive. For example, with the DB437US driver, the letter “a” is lower than the letter “b”,
but “B” is lower than “a” (all uppercase letters are collated lower than lowercase letters).
Math / Money 102

MOD()
• false if one or both logical expressions evaluate to false. (The logical AND operator has the same effect.)

If <exp1> and <exp2> are equal, min() returns their value.

See also CALCULATE, IIF(), max()

MOD()
Returns the modulus (remainder) of one number divided by another.

Syntax MOD(<dividend expN>, <divisor expN>)

<dividend expN> The number to be divided.

<divisor expN> The number to divide by.

Description MOD() divides <dividend expN> by <divisor expN> and returns the remainder. In other words, MOD(X,Y)
returns the remainder of x/y.

The modulus formula is
<dividend>-INT(<dividend>/<divisor>)*<divisor>

where INT() truncates a number to its integer portion.
Note Earlier versions of dBASE used FLOOR() instead of INT() in the modulus calculation. This change only

affects the result if <dividend expN> and <divisor expN> are not the same sign, which in itself is an ambiguous
case.

The % symbol is also used as the modulus operator. It performs the same function as MOD(). For example, the
following two expressions are identical:

mod(x, 2)
x % 2

See Also CEILING(), FLOOR(), INT()

PAYMENT()
Returns the periodic amount required to repay a debt.

Syntax PAYMENT(<principal expN>, <interest expN>, <term expN>)

<principal expN> The original amount to be repaid over time.

<interest expN> The interest rate per period expressed as a positive decimal number. Specify the interest
rate in the same time increment as the term.

<term expN> The number of payments. Specify the term in the same time increment as the interest.

Description Use PAYMENT() to calculate the periodic amount (payment) required to repay a loan or investment of
<principal expN> amount in <term expN> payments. PAYMENT() returns a number based on a fixed interest
rate compounding over a fixed length of time.

If <principal expN> is positive, PAYMENT() returns a positive number.
If <principal expN> is negative, PAYMENT() returns a negative number.

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%, <interest expN> is .095
(9.5/100) for payments made annually.

Express <interest expN> and <term expN> in the same time increment. For example, if the payments are
monthly, express the interest rate per month, and the number of payments in months. You would express an
annual interest rate of 9.5%, for example, as .095/12, which is 9.5/100 divided by 12 months.

The formula dBASE Plus uses to calculate PAYMENT() is as follows:

pmt princ * int * 1 int+()term

1 int+()term 1–
--=
103 dBL Language Reference

PI()

where int = rate/100

For the monthly payment required to repay a principal amount of $16860.68 in five years, at 9% interest, the
formula expressed as a dBASE Plus expression looks like this:

? PAYMENT(16860.68,.09/12,60) // Returns 350.00
nTemp = (1 + .09/12)^60
? 16860.68*(.09/12*nTemp)/(nTemp-1) // Returns 350.00

Use SET DECIMALS to set the number of decimal places PAYMENT() displays.

See Also FV(), PV(), SET DECIMALS

PI()
Returns the approximate value of pi, the ratio of a circle’s circumference to its diameter.

Syntax PI()

Description PI() returns a number that is approximately 3.141592653589793. pi is a constant that can be used in
mathematical calculations. For example, use it to calculate the area and circumference of a circle or the volume
of a cone or cylinder.

Use SET DECIMALS to set the number of decimal places PI() displays.

See also cos(), dtor(), rtod(), SET DECIMALS, sin(), tan()

PV()
Returns the present value of an investment.

Syntax PV(<payment expN>, <interest expN>, <term expN>)

<payment expN> The amount of the periodic payment. Specify the payment in the same time increment
as the interest and term. The payment can be negative or positive.

<interest expN> The interest rate per period expressed as a positive decimal number. Specify the interest
rate in the same time increment as the payment and term.

<term expN> The number of payments. Specify the term in the same time increment as the payment and
interest.

Description PV() is a financial function that calculates the original principal balance (present value) of an investment. PV()
returns a float that is the amount to be repaid with equal periodic payments at a fixed interest rate compounding
over a fixed length of time. For example, use PV() if you want to know how much you need to invest now to
receive regular payments for a specified length of time.

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%, <interest expN> is .095
(9.5 / 100) for payments made annually.

Express <payment expN>, <interest expN>, and <term expN> in the same time increment. For example, if the
payment is monthly, express the interest rate per month, and the number of payments in months. Express an
annual interest rate of 9.5%, for example, as .095/12, which is 9.5/100 divided by 12 months.

The formula dBASE Plus uses to calculate PV() is as follows:

pv pmt * 1 int+()term 1–
int * 1 int+()term
--=

where int = rate 100

For the present value of an investment earning 9% interest, to be paid at $350 monthly for five years, the
formula expressed as a dBASE Plus expression looks like this:
Math / Money 104

random ()
? PV(350,.09/12,60) // Returns 16860.68
nTemp = (1 + .09/12)^60
? 350*(nTemp-1)/(.09/12*nTemp) // Returns 16860.68

In other words, you have to invest $16,860.68 now into an account paying an interest rate of 9% annually to
receive $350/month for the next five years.

Use SET DECIMALS to set the number of decimal places PV() displays.

See Also FV(), PAYMENT(), SET DECIMALS

random ()
Returns a pseudo-random number between 0 and 1 exclusive (never 0 and
never 1).

Syntax random([<expN>])

<expN> The number with which you want to seed random().

Description Computers cannot generate truly random numbers, but you can use random() to generate a series of numbers
that appear to have a random distribution. A series of pseudo-random numbers relies on a seed value, which
determines the exact numbers that appear in the series. If you use the same seed value, you get the same series of
numbers.

Pseudo-random numbers, when considered as a whole series, appear to be random; that is, you cannot tell from
one number what the next will be. But the first number in the series is related to the seed value. Therefore, you
should seed random() only once at the beginning of each series, like before simulating a card shuffle or
randomly assigning work shifts. Seeding during a series defeats the design of the random number generator.

If you specify a positive <expN> value, random() uses that <expN> as the seed value, so a positive value should
be used for testing, since the numbers will be the same each time. If <expN> is negative, random() uses a seed
value based on the number of seconds past midnight on your computer system clock. As a result, a negative <expN>
value most likely will give you a different series of random numbers each time.

If you don't specify <expN>, or use zero, random() returns the next number in the series.

When dBASE Plus first starts up, the random number generator is seeded with a fixed internal seed value of
179757.

Use SET DECIMALS to set the number of decimal places random() displays.

See also GENERATE, SET DECIMALS

round ()
Returns a specified number rounded to the nearest integer or a specified number of decimal places.

Syntax round(<expN 1> , <expN 2>)

<expN 1> The number you want to round.

<expN 2> If <expN 2> is positive, the number of decimal places to round <expN 1> to. If <expN 2> is
negative, whether to round <expN 1> to the nearest tens, hundreds, thousands, and so on.

Description Use round() to round a number to a specified number of decimal places or to a specified tens, hundreds,
thousands value, and so forth. Use round() with SET DECIMALS to round a number and remove trailing zeros.

If the digit in position <expN 2> + 1 is between 0 and 4 inclusive, <expN 1> (with <expN 2> decimal places)
remains the same; if the digit in position <expN 2> + 1 is between 5 and 9 inclusive, the digit in position <expN
2> is increased by 1.

Use 0 as <expN 2> to round a number to the nearest whole number. Using –1 rounds a number to the nearest
multiple of ten; rounding to a –2 rounds a number to the nearest multiple of one hundred; and so on. For
example, round(14932,–2) returns 14900 and round(14932,–3) returns 15000.

For example, if the default number of decimal places is 2,
105 dBL Language Reference

rtod ()
• round(2.50,0) returns 3.00
• round(–2.50,0) returns –2.00
• round(2.00,0) returns 2.00

See the table in the description of int() that compares int(), floor(), ceil(), and round().

See also abs(), ceil(), floor(), int()

rtod ()
Returns the degree value of an angle measured in radians.

Syntax rtod(<expN>)

<expN> A negative or positive number that is the size of the angle in radians.

Description rtod() converts the measurement of an angle from radians to degrees.

To convert radians to degrees, dBASE Plus

• Multiplies the number of radians by 180
• Divides the result by pi
• Returns the quotient

An angle of pi radians is equivalent to 180 degrees.

Use rtod() with the trigonometric functions acos(), asin(), atan(), and atan2() to convert the radian return
values of these functions to degrees. For example, if the default number of decimal places is 2, atan(1) returns
the value of the angle in radians, 0.79, while rtod(atan(1)) returns the value of the angle in degrees, 45.00.

Use SET DECIMALS to set the number of decimal places rtod() displays.

See also acos(), asin(), atan(), atan2(), cos(), dtor(), PI(), SET DECIMALS, sin(), tan()

SET CURRENCY
SET CURRENCY determines the character(s) used as the currency symbol, and the position of that symbol
when displaying monetary values

Syntax SET CURRENCY left | right

SET CURRENCY TO [<expC>]

LEFT Places currency symbol(s) to the left of currency numbers.

RIGHT Places currency symbol(s) to the right of currency numbers.

<expC> The characters that appear as a currency symbol. Although dBASE Plus imposes no limit to the
length of <expC>, it recognizes only the first nine characters. You can't include numbers in <expC>.

Description Currency symbols are displayed for numbers when you use the "$" template symbol in a formatting template or
the TRANSFORM() function. The defaults for SET CURRENCY are set by the Regional settings of the
Windows Control Panel.

Use SET CURRENCY left | right to specify the position of currency symbol(s) in monetary numeric values.
Use SET CURRENCY TO to establish a currency symbol other than the default.

When SET CURRENCY is LEFT, dBASE Plus displays only as many currency symbols as fit, together with
the digits to the left of any decimal point, within ten character spaces.

SET CURRENCY TO without the <expC> option resets the currency symbol to the default set with the
Regional settings of the Windows Control Panel.

See Also SET POINT, SET SEPARATOR, TRANSFORM()
Math / Money 106

SET DECIMALS
SET DECIMALS
Determines the number of decimal places of numbers to display.

Syntax SET DECIMALS TO [<expN>]

<expN> The number of decimals places, from 0 to 18. The default is 2.

Description Use SET DECIMALS to specify the number of decimal places of numbers you want dBASE Plus to display.
SET DECIMALS affects the display of most mathematical calculations, but not the way numbers are stored on
disk or maintained internally.

Excess digits are rounded when a number is displayed. For example, with the default setting of two decimal
places, the number 1.995 is displayed as 2.00.

Use SET PRECISION to set the number of decimal places used in comparisons. SET DECIMALS and SET
PRECISION are independent settings.

SET DECIMALS TO without <expN> resets the number of decimal places back to the default of 2.

See Also INT(), RANDOM(), ROUND(), SET PRECISION, VAL()

SET POINT
Specifies the character that separates decimal digits from integer digits in numeric display.

Syntax SET POINT TO [<expC>]

<expC> The character representing the decimal point. You can specify more than one character, but dBASE
Plus uses only the first one. If you specify a number as a character for <expC> (for example, "3"), dBASE Plus
returns an error.

The default is set by theRegional Settings of the Windows Control Panel.

Description SET POINT affects both numeric input and display with commands such as EDIT. SET POINT also affects
numeric display with commands such as DISPLAY MEMORY, STORE, =, and the PICTURE "." template
character. You must use the period in the PICTURE option, regardless of the setting of SET POINT.

SET POINT has no effect on the representation of numbers in dBASE Plus expressions and statements. Only a
period is valid as a decimal point. For example, if you SET POINT TO "," (comma) and issue the following
command:

? MAX(123,4, 123,5)

dBASE Plus returns an error. The correct syntax is:
? MAX(123.4, 123.5)

SET POINT TO without the <expC> option resets the decimal character to the default set with theRegional
settings of the Windows Control Panel.

See Also SET DECIMALS, SET SEPARATOR, STORE

SET PRECISION
Determines the number of digits used when comparing numbers.

Syntax SET PRECISION TO [<expN>]

<expN> The number of digits, from 10 to 16. The default is 10.

Description Use SET PRECISION to change the accuracy, or precision, of numeric comparisons. You can set precision
from 10 to 16 digits.

SET PRECISION affects data comparisons, but not mathematical computations or data display. Math
computations always use full precision internally. To change the number of decimal places dBASE Plus
displays, use SET DECIMALS.
107 dBL Language Reference

SET SEPARATOR
In general, you should use as little precision as possible for comparisons. Like many programs, dBASE Plus
handles numbers as base-2 floating point numbers. This format precisely represents fractional values such as 0.5
(1/2) or 0.375 (3/8), but only approximates other values such as 0.1 and 1/9. In addition, precision is also used to
represent the integer portion of a number; the larger the integer portion, the less precision is available for the
fractional portion. Therefore, comparing values with too much precision results in erroneous mismatches.

Example The following examples demonstrate how numbers are represented and how the precision setting affects data
comparisons:

set decimals to 18 // to see as many digits as possible
set precision to 16 // maximum
? 0.5 // 0.500000000000000000 exact
? 0.375 // 0.375000000000000000 exact
? 0.4 // 0.400000000000000022 16 digits precision
? 1/9 // 0.111111111111111105 16 digits precision
? 12345.4 // 12345.399999999999640000 11 digits precision
? 123456789.4 // 123456789.400000006000000000 7 digits precision
? 12345.4 - 12345 // 0.399999999999636202 11 digits precision
? 12345.4 - 12345 == 0.4 // False, too much precision attempted
set precision to 10
? 12345.4 - 12345 == 0.4 // True
set decimals to 0 // Has no effect on comparisons
? 12345.4 - 12345 == 0.4 // Still True
set precision to 16
? 12345.4 - 12345 == 0.4 // Still False
set precision to 11
? 12345.4 - 12345 == 0.4 // True
set precision to 12
? 12345.4 - 12345 == 0.4 // True

Note that the final comparion to 12 digits returns true because the first 12 digits just happen to be the same for
both the calculated and literal value of 0.4. In fact, there are only 11 digits of precision in the calculated value.
The 12th digit is the first rounding digit.

See Also SET DECIMALS

SET SEPARATOR
Specifies the character that separates each group of three digits (whole numbers) to the left of the decimal point in
the display of numbers greater than or equal to 1000.

Syntax SET SEPARATOR TO [<expC>]

<expC> The whole-number separator, which is the character that separates each group of three digits to the
left of the decimal point in the display of numbers greater than or equal to 1000. You can specify more than one
character, but dBASE Plus uses only the first one. If you specify a number as a character for <expC> (for
example, "3"), dBASE Plus returns an error.

The default is set by the Regional Settings of the Windows Control Panel.

Description SET SEPARATOR affects only the PICTURE "," template character and the numeric display of byte totals for
the commands such as DIR, DISPLAY FILES, and LIST FILES. For example, if you SET SEPARATOR TO
"."(period) and issue the following, dBASE Plus returns 123456 displayed as 123.456:

? 123456 PICTURE "999,999"

You must use the comma in the PICTURE function, regardless of the setting of SET SEPARATOR.

SET SEPARATOR TO without the <expC> option resets the separator to the default set with theRegional
Settings of the Windows Control Panel.

Setting a whole-number separator with SET SEPARATOR doesn't affect the values of numbers, only their
display.

See Also SET POINT
Math / Money 108

SIGN()
SIGN()
Returns an integer that indicates if a specified number is positive, negative, or zero (0).

Syntax SIGN(<expN>)

<expN> The number whose sign (positive, negative, or zero) to determine.

Description Use SIGN() to reduce an arbitrary numeric value into one three numbers: 1, -1, or zero. SIGN() returns 1 if a
specified number is positive, -1 if that number is negative, and 0 if that number is 0.

SIGN() is used when the numbers 1, -1, and/or 0 are appropriate for an action, based on the sign—but not the
magnitude—of another number. When interested in the sign alone, it’s more straightforward to compare the
number with zero using a comparison operator.

SIGN() always returns an integer, regardless of the value of SET DECIMALS.

Example The following example is a custom next() method for a detail rowset that automatically navigates in the master
rowset:

function next(nArg)
 if not rowset::next(nArg) // Navigate as far as specified, but
 // if end of detail rowset
 this.masterRowset.next(sign(nArg)) // Move forward or backward in master
 if nArg < 0 // If navigating backwards
 this.last() // Go to last matching detail row
 endif
 endif

No matter how many records are skipped in the detail rowset, the master rowset is navigated forward one or
backward one row only, by using the SIGN() function to convert the row count to 1 or -1 (or zero). Without the
SIGN() function, you would have to use a more cumbersome IIF() function or IF block.

When checking to see if the navigation was backwards, it would be redundant to use the SIGN() function again,
since you would have to compare the result to zero or -1 anyway. Simply using the less than logical operator is
all that is needed.

See Also ABS(), MAX(), MIN(), SET DECIMALS

sin ()
Returns the trigonometric sine of an angle.

Syntax sin(<expN>)

<expN> The size of the angle in radians. To convert an angle’s degree value to radians, use dtor(). For
example, to find the sine of a 30-degree angle, use sin(dtor(30)).

Description sin() calculates the ratio between the side opposite an angle and the hypotenuse in a right triangle. sin() returns
a number from –1 to +1. sin() returns zero when <expN> is zero, pi, or 2pi radians.

Use SET DECIMALS to set the number of decimal places sin() displays.

The cosecant of an angle is the reciprocal of the sine of the angle. To return the cosecant of an angle, use 1/
sin().

See also asin(), cos(), dtor(), PI(), rtod(), SET DECIMALS, tan()

sqrt ()
Returns the square root of a number.

Syntax sqrt(<expN>)

<expN> A positive number whose square root you want to return. If <expN> is a negative number, dBASE
Plus generates an error.
109 dBL Language Reference

tan ()
Description sqrt() returns the positive square root of a non-negative number. For example sqrt(36) returns 6 because 6^2 =
36. The square root of 0 is 0.

An alternate way to find the square root is to raise the value to the power of 0.5. For example, the following two
statements display the same value:

? sqrt(36)) // displays 6.00
? 36^.5 // displays 6.00

Use SET DECIMALS to set the number of decimal places sqrt() displays.

See also exp(), log(), log10(), SET DECIMALS

tan ()
Returns the trigonometric tangent of an angle.

Syntax tan(<expN>)

<expN> The size of the angle in radians. To convert an angle's degree value to radians, use dtor(). For
example, to find the tangent of a 30-degree angle, use tan(dtor(30)).

Description tan() calculates the ratio between the side opposite an angle and the side adjacent to the angle in a right triangle.
tan() returns a number that increases from zero to plus or minus infinity. tan() returns zero when <expN> is 0,
pi, or 2*pi radians. tan() is undefined (returns infinity) when <expN> is pi/2 or 3*pi/2 radians.

Use SET DECIMALS to set the number of decimal places tan() displays.

The cotangent of an angle is the reciprocal of the tangent of the angle. To return the cotangent of an angle, use 1/
tan().

See also atan(), atan2(), cos(), dtor(), PI(), rtod(), SET DECIMALS, sin()
Math / Money 110

C h a p t e r

Chapter 8Bitwise
The functions in this chapter are used for bit manipulation and base conversion for unsigned 32-bit values.
These values are often passed to and returned by Windows API and other DLL functions. Interpreting such
values often requires analysis and manipulation of individual bits.

For all parameters designated as 32-bit integers, non-integers will be truncated to integers. For integers larger
than 32 bits, only the least significant (right-most) 32 bits are used.

BITAND()
Performs a bitwise AND.

Syntax BITAND(<expN1>, <expN2>)

<expN1>
<expN2> Two 32-bit integers

Description BITAND() compares bits in the numeric value <expN1> with corresponding bits in the numeric value <expN2>.
When both bits in the same position are on (set to 1), the corresponding bit in the returned value is on. In any
other case, the bit is off (set to 0).

AND 0 1

0 0 0

1 0 1

Use BITAND() to force individual bits to zero. Create a bit mask: a 32-bit integer with zeroes in the bits you
want to force to zero and ones in the bits you want to leave alone. Use this bit mask as either one of the
parameters to BITAND(), and the other parameter as the number that is modified.

Example The following program displays Windows version information extracted from the return value of the Windows API
function GetVersion(), which returns a 32-bit integer. The major version number is in the low byte of the low word,
and the minor version number is in the high byte of the low word. For example, if the version is 4.10, the major
version number is 4 and the minor version number is 10.

As is common practice, macro-functions are created with the #define preprocessor directive to simplify
common bit manipulations. There are functions to extract the high word and low word of 32-bit value, and the
high byte and low byte of a 16-bit value. The HIBYTE() macro-function has some defensive programming in
case the parameter is larger than 16 bits. The functions BITAND() and BITZRSHIFT() are used to extract the
values.

#define HIWORD(n) (bitzrshift((n),16))
#define LOWORD(n) (bitand((n),0xFFFF))
#define HIBYTE(n) (bitand(bitzrshift((n),8),0xFF))
#define LOBYTE(n) (bitand((n),0xFF))
Bitwise 111

BITLSHIFT()
if type("GetVersion") # "FP"
 extern clong GetVersion() kernel32
endif

local v, vMajor, vMinor, vBuild, isNT
v = GetVersion()
vMajor = LOBYTE(LOWORD(v))
vMinor = HIBYTE(LOWORD(v))
isNT = not bitset(v, 31) // High bit clear if NT
vBuild = iif(isNT, HIWORD(v), 0) // Ignores Win32s

? iif(isNT, "Windows NT", "Windows 9x"), ;
 "version " + ltrim(str(vMajor)) + "." + str(vMinor, 2, 0, "0")
if isNT
 ?? " build", ltrim(str(vBuild))
endif

To get the low word of a 32-bit integer, a bit mask is created with ones in all 16 low bits. The hexadecimal value
of this number is FFFF, as shown in the LOWORD() macro-function. Similarly, to get the low byte of a 16-bit
integer, the bit mask has ones in the low 8 bits: FF. All the other bits are set to zero when the bitwise AND is
performed.

The major version number uses both LOBYTE() and LOWORD(). While this is redundant—LOBYTE()
alone would work—it’s left in to make the code more symmetical and self-documenting.

See Also BITOR(), BITSET(), BITXOR()

BITLSHIFT()
Shifts a number's bits to the left.

Syntax BITLSHIFT(<int expN>, <shift expN>)

<int expN> A 32-bit integer.

<shift expN> The number of places to shift, from 0 to 32.

Description BITLSHIFT() moves each bit in the numeric value <int expN> to the left the number of times you specify in
<shift expN>. Each time the bits are shifted, the least significant bit (bit 0, the bit farthest to the right) is set to 0,
and the most significant bit (bit 31, the bit farthest to the left) is lost.

Shifting a number’s bits to the left once has the effect of multiplying the number by two, except that if the
number gets too large—equal to or greater than 2^32 (roughly 4 billion)—the high bit is lost.

Example The following macro-function takes three separate values for red, green, and blue and combines them into a single
24-bit value.

#define RGB(r,g,b) ;
(bitlshift(bitand((r),0xff),16)+bitlshift(bitand((g),0xff),8)+bitand((b),0xff))

Each value is 8 bits—BITAND() makes sure of that. The red value is shifted 16 bits to the left to make room for
the green and blue values. The green value is shifted 8 bits to the left to make room for the blue value. All three
numbers are added together to form a single 24-bit number. For example, suppose you pass the following
values, shown here in binary to the macro-function:

Red 11000011
Green 10101010
Blue 11111111

Shifting the red and green results in the following values:
Red 11000011 00000000 00000000
Green 00000000 10101010 00000000
Blue 00000000 00000000 11111111

The 8-bit values are shifted so their bits do not overlap. Now, adding the values together combines them into a
single 24-bit value:

RGB 11000011 10101010 11111111

See Also BITRSHIFT(), BITZRSHIFT()
Bitwise 112

BITNOT()
BITNOT()
Inverts the bits in a number

Syntax BITNOT(<expN>)

<expN> A 32-bit integer.

Description BITNOT() inverts all 32 bits in <expN>. All zeroes become ones, and all ones become zeroes.

To invert specific bits, use BITXOR().

See also BITXOR()

BITOR()
Performs a bitwise OR.

Syntax BITOR(<expN1>, <expN2>)

<expN1>
<expN2> Two 32-bit integers

Description BITOR() compares bits in the numeric value <expN1> with corresponding bits in the numeric value <expN2>.
When either or both bits in the same position are on (set to 1), the corresponding bit in the returned value is on.
When neither element is on, the bit is off (set to 0).

OR 0 1

0 0 1

1 1 1

Use BITOR() to force individual bits to one. Create a bit mask: a 32-bit integer with ones in the bits you want to
force to one and zeroes in the bits you want to leave alone. Use this bit mask as either one of the parameters to
BITOR(), and the other parameter as the number that is modified.

See Also BITAND(), BITSET(), BITXOR()

BITRSHIFT()
Shifts a number's bits to the right, maintaining sign.

Syntax BITRSHIFT(<int expN>, <shift expN>)

<int expN> A signed 32-bit integer.

<shift expN> The number of places to shift, from 0 to 32.

Description Unlike the other bitwise functions, BITRSHIFT() treats its 32-bit integer as a signed 32-bit integer. The sign of
a 32-bit integer is stored in the most significant bit (bit 31), which is also referred to as the high bit. If the high
bit is 1, the number is negative if it is treated as a signed integer. Otherwise, it is simply a very large unsigned
integer.

BITRSHIFT() moves each bit in the numeric value <int expN> to the right the number of times you specify in
<shift expN>. Each time the bits are shifted, the previous value of the high bit is restored, and the least
significant bit (bit 0, the bit farthest to the right) is lost. This is called a sign-extended shift, because the sign is
maintained.

A similar function, BITZRSHIFT(), performs a zero-fill right shift, which always sets the high bit to zero. If
<int expN> is a positive integer less than 2^31, BITZRSHIFT() and BITRSHIFT() have the same effect,
because the high bit for such an integer is zero.

Use BITRSHIFT() when you’re treating the integer as a signed integer. Use BITZRSHIFT() when the integer is
unsigned.
113 dBL Language Reference

BITSET()
Shifting a number’s bits to the right once has the effect of dividing the number by two, dropping any fractions.

See Also BITLSHIFT(), BITZRSHIFT()

BITSET()
Checks if a specified bit in a numeric value is on.

Syntax BITSET(<int expN>, <bit expN>)

<int expN> A 32-bit integer.

<bit expN> The bit number, from 0 (the least significant bit) to 31 (the most significant bit).

Description BITSET() evaluates the number <int expN> and returns true if the bit in position <bit expN> is on (set to 1), or
false if it is off (set to 0). For example, the binary representation of 3 is

00000000 00000000 00000000 00000011

bit number 0 is on, bit number 2 is off.

Example The following statement from the example for BITAND()
isNT = not bitset(v, 31) // High bit clear if NT

uses BITSET() to check the high bit of the value returned by the GetVersion() Windows API function. If the bit
is not set, the operating system is Windows NT.

See Also BITAND(), BITLSHIFT(), BITOR(),BITRSHIFT(), BITXOR(), BITZRSHIFT()

BITXOR()
Performs a bitwise exclusive OR.

Syntax BITXOR(<expN1>, <expN2>)

<expN1>
<expN2> Two 32-bit integers

Description BITXOR() compares bits in a numeric value <expN1> with corresponding bits in the numeric value <expN2>.
When one (and only one) of two bits in the same position are on (set to 1), the corresponding bit in the returned
value is on. In any other case, the bit is off (set to 0).

XOR 0 1

0 0 1

1 1 0

This operation is known as exclusive OR, since one bit (and only one bit) must be set on for the corresponding
bit in the returned value to be set on.

Use BITXOR() to flip individual bits. Create a bit mask: a 32-bit integer with ones in the bits you want to flip
and zeroes in the bits you want to leave alone. Use this bit mask as either one of the parameters to BITXOR(),
and the other parameter as the number that is modified.

See Also BITAND(), BITNOT(), BITOR(), BITSET(),

BITZRSHIFT()
Shifts a number's bits to the right.

Syntax BITZRSHIFT(<int expN>, <shift expN>)

<int expN> A 32-bit integer.
Bitwise 114

HTOI()
<shift expN> The number of places to shift, from 0 to 32.

Description BITZRSHIFT() moves each bit in the numeric value <int expN> to the right the number of times you specify in
<shift expN>. Each time the bits are shifted, the most significant bit (bit 31, the bit farthest to the left) is set to 0,
and the least significant bit (bit 0, the bit farthest to the right) is lost.

Shifting a number’s bits to the right once has the effect of dividing the number by two, dropping any fractions.

Like most other bitwise functions, BITZRSHIFT() treats <int expN> as an unsigned integer. To shift a signed
integer, use BITRSHIFT() instead.

Example The following macro-function, defined with the #define preprocessor directive:
#define HIWORD(n) (bitzrshift((n),16))

extracts the high word (16 bits) of a 32-bit integer. Shifting the bits 16 places to the right with BITZRSHIFT()
moves the high word into the low word, filling the now-vacated high bits with zeros, resulting in a 32-bit integer
with the same value as the original high word.

See also BITLSHIFT(), BITRSHIFT()

HTOI()
Returns the numeric value of a specified hexadecimal number.

Syntax HTOI(<expC>)

<expC> The hexadecimal number whose numeric value to return.

Description Use HTOI() to convert a string containing a hexadecimal number to its numeric value (in decimal). For
example, you might allow the input of a hexadecimal number. This input would have to go into a string because
the hexadecimal digits A through F are considered characters. To use the hexadecimal number, you would have
to convert the hexadecimal string into its numeric value.

HTOI() will attempt to convert a hexadecimal number of any magnitude; it is not limited to 32 bits (8
hexadecimal digits).

You may specify literal hexadecimal numbers by preceding them with 0x; HTOI() is not necessary. For
example, 0x64 and HTOI("64") result in the same number: 100 decimal.

Example The following example converts a hexadecimal string typed into an Entryfield into the corresponding numeric
value and stores it in a custom property called numValue.

function address_onChange
 this.numValue = htoi(this.value)

See Also ITOH()

ITOH()
Returns the hexadecimal equivalent of a specified number, as a character string.

Syntax ITOH(<int expN> [, <chars expN>])

<int expN> The 32-bit integer whose hexadecimal equivalent to return.

<chars expN> The minimum number of characters to include in the returned hexadecimal character string.

Description Use ITOH() to convert a number to a character string representing its hexadecimal equivalent. The hexadecimal
number may be used for display and editing/input purposes. To use the hexadecimal number as a number, it
must be converted back into a numeric value with HTOI().

By default, ITOH() uses only as many characters as necessary to represent <int expN> in hexadecimal. If
<chars expN> is greater than the number of characters required, ITOH() pads the returned string with leading
0's to make it <chars expN> characters long. If <chars expN> is less than the number of characters required, it is
ignored. For example, ITOH(21) returns the string "15", while ITOH(21,4) returns "0015".
115 dBL Language Reference

ITOH()
Because ITOH() treats the integer as a 32-bit integer, negative integers are always converted into 8
hexadecimal digits. For example, ITOH(-1) returns "FFFFFFFF".

See Also HTOI()
Bitwise 116

C h a p t e r

Chapter 9Date and time objects
dBASE Plus supports two types of dates:

• A primitive date that is compatible with earlier versions of dBASE

• A JavaScript-compatible Date object.

A Date object represents a moment in time. It is stored as the number of milliseconds since January 1, 1970
00:00:00 GMT (Greenwich Mean Time). Although GMT and UTC (a compromise between the English and
French acronyms for Universal Coordinated Time) are derived differently, they are considered to represent the
same time.

Modern operating systems have their own current time zone setting, which is used when handling Date objects.
For example, two computers with different time zone settings—whether or not they are physically in different
time zones—will display the same time differently.

Primitive dates represent the date only, not the time. (They are considered to be the first
millisecond—midnight—of that date.) Literal dates are delimited by curly braces and are evaluated according to
the rules used by the CTOD() function. An invalid literal date is always converted to the next valid one; for
example, if the current date format is month/day/year, {02/29/1997} is considered March 1, 1997. An empty
date is valid and is represented by empty braces: { }.

dBASE Plus will convert one type of date to the other on-the-fly as needed. For example, you may use a Date
class method on a primitive date variable or a literal date:

? date().toGMTString()
? {8/21/97}.toString()

This creates a temporary Date object from which the method or property is called. Because the object is a
temporary copy, calling the set methods or assigning to the properties is allowed, but has no apparent effect.
You may also use a date function on a Date object, in which case the time portion of the Date object will be
truncated.

Note While the JavaScript-compatible methods are zero-based, dBL functions are one-based. For example, the
getMonth() method returns 0 for January, while MONTH() returns 1.

dBL also features a Timer object that can cause actions to occur at timed intervals.

class Date
An object that represents a moment in time.

Syntax [<oRef> =] new Date()

or
[<oRef> =] new Date(<date expC>)

or
Date and time objects 117

class Date
[<oRef> =] new Date(<msec expN>)

or
[<oRef> =] new Date(<year expN>, <month expN>, <day expN>

 [, <hours expN> , <minutes expN> , <seconds expN>])

or
[<oRef> =] new Date(<year expN>, <month expN>, <day expN>

[, <hours expN> , <minutes expN> , <seconds expN>, <timez expC>])

<oRef> A variable or property in which you want to store a reference to the newly created Date object.

<date expC> A string representing a date and time.

<msec expN> The number of milliseconds since January 1, 1970 00:00:00 GMT. Negative values can be
used for dates before 1970.

<year expN> The year.

<month expN> A number representing the month, between 0 and 11: zero for January, one for February, and
so on, up to 11 for December.

<day expN> The day of the month, from 1 to 31.

<hours expN> The hours portion of the time, from 1 to 24.

<minutes expN> The minutes portion of the time, from 1 to 60.

<seconds expN> The seconds portion of the time, from 1 to 60.

<timez expC> Time Zone (GMT, EST, CST, MST or PST).

Properties The following tables list the properties and methods of the Date class. (No events are associated with this class.)

Property Default Description
baseClassName DATE Identifies the object as an instance of the Date class (Property

discussed in Chapter 5, “Core language.”)
className (DATE) Identifies the object as an instance of a custom class. When no custom

class exists, defaults to baseClassName
date The day of the month
day The day of the week, from 0 to 6: 0 is Sunday, 1 is Monday,

and so on
hour The hour of the time
minute The minute of the time
month The month of the year, from 0 to 11: 0 is January, 1 is February,

and so on
second The second of the time
year The year of the date

Method Parameters Description
getDate() Returns day of month
getDay() Returns day of week
getHours() Returns hours portion of time
getMinutes() Returns minutes portion of time
getMonth() Returns month of year
getSeconds() Returns seconds portion of time
getTime() Returns date/time equivalent
getTimezoneOffset() Returns time zone offset for current locale
getYear() Returns year of date
parse() <date expC> Calculates time equivalent for date string
setDate() <expN> Sets day of month
setHours() <expN> Sets hours portion of time
Date and time objects 118

class Date
Description A Date object represents both a date and time.

There are four ways to create a new Date object:

• When called with no parameters, the Date object contains the current system date and time.

• You can pass a string containing a date and optionally a time. Once a time parameter has been specified, the time
zone parameter may also be included. Lacking a time zone parameter, dBASE defaults to the current locale.

• You can pass a number representing the number of milliseconds since January 1, 1970, 00:00:00 GMT. Use
a negative number for dates before 1970.

• You can pass numeric parameters for each component of the date, and optionally each component of the
time.

If you specify a date but don’t specify hours, minutes, or seconds, they are set to zero. When passing a string,
the <date expC> can be in a variety of formats, with or without the time, as shown in the following examples:

d1 = new Date("Jan 5 1996") // month, day, year
d2 = new Date("18 Dec 1994 15:34")// day, month, year, and time
d3 = new Date("1987 Nov 4 9:18:34")// year, month, day, and time with seconds
d4 = new Date("1987 Nov 4 9:18:34 PST")// year, month, day, time with seconds, and time
zone

You may spell out the month or abbreviate it, down to the first three letters; for example, “April”, “Apri”, or
“Apr”. For consistency and because of the three-letter month of May, you should either always spell it out
completely or use the first three letters.

Date objects have an inherent value. The format of the date is platform-dependent; in dBL, the format is same as
using the toLocaleString() method. Use the toGMTString(), toLocaleString(), and toString() methods to
format the Date objects, or create your own. Date objects will automatically type-convert into strings, using the
inherent format.

In dBL, every Date object has a separate property for each date and time component. You may read or write to
these properties directly (except for the day property, which is read-only), or use the equivalent method. For
example, assigning a value to the minute property has the same effect as calling the setMinutes() method with
the value as the parameter.

Note While using values outside a date component's specified range does not produce an error message, they may
produce unintended results. In the following example, an inadvertant minus sign before the hours component
actually rolls the clock back:

d=new date(01,05,13,23,20,30)
?dtodt(d)
06/13/2001 11:20:30 PM

d=new date(01,05,13,-23,20,30)
?dtodt(d)

setMinutes() <expN> Sets minutes portion of time
setMonth() <expN> Sets month of year
setSeconds() <expN> Sets seconds portion of time
setTime() <expN> Sets date/time
setYear() <expN> Sets year of date
toGMTString() Converts date to string, using Internet (GMT)

conventions
toLocaleString() Converts date to string, using locale conventions
toString() Converts date to string, using standard JavaScript

conventions
UTC() <year expN>

, <month expN>
, <day expN>
[, <hours expN>
, <minutes expN>
, <seconds expN>]

Calculates time equivalent of date parameters

Method Parameters Description
119 dBL Language Reference

class Timer
06/12/2001 01:20:30 AM

Change the month to 12 and watch the result jump to:
01/12/2002 01:20:30 AM

To avoid such scenarios, it is recommended that date component values fall withing their stated range.

You should also aquaint yourself with the affect "rollover" will have on your date components. With the
exception of the month component, "rollover" occurs whenever you use the highest number in a range. For
example, using 60 for the seconds value will cause the minutes value to increase by 1, 60 minutes rollsovers to
the next hour, and so on.

See also DATE()

class Timer
An object that initiates a recurring action at preset intervals.

Syntax [<oRef> =] new Timer()

<oRef> A variable or property in which you want to store a reference to the newly created Timer object.

Properties The following tables list the properties and events of the Timer class. (No methods are associated with this
class.)

Property Default Description
baseClassName TIMER Identifies the object as an instance of the Timer class (Property

discussed in Chapter 5, “Core language.”)
className (TIMER) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
enabled false Whether the Timer is active
interval 10 The interval between actions, in seconds

Event Parameters Description
onTimer Action to take when interval expires

Description To use a Timer object:

1 Assign an event handler to the onTimer event.
2 Set the interval property to the desired number of seconds.
3 Set the enabled property to true when you want to activate the timer.

The Timer object will start counting down time whenever dBASE Plus is idle. When the number of seconds
assigned to interval has passed, the Timer object’s onTimer event fires. After the event fires, the Timer object’s
internal timer is reset back to the interval, and the countdown repeats.

To disable the timer, set the enabled property to false.

A Timer object counts idle time; that is when dBASE Plus is not doing anything. This includes waiting for input
in the Command window or Navigator. If a process, such as an event handler or program, is running, the counter
in all active Timer objects is suspended. When the process is complete and dBASE Plus is idle again, the count
resumes.

Example Suppose you want to display the date and time in a form. The following is an onOpen event handler that creates
a Timer object and attaches it to the form. A reference to the form is added to the Timer object so that the
timer’s onTimer event handler can update the form. Another method in the form is assigned as the Timer
object’s onTimer event handler. The time is updated every two seconds instead of every second, so that dBASE
Plus is not too bogged down constantly updating the time.

function Form_onOpen()
 this.timer = new Timer() // Make timer a property of the form
 this.timer.parent = this // Assign form as timer's parent
 this.timer.onTimer = this.updateClock // Assign method in form to timer
 this.timer.interval = 2 // Fire timer every 2 seconds
Date and time objects 120

CDOW()
 this.timer.enabled = true // Activate timer

The following is the updateClock() method of the form, assigned as the onTimer event handler. Because the
Timer object calls this method, the this reference refers to the Timer object, not the form, even though the
method is a method of the form. A reference to the form has been stored in the parent property of the timer; an
Text component of the form named clock is updated through that reference.

function updateClock()
 this.parent.clock.text = new Date()

The timer should be deactivated when the form is closed. Use the form’s onClose event:
function Form_onClose()
 this.timer.enabled = false

CDOW()
Returns the name of the day of the week of a specified date.

Syntax CDOW(<expD>)

<expD> The date whose corresponding weekday name to return.

Description CDOW() returns a character string containing the name of the day of the week on which a date falls. To return
the day of the week as a number from 1 to 7, use DOW().

If you pass an blank or invalid date to CDOW(), it returns "Unknown".

Example The following is a beforeGetValue event handler for a date field. It displays recent posting dates as days of the
week. Anything older than a week it displays as the date.

function postdate_beforeGetValue
 local nDays
 nDays = date() - this.value
 do case
 case this.value == {} // Blank date
 return "Not posted"
 case nDays < 0 // Date should never be after current date
 return "Error"
 case nDays == 0 // Same date as today
 return "Today"
 case nDays < 7 // Date within the past week
 return cdow(this.value)
 otherwise // Older date
 return dtoc(this.value)
 endcase

See Also CMONTH(), DATE(), DAY(), DOW(), YEAR()

CMONTH()
Returns the name of the month of a specified date.

Syntax CMONTH(<expD>)

<expD> The date whose corresponding month name to return.

Description CMONTH() returns a character string containing the name of the month in which a date falls. To return the
month as a number from 1 to 12, use MONTH().

If you pass an blank or invalid date to CMONTH(), it returns "Unknown".

Example The following funtion uses CMONTH(), DAY(), and YEAR() to return the month, day, and year in a
character string—like the MDY() function, but with no leading zero in the day and always with the full year.

function mdcy(dArg)
 return cmonth(dArg) + " " + day(dArg) + ", " + year(dArg)
121 dBL Language Reference

CTOD()
See Also CDOW(), DAY(), MDY(), MONTH(), YEAR()

CTOD()
Interprets a specified character expression as a literal date.

Syntax CTOD(<expC>)

<expC> The character expression, in the current date format, to return as a date.

Description Use CTOD() to convert a character expression containing a literal date to a date value. Once you convert the
string to a date, you can manipulate it with date functions and date arithmetic.

A literal date must be in format:
<number><separator><number><separator><number>[BC]

where <separator> should be a slash (/), hyphen (-), or period (.). The two <separator> characters should
match. You may specify a BC date by including the letters “BC” (not case-sensitve) at the end of the literal date.

To specify a literal date in code, use curly braces ({ }) as literal date delimiters; there is no need to use CTOD().
For example, there two are equivalent:

{04/05/06}
ctod("04/05/06")

The interpretation of the literal date—that is, which numbers are the day, month, and year, and how two-digit
years are handled—is controlled by the current settings for SET DATE and SET EPOCH. For example, if SET
DATE is MDY and SET EPOCH is 1930, the literal date above is April 5, 2006.

SET DATE also controls the display of dates, while SET EPOCH does not. SET CENTURY controls the
display of dates, but has no effect on how dates are interpreted. Two-digit years are always treated as years in
the current epoch.

If you pass an invalid date to CTOD(), it attempts to convert the date to a valid one. For example, it interprets
June 31 (June only has 30 days) as July 1. If you pass an empty or non-literal-date string to CTOD(), it returns
an blank date, which is a valid date value.

Example Suppose a form allows the input of the month and year only. You want to store this as the first day of that
month. First create a literal date string from the month and year numbers, then use CTOD() to convert that
string into a date, as follows:

function saveButton_onClick
 local cDate
 cDate = "" + form.month.value + "/01/" + form.year.value // Create string
 form.rowset.fields["Start date"].value = ctod(cDate) // Store in date field
 form.rowset.save()

This function assumes that the current SET DATE format is MDY, or something similar, like AMERICAN.

See Also DTOC(), DTOS(), SET DATE, SET CENTURY, SET EPOCH

CTODT()
"Character to dateTime" converts a literal dateTime string to a dateTime (DT) value type.

Syntax CTODT(<expC>)

<expC> The character expression, in the current dateTime format, to return as a dateTime value.

Description Use CTODT() to convert a dateTime string to a dateTime value. dateTime values are their own type (DT).

• SET DATE determines the order of the day, month, and year.

• SET CENTURY determines whether the year is expressed as two or four digits.

• SET MARK assigns the separator character.

• SET HOURS determines whether times are displayed in military format, or with an AM/PM indicator.
Date and time objects 122

CTOT()
Example "Character to dateTime" can be used to convert date and time values to a dateTime value. The following
statements convert and combine date() and TTIME() values to dateTime.

datevalue=date() //Assigns todays date
datevalue=dtoc(datevalue) //Converts date to character string
timevalue=TTIME() //Assigns the current time
timevalue=ttoc(timevalue) //Converts time to character string
datetime=CTODT(datevalue+" "+timevalue) //Combines date and time, separated

 by "space". Converts to dateTime.

Note Omitting the "space" in the above code will cause the timevalue component to revert to 12:00:00 AM.

CTOT()
"Character to Time"() converts a literal Time string to a Time value.

Syntax CTOT(<expC>)

<expC> The character expression, in the current Time format, to return as a Time value.

Description Use CTOT() to convert a Time string to a Time value. Time strings returned by the Time() function result in
an HH:MM:SS, military time format. When these strings are converted to values, through the CTOT()
function, the result can be displayed with an attached AM/PM indicator when SET HOURS is set to 12.
One use of Time values is determining the duration between two events. Subtracting the earlier from the later produces the
lapsed time displayed in seconds.

DATE()
Returns the system date.

Syntax DATE()

Description DATE() returns your computer system's current date.

To change the system date, use SET DATE TO.

Example The following statement counts how many records in a table of payments are more than 30 days overdue.
count for date() - LAST_PAY > 30 to nOver30

See Also SET DATE TO, TIME()

DATETIME()
Returns a value representing the current date and time.

Syntax DATETIME()

Description Use the DATETIME() function to determine the lapsed time between two or more events. The actual value of
DATETIME() appears internally in scientific notation as fractions of days, and provides little in the way of
visually relevant information. Subtracting the current DATETIME() from another a short while later could
produce something resembling -.92245370370436E-4.

To use DATETIME() values in a more practical format, convert the value to a character string and extract the
date and/or time elements. DATETIME() values can be converted to character strings using the DTtoC()
function (DateTime to Character), and back to values using the CtoDT() function (Character to DateTime).

Once the date and time character strings have been extracted, you can convert the resulting strings to values
using the CTOD() or CTOT() functions, and back again using DTOC() or TTOC() respectively.

If you are utilizing the TimeStamp field you could store the current date and time to a field defined as a
TimeStamp type:

 queryName.rowset.fields["timestampfield"].value = DATETIME()
123 dBL Language Reference

DAY()
Example The following code converts a dateTime value to a string using DTTOC (dateTime to Character) and extracts
the date and time strings.

d=DATETIME() // Yields 08/17/00 04:25:45 PM
d1=DTTOC(d) //Yields 08/17/00 04:25:45 PM as a Character string
d2=left(d1,8) //Yields 08/17/00 as a Character string
d3=right(d1,11) //Yields 04:25:45 PM as a Character string

DAY()
Returns the numeric value of the day of the month for a specified date.

Syntax DAY(<expD>)

<expD> The date whose corresponding day-of-the-month number you want to return.

Description DAY() returns a date's day of the month number—a value from 1 to 31.

DAY() returns zero for a blank date.

Example The following is an onOpen event handler for a form that makes the “Ship” button invisible on the first day of
the month, when inventory is being reconciled:

function Form_onOpen()
 if day(date()) == 1 // Get today's day of month, if first of month
 this.shipButton.visible = false // Prevent shipping
 endif

See also DOW(), getDate(), MONTH(), YEAR()

DMY()
Returns a specified date as a character string in DD MONTH YY or DD MONTH YYYY format.

Syntax DMY(<expD>)

<expD> The date to format.

Description DMY() returns a date in DD MONTH YY or DD MONTH YYYY format, where DD is the day number,
MONTH is the full month name, and YY is the year number. If SET CENTURY is OFF (the default), DMY()
returns the year as 2 digits. If SET CENTURY is ON, DMY() returns the year as 4 digits. If the day is only one
digit, it is preceded by a space.

If you pass an blank date to DMY(), it returns "0 Unknown 00" or "0 Unknown 0000".

See Also MDY(), SET CENTURY

DOW()
Returns the day of the week corresponding to a specified date as a number from 1 to 7.

Syntax DOW(<expD>)

<expD> The date whose corresponding weekday number you want to return.

Description DOW() returns the number of the day of the week on which a date falls:

Day Number
Sunday 1
Monday 2
Tuesday 3
Wednesday 4
Thursday 5
Date and time objects 124

DTOC()
To return the name of the day of the week instead of the number, use CDOW().

DOW() returns zero for a blank date.

Example The following function calculates the date for the Monday that follows the specified date:
function nextMonday(dArg)
 if dow(dArg) == 1 // If it's Sunday
 return dArg + 1 // Monday is the next day
 else // Otherwise, subtract DOW()
 return dArg - dow(dArg) + 9 // to get last week Saturday
 endif // then add 9 for next week Monday

See also CDOW(), DAY(), MONTH(), YEAR()

DTOC()
Converts a date into a literal date string.

Syntax DTOC(<expD>)

<expD> The date to return as a string.

Description There are many different ways to represent a date as a string. Use DTOC() to convert a date into a literal date
string, one that is suitable for conversion back into a date by CTOD().

The order of the day, month, and year is controlled by the current SET DATE setting. Whether the year is
expressed as two or four digits is controlled by SET CENTURY. The separator character is controlled by SET
MARK.

Note To convert a date expression to a character string suitable for indexing or sorting, always use DTOS(), which
converts the date into a consistent and sortable format.

If you pass a blank date to DTOC(), it returns a string with spaces instead of digits. For example, if the SET
DATE format is AMERICAN and SET CENTURY is OFF, DTOC({ }) returns " / / ".

When concatenating a date to a string, dBASE Plus automatically converts the date using DTOC() for you.

Example The following statement writes the current date to the text file opened in the File object fLog:
fLog.puts(dtoc(date()))

The puts() method expects a string.

See Also CTOD(), DTOS(), SET CENTURY, SET DATE, SET MARK

DTODT()
"Date to DateTime" converts a date to a DateTime value (DT).

Syntax DTODT(<expD>)

<expD> The date to return as a DateTime value.

Description Use DTODT() to convert a date into DateTime value. DateTime values are their own type (DT). DTODT()
only affects the date component of the DateTime value. The time component is displayed as 12:00:00 AM when
SET HOURS is set to 12, and 00:00:00 when SET HOURS is set to 24. Where the current date is 12/25/2001;

d1=date()
d2=DTODT(D1) //Yields 12/25/2001 12:00:00 AM (SET HOURS=12)

OR 12/25/2001 00:00:00 (SET HOURS=24)

• SET DATE determines the order of the day, month, and year.

Friday 6
Saturday 7

Day Number
125 dBL Language Reference

DTOS()
• SET CENTURY determines whether the year is expressed as two or four digits.

• SET MARK assigns the separator character.

See Also CTODT(), DATETIME(), DTODT(), SET CENTURY, SET DATE, SET MARK

DTOS()
Returns a specified date as a character string in YYYYMMDD format.

Syntax DTOS(<expD>)

<expD> The date expression to return as a character string in YYYYMMDD format.

Description Use DTOS() to convert a date expression to a character string suitable for indexing or sorting. For example, you
can use DTOS() when indexing on a date field in combination with another field of a different type. DTOS()
always returns a character string in YYYYMMDD format, even if SET CENTURY is OFF.

If you pass a blank date to DTOS(), it returns a string with eight spaces, which matches the length of the normal
result.

Example The following statement indexes a table of orders by customer ID and order date. The customer ID field is a
character field.

index on CUST_ID + dtos(ORDER_DATE) tag CUST_DATE

See Also DTOC(), INDEX

DTTOC()
"DateTime to Character" converts a DateTime value to a literal DateTime string.

Syntax DTTOC(<dtVar>)

<dtVar> DateTime variable or value

Description Use DTTOC() to convert a DateTime value into a literal DateTime string.

The order of the day, month, and year is controlled by the current SET DATE setting. Whether the year is
expressed as two or four digits is controlled by SET CENTURY. The separator character is controlled by SET
MARK.

Once the DateTime value has been converted to a character string, it's integral parts, date and time, can be
extracted using the left() or right() functions. When SET CENTURY is OFF, the date and time strings can be
extracted using left("value",8) and right("value",11) respectively.

Note To recombine extracted date and time values into a DateTime format, see CTODT (Character to DateTime).

See Also CTODT(), DATETIME(), DTODT(), SET CENTURY, SET DATE, SET MARK

DTTOD()
"DateTime to Date" converts the date component of a DateTime value to a literal Date .

Syntax DTTOD(<dtVar>)

<dtVar> A DateTime variable or value

Description Use DTTOD() to convert the date component of a DateTime value into a literal Date. DTTOC() has no affect
on the DateTime's time component. Where the current value of DATETIME() = 02/13/01 03:39:14 PM:

d1=DATETIME()
d2=DTTOD(d1)
?d2 //Yields 02/13/01

• SET DATE determines the order of the day, month, and year.
Date and time objects 126

DTTOT()
• SET CENTURY determines whether the year is expressed as two or four digits.

• SET MARK assigns the separator character.

See Also CTODT(), DATETIME(), DTODT(), SET CENTURY, SET DATE, SET MARK

DTTOT()
"DateTime to Time" converts the time component of a DateTime value to a Time value .

Syntax DTTOT(<dtVar>)

<dtVar> A DateTime variable or value

Description Use DTTOT() to convert the time component of a DateTime value to a Time value. DTTOT() has no affect on
the DateTime's date component. Where the current value of DATETIME() = 02/13/01 03:39:14 PM:

t1=DATETIME()
t2=DTTOT(t1)
?t2 //Yields 03:39:14 PM

• SET HOURS determines whether times are displayed in military format, or with an AM/PM indicator.

See Also CTODT(), CTOT(), DATETIME(), DTODT(), SET HOURS, TTIME()

ELAPSED()
Returns the number of seconds elapsed between two specified times.

Syntax ELAPSED(<stop time expC>, <start time expC> [, <exp>])

<stop time expC> The time expression, in the format HH:MM:SS, at which to stop timing seconds
elapsed. The <stop time expC> argument should be a later time than <start time expC>; if it is not, dBASE Plus
returns a negative value.

<start time expC> The time expression, in the format HH:MM:SS, at which to start timing seconds
elapsed. The <start time expC> argument should be an earlier time than <stop time expC>; if it is not, dBASE
Plus returns a negative value.

<exp> Any expression, which causes ELAPSED() to calculate hundredths of a second. The format of both
<start time expC> and <stop time expC> can be HH:MM:SS.hh.

Description Use ELAPSED() with TIME() to time a process. Call TIME() at the start of the process and store the resulting
time string to a variable. Then call TIME() again at the end of the process. Call ELAPSED() with the start and
stop times to calculate the number of seconds between.

ELAPSED() subtracts the value of <start time expC> from <stop time expC>. If <start time expC> is the later
time, ELAPSED() returns a negative value. Both <stop time expC> and <start time expC> must be in
HH:MM:SS or HH:MM:SS.hh format, where HH is the hour, MM the minutes, SS the seconds, and hh is
hundredths of a second.

Without <exp>, any hundredths of a second are truncated and ignored; ELAPSED() does not round hundredths
of a second when <exp> is omitted.

Example The following example shows a top-level routine that calls processes records. A subroutine does the processing,
and returns the number of records processed. The elapsed time is used to calculate the throughput of a process.

local cTimeStart, nRecs, nRecSec, cMsg
cTimeStart = time(1)
nRecs = processRecords()
nRecSec = nRecs / elapsed(time(1), cTimeStart, 1)
cMsg = ltrim(str(nRecs)) + " records processed, " + ;
 ltrim(str(nRecSec)) + " records/sec"
msgbox(cMsg, "Process complete")

Note that both the TIME() and ELAPSED() functions use the optional dummy parameter to return and
calculate the time to the hundredth of a second.
127 dBL Language Reference

enabled
See Also SECONDS(), TIME()

enabled
Specifies whether a Timer object is active and counting down time.

Property of Timer

Description Set the enabled property to true to activate the Timer object. When the number of seconds of idle time specified
in the interval property has passed, the timer’s onTimer event fires.

When the enabled property is set to false, the Timer stops counting time and the internal counter is reset. For
example, suppose that

1 The interval is 10, and enabled is set to true.
2 Then 9 seconds of idle time go by, and
3 enabled is set to false.

If enabled is set to true again, the onTimer will fire after another 10 seconds has gone by, even though there was
only 1 second left before the timer was disabled.

If a Timer is intended to go off only once instead of repeatedly, set the enabled property to false in the onTimer
event handler.

Example Running the following statements in the Command window will cause a message to be displayed once, 5
seconds after timer the is enabled:

t = new Timer()
t.onTimer = {; ? "Ding!"; this.enabled = false}
t.interval = 5
t.enabled = true

See also interval, onTimer

enabled is also a property of many form components (page 15-512)

getDate ()
Returns the numeric value of the day of the month.

Syntax <oRef>.getDate()

<oRef> The Date object whose corresponding day-of-the-month number you want to return.

Property of Date

Description getDate() returns a date's day of the month number—a value from 1 to 31.

If the Date object contains a blank date, getDate() returns 0.

Example The following is an onOpen event handler for a form that makes the “Ship” button invisible on the first day of
the month, when inventory is being reconciled:

function Form_onOpen()
 if new Daate().getDate() == 1 // Get today's day of month, if first of month
 this.shipButton.visible = false // Prevent shipping
 endif

See also getDay(), getMonth(), getYear(), setDate()

getDay ()
Returns the day of the week corresponding to a specified date as a number from 0 to 6.

Syntax <oRef>.getDay()

<oRef> The Date object whose corresponding weekday number you want to return.
Date and time objects 128

getHours ()
Property of Date

Description getDay() returns the number of the day of the week on which a date falls. The number is zero-based:

Day Number
Sunday 0
Monday 1
Tuesday 2
Wednesday 3
Thursday 4
Friday 5
Saturday 6

Note The equivalent date function DOW() is one-based, not zero-based.

The day of the week is the only date/time component you cannot set directly; there is no corresponding set-
method. It is always based on the date itself.

Example The following is an onOpen event handler for a form that makes the “Game center” button visible on the
weekends:

function Form_onOpen()
 if new Date().getDay() % 6 == 0 // If today is a weekend day
 this.gameCenterButton.visible = true // Enable access to game center page
 endif

The day number modulo 6 is zero for both day numbers 0 and 6, the days on the weekend.

See also DAY(), getDate(), getMonth(), getYear()

getHours ()
Returns the hours portion of a date object.

Syntax <oRef>.getHours()

<oRef> The date object whose hours you want to return.

Property of Date

Description getHours() returns the hours portion of the time (using a 24-hour clock) in a Date object: an integer from 0 to
23.

Example The following function returns true if the date/time passed to it is during the graveyard shift, between 10 p.m.
and 6 a.m.:

function isGraveyard(dArg)
 return (dArg.getHours() >= 22 or dArg.getHours() < 6)

See also getMinutes(), getSeconds(), getYear(), setHours()

getMinutes ()
Returns the minutes portion of a date object.

Syntax <oRef>.getMinutes()

<oRef> The date object whose minutes you want to return.

Property of Date

Description getMinutes() returns the minutes portion of the time in a Date object: an integer from 0 to 59.

See also getHours(), getSeconds(), getYear(), setMinutes()
129 dBL Language Reference

getMonth ()
getMonth ()
Returns the number of the month for a specified date.

Syntax <oRef>.getMonth()

<oRef> The Date object whose corresponding month number you want to return.

Property of Date

Description getMonth() returns a date’s month number. The number is zero-based:

Month Number
January 0
February 1
March 2
April 3
May 4
June 5
July 6
August 7
September 8
October 9
November 10
December 11

Note The equivalent date function MONTH() is one-based, not zero-based.

See also getDate(), getDay(), getYear(), MONTH(), setMonth()

getSeconds ()
Returns the seconds portion of a date object.

Syntax <oRef>.getSeconds()

<oRef> The date object whose seconds you want to return.

Property of Date

Description getSeconds() returns the seconds portion of the time in a Date object: an integer from 0 to 59.

See also getHours(), getMinutes(), setSeconds()

getTime ()
Returns time equivalent of date/time, in milliseconds.

Syntax <oRef>.getTime()

<oRef> The Date object whose time equivalent you want to return.

Property of Date

Description getTime() returns the number of milliseconds since January 1, 1970 00:00:00 GMT for the date/time stored in
the Date object. All date/times are represented internally by this millisecond number.

Example The following is a stopwatch function that returns the number of seconds since the last time it was called.
function stopwatch()
 local thisTime, nSecs
 thisTime = new Date().getTime()
Date and time objects 130

getTimezoneOffset ()
 static lastTime = thisTime
 nSecs = (thisTime - lastTime) / 1000
 lastTime := thisTime
 return nSecs

The function uses a Date object’s getTime() method, which keeps time in milliseconds. Whenever the function
is called, the variable firstTime is set to the current time in milliseconds. The first time through the function, the
lastTime variable is set to that same time. The difference is calculated, and then the value of thisTime is saved in
the static variable lastTime for the next function call.

To reset the timer, call the function; you may ignore the return value. Then the next time you call the function,
you will get the elapsed time. If you’re measuring a series of intervals, call the function once between intervals.
For example:

stopwatch() // Reset timer
// Process 1
time1 = stopwatch() // Time for first process
// Process 2
time2 = stopwatch() // Time for second process
// etc.

See also parse(), setTime(), UTC()

getTimezoneOffset ()
Returns the time zone offset for a date object in the current locale, in minutes.

Syntax <oRef>.getTimezoneOffset()

<oRef> A date object created in the locale in question.

Property of Date

Description All time zones have an offset from GMT (Greenwich Mean Time), from twelve hours behind to twelve hours
ahead. getTimezoneOffset() returns this offset, in minutes, for the locale in which the Date object was created,
taking Daylight Savings Time into account.

For example, the United States and Canada Pacific time zone is eight hours behind GMT. A date in January,
when Daylight Savings Time is not in effect, created in the Pacific time zone would have a time zone offset of –
480. A date in July, when Daylight Savings Time is in effect, would have a time zone offset of
–420, or seven hours, since Daylight Savings Time moves clocks one hour forward, closer to GMT.

In Windows, the locale is determined by the Time Zone setting in each system’s Date/Time properties, which is
found in the Control Panel, or by double-clicking the clock in the Taskbar.

All Date objects default to the time zone setting of the current locale.

See also toGMTString(), UTC()

getYear ()
Returns the year of a specified date.

Syntax <oRef>.getYear()

<oRef><expD> The Date object whose corresponding year number you want to return.

Property of Date

Description getYear() returns a date’s year number. A 4-digit year is always returned. The SET CENTURY setting has no
effect on getYear().

See also getDate(), getDay(), getMonth(), YEAR()
131 dBL Language Reference

interval
interval
The amount of idle time, in seconds, between the firings of the timer.

Property of Timer

Description Set the enabled property to true to activate the Timer object. When the number of seconds of idle time specified
in the interval property has passed, the timer’s onTimer event fires.

When the enabled property is set to false, the Timer stops counting time and the internal counter is reset. For
example, suppose that

1 The interval is 10, and enabled is set to true.
2 Then 9 seconds of idle time go by, and
3 enabled is set to false.

If enabled is set to true again, the onTimer will fire after another 10 seconds has gone by, even though there was
only 1 second left before the timer was disabled.

interval must be zero or greater. The interval may be a fraction of a second; the resolution of the timer is one
system clock tick, approximately 0.055 seconds. When interval is zero, the timer fires once per clock tick.

Setting the interval always resets the internal counter to the newly specified time.

Example Running the following statements in the Command window will cause a message to be displayed once, 5
seconds after timer is enabled:

t = new Timer()
t.onTimer = {; ? "Ding!"; this.enabled = false}
t.interval = 5
t.enabled = true

See also enabled, onTimer

MDY()
Returns a specified date as a character string in MONTH DD, YY format.

Syntax MDY(<expD>)

<expD> The date to return as a character string in MONTH DD, YY format.

Description MDY() returns a date in MONTH DD, YY or MONTH DD, YYYY format, where MONTH is the full month
name, DD is the day number, and YY is the year number. If SET CENTURY is OFF (the default), MDY()
returns the year as 2 digits. If SET CENTURY is ON, MDY() returns the year as 4 digits. MDY() always
returns the day portion as 2 digits, with a leading zero for the first nine days of the month.

If you pass an invalid date to MDY(), it returns "Unknown 00, 00" or "Unknown 00, 0000".

See Also DMY(), SET CENTURY

MONTH()
Returns the number of the month for a specified date.

Syntax MONTH(<expD>)

<expD> The date whose corresponding month number you want to return.

Description MONTH() returns a date’s month number:

Month Number
January 1
February 2
March 3
Date and time objects 132

onTimer
To return the name of the month instead of the number, use CMONTH().

MONTH() returns zero for a blank date.

Example The following function returns the date of the last day of the year of the specified date, using date math only.
This makes the calculation independent of the current SET DATE setting. The function relies on another
function that returns the last day of the month of a specified date.

function LDoY(dArg)
 local dDec
 dDec = dArg - day(dArg) + 28 * (13 - month(dArg))
return LDoM(dDec)

function LDoM(dArg)
 local dNxtMonth
 dNxtMonth = dArg - day(dArg) + 45
return dNxtMonth - day(dNxtMonth)

See also DAY(), DOW(), getMonth(), YEAR()

onTimer
When the timer’s interval has elapsed.

Parameters none

Property of Timer

Description A Timer object’s onTimer event is fired every time the amount of idle time specified by the timer’s interval
property has elapsed.

Like all event handlers, inside the onTimer event handler, the reference this refers to the Timer object itself. To
refer to other objects, add references to those objects as properties to the Timer object before activating the
timer.

While processing the onTimer event, all active timers are suspended, since dBASE Plus is busy processing
code. Once the onTimer event handler has completed, its internal counter is reset to the interval, and all active
timers resume counting.

If a Timer is intended to go off only once instead of repeatedly, set the enabled property to false in the onTimer
event handler.

Example Running the following statements in the Command window will cause a message to be displayed once, 5
seconds after timer is enabled:

t = new Timer()
t.onTimer = {; ? "Ding!"; this.enabled = false}
t.interval = 5
t.enabled = true

See also enabled, interval

April 4
May 5
June 6
July 7
August 8
September 9
October 10
November 11
December 12

Month Number
133 dBL Language Reference

parse ()
parse ()
Returns time equivalent of a date/time string, in milliseconds.

Syntax Date.parse(<date expC>)

<date expC> The date/time string you want to convert.

Property of Date

Description parse() returns the number of milliseconds since January 1, 1970 00:00:00 GMT for the specified date/time
string, defaulting to the operating system’s current time zone setting. For example, if the time zone is currently
set to United States Eastern Standard Time, which is five hours behind GMT, then Date.parse(“Sep 14 1995
11:20”) yields a time which is equivalent to 16:20 GMT.

The string may be in any of the forms acceptable to the Date class constructor, as described under class Date at
the beginning of this chapter. In contrast, the UTC() method uses numeric parameters for each of the date and
time components and assumes GMT as the time zone.

Because parse() is a static class method, you call it via the Date class, not a Date object.

Example The following code fragment resets an existing date object d1 to a date typed into a text control:
d1.setTime(Date.parse(this.form.dateText.value))

See also getTime(), setTime(), UTC()

SECONDS()
Returns the number of seconds that have elapsed on your computer's system clock since midnight.

Syntax SECONDS()

Description SECONDS() returns the number of seconds to the hundredth of a second that have elapsed on your system
clock since midnight (12 am). There are 86,400 seconds in a day, so the maximum value SECONDS() can
return is 86,399.99, just before midnight.

Use SECONDS() to calculate the amount of time that portions of your program take to run. SECONDS() is
more convenient for this purpose than TIME() because SECONDS() returns a number rather than a character
string.

You can also use SECONDS() instead of ELAPSED() to determine elapsed time for the current day to within
hundredths of a second.

See also ELAPSED(), getTime(), TIME()

SET CENTURY
Controls the format in which dBASE Plus displays the year portion of dates.

Syntax SET CENTURY on | off

Description When SET CENTURY is ON, dBASE Plus displays dates in the current format with 4-digit years; when SET
CENTURY is OFF, dBASE Plus displays dates in the current format with 2-digit years.

You can enter a date with a 2-, 3-, or 4-digit year whether SET CENTURY is ON or OFF. dBASE Plus assumes
that 2-digit years are in the epoch designated by SET EPOCH, by default 1950. If SET CENTURY is OFF,
dBASE Plus truncates any digits to the left of the last two when displaying the date. However, dBASE Plus
stores the correct value of the date internally.
Date and time objects 134

SET DATE
The following table shows the how dBASE Plus displays and stores dates depending on the setting of SET
CENTURY. (The table assumes SET DATE is AMERICAN and SET EPOCH is 1950.)

You enter date
as

dBASE Plus
stores date
as
YYYYMMDD

With
SET CENTURY ON,
dBASE Plus
displays

With
SET CENTURY
OFF,
dBASE Plus
displays

{10/13/94} 19941013 10/13/1994 10/13/94
{10/13/994} 09941013 10/13/0994 10/13/94
{10/13/1994} 19941013 10/13/1994 10/13/94
{10/13/2094} 20941013 10/13/2094 10/13/94

As the table shows, SET CENTURY doesn't affect the relationship between how you enter a date and how
dBASE Plus evaluates and stores it. SET CENTURY affects only how dBASE Plus displays the year portion of
the date.

See Also SET DATE, SET EPOCH

SET DATE
Specifies the format dBASE Plus uses for the display and entry of dates.

Syntax SET DATE [TO]
AMERICAN | ANSI | BRITISH | FRENCH | GERMAN | ITALIAN | JAPAN | USA | MDY | DMY | YMD

TO Include for readability only; TO has no affect on the operation of the command.

AMERICAN | ANSI | BRITISH | FRENCH | GERMAN | ITALIAN | JAPAN | USA | MDY | DMY
| YMD The options correspond to the following formats:

Option Format
AMERICAN MM/DD/YY
ANSI YY.MM.DD
BRITISH DD/MM/YY
FRENCH DD/MM/YY
GERMAN DD.MM.YY
ITALIAN DD-MM-YY
JAPAN YY/MM/DD
USA MM-DD-YY
MDY MM/DD/YY
DMY DD/MM/YY
YMD YY/MM/DD

Description SET DATE determines how dBASE Plus displays dates; and how literal date strings, like those in curly braces
({ }), are interpreted. If SET CENTURY is ON, dBASE Plus displays all formats with a 4-digit year.

The default for SET DATE is set by the Regional Settings in the Windows Control Panel. To change the default,
set the DATE parameter in PLUS.ini. To do so, either use the SET command to specify the setting interactively,
or enter the DATE parameter directly in PLUS.ini.

SET DATE overrides any prior SET MARK setting. However, you can use SET MARK after SET DATE to
change the date separator character.

See Also CTOD(), SET CENTURY, SET EPOCH, SET MARK
135 dBL Language Reference

SET DATE TO
SET DATE TO
Sets the system date.

Syntax SET DATE TO <expC>

<expC> The character expression, in the current date format, to set as the current system date.

Description Use SET DATE TO to reset the date on your system clock. The date string in <expC> must match the current
setting of SET DATE.

The date must be in the range from January 1, 1980, to December 31, 2099.

See Also DATE(), SET DATE, SET TIME

SET EPOCH
Sets the base year for interpreting two-digit years in dates.

Syntax SET EPOCH TO <expN>

Default The default base year is 1950, yielding years from 1950 to 2049.

Description Use SET EPOCH to change how two-digit years are interpreted. This allows you to keep SET CENTURY OFF,
while enabling entry of dates that cross a century boundary. The following table shows how dates are
interpreted using three different SET EPOCH settings:

Date 1900 1930 2000
{5/5/00} 05/05/1900 05/05/2000 05/05/2000
{5/5/30} 05/05/1930 05/05/1930 05/05/2030
{5/5/99) 05/05/1999 05/05/1999 05/05/2099

For example, if you SET EPOCH TO 1930, you can continue to use most applications with two-digit years
unchanged well into the 21st century, (although you would no longer be able to enter dates before 1930, which
would not be a problem with many applications). If your applications use dates that span more than one hundred
years, then SET EPOCH alone will not help; you must SET CENTURY ON.

The base year setting takes effect whenever dates are interpreted. In programs, two-digit years in literal dates are
evaluated at compile-time. If you use SET EPOCH, be sure it is set correctly when you compile code or run new
or changed programs.

SET EPOCH is session-based. You may get the value of SET EPOCH with the SET() and SETTO() functions.

See Also SET CENTURY, SET DATE

SET HOURS
Determines whether times are displayed in military format, or with an attached AM/PM indicator.

Syntax SET HOURS TO [<expN>]

<expN> The number 12 or 24.

Description Setting SET HOURS to 12 will display times with an attached AM/PM indicator. Setting SET HOURS to 24 displays time in
military format. SET HOURS TO (without an argument) restores the default setting.

SET MARK
Determines the character dBASE Plus uses to separate the month, day, and year when it displays dates.

Syntax SET MARK TO [<expC>]
Date and time objects 136

SET TIME
<expC> The single date separator character. You can specify more than one character for <expC>, but
dBASE Plus uses only the first one.

Description Use SET MARK to change the date separator from the default character. For example, if you issue SET DATE
AMERICAN, the date separator character is a forward slash (/), and dBASE Plus displays dates in MM/DD/YY
format. However, if you specify SET MARK TO "." after issuing SET DATE AMERICAN, dBASE Plus
displays dates in the format MM.DD.YY. If you issue SET DATE AMERICAN again, the format returns to
MM/DD/YY.

Issuing SET MARK TO without <expC> resets the date separator character to that of the current date format.

SET MARK controls the separator used for display only. You may use any valid separator character when
designating a literal date.

See Also SET CENTURY, SET DATE

SET TIME
Sets the system time.

Syntax SET TIME TO <expC>

<expC> The time, which you must specify in one of the following formats:

• HH
• HH:MM or HH.MM
• HH:MM:SS or HH.MM.SS

Description Use SET TIME to reset your system's clock.

See Also SET DATE TO, TIME()

setDate ()
Sets day of month.

Syntax <oRef>.setDate(<expN>)

<oRef> The Date object whose day you want to change.

<expN> The day of month number, normally between 1 and 31.

Property of Date

Description setDate() sets the day of month for the Date object.

See also getDate(), setMonth(), setYear()

setHours ()
Sets hours portion of time.

Syntax <oRef>.setHours(<expN>)

<oRef> The Date object whose hours you want to change.

<expN> The hour number, normally between 0 and 23.

Property of Date

Description setHours() sets the hours portion of the time for the Date object.

See also getHours(), setMinutes(), setSeconds()
137 dBL Language Reference

setMinutes ()
setMinutes ()
Sets minutes portion of time.

Syntax <oRef>.setMinutes(<expN>)

<oRef> The Date object whose minutes you want to change.

<expN> The minute number, normally between 0 and 59.

Property of Date

Description setMinutes() sets the minutes portion of the time for the Date object.

See also getMinutes(), setHours(), setSeconds()

setMonth ()
Sets month of year.

Syntax <oRef>.setMonth(<expN>)

<oRef> The Date object whose month you want to change.

<expN> The month number, normally between 0 and 11: 0 for January, 1 for February, and so on, up to 11
for December.

Property of Date

Description setMonth() sets the month of year for the Date object.

See also getMonth(), setDate(), setYear()

setSeconds ()
Sets seconds portion of time.

Syntax <oRef>.setSeconds(<expN>)

<oRef> The Date object whose seconds you want to change.

<expN> The number of seconds, normally between 0 and 59.

Property of Date

Description setSeconds() sets the seconds portion of the time for the Date object.

See also getSeconds(), setHours(), setMinutes()

setTime ()
Sets date/time of Date object.

Syntax <oRef>.setTime(<expN>)

<oRef> The Date object whose time you want to set.

<expN> The number of milliseconds since January 1, 1970 00:00:00 GMT for the desired date/time.

Property of Date

Description While you may use standard date/time nomenclature when creating a new Date object, setTime() requires a
number of milliseconds. Therefore setTime() is used primarily to copy the date/time from one Date object to
another. If you tried copying dates like this:

d1 = new Date("Aug 24 1996")
Date and time objects 138

setYear ()
d2 = new Date()
d2 = d1 // Copy date

what you’re actually doing is copying an object reference for the first Date object into another variable. Both
variables now point to the same object, so changing the date/time in one would appear to change the date/time in
the other.

To actually copy the date/time, use setTime() and getTime():
d1 = new Date("Aug 24 1996")
d2 = new Date()
d2.setTime(d1.getTime()) // Copy date

If you’re copying the date/time when you’re creating the second Date object, you can use the millisecond value
in the Date class constructor:

d1 = new Date("Aug 24 1996")
d2 = new Date(d1.getTime()) // Create copy of date

You may also perform date math by adding or subtracting milliseconds from the value.

See also getTime()

setYear ()
Sets year of date.

Syntax <oRef>.setYear(<expN>)

<oRef> The Date object whose year you want to change.

<expN> The year. For years in the range 1950 to 2049, you can specify the year as either a 2-digit or 4-digit
year.

Property of Date

Description setYear() sets the year for the Date object.

See also getYear(), setDate(), setMonth()

TIME()
Returns the system time as a character string in HH:MM:SS or HH:MM:SS.hh format.

Syntax TIME([<exp>])

<exp> Any expression, which causes TIME() to return the current time to the hundredth of a second.

Description TIME() returns a character expression that is your computer system’s current time. If you do not pass TIME()
an expression, it returns the current system time in HH:MM:SS format, where HH is the hour, MM the minutes,
and SS the seconds.

If you pass TIME() an expression, it returns the current system time in HH:MM:SS.hh format, where .hh is
hundredths of a second. The type and value of the expression you pass to TIME() has no effect other than to
make it include hundredths of a second.

To change the system time, use SET TIME.

See also DATE(), ELAPSED(), SET TIME

toGMTString ()
Converts the date into a string, using Internet (GMT) conventions.

Syntax <oRef>.toGMTString()

<oRef> The Date object you want to convert.
139 dBL Language Reference

toLocaleString ()
Property of Date

Description toGMTString() converts the date, which was created using the operating system’s time zone setting, to GMT
and returns a string in a format like, “Tue, 07 May 1996 02:55:27 GMT”.

Example When the following statement is executed in the Command window, the current date and time is displayed in
the results pane in GMT format:

? new Date().toGMTString()

See also toLocaleString(), toString()

toLocaleString ()
Converts the date into a string, using locale conventions.

Syntax <oRef>.toLocaleString()

<oRef> The Date object you want to convert.

Property of Date

Description toLocaleString() converts the date to a string, using the standards for the current locale, like “05/06/96
19:55:27”.

dBASE Plus uses Windows’ Regional settings from the Control Panel.

Example When the following statement is executed in the Command window, the current date and time is displayed in
the results pane in locale format:

? new Date().toLocaleString()

See also toGMTString(), toString()

toString ()
Converts the date into a string, using standard JavaScript conventions.

Syntax <oRef>.toString()

<oRef> The Date object you want to convert.

Property of Date

Description toString() converts the date to a string, in standard JavaScript format, which includes the complete time zone
description, for example,

“Mon May 06 19:55:27 Pacific Daylight Time 1996”

Example When the following statement is executed in the Command window, the current date and time is displayed in
the results pane in standard format:

? new Date().toString()

See also toGMTString(), toLocaleString()

TTIME()
Returns a value representing the current system time in the HH:MM:SS format.

Syntax TTIME()

Description TTIME() returns a time value that is your computer systems current time. TTIME() is quite similar to the
TIME() function. However, while the TIME() function always results in a military time character string,
TTIME() results in a time value with an attached AM/PM indicator when SET HOURS is set to 12.

Since the actual value of TTIME() is in seconds, adding 60 to TTIME() is equilvalent to adding 1 minute.
Date and time objects 140

TTOC()
TTIME() values can be converted to character strings using the TTOC() function, and back to values using
CTOT().

See Also DAY(), getYear(), MONTH(), TTOC()

TTOC()
"Time to Character" converts a TTIME() value to a literal string.

Syntax TTOC(<tVar>)

<tVar> A TTIME() variable or value

Description Use TTOC() to convert a Time value into a literal Time string. "Time to Character" results in an HH:MM:SS
format. When "SET HOURS" is set to 12, the TTOC string is displayed with an attached AM/PM indicator.

See Also CTOT(), TIME(), TTIME

UTC ()
Returns time equivalent of the specified date/time parameters using GMT, in milliseconds.

Syntax Date.UTC(<year expN>, <month expN>, <day expN>
[, <hours expN> [, <minutes expN> [, <seconds expN>]]])

<year expN> The year.

<month expN> A number representing the month, between 0 and 11: zero for January, one for February, and
so on, up to 11 for December.

<day expN> The day of the month, from 1 to 31.

<hours expN> The hours portion of the time, from 0 to 23.

<minutes expN> The minutes portion of the time, from 0 to 59.

<seconds expN> The seconds portion of the time, from 0 to 59.

Property of Date

Description UTC() returns the number of milliseconds since January 1, 1970 00:00:00 GMT for the date/time parameters
specified, using GMT as the time zone. In contrast, the parse() method takes a string as a parameter, and uses
the operating system’s current time zone setting as the default.

Because UTC() is a static class method, you call it via the Date class, not a Date object.

Example You cannot specify a time zone when creating a Date object with separate date and time components, but you
can use UTC() for GMT:

dLocale = new Date(nYear, nMonth, nDay) // Time zone of locale
dGMT = new Date().UTC(nYear, nMonth, nDay) // GMT

See also getTime(), setTime(), parse()

YEAR()
Returns the year of a specified date.

Syntax YEAR(<expD>)

<expD> The date whose corresponding year number you want to return.

Property of Date

Description YEAR() returns a date’s 4-digit year number. The SET CENTURY setting has no effect on YEAR().

YEAR() returns zero for a blank date.
141 dBL Language Reference

YEAR()
See also DAY(), MONTH(), getYear()
Date and time objects 142

C h a p t e r

Chapter 10Array objects
dBASE Plus supports a wide variety of array types:

• Arrays of contiguously numbered elements, in one or more dimensions. Elements are numbered from one.
There are methods specifically for one- and two-dimensional arrays, which mimic a row of fields and a table
of rows.

• Associative arrays, in which the elements are addressed by a key string instead of a number.

• Sparse arrays, which use non-contiguous numbers to refer to elements.

All arrays are objects, and use square brackets ([]) as indexing operators.

Array elements may contain any data type, including object references to other arrays. Therefore you can create
nested arrays (multi-dimensional arrays of arrays with fixed length in each dimension), ragged arrays (nested
arrays with variable lengths), arrays of associative arrays, and so on.

There are two array classes: Array and AssocArray. Sparse arrays can be created with any other object. In
addition to creating properties by name, you can create numeric properties using the indexing operators. For
example,

o = new Object()
o.title = "Summer"
o[2000] = "Sydney"
o[1996] = "Atlanta"
? o[1996 + 4] // Displays "Sydney"

Array functions
dBASE Plus supports a number of array functions, most of which have equivalent methods in the Array class.
These functions are:

Function Array class method
ACOPY() No equivalent
ADEL() delete()
ADIR() dir()
ADIREXT() dirExt()
AELEMENT() element()
AFIELDS() fields()
AFILL() fill()
AGROW() grow()
AINS() insert()
ALEN() For number of elements, check array’s size property
ARESIZE() resize()
Array objects 143

class Array
Like the equivalent methods, these functions operate on one- and two-dimensional arrays only. ACOPY() and
ALEN() are the only functions which have no direct equivalents.

The use of those functions is similar to the equivalent method. For a given method like:
aExample.fill(0) // Fill array with zeros

the equivalent function uses the reference to the array as its first parameter and all other parameters (if any)
following it:

afill(aExample, 0)

The parameters following the array name in the function are identical to the parameters to the equivalent
method, and the functions return the same values as the methods.

class Array
An array of elements, in one or more dimensions.

Syntax [<oRef> =] new Array([<dim1 expN> [,<dim2 expN>…]])

<oRef> A variable or property in which to store a reference to the newly created Array object.

<dim1 expN> [,<dim2 expN> …] The size of the array in each specified dimension. If no dimensions
are specified, the array is a one-dimensional array with zero elements.

Properties The following tables list the properties and methods of the Array class. (No events are associated with this
class.)

Property Default Description
baseClassName ARRAY Identifies the object as an instance of the Array class (Property

discussed in Chapter 5, “Core language.”)
className (ARRAY) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
dimensions The number of dimensions in the array
size 0 The number of elements in the array

ASCAN() scan()
ASORT() sort()
ASUBSCRIPT() subscript()

Function Array class method

Method Parameters Description
add() <exp> Increases the size of a one-dimensional array by one and

assigns the passed value to the new element.
delete() <position expN>

[,1 | 2]
Deletes an element from a one-dimensional array, or deletes a
row (1) or column (2) of elements from a two-dimensional
array, without changing the size of the array.

dir() [<filespec expC>] Stores in the array five characteristics of specified files: name,
size, modified date, modified time, and file attribute(s).
Returns the number of files whose characteristics are stored.

dirExt() [<filespec expC>] Same as dir() method, but adds short (8.3) file name, create
date, create time, and access date.

element() <row expN>
[,<col expN>]

Returns the element number for the element at the specified
row and column.

fields() Stores table structure information for the current table in the
array

fill() <exp>
, <start expN>
[, <count expN>]

Stores a specified value into one or more elements of the array.
Array objects 144

class Array
Description An Array object is a standard array of elements, addressed by a contiguous range of numbers in one or more
dimensions. The array can hold as many elements as memory allows. You can create arrays that contain more
than two dimensions, but most dBL Array methods work only on one- or two-dimensional arrays. For a two-
dimensional array, the first dimension is considered the row and the second dimension is the column. For
example, the following statement creates an array with 3 rows and 4 columns:

a = new Array(3, 4)

There are two ways to refer to individual elements in an array; you can use either element subscripts or the
element number. Element subscripts, one for each dimension, are values that represent the element’s position in
that dimension. For a two-dimensional array, they indicate the row and column in which an element is located.
Element numbers indicate the sequential position of the element in the array, starting with the first element in
the array and increasing in each dimension, with the last dimension first. For a two-dimensional array, the first
element is in the first column of the first row, the second element is in the second column of the first row, and so
on.

To determine the number of dimensions in an array, check its dimensions property (it’s read-only). The array’s
size property reflects the number of elements in the array. To determine the number of rows or columns in a
two-dimensional array, use the ALEN() function. There is no built-in way to determine the size of dimensions
above two.

In an Array object, element numbering starts with one. You cannot create elements outside the defined range of
elements or subscripts (although you could change the dimensions of the array if desired). For example, a 3-
row,
4-column array has 12 elements, numbered 1 to 12. The first element’s subscripts are [1,1] and the last element
is [3,4].

Certain dBL methods require the element number, and others require the subscripts. If you are using one- or
two-dimensional arrays, you can use element() to determine the element number if you know the subscripts,
and subscript() to determine the subscripts if you know the element number.

Array elements may contain any data type, including object references to other arrays. Therefore you can create
nested arrays (multi-dimensional arrays of arrays with fixed length in each dimension), ragged arrays (nested
arrays with variable lengths), arrays of associative arrays, and so on.

With both nested and multi-dimensional arrays, you end up with multiple dimensions or levels of elements, but
when you nest arrays, you create separate array objects, and the methods that are designed to work on the
multiple dimensions of a single Array object will not work on the separate dimensions of the nested arrays.

In addition to creating an array with the NEW operator, you can create a populated one-dimensional array using
the literal array syntax. For example, this statement

getFile() [<filename skeleton expC>
[, <title expC> [, <suppress
database expL>]]]

Displays a dialog box from which a user can select multiple
files.

grow() 1 | 2 When passed 1, adds a single element to a one-dimensional
array or a row to a two-dimensional array; when passed 2, adds
a column to the array.

insert() <element expN>
[,1 | 2]

Inserts an element, row (1), or column (2) into an array
without changing the size of the array (the last element, row,
or column is lost).

resize() <rows expN>
[, <cols expN>
[, <retain values>]]

Increases or decreases the size of an array. First passed
parameter indicates the new number of rows, the second
parameter indicates the new number of columns. If the third
parameter is zero, current values are relocated; if nonzero, they
are retained in their old positions.

scan() <exp>
, <start expN>
[, <count expN>]

Searches an array for the specified expression; returns the
element number of the first element that matches the
expression, or zero if the search is unsuccessful.

sort() <start expN>
[, <count expN>
[, 0 | 1]]

Sorts the elements in a one-dimensional array or the rows in a
two-dimensional array in ascending (0) or descending (1)
order.

subscript() <element expN>
1 | 2

Returns the row (1) or column (2) subscript for the specified
element number.

Method Parameters Description
145 dBL Language Reference

class AssocArray
a1 = {"A", "B", "C"}

creates an Array object with three elements: “A”, “B”, and “C”. You can nest literal arrays. For example, if this
statement:

a2 = { {1, 2, 3}, a1 }

followed the first, you would then have a nested array.

To access a value in a nested array, use the index operators in series. Continuing the example, the third element
in the first array would be accessed with:

x = a2[1][3] // 3

One-dimensional arrays are the only Array objects that are allowed to have zero elements. This is particularly
useful for building arrays dynamically. To create a zero-element array, create a NEW Array with no parameters:

a0 = new Array()

Then use the add() method to add elements to the array.

Example The following statements create a 3 row, 4 column array with the letters “A” through “L” with two different
techniques and use a function to display each array.

aAlpha = new Array(3, 4)
aAlpha[1,1] = "A"; aAlpha[1,2] = "B"; aAlpha[1,3] = "C"; aAlpha[1,4] = "D"
aAlpha[2,1] = "E"; aAlpha[2,2] = "F"; aAlpha[2,3] = "G"; aAlpha[2,4] = "H"
aAlpha[3,1] = "I"; aAlpha[3,2] = "J"; aAlpha[3,3] = "K"; aAlpha[3,4] = "L"
displayArray(aAlpha)

aAlpha = {"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L" }
aAlpha.resize(3, 4)
displayArray(aAlpha)

The second array takes advantage of the literal array syntax, but resize() only creates a one- or two-dimensional
array.

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions on page 10-169.

See also class AssocArray

class AssocArray
A one-dimensional associative array, in which the elements can be referenced by string.

Syntax [<oRef> =] new AssocArray()

<oRef> A variable or property in which to store a reference to the newly created AssocArray object.

Properties The following tables list the properties and methods of the AssocArray class. (No events are associated with this
class.)

Property Default Description
baseClassName ASSOCARRAY Identifies the object as an instance of the AssocArray class

(Property discussed in Chapter 5, “Core language.”)
className (ASSOCARRAY) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
firstKey Character string assigned as the subscript of the first element of

an associative array

Method Parameters Description
count() Returns the number of elements in the associative array
isKey() <key expC> Returns true or false to indicate whether the character string is a

key of the associative array
nextKey() <key expC> Returns the associative array key following the passed key
Array objects 146

ACOPY()
Description In an associative array, elements are associated with arbitrary character strings, which act as key values. The
keys may be of any length, and are case-sensitive. An AssocArray is a one-dimensional array.

New elements are created simply by assigning a value to a key. If the key does not exist, a new element is
created. If the key already exists, then the old value is replaced. For example,

aTest = new AssocArray()
aTest["alpha"] = 1 // Create element with key "alpha" value 1
aTest["beta"] = 2 // Create element with key "beta" value 2
aTest["alpha"] = 3 // Change value of element "alpha" to 3
aTest["Beta"] = 4 // Create element with key "Beta" value 4

The isKey() method will check if a given string is a key value in the associative array, and removeKey() will
remove the element for a given key value from the array. removeAll() removes all the elements from the array.

The order of elements in an associative array is undefined. They are not necessarily sorted in the order they were
added or sorted by their key values. You can think of an associative array as a bag of elements, and depending
on what’s in the bag, the order is different. But no matter what’s in the associative array, you can use its firstKey
property to get a key value, and use the nextKey() method to get all the other key values. The count() method
will return the number of elements in the array so that you can call nextKey() as many times as needed.

Example Suppose you want to create an associative array that associates country codes with the name of the country. You
could use a table for the lookup, but because the lookups don’t change, reading the table into an array once at the
beginning of the application makes the application run faster.

use COUNTRY order CODE
aCountry = new AssocArray()
scan
 aCountry[CODE] = NAME
endscan

If you had to create the array manually, the code would look like this:
aCountry = new AssocArray()
aCountry["AFG"] = "Afghanistan"
aCountry["ALB"] = "Albania"
aCountry["ALG"] = "Algeria"
aCountry["ASA"] = "American Samoa"

// User developed code
aCountry["ZAM"] = "Zambia"
aCountry["ZIM"] = "Zimbabwe"

See also class Array

ACOPY()
Copies elements from one array to another. Returns the number of elements copied.

Syntax ACOPY(<source array>, <target array>
[, <starting element expN> [, <elements expN> [, <target element expN>]]])

<source array> A reference to the array from which to copy elements.

<target array> A reference to the array that elements are copied to.

<starting element expN> The position of the element in <source array> from which ACOPY() starts
copying. Without <starting element expN>, ACOPY() copies all the elements in <source array> to <target
array>.

<elements expN> The number of elements in <source array> to copy. Without <elements expN>,
ACOPY() copies all the elements in <source array> from <starting element expN> to the end of the array. If
you want to specify a value for <elements expN>, you must also specify a value for <starting element expN>.

removeAll() Deletes all elements from the associative array
removeKey() <key expC> Deletes the specified element from the associative array

Method Parameters Description
147 dBL Language Reference

add ()
<target element expN> The position in <target array> to which ACOPY() starts copying. Without
<target element expN>, ACOPY() copies elements to <target array> starting at the first position. If you want
to specify a value for <target element expN>, you must also specify values for <starting element expN> and
<elements expN>.

Description ACOPY() copies elements from one array to another. The dimensions of the two array do not have to match;
the elements are handled according to element number.

The target array must be big enough to contain all the elements being copied from the source array; otherwise no
elements are copied and an error occurs.

See Also element()

add ()
Adds an element to a one-dimensional array.

Syntax <oRef>.add(<exp>)

<oRef> A reference to the one-dimensional array to which you want to add the element.

<exp> An expression of any type you want to assign to the new element.

Property of Array

Description Use add() to dynamically build a one-dimensional array.

add() adds a new element to a one-dimensional array and assigns <exp> to the new element.

You can create an empty one-dimensional array in a statement like:
a = new Array() // No parameters to Array class creates empty 1-D array

and add elements as needed.

Example The following function is an onOpen event handler for a ComboBox component. It creates a one-dimensional
array from values in a field in a table and assigns that array as the dataSource property of the Select component.
The table is already opened in the query sections1.

function sectionCombo_onOpen()
 this.aSections = new Array()
 if form.sections1.rowset.first()
 do
 this.aSections.add(form.sections1.rowset.fields["Name"].value)
 until not form.sections1.rowset.next()
 endif
 this.dataSource = "array this.aSections"

See also grow()

ADEL()
Deletes an element from a one-dimensional array, or deletes a row or column of elements from a two-dimensional
array. Returns 1 if successful, an error if unsuccessful.

Syntax ADEL(<array name>, <position expN> [, <row/column expN>])

<array name> The name of the declared one- or two-dimensional array from which to delete data.

<position expN> When <array name> is a one-dimensional array, <position expN> specifies the number
of the element to delete.

When <array name> is a two-dimensional array, <position expN> specifies the number of the row or column
whose elements you want to delete. The third argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.
Array objects 148

ADEL()
<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is deleted from a two-
dimensional array. If you specify 2, a column is deleted. dBASE Plus returns an error if you use <row/
column expN> with a one-dimensional array.

Description Use ADEL() to delete selected elements from an array without changing the size of the array. ADEL() does the
following:

• Deletes an element from a one-dimensional array, or deletes a row or column from a two-dimensional array

• Moves all remaining elements toward the beginning of the array (up if a row is deleted, to the left if an
element or column is deleted)

• Inserts .F. values in the last position(s)

For information about deleting elements by inserting .F. values and moving remaining elements toward the end
of the array, see AINS(). For information about replacing elements without moving remaining elements at all,
see AFILL(). To change the size of an array, use AGROW() or ARESIZE().

One-dimensional arrays When you issue ADEL() for a one-dimensional array, the element in the
specified position is deleted, and the remaining elements move one position toward the beginning of the array.
The logical value .F. is stored to the element in the last position.

For example, if you define a one-dimensional array with DECLARE aArray[3] and STORE "A," "B," and "C"
to the array, the array has one row and can be illustrated as follows:

 A B C

Issuing ADEL(aArray, 2) deletes element number 2, whose value is "B," moves the value in aArray[3] to
aArray[2], and stores .F. to aArray[3] so that the array now contains these values:

 A C .F.

Two-dimensional arrays When you issue ADEL() for a two-dimensional array, the elements in the
specified row or column are deleted, and the elements in the remaining rows or columns move one position
toward the beginning of the array. The logical value .F. is stored to the elements in the last row or column.

For example, suppose you define a two-dimensional array with DECLARE aArray[3,4] and store letters to the
array. The following illustration shows how the array is changed by ADEL(aArray, 2, 2).
Figure 10.1Using ADEL() with a two-dimensional array
ADEL (aARRAY,2,2)

Initial contents of the array aArray

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

Original array created as:
DECLARE aArray [3,4]
STORE “A” TO aArray [1,1]
STORE “B” TO aArray [1,2]

// User developed code
STORE “L” TO aArray [3,4]

1 ADEL(aArray,2,2)
deletes the elements in the
second column...

.

1 2 3 4

A C D
1,1 1,2 1,3 1,4

5 6 7 8

E G H
2,1 2,2 2,3 2,4

9 10 11 12

I K L
3,1 3,2 3,3 3,4

2

149 dBL Language Reference

ADIR()
Using ADEL() with a two-dimensional array

Shifts the elements in the
remaining columns towards
the beginning of the array...

Contents of the array after
issuing ADEL(aArray,2,2)

1 2 3 4

A C D .F.
1,1 1,2 1,3 1,4

5 6 7 8

E G H .F.
2,1 2,2 2,3 2,4

9 10 11 12

I K L .F.
3,1 3,2 3,3 3,4

3

1 2 3 4

A C D
1,1 1,2 1,3 1,4

5 6 7 8

E G H
2,1 2,2 2,3 2,4

9 10 11 12

I K L
3,1 3,2 3,3 3,4

And inserts logical .F. values
as elements in the last
column, resulting in this
array:

4

Example The following example uses ADEL() and AGROW() to dynamically add and delete to an array which is being
edited with @ GET commands:

DECLARE aTest[3]
AFILL(aTest, space(10))
@0,10 SAY " ALT+A = Add Element ;
 ALT+D = Delete Element"
ON KEY LABEL ALT+A GrowArray()
ON KEY LABEL ALT+D DelArray()
DO WHILE READKEY() <> 12 .and. aTest.size > 0
 @1,1 CLEAR TO aTest.size, 30
 FOR i = 1 to aTest.size
 @i, 1 SAY i GET aTest[i]
 NEXT
 READ
ENDDO
ON KEY LABEL ALT+A
ON KEY LABEL ALT+D
RETURN

FUNCTION DelArray
 ADEL(aTest, aTest.size)
 KEYBOARD CHR(3)
 RETURN .T.

FUNCTION GrowArray
 AGROW(aTest, 1)
 aTest[aTest.size] = SPACE(10)
 KEYBOARD CHR(3)
 RETURN .T.

See Also delete(), AFILL(), AGROW(), AINS(), ARESIZE(), DECLARE

ADIR()
Stores to a declared array five characteristics of specified files: name, size, date stamp, time stamp, and DOS
attribute(s). Returns the number of files whose characteristics are stored.

Syntax ADIR(<array name>
[, <filename skeleton expC> [, <DOS file attribute list expC>]])

<array name> The name of the declared array of one or more dimensions to which to store the file
information. ADIR() dynamically sizes <array name> so the number of rows in the array is equal to the
number of files that match <DOS file attribute expC>, and the number of columns is five.
Array objects 150

ADIR()
<filename skeleton expC> The file-name pattern (using wildcards) describing the files whose
information to store to <array name>.

<DOS file attribute list expC> The letter or letters D, H, S, and/or V representing one or more DOS
file attributes.

If you want to specify a value for <DOS file attribute expC>, you must also specify a value or "*.*" for
<filename skeleton expC>.

The meaning of each attribute is as follows:

Character Meaning
D Directories
H Hidden files
S System files
V Volume label

If you supply more than one letter for <DOS file attribute expC>, include all the letters between one set of
quotation marks, for example, ADIR(aArray, "*.PRG", "HS").

Description Use ADIR() to store information about files to a declared array, which is dynamically resized so all returned
information fits in the array.

Without <filename skeleton expC>, ADIR() stores information about all files in the current directory that are
neither hidden nor system files. For example, if you want to return information only on tables, use "*.DBF" as
<filename skeleton expC>.

If you want to include directories, hidden files, or system files in the array, use <DOS file attribute expC>.
When D, H, or S is included in <DOS file attribute expC>,
all directories, hidden files, and/or system files (respectively) that match <filename skeleton expC> are added to
the array.

When V is included in <DOS file attribute expC>, ADIR() ignores <filename skeleton expC> as well as other
characters in the attribute list, and stores the volume label to a one-element array.

ADIR() stores the following information for each file into one row of the array. The data type for each is shown
in parentheses:

Column 1 Column 2 Column 3 Column 4 Column 5
File name
(character)

Size (numeric) Date
(date)

Time (character) DOS attribute(s)
(character)

The last column (DOS attribute) can contain one or more of the following DOS attributes:

Attribute Meaning
R Read-only file
A Archive file (modified since it was last backed up)
S System file
H Hidden file
D Directory

For example, a file with none of the attributes would have the following string in column 5:
.....

A read-only, hidden file would have the following string in column 5:
R..H.

Example The following example uses ADIR() to store the file name, file size, date of update and time of update for all
.DBF files on the current directory to the array Dir_Arr. The counting DO WHILE loop displays the results to
the Command window results pane:

DECLARE Dir_Arr[1]
151 dBL Language Reference

AELEMENT()
Num_Files=ADIR(Dir_Arr,"*.DBF")
Cnt=1
DO WHILE Cnt<=Num_Files
 ? Dir_Arr[Cnt,1], Dir_Arr[Cnt,2] AT 20,;
 Dir_Arr[Cnt,3] AT 35, Dir_Arr[Cnt,4] AT 45,;
 Dir_Arr[Cnt,5] AT 55
 Cnt=Cnt+1
ENDDO
RETURN

See Also dir(), ACOPY(), AFIELDS(), ASORT(), CD, DIR, DECLARE, FDATE(), FSIZE(), FTIME()

AELEMENT()
Returns the number of a specified element in a one- or two-dimensional array.

Syntax AELEMENT(<array name>, <subscript1 expN>
[, <subscript2 expN>])

<array name> A declared one- or two-dimensional array.

<subscript1 expN> The first subscript of the element. In a one-dimensional array, this is the same as the
element number. In a two-dimensional array, this is the row.

<subscript2 expN> When <array name> is a two-dimensional array, <subscript2 expN> specifies the
second subscript, or column, of the element.

If <array name> is a two-dimensional array and you do not specify a value for <subscript2 expN>, dBASE Plus
assumes the value 1. dBASE Plus returns an error if you use <subscript2 expN> with a one-dimensional array.

Description Use AELEMENT() when you know the subscripts of an element in a two-dimensional array and need the
element number for use with another function, such as ACOPY() or ASCAN().

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
AELEMENT(). That is, AELEMENT(aOneArray,3) returns 3, AELEMENT(aOneArray,5) returns 5, and so
on.

AELEMENT() is the inverse of ASUBSCRIPT(), which returns an element's row or column subscript number
when you specify the element number.

Example The first section of this example initializes a one-dimensional array and a two-dimensional array:
DECLARE aTeacher[4]
DECLARE aStudent[3,4]
DISPLAY MEMORY

Values held in memory are initialized to logical type and contain the value .F. Note the ordering sequence of the
subscripts for the two-dimensional array ASTUDENT:

*ATEACHER
* [1] L .F.
* [2] L .F.
* [3] L .F.
* [4] L .F.
*ASTUDENT
* [1, 1] L .F.
* [1, 2] L .F.
* [1, 3] L .F.
* [1, 4] L .F.
* [2, 1] L .F.
* [2, 2] L .F.
* [2, 3] L .F.
* [2, 4] L .F.
* [3, 1] L .F.
* [3, 2] L .F.
* [3, 3] L .F.
* [3, 4] L .F.

The following statements use AELEMENT() to return the number of the element specified by subscripts:
Array objects 152

AFIELDS()
? AELEMENT(aTeacher, 3) && Returns 3
? AELEMENT(aStudent, 1, 2) && Returns 2
? AELEMENT(aStudent, 2, 2) && Returns 6
? AELEMENT(aStudent, 3, 4) && Returns 12
? AELEMENT(aStudent, 3) && Returns 9

See Also element(), ACOPY(), ADEL(), AFIELDS(), AINS(), ALEN(), ASCAN(), ASORT(), ASUBSCRIPT(),
DECLARE

AFIELDS()
Stores the current table's structural information to a declared array and returns the number of fields whose
characteristics are stored.

Syntax AFIELDS(<array name>)

<array name> The name of a declared array of one or more dimensions.

Description Use AFIELDS() to store information about the current table structure in a declared array. You can then
reference the elements in the array to return information such as a field name and type for use with other
functions or for producing reports. Each row in the array contains information on a single field in the current
table.

AFIELDS() dynamically sizes <array name> so the number of rows in the array is at least equal to the number
of fields in the current table, and the number of columns is at least four. If you declared an array of greater size
than required, the rows may not equal the number of fields and the number of columns do not necessarily equal
four.

The following table shows which field characteristics AFIELDS() stores, and in which column the information
is placed:

Column 1 Column 2 Column 3 Column 4
Field name
(character data type)

Field type
(character data type)

Field length (numeric
data type)

Decimal places
(numeric data type)

dBL uses the following codes for field types: B-dBASE or Paradox binary field (BLOB), C-character, D-date,
G-OLE (general), L-logical, M-memo, N-numeric, F-float.

AFIELDS() stores the same information into an array that COPY TO...STRUCTURE EXTENDED stores into
a table, except AFIELDS() doesn't create a row containing FIELD_IDX information.

Example The following example uses AFIELDS() to initialize the array Stru_Arr to the structure of the Company table.
The resulting two-dimensional array has four columns containing field name, field type, field length and
decimal places and as many rows as the table has fields. The subsequent DO WHILE loop displays the first
column only, thus listing the field names of the current table:

USE COMPANY
DECLARE Stru_Arr[1]
Num_Fields=AFIELDS(Stru_Arr)
Cnt1=1
DO WHILE Cnt1<=Num_Fields
 ? Stru_Arr[Cnt1,1]
 Cnt1=Cnt1+1
ENDDO
RETURN

See Also fields(), COPY TO ARRAY, COPY TO...STRUCTURE EXTENDED, DECLARE, FDATE(), FSIZE(),
FTIME()

AFILL()
Inserts a specified value into one or more locations in a declared array, and returns the number of elements inserted.
153 dBL Language Reference

AGROW()
Syntax AFILL(<array name>, <exp>
[, <start expN>[, <count expN>]])

<array name> The name of a declared one- or two-dimensional array to fill with the specified value
<exp>.

<exp> An expression of character, date, logical, numeric, or float data type to insert in the specified array.

<start expN> The element number at which to begin inserting <exp>. If you do not specify <start expN>,
dBASE Plus begins at the first element in the array.

<count expN> The number of elements in which to insert <exp>, starting at element <start expN>. If you
do not specify <count expN>, dBASE Plus inserts <exp> from <start expN> to the last element in the array. If
you want to specify a value for <count expN>, you must also specify a value for <start expN>.

If you do not specify <start expN> or <count expN>, dBASE Plus fills all elements in the array with <exp>.

Description Use AFILL() to insert a value into all or some elements of a declared array. For example, if you are going to use
elements of an array to calculate totals, you can use AFILL() to initialize all values in the array to 0.

AFILL() inserts values into the array sequentially. Starting at the first element in the array or at <start expN>,
AFILL() inserts values in each element in a row, then moves to the first element in the next row, continuing to
insert values until the array is filled or until it has inserted <count expN> elements. AFILL() overwrites any
existing data in the array.

If you know an elements subscripts, you can use AELEMENT() to determine its element number for use as
<start expN>.

Example The following example uses AFILL() to replace the current YTD_Sales value held in the 10th column of array
Com_Arr. ASCAN() returns the element number for the desired Company name which is used by AFILL() as
a reference point:

SET TALK OFF
CLEAR
USE Company
Lookup="InterSafe"
Sales=143325552.20
Cnt=RECCOUNT()
Flds=FLDCOUNT()
DECLARE Com_Arr[Cnt,Flds]
COPY TO ARRAY Com_Arr
Element=ASCAN(Com_Arr,Lookup)
IF Element>0
 Rplc=AFILL(Com_Arr,Sales,Element+9,1)
ENDIF
Count=1
DO WHILE Count<=Cnt
 ? Com_Arr[Count,1], Com_Arr[Count,10]
 Count=Count+1
ENDDO

See Also fill(), ADEL(), AELEMENT(), AINS(), DECLARE

AGROW()
Adds an element, row, or column to an array and returns a numeric value representing the number of added
elements.

Syntax AGROW (<array name>, <expN>)

<array name> The name of a declared one- or two-dimensional array you want to add elements to.

<expN> Either 1 or 2. When you specify 1, AGROW() adds a single element to a one-dimensional array or
a row to a two-dimensional array. When you specify 2, AGROW() adds a column to the array.

Description Use AGROW() to insert an element, row, or column into an array and change the size of the array to reflect the
added elements. AGROW() can make a one-dimensional array two-dimensional. All added elements are
initialized to .F. values.
Array objects 154

AGROW()
To insert .F. values without changing the size of the array, use AINS().

One-dimensional arrays When you specify 1 for <expN>, AGROW() adds a single element to the
array. When you specify 2, AGROW() makes the array two-dimensional, and existing elements are moved into
the first column. This is shown in the following figure:

Figure 10.2Adding a column to a one-dimensional array using AGROW(bARRAY,2)
AGROW(bARRAY,2)

Original array created as:
DECLARE bArray [4]
STORE “A” TO bArray [1]
STORE “B” TO bArray [2]
STORE “C” TO bArray [3]
STORE “D” TO bArray [4]

1

.

Contents of the array after issuing
AGROW(bArray,2)

1 2

A .F.
1,1 1,2

3 4

B .F.
2,1 2,2

5 6

C .F.
3,1 3,2

7 8

D .F.
4,1 4,2

Initial contents of the array
bArray.

1 2 3 4

A B C D
1 2 3 4

AGROW(bARRAY,2) adds a new column to
the array, makes it a two dimensional array
with dimensions [4,2], and copies the old
values into the first column.

2

Two-dimensional arrays When you specify 1 for <expN>, AGROW() adds a row to the array and adds
the row at the end of the array. This is shown in the following figure:

Figure 10.3

AGROW (aARRAY,1)
Original array created as:
DECLARE aArray [3,4]
STORE “A” TO aArray [1,1]
STORE “B” TO aArray [1,2]

// User developed code
STORE “L” TO aArray [3,4]

AGROW(aARRAY,1) adds a new row to
the array.

1

.

Contents of the array after
issuing AGROW(aArray,1)

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

13 14 15 16

.F. .F. .F. .F.
4,1 4,2 4,3 4,4

2

Initial contents of the array
aArray.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

Adding a row to a two-dimensional array using AGROW(aARRAY,1)

When you specify 2 for <expN>, AGROW() adds a column to the array and places .F. into each element in the
column.
155 dBL Language Reference

AINS()
Example The following example initially declares an array of three elements, and then uses AGROW() to add a fourth
element, a second column and finally, to add a row to the two dimensional array. DISPLAY MEMORY is used
to show the values in the array after each AGROW() operation:

RELEASE ALL
DECLARE A[3]
A[1]="x"
A[2]="y"
A[3]="z"
DISPLAY MEMORY
N=AGROW(A,1) && adds an element to A
DISPLAY MEMORY
N=AGROW(A,2) && adds a column to A
DISPLAY MEMORY
N=AGROW(A,1) && adds a new row to A
DISPLAY MEMORY

See Also grow(), AINS(), ALEN(), DECLARE

AINS()
Inserts an element with the value .F. into a one-dimensional array, or inserts a row or column of elements with the
value .F. into a two-dimensional array. Returns 1 if successful, an error if unsuccessful.

Syntax AINS(<array name>, <position expN> [, <row/column expN>])

<array name> The name of a declared one- or two-dimensional array in which to insert data.

<position expN> When <array name> is a one-dimensional array, <position expN> specifies the number
of the element in which to insert an .F. value.

When <array name> is a two-dimensional array, <position expN> specifies the number of a row or column in
which to insert .F. values. The third argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is inserted into a two-
dimensional array. If you specify 2, a column is inserted. dBASE Plus returns an error if you use <row/
column expN> with a one-dimensional array.

Description Use AINS() to insert .F. values into selected elements in an array without changing the size of the array.
AINS() does the following:

• Inserts an element in a one-dimensional array, or inserts a row or column in a two-dimensional array

• Moves all remaining elements toward the end of the array (down if a row is inserted, to the right if an
element or column is inserted)

• Inserts .F. values in the newly created position(s)

For information about inserting elements by moving remaining elements toward the beginning of the array and
inserting .F. values at the end of the array, see ADEL(). For information about replacing elements without
moving remaining elements at all, see AFILL(). To change a one-dimensional array to two-dimensional, use
AGROW() or ARESIZE().

One-dimensional arrays When you issue AINS() for a one-dimensional array, the logical value .F. is
inserted into the position of the specified element. The remaining element(s) are moved one place toward the
end of the array. The element that had been in the last position is deleted.

For example, if you define a one-dimensional array with DECLARE aArray[3] and STORE "A," "B," and "C"
to the array, the array has one row and can be illustrated as follows:

 A B C

Issuing AINS(aArray, 2) inserts aArray[2] with the value .F., moves aArray[2], whose value is "B," to
aArray[3], and deletes "C" in aArray[3] so that the array now contains these values:

 A .F. B
Array objects 156

AINS()
Two-dimensional arrays When you issue AINS() for a two-dimensional array, a logical value .F. is
inserted into the position of each element in the specified row or column. The elements in the remaining
columns or rows are moved one place toward the end of the array. The elements that had been in the last row or
column are deleted.

For example, suppose you define a two-dimensional array with DECLARE aArr[3,4] and store letters to the
array. The following figure shows how the array is changed by issuing AINS(aArray, 2,2):

Figure 10.4Using AINS() with a two-dimensional array
AINS (aARRAY, 2,2)

Original array created as:
DECLARE aArray [3,4]
STORE “A” TO aArray [1,1]
STORE “B” TO aArray [1,2]

// User developed code
STORE “L” TO aArray [3,4]

AINS (aArray,2,2)
inserts logical .F. values as
elements in the second column...

Shifts the elements in the
remaining columns towards the
end of the array, and deletes the
elements from the last column.

Contents of the array after issuing
AINS(aArray,2,2)

1 2 3 4

A .F. B C
1,1 1,2 1,3 1,4

5 6 7 8

E .F. F G
2,1 2,2 2,3 2,4

9 10 11 12

I .F. J K
3,1 3,2 3,3 3,4

1

3

.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

2

Initial contents of the array aArray

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

1 2 3 4

A .F. B C
1,1 1,2 1,3 1,4

5 6 7 8

E .F. F G
2,1 2,2 2,3 2,4

9 10 11 12

I .F. J K
3,1 3,2 3,3 3,4

4 Resulting in this array:

Example The following example uses a two-dimensional array created as follows:
PUBLIC aAlpha
DECLARE aAlpha[2,3]
STORE "one" TO aAlpha[1,1]
STORE "two" TO aAlpha[1,2]
STORE "three" TO aAlpha[1,3]
STORE "four" TO aAlpha[2,1]
STORE "five" TO aAlpha[2,2]
STORE "six" TO aAlpha[2,3]

The array aAlpha now contains the following:
*aAlpha
* [1,1] C "one"
* [1,2] C "two"
* [1,3] C "three"
* [2,1] C "four"
157 dBL Language Reference

ALEN()
* [2,2] C "five"
* [2,3] C "six"

AINS() is now used to change the first column to .F. and move the remaining elements toward the end of the
array:

? AINS(aAlpha,1,2) && Returns 1 if successful

aAlpha now contains the following:
*aAlpha
* [1,1] C .F.
* [1,2] C "one"
* [1,3] C "two"
* [2,1] C .F.
* [2,2] C "four"
* [2,3] C "five"

See Also insert(), ADEL(), AFILL(), AGROW(), ARESIZE(), DECLARE

ALEN()
Returns the number of elements, rows, or columns of an array.

Syntax ALEN(<array> [, <expN>])

<array> A reference to a one- or two-dimensional array.

<expN> The number 0, 1, or 2, indicating which array information to return: elements, rows, or columns.
The following table describes what ALEN() returns for different <expN> values:

If <expN> is... ALEN() returns...
not supplied Number of elements in the array
0 Number of elements in the array
1 For a one-dimensional array, the number of elements

For a two-dimensional array, the number of rows (the first subscript of the array)
2 For a one-dimensional array, 0 (zero)

For a two-dimensional array, the number of columns (the second subscript of the array)
any other value 0 (zero)

Description Use ALEN() to determine the dimensions of an array—either the number of elements it contains, or the number
of rows or columns it contains.

The number of elements in an array (with any number of dimensions) is also reflected in the array’s size
property.

If you need to determine both the number of rows and the number of columns a two-dimensional array contains,
call ALEN() twice, once with a value of 1 for <expN> and once with a value of 2 for <expN>. For example, the
following determines the number of rows and columns contained in aExample:

nRows = alen(aExample, 1)
nCols = alen(aExample, 2)

Example ALEN() is used in the displayArray() function, shown in the example for dimensions, to determine the number
of rows and columns in a two-dimensional array.

See Also size[Array], size[File], subscript()

ARESIZE()
Increases or decreases the size of an array according to the specified dimensions and returns a numeric value
representing the number of elements in the modified array.
Array objects 158

ARESIZE()
Syntax ARESIZE(<array name>, <new rows expN>
[,<new cols expN> [, <retain values expN>]])

<array name> The name of a declared one- or two-dimensional array whose size you want to increase or
decrease.

<new rows expN> The number of rows the resized array should have. <new rows expN> must always be
a positive, nonzero value.

<new cols expN> The number of columns the resized array should have. <new cols expN> must always
be 0 or a positive value. If you omit this option, ARESIZE() changes the number of rows in the array and leaves
the number of columns the same.

<retain values expN> Determines what happens to the values of the array when rows are added or
removed. If you want to specify a value for <retain values expN>, you must also specify a value for
<new cols expN>.

Description Use ARESIZE() to change the size of a declared array, making it larger or smaller. To determine the number of
rows or columns in an existing array, use ALEN().

If you add or remove columns from the array, you can use <retain values expN> to specify how you want
existing elements to be placed in the new array. If <retain values expN> is zero or isn’t specified, ARESIZE()
rearranges the elements, filling in the new rows or columns or adjusting for deleted elements, and adding or
removing elements at the end of the array, as needed. This is shown in the following two figures. You are most
likely to want to do this if you don't need to refer to existing items in the array; that is, you plan to update the
array with new values.

Figure 10.5Adding a row and a column to a 3x4 array, rearranging elements
ARESIZE (aARRAY,4,5)

Original array created as:
DECLARE aArray [3,4]
STORE “A” TO aArray [1,1]
STORE “B” TO aArray [1,2]

// User developed code
STORE “L” TO aArray [3,4]

ARESIZE(aARRAY,4,5) adds a new row
and column to the array and rearranges the
values of the elements.

1

.

Contents of the array after issuing
ARESIZE(aArray,4,5)

1 2 3 4 5

A B C D E
1,1 1,2 1,3 1,4 1,5

6 7 8 9 10

F G H I J
2,1 2,2 2,3 2,4 2,5

11 12 13 14 15

K L .F. .F. .F.
3,1 3,2 3,3 3,4 3,5

16 17 18 19 20

.F. .F. .F. .F. .F.
4,1 4,2 4,3 4,4 4,5

Initial contents of the array aArray

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

2

159 dBL Language Reference

ARESIZE()
Figure 10.6Adding a column to a one-dimensional array, rearranging elements

Original array created as:
DECLARE bArray [4]
STORE “A” TO bArray [1]
STORE “B” TO bArray [2]
STORE “C” TO bArray [3]
STORE “D” TO bArray [4]

ARESIZE(bARRAY,4,2) adds a
new column to the array, makes it a
two dimensional array with
dimensions [4,2], and reassigns the
values of the elements.

1

.

Contents of the array after
issuing ARESIZE(bArray,4,2)

1 2

A B
1,1 1,2

3 4

C D
2,1 2,2

5 6

.F. .F.
3,1 3,2

7 8

.F. .F.
4,1 4,2

2
ARESIZE (bARRAY,4,2)

Initial contents of the array bArray.

1 2 3 4

A B C D
1 2 3 4

When you use ARESIZE() on a one-dimensional array, you might want the original row to become the first
column of the new array. Similarly, when you use ARESIZE() on a two-dimensional array, you might want
existing two-dimensional array elements to remain in their original positions. You are most likely to want to do
this if you need to refer to existing items in the array by their subscripts; that is, you plan to add new values to
the array while continuing to work with existing values.

If <retain values expN> is a nonzero value, ARESIZE() ensures that elements retain their original values. The
following two figures repeat the statements shown in the previous two figures, with the addition of a value of 1
for <retain values expN >.

Figure 10.7Adding a row and a column to a 3x4 array, “preserving elements”
ARESIZE (aARRAY,4,5,1)

Original array created as:
DECLARE aArray [3,4]
STORE “A” TO aArray [1,1]
STORE “B” TO aArray [1,2]

// User developed code
STORE “L” TO aArray [3,4]

ARESIZE(aARRAY,4,5,1) adds a new row and
column to the array and maintains the values of
the elements.1

.

Contents of the array after issuing
ARESIZE(aArray,4,5,1)

1 2 3 4 5

A B C D .F.
1,1 1,2 1,3 1,4 1,5

6 7 8 9 10

E F G H .F.
2,1 2,2 2,3 2,4 2,5

11 12 13 14 15

I J K L .F.
3,1 3,2 3,3 3,4 3,5

16 17 18 19 20

.F. .F. .F. .F. .F.
4,1 4,2 4,3 4,4 4,5

2

Initial contents of the array
aArray.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

Array objects 160

ASCAN()
Figure 10.8Adding a column to a one-dimensional array, “preserving elements”
ARESIZE (bARRAY,4,2,1)

Original array created as:
DECLARE bArray [4]
STORE “A” TO bArray [1]
STORE “B” TO bArray [2]
STORE “C” TO bArray [3]
STORE “D” TO bArray [4]

ARESIZE(bARRAY,4,2,1) adds a new column to the
array, and makes it a two-dimensional array with
dimensions [4,2]. Each existing element is now the
first element in a row.

1

.

Contents of the array after
issuing ARESIZE(bArray,4,2,1)

1 2

A .F.
1,1 1,2

3 4

B .F.
2,1 2,2

5 6

C .F.
3,1 3,2

7 8

D .F.
4,1 4,2

Initial contents of the array
bArray.

1 2 3 4

A B C D
1 2 3 4

2

Example The following example initially declares an array of three elements, and then uses ARESIZE() to resize the
array to A[5], A[5,2] and finally back to A[3]. DISPLAY MEMORY is used to show the values in the array
after each ARESIZE() operation:

RELEASE ALL
DECLARE A[3]
A[1]="x"
A[2]="y"
A[3]="z"
DISPLAY MEMORY
N=ARESIZE(A,5) && A now has 5 elements
A[4]="new1"
A[5]="new2"
DISPLAY MEMORY
N=ARESIZE(A,5,2,1)
* A now has 5 rows and 2 columns.
* The new cols are all set to .t.
* Old values are retained
DISPLAY MEMORY
N=ARESIZE(A,3,1,1)
* A now is back to the original 3 elements
* use:
DISPLAY MEMORY
* N=ARESIZE(A,3,1,0)
* if you don't need the original values
DISPLAY MEMORY
WAIT

See Also resize(), ADEL(), AINS(), ALEN(), DECLARE

ASCAN()
Searches an array for an expression. Returns the number of the first element that matches the expression if the search
is successful, or 0 if the search is unsuccessful.

Syntax ASCAN(<array name>, <exp>
[, <starting element expN> [, <elements expN>]])

<array name> A declared one- or two-dimensional array.

<exp> The expression to search for in <array name>.
161 dBL Language Reference

ASORT()
<starting element expN> The element number in <array name> at which to start searching. Without
<starting element expN>, ASCAN() starts searching at the first element.

<elements expN> The number of elements in <array name> that ASCAN() searches. Without
<elements expN>, ASCAN() searches <array name> from <starting element expN> to the end of the array. If
you want to specify a value for <elements expN>, you must also specify a value for <starting element expN>.

Description Use ASCAN() to search an array for the value contained in <exp>. For example, if an array contains customer
names, you can use ASCAN() to find the location in which a particular name appears.

ASCAN() returns the element number of the first element in the array that matches <exp>. If you want to
determine the subscripts of this element, use ASUBSCRIPT().

When <exp> contains string data, ASCAN() is case-sensitive; you may want to use UPPER(), LOWER(), or
PROPER() to match the case of <exp> with the case of the data stored in the array.

When <exp> contains string data, ASCAN() searches for an expression following the rules established by SET
EXACT. If SET EXACT is ON, dBASE Plus returns 0 if the value in <exp> is not identical to the data in an
element of the array. If SET EXACT is OFF, dBASE Plus returns 0 if the characters in <expN> do not match the
beginning characters in the data in an element of the array. The following code example illustrates this more
clearly. For more information, see SET EXACT.

DECLARE aArray[3,4] && 3 rows,4 columns
? AFILL(aArray,"abcd",6,1) && place "abcd" in the 6th element
SET EXACT OFF
? ASCAN(aArray,"abcd") && returns 6
? ASCAN(aArray,"abc") && returns 6
? ASCAN(aArray,"bcd") && returns 0
SET EXACT ON
? ASCAN(aArray,"abcd") && returns 6
? ASCAN(aArray,"abc") && returns 0
? ASCAN(aArray,"bcd") && returns 0
Example

The following example uses ASCAN() to return an element number for a desired string within an array and
ASUBSCRIPT() to return the row and column coordinates within the array:

CLEAR
DECLARE A_Dir[1]
FileName="CLIENTS.DBF"
Files=ADIR(A_Dir,"*.*") && Initializes array to directory contents
Asort=ASORT(A_Dir) && Orders array
Element=ASCAN(A_Dir,FileName) && Returns filename location
IF Element > 0 && ASCAN() returns 1 if successful
 Row=ASUBSCRIPT(A_Dir,Element,1)
 Col=ASUBSCRIPT(A_Dir,Element,2)
 ? "Name" AT 15, "Bytes" AT 30, "Date" AT 39,;
 "Time" AT 48
 ?
 ? "File Info: " + A_Dir[Row,Col];
 +" "+STR(A_Dir[Row,Col+1]);
 +" "+DTOC(A_Dir[Row,Col+2])+" "+A_Dir[Row,Col+3]
ENDIF

See Also scan(), ACOPY(), AFIELDS(), AFILL(), ASORT(), ASUBSCRIPT(), DECLARE, LOWER(),
PROPER(), SET EXACT, UPPER()

ASORT()
Sorts the elements in a one-dimensional array or the rows in a two-dimensional array, returning 1 if successful or an
error if unsuccessful.

Syntax ASORT(<array name>
[, <starting element expN> [,<elements to sort expN> [, <sort order expN>]]])

<array name> A declared one- or two-dimensional array.
Array objects 162

ASORT()
<starting element expN> In a one-dimensional array, the number of the element in <array name> at
which to start sorting. In a two-dimensional array, the number (subscript) of the column on which to sort.
Without <starting element expN>, ASORT() starts sorting at the first element or column in the array.

<elements to sort expN> In a one-dimensional array, the number of elements to sort. In a two-
dimensional array, the number of rows to sort. Without <elements to sort expN>, ASORT() sorts the rows
starting at the row containing element <starting element expN> to the last row. If you want to specify a value
for <elements to sort expN>, you must also specify a value for <starting element expN>.

<sort order expN> The sort order:
• 0 specifies ascending order (the default)
• 1 specifies descending order

If you want to specify a value for <sort order expN>, you must also specify values for <elements to sort expN>
and <starting element expN>.

Description ASORT() succeeds in sorting when all elements you specify to be sorted are of the same data type. The
elements to sort in a one-dimensional array must be of the same data type, and the elements of the column by
which rows are to be sorted in a two-dimensional array must be of the same data type.

ASORT() arranges elements in alphabetical, numerical, chronological, or logical order, depending on the data
type of <starting element expN>. (For character data, the current language driver determines the sort order.)

One-dimensional arrays Suppose you issue DECLARE aNums[8] and store numbers to the array so
that the array elements are in this order:

 5 7 3 9 4 1 2 8

If you issue ASORT(aNums, 1, 5), dBASE Plus sorts the first five elements so that the array elements are in this
order:

 3 4 5 7 9 1 2 8

If you then issue ASORT(aNums, 5, 2), dBASE Plus sorts two elements starting at the fifth element so that the
array elements are now in this order:

 3 4 5 7 1 9 2 8

Two-dimensional arrays Using ASORT() with a two-dimensional array is similar to using the SORT
command with a table. In this comparison, array rows correspond to records, and array columns correspond to
fields.

When you sort a two-dimensional array, whole rows are sorted, not just the elements in the column where
<starting element expN>) is located.

For example, suppose you issue DECLARE aInfo[4, 3] and fill the array with the following data:

{09/15/65} 7 A
{12/31/65} 4 D
{01/19/45} 8 C
{05/02/72} 2 B

If you issue ASORT(aInfo, 1), dBASE Plus sorts all rows in the array beginning with element number 1. The
rows are sorted by the dates in the first column because element 1 is a date. The following figure shows the
results.
163 dBL Language Reference

ASUBSCRIPT()
Figure 10.9ASORT (aInfo,1)
ASORT (aInfo,1)

All the rows are to be
sorted...
starting with the row
containing element 1.

Element 1 is a date, so the
rows are sorted by the dates
in the first column.

1

.

Contents of the array after issuing
ASORT(aInfo,1)

1 2 3

{01/19/45} 8 C

4 5 6

{09/15/65} 7 A

7 8 9

{05/02/72} 2 B

10 11 12

{12/31/74} 4 D

2

Initial contents of the array aInfo.

1 2 3

{09/15/65} 7 A

4 5 6

{12/31/74} 4 D

7 8 9

{01/19/45} 8 C

10 11 12

{05/02/72} 2 B

If you then issue ASORT(aInfo, 5, 2), dBASE Plus sorts two rows in the array starting with element number 5,
whose value is 7. ASORT() sorts the second and the third rows based on the numbers in the second column.
The following figure shows the results.

Figure 10.10Using ASORT() with a two-dimensional array
ASORT (aINFO,5,2)

Two rows are to be sorted
(ASORT (aInfo,5,2))
starting with the row
containing element 5
(ASORT (aInfo,5,2)).

Element 5 contains a
number, so the rows are
sorted by the numbers in
the second column.

2

Initial contents of the array aInfo.

1 2 3

{01/19/45} 8 C

4 5 6

{09/15/65} 7 A

7 8 9

{05/02/72} 2 B

10 11 12

{12/31/74} 4 D

Contents of the array after issuing
ASORT (aInfo,5, 2)

1 2 3

{01/19/45} 8 C

4 5 6

{05/02/72} 2 B

7 8 9

{09/15/65} 7 A

10 11 12

{12/31/74} 4 D

1

Example See ASCAN() for an example of ASORT().

See Also sort(), AELEMENT(), ALEN(), ASCAN(), ASUBSCRIPT(), DECLARE

ASUBSCRIPT()
Returns the row number or the column number of a specified element in an array.

Syntax ASUBSCRIPT(<array name>, <element expN>, <row/column expN>)

<array name> A declared one- or two-dimensional array.
Array objects 164

count ()
<element expN> The element number.

<row/column expN> A number, either 1 or 2, that determines whether you want to return the row or
column subscript of an array. If <row/column expN> is 1, ASUBSCRIPT() returns the number of the row
subscript. If <row/column expN> is 2, ASUBSCRIPT() returns the number of the column subscript.

If <array name> is a one-dimensional array, dBASE Plus returns an error if <row/column expN> is a value
other than 1.

Description Use ASUBSCRIPT() when you know the number of an element in a two-dimensional array and want to
reference the element by using its subscripts.

If you need to determine both the row and column number of an element in a two-dimensional array, issue
ASUBSCRIPT() twice, once with a value of 1 for <row/column expN> and once with a value of 2 for <row/
column expN>. For example, if the element number is 13, issue the following to return its subscripts:

? ASUBSCRIPT(aArray,13,1) && returns row subscript
? ASUBSCRIPT(aArray,13,2) && returns column subscript

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
ASUBSCRIPT(). That is, ASUBSCRIPT(aOneArray,3,1) returns 3, ASUBSCRIPT(aOneArray,5,1) returns 5,
and so on.

ASUBSCRIPT() is the inverse of AELEMENT(), which returns an element number when you specify the
element subscripts.

Example The following example uses ASCAN() to return an element number for a desired string within an array and
ASUBSCRIPT() to return the row and column coordinates within the array:

CLEAR
DECLARE A_Dir[1]
FileName="CLIENTS.DBF"
Files=ADIR(A_Dir,"*.*") && Initializes array to;
 directory contents
Asort=ASORT(A_Dir) && Orders array
Element=ASCAN(A_Dir,FileName)&& Returns filename;
 location
IF Element > 0 && ASCAN() returns 1;
 if successful
 Row=ASUBSCRIPT(A_Dir,Element,1)
 Col=ASUBSCRIPT(A_Dir,Element,2)
 ? "Name" AT 15, "Bytes" AT 30, "Date" AT 39,;
 "Time" AT 48
 ?
 ? "File Info: " + A_Dir[Row,Col];
 +" "+STR(A_Dir[Row,Col+1]);
 +" "+A_Dir[Row,Col+2]+" "+A_Dir[Row,Col+3]
ENDIF

See Also subscript(), ACOPY(), ADEL(), AELEMENT(), AFIELDS(), AINS(), ALEN(), ASCAN(), ASORT(),
DECLARE

count ()
Returns the number of elements in an associative array.

Property of AssocArray

Description Use count() to determine the number of elements in an associative array.

Because associative arrays use arbitrary strings as keys and change size dynamically, you need to get the
number of elements in an associative array if you want to loop through its elements.

Example The following statements loop through an associative array and display all its elements:
aTest = new AssocArray()
aTest["USA"] = "United States of America"
aTest["RUS"] = "Russian Federation"
aTest["GER"] = "Germany"
165 dBL Language Reference

DECLARE
aTest["CHN"] = "People's Republic of China"

cKey = aTest.firstKey // Get first key in AssocArray
// Get number of elements in AssocArray and loop through them
for nElements = 1 to aTest.count()
 ? cKey // Display key value
 ? aTest[cKey] // Display element value
 cKey := aTest.nextKey(cKey) // Get next key value
endfor

See also firstKey, nextKey()

count() is also a method of the Rowset class.

DECLARE
Defines one or more fixed arrays.

Syntax DECLARE <array name 1>"["<expN list 1>"]"
[,<array name 2>"["<expN list 2>"]"...]

Brackets ([]) in quotation marks are required syntax components.

<array name 1>[,<array name 2>...] The memory variable(s) that are the name(s) of the array(s).

"["<expN list 1>"]"[,..."["<expN list 2>"]"][,...] Numeric or float expressions (from 1 to 254
inclusive). The number of expressions you specify determines the number of dimensions of the array. Each one
of the expressions specifies how many values (data elements) that dimension has. For example, if
[<expN list 1>] is [3,4], dBASE Plus defines a two-dimensional array with three rows and four columns.

Description Use DECLARE to define an array of a specified size as a memory variable. Array elements can be of any data
type. (An array element can also specify the name of another array.) A single array can contain multiple data
types. When you use DECLARE, all array elements are initialized to a logical data type with a value of .F.

The array can hold as many elements as memory allows. You can create arrays that contain more than two
dimensions, but most dBL array functions work only on one- or two-dimensional arrays.

There are two ways to refer to individual elements in an array; you can use either the element subscripts or the
element number. Element subscripts indicate the row and column in which an element is located. Element
numbers indicate the sequential position of the element in the array, starting at the first row and first column of
the array. To determine the number of elements, rows, or columns in an array, use ALEN().

Certain dBL functions require the element number, and others require the subscripts. If you are using one- or
two-dimensional arrays, you can use AELEMENT() to determine the element number if you know the
subscripts, and ASUBSCRIPT() to determine the subscripts if you know the element number.

After you create an array, you can place values in cells of the array using STORE, or you can use =. You can
also use AFILL() to place the same value in a range of cells in the array. To add or delete elements from an
array, use ADEL() and AINS(). To resize an array, or make a one-dimensional array two-dimensional, use
AGROW() or ARESIZE().

You can pass array elements as parameters, and you can pass a complete array as a parameter to a program or
procedure by specifying the array name without a subscript.

Example The following example relates two tables to create a view consisting of two fields from each table, then uses
DECLARE to create an array Compsumm and copies the selected data to the array. The counting DO WHILE
loop displays the contents of the array to the results pane of the Command window:

CLOSE ALL
CLEAR
USE Contact IN SELECT() ORDER CompCode
USE Company IN SELECT()
SELECT Company
SET RELATION TO CompCode INTO Contact

DECLARE Compsumm[5,4] && Create an array of 5 rows and 4 columns
COPY TO ARRAY Compsumm NEXT 5;
 FIELDS Company->Company, ;
Array objects 166

delete ()
 Company->City, Contact->CompCode, ;
 Contact->Contact
Cnt=1
DO WHILE Cnt<=5
 ? Compsumm[Cnt,1], Compsumm[Cnt,2]
 ?? Compsumm[Cnt,3], Compsumm[Cnt,4]
 Cnt=Cnt+1
ENDDO
CLOSE ALL

See Also class Array, class AssocArray, APPEND FROM ARRAY, COPY TO ARRAY, REPLACE FROM ARRAY,
STORE

delete ()
Deletes an element from a one-dimensional array, or deletes a row or column of elements from a two-dimensional
array. Returns 1 if successful; generates an error if unsuccessful. The remaining elements move forward to replace
the deleted element(s); the dimensions of the array do not change.

Syntax <oRef>.delete(<position expN> [, <row/column expN>])

<oRef> A reference to the one- or two-dimensional array from which you want to delete data.

<position expN> When the array is a one-dimensional array, <position expN> specifies the number of the
element to delete.

When the array is a two-dimensional array, <position expN> specifies the number of the row or column whose
elements you want to delete. The second argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is deleted from a two-
dimensional array. If you specify 2, a column is deleted. dBASE Plus generates an error if you use <row/
column expN> with a one-dimensional array.

Property of Array

Description Use delete() to delete selected elements from an array without changing the size of the array. delete() does the
following:

• Deletes an element from a one-dimensional array, or deletes a row or column from a two-dimensional array

• Moves all remaining elements toward the beginning of the array (up if a row is deleted, to the left if an
element or column is deleted)

• Inserts false values in the last position(s)

Adjust the array’s size property or use resize() to make the array smaller after you delete() if you want the net
effect of removing elements.

One-dimensional arrays When you issue delete() for a one-dimensional array, the element in the
specified position is deleted, and the remaining elements move one position toward the beginning of the array.
The logical value false is stored to the element in the last position.

For example, if you define a one-dimensional array with
aAlpha = {"A", "B", "C"}

the resulting array has one row and can be illustrated as follows:
A B C

Issuing aAlpha.delete(2) deletes element number 2 whose value is “B,” moves the value in aAlpha[3] to
aAlpha[2], and stores false to aAlpha[3] so that the array now contains these values:

A C false

Two-dimensional arrays When you issue delete() for a two-dimensional array, the elements in the
specified row or column are deleted, and the elements in the remaining rows or columns move one position
toward the beginning of the array. The logical value false is stored to the elements in the last row or column.
167 dBL Language Reference

delete ()
For example, suppose you define a two-dimensional array and store letters to the array. The following
illustration shows how the array is changed by aAlpha.delete(2,2).
Figure 10.11Using delete () with a two-dimensional array

aAlpha.delete (2,2)
Original array created as:
aAlpha = new Array(3,4)]
aAlpha [1,1] = “A”
aAlpha[1,2] = “B”

// User developed code
aAlpha [3,4] = “L”

aAlpha.delete(2,2)
deletes the elements in the
second column…

Shifts the elements in the
remaining columns towards
the beginning of the array…

Contents of the array after
issuing aAlpha.delete(2,2)

1 2 3 4

A C D false
1,1 1,2 1,3 1,4

5 6 7 8

E G H false
2,1 2,2 2,3 2,4

9 10 11 12

I K L false
3,1 3,2 3,3 3,4

1

3

.

1 2 3 4

A C D
1,1 1,2 1,3 1,4

5 6 7 8

E G H
2,1 2,2 2,3 2,4

9 10 11 12

I K L
3,1 3,2 3,3 3,4

2

Initial contents of the array aAlpha

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

1 2 3 4

A C D
1,1 1,2 1,3 1,4

5 6 7 8

E G H
2,1 2,2 2,3 2,4

9 10 11 12

I K L
3,1 3,2 3,3 3,4

And inserts logical false
values as elements in the
last column, resulting in this
array:

4

Example The following code removes elements from the array aTest that have the letter “e” in them.
aTest = {"alpha", "beta", "gamma", "delta"}
nDeleted = 0 // Count deleted elements
// Loop through array backwards
for nElement = aTest.size to 1 step -1
 if "e" $ aTest[nElement] // If element contains "e"
 aTest.delete(nElement) // Delete element
 nDeleted++ // Increment delete count
 endif
endfor

if nDeleted > 0
 aTest.size := aTest.size - nDeleted // Discard false elements
endif

// Display elements (looping forward)
for nElement = 1 to aTest.size
 ? aTest[nElement]
endfor

The loop to delete the elements runs through the array backwards because delete() moves all remaining
elements forward. You would then have to recheck the same element number and juggle the element counter.
It’s simpler to just loop through the array backwards.
Array objects 168

dimensions
See also fill(), grow(), insert(), resize(), size

delete() is also a method of the File, Rowset, and UpdateSet classes.

dimensions
The number of dimensions in an Array object.

Property of Array

Description dimensions indicates the number of dimensions in an Array object. It is a read-only property.

You can use the resize() method to change the number of dimensions to one or two, but for more than two you
would have to create a new array.

If the array has one or two dimensions, you can use the ALEN() function to determine the size of each
dimension. There is no built-in way to determine dimension sizes for arrays with more than two dimensions.

Example The following function displays the contents of an array, but only if the array has one or two dimensions:
function displayArray(aArg, nColWidth)
local nElement, nCols, nRows, nCol, nRow
 #define DEFAULT_WIDTH 2
 if argcount() < 2
 nColWidth = DEFAULT_WIDTH
 endif
 do case
 case aArg.dimensions == 1
 ? replicate("-", nColWidth * aArg.size)
 ?
 for nElement = 1 to aArg.size // Display elements
 ?? aArg[nElement] at nColWidth * (nElement - 1)
 endfor // in a single line
 case aArg.dimensions == 2
 nRows = alen(aArg, 1) // Determine # of rows
 nCols = alen(aArg, 2) // Determine # of columns
 ? replicate("-", nColWidth * nCols)
 for nRow = 1 to nRows
 ? // Each row on its own line
 for nCol = 1 to nCols // Display each row as before
 ?? aArg[nRow, nCol] at nColWidth * (nCol - 1)
 endfor
 endfor
 otherwise
 msgbox("Error: only 1 or 2 dimensions allowed", "Alert")
 endcase

See also resize(), size, subscript()

dir ()
Fills the array with five characteristics of specified files: name, size, modified date, modified time, and file
attribute(s). Returns the number of files whose characteristics are stored.

Syntax <oRef>.dir([<filename skeleton expC> [, <DOS file attribute list expC>]])

<oRef> A reference to the array in which you want to store the file information. dir() will automatically
redimension or increase the size of the array to accommodate the file information, if necessary.

<filename skeleton expC> The file-name pattern (using wildcards) describing the files whose
information you want to store to <oRef>.

<file attribute list expC> The letter or letters D, H, S, and/or V representing one or more file file
attributes.
169 dBL Language Reference

dir ()
If you want to specify a value for <file attribute expC>, you must also specify a value or “*.*” for <filename
skeleton expC>.

The meaning of each attribute is as follows:

Character Meaning
D Directories
H Hidden files
S System files
V Volume label

If you supply more than one letter for <file attribute expC>, include all the letters between one set of quotation
marks, for example, aFiles.dir(“*.*”, “HS”).

Property of Array

Description Use dir() to store information about files to an array, which is dynamically resized so all returned information
fits in the array. The resulting array is always a two-dimensional array, unless there are no files, in which case
the array is not modified.

Without <filename skeleton expC>, dir() stores information about all files in the current directory, unless they
are hidden or system files. For example, if you want to return information only on DBF tables, use “*.DBF” as
<filename skeleton expC>.

If you want to include directories, hidden files, or system files in
the array, use <file attribute expC>. When D, H, or S is included in <file attribute expC>, all directories, hidden
files, and/or system files (respectively) that match <filename skeleton expC> are added to the array.

When V is included in <file attribute expC>, dir() ignores <filename skeleton expC> as well as other
characters in the attribute list, and stores the volume label to the first element of the array.

dir() stores the following information for each file in each row of the array. The data type for each is shown in
parentheses:

Column 1 Column 2 Column 3 Column 4 Column 5
File name
(character)

Size
(numeric)

Modified date
(date)

Modified time
(character)

File attribute(s)
(character)

The last column (file attribute) can contain one or more of the following file attributes, in the order shown:

Attribute Meaning
R Read-only file
A Archive file (modified since it was last backed up)
S System file
H Hidden file
D Directory

If the file has the attribute, the letter code is in the column. Otherwise, there is a period. For example, a file with
none of the attributes would have the following string in column 5:

.....

A read-only, hidden file would have the following string in column 5:
R..H.

Use dirExt() to get extended Windows 95/NT/ME file information.

Example The following example uses dir() to store the file information for all the files in the root directory of the current
drive to the array aFiles. The file name and attributes string is displayed for all the files in the results pane of the
Command window. Manifest constants to represent the columns are created with the #define preprocessor
directive to make the code more readable.

#define ARRAY_DIR_NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY_DIR_SIZE 2
Array objects 170

dirExt ()
#define ARRAY_DIR_DATE 3
#define ARRAY_DIR_TIME 4
#define ARRAY_DIR_ATTR 5

aFiles = new Array() // Array will be resized as needed
nFiles = aFiles.dir("*.*", "HS") // Include Hidden and System files
for nFile = 1 to nFiles
 ? aFiles[nFile, ARRAY_DIR_NAME]
 ?? aFiles[nFile, ARRAY_DIR_ATTR] at 25
endfor

See also dirExt(), sort()

dirExt ()
dirExt() is an extended version of the dir() method. It fills the array with nine characteristics of specified files:
name, size, modified date, modified time, file attribute(s), short (8.3) file name, create date, create time, and access
date. Returns the number of files whose characteristics are stored.

Syntax <oRef>.dirExt([<filename skeleton expC> [, <file attribute list expC>]])

<oRef> A reference to the array in which you want to store the file information. dirExt() will automatically
redimension or increase the size of the array to accommodate the file information, if necessary.

<filename skeleton expC> The file-name pattern (using wildcards) describing the files whose
information you want to store to <oRef>.

<file attribute list expC> The letter or letters D, H, S, and/or V representing one or more file attributes.

If you want to specify a value for <file attribute expC>, you must also specify a value or “*.*” for <filename
skeleton expC>.

The meaning of each attribute is as follows:

Character Meaning
D Directories
H Hidden files
S System files
V Volume label

If you supply more than one letter for <file attribute expC>, include all the letters between one set of quotation
marks, for example, aFiles.dirExt(“*.*”, “HS”).

Property of Array

Description Use dirExt() to store information about files to an array, which is dynamically resized so all returned
information fits in the array. The resulting array is always a two-dimensional array, unless there are no files, in
which case the array is not modified.

Without <filename skeleton expC>, dirExt() stores information about all files in the current directory, unless
they are hidden or system files. For example, if you want to return information only on DBF tables, use
“*.DBF” as <filename skeleton expC>.

If you want to include directories, hidden files, or system files in
the array, use <file attribute expC>. When D, H, or S is included in <file attribute expC>, all directories, hidden
files, and/or system files (respectively) that match <filename skeleton expC> are added to the array.

When V is included in <file attribute expC>, dirExt() ignores <filename skeleton expC> as well as other
characters in the attribute list, and stores the volume label to the first element of the array.
171 dBL Language Reference

element ()
dirExt() stores the following information for each file in each row of the array. The data type for each is shown
in parentheses:

Column 1 Column 2 Column 3 Column 4 Column 5
File name
(character)

Size
(numeric)

Modified date
(date)

Modified time
(character)

File attribute(s)
(character)

Column 6 Column 7 Column 8 Column 9
Short (8.3) file name
(character)

Create date
(date)

Create time
(character)

Access date
(date)

Column 5 (file attribute) can contain one or more of the following file attributes, in the order shown:

Attribute Meaning
R Read-only file
A Archive file (modified since it was last backed up)
S System file
H Hidden file
D Directory

If the file has the attribute, the letter code is in the column. Otherwise, there is a period. For example, a file with
none of the attributes would have the following string in column 5:

.....

A read-only, hidden file would have the following string in column 5:
R..H.

Use dir() to get basic file information only.

Example The following example uses dirExt() to store the file information for all the files in the root directory of the
current drive to the array aFiles. The file name and access date is displayed for all the files in the results pane of
the Command window. Manifest constants to represent the columns are created with the #define preprocessor
directive to make the code more readable.

#define ARRAY_DIR_NAME 1 // Manifest constants for columns returned by dirExt()
#define ARRAY_DIR_SIZE 2
#define ARRAY_DIR_DATE 3
#define ARRAY_DIR_TIME 4
#define ARRAY_DIR_ATTR 5
#define ARRAY_DIR_SHORT_NAME 6
#define ARRAY_DIR_CREATE_DATE 7
#define ARRAY_DIR_CREATE_TIME 8
#define ARRAY_DIR_ACCESS_DATE 9

aFiles = new Array() // Array will be resized as needed
nFiles = aFiles.dirExt("*.*", "HS") // Include Hidden and System files
for nFile = 1 to nFiles
 ? aFiles[nFile, ARRAY_DIR_NAME]
 ?? aFiles[nFile, ARRAY_DIR_ACCESS_DATE] at 25
endfor

See also dir(), sort()

element ()
Returns the number of a specified element in a one- or two-dimensional array.

Syntax <oRef>.element(<subscript1 expN> [, <subscript2 expN>])

<oRef> A reference to a one- or two-dimensional array.
Array objects 172

fields()
<subscript1 expN> The first subscript of the element. In a one-dimensional array, this is the same as the
element number. In a two-dimensional array, this is the row.

<subscript2 expN> When <oRef> is a two-dimensional array, <subscript2 expN> specifies the second
subscript, or column, of the element.

If <oRef> is a two-dimensional array and you do not specify a value for <subscript2 expN>, dBASE Plus
assumes the value 1, the first column in the row. dBASE Plus generates an error if you use <subscript2 expN>
with a one-dimensional array.

Property of Array

Description Use element() when you know the subscripts of an element in a two-dimensional array and need the element
number for use with another method, such as fill() or scan().

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
element(). For example, if aOne is a one-dimensional array, aOne.element(3) returns 3, aOne.element(5)
returns 5, and so on.

element() is the inverse of subscript(), which returns an element's row or column subscript number when you
specify the element number.

Example The following statement returns the element number of the third column of the fourth row of the array aTwo.
The result depends on the number of columns in aTwo.

nElement = aTwo.element(3, 2) // Fourth row, third column

See also fill(), insert(), scan(), size, sort(), subscript()

fields()
Fills the array with the current table's structural information. Returns the number of fields whose characteristics are
stored.

Syntax <oRef>.fields()

<oRef> A reference to the array in which you want to store the field information. fields() will automatically
redimension or increase the size of the array to accommodate the field information, if necessary.

Property of Array

Description Use fields() to store information about the structure of the current table to an array, which is dynamically
resized so all returned information fits in the array. The resulting array is always a two-dimensional array,
unless there are is no table open in the current work area, in which case the array is not modified.

fields() stores the following information for each field in each row of the array. The data type for each is shown
in parentheses:

Column 1 Column 2 Column 3 Column 4
Field name
(character)

Field type
(character)

Field length
(numeric)

Decimal places
(numeric)

dBL uses the following codes for field types (some codes are used for more than one field type)

Code Field type
B Binary
C Character, Alphanumeric
D Date, Timestamp
F Float, Double
G General, OLE
L Logical, Boolean
M Memo
N Numeric

:

173 dBL Language Reference

fill ()
fields() stores the same information into an array that COPY STRUCTURE EXTENDED stores into a table,
except fields() doesn't create a column containing FIELD_IDX information.

See Also COPY STRUCTURE EXTENDED

fill ()
Stores a specified value into one or more locations in an array, and returns the number of elements stored.

Syntax <oRef>.fill(<exp> [, <start expN> [, <count expN>]])

<oRef> A reference to a one- or two-dimensional array you want to fill with the specified value <exp>.

<exp> An expression you want to store in the specified array.

<start expN> The element number at which you want to begin storing <exp>.
If you do not specify <start expN>, dBASE Plus begins at the first element in the array.

<count expN> The number of elements in which you want to store <exp>, starting at element
<start expN>. If you do not specify <count expN>, dBASE Plus stores <exp> from <start expN> to the last
element in the array.
If you want to specify a value for <count expN>, you must also specify a value for <start expN>.

If you do not specify <start expN> or <count expN>, dBASE Plus fills all elements in the array with <exp>.

Property of Array

Description Use fill() to store a value into all or some elements of an array. For example, if you are going to use elements of
an array to calculate totals, you can use fill() to initialize all values in the array to 0.

fill() stores values into the array sequentially. Starting at the first element in the array or at the element specified
by <start expN>, fill() stores the value in each element in a row, then moves to the first element in the next row,
continuing to store values until the array is filled or until it has inserted <count expN> elements. fill()
overwrites any existing data in the array.

If you know an element’s subscripts, you can use element() to determine its element number for use as
<start expN>.

Example Suppose you’re measuring the performance of a process, keeping track of six different variables, some of which
may not used for any given request. In addition to keeping an average, you want to always display the last three
measurements. You can use an array with 3 rows and 6 columns, and insert() a new row at the beginning of the
array for each request. You fill() the new row with zeros to initialize the variables in case they’re not used. The
code, with simulated input, would look like this:

#define SHOW_LAST 3 // Manifest constants for number of measurements
#define NUM_MEASUREMENTS 6 // to maintain
aMeasure = new Array(SHOW_LAST, NUM_MEASUREMENTS)
aMeasure.fill("") // Start with all blanks

// Simulated input
newRequest()
aMeasure[1, 1] = 34
aMeasure[1, 4] = 16
displayArray(aMeasure, 10)
newRequest()
aMeasure[1, 3] = 67
displayArray(aMeasure, 10)
newRequest()
aMeasure[1, 1] = 27
aMeasure[1, 2] = 29
displayArray(aMeasure, 10)
newRequest()
aMeasure[1, 2] = 31
aMeasure[1, 6] = 40
displayArray(aMeasure, 10)
// End simulated input

function newRequest()
Array objects 174

firstKey
 aMeasure.insert(1) // Insert row at top, losing last row
 aMeasure.fill(0, 1, NUM_MEASUREMENTS) // Fill first row with zeros

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions.

See also element()

firstKey
Returns the character string key for the first element of an associative array.

Property of AssocArray

Description Use firstKey when you want to loop through the elements in an associative array. Once you have gotten the key
value for the first element with firstKey, use nextKey() to get the key values for the rest of the elements.

Note The order of elements in an associative array is undefined. They are not necessarily stored in the order in which
you add them, or sorted by their key values. You can't assume that the value returned by firstKey will be
consistent, or that it will return the first item you added.

For an empty associative array, firstKey is the logical value false. Because false is a different data type than
valid key values (which are character strings), it requires extra code to look for false to see if the array is empty.
It’s easier to get the number of elements in the array with count() and see if it’s greater than zero.

Example The following statements loop through an associative array and display all its elements:
aTest = new AssocArray()
aTest["USA"] = "United States of America"
aTest["RUS"] = "Russian Federation"
aTest["GER"] = "Germany"
aTest["CHN"] = "People's Republic of China"

cKey = aTest.firstKey // Get first key in AssocArray
// Get number of elements in AssocArray and loop through them
for nElements = 1 to aTest.count()
 ? cKey // Display key value
 ? aTest[cKey] // Display element value
 cKey := aTest.nextKey(cKey) // Get next key value
endfor

See also isKey(), nextKey()

getFile()
Displays a dialog box from which a user can select multiple files.

Syntax <oRef>.getFile([<filename skeleton expC> [, <title expC> [, <suppress database expL>],[<file types list
expC>]]])

<oRef> A reference to the array in which the selected filenames, or database aliases, will be stored.

<filename skeleton expC> A character string that specifies which files are to be displayed in the
getFile(_) dialog. It may contain a valid path followed by a filename skeleton.

• If a path was specified, it is used to set the initial path from which getFile(_) displays files.

• If a path was not specified, the path from any previously run getFile(_) method, GETFILE(_) function, or
PUTFILE(_) function will be used as the new initial path. If no previous path exists, the getFile(_) method
uses the current dBASE directory - the path returned by the SET("DIRECTORY") function - as the initial
path.

If no filename skeleton is specified, "*.*" is assumed and the getFile(_) method displays all files in the initial
path described above.
175 dBL Language Reference

getFile()
<title expC> A title displayed in the top of the dialog box. Without <title expC>, the getFile() methods'
dialog box displays the default title. If you want to specify a value for <title expC>, you must also specify a
value, or empty string (""), for <filename skeleton expC>.

<suppress database expL> Whether to suppress the combobox from which you can choose a
database. The default is true (the Database combobox is not displayed). If you want to specify a value for
<suppress database expL>, you must also specify a value, or empty string (""), for <filename skeleton expC>
and <title expC>.

<file types list expC> A character expression containing zero, or more, file types to be displayed in the
"Files of Type" combobox. If this parameter is not specified, the following file types will be loaded into the
“Files of Type” combobox:

Projects (*.prj)
Forms (*.wfm;*.wfo)
Custom Forms (*.cfm;*.cfo)
Menus (*.mnu;*.mno)
Popup (*.pop;*.poo)
Reports (*.rep;*.reo)
Custom Reports (*.crp;*.cro)
Labels (*.lab;*.lao)
Programs (*.prg;*.pro)
Tables (*.dbf;*.db)
SQL (*.sql)
Data Modules (*.dmd;*.dmo)
Custom Data Modules (*.cdm;*.cdo)
Images (*.bmp;*.ico;*.gif;*.jpg;*.jpeg;*.pje;*.xbm)
Custom Components (*.cc;*.co)
Include (*.h)
Executable (*.exe)
Sound (*.wav)
Text (*.txt)
All (*.*)

• If an empty string is specified, "All (*.*)" will be loaded into the Files of Type combobox.

• If one or more file types are specified, dBASE will check each file type specified against an internal table.

• If a match is found, a descriptive character string will be loaded into the "Files of Type" combobox.

• If a matching file type is not found, a descriptive string will be built, using the specified file type, in the
form

"<File Type> files (*.<File Type>)"

and will be loaded into the "Files of Type" combobox.

When the expression contains more than one file type, they must be separated by either commas or semicolons.

File types may be specified with, or without, a leading period.

The special extension ".*" may be included in the expression to specify that "All (*.*)" be included in the Files
of Type combobox.

File types will be listed in the Files of Type combobox, in the order specified in the expression.

Note In Visual dBASE 5.x, the GETFILE() and PUTFILE() functions accepted a logical value as a parameter in the
same position as the new <file types list expC> parameter. This logical value has no function in dBASE Plus.
However, for backward compatibility, dBASE Plus will ignore a logical value if passed in place of the <file
types list expC>.

Examples <file types list expC> syntax:
// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// No fourth parameter,so "Files of Type" combobox contains default list of
// file types
filename = getFile("*.txt", "Choose File", true)
Array objects 176

grow ()
// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// Fourth parameter is empty string, so "Files of Type" combobox only
// contains: All (*.*)
filename = getFile("*.txt", "Choose File", true, "")

// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// Fourth parameter specifies that Files of Type combobox contain:
// Text (*.txt) - matches internal type so description used
// doc Files (*.doc) - does not match internal type
// cpp Files (*.cpp) - does not match internal type
// Program Source (*.prg) - matches internal type so description used
// All (*.*) - ".*" specifies All (*.*)
filename = getFile("*.txt", "Choose File", true, "txt; doc; cpp; prg; .*")

Description Use the getFile() method to display a dialog box from which the user can choose, or enter, one or more existing
file names. Any elements already in the array will be released.

Pressing the dialog's "Open" button closes the dialog and adds the selected files to the array.

The resulting array will contain a single column. Each element of the array will contain a single file path and
name or, if selected from a database, the database alias followed by the table name.

The getFile() method returns the number of files selected, or zero if none are selected or the dialog is cancelled.

Example a = new array
if (a.getFile("*.*", "Choose Files", true) > 0)

// Do something with the chosen files
endif

File list size
During file selection, selected file names are stored in a buffer with quotes around each file name and a space
between them. The maximum number of files that can be selected is limited by the size of this buffer due to the
Windows common file dialog requirement that the buffer be preallocated before opening the dialog.

When the.getFile(_) method is executed, it attempts to allocate a buffer with the sizes shown below. However, if
the memory allocation is unsuccessful it cuts the requested size in half and tries again. It continues looping in
this fashion until a successful allocation occurs, or the requested size becomes equal to zero. Should the
requested file size become equal to zero, multifile selection is disabled and only a single file selection is
allowed.

The maximum buffer sizes are:

• Win 9x:

512*260 = 133120 filename characters

• Win NT, 2000, XP:

4030*260 characters (approximately 1 megabyte of filename characters).

grow ()
Adds an element, row, or column to an array and returns the number of added elements.

Syntax <oRef>.grow(<expN>)

<oRef> A reference to a one- or two-dimensional array you want to add elements to.

<expN> Either 1 or 2. When you specify 1, grow() adds a single element to a one-dimensional array or a
row to a two-dimensional array. When you specify 2, grow() adds a column to the array.
177 dBL Language Reference

grow ()
Property of Array

Description Use grow() to insert an element, row, or column into an array and change the size of the array to reflect the
added elements. grow() can make a one-dimensional array two-dimensional. All added elements are initialized
to false values.

One-dimensional arrays When you specify 1 for <expN>, grow() adds a single element to the array.
When you specify 2, grow() makes the array two-dimensional, and existing elements are moved into the first
column. This is shown in the following figure:
Figure 10.12Adding a column to a one-dimensional array using aAlpha.grow(2)

aAlpha.grow(2)

Original array created as:
aAlpha = {“A”, “B”, “C”, “D”}

aAlpha.grow(2) adds a new
column to the array, makes it a
two dimensional array with
dimensions [4,2], and copies
the old values into the first
column.1

.

Contents of the array after issuing
aAlpha.grow(2)

1 2

A false
1,1 1,2

3 4

B false
2,1 2,2

5 6

C false
3,1 3,2

7 8

D false
4,1 4,2

Initial contents of the array
aAlpha.

1 2 3 4

A B C D
1 2 3 4

2

Use add() to add a new element to a one-dimensional array and assign its value in one step.
Note You may also assign a new value to the array’s size property to make a one-dimensional array any arbitrary size.

Two-dimensional arrays When you specify 1 for <expN>, grow() adds a row to the array at the end of
the array. This is shown in the following figure:
Figure 10.13

aAlpha.grow (1)
Original array created as:
aAlpha = new Array(3,4)
aAlpha [1,1] = “A”
aAlpha[1,2] = “B”

// User developed code
 aAlpha [3,4] = “L”

.

Contents of the array after issuing
aAlpha.grow(1)

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

13 14 15 16

false false false false
4,1 4,2 4,3 4,4

Initial contents of the array aAlpha.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

2 aAlpha.grow(1) adds a new row to
the array.

1

Adding a row to a two-dimensional array using aAlpha.grow(1)

When you specify 2 for <expN>, grow() adds a column to the array and places false into each element in the
column.
Array objects 178

insert ()
Example The following example initially declares a one-dimensional array with a single element, and then uses grow() to
add a second element, convert the array to two dimensions, add a third row, and finally add a third column. The
end result is the first nine letters in order:

a = {"A"} // 1-D, 1 element
displayArray(a)
a.grow(1) // 1-D, 2 elements
a[2] = "D"
displayArray(a)
a.grow(2) // 2-D, 2 rows, 2 columns
a[1, 2] = "B"; a[2, 2] = "E"
displayArray(a)
a.grow(1) // 2-D, 3 rows, 2 columns
a[3, 1] = "G"; a[3, 2] = "H"
displayArray(a)
a.grow(2) // 2-D, 3 rows, 3 columns
a[1, 3] = "C"; a[2, 3] = "F"; a[3, 3] = "I"
displayArray(a)

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions on page 10-169.

See also add(), size

insert ()
Inserts an element with the value false into a one-dimensional array, or inserts a row or column of elements with the
value false into a two-dimensional array. Returns 1 if successful; generates an error if unsuccessful. The dimensions
of the array do not change, so the element(s) at the end of the array will be lost.

Syntax <oRef>.insert(<position expN> [, <row/column expN>])

<oRef> A reference to a one- or two-dimensional array in which you want to insert data.

<position expN> When <oRef> is a one-dimensional array, <position expN> specifies the number of the
element in which you want to insert a false value.

When <oRef> is a two-dimensional array, <position expN> specifies the number of a row or column in which
you want to insert false values. The second argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is inserted into a two-
dimensional array. If you specify 2, a column is inserted. dBASE Plus generates an error if you use <row/
column expN> with a one-dimensional array.

Property of Array

Description Use insert() to insert elements in an array. insert() does the following:

• Inserts an element in a one-dimensional array, or inserts a row or column in a two-dimensional array

• Moves all remaining elements toward the end of the array (down if a row is inserted, to the right if an
element or column is inserted)

• Stores false values in the newly created position(s)

Because the dimensions of the array are not changed, the element(s) at the end of the array—the last element for
a one-dimensional array or the last row or column for a two-dimensional array—are lost. If you don’t want to
lose the data, use grow() to increase the size of the array before using insert().

One-dimensional arrays When you call insert() for a one-dimensional array, the logical value false is
inserted into the position of the specified element. The remaining element(s) are moved one place toward the
end of the array. The element that had been in the last position is lost.

For example, if you define a one-dimensional array with:
aAlpha = {"A", "B", "C"}

the resulting array has one row and can be illustrated as follows:
179 dBL Language Reference

insert ()
A B C

Issuing aAlpha.insert(2) inserts false into element number 2, moves the “B” that was in aAlpha[2] to aAlpha[3],
and loses the “C” that was in aAlpha[3] so that the array now contains these values:

A false B

Two-dimensional arrays When you call insert() for a two-dimensional array, a logical value false is
inserted into the position of each element in the specified row or column. The elements in the remaining
columns or rows are moved one place toward the end of the array. The elements that had been in the last row or
column are lost.

For example, suppose you define a two-dimensional array and store letters to the array. The following
illustration shows how the array is changed by aAlpha.insert(2,2).
Figure 10.14Using insert () with a two-dimensional array

aAlpha.insert (2,2)

Original array created as:
aAlpha = new Array(3,4)
aAlpha [1,1] = “A”
aAlpha[1,2] = “B”

// User developed code
aAlpha [3,4] = “L”

aAlpha.insert (2,2)
inserts logical false values
as elements in the second
column…

Shifts the elements in the
remaining columns
towards the end of the
array, and deletes the
elements from the last
column.

Contents of the array after issuing
aAlpha.insert(2,2)

1 2 3 4

A false B C
1,1 1,2 1,3 1,4

5 6 7 8

E false F G
2,1 2,2 2,3 2,4

9 10 11 12

I false J K
3,1 3,2 3,3 3,4

1

3

.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

2

1 2 3 4

A false B C
1,1 1,2 1,3 1,4

5 6 7 8

E false F G
2,1 2,2 2,3 2,4

9 10 11 12

I false J K
3,1 3,2 3,3 3,4

Resulting in this array:4

Initial contents of the array aAlpha

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

Example Suppose you’re measuring the performance of a process, keeping track of six different variables, some of which
may not used for any given request. In addition to keeping an average, you want to always display the last three
measurements. You can use an array with 3 rows and 6 columns, and insert() a new row at the beginning of the
array for each request. You fill() the new row with zeros to initialize the variables in case they’re not used. The
code, with simulated input, would look like:

#define SHOW_LAST 3 // Manifest constants for number of measurements
#define NUM_MEASUREMENTS 6 // to maintain
aMeasure = new Array(SHOW_LAST, NUM_MEASUREMENTS)
aMeasure.fill("") // Start with all blanks

// Simulated input
newRequest()
Array objects 180

isKey ()
aMeasure[1, 1] = 34
aMeasure[1, 4] = 16
displayArray(aMeasure, 10)
newRequest()
aMeasure[1, 3] = 67
displayArray(aMeasure, 10)
newRequest()
aMeasure[1, 1] = 27
aMeasure[1, 2] = 29
displayArray(aMeasure, 10)
newRequest()
aMeasure[1, 2] = 31
aMeasure[1, 6] = 40
displayArray(aMeasure, 10)
// End simulated input

function newRequest()
 aMeasure.insert(1) // Insert row at top, losing last row
 aMeasure.fill(0, 1, NUM_MEASUREMENTS) // Fill first row with zeros

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions on.

See also delete(), fill(), grow(), resize()

isKey ()
Returns a logical value that indicates if the specified character expression is the key of an element in an associative
array.

Syntax <oRef>.isKey(<expC>)

<oRef> A reference to the associative array you want to search.

<expC> The character string you want to find.

Property of AssocArray

Description Use isKey(<expC>) to determine if an associative array contains an element with a key value of <expC>. Key
values in associative arrays are case-sensitive.

Attempting to access a non-existent key value in an associative array generates an error.

Example The following example uses some test data for the associative array aCountry, which associates country codes
with their names. The function countryName() returns the corresponding country name for a particular code,
but if the code is not defined, it returns “Unknown country” instead.

aCountry = new AssocArray()
aCountry["USA"] = "United States of America" // Test data
aCountry["RUS"] = "Russian Federation"
aCountry["GER"] = "Germany"
aCountry["CHN"] = "People's Republic of China"

? countryName("GER") // "Germany"
? countryName("XYZ") // "Unknown country"

function countryName(cArg)
 // Make sure code is defined before trying to reference it
 return iif(aCountry.isKey(cArg), aCountry[cArg], "Unknown country")

See also firstKey, nextKey(), removeKey()

nextKey ()
Returns the key value of the element following the specified key in an associative array.

Syntax <oRef>.nextKey(<key expC>)
181 dBL Language Reference

removeAll ()
<oRef> A reference to the associative array that contains the key.

<key expC> An existing key value.

Property of AssocArray

Description Use nextKey() to loop through the elements in an associative array. Once you have gotten the key value for the
first element with firstKey, use nextKey() to get the key values for the rest of the elements.

nextKey() returns the key value for the key following <key expC>. Key values in associative arrays are case-
sensitive. For the last key in the associative array and for a <key expC> that is not an existing key value,
nextKey() returns the logical value false. Because false is a different data type than valid key values (which are
character strings), it’s difficult to look for false to terminate a loop. It’s easier to get the number of elements in
the array first with count(); then loop through that many iterations.

Note The order of elements in an associative array is undefined. They are not necessarily stored in the order in which
you add them, or sorted by their key values. You can’t assume that the sequence of keys will be consistent.

To determine if a given character string is a key value in an associative array, use isKey().

Example The following statements loop through an associative array and display all its elements:
aTest = new AssocArray()
aTest["USA"] = "United States of America"
aTest["RUS"] = "Russian Federation"
aTest["GER"] = "Germany"
aTest["CHN"] = "People's Republic of China"

cKey = aTest.firstKey // Get first key in AssocArray
// Get number of elements in AssocArray and loop through them
for nElements = 1 to aTest.count()
 ? cKey // Display key value
 ? aTest[cKey] // Display element value
 cKey := aTest.nextKey(cKey) // Get next key value
endfor

See also firstKey, isKey()

removeAll ()
Deletes all elements from an associative array.

Syntax <oRef>.removeAll()

<oRef> A reference to the associative array you want to empty.

Property of AssocArray

Description Use removeAll() to remove all the elements from an associative array.

To remove elements for particular key values, use removeKey().

Example The following example removes all elements from an associative array.
var aTest = new AssocArray()
aTest["USA"] = "United States of America"
aTest["RUS"] = "Russian Federation"
aTest["GER"] = "Germany"
aTest["CHN"] = "People's Republic of China"
// Array contains four elements
aTest.removeAll() // Array now contains no elements

See also removeKey()

removeKey ()
Deletes an element from an associative array.
Array objects 182

resize ()
Syntax <oRef>.removeKey(<key expC>)

<oRef> A reference to the associative array that contains the key.

<key expC> The key value of the element you want to delete.

Property of AssocArray

Description Use removeKey() to remove an element from an associative array. Key values in associative arrays are case-
sensitive.

If you specify a key value that does not exist in the array, nothing happens; no error occurs and no elements are
removed.

To remove all the elements from an associative array, use removeAll().

Example The following example loops through an associative array of country names and deletes those whose names are
longer than 15 characters.

aTest = new AssocArray()
aTest["USA"] = "United States of America"
aTest["RUS"] = "Russian Federation"
aTest["GER"] = "Germany"
aTest["CHN"] = "People's Republic of China"

cKey = aTest.firstKey // Get first key in AssocArray
// Get number of elements in AssocArray and loop through them
for nElements = 1 to aTest.count()
 cNextKey = aTest.nextKey(cKey) // Get next key value before deleting element
 if len(aTest[cKey]) > 15
 aTest.removeKey(cKey) // Remove element
 endif
 cKey := cNextKey // Use next key value
endfor

Note that you must get the next key value before deleting the element, and you repeat the loop based on the
number of elements there were before you started deleting.

See also isKey(), removeAll()

resize ()
Sets the size of an array to the specified dimensions and returns a numeric value representing the number of
elements in the modified array.

Syntax <oRef>.resize(<rows expN> [,<cols expN> [, <retain values expN>]])

<oRef> A reference to the array whose size you want to change.

<rows expN> The number of rows the resized array should have. <rows expN> must always be a positive,
nonzero value.

<cols expN> The number of columns the resized array should have. <cols expN> must always be 0 or a
positive value. If you omit this option, resize() changes the number of rows in the array and leaves the number
of columns the same.

<retain values expN> Determines what happens to the values of the array when rows are added or
removed. If it is nonzero, values are retained. If you want to specify a value for <retain values expN>, you must
also specify a value for <new cols expN>.

Property of Array

Description Use resize() to change the dimensions of an array, making it larger or smaller, or change the number of
dimensions. To determine the number of dimensions, check the array’s dimensions property. The size property
of the array reflects the number of elements; for a one-dimensional array, that’s all you need to know. For a two-
dimensional array, you can’t determine the number of rows or columns from the size property alone (unless the
size is one—a one-by-one array). To determine the number of columns or rows in a two-dimensional array, use
the ALEN() function.
183 dBL Language Reference

resize ()
For a one-dimensional array, you can change the number of elements by calling resize() and specifying the
number of elements as <rows expN> parameter. You can also set the size property of the array directly, which is
a bit less typing.

You can also change a one-dimensional array into a two-dimensional array by specifying both a <rows expN>
and a nonzero <cols expN> parameter. This makes the array the designated size.

For a two-dimensional array, you can specify a new number of rows or both row and column dimensions for the
array. If you omit <cols expN>, the <rows expN> parameter sets the number of rows only. With both a <rows
expN> and a nonzero <cols expN>, the array is changed to the designated size.

You can change a two-dimensional array to a one-dimensional array by specifying <cols expN> as zero and
<rows expN> as the number of elements.

To change the number of columns only for a two-dimensional array, you will need to specify both the <rows
expN> and <cols expN> parameters, which means that you have to determine the number of rows in the array, if
not known, and specify it unchanged as the <rows expN> parameter.

To add a single row or column to an array, use the grow() method.

If you add or remove columns from the array, you can use <retain values expN> to specify how you want
existing elements to be placed in the new array. If <retain values expN> is zero or isn’t specified, resize ()
rearranges the elements, filling in the new rows or columns or adjusting for deleted elements, and adding or
removing elements at the end of the array, as needed. This is shown in the following two figures. You are most
likely to want to do this if you don't need to refer to existing items in the array; that is, you plan to update the
array with new values.
Figure 10.15Adding a row and a column to a 3x4 array, rearranging elements

aAlpha.resize (4,5)

Original array created as:
aAlpha = new Array(3,4)
aAlpha [1,1] = “A”
aAlpha[1,2] = “B”

// User developed code
aAlpha [3,4] = “L”

aAlpha.resize(4,5) adds a new row and column
to the array and rearranges the values of the
elements.1

.

Contents of the array after issuing
aAlpha.resize(4,5)

1 2 3 4 5

A B C D E
1,1 1,2 1,3 1,4 1,5

6 7 8 9 10

F G H I J
2,1 2,2 2,3 2,4 2,5

11 12 13 14 15

K L false false false
3,1 3,2 3,3 3,4 3,5

16 17 18 19 20

false false false false false
4,1 4,2 4,3 4,4 4,5

2

Initial contents of the array
aAlpha.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4
Array objects 184

resize ()
Figure 10.16Adding a column to a one-dimensional array, rearranging elements

aAlpha.resize (,4,2)

Original array created as:
aAlpha = {“A”, “B”, “C”, “D”}

aAlpha.resize(4,2) adds a new column to the
array, makes it a two dimensional array with
dimensions [4,2], and reassigns the values of
the elements.

1 .

Contents of the array after issuing
aAlpha.resize(4,2)

1 2

A B
1,1 1,2

3 4

C D
2,1 2,2

5 6

false false
3,1 3,2

7 8

false false
4,1 4,2

2

Initial contents of the array
aAlpha.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

When you use resize() on a one-dimensional array, you might want the original row to become the first column
of the new array. Similarly, when you use resize() on a two-dimensional array, you might want existing two-
dimensional array elements to remain in their original positions. You are most likely to want to do this if you
need to refer to existing items in the array by their subscripts; that is, you plan to add new values to the array
while continuing to work with existing values.

If <retain values expN> is a nonzero value, resize() ensures that elements
retain their original values. The following two figures repeat the statements shown in the previous two figures,
with the addition of a value of 1 for
<retain values expN>.
Figure 10.17Adding a row and a column to a 3x4 array, “preserving elements”

aAlpha.resize(4,5,1)

Original array created as:
aAlpha = new Array(3,4)
aAlpha [1,1] = “A”
aAlpha[1,2] = “B”

// User developed code
aAlpha [3,4] = “L”

aAlpha.resize(4,5,1) adds a new row
and column to the array and maintains
the values of the elements.

1

.

Contents of the array after issuing
aAlpha.resize(4,5,1)

1 2 3 4 5

A B C D false
1,1 1,2 1,3 1,4 1,5

6 7 8 9 10

E F G H false
2,1 2,2 2,3 2,4 2,5

11 12 13 14 15

I J K L false
3,1 3,2 3,3 3,4 3,5

16 17 18 19 20

false false false false false
4,1 4,2 4,3 4,4 4,5

2

Initial contents of the array
aAlpha.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

5 6 7 8

E F G H
2,1 2,2 2,3 2,4

9 10 11 12

I J K L
3,1 3,2 3,3 3,4

185 dBL Language Reference

scan ()
Figure 10.18Adding a column to a one-dimensional array, “preserving elements”
aAlpha.resize(4,2,1)

Original array created as:
aAlpha = {“A”, “B”, “C”, “D”}

aAlpha.resize(4,2,1) adds a new column to
the array, and makes it a two-dimensional
array with dimensions [4,2]. Each existing
element is now the first element in a row.1

.

Contents of the array after issuing
aAlpha.resize(4,2,1)

1 2

A false
1,1 1,2

3 4

B false
2,1 2,2

5 6

C false
3,1 3,2

7 8

D false
4,1 4,2

2

Initial contents of the array
aAlpha.

1 2 3 4

A B C D
1,1 1,2 1,3 1,4

Example The following example resizes a one-dimensional array with 12 elements into a two-dimensional array with 3
rows and four columns.

aAlpha = {"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L" }
aAlpha.resize(3, 4)
displayArray(aAlpha)

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions.

See also ALEN(), grow(), size

scan ()
Searches an array for an expression. Returns the number of the first element that matches the expression if the search
is successful, or 0 if the search is unsuccessful.

Syntax <oRef>.scan(<exp> [, <starting element expN> [, <elements expN>]])

<oRef> A reference to the array you want to search.

<exp> The expression you want to search for in <oRef>.

<starting element expN> The element number in <oRef> at which you want to start searching. Without
<starting element expN>, scan() starts searching at the first element.

<elements expN> The number of elements in <oRef> that scan() searches. Without <elements expN>,
scan() searches <oRef> from <starting element expN> to the end of the array. If you want to specify a value for
<elements expN>, you must also specify a value for <starting element expN>.

Property of Array

Description Use scan() to search an array for the value of <exp>. For example, if an array contains customer names, you can
use scan() to find the location in which a particular name appears.

scan() returns the element number of the first element in the array that matches <exp>. If you want to determine
the subscripts of this element, use subscript().

When <exp> is a string, scan() is case-sensitive; you may want to use UPPER(), LOWER(), or PROPER() to
match the case of <exp> with the case of the data stored in the array. scan() also follows the rules established by
SET EXACT to determine if <exp> and the array element are equal. For more information, see SET EXACT.
Array objects 186

size
Example The following example uses dir() to store the file information for all the files and directories in the root
directory of the current drive to the array aFiles. Then the array is searched to display only the directories in the
array. Manifest constants to represent the columns are created with the #define preprocessor directive to make
the code more readable.

#define ARRAY_DIR_NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY_DIR_SIZE 2
#define ARRAY_DIR_DATE 3
#define ARRAY_DIR_TIME 4
#define ARRAY_DIR_ATTR 5

aFiles = new Array()
nFiles = aFiles.dir("*.*", "D") // Read all files and directories

nElement = 1 // Start looking at first element
do
 nElement = aFiles.scan("....D", nElement) // Look for next directory
 if nElement > 0 // Display a match
 ? aFiles[nElement - ARRAY_DIR_ATTR + ARRAY_DIR_NAME]
 if nElement++ >= aFiles.size // Continue looking with next element
 exit // Unless that was the last element
 endif
 endif
until nElement == 0 // Until there's no match

To find all the matches in the array, you need to keep track of the last match. Here it’s kept in the variable
nElement. It starts at one, the first element, and is used in the scan() call as the starting element parameter. The
result of each search is stored back in nElement. If there’s a match, the directory name is displayed. Then
nElement is incremented—otherwise scan() would match the same element again—and the loop continues.

A few subtleties are present in the example code. First, when incrementing nElement, it is compared with the
size of the array. If the element number is equal to (or greater than, which it should never be, but it’s good
defensive programming to test for it anyway) the size of the array, that means the last match was in the last
element of the array. This is possible only because the file attribute is in the last column of the array. In this
case, you don’t want to call scan() again, since the starting element number is higher than the highest element
number and would cause an error. So you EXIT out of the loop instead.

The variable nElement is incremented after the comparison to the size of the array by using the postfix ++
operator. If nElement was pre-incremented, the comparison would be off, although the rest of the loop would
work.

To display the directory name, the column number of the file attribute column is subtracted from the matching
element number, and the column number for the file name column is added. This yields the element number of
the file name in the same row as the matching file attribute. This would work for any combination of search or
display columns.

See also SET EXACT, sort(), subscript()

size
The number of elements in an Array object.

Property of Array

Description size indicates the number of elements in an Array object.

For a one-dimensional array, you can assign a value to size to change its size.

For a array with more than one dimension, size is read-only.

You can use the ALEN() function to determine the size of each dimension for a two-dimensional array. There is
no built-in way to determine dimension sizes for arrays with more than two dimensions.

Example The following classes implement a simple stack based on the Array class. When items are pushed onto the stack,
the size of the array is checked to see if the item will fit. If not, the add method() is used. When items are
popped from the stack, the array does not shrink. If another item is pushed onto the stack, the item can be stored
in an existing array element.
187 dBL Language Reference

sort ()
class Stack of Array
 this.ptr = 0

 function push(xArg)
 if this.ptr == this.size
 this.add(xArg)
 this.ptr++
 else
 this[++this.ptr] = xArg
 endif

 function pop()
 if this.ptr > 0
 return this[this.ptr--]
 else
 throw new StackException()
 endif

 function top()
 if this.ptr > 0
 return this[this.ptr]
 else
 throw new StackException()
 endif

 function empty()
 return this.ptr == 0

endclass

class StackException of Exception
 this.message = "Stack fault"
endclass

See also ALEN(), dimensions, resize(), subscript()

sort ()
Sorts the elements in a one-dimensional array or the rows in a two-dimensional array. Returns 1 if successful;
generates an error if unsuccessful.

Syntax <oRef>.sort([<starting element expN> [,<elements to sort expN> [, <sort order expN>]]])

<oRef> A reference to the array you want to sort.

<starting element expN> In a one-dimensional array, the number of the element in <oRef> at which
you want to start sorting. In a two-dimensional array, the number (subscript) of the column on which you want
to sort. Without <starting element expN>, sort() starts sorting at the first element or column in the array.

<elements to sort expN> In a one-dimensional array, the number of elements you want to sort. In a
two-dimensional array, the number of rows to sort. Without <elements to sort expN>, sort() sorts the rows
starting at the row containing element <starting element expN> to the last row. If you want to specify a value
for <elements to sort expN>, you must also specify a value for <starting element expN>.

<sort order expN> The sort order:

• 0 specifies ascending order (the default)
• 1 specifies descending order

If you want to specify a value for <sort order expN>, you must also specify values for <elements to sort expN>
and <starting element expN>.

Property of Array

Description sort() requires that all the elements on which you’re sorting be of the same data type. The elements to sort in a
one-dimensional array must be of the same data type, and the elements of the column by which rows are to be
sorted in a two-dimensional array must be of the same data type.

sort() arranges elements in alphabetical, numerical, chronological, or logical order, depending on the data type
of <starting element expN>. (For strings, the current language driver determines the sort order.)
Array objects 188

sort ()
One-dimensional arrays Suppose you create an array with the following statement:
aNums = {5, 7, 3, 9, 4, 1, 2, 8}

That creates an array with the elements in this order:
5 7 3 9 4 1 2 8

If you call aNums.sort(1, 5), dBASE Plus sorts the first five elements so that the array elements are in this order:
3 4 5 7 9 1 2 8

If you then call aNums.sort(5, 2), dBASE Plus sorts two elements starting at the fifth element so that the array
elements are now in this order:

3 4 5 7 1 9 2 8

Two-dimensional arrays Using sort() with a two-dimensional array is similar to using the SORT
command with a table. Array rows correspond to records, and array columns correspond to fields.

When you sort a two-dimensional array, whole rows are sorted, not just the elements in the column where
<starting element expN>) is located.

For example, suppose you create the array aInfo and fill it with the following data:

Sep 15 1965 7 A
Dec 31 1965 4 D
Jan 19 1945 8 C
May 2 1972 2 B

If you call aInfo.sort(1), dBASE Plus sorts all rows in the array beginning with element number 1. The rows are
sorted by the dates in the first column because element 1 is a date. The following figure shows the results.
Figure 10.19aInfo.sort (1)

aInfo.sort (1)

All the rows are to be
sorted…
starting with the row
containing element 1.

Element 1 is a date, so the
rows are sorted by the dates
in the first column.

1

.

Contents of the array after issuing
aInfo.sort(1)

1 2 3

Jan 19
1945

8 C

4 5 6

Sep 15
1965

7 A

7 8 9

May 2 1972 2 B

10 11 12

Dec 31
1974

4 D

2

Initial contents of the array aInfo.

1 2 3

Sep 15
1965

7 A

4 5 6

Dec 31
1974

4 D

7 8 9

Jan 19
1945

8 C

10 11 12

May 2 1972 2 B

If you then call aInfo.sort(5, 2), dBASE Plus sorts two rows in the array starting with element number 5, whose
value is 7. sort() sorts the second and the third rows based on the numbers in the second column. The following
figure shows the results.
189 dBL Language Reference

subscript ()
Figure 10.20Using sort () with a two-dimensional array

aInfo.sort (5,2)

Two rows are to be sorted
(aInfo.sort (5,2)) starting with the
row containing element 5
(aInfo.sort(5,2)).

Element 5 contains a
number, so the rows are
sorted by the numbers in
the second column.

1 2

Initial contents of the array aInfo.

1 2 3

Jan 19
1945

8 C

4 5 6

Sep 15
1965

7 A

7 8 9

May 2 1972 2 B

10 11 12

Dec 31
1974

4 D

Contents of the array after issuing aInfo.sort (5, 2)

1 2 3

Jan 19
1945

8 C

4 5 6

May 2 1972 2 B

7 8 9

Sep 15
1965

7 A

10 11 12

Dec 31
1974

4 D

Example The following example uses dir() to store the file information for all the files in the current directory to the
array aFiles. Then the array is sorted on the file size. Manifest constants to represent the columns are created
with the #define preprocessor directive to make the code more readable.

#define ARRAY_DIR_NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY_DIR_SIZE 2
#define ARRAY_DIR_DATE 3
#define ARRAY_DIR_TIME 4
#define ARRAY_DIR_ATTR 5

aFiles = new Array()
nFiles = aFiles.dir()
aFiles.sort(ARRAY_DIR_SIZE) // Sort by size

for nFile = 1 to nFiles
 ? aFiles[nFile, ARRAY_DIR_NAME]
 ?? aFiles[nFile, ARRAY_DIR_SIZE] at 25
endfor

See also element(), scan(), subscript()

subscript ()
Returns the row number or the column number of a specified element in an array.

Syntax <oRef>.subscript(<element expN>, <row/column expN>)

<oRef> A reference to the array.

<element expN> The element number.

<row/column expN> A number, either 1 or 2, that determines whether you want to return the row or
column subscript of an array. If <row/column expN> is 1, subscript () returns the number of the row subscript.
If <row/column expN> is 2, subscript () returns the number of the column subscript.

If <oRef> is a one-dimensional array, dBASE Plus returns an error if <row/column expN> is a value other
than 1.

Property of Array
Array objects 190

subscript ()
Description Use subscript() when you know the number of an element in a two-dimensional array and want to reference the
element by using its subscripts.

If you need to determine both the row and column number of an element in a two-dimensional array, call
subscript() twice, once with a value of 1 for <row/column expN> and once with a value of 2 for <row/
column expN>. For example, if the element number is in the variable nElement, execute the following
statements to get its subscripts:

nRow = aExample.subscript(nElement, 1)
nCol = aExample.subscript(nElement, 2)

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
subscript(). For example, if aOne is a one-dimensional array, aOne.subscript(3) returns 3, aOne.subscript(5)
returns 5, and so on.

subscript() is the inverse of element(), which returns an element number when you specify the element
subscripts.

Example The following example displays all the nonzero-size files in your Windows Temp directory. First it tries to find
the directory where your temporary files are stored by looking for the operating system environment variable
TMP. Then it uses dir() to store the file information for all the files in that directory (or the current directory if
the TMP directory is not found) to the array aFiles. All the rows that have a file size of zero are deleted using a
combination of scan(), subscript(), and delete().

scan() can simply search for zeros because there are no other numeric columns in the array created by dir(). If
it finds one, subscript() is called to return the corresponding row number for the matching element. Then the
row number is used in the delete() call.

Manifest constants to represent the columns are created with the #define preprocessor directive to make the
code more readable.

#define ARRAY_DIR_NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY_DIR_SIZE 2
#define ARRAY_DIR_DATE 3
#define ARRAY_DIR_TIME 4
#define ARRAY_DIR_ATTR 5

// Look for OS environment variable TMP
cTempDir = getenv("TMP")
// If defined, make sure it has trailing backslash
if "" # cTempDir
 if right(cTempDir, 1) # "\" // No trailing backslash
 cTempDir += "\" // so add one
 endif
endif

aFiles = new Array()
nFiles = aFiles.dir(cTempDir + "*.*") // Read all files in TMP dir
nElement = aFiles.scan(0)
do while nElement > 0 // Find zero-byte files and
 aFiles.delete(aFiles.subscript(nElement, 1), 1) // delete by row
 nFiles-- // Decrement file count
 nElement := aFiles.scan(0)
enddo

for nFile = 1 to nFiles // Display results
 ? aFiles[nFile, ARRAY_DIR_NAME]
 ?? aFiles[nFile, ARRAY_DIR_SIZE] at 25
endfor

See also element()
191 dBL Language Reference

C h a p t e r

Chapter 11File/OS
File commands and functions

dBASE Plus supports equivalent file commands and functions for all the methods in the File class, which can be
organized into the following categories:

• File utility commands
• File information functions
• Functions that provide byte-level access to files, sometimes referred to as low-level file functions

The low-level file functions are maintained for compatibility. To read and write to files, you should use a File
object, which better encapsulates direct file access. In contrast, the file utility commands and file information
functions are easier to use, because they do not require the existence of a File object.

File utility commands
The following commands have equivalent methods in the File class:

Command File class method
COPY FILE copy()
DELETE FILE delete()
ERASE delete()
RENAME rename()

These commands are described separately to document their syntax. Otherwise, they perform identically to their
equivalent method.

File information functions
The following file information functions are usually used instead of their equivalent methods in the File class:

Function File class method
FACCESSDATE() accessDate()
FCREATEDATE() createDate()
FCREATETIME() createTime()
FDATE() date()
FILE() exists()
FSHORTNAME() shortName()
FSIZE() size()
FTIME() time()
192 dBL Language Reference

Dynamic External Objects - DEO
These functions are not described separately (except for FILE(), because its name is not based on the name of
its equivalent method). The syntax of a file information function is identical to the syntax of the equivalent
method, except that as a function, no reference to a File object is needed, which makes the function more
convenient to use. For example, these two statements are equivalent

nSize = fsize(cFile) // Get size of file named in variable cFile
nSize = new File().size(cFile) // Get size of file named in variable cFile

Low-level file functions
The following low-level file functions are equivalent to the following methods in the File class:

Function File class method
FCLOSE() close()
FCREATE() create()
FEOF() eof()
FERROR() error()
FFLUSH() flush()
FGETS() gets() and readln()
FOPEN() open()
FPUTS() puts() and writeln()
FREAD() read()
FSEEK() seek()
FWRITE() write()

These functions are not described separately. While a File object automatically maintains its file handle in its
handle property, low-level file functions must explicitly specify a file handle, with the exception of FERROR(),
which does not act on a specific file. The FCREATE() and FOPEN() functions take the same parameters as the
create() and open() methods, and return the file handle.

The other functions use the file handle as their first parameter and all other parameters (if any) following it The
parameters following the file handle in the function are identical to the parameters to the equivalent method, and
the functions return the same values as the methods.

Compare the examples for exists() and FILE() to see the difference between using a File object and low-level
file functions.

Dynamic External Objects - DEO
Dynamic External Objects is a unique technology that allows not just users, but applications, to share classes
across a network (and soon, across the Web). Instead of linking your forms, programs, classes and reports into a
single executable that has to be manually installed on each workstation, you deploy a shell - a simple dBASE
Plus executable that calls an initial form, or provides a starting menu from which you can access your forms and
other dBASE Plus objects. The shell executable can be as simple a program as:

do startup.prg

where "startup.prg" can be a different ".pro" object in each directory from which you launch the application, or
a program that builds a dynamic, context-sensitive menu on-the-fly.

Dynamic Objects can be visual, or they can be classes containing just "business rules", that process and post
transactions, or save and retrieve data. Each of these objects may be shared across your network by all users,
and all applications that call them.

For example, you may have a customer form that's used in your Customer Tracking application, but may also be
used by your Contact Management program as well as your Accounts Receivable module. Assume you want to
change a few fields on the form or add a verification or calculation routine. No problem, just compile the new
form and use the Windows Explorer to drag it to the appropriate folder on your server. Every user and
application is updated immediately.

The potential benefits of DEO are huge:
193 dBL Language Reference

Dynamic External Objects - DEO
• Updating objects requires only a simple drag-and-drop. No registration, no interface files, no Application
Server required. Updating has never before been this easy.

• Although the objects sit on your network server, they run on the workstation, reducing the load on the Server
dramatically and making efficient use of all that local processing power sitting out on your network.

• The same (non-visual) objects may be shared by both your LAN and your Web site. Dynamic External
Objects are very small and load incredibly fast. They rarely exceed 140K in size and usually run less than
100K.

And, most remarkable of all, this is one of the only Object Models that supports full inheritance. You can't
inherit from an ActiveX/OCX object. You can inherit Java objects in CORBA, but it's so difficult it's rarely
attempted. With dBASE Plus, inheriting External Objects is a piece of cake:

• Change the layout of a superclass form and every form in every application inherits those changes the next
time they're called.

• Renamed your company? Changed your logo? Drag and drop the new .cfo file to the Server and the update is
finished.

Implementing Dynamic Objects
1 Compile your source code as you would normally. DEO uses compiled code. In dBASE Plus, compiled code

can be recognized because its file extension ends in "o". .Rep, compiled, becomes .Reo, .Wfm becomes
.Wfo, etc.

2 Build (create executable) only the main launching form, or use a pre-built generic launching form.

3 Copy your objects to the server.

 Done !

Like Source Aliasing, DEO has a mechanism for finding libraries of objects, making it much easier to share
them across the network and across applications. This mechanism is based on an optional search list that's
created using easy text changes in your application's .ini file.

dBASE Plus searches objects as follows:
1 It looks in the "home" folder from which the application was launched.

2 It looks in the .ini file to see if there's a series of search paths specified. It checks all the paths in the list
looking for the object file requested by the application.

3 It looks inside the application's .exe file, the way Visual dBASE did in the past.

Let's assume you have a library in which you plan to store your shared objects. Let's also assume the application
is called "Myprog.exe" and runs from the c:\project1 folder.

In Myprog.ini, we might add the following statements:
[ObjectPath]
objPath0=f:\mainlib
objPath1=h:\project1\images
objPath2=f:\myWeb

Your code looks something like the following:
set procedure to postingLib.cc additive

dBASE Plus will first look in c:\project1 (the home directory).

If that fails, dBASE Plus will look in f:\mainlib. If it finds postingLib.co, it will load that version. If not, it looks
in each of the remaining paths on the list until it finds a copy of the object file.

If that fails, dBASE Plus will look inside MyProg.exe.

Tips

You'll have to experiment with DEO to discover the best approach for the way you write and deploy
applications. However, here are some interesting subtleties you might leverage to your benefit:
File/OS 194

Source Aliasing
Unanticipated updates: Assume you already shipped a dBASE Plus application as a full-blown executable.
Now you want to make a change to one module. No problem, just copy the object file to the home directory
of the application and it'll be used instead of the one built in to the executable. You don't need to redeploy the
full application the way you do in most other application development products. Just the changed object.

Reports: You can deploy reports or even let your users create reports (using dQuery/Web) and add them to
their applications by designing a report menu that checks the disk for files with an .reo extension. Let the
menu build itself from the file list. Here we have true dynamic objects - the application doesn't even know
they exist until runtime. DEO supports real-time dynamic applications.

Tech Support: Want to try out some code or deploy a fix to a customer site or a remote branch office? No
problem, just FTP the object file to the remote server and the update is complete.

Remote Applications: If you have VPN support (or any method of mapping an Internet connection to a
drive letter), you can run dBASE Plus DEO applications remotely over the Internet. A future version of
dBASE Plus will include resolution of URLs and IP addresses so you can access remote objects directly
through TCP/IP without middleware support.

Distributed Objects: Objects can be in a single folder on your server, in various folders around your
network, or duplicated in up to ten folders for fail-over. If one of your servers is down, and an object is
unavailable, dBASE Plus will search the next locations on the list until it finds one it can load. Objects can be
located anywhere they can be found by the workstation.

Source Aliasing

What is Source Aliasing?
Source Aliasing is a feature in dBASE Plus that provides true source-code portability by referencing files
indirectly - through an Alias. Just as the BDE allows you to define an Alias to represent a database or a
collection of tables, Source Aliases let you define locations for your various files without using explicit paths -
which often differ from machine to machine.

For example, if you're using seeker.cc in a dBASE Plus application, you're likely to have code similar to the
following:

set procedure to "c:\program files\dBASE\Plus\Samples;
\seeker.cc" additive

If you run this code on another machine, whose application drive is not "c:", it will crash.

You can avoid portability problems like the example above (as well as save a lot of typing) by using a Source
Alias in place of explicit paths:

set procedure to :MainLib:seeker.cc additive

Whenever dBASE Plus sees ":MainLib:", it automatically substitutes the path assigned to this Alias. To run the
same code on another computer or drive, simply set up the "MainLib" Alias to point to the appropriate folder at
the new location. No source code changes are required.

There are other major benefits to Source Aliasing.

• You can run applications from within dBASE Plus regardless of their location and current folder. Every
application always finds all of its parts. dQuery/Web is written using Source Aliases entirely, which is why
you can run it from any directory without fear of a "File Does Not Exist" error.

• You can build well-organized, reliable libraries of object source that can be accessed across many projects
without dealing with complicated and changing paths. You may, for example, want to:

• Build a MAIN alias that represents a folder in which you store globally shared classes.

• Use an IMAGES alias to point to a location containing all your reusable bitmaps, .gifs and .jpgs.

• Build a PROJECT1 alias for classes and code associated only with one specific project.

If you're careful to always use Source Aliases, your libraries will be shared with ease, and portable enough to be
shared across a network by other developers and users.
195 dBL Language Reference

class File
Using Source Aliases
To create a new Source Alias, go to Properties|Desktop Properties menu option and click on the "Source
Aliases" tab. dBASE Plus can support an unlimited number of Source Aliases.

There are at least three ways to use Source Aliases in dBASE Plus and dQuery/Web.

1 When hand-coding, always use an alias preceded and followed by a colon:
 set procedure to :dQuery:my.wfm additive
 dataSource := "FILENAME :dQuery:NewButton.bmp"
 upBitMap := ":dQuery:OKButton.bmp"
 do :dQuery:Main.prg

2 When setting properties (such as Bitmaps) in the Inspector, always add the Source Alias to a filename.

3 dBASE Plus may add Source-Aliases automatically. In many cases, dBASE Plus will substitute the correct
Source Alias whenever you select a file from an Open File dialog, drag-and-drop a file from the Navigator,
or type in an explicit path.

Source Alias information is stored in the PLUS.ini file. As a result, you need to add the Source Alias to any
dBASE Plus installation that will run your code. You can add Aliases programmatically by modifying the
PLUS.ini file.

You can retrieve the paths associated with Source Aliases through the sourceAliases property of the main
application object. For example:

? _app.sourceAliases["dQuery"]

returns
c:\program files\dBASE\Plus\dQuery

Note _app.sourceAliases is an Associative Array and is, therefore, case-sensitive. Capitalization must match the
Alias name you set up in Desktop Properties.

Important Source Aliasing works only in the dBASE Plus design environment or when running programs from within the
dBASE Plus shell. It is not a runtime feature. To access files indirectly in deployed applications, use DEO
(Dynamic External Objects) instead of Source Aliasing.

class File
An object that provides byte-level access to files and contains various file directory methods.

Syntax [<oRef> =] new File()

<oRef> A variable or property in which to store a reference to the newly created File object.

Properties The following tables list the properties and methods of the File class. (No events are associated with this class.)

Property Default Description
baseClassName FILE Identifies the object as an instance of the File class (Property

discussed in Chapter 5, “Core language.”)
className (FILE) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
handle –1 Operating system file handle
path Full path and file name for open file
position 0 Current position of file pointer, relative to the start of the file

Method Parameters Description
accessDate() <filename expC> Returns the last date a file was opened
close() Closes the currently open file
File/OS 196

class File
Description Use a File object for direct byte-level access to files. Once you create a new File object, you can open() an
existing file or create() a new one. Be sure to close() the file when you are done. A File object may access only
one file at a time, but after closing a file, you may open or create another.

To communicate directly with a Web server, use the File object's open() method to access "StdIn" or "StdOut".

To open StdIn use:
 fIn = new File()
 fIn.open("StdIn", "RA")

To open StdOut use:
 fOut = new File()
 fOut.open("StdOut", "RA")

copy() <filename expC>
, <new name expC>

Makes a copy of the specified file

create() <filename expC>
[,<access rights>]

Creates a new file with optional access attributes

createDate() <filename expC> Returns the date when the file was created
createTime() <filename expC> Returns the time a file was created as a string
date() <filename expC> Returns the date the file was last modified
delete() <filename expC> Deletes the specified file
eof() Returns true or false indicating if the file pointer is

positioned past the end of the currently open file
error() Returns a number indicating the last error encountered
exists() <filename expC> Returns true or false to indicate whether the specified

disk file exists
flush() Writes current data in the file buffer to disk and keeps file

open
gets() [<chars read expN>]

[, <eol expC>]
Reads and returns a line from a file, leaving the file
pointer at the beginning of the next line. Same as
readln()

open() <filename expC>
[,<access rights>]

Opens an existing file with optional access attributes

puts() <input string expC>
[, <max chars expN>
[, <eol expC>]

Writes a character string and end-of-line character(s) to a
file. Same as writeln()

read() <characters expN> Reads and returns the specified number of characters
from the file starting from the current file pointer
position; leaving the file pointer at the character after the
last one read

readln() [<chars read expN>]
[, <eol expC>]

Reads and returns a line from a file, leaving the file
pointer at the beginning of the next line. Same as gets().

rename() <filename expC>
, <new name expC>

Changes the name of the specified file to a new name

seek() <offset expN>
[, 0 | 1 | 2]

Moves the file pointer the specified number of bytes
within a file, optionally allowing the movement to be
from the beginning (0), end (2), or current file position
(1)

shortName() <filename expC> Returns the short (8.3) name for a file
size() <filename expC> Returns the number of bytes in the specified file
time() <filename expC> Returns the time the file was last modified as a string
write() <expC>

[, <max chars expN>]
Writes the specified string into the file at the current file
position, overwriting any existing data and leaving the
file pointer at the character after the last character written

writeln() <input string expC>
[, <max chars expN>
[, <eol expC>]

Writes a character string and end-of-line character(s) to a
file. Same as puts().

Method Parameters Description
197 dBL Language Reference

!

When reading or writing to a binary file, be sure to specify the "B" binary access specifier. Without it, the file is
treated as a text file; if the current language driver is a multi-byte language, each character in the file may be one
or two bytes. Binary access ensures that each byte is read and written without translation.

File objects also contain information and utility methods for file directories, such as returning the size of a file
or changing a file name. If you intend to call multiple methods, you can create and reuse a File object. For
example,

ff = new File()
? ff.size("PLUS_EN.HLP")
? ff.accessDate("PLUS_EN.HLP")

Or you can create a File object for a WITH block. For example,
with new File()
 ? size("PLUS_EN.HLP")
 ? accessDate("PLUS_EN.HLP")
endwith

For a single call, you can create and use the File object in the same statement:
? new File().size("PLUS_EN.HLP")

However, unless you happen to have a File object handy, it’s easier to use the equivalent built-in function or
command to get the file information or perform the file operation:

? fsize("PLUS_EN.HLP")
? faccessdate("PLUS_EN.HLP")

Example Suppose you have a data file generated by a mainframe computer that has fixed length records with no record
breaks. You want to convert this file so that you have one record on each line. Use two File objects to read and
write the file, adding line breaks as you write:

#define REC_LENGTH 80
#define IN_FILE "STUFF.REC"
#define OUT_FILE "STUFF.TXT"

fIn = new File()
fOut = new File()

fIn.open(IN_FILE)
fOut.create(OUT_FILE)

do while not fIn.eof()
 fOut.puts(fIn.read(REC_LENGTH)) // Read fixed length; write with line break
enddo

fIn.close()
fOut.close()

See also none

!
Executes a program or operating system command from within dBASE Plus.

Syntax ! <command>

<command> A command recognized by your operating system.

Description ! is identical to RUN, except that a space is not required after the ! symbol, while a space is required after the
word RUN. See RUN for details.

See Also DOS, RUN, RUN()

accessDate ()
Returns the last date a file was opened.

Syntax <oRef>.accessDate(<filename expC>)
File/OS 198

CD
<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Pluslooks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

Property of File

Description accessDate() checks the file specified by <filename expC> and returns the date that the file was last opened by
the operating system for reading or writing.

To get the date the file was last modified, use date(). For the date the file was created, use createDate().

Example The following example uses accessDate() to display the last date the autoexec.bat was accessed:
? new File().accessDate("C:\autoexec.bat")

See also createDate(), createTime(), date(), time()

CD
Changes the current drive or directory.

Syntax CD [<path>]

<path> The new drive and/or path. Quotes (single or double) are required if the path contains spaces or other
special characters; optional otherwise.

Description Use CD to change the current working directory in dBASE Plus to any valid drive and path. If you're unsure
whether a drive is valid, use VALIDDRIVE() before issuing CD. The current directory appears in the
Navigator.

CD supports the Universal Naming Convention (UNC), which starts with double backslashes for the resource
name, for example:

\\MyServer\MyVolume\MyDir\MySubdir

CD without the option <path> displays the current drive and directory path in the result pane of the Command
window. To get the current directory, use SET("DIRECTORY").

Another way to access files on different directories is with the command SET PATH. You can specify one or
more search paths, and dBASE Plus uses these paths to locate files not on the current directory. Use SET PATH
when an application's files are in several directories.

CD works like SET DIRECTORY, except SET DIRECTORY TO (with no argument) returns you to the
HOME() directory, instead of displaying the current directory.

See Also HOME(), MKDIR, SET DIRECTORY, SET PATH, VALIDDRIVE()

close ()
Closes a file previously opened with create() or open().

Syntax <oRef>.close()

<oRef> A reference to the File object that created or opened the file.

Property of File

Description close() closes a file you’ve opened with create() or open(). close() returns true if it’s able to close the file. If
the file is no longer available (for example, the file was on a floppy disk that has been removed) and there is data
in the buffer that has not yet been written to disk, close() returns false.

Always close the file when you’re done with it.

To save the file to disk without closing it, use flush().
199 dBL Language Reference

copy ()
Example The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS.TXT"

f = new File()
if f.exists(LOG_FILE)
 f.open(LOG_FILE, "A")
else
 f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

See also create(), flush(), open()

close() is also a method of the Database and Form classes.

copy ()
Duplicates a specified file.

Syntax <oRef>.copy(<filename expC>, <new name expC>)

<oRef> A reference to a File object.

<filename expC> Identifies the file to duplicate (also known as the source file). <filename expC> may be
a file name skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in which you
select the file to duplicate.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<new name expC> Identifies the target file that will be created or overwritten by copy(). <new name
expC> may be a filename skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in
which you specify the name of the target file and its directory.

Property of File

Description copy() lets you duplicate an existing file at the operating system level. copy() duplicates a single file of any
type.

When running a dBASE Plus .EXE, copy() first looks for <filename expC> in the internal file system of the
.EXE file. Any path in <filename expC> is ignored. If the named file is found in the .EXE, that file is copied. If
the file is not found, then dBASE Plus searches for the file on disk. This lets you package static files, like empty
tables, inside the .EXE during the build process and extract them when needed. You cannot copy files into the
.EXE

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE Plus displays a dialog box
asking if you want to overwrite the file. If SET SAFETY is OFF, any existing file with the same name is
overwritten without warning.

copy() does not automatically copy the auxiliary files associated with table files, such as indexes and memo
files. For example, it does not copy the MDX or DBT file associated with a DBF file. When copying tables, use
the Database object’s copyTable() method.

You cannot copy() a file that has been opened for writing with the open() or create() methods; it must be
closed first.

Example The following example makes a copy of a file in the current directory:
new File().copy("AFILE", "ACOPY")

dBL also offers the same functionality in the COPY FILE command. To perform the same operation as above,
you could enter
File/OS 200

COPY FILE
copy file AFILE to ACOPY

See also copyTable(), rename()

copy() is also a method of the UpdateSet class (page 14-370).

COPY FILE
Duplicates a specified file.

Syntax COPY FILE <filename> TO <new name>

Description COPY FILE is identical to the File object’s copy() method, except that as a command, the file name arguments
are treated as names, not character expressions. They do not require quotes unless they contain spaces or other
special characters. If the name is in a variable, you must use the indirection or macro operators.

See copy() for details on the operation of the command.

Example See copy()

See Also copy(), DELETE FILE, RENAME

create ()
Creates and opens a specified file.

Syntax <oRef>.create(<filename expC>[, <access expC>])

<oRef> A reference to a File object.

<filename expC> The name of the file to create and open. By default, create() creates the file in the
current directory. To create the file in another directory, specify a full path name for <filename expC>.

<access expC> The access level of the file to create, as shown in the following table. The access level
string is not case-sensitive, and the characters in the string may be in any order. If omitted, the default is read
and write text file. Append is a more restrictive version of write; the data is always added to the end of the file.

<access expC> Access level
“R” Read-only text file
“W” Write-only text file
“A” Append-only text file
“RW” Read and write text file
“RA” Read and append text file
“RB” Read-only binary file
“WB” Write-only binary file
“AB” Append-only binary file
“RWB” Read and write binary file
“RAB” Read and append binary file

Property of File

Description Use create() to create a file with a name you specify, assign the file the level of access you specify, and open
the file. If dBASE Plus can’t create the file (for example, if the file is already open), an exception occurs.

SET SAFETY has no effect on create(). If <filename expC> already exists, it is overwritten without warning.
To see if a file with the same name already exists, use exists() before issuing create().

To use other File methods, such as read() and write(), first open a file with create() or open().

When you open a file with create(), the file is empty, so the file pointer is positioned at the first character in the
file. Use seek() to position the file pointer before reading from or writing to a file.
201 dBL Language Reference

createDate ()
Example The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS.TXT"

f = new File()
if f.exists(LOG_FILE)
 f.open(LOG_FILE, "A")
else
 f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

See also close(), error(), exists(), gets(), open(), puts(), read(), seek(), write()

createDate ()
Returns the date a file was created.

Syntax <oRef>.createDate(<filename expC>)

<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

Property of File

Description createDate() checks the file specified by <filename expC> and returns the date that the file was created.

To get the date the file was last modified, use date(). For the date the file was last accessed, use accessDate().
To get the time the file was created, use createTime().

Example The following example uses createDate() to display the date the autoexec.bat was created:
? new File().createDate("C:\autoexec.bat")

See also accessDate(), createTime(), date(), time()

createTime ()
Returns the time a file was created.

Syntax <oRef>.createTime(<filename expC>)

<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

Property of File

Description createTime() checks the file specified by <filename expC> and returns the time, as a character string, that the
file was created.

To get the date the file was created, use createDate().
File/OS 202

date ()
Example The following example uses createTime() to display the time the autoexec.bat was created:
? new File().createTime("C:\autoexec.bat")

See also createDate(), time()

date ()
Returns the date stamp for a file, the date the file was last modified.

Syntax <oRef>.date(<filename expC>)

<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

Property of File

Description Use date() to determine the date on which the last change was made to a file on disk.

When you update a file, dBASE Plus changes the file’s date stamp to the current operating system date when the
file is written to disk. For example, when the user edits a DB table, dBASE Plus changes the date stamp on the
table file when the file is closed. date() reads the date stamp and returns its current value.

To get the date the file was created, use createDate(). For the date the file was last accessed, use accessDate().
To get the time the file was last changed, use time().

Example The following example uses date() to display the date the autoexec.bat was last modified:
? new File().date("C:\autoexec.bat")

See also accessDate(), createDate(), size(), time()

delete ()
Removes a file from a disk, optionally sending it to the Recycle Bin.

Syntax <oRef>.delete(<filename expC> [, <recycle expL>])

<oRef> A reference to a File object.

<filename expC> Identifies the file to remove. <filename expC> may be a filename skeleton with
wildcard characters. In that case, dBASE Plus displays a dialog box in which you select the file to duplicate.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<recycle expL> Whether to send the file to the Recycle Bin instead of deleting it. If omitted, the file is
deleted.

Property of File

Description delete() deletes a file from a disk, or sends it to the Recycle Bin.

If <recycle expL> is true, then SET SAFETY determines whether a dialog appears to confirm sending the file to
the Recycle Bin. If <recycle expL> is false or omitted, SET SAFETY has no effect on delete(); the file is
deleted without warning.

delete() does not automatically remove the auxiliary files associated with table files, such as indexes and memo
files. For example, it does not delete the MDX or DBT files associated with a DBF file. When deleting tables,
use the Database object’s dropTable() method.
203 dBL Language Reference

DELETE FILE
You cannot delete() a file that is open, including one opened with the open() or create() methods; it must be
closed first.

Example The following examples deletes a file in the current directory:
new File().delete("AFILE")

See also dropTable(), rename()

delete() is also a method of the Array, Rowset, and UpdateSet classes.

DELETE FILE
Removes a file from a disk.

Syntax DELETE FILE <filename>

Description DELETE FILE is similar to the File object’s delete() method, except that as a command, the file name
argument is treated as a name, not a character expression. It does not require quotes unless it contain spaces or
other special characters. If the name is in a variable, you must use the indirection or macro operators. Also,
DELETE FILE does not support sending a file to the Recycle Bin.

See delete() for details on the operation of the command.

The ERASE command is identical to DELETE FILE.

Example Compare this example with the equivalent example for delete():
delete file AFILE

See Also COPY FILE, delete(), ERASE, RENAME

DIR
Performs a directory or table listing.

Syntax DIR | DIRECTORY
[[LIKE] <drive/path/filename skeleton>]

[LIKE] <drive/path/filename skeleton> Specifies a path and/or file specification to be used by DIR.
The LIKE keyword is included for readability only; it has no effect on the command.

If omitted, the tables in the current directory or database are listed.

Description DIR (or DIRECTORY) is a utility command that lets you perform a directory listing. The information provided
on each file includes its short (8.3) name, its size in bytes, the date of its last update, and its long file name. DIR
also shows the total number of bytes used by the listed files, the number of bytes left on that drive, and the total
disk space.

DIR with no arguments displays information on the tables in the current directory or database. When accessing
tables in the current directory, SET DBTYPE controls the files that are displayed. If SET DBTYPE is dBASE,
files with .DBF extensions in the current directory are shown; if SET DBTYPE is PARADOX, .DB files are
shown instead. In addition to the information normally displayed, DIR displays the number of records in each
table.

The same DBF or DB tables are listed if the database chosen by SET DATABASE is a Standard table alias (one
that looks at DBF and DB tables in a specific directory). If the database chosen by SET DATABASE is any
other kind of alias, only the table names and the total number of tables are shown.

DIR pauses when the results pane is full and displays a dialog box prompting you to display another screenful of
information.

If you have not used ON KEY or SET FUNCTION to reassign the F4 key, pressing F4 is a quick way to
execute DIR.

Example The following examples use DIR:
set database to // Access tables by directory, not database
File/OS 204

DISKSPACE()
set dbtype to dBASE
dir // Displays all DBF tables in current directory
set dbtype to paradox
dir // Displays all DB tables in current directory
open database iblocal // Open Interbase database
set database to iblocal // Set active database
dir // Displays all tables in database
dir *.DBF // Displays all DBF files, without # of records
dir c:\autoexec.* // Displays all AUTOEXEC files in root directory of C:

See Also DISPLAY FILES, LIST FILES, ON KEY, SET DATABASE, SET DBTYPE, SET FUNCTION

DISKSPACE()
Returns the number of bytes available on the current or specified drive's disk.

Syntax DISKSPACE([<drive expN>])

<drive expN> A drive number from 1 to 26. For example, the numbers 1 and 2 correspond to drives A and
B, respectively.

Without <drive expN> or if <drive expN> is 0, DISKSPACE() returns the number of bytes available on the
current drive.

If <drive expN> is less than 0 or greater than 26, DISKSPACE() returns the number of bytes available on the
drive that contains the home directory.

Description Use DISKSPACE() to determine how much space is left on a disk.

See Also HOME()

DISPLAY FILES
Displays information about files on disk in the results pane of the Command window.

Syntax DISPLAY FILES
[[LIKE] <drive/path/filename skeleton>]
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

TO FILE <filename> | ? | <filename skeleton> Directs output to a text file as well as to the results
pane of the Command window. By default, dBASE Plus assigns a .TXT extension. The ? and <filename
skeleton> options display a dialog box in which you specify the name of the target file and the directory to save
it in.

TO PRINTER Directs output to the printer as well as to the results pane of the Command window.

Description DISPLAY FILES is identical to DIR, and adds the option of directing the output to a file or a printer (or both) in
addition to the Command window. See DIR for details.

DISPLAY FILES is the same as LIST FILES, except that LIST FILES doesn't pause for each screenful of
information but rather lists the information continuously. This makes LIST FILES more appropriate when
directing output to a file or printer.

See Also DIR, LIST FILES

DOS
Open an MS-DOS or Windows NT command prompt.

Syntax DOS
205 dBL Language Reference

eof ()
Description Use the DOS command to open an operating system command prompt. This has the same effect as choosing
MS-DOS Prompt or Command Prompt from the Windows Start menu. The command prompt runs as a separate
process.

To execute single operating system commands use RUN. To execute applications, use RUN().

See Also RUN, RUN()

eof ()
Returns true if the file pointer is at the end of a file previously opened with create() or open()

Syntax <oRef>.eof()

<oRef> A reference to the File object that created or opened the file.

Property of File

Description eof() determines if the file pointer of the file you specify is at the end of the file (EOF), and returns true if it is
and false if it is not. The file pointer is considered to be at EOF if it is positioned at the byte after the last
character in the file.

You can move the file pointer to the end of the file with seek(). If a file is empty, as it is when you first create a
new file with create(), eof() returns true.

Example Suppose you have a data file generated by a mainframe computer that has fixed-length records with no record
breaks. You want to convert this file so that you have one record on each line. Use two File objects to read and
write the file, adding line breaks as you write:

#define REC_LENGTH 80
#define IN_FILE "STUFF.REC"
#define OUT_FILE "STUFF.TXT"

fIn = new File()
fOut = new File()

fIn.open(IN_FILE);
fOut.create(OUT_FILE);

do while not fIn.eof()
 fOut.puts(fIn.read(REC_LENGTH)) // Read fixed length; write with line break
enddo

fIn.close()
fOut.close()

See also position, seek()

ERASE
Removes a file from a disk.

Syntax ERASE <filename>

Description ERASE is similar to the File object’s delete() method, except that as a command, the file name argument is
treated as a name, not a character expression. It does not require quotes unless it contains spaces or other special
characters. If the name is in a variable, you must use the indirection or macro operators. Also, ERASE does not
support sending a file to the Recycle Bin.

See delete() for details on the operation of the command.

The DELETE FILE command is identical to ERASE.

Example Compare this example with the equivalent example for delete():
erase AFILE

This example lets the user pick a text file to delete:
cFile = getfile("*.txt", "Delete text file from current directory")
File/OS 206

error ()
if upper(cFile) = set("DIRECTORY") and right(upper(cFile), 4) == ".TXT"
 erase (cFile)
else
 msgbox("Not a text file in the current directory", "Can't delete", 48)
endif

The beginning of the returned file name is compared with the current directory returned by
SET("DIRECTORY") using the equals operator (with SET EXACT OFF). The end of the file name is checked
to see if it is a text file.

If the file is a text file in the current directory, the indirection operators convert the file name stored into a name
the command can use. Without the indirection operators (or the macro operator, which would have the same
effect), the command would attempt to erase the file named “cFile”.

See Also COPY FILE, delete(), DELETE FILE, RENAME

error ()
Returns the error number of the most recent byte-level input or output error, or 0 if the most recent byte-level
method was successful.

Syntax <oRef>.error()

<oRef> A reference to the File object that attempted the operation.

Property of File

Description To trap errors, call the File object method in a TRY block. Use the number that error() returns in a CATCH
block to respond to errors in the byte-level methods of the File object. The following table lists the byte-level
method errors that error() returns.

Error number Cause of error
2 File or directory not found
3 Bad path name
4 No more file handles available
5 Can't access file
6 Bad file handle
8 No more directory entries available
9 Error trying to set the file pointer
13 No more disk space
14 End of file

See also close(), create(), eof(), flush(), gets(), open(), puts(), read(), seek(), write()

exists ()
Tests for the existence of a file. Returns true if the file exists and false if it doesn’t.

Syntax <oRef>.exists(<filename expC>)

<oRef> A reference to a File object.

<filename expC> The name of the file to search for. Wildcard characters are not allowed; you must
specify the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension.

Property of File

Description Use exists() to determine whether a file exists. You can use either the long file name or the short file name.
207 dBL Language Reference

FILE()
Example The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS.TXT"

f = new File()
if f.exists(LOG_FILE)
 f.open(LOG_FILE, "A")
else
 f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

See also create(), error(), GETFILE(), open(), PUTFILE(), shortName()

FILE()
Tests for the existence of a file. Returns true if the file exists and false if it doesn't.

Syntax FILE(<filename expC>)

Description FILE() is identical to the File object’s exists() method, except that as a built-in function, it does not require a
File object to work.

When you specify a <path list> using the SET PATH command, dBASE Plus searches those directories in
addition to the current directory. When no SET PATH setting exists, and you don't provide the full path name
when you specify a file name, dBASE Plus searches for the file in the current directory only.

Example Compare this example with the equivalent example for exists():
#define LOG_FILE "ACCESS.TXT"

if file(LOG_FILE)
 h = fopen(LOG_FILE, "A")
else
 h = fcreate(LOG_FILE, "A")
endif
fputs(h, new Date().toLocaleString())
fclose(h)

See Also FCREATE(), FERROR(), FOPEN(), FSHORTNAME(), GETFILE(), PUTFILE()

flush ()
Writes to disk a file previously opened with create() or open() without closing the file. Returns true if
successful and false if unsuccessful.

Syntax <oRef>.flush()

<oRef> A reference to the File object that created or opened the file.

Property of File

Description Use flush() to save a file in the file buffer to disk, flush the file buffer, and keep the file open. If flush() is
successful, it returns true.

Flushing a buffer to disk is similar to saving the file and continuing to work on it. Until you flush an open file
buffer to disk, any data in the buffer is stored only in RAM (random-access memory). If the power to the
computer fails or dBASE Plus ends abnormally, data in RAM is lost. However, if you have used flush() to write
the file buffer to disk, you lose only data that was added between the time you issued flush() and the time the
system failed.

To save the file to disk and close the file, use close().
File/OS 208

FNAMEMAX()
See also close()

flush() is also a method of the Rowset class

FNAMEMAX()
Returns the maximum allowable file-name length on a given drive or volume.

Syntax FNAMEMAX([<expC>])

<expC> The drive letter (with a colon), or name of the volume, to check. If <expC> is not provided, the
current drive/volume is assumed. If the drive/volume does not exist, an error occurs.

Description FNAMEMAX() checks the drive or volume specified by <expC> and returns the maximum file-name length
(including the dot and three-letter extension) allowed for files on that drive/volume. Typical values are:

FNAMEMAX() Drive type
255 Windows long file name
12 MS-DOS-compatible 8.3 name

240 Novell Netware long file name

See Also FSHORTNAME()

FUNIQUE()
Creates a unique file name.

Syntax FUNIQUE([<expC>])

<expC> A file-name skeleton, using ? as the wildcard character (the * character is not allowed).

Description Use FUNIQUE() when creating temporary files to generate a file name that is not being used by an existing file.
The generated file name follows the file name skeleton you specify, with random numbers substituted for each ?
character.

FUNIQUE() generates the new file name by replacing each wildcard character with a random number, then
looking in the current or specified directory for a file name that matches the new file name. If no match is found,
FUNIQUE() returns that name—but it does not create the file. If a match is found, FUNIQUE() tries again
until a unique file name is found. If no combination of random numbers is successful, FUNIQUE() returns an
empty string.

If you omit <expC>, FUNIQUE() returns an 8-character file name with no extension, composed entirely of
random numbers, in the Windows temp directory.

Example The following example shows the top-level routine used to process a generated text file. An intermediate file is
created during the process. The final result is stored in a subdirectory. Because the application is used by many
people on a network, a fixed file name cannot be used. Instead it uses a temporary file whose name is generated
by FUNIQUE().

parameter cFile // Name of file to process
local cTmpFile
cTmpFile = funique("T???????.TMP") // Letter T followed by seven digits
preProcess(cFile, cTmpFile) // Create intermediate temp file
mainProcess(cTmpFile, cFile) // Create result file in subdirectory
erase (cTmpFile) // Erase temp file when done

See Also exists(), FILE()

GETDIRECTORY()
Displays a dialog box from which you can select a directory for use with subsequent commands.
209 dBL Language Reference

GETENV()
Syntax GETDIRECTORY([<directory expC>])

<directory expC> The initial directory to appear in the dialog box. If <directory expC> is omitted, the
current directory appears as the initial directory.

Description Use GETDIRECTORY() to return a directory name for use in subsequent commands.

GETDIRECTORY() does not return a final backslash at the end of the directory name it returns.
GETDIRECTORY() returns an empty string if the user clicks Cancel or presses Esc.

See Also CD, GETFILE(), SET DIRECTORY

GETENV()
Returns the value of an operating system environment variable.

Syntax GETENV(<expC>)

<expC> The name of the environment variable to return.

Description Use GETENV() to return the current value of an operating system environment variable.

If dBASE Plus can't find the environment variable specified by <expC>, it returns an emptry string.

See Also OS()

GETFILE()
Displays a dialog box, from which the user can choose or enter an existing file name, and returns the file name.

Syntax GETFILE([<filename skeleton expC>
[, <title expC>
[, <suppress database expL>],
[<file types list expC>]]])

<filename skeleton expC> A character string that specifies which files are to be displayed in the
GETFILE() dialog. It may contain a valid path followed by a filename skeleton.

If a path was specified, it is used to set the initial path from which GETFILE() displays files.

If a path was not specified, the path from any previously run GETFILE() function, PUTFILE() function, or
getFile() method will be used as the new initial path. If no previous path exists, the GETFILE() method uses
the current dBASE directory - the path returned by the SET("DIRECTORY") function - as the initial path.

If no filename skeleton is specified, "*.*" is assumed and the GETFILE() method displays all files in the initial
path described above.

<title expC> A title displayed in the top of the dialog box. Without <title expC>, the GETFILE() dialog
box displays the default title. If you want to specify a value for <title expC>, you must also specify a value or
empty string ("") for <filename skeleton expC>.

<suppress database expL> Whether to suppress the combobox from which you can choose a
database. The default is true; the Database combobox is not displayed. If you want to specify a value for
<suppress database expL>, you must also specify a value or empty string ("") for <filename skeleton expC>
and <title expC>.

<file types list expC> A character expression containing zero, or more, file types to be displayed in the
"Files of Type" combobox. If this parameter is not specified, the following file types will be loaded into the
“Files of Type” combobox:

Projects (*.prj)
Forms (*.wfm;*.wfo)
Custom Forms (*.cfm;*.cfo)
Menus (*.mnu;*.mno)
Popup (*.pop;*.poo)
Reports (*.rep;*.reo)
File/OS 210

GETFILE()
Custom Reports (*.crp;*.cro)
Labels (*.lab;*.lao)
Programs (*.prg;*.pro)
Tables (*.dbf;*.db)
SQL (*.sql)
Data Modules (*.dmd;*.dmo)
Custom Data Modules (*.cdm;*.cdo)
Images (*.bmp;*.ico;*.gif;*.jpg;*.jpeg;*.pje;*.xbm)
Custom Components (*.cc;*.co)
Include (*.h)
Executable (*.exe)
Sound (*.wav)
Text (*.txt)
All (*.*)

• If an empty string is specified, "All (*.*)" will be loaded into the Files of Type combobox.

• If one or more file types are specified, dBASE will check each file type specified against an internal table.

• If a match is found, a descriptive character string will be loaded into the "Files of Type" combobox.

• If a matching file type is not found, a descriptive string will be built, using the specified file type, in the
form

"<File Type> files (*.<File Type>)"

and will be loaded into the "Files of Type" combobox.

When the expression contains more than one file type, they must be separated by either commas or semicolons.

File types may be specified with, or without, a leading period.

The special extension ".*" may be included in the expression to specify that "All (*.*)" be included in the Files
of Type combobox.

File types will be listed in the Files of Type combobox, in the order specified in the expression.

Note In Visual dBASE 5.x, the GETFILE() and PUTFILE() functions accepted a logical value as a parameter in the
same position as the new <file types list expC> parameter. This logical value has no function in dBASE Plus.
However, for backward compatibility, dBASE Plus will ignore a logical value if passed in place of the <file
types list expC>.

Examples <file types list expC> syntax:
// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// No fourth parameter,so "Files of Type" combobox contains default list of
// file types
filename = getFile("*.txt", "Choose File", true)

// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// Fourth parameter is empty string, so "Files of Type" combobox only
// contains: All (*.*)
filename = getFile("*.txt", "Choose File", true, "")

// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// Fourth parameter specifies that Files of Type combobox contain:
// Text (*.txt) - matches internal type so description used
// doc Files (*.doc) - does not match internal type
// cpp Files (*.cpp) - does not match internal type
// Program Source (*.prg) - matches internal type so description used
// All (*.*) - ".*" specifies All (*.*)
filename = getFile("*.txt", "Choose File", true, "txt; doc; cpp; prg; .*")
211 dBL Language Reference

gets ()
Description Use GETFILE() to present the user with a dialog box from which they can choose an existing file or table.
GETFILE() does not open any files.

The GETFILE() dialog box includes names of files whether they are currently open or closed. dBASE Plus
returns the full path name of the file whether SET FULLPATH is ON or OFF.

By default, the dialog box opened with GETFILE() displays file names from the current directory the first time
you issue GETFILE(). After the first time you use GETFILE() and exit successfully, the subdirectory you
choose becomes the default the next time you use GETFILE().

If <suppress database expL> is false, you can also choose from a list of databases. When a database is selected,
the dialog box displays a list of tables in that database instead of files in the current directory.

The dialog box is a standard Windows dialog box. The user can perform many Windows Explorer-like activities
in this dialog box, including renaming files, deleting files, and creating new folders. They can also right-click on
a file to get its context menu. These features are disabled when the dialog is displaying tables in a database
instead of files in a directory.

GETFILE() returns an empty string if the user chooses the Cancel button or presses Esc.

See Also FILE(), GETDIRECTORY(), PUTFILE()

gets ()
Returns a line of text from a file previously opened with create() or open().

Syntax <oRef>.gets([<characters expN> [, <end-of-line expC>]])

<oRef> A reference to the File object that created or opened the file.

<characters expN> The number of characters to read and return before a carriage return is reached.

<end-of-line expC> The end-of-line indicator, which can be a string of one or two characters. If omitted,
the default is a hard carriage return and line feed. The following table lists standard codes used as end-of-line
indicators.

Character code
(decimal) (hexadecimal) Represents
CHR(141) 0x8D Soft carriage return (U.S.)
CHR(255) 0xFF Soft carriage return (Europe)
CHR(138) 0x8A Soft linefeed (U.S.)
CHR(0) 0x00 Soft linefeed (Europe)
CHR(13) 0x0D Hard carriage return
CHR(10) 0x0A Hard linefeed

Use the CHR() function to create the <end-of-line expC> if needed. To designate the <end-of-line expC>, you
must also specify the <characters expN>. If you don’t want a line length limit, use an arbitrarily high number.
For example:

cLine = f.gets(10000, chr(0x8d)) // Soft carriage return (U.S.)

Property of File

Description Use gets() to read lines from a text file. gets() reads and returns a character string from the file opened by the
File object, starting at the file pointer position, and reading past but not returning the first end-of-line
character(s) it encounters.

gets() will read characters until it encounters the end-of-line character(s) or it reads the number of characters
you specify with <characters expN>, whichever comes first. If a file does not have end-of-line character(s) and
you do not specify <characters expN>, gets() will read and return everything from the current file pointer
position to the end of the file.

If the file pointer position is at an end-of-line character(s), gets() returns an empty string (""); the line is empty.
File/OS 212

handle
If gets() encounters an end-of-line character(s), it positions the file pointer at the character after the end-of-line
character(s); that is, at the beginning of the next line. Otherwise, gets() positions the file pointer at the character
after the last character it returns. Use seek() to move the file pointer before or after using gets().

If the file being read is not a text file, use read() instead. read() requires <characters expN> to be specified,
and does not treat end-of-line characters specially.

To write a text file, use puts(). readln() is identical to gets().

Example The following statements display the contents of a text file in an Text component, replacing the line breaks in
the text file with the HTML
 tag. The name of the file is typed into a Entryfield component named
entryfield1, and the Text component is named text1.

f = new File() // Create File object
if f.exists(form.entryfield1.value) // Make sure file exists
 f.open(form.entryfield1.value)
 form.text1.text = "" // Clear HTML component
 do while not f.eof()
 form.text1.text += f.gets() + "
" // Write lines to HTML component
 enddo
 f.close() // Close file
else
 form.text1.text = form.entryfield1.value + " not found"
endif

See Also create(), eof(), error(), open(), puts(), read(), seek()

handle
The operating system file handle for a file previously opened with create() or open().

Property of File

Description When a file is opened by the operating system, it is assigned a file handle, an arbitrary number that identifies
that open file. Applications then use that file handle to refer to that file.

A File object’s handle property reflects the file handle used by dBASE Plus to access a file opened with create()
or open(). It is a read-only property and is generally informational only. By calling methods of the File object,
dBASE Plus internally uses the file handle to perform its operations.

See also path

handle is also a property of many data access classes.

HOME()
Returns the directory where the PLUS.exe in use is located.

Syntax HOME()

Description There are two “home” directories:

• The directory where dBASE Plus is installed, by default:

C:\Program Files\dBASE\Plus\

• The directory where the actual executable file, PLUS.exe is installed. This is in the \Bin subdirectory of the
installation directory, so by default, it’s:

C:\Program Files\dBASE\Plus\Bin\

HOME() identifies the directory in which the currently running copy of PLUS-exe is located. HOME() returns
the full path name whether SET FULLPATH is ON or OFF, and always includes the trailing backslash, as
shown.

To identify the dBASE Plus installation home directory, use _dbwinhome.

See Also CD, SET DIRECTORY, _dbwinhome
213 dBL Language Reference

LIST FILES
LIST FILES
Displays information about files on disk in the results pane of the Command window.

Syntax LIST FILES
[[LIKE] <drive/path/filename skeleton>]
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

TO FILE <filename> | ? | <filename skeleton> Directs output to a text file as well as to the results
pane of the Command window. By default, dBASE Plus assigns a .TXT extension. The ? and <filename
skeleton> options display a dialog box in which you specify the name of the target file and the directory to save
it in.

TO PRINTER Directs output to the printer as well as to the results pane of the Command window.

Description LIST FILES is the same as DISPLAY FILES, except that LIST FILES doesn't pause for each screenful of
information but rather lists the information continuously. This makes LIST FILES more appropriate when
directing output to a file or printer.

See Also DIR, DISPLAY FILES

MD
Creates a new directory.

Syntax MD <directory>

Description MD is identical to MKDIR. See MKDIR for details.

See Also CD, MKDIR, SET DIRECTORY

MKDIR
Creates a new directory.

Syntax MKDIR <directory>

<directory> The directory you want to create.

Description Use MKDIR to create a new directory. The MD command is identical to MKDIR.

The new directory name must follow the standard naming conventions for the operating system.

If you try to make a directory that already exists or is on a path that does not exist, an error occurs.

After you create the new directory, you can use CD or SET DIRECTORY to make the new directory the current
directory.

See Also CD, SET DIRECTORY

open ()
Opens a specified file.

Syntax <oRef>.open(<filename expC>[, <access expC>])

<oRef> A reference to a File object.

<filename expC> The name of the file to open. Wildcard characters are not allowed; you must specify the
actual file name.
File/OS 214

OS()
If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<access expC> The access level of the file being opened, as shown in the following table. The access
level string is not case-sensitive, and the characters in the string may be in any order. If omitted, the default is
read-only text file. Append is a more restrictive version of write; the data is always added to the end of the file

<access expC> Access level
“R” Read-only text file
“W” Write-only text file
“A” Append-only text file
“RW” Read and write text file
“RA” Read and append text file
“RB” Read-only binary file
“WB” Write-only binary file
“AB” Append-only binary file
“RWB” Read and write binary file
“RAB” Read and append binary file

Property of File

Description Use open() to open a file with a name you specify and assign the file the level of access you specify. If dBASE
Plus can’t open the file (for example, if the file is already open), an exception occurs.

The open() method can also be used to access StdIn and StdOut, enabling direct communication with a web
server. To do this, set the parameter <filename expC> to "StdIn" to receive data, or "StdOut" to transmit.

To open StdIn use: To open StdOut use:
fIn = new File() fOut = new File()
fIn.open("StdIn", "RA") fOut.open("StdOut", "RA")

To use other File methods, such as read() and write(), first open a file with open() or create().

If you open the file with append-only or read and append access, the file pointer is positioned at the end-of-file,
after the last character. For other access levels, the file pointer is positioned at the first character in the file. Use
seek() to position the file pointer before reading from or writing to a file.

Example The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS.TXT"

f = new File()
if f.exists(LOG_FILE)
 f.open(LOG_FILE, "A")
else
 f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

See also close(), create(), error()

open() is also a method of the Form class.

OS()
Returns the name and version number of the current operating system.

Syntax OS()
215 dBL Language Reference

path
Description Use OS() to determine the version of Windows in which dBASE Plus is running. To determine which version
of dBASE Plus is running, use VERSION(). OS() returns a character string like:

Windows NT version 4.00

with the name of the operating system, the word “version” and the version number.

Samples of what is returned by OS() include:
Windows 95 = "Windows version 4.00"

Windows 98 = "Windows version 4.10"

Windows ME = "Windows version 4.90"

Windows NT3 = "Windows NT version 3.51"

Windows NT4 = "Windows NT version 4.00"

Windows 2000= "Windows NT version 5.00"

Windows XP = "Windows NT version 5.01"

Windows Vista = "Windows NT version 6.00'

Windows 7 = "Windows NT version 6.01"

See Also VERSION()

path
The full path and file name for a file previously opened with create() or open().

Property of File

Description When you open a file with create() or open(), the path is optional. If you use create() without a path, the file is
created in the current directory. If you use open() without a path, dBASE Plus looks for the file in the current
directory, then in the search path(s) you specified with SET PATH, if any.

A File object’s path property reflects the full path and file name for the open file. It is a read-only property.

See also handle

position
The position of the file pointer in a file previously opened with create() or open().

Property of File

Description A File object’s position property reflects the current position of the file pointer.
It is a read-only property. To move the file pointer, use seek(). Reading and writing to a file also moves the file
pointer.

The position is zero-based. The first character in the file is at position zero.

See also seek()

PUTFILE()
Displays a dialog box within which the user can choose an exisiting file to overwrite or a new file name, and
returns the file name.

Syntax PUTFILE([<title expC>
[, <filename expC>
[, <extension expC>
[, <suppress database expL>],
[<file types list expC>]]]])
File/OS 216

PUTFILE()
<title expC > A title that is displayed at the top of the dialog box.

<filename expC > The default file name that is displayed in the dialog box's entryfield. Without
<filename expC >, PUTFILE() displays an empty entryfield.

<extension expC > A default extension for the file name that PUTFILE() returns.

<suppress database expL> Whether to suppress the combobox from which you can choose a
database. The default is true; the Database combobox is not displayed. If you want to specify a value for
<suppress database expL>, you must also specify a value or empty string ("") for <filename skeleton>,
<title expC>, and <extension expC>.

<file types list expC> A character expression containing zero, or more, file types to be displayed in the
"Files of Type" combobox. If this parameter is not specified, the following file types will be loaded into the
“Files of Type” combobox:

Projects (*.prj)
Forms (*.wfm;*.wfo)
Custom Forms (*.cfm;*.cfo)
Menus (*.mnu;*.mno)
Popup (*.pop;*.poo)
Reports (*.rep;*.reo)
Custom Reports (*.crp;*.cro)
Labels (*.lab;*.lao)
Programs (*.prg;*.pro)
Tables (*.dbf;*.db)
SQL (*.sql)
Data Modules (*.dmd;*.dmo)
Custom Data Modules (*.cdm;*.cdo)
Images (*.bmp;*.ico;*.gif;*.jpg;*.jpeg;*.pje;*.xbm)
Custom Components (*.cc;*.co)
Include (*.h)
Executable (*.exe)
Sound (*.wav)
Text (*.txt)
All (*.*)

• If an empty string is specified, "All (*.*)" will be loaded into the Files of Type combobox.

• If one or more file types are specified, dBASE will check each file type specified against an internal table.

• If a match is found, a descriptive character string will be loaded into the "Files of Type" combobox.

• If a matching file type is not found, a descriptive string will be built, using the specified file type, in the
form

"<File Type> files (*.<File Type>)"

and will be loaded into the "Files of Type" combobox.

When the expression contains more than one file type, they must be separated by either commas or semicolons.

File types may be specified with, or without, a leading period.

The special extension ".*" may be included in the expression to specify that "All (*.*)" be included in the Files
of Type combobox.

File types will be listed in the Files of Type combobox, in the order specified in the expression.

Note In Visual dBASE 5.x, the GETFILE() and PUTFILE() functions accepted a logical value as a parameter in the
same position as the new <file types list expC> parameter. This logical value has no function in dBASE Plus.
However, for backward compatibility, dBASE Plus will ignore a logical value if passed in place of the <file
types list expC>.

Examples <file types list expC> syntax:
// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// No fourth parameter,so "Files of Type" combobox contains default list of
217 dBL Language Reference

puts ()
// file types
filename = getFile("*.txt", "Choose File", true)

// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// Fourth parameter is empty string, so "Files of Type" combobox only
// contains: All (*.*)
filename = getFile("*.txt", "Choose File", true, "")

// GetFile dialog displays .txt files
// Title is "Choose File"
// No database combobox will display
// Fourth parameter specifies that Files of Type combobox contain:
// Text (*.txt) - matches internal type so description used
// doc Files (*.doc) - does not match internal type
// cpp Files (*.cpp) - does not match internal type
// Program Source (*.prg) - matches internal type so description used
// All (*.*) - ".*" specifies All (*.*)
filename = getFile("*.txt", "Choose File", true, "txt; doc; cpp; prg; .*")

Description Use PUTFILE() to present the user with a dialog box from which they can choose an existing file or table or
specify a new file or table name. If they choose an existing file, and SET SAFETY is ON, the user gets the
standard "Replace existing file?" dialog box. If they choose "No", their choice is ignored and they are left in the
PUTFILE(_) dialog box. PUTFILE(_) does not actually create or write anything to the specified file.

The PUTFILE() dialog box includes names of files whether they are currently open or closed. dBASE Plus
returns the full path name of the file whether SET FULLPATH is ON or OFF.

By default, the dialog box opened with PUTFILE() displays file names from the current directory the first time
you issue PUTFILE(). After the first time you use PUTFILE() and exit successfully, the subdirectory you
choose becomes the default the next time you use PUTFILE().

If <suppress database expL> is false, you can also choose from a list of databases. When a database is selected,
the dialog box displays a list of tables in that database instead of files in the current directory.

The dialog box is a standard Windows dialog box. Users can perform many Windows Explorer-like activities in
this dialog box, including renaming files, deleting files, and creating new folders. They can also right-click on a
file to get its context menu. These features are disabled when the dialog is displaying tables in a database instead
of files in a directory.

PUTFILE() returns an empty string if the user chooses the Cancel button or presses Esc.

See Also FILE(), GETFILE()

puts ()
Writes a character string and one or two end-of-line characters to a file previously opened with create() or
open(). Returns the number of characters written.

Syntax <oRef>.puts(<string expC> [, <characters expN> [, <end-of-line expC>]])

<oRef> A reference to the File object that created or opened the file.

<string expC> The character expression to write to the specified file. If you want to write only a portion of
<string expC> to the file, use the <characters expN> argument.

<characters expN> The number of characters of the specified character expression <string expC> to
write to the specified file, starting at the first character in <string expC>. If omitted, the entire string is written.
File/OS 218

read ()
<end-of-line expC> The end-of-line indicator, which can be a string of one or two characters. If omitted,
the default is a hard carriage return and line feed. The following table lists standard codes used as end-of-line
indicators.

Character code
(decimal) (hexadecimal) Represents
CHR(141) 0x8D Soft carriage return (U.S.)
CHR(255) 0xFF Soft carriage return (Europe)
CHR(138) 0x8A Soft linefeed (U.S.)
CHR(0) 0x00 Soft linefeed (Europe)
CHR(13) 0x0D Hard carriage return
CHR(10) 0x0A Hard linefeed

Use the CHR() function to create the <end-of-line expC> if needed. To designate the <end-of-line expC>, you
must also specify the <characters expN>. If you don’t want a line length limit, use an arbitrarily high number.
For example:

f.puts(cLine, 10000, chr(0x8d)) // Soft carriage return (U.S.)

Property of File

Description Use puts() to write text files. puts() writes a character string and one or two end-of-line characters to a file. If
the file was opened in append-only or read and append mode, the string is always added to the end of the file.
Otherwise, the string is written starting at the current file pointer position, overwriting any existing characters.
You must have either write or append access to use puts().

puts() returns the number of bytes written to the file, including the end-of-line character(s). If puts() returns 0,
no characters were written. Either <string expC> is an empty string, or the write was unsuccessful.

Use error() to determine if an error occurred.

When puts() finishes executing, the file pointer is located at the character immediately after the last character
written, which is the end-of-line character. Successive puts() calls writes one line after another. Use seek() to
move the file pointer before or after you use puts().

To write to a file that is not a text file, use write(). write() does not add the end-of-line character(s). To read
from a text file, use gets(). writeln() is identical to puts().

Example The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of week, so you need to test for its existence to determine whether
it should be created or opened. The name of the file, which is used in three different places, is set in a manifest
constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS.TXT"

f = new File()
if f.exists(LOG_FILE)
 f.open(LOG_FILE, "A")
else
 f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

See Also create(), eof(), error(), gets(), open(), seek(), write()

read ()
Returns a specified number of characters from a file previously opened with create() or open().

Syntax <oRef>.read(<characters expN>)

<oRef> A reference to the File object that created or opened the file.

<characters expN> The number of characters to return from the specified file.
219 dBL Language Reference

readln ()
Property of File

Description read() returns the number of characters you specify from the file opened by the File object. read() starts
reading characters from the current file pointer position, leaving the file pointer at the character immediately
after the last character read. Use seek() to move the file pointer before or after you use read().

If the file to be read is a text file, use gets() instead. gets() looks for end-of-line characters, and returns the
contents of the line, without the end-of-line character(s).

To write to a file, use write().

Example Suppose you have a data file generated by a mainframe computer that has fixed-length records with no record
breaks. You want to convert this file so that you have one record on each line. Use two File objects to read and
write the file, adding line breaks as you write:

#define REC_LENGTH 80
#define IN_FILE "STUFF.REC"
#define OUT_FILE "STUFF.TXT"

fIn = new File()
fOut = new File()

fIn.open(IN_FILE);
fOut.create(OUT_FILE);

do while not fIn.eof()
 fOut.puts(fIn.read(REC_LENGTH)) // Read fixed length; write with line break
enddo

fIn.close()
fOut.close()

See also create(), eof(), error(), gets(), open(), seek(), write()

readln ()
Returns a line of text from a file previously opened with create() or open().

Syntax <oRef>.readln([<characters expN> [, <end-of-line expC>]])

Property of File

Description readln() is identical to gets(). See gets() for details.

RENAME
Renames a file on disk.

Syntax RENAME <filename> TO <new name>

Description RENAME is identical to the File object’s rename() method, except that as a command, the file name arguments
are treated as names, not a character expressions. They do not require quotes unless they contain spaces or other
special characters. If the name is in a variable, you must use the indirection or macro operators.

See rename() for details on the operation of the command.

Example Compare this example with the equivalent example for rename():
rename AFILE to SOMETHING

See Also COPY FILE, DELETE FILE, ERASE, rename()

rename ()
Renames a file on disk.

Syntax <oRef>.rename(<filename expC>, <new name expC>)
File/OS 220

RUN
<oRef> A reference to a File object.

<filename expC> Identifies the file to rename (also known as the source file). <filename expC> may be a
file name skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in which you select
the file to rename.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<new name expC> Identifies the new name for the source file (also known as the target file). <new name
expC> may be a file name skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in
which you specify the name of the target file and its directory.

Property of File

Description rename() lets you change the name of a file at the operating system level.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE Plus displays a dialog box
asking if you want to overwrite the existing file. If SET SAFETY is OFF and a file exists with the same name as
the target file, an exception occurs, and the target file is not overwritten.

If you specify a different drive or directory for the target file, dBASE Plus moves the source file to that location.
When a path is not specified, the target file is moved to the current directory.

rename() does not automatically rename the auxiliary files associated with table files, such as indexes and
memo files. For example, it does not rename the MDX or DBT files associated with a DBF file. When renaming
tables, use the Database object’s renameTable() method.

Example The following example changes the name of a file in the current directory to something else:
new File().rename("AFILE", "SOMETHING")

See also copy()

RUN
Executes a program or operating system command from within dBASE Plus.

Syntax RUN <command>

<command> A command recognized by your operating system.

Description Use RUN to execute a single operating system command or program from within dBASE Plus. Enter
commands and file names exactly as you would when working in the command prompt; do not enclose them in
quotes. ! is equivalent to RUN.

RUN opens a command prompt in the current directory and executes <command>. The command prompt
automatically closes when the program or command is finished. Commands and programs launched by RUN
execute as a separate task, as if you had started that task from the Start menu. dBASE Plus continues to run on
its own.

To open a command prompt so you can enter multiple commands yourself, use the DOS command. To execute
a Windows application, use RUN() instead; it does not open a command prompt window.

Example In the following example, clicking a button on a form runs a command line compression utility through a batch
file:

function backupButton_onClick
 run ZIPEM.BAT

See Also DOS, RUN()

RUN()
Executes a program or operating system command from within dBASE Plus, returning the instance handle of
the program.
221 dBL Language Reference

seek ()
Syntax RUN([<direct expL>,] <command expC>)

<direct expL> Determines whether RUN() runs a Windows program directly (true) or through a
command prompt (false). If <command expC> is not a Windows program, <direct expL> must be false, or
RUN() has no effect. If you omit <direct expL>, dBASE Plus assumes a value of false.

<command expC> A Windows program name or a command recognized by your operating system.

Description Use RUN() to execute another Windows program or an operating system command from within dBASE Plus.

To run another Windows program, <direct expL> should be true; otherwise, a separate command prompt is
opened first, and you cannot get the returned instance handle.

See Also DOS, RUN

seek ()
Moves the file pointer in a file previously opened with create() or open(), and returns the new position of the
file pointer.

Syntax <oRef>.seek(<offset expN> [, <position expN>])

<oRef> A reference to the File object that created or opened the file.

<offset expN> The number of bytes to move the file pointer in the specified file. If <offset expN> is
negative, the file pointer moves toward the beginning of the file. If <offset expN> is 0, the file pointer moves to
the position you specify with <position expN>. If <offset expN> is positive, the file pointer moves toward the
end of the file or beyond the end of the file.

<position expN> The number 0, 1, or 2, indicating a position relative to the beginning of the file (0), to
the file pointer’s current position (1), or to the end of the file (2). The default is 0.

Property of File

Description seek() moves the file pointer in the file you specify relative to the position specified by <position_expN>, and
returns the resulting position of the file pointer as an offset from the beginning of the file. The File object’s
position property is also updated with this new position. If an error occurs, seek () returns –1.

The movement of the file pointer is relative to the beginning of the file unless you specify otherwise with
<position expN>. For example, seek(5) moves the file pointer five characters from the beginning of the file (the
6th character) while seek(5,1) moves it five characters forward from its current position. You can move the file
pointer beyond the end of the file, but you can’t move it before the beginning of the file.

To move the file pointer to the beginning of a file, use seek(0). To move it to the end of a file, use seek(0, 2). To
move to the last character in a file, use seek(–1,2).

gets(), puts(), read(), and write() also move the file pointer as they read from or write to the file.

Example Suppose you’re exporting data from a table in a special format for another program. The export file must have
the number of rows of data written in the file, starting at the 9th character. You extend the File class, adding
methods to create the export file, write the data in the special format, and record the number of rows written.
The following is the method that records the number of rows.

function recordRowsWritten()
 this.seek(8) // 9th character == offset 8
 this.write("" + this.rowsExported) // Convert number to string to write

See also gets(), position, puts(), read(), write()

SET DIRECTORY
Changes the current drive or directory.

Syntax SET DIRECTORY TO [<path>]

<path> The new drive and/or path. Quotes (single or double) are required if the path contains spaces or other
special characters; optional otherwise.
File/OS 222

SET FULLPATH
Description SET DIRECTORY works like CD, except SET DIRECTORY TO (with no argument) returns you to the
HOME() directory, while CD with no argument displays the current directory.

To get the current directory, use SET("DIRECTORY").

See Also CD, HOME(), SET(), VALIDDRIVE(), _dbwinhome

SET FULLPATH
Specifies whether functions that return file names return the full path with the file name.

Syntax SET FULLPATH on | OFF

Description Use SET FULLPATH ON when you need to have functions or methods such as shortName(), return a file name
with its full path. When SET FULLPATH is OFF, these functions include the drive letter (and colon) with the
file name only.

Some functions, such as GETFILE(), always return the full path, regardless of SET FULLPATH.

See Also GETFILE(), shortName()

SET PATH
Specifies the directory search route that dBASE Plus follows to find files that are not in the current directory.

Syntax SET PATH TO [<path list>]

<path list> A list of (optional) drives and directories indicating the search path—one or more drives and
directories you want dBASE Plus to search for files. Separate each directory path name with commas,
semicolons, or spaces. If the path name contains spaces or other special characters, the path name should be
enclosed in quotes.

Description Use SET PATH to establish a search path to access files located on directories other than the current directory.
When no SET PATH setting exists and you don't provide the full path name when you specify a file name,
dBASE Plus searches for that file only in the current directory.

The order in which you list drives and directories with SET PATH TO <path list> is the order dBASE Plus
searches for a file in that search path. Use SET PATH when an application's files are in several directories.

SET PATH TO without the option <path list> resets the search path to the default value (no path).

See Also CD, SET DIRECTORY

shortName ()
Returns the short (8.3) name of a file.

Syntax <oRef>.shortName(<filename expC>)

<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

Property of File

Description shortName() checks the file specified by <filename expC> and returns a name for the file following the DOS
file-naming convention (eight-character file name, three-character extension). If SET FULLPATH is ON, the
path is also returned.

See also exists()
223 dBL Language Reference

size ()
size ()
Returns the size of a file in bytes.

Syntax <oRef>.size(<filename expC>)

<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

Property of File

Description Use size() to determine the size of a file on disk.

With the byte-level access methods of the File object, dBASE Plus doesn’t update the size on the file recorded
on the disk until you close() the file.

Example The following example uses size() to display the size of the autoexec.bat:
? new File().size("C:\autoexec.bat")

See also date(), time()

time ()
Returns the time stamp for a file, the time the file was last modified.

Syntax <oRef>.time(<filename expC>)

<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

Property of File

Description Use time() to determine the time of day when the last change was made to a file on disk. time() returns the time
as a character string.

When you update a file, dBASE Plus changes the file’s time stamp to the current operating system time when
the file is written to disk. For example, when the user edits a DB table, dBASE Plus changes the time stamp on
the table file when the file is closed. time() reads the time stamp and returns its current value.

To get the time the file was created, use createTime(). For the date the file was last modified, use date().

Example The following example uses time() to display the time the autoexec.bat was last modified:
? new File().time("C:\autoexec.bat")

See also createTime(), date()

TYPE
Display the contents of a text file.

Syntax TYPE <filename 1> | ? | <filename skeleton 1>
[MORE]
File/OS 224

VALIDDRIVE()
[NUMBER]
[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

<filename> | ? | <filename skeleton> The file whose contents to display. TYPE ? and TYPE
<filename skeleton> display a dialog box from which you can select a file. If you specify a file without
including its path, dBASE Plus looks for the file in the current directory, then in the path you specify with
SET PATH. You must specify a file-name extension.

MORE Pauses output when it fills the Command window; otherwise, the output scrolls through the
Command window to the end of the file.

NUMBER Precedes each line of output with its line number.

TO FILE <filename 2> | ? | <filename skeleton> Directs output to the text file <filename 2>, as
well as to the results pane of the Command window. By default, dBASE Plus assigns a .TXT extension to
<filename 2> and saves the file in the current directory. The ? and <filename skeleton> options display a dialog
box in which you specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer, as well as to the results pane of the Command window.

Description Use TYPE to display the contents of text files. All program files in dBASE Plus are text files that you can
display with TYPE.

If you TYPE a file TO FILE or TO PRINTER, dBASE Plus adds two lines of output at the beginning of the
saved or printed output if SET HEADINGS is ON. The first line is a blank line, and the second line contains the
full path name and date stamp of the source file. If you specify NUMBER, these two lines are not numbered;
numbering begins with 1 at the first actual line of the source file.

If you specify MORE and cancel output before completion, *** INTERRUPTED *** appears in the results
pane of the Command window, but does not appear in the incomplete saved or printed output.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE Plus displays a dialog box
asking if you want to overwrite the file. If SET SAFETY is OFF, any existing file with the same name is
overwritten without warning.

See Also EJECT, SET ALTERNATE, SET HEADINGS, SET PRINTER, SET SAFETY

VALIDDRIVE()
Returns true if the specified drive exists and can be read. Returns false if the specified drive does not exist or
cannot be read.

Syntax VALIDDRIVE(<drive expC>)

<drive expC> The drive to be tested, which can be either:

• A drive letter, optionally followed by a colon, or
• The UNC name for a drive

Description Use VALIDDRIVE() to determine if a specified drive exists and is ready before using CD, SET DEFAULT,
SET DIRECTORY or SET PATH. VALIDDRIVE() is also useful if your program copies files to or from a
drive, or includes drive letters in any file names.

VALIDDRIVE() can verify any drive specified, including drives created by partitioning a hard disk and
mapped network drives. Checking for a floppy disk or network drive takes a few seconds, so you should display
a message before you check.

Example The following example checks if a disk is inserted in drive A:
if not validdrive("a:")
 // No disk (or no floppy drive installed)
endif

The following example use a UNC name to check if the user is connected to a particular network drive:
if not validdrive("\\finance\vol2")
 // Not connected to Finance server, or has no access to Vol2 volume
endif
225 dBL Language Reference

write ()
See Also CD, SET DIRECTORY, SET PATH

write ()
Writes a character string to a file previously opened with create() or open(). Returns the number of characters
written.

Syntax <oRef>.write(<expC> [, <characters expN>])

<oRef> A reference to the File object that created or opened the file.

<expC> The character expression to write to the specified file. If you want to write only a portion of
<string expC> to the file, use the <characters expN> argument.

<characters expN> The number of characters of the specified character expression <string expC> to
write to the specified file, starting at the first character in <string expC>. If omitted, the entire string is written.

Property of File

Description write() writes a character string to a file. If the file was opened in append-only or read and append mode, the
string is always added to the end of the file. Otherwise, the string is written starting at the current file pointer
position, overwriting any existing characters. You must have either write or append access to use write().

write() returns the number of bytes written to the file. If write() returns 0, no characters were written. Either
<expC> is an empty string, or the write was unsuccessful.

Use error() to determine if an error occurred.

When write() finishes executing, the file pointer is located at the character immediately after the last character
written. Use seek() to move the file pointer before or after you use write().

To write to a text file, use puts(). puts() automatically adds the end-of-line character(s).

To read from a file, use read().

Example Suppose you’re exporting data from a table in a special format for another program. The export file must have
the number of rows of data written in the file, starting at the 9th character. You extend the File class, adding
methods to create the export file, write the data in the special format, and record the number of rows written.
The following is the method that records the number of rows.

function recordRowsWritten()
 this.seek(8) // 9th character == offset 8
 this.write("" + this.rowsExported) // Convert number to string to write

See also create(), eof(), error(), open(), puts(), read(), seek()

writeln ()
Writes a character string and one or two end-of-line characters to a file previously opened with create() or
open(). Returns the number of characters written.

Syntax <oRef>.writeln(<string expC> [, <characters expN> [, <end-of-line expC>]])

Property of File

Description writeln() is identical to puts(). See puts() for details.

_dbwinhome
Contains the home directory of the currently running instance of dBASE Plus.

Description There are two “home” directories:

• The directory where dBASE Plus is installed, by default:

C:\Program Files\dBASE\Plus\
File/OS 226

_dbwinhome
• The directory where the actual executable file, PLUS.exe is installed. This is in the \Bin subdirectory of the
installation diretory, so by default, it’s:

C:\Program Files\dBASE\Plus\Bin\

_dbwinhome contains the installation home directory, from which you can access all subdirectories.
_dbwinhome contains the full path name whether SET FULLPATH is ON or OFF, and always includes the
trailing backslash, as shown.

_dbwinhome is read-only.

To identify where the currently running instance of PLUS.exe is located, use HOME().

Example The following statement changes the directory to dBASE Plus’ \Sample subdirectory:
cd "&_dbwinhome.Custom"

The macro operator is used to expand the path name contained in _dbwinhome. The period acts as the macro
terminator. The resulting command looks like:

cd "C:\PROGRAM FILES\DBASE\PLUS\SAMPLE"

(The path name in _dbwinhome is all-uppercase.) The quotes are required because the path name contains
spaces.

See Also CD, HOME(), SET DIRECTORY
227 dBL Language Reference

C h a p t e r

Chapter 12Xbase
Every Xbase command and function includes an OODML section that lists the object-oriented dBL equivalent,
if there is one.

The examples in this chapter are mostly data processing and utility code. Data entry in dBASE Plus is done at
another level, either using the form-based events that are melded into the Xbase worksets, or the new dBL data
objects, which replace most Xbase functionality and provide powerful new object-oriented capabilities.

The examples also do not use any new dBL syntax, and thus are compatible with older versions of dBASE.

Common command elements
The following sections detail command elements that are common to many Xbase commands and functions.

Filenames
Filenames are required for many Xbase commands. The filename may refer to a file on disk or a table in a
database. A filename is indicated by <filename> in the syntax diagram and may be any one of the following
forms:

• A filename, without the extension. When the filename refers to a table, dBASE Plus will assume the
extension specified by the SET DBTYPE command (.DBF for dBASE and .DB for Paradox), which can be
overridden in most commands with the command’s TYPE clause. If the SET DATABASE command has
been used to set a server database as the default, then the table name will be used as-is, without an extension.
When the filename is not a table, there is always a default extension, which is listed in each command
description.

• A filename, with the extension.

• A table in a database. Use the BDE Administrator to create database aliases. Specify the database alias in
colons before the table name as follows:

:databaseAlias:tableName

If the database is not already open, dBASE Plus displays a dialog box in which you specify the parameters,
such as a login name and password, necessary to establish a connection to that database.

• A filename skeleton. Use the ? and * as wildcard characters. A single ? is the same as *, meaning any
filename. A dialog box is displayed from which you can choose a table, either a file on disk or a table from a
database.

In all cases, the <filename> may be enclosed in string delimiters (single quotes, double quotes, or square
brackets). Delimiters are required if <table name> contains spaces or other special characters. If the <filename>
is contained in a variable and is not defined as an expression—functions expect filenames that are character
expressions, commands do not—use the parentheses as indirection operators on the variable containing the
<filename>.
228 dBL Language Reference

If the <filename> refers to a file and does not contain a path and the file is not found in the current directory,
then the path specified by SET PATH is also searched.

In many commands, the <filename> does not have to be specified in the statement. If it is omitted, dBASE Plus
will display a dialog box from which you can choose a file to execute the command.

For commands that specifically create files and not tables, the database options are not allowed. If a dialog box
is displayed, it will not include the controls to choose a database.

If you are about to overwrite a file, you will get a confirmation dialog box if SET SAFETY is ON. If SET
SAFETY is OFF, the file will be overwritten without a warning.

Aliases
While some commands work only in the current work area, others allow you to specify the work area in which
they perform their function. Work areas are referenced by their alias, which may take one of the following
forms:

• The work area number, from 1 to 225

• A character string that contains a single letter from A through J, which correspond to work area 1 through 10.
This is supported for compatibility.

• A character string containing the name of the work area: the name of the table, or the alias assigned to the
work area when the table was opened. See the USE command for information on assigning aliases.

When using a letter or work area name as the alias in a function, the alias must be a character expression, usually
the string enclosed in string delimiters. In a command, the delimiters are optional and usually not used, unless
the alias contains spaces or other special characters. In addition to the normal string delimiters (single quotes,
double quotes, and square brackets), colons may be used to delimit aliases in commands.

The alias option is indicated by <alias> in the syntax tables. When you do not specify an alias, the command or
function works on the current work area.

Command scope
Many Xbase commands have a scope option (not to be confused with the scope resolution operator) that dictates
which records to process. The scope honors the current index order, filter, and key constraints. Three clauses
comprise a command’s scope:

• <scope>
• FOR <for condition>
• WHILE <while condition>

There are four different options for <scope>:

ALL All records, starting with the first.

REST Starting with the current record, processes all subsequent records in the table

NEXT <expN> Starting with the current record, processes the next <expN> records. NEXT 1 processes the
current record only.

RECORD <bookmark> The individual record referenced by the bookmark <bookmark>. You may also
specify a record number for DBF tables.

Different commands have different default scopes. In conjunction with <scope>, many commands have one or
both of the following conditional clauses:

FOR <for condition> Specifies a condition that must evaluate to true for each record to be processed. If
the <for condition> fails, that record is skipped and the next record is tested.

WHILE <while condition> Specifies a condition that must evaluate to true for processing to continue.
The test is performed before processing each record. If the <while condition> fails, processing stops.

If you specify a FOR clause, the default scope of the command becomes ALL. If you specify a WHILE clause,
with or without a FOR clause, the default scope of the command becomes REST.
229 dBL Language Reference

ALIAS()
ALIAS()
Returns the alias name of the current or a specified work area.

Syntax ALIAS([<alias>])

<alias> The work area you want to check. (If <alias> is a work area alias name, there is no reason to use this
function because that alias name is what the function will return.)

Description ALIAS() returns the alias name of any work area within the current workset, in all uppercase. If no table is
opened in the specified work area, ALIAS() returns an empty string ("").

Routines that do work in other work areas usually save the current work area before switching, and then switch
back when done. Use ALIAS() to get the name of the current work area, then switch back using the SELECT
command.

OODML There is no concept of the "current" Query object. You may refer to any Query object at any time through its
object reference.

Example In this example, a function changes the index order of table of classes at a school:
PROCEDURE ClassesByRoom
 local cAlias
 cAlias = alias()
 select CLASSES
 set order to ROOM
 select (cAlias)

This function saves the alias name of the currently selected table—which might be the table of teachers,
students, or even the classes table—in the variable cAlias. When the function is done, that alias is reselected
with the SELECT command, using the parentheses as indirection operators.

See Also DBF(), SELECT, SELECT(), USE, WORKAREA()

APPEND
Adds a new record to a table.

Syntax APPEND [BLANK]

BLANK Adds a blank record to the end of the table and makes the blank record the current record.

Description APPEND displays the currently selected table in an auto-generated data entry form and puts the form in Append
mode. This has the same effect as using the EDIT command to display the data entry form and manually
choosing Add Row from the menu or toolbar. This interactive APPEND is rarely used in applications because
you have no control over the appearance of the data entry form.

The APPEND BLANK command adds a blank record to the current table and positions the record pointer on the
new record, but it doesn't display a window to edit the data. This is often done in an older style of dBASE
programming, and is typically followed by REPLACE statements to store values into the newly-created record.

When accessing SQL tables, some database servers do not allow you to enter blank records. Also, constraints on
tables created with non-null fields, including DBF7 tables, prevent entering records with fields left blank. In
these cases, APPEND BLANK will fail and cause an error.

OODML Use the Rowset object’s beginAppend() method. While APPEND BLANK creates a blank record first that you
must delete if you decide to discard the new record, beginAppend() blanks the row buffer and creates a new row
only if the row is modified and saved.

Example The following function is used when adding data to a table. It attempts to recycle records by looking for a blank
deleted record. If one is not found the APPEND BLANK command is used to create a new record.

PROCEDURE NewRec
 set deleted off
 if seek(" ") .and. deleted() .and. rlock()
 recall
 else
Xbase 230

APPEND AUTOMEM
 append blank
 endif
 set deleted on

First, DELETED is turned OFF so that deleted records can be found. (The normal operation of the application
has DELETED ON.) The SEEK() function looks for a record with a character key that starts with a blank space,
which indicates a blank record; a valid index key cannot be blank. The table must be ordered on a character field
when the function is called. If a blank record is found, the DELETED() function makes sure it’s deleted, and an
RLOCK() is attempted to prevent anyone else from grabbing the same record at the same time.

If all of these things are successful, the record is RECALLed and made available for use. Otherwise, a new
blank record is created with APPEND BLANK. Either way, DELETED is turned back ON and the function is
completed, leaving the record pointer at the new or recycled record.

To see the function that deletes records for recycling, see the example for BLANK.

See Also APPEND AUTOMEM, APPEND FROM, EDIT, SET CARRY, SET RELATION

APPEND AUTOMEM
Adds a new record to a table using the values stored in automem variables.

Syntax APPEND AUTOMEM

Description APPEND AUTOMEM adds a new record to the currently selected table and then replaces the value of fields in
the table with the contents of corresponding automem variables. Automem variables are variables that have the
same names and data types as the fields in the current table. Automem variables must be private or public; they
cannot be local or static. If a field does not have a matching variable, that field is left blank.

APPEND AUTOMEM is used as part of data entry in an older style of dBASE programming. In dBASE Plus,
controls in data entry forms are dataLinked to fields; there is no need for a set of corresponding variables.
APPEND AUTOMEM is also used for programatically adding records to a table. It is more convenient than
using APPEND BLANK and REPLACE.

To use APPEND AUTOMEM to add records to a table, first create a set of automem variables. The
USE...AUTOMEM command opens a table and creates the corresponding empty automem variables for that
table. CLEAR AUTOMEM creates a set of empty automem variables for the current table or reinitializes
existing automem variables to empty values. STORE AUTOMEM copies the values in the current record to
automem variables. You may also create the individual variables manually.

When referring to the value of automem variables you need to prefix the name of an automem variable with
M-> to distinguish the variable from the corresponding fields, which have the same name. The M-> prefix is not
needed during variable assignment; the STORE command and the = and := operators do not work on Xbase
fields.

Note: Read-only field type - Autoincrement

Because APPEND AUTOMEM and REPLACE AUTOMEM write values to your table, the contents of the
read-only field type, Autoincrement, must be released before using either of these commands. In the following
example, the autoincrement field is represented by "myAutoInc":

use table1 in 1
use table2 in 2
select 1 // navigate to record
store automem
release m->myAutoInc
select 2
append automem

OODML The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

Example The following function is used to record access to an application as part of its startup process:
PROCEDURE LogRec
 private user, date, time
 use LOGREC in select()
 select LOGREC
231 dBL Language Reference

APPEND FROM
 user = user()
 date = date()
 time = time()
 append automem
 use

The variables that will be used as automem variables are first declared private, to hide any variables of the same
name that might exist. Then the table is opened in an unused work area and selected. The automem variables are
created manually, using built-in functions. Finally, the values are appended to the table, and the table is closed.

See Also APPEND, CLEAR AUTOMEM, REPLACE AUTOMEM, STORE AUTOMEM, USE

APPEND FROM
Copies records from an existing table to the end of the current table.

Syntax APPEND FROM <filename>
[FOR <condition>]
[[TYPE] DBASE | PARADOX | SDF |

DELIMITED [WITH
<char> | BLANK]]

[REINDEX]

<filename> The name of the file whose records you want to append to the current table.

FOR <condition> Restricts APPEND FROM to records in <filename> that meet <condition>. You can
specify a FOR <condition> only for fields that exist in the current table. dBASE Plus pretends that the record is
appended, then evalulates the <condition>. If it fails, the record is not actually appended.

[TYPE] DBASE | PARADOX | SDF |
DELIMITED [WITH <char> | BLANK] Specifies the default file extension, and for text files, the text
file format. For example, if you specify a .DBF file as the <filename> and TYPE PARADOX, the TYPE is
ignored because the file is really a dBASE file. The TYPE keyword is included for readability only; it has no
effect on the operation of the command. The following table provides a description of the different file formats
that are supported:

Type Description
DBASE A dBASE table. If you don't include an extension for <filename>, dBASE

Plus assumes a .DBF extension.
PARADOX A Paradox table. If you don't include an extension for <filename>, dBASE

Plus assumes a .DB extension.
SDF A System Data Format text file. Records in an SDF file are fixed-length, and

the end of a record is marked with a carriage return and a linefeed. If you don't
specify an extension, dBASE Plus assumes .TXT.

DELIMITED A text file with fields separated by commas. These files are also referred to as
CSV (Comma Separated Value) files. Character fields may be delimited with
double quotation marks; the quotes are required if the field itself contains a
comma.
Each carriage return and linefeed indicates a new record. If you don't specify
an extension, dBASE Plus assumes .TXT.

DELIMITED
WITH <char>

Indicates that character data is delimited with the character <char> instead of
with double quotes. For example, if delimited with a single quote instead of a
double quote, the clause would be:
DELIMITED WITH '

DELIMITED
WITH BLANK

Indicates that data is separated with spaces instead of commas, with no
delimiters.

REINDEX Rebuilds all open index files after APPEND FROM finishes executing. Without REINDEX,
dBASE Plus updates all open indexes after appending each record from <filename>. When the current table has
multiple open indexes or contains many records, APPEND FROM executes faster with the REINDEX option.
Xbase 232

APPEND FROM ARRAY
Description Use the APPEND FROM command to add data from another file or table to the end of the current table. You
can append data from dBASE tables or files in other formats. Data is appended to the current table in the order
in which it is stored in the file you specify.

When you specify a table as the source of data, fields are copied by name. If a field in the current table does not
have a matching field in the source table, those fields will be blank in the appended records. If the field types do
not match, type conversion is attempted. For example, if a field named ID in the current table is character field,
but the ID field in the source table is numeric, the number will be converted into a string when it is appended.

When appending text files, SDF or DELIMITED, there is no data type in the source file; everything is a string.
For non-character fields, the strings should be in the following format to match the data type in the table:

• For logical or boolean fields, the letters T, t, Y, and Y indicate true. All other letters and blanks are
considered false.

• Dates must be in the format YYYYMMDD.

If the field of the current table is shorter than the matching field of the source table, dBASE Plus truncates the
data.

If SET DELETED is OFF, dBASE Plus adds records from a source dBASE table that are marked for deletion
and doesn't mark them for deletion in the current table. If SET DELETED is ON, dBASE Plus doesn't add
records from a source dBASE table that are marked for deletion.

When importing data from other files, remove column headings and leading blank rows and columns;
otherwise, this data is also appended.

OODML Use the UpdateSet object’s append() or appendUpdate() method to append data from other tables.

See Also APPEND, APPEND AUTOMEM, COPY, REINDEX, SET DELETED

APPEND FROM ARRAY
Adds to the current table one or more records containing data stored in a specified array.

Syntax APPEND FROM ARRAY <array>
[FIELDS <field list>]
[FOR <condition>]
[REINDEX]

<array> A reference to the array containing the data to store in the current table as records.

FIELDS <field list> Appends <array> data only to the fields in <field list>. Without FIELDS <field list>,
APPEND FROM ARRAY appends to all the fields in the table, starting with the first field.

FOR <condition> Restricts APPEND FROM ARRAY to array rows in <array> that meet <condition>.
The FOR <condition> should reference the fields in the current table. dBASE Plus pretends that the record is
appended, then evalulates the <condition>. If it fails, the record is not actually appended.

REINDEX Rebuilds open indexes after all records have been changed. Without REINDEX, dBASE Plus
updates all open indexes after appending each record from <array>. When the current table has multiple open
indexes or contains many records, APPEND FROM ARRAY executes faster with the REINDEX option.

Description APPEND FROM ARRAY treats one- and two-dimensional arrays as tables, with columns corresponding to
fields and rows corresponding to records. A one-dimensional array works as a table with only one row;
therefore, you can append only one record from a one-dimensional array. A two-dimensional array works as a
table with multiple rows; therefore, you can append as many records from a two-dimensional array as it has
rows.

When you append data from an array to the current table, dBASE Plus appends each array row as a single
record. If the table has more fields than the array has columns, the excess fields are left empty. If the array has
more columns than the table has fields, the excess columns are ignored. The data in the first column is added to
the first field's contents, the data in the second column to the second field's contents, and so on.

The data types of the array must match those of corresponding fields in the table you are appending. If the data
type of an array element and a corresponding field don't match, dBASE Plus returns an error.
233 dBL Language Reference

APPEND MEMO
If the current table has a memo field, dBASE Plus ignores this field. For example, if the second field is a memo
field, dBASE Plus adds the data in the array's first column to the first field's contents, and the data in the array's
second column to the third field's contents.

Use APPEND FROM ARRAY as an alternative to automem variables when you need to transfer data between
tables where the structures are similar but the field names are different.

OODML Use two nested loops to first call the Rowset object’s beginAppend() method to create the new rows, and then to
copy the elements of the array into the value properties of the Field objects in the rowset’s fields array.

See Also APPEND AUTOMEM, COPY TO ARRAY, DECLARE, REPLACE FROM ARRAY, STORE AUTOMEM

APPEND MEMO
Appends a text file to a memo field.

Syntax APPEND MEMO <memo field> FROM <filename>
[OVERWRITE]

<memo field> The memo field to append to.

FROM <filename> The text file to append. The default extension is .TXT.

OVERWRITE Erases the contents of the current record memo field before copying the contents of
<filename>.

Description Use the APPEND MEMO command to insert the contents of a text file into a memo field. You may use an alias
name and the alias operator (that is, alias->memofield) to specify a memo field in the current record of any open
table.

APPEND MEMO is identical to REPLACE MEMO, except that APPEND MEMO defaults to appending the
file to the current contents of the memo field and has the option of overwriting, while REPLACE MEMO is the
opposite.

While memo fields may contain types of information other than text, binary fields are recommended for storing
images, sound, and other user-defined binary type information. Use OLE fields for linking to OLE documents
from other Windows applications.

OODML Use the Field object’s replaceFromFile() method.

Example The following event handler displays a dialog to pick a text file, then adds the contents of that file to a memo
field. The date and time are written to the memo field before the added file.

PROCEDURE addTextButton_onClick
 local cFile, cCRLF
 cCRLF = chr(13) + chr(10)
 cFile = getfile("*.txt", "Text file to import")
 if "" # cFile
 replace MEMO_FIELD with cCRLF + dtoc(date()) + " " + time() + cCRLF additive
 append memo MEMO_FIELD from (cFile)
 endif

The date and time, with a line break before and after, is written to the memo field using the REPLACE
command with the ADDITIVE option for memo fields.

GETFILE() will return an empty string if no file is selected. In the IF statement, the order of the empty string
and the variable cFile is important. If they were the other way around and SET EXACT is OFF, then the IF
statement would always be false.

The parentheses are used as indirection operators to get the name of the file from the variable. Without them,
dBASE Plus would attempt to append a file named cFile.

See Also COPY MEMO, REPLACE BINARY, REPLACE MEMO, REPLACE MEMO...WITH ARRAY, REPLACE
OLE
Xbase 234

AVERAGE
AVERAGE
Computes the arithmetic mean (average) of specified numeric fields in the current table.

Syntax AVERAGE [<exp list>]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar list> | TO ARRAY <array>]

<exp list> The numeric fields, or expressions involving numeric fields, to average.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar list> | TO ARRAY <array> Initializes and stores averages to the variables (or
properties) of <memvar list> or stores averages to the existing array <array>. If you specify an array, each field
average is stored to elements in the order in which you specify the fields in <exp list>. If you don't specify
<exp list>, each field average is stored in field order. <array> can be a single- or multidimensional array; the
array elements are accessed via their element numbers, not their subscripts.

Description The AVERAGE command computes the arithmetic means (averages) of numeric expressions and stores the
results in specified variables or array elements. If you store the values in variables, the number of variables must
be exactly the same as the number of fields or expressions averaged. If you store the values in an array, the array
must already exist, and the array must contain at least as many elements as the number of averaged expressions.

If SET TALK is ON, AVERAGE also displays its results in the results pane of the Command window. The SET
DECIMALS setting determines the number of decimal places that AVERAGE displays. Numeric fields in blank
records are evaluated as zero. To exclude blank records, use the ISBLANK() function in defining a FOR
condition. EMPTY() excludes records in which a specified expression is either 0 or blank.

OODML Loop through the rowset to calculate the average.

Example The following example uses AVERAGE to calculate the average year to date sales for all companies in the
Company table and displays it in Text control on a form:

select COMPANY
average YTD_SALES to form.ytdSalesText.text

See Also CALCULATE, COUNT, SUM, TOTAL

BEGINTRANS()
Begins transaction logging.

Syntax BEGINTRANS([<database name expC> [,<isolation level expN>]])

<database name expC> The BDE alias of the SQL database in which to begin the transaction.

• If <database name expC> is omitted but a SET DATABASE statement has been issued, BEGINTRANS()
refers to the database in the SET DATABASE statement.

• If <database name expC> is omitted and no SET DATABASE statement has been issued, the default
database, which supports DBF and DB tables is used.

<isolation level expN> Specifies a pre-defined server-level transaction isolation scheme.

• Valid values for <isolation level> are:

Value Description
0 Server's default isolation level
1 Uncommitted changes read (dirty read)
2 Committed changes read (read committed)
3 Full read repeatability (repeatable read)
235 dBL Language Reference

BINTYPE()
• <isolation level> is not supported for DBF and DB tables.

• If an invalid value is given for <isolation level>, a "Value out of range" error is generated.

• The <isolation level> is server-specific; a "Not supported" error will result from the database engine if an
unsupported level is specified.

Note If you include <database name expC> when you issue BEGINTRANS(), you must also include it in subsequent
COMMIT() or ROLLBACK() statements within that transaction. If you don't, dBASE Plus ignores the
COMMIT() or ROLLBACK() statement.

Description Separate changes that must be applied together are considered to be a transaction. For example, transferring
money from one account to another means debiting one account and crediting another. If for whatever reason
one of those two changes cannot be done, the whole transaction is considered a failure and any change that was
made must be undone.

Transaction logging records all the changes made to all the tables in a database. If no errors are encountered
while making the individual changes in the transaction, the transaction log is cleared with COMMIT() and the
transaction is done. If an error is encountered, all changes made so far are undone by calling ROLLBACK().

All locks made during a transaction are maintained until the transaction is completed. This ensures that no one
else can make any changes until the transaction is committed or abandoned.

You can't nest transactions with BEGINTRANS(). If you issue BEGINTRANS() against an SQL database that
does not support transactions, or if a server error occurs, BEGINTRANS() returns false. Otherwise, it returns
true. If BEGINTRANS() returns false, use SQLERROR() or SQLMESSAGE() to determine the nature of the
server error that might have occurred.

OODML Call the beginTrans() method of the Database object.

See Also COMMIT(), FLOCK(), RLOCK(), ROLLBACK(), SET EXCLUSIVE, SQLERROR(), SQLMESSAGE()

BINTYPE()
Returns the predefined type number of a specified binary field.

Syntax BINTYPE([<field name>])

<field name> The name of a field in the current table.

Description BINTYPE() returns the predefined binary type number of a binary field in the current table. Using this
command, you can determine the type of data stored in the field. The values returned by BINTYPE() are the
following:

Predefined binary type
numbers Description
1 to 32K – 1 (1 to 32,767) User-defined file types
32K (32,768) .WAV files
32K + 1 (32,769) .BMP and .PCX files

BINTYPE() returns an error if a non-binary field is specified. It returns a value of 0 if the binary field is empty.

OODML No direct equivalent. You may be able to ascertain the data type by examining the data in the value of the Field
object.

See Also COPY BINARY, PLAY SOUND REPLACE BINARY, RESTORE IMAGE

BLANK
Fills fields in records with blanks.

Syntax BLANK
[<scope>]
[FOR <condition 1>]
Xbase 236

BOF()
[WHILE <condition 2>]
[FIELDS

<field list> | [LIKE <skeleton 1>] [EXCEPT <skeleton 2>]]
[REINDEX]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

FIELDS <field list> | LIKE <skeleton 1> | EXCEPT <skeleton 2> The fields to blank. Without
FIELDS, BLANK replaces all fields. If you specify FIELDS LIKE <skeleton 1>, the BLANK command
restricts the fields that are blanked to the fields that match <skeleton 1>. Conversely, if you specify FIELDS
EXCEPT <skeleton 2>, the BLANK command makes all fields blank except those whose names match
<skeleton 2>.

REINDEX Rebuilds all open indexes after BLANK finishes executing. Without REINDEX, dBASE Plus
updates all open indexes after each record is made blank. When the current table has multiple open indexes or
contains many records, BLANK executes faster with the REINDEX option.

Description Use BLANK to blank-out fields or records in the current table. BLANK has the same effect as using REPLACE
on each field with a null value. For DBF7, DB, and SQL tables, the fields are replaced with null values. For
earlier versions of DBF tables, the fields are replaced with blanks (spaces). EMPTY() and ISBLANK() return
true for a field whose value has been replaced using BLANK. BLANK fills an existing record with the same
values as APPEND BLANK. Updates to open indexes are performed after each record or a set of records is
blanked.

The distinction between blank and zero values in numeric fields can be significant when you use commands
such as AVERAGE and CALCULATE.

For earlier DBF tables, blank numeric fields evaluate to zero and blank logical or boolean fields evaluate to
false. In DBF7 tables, which support true null values, the value of the field is null, although some commands
may display the null value as zero or false.

OODML Use a loop to assign null values to the value properties of the Field objects.

Example The followin function blanks records before deleting them, making them available for recycling:
PROCEDURE DelRec
 blank
 delete

To see the function that reclaims recycled records, see the example for APPEND.

See Also APPEND, ISBLANK(), EMPTY(), REPLACE

BOF()
Indicates if the record pointer in a table is at the beginning of the file.

Syntax BOF([<alias>])

<alias> The work area you want to check.

Description BOF() returns true when the record pointer has just moved before the first logical record of the table in the
specified work area; otherwise, it returns false. For example, if you issue SKIP -1 when the record pointer is on
the first record, BOF() returns true. If you attempt to navigate backwards when BOF() is true, an error occurs.

However, unlike EOF(), the record pointer can never stay before the first record. After the record pointer has
moved past the first record, it is automatically moved back to the first record, even though BOF() remains true.
Subsequent navigation will cause BOF() to return false unless the navigation moves the record pointer before
the first record again.

When you first USE a table, BOF() can never be true, but EOF() can if the table is empty, or you are using a
conditional index with no matching records.

If no table is open in the specified work area, BOF() also returns false.
237 dBL Language Reference

BOOKMARK()
OODML The Rowset object’s endOfSet property is true when the row pointer is past either end of the rowset. Unlike
BOF() and EOF(), there is symmetry with the endOfSet property. You can determine which end you’re on
based on the direction of the last navigation.

There is also an atFirst() method that determines whether you are on the first row in the rowset.

Example The following is an event handler for a button that navigates backward through a table:
PROCEDURE prevButton_onClick
 if .not. bof()
 skip -1
 endif
 if bof()
 msgbox("First record", "Navigation", 64)
 endif

This example demonstrates an atypical programming construct: instead of using IF and ELSE, there is an IF
statement for a condition, followed by a separate IF statement for the opposite condition. In this case, it works
like this: if you are already at BOF() you do not want to attempt to navigate backwards, because that will cause
an error. But if you end up at BOF(), or if you’re already at BOF(), then you will get a message.

See Also EOF(), RECNO(), SKIP

BOOKMARK()
Returns a bookmark for the current record.

Syntax BOOKMARK([<alias>])

<alias> The work area you want to check.

Description BOOKMARK() returns a value for the current record. The value returned by BOOKMARK() is of a special
unprintable data type called bookmark. BOOKMARK() returns an empty bookmark if no table is open in the
current work area.

When used with the GO command, bookmarks let you navigate to particular records.

Unlike record numbers, which work only with DBF tables, bookmarks work with all tables, including DBFs.
Bookmarks are only guaranteed to be valid for the table from which they are created.

Bookmark values can be used in all commands and functions that can otherwise use a record number, and with
relational operators to check for equality and relative position in a table.

OODML Use the Rowset object’s bookmark() method.

See Also GO, RECNO()

BROWSE
Provides display and editing of records in a table format.

Syntax BROWSE
[COLOR <color>]
[FIELDS <field 1> [<field option list 1>] |

<calculated field 1> = <exp 1> [<calculated field option list 1>]
[, <field 2> [<field option list 2>] |
<calculated field 2> = <exp 2> [<calculated field option list 2>]...]]

[FREEZE <field 3>]
[LOCK <expN 1>]
[NOAPPEND]
[NOEDIT | NOMODIFY]

COLOR <color> Specifies the color of the cells in the BROWSE. The current highlighted cell has its own,
fixed color. The <color> is made up of a foreground color and a background color, separated by a forward slash
Xbase 238

BROWSE
(/). You may use a Windows-named color, one of the basic 16-color color codes, or a user-defined color name.
For more information on colors, see colorNormal (page 15-495).

FIELDS <field 1> [<field option list 1>] |
<calculated field 1> = <exp 1> [<calculated field option list 1>]
[, <field 2> [<field option list 2>] |
<calculated field 2> = <exp 2> [<calculated field option list 2>] ...]] Displays the specified
fields, in the order they're listed, in the Table window. Options for <field option list 1>, <field option list 2>,
which apply to <field 1>, <field 2>, and so on, affect the way these fields are displayed. These options are as
follows:

Option Description
\<column width> The width of the column within which <field 1> appears when <field

1> is character type
\B = <exp 1>, <exp 2> RANGE option; forces any value entered in <field 1> to fall within

<exp 1> and <exp 2>, inclusive.
\C=<color> COLOR option; sets the foreground and/or background colors of the

column according to the values specified in <color>
\H = <expC> HEADER option; causes <expC> to appear above the field column

in the Table window, replacing the field name
\P = <expC> PICTURE option; displays <field 1> according to the PICTURE or

FUNCTION clause <expC>
\V = <condition>
[\E = <expC>]

VALID option; allows a new <field 1> value to be entered only
when <condition> evaluates to true
ERROR MESSAGE option; \E = <expC> causes <expC> to appear
when <condition> evaluates to false

Note You may also use the forward slash (/) instead of the backslash (\) when specifying only a single option in a
field option list.

Read-only calculated fields are composed of an assigned field name and an expression that results in the
calculated field value, for example:

browse fields commission = RATE * SALEPRICE

Options for calculated fields affect the way these fields are displayed. These options are as follows:

Option Description
\<column width> The width of the column within which <calculated field 1> is displayed
\H = <expC> Causes <expC> to appear above the calculated field column in the Table

window, replacing the calculated field name

FREEZE <field 3> Restricts editing to <field 3>, although other fields are visible.

LOCK <expN 2> Keeps the first <expN 2> fields in place onscreen as you move the cursor to fields on the
right.

NOAPPEND Prevents records from being added when you cursor down past the last record in the Table
window. The NOAPPEND option works in dBASE versions up to, and including, 5.7. It has no affect in dBASE versions
higher than 5.7, or in dBL.

NOEDIT | NOMODIFY Prevents you from modifying records from the Table window. The NOEDIT |
NOMODIFY option works in dBASE versions up to, and including, 5.7. It has no affect in dBASE versions higher than 5.7,
or in dBL.

Description The BROWSE command opens a table grid in a window, displaying the fields in the currently selected work
area. It is intended more for interactive use; in an application, you have more control over a Browse or Grid
object in a form.

The BROWSE command is modeless. After the window is opened, the next statement is executed.

OODML Use a Grid control on a form.

See Also APPEND, EDIT, SET FIELDS, SET MEMOWIDTH, SET RELATION
239 dBL Language Reference

CALCULATE
CALCULATE
Performs financial and statistical operations for values of records in the current table.

Syntax CALCULATE <function list>
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar list> | TO ARRAY <array>]

<function list> You can use one or more of the following functions:

Function Purpose
AVG(<expN>) Calculates the average of the specified numeric expression.
CNT() Counts the number of records in the current table.
MAX(<expC> |
<expN> |
<expD>)

Calculates the maximum value of the specified numeric, character, or date
expression.

MIN(<expC> |
<expN> |
<expD>)

Calculates the minimum value of the specified numeric, character, or date
expression.

NPV(<expN 1>,
<expN 2>
[, <expN 3>])

Calculates the net present value of the numeric values in <expN 2>; <expN 1> is
the periodic interest rate, expressed as a decimal; <expN 3> is the initial
investment and is generally a negative number.

STD(<expN>) Calculates the standard deviation of the specified numeric expression.
SUM(<expN>) Calculates the sum of the specified numeric expression.
VAR(<expN>) Calculates the variance of the specified numeric expression.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar list> | TO ARRAY <array> Initializes and stores the results to the variables (or
properties) of <memvar list> or stores results to the existing array <array>. <array> can be a single- or
multidimensional array; the array elements are accessed via their element numbers, not their subscripts.

Description CALCULATE uses one or more of the eight associated functions listed in the previous table to calculate and
store sums, maximums, minimums, averages, variances, standard deviations, or net present values of specified
expressions. The expressions are usually, but not required to be, based on fields in the current table. You can
calculate values in a work area other than the current work area if you set a relation between the work areas.

CALCULATE can also return the count or number of records in the current table. These special functions, with
the exception of MAX() and MIN(), can be used only with CALCULATE.

CALCULATE can use the same function on different expressions or different functions on the same expression.
For instance, if your table contains a Salary field and a Bonus field, you can issue the command:

calculate sum(SALARY), sum(BONUS), avg(SALARY), avg(12 * (SALARY + BONUS))

CALCULATE stores results to variables or to an existing array in the order of the specified functions. If you
store the results to memory variables, specify the same number of variables as the number of functions in the
CALCULATE command line. If you store the values in an array, the array must already exist, and the array
must contain at least as many elements as the number calculations.

If SET TALK is ON, CALCULATE displays the results in the result pane of the Command window. The SET
DECIMALS setting determines the number of decimal places that CALCULATE displays.

CALCULATE treats a blank numeric field as containing 0 and includes the field in its calculations. For
example, if you calculate the average of a numeric field in a table containing ten records, five of which are
blank, CALCULATE divides the sum by 10 to find the average. Furthermore, if you calculate the minimum of
the same table field and five records contain positive non-zero numbers and the five others are blank in the same
fields, CALCULATE returns 0 as the minimum. If you want to exclude blank fields when using CALCULATE,
be sure to specify a condition such as FOR .NOT. ISBLANK(numfield).
Xbase 240

CHANGE()
When calculating an empty column, CALCULATE works differently on level 7 tables than it does on table
levels less than 7. With level 7 tables, CALCULATE returns "null" on an empty column. For an empty column
in tables with a level less than 7, CALCULATE returns 0.

Although you can use the SUM or AVERAGE commands to find sums and averages, if you are mixing sums
and averages, CALCULATE is faster because it runs through the table just once while making all specified
calculations.

OODML Loop through the rowset to calculate the values.

See Also AVERAGE, DECLARE, MAX(), MIN(), SET FIELDS, SET RELATION, SUM

CHANGE()
Returns true if another user has changed a record since it was read from disk.

Syntax CHANGE([<alias>])

<alias> The work area you want to check.

Description Use CHANGE() to determine if another user has made changes to a record since it was read from disk. If the
record has been changed, you might want to display a message to the user before allowing the user to continue.

Note CHANGE() only works with DBF tables.

For CHANGE() to return information, the table being checked must have a _DBASELOCK field. Use
CONVERT to add a _DBASELOCK field to a table. If the table doesn't contain a _DBASELOCK field,
CHANGE() returns false

CHANGE() compares the counter in the workstation's memory image of _DBASELOCK to the counter stored
on disk. If they are different, the record has changed, and CHANGE() returns true.

You can reset the value of CHANGE() to false by moving the record pointer. GOTO BOOKMARK() rereads
the current record's _DBASELOCK field, and a subsequent CHANGE() returns false, unless another user has
changed the record in the interim between moving to it and issuing CHANGE().

OODML Call rowset.fields["_DBASELOCK"].update()

See Also CONVERT, FLOCK(), LKSYS(), RLOCK(), SET EXCLUSIVE, SET REFRESH

CLEAR AUTOMEM
Initializes automem variables with empty values for the current table.

Syntax CLEAR AUTOMEM

Description Use CLEAR AUTOMEM to initialize a set of automem variables containing empty values for the current table.
CLEAR AUTOMEM creates any automem variables that don't exist already. If the variables exist, CLEAR
AUTOMEM reinitializes them. If no table is in use, CLEAR AUTOMEM doesn't create any variables.

CLEAR AUTOMEM creates normal variables. They default to private scope when CLEAR AUTOMEM is
executed in a program or function. If there is a danger of overwriting previously created public or private
variables with the same name, you must declare the new automem variables PRIVATE individually by name
before issuing CLEAR AUTOMEM, just as you would if you created the variables manually.

Automem variables have the same names and data types as the fields in an active table. You can create empty
automem variables automatically for the current table by using CLEAR AUTOMEM or USE...AUTOMEM, or
manually by using STORE or the assignment operators.

OODML The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

See Also APPEND, STORE, USE
241 dBL Language Reference

CLEAR FIELDS
CLEAR FIELDS
Removes the fields list defined with the SET FIELDS TO command.

Syntax CLEAR FIELDS

Description Use CLEAR FIELDS to remove the SET FIELDS TO <field list> setting in all work areas and automatically
turn SET FIELDS to OFF, thus making all fields in all open tables accessible. You can use CLEAR FIELDS
prior to specifying a new fields list with SET FIELDS TO. You might also want to use CLEAR FIELDS at the
end of a program. CLEAR FIELDS has the same effect as SET FIELDS TO with no options.

OODML No direct equivalent. When accessing the fields array, you may include program logic to include or exclude
specific fields.

See Also SET FIELDS

CLOSE DATABASES
Closes databases, including their tables and indexes.

Syntax CLOSE DATABASES [<database name list>]

<database name list> The list of database names, separated by commas. If no list is specified, all open
databases are closed.

Description Closing a database closes all the open tables in the database, including all the index, memo, and other associated
files. For the default database, which gives access to DBF and DB tables, this means all open tables in all work
areas.

CLOSE DATABASES only closes those tables opened in the current workset. For more information on
worksets, see CREATE SESSION.

OODML Set the active property of the Database object (or all its Query objects) to false.

See Also CLOSE TABLES, USE

CLOSE INDEXES
Closes DBF index files in the current work area.

Syntax CLOSE INDEXES

Description Closes index (.MDX and .NDX) files open in the current work area. This option does not close the production
.MDX file.

OODML Clear the indexName property of the Rowset object.

See Also CLOSE TABLES, SET INDEX TO

CLOSE TABLES
Closes all tables.

Syntax CLOSE TABLES

Description Closes all tables in all work areas or all tables in the current database, if one is selected.

CLOSE TABLES only closes those tables opened in the current workset. For more information on worksets, see
CREATE SESSION.

OODML Set the active property of all the Query objects to false.

See Also CLOSE DATABASES, USE
Xbase 242

COMMIT()
COMMIT()
Clears the transaction log, committing all logged changes.

Syntax COMMIT([<database name expC>])

<database name expC> The name of the database in which to complete the transaction.

• If you began the transaction with BEGINTRANS(<database name expC>), you must issue
COMMIT(<database name expC>). If instead you issue COMMIT(), dBASE Plus ignores the COMMIT()
statement.

• If you began the transaction with BEGINTRANS(), <database name expC> is an optional COMMIT()
argument. If you include it, it must refer to the same database as the SET DATABASE TO statement that
preceded BEGINTRANS().

Description A transaction works by logging all changes. If an error occurs while attempting one of the changes, or the
changes need to be undone for some other reason, the transaction is canceled by calling ROLLBACK().
Otherwise, COMMIT() is called to clear the transaction log, thereby indicating that all the changes in the
transaction were committed and that the transaction as a whole was posted.

For more information on transactions, see BEGINTRANS().

OODML Call the commit() method of the Database object.

See Also BEGINTRANS(), ROLLBACK(), SET EXCLUSIVE

CONTINUE
Continues a search for the next record that meets the conditions specified in a previously issued LOCATE
command.

Syntax CONTINUE

Description CONTINUE continues the search of the last LOCATE issued in the selected work area. When you issue the
LOCATE command, the current table is searched sequentially for the first record that matches the search
criteria.

If a record is found, the record pointer is left at the matching record. To continue the search, issue the
CONTINUE command. Whenever a match is found, FOUND() returns true. If match is not found, the record
pointer is left after the last record checked, which usually leaves it at the end-of-file. Also, FOUND() returns
false.

If SET TALK is ON, CONTINUE will display the record number of the matching record in the result pane of
the Command window if you are searching a DBF table. If no match is found, CONTINUE will display "End of
Locate scope".

If you issue CONTINUE without first issuing a LOCATE command for the current table, an error occurs..

OODML Use the Rowset object’s locateNext() method. This method also allows going backwards or to the nth match.

See Also EOF(), FOUND(), LOCATE, SEEK, SEEK()

COPY
Copies records from the current table to another table or text file.

Syntax COPY TO <filename>
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]
[[TYPE] DBASE | DBMEMO3 | PARADOX | SDF |

 DELIMITED [WITH
243 dBL Language Reference

COPY
 <char> | BLANK]] |
[[WITH] PRODUCTION]

TO <filename> Specifies the name of the table or file you want to create.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

FIELDS <field list> Specifies which fields to copy to the new table.

[TYPE] DBASE | DBMEMO3 | PARADOX | SDF |
DELIMITED [WITH <char> | BLANK] Specifies the format of the file to which you want to copy data.
The TYPE keyword is included for readability only; it has no effect on the operation of the command. The
following table provides a description of the different file formats that are supported:

Type Description
DBASE A dBASE table. If you don't include an extension for <filename>, dBASE

Plus assumes a .DBF extension.
DBMEMO3 A table (.DBF) and memo (.DBT) files in dBASE III PLUS format.
PARADOX A Paradox table. If you don't include an extension for <filename>, dBASE

Plus assumes a .DB extension.
SDF A System Data Format text file. Records in an SDF file are fixed-length, and

the end of a record is marked with a carriage return and a linefeed. If you don't
specify an extension, dBASE Plus assumes .TXT.

DELIMITED A text file with fields separated by commas. These files are also referred to as
CSV (Comma Separated Value) files. Character fields are delimited with double
quotation marks when they are not empty() or null.
Each carriage return and linefeed indicates a new record. If you don't specify
an extension, dBASE Plus assumes .TXT.

DELIMITED
WITH <char>

Indicates that character data is delimited with the character <char> instead of
with double quotes. For example, if delimited with a single quote instead of a
double quote, the clause would be:
DELIMITED WITH '

DELIMITED
WITH BLANK

Indicates that data is separated with spaces instead of commas, with no
delimiters.

[WITH] PRODUCTION Specifies copying the production .MDX file along with the associated table. This
option can be used only when copying to another dBASE table.

Description Use COPY to copy all or part of a table to a file of the same or a different type. If an index is active, COPY
arranges the records of the new table or file according to the indexed order.

The COPY command does not copy a _DBASELOCK field in a table that you've created with CONVERT.

The COPY TO command does not copy standard, custom or referential integrity properties to the new file.
Standard properties include default, maximim, minimum and required.

COPY TO [WITH] PRODUCTION results in a table whose natural order mimics that of the active index being
copied.

COPY TO [WITH] PRODUCTION also changes the "date of last update" (datestamp) in the headers of newly
created files to reflect the date they were created (in other words, today’s date).

Use the COPY TABLE command to make a copy of a table, including all its index, memo, and other associated
files, if any. Unlike the COPY command, the table does not have to be open, and an exact copy of all the records
is always made. COPY TABLE copies all field property information and, unlike COPY TO [WITH]
PRODUCTION, does not change the datestamp in headers of newly created .dbf and .mdx files.

When COPYing to text files, SDF or DELIMITED, non-character fields are written as follows:

• Numbers are written as-is.

• Logical or boolean fields use the letter T for true and F for false.

• Dates are written in the format YYYYMMDD.
Xbase 244

COPY BINARY
If you COPY a table containing a memo field to another dBASE table, dBASE Plus creates another file with the
same name as the table but having a .DBT extension, and copies the contents of the memo field to it. If,
however, you use the SDF or DELIMITED options and COPY to a text file, dBASE Plus doesn't copy the memo
fields.

Deleted records are copied to the target file (if it's a dBASE table) unless a FOR or WHILE condition excludes
them or unless SET DELETED is ON. Deleted records remain marked for deletion in the target dBASE table.

You can use COPY to create a file containing fields from more than one table. To do that, open the source tables
in different work areas and define a relation between the tables. Use SET FIELDS TO to select the fields from
each table that you want to copy to a new file. Before you issue the COPY command, SET FIELDS must be ON
and you must be in the work area in which the parent table resides.

The COPY command does not verify that the files you build are compatible with other software programs. You
may specify field lengths, record lengths, number of fields, or number of records that are incompatible with
other software. Check the file limitations of your other software program before exporting tables using COPY.

OODML Use the UpdateSet object’s copy() method. Set filter options in the source rowset.

See Also APPEND FROM, CONVERT, COPY FILE, COPY STRUCTURE, COPY TABLE, COPY
TO...STRUCTURE EXTENDED, SET DELETED, SET FIELDS

COPY BINARY
Copies the contents of the specified binary field to a file.

Syntax COPY BINARY <field name> TO <filename>
[ADDITIVE]

<field name> The binary field to copy.

TO <filename> The name of the file where the contents of the binary field are copied. For predefined
binary file types, dBASE Plus assigns the appropriate extension, for example, .BMP, .WAV, and so on. For
user-defined binary type fields, dBASE Plus assigns a .TXT extension by default.

ADDITIVE Appends the contents of the binary field to the end of an existing file. Without the ADDITIVE
option, dBASE Plus overwrites the previous contents of the file.

Description Use COPY BINARY to export data from a binary field in the current record to a file. You can use binary fields
to store text, images, sound, video, and other user-defined binary data.

If you specify the ADDITIVE option, dBASE Plus appends the contents of the binary field to the end of the
named file, which lets you combine the contents of binary fields from more than one record. When you don't use
ADDITIVE, dBASE Plus displays a warning message before overwriting an existing file if SET SAFETY is
ON. Note that you can't combine the data from more than one field for many of the predefined binary data types.
For example, you can store only a single image in a binary field or file, so do not use the ADDITIVE option of
COPY BINARY when copying an image to a file.

OODML Use the Field object’s copyToFile() method.

See Also APPEND MEMO, BINTYPE(), CLASS IMAGE, COPY, COPY FILE, COPY MEMO, PLAY SOUND,
REPLACE BINARY, RESTORE IMAGE

COPY MEMO
Copies the contents of the specified memo field to a file.

Syntax COPY MEMO <memo field> TO <filename>
[ADDITIVE]

<memo field> The memo field to copy.

TO <filename> | ? The name of the text file where text will be copied. The default extension is .TXT.
245 dBL Language Reference

COPY STRUCTURE
ADDITIVE Appends the contents of the memo field to the end of an existing text file. Without the
ADDITIVE option, dBASE Plus overwrites any previous text in the text file.

Description Use COPY MEMO to export memo file text in the current record to a text file. You can also use COPY MEMO
to copy images or other binary-type data to a file; however, binary fields are recommended for storing images,
sound, and other user-defined binary information.

If you specify the ADDITIVE option, dBASE Plus appends the contents of the memo field to the end of the
named file, which lets you combine the contents of memo fields from more than one record. When you don't use
ADDITIVE, dBASE Plus displays a warning message before overwriting an existing file if SET SAFETY is
ON. You can store only a single image in either a memo field or in a file, so do not use the ADDITIVE option of
COPY MEMO when copying an image to a file. (RESTORE IMAGE can display an image stored in either a
memo field or a text file.)

OODML Use the Field object’s copyToFile() method.

See Also APPEND MEMO, COPY, COPY BINARY, COPY FILE, REPLACE BINARY, REPLACE OLE

COPY STRUCTURE
Creates an empty table with the same structure as the current table.

Syntax COPY STRUCTURE TO <filename>
[[TYPE] PARADOX | DBASE]
[FIELDS <field list>]
[[WITH] PRODUCTION]

<filename> The name of the table you want to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

FIELDS <field list> Determines which fields dBASE Plus includes in the structure of the new table. The
fields appear in the order specified by <field list>.

[WITH] PRODUCTION Creates a production .MDX file for the new table. The new index file has the
same index tags as the production index file associated with the original table.

Description The COPY STRUCTURE command copies the structure of the current table but does not copy any records. If
SET SAFETY is OFF, dBASE Plus overwrites any existing tables of the same name without issuing a warning
message.

The COPY STRUCTURE command copies the entire table structure unless limited by the FIELDS option or the
SET FIELDS command. When you issue COPY STRUCTURE without the FIELDS <field list> option, dBASE
Plus copies the fields in the SET FIELDS TO list to the new table. The _DBASELOCK field created with the
CONVERT command is not copied to new tables.

You can use COPY STRUCTURE to create an empty table structure with fields from more than one table. To
do so,

1 Open the source tables in different work areas.

2 Use the FIELDS <field list> option, including the table alias for each field name not in the current table.

OODML No equivalent.

See Also APPEND, APPEND FROM, COPY, COPY STRUCTURE EXTENDED, DISPLAY STRUCTURE, MODIFY
STRUCTURE, SET FIELDS, SET SAFETY

COPY STRUCTURE EXTENDED
Creates a new table whose records contain the structure of the current table.

Syntax COPY STRUCTURE EXTENDED TO <filename>
[[TYPE] PARADOX | DBASE]
Xbase 246

COPY TABLE
or
COPY TO <filename>
STRUCTURE EXTENDED
[[TYPE] PARADOX | DBASE]

<filename> The name of the table that you want to create to contain the structure of the current table.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

Description COPY STRUCTURE EXTENDED copies the structure of the current table to records in a new table.

COPY STRUCTURE EXTENDED first defines a table, called a structure-extended table, containing five fields
of fixed names, types, and lengths. Once the structure-extended table is defined, COPY STRUCTURE
EXTENDED appends records that provide information about each field in the current table. The fields in the
structure-extended table store the following information about fields in the current table:

Field Contents
FIELD_NAME Character field that contains the name of the field.
FIELD_TYPE Character field that contains the field's data type.
FIELD_LEN Numeric field that contains the field length.
FIELD_DEC Numeric field that contains the number of decimal places for numeric fields.
FIELD_IDX Character field that indicates if index tags were created on individual fields in

the table.

When the process is complete, the structure-extended table contains as many records as there are fields in the
current table. You can then use CREATE...FROM to create a new table from the information provided by the
structure-extended table.

No record is created in the structured-extended table for the _dbaselock field created with the CONVERT
command.

OODML Use the Database object’s executeSQL() method to call the SQL command CREATE TABLE (see CREATE
STUCTURE EXTENDED) to create the structure-extended table. Then use a loop to populate the table with
information from the array of Field objects.

See Also COPY, COPY STRUCTURE, CREATE, CREATE...FROM, CREATE STRUCTURE EXTENDED,
DISPLAY STRUCTURE, LIST STRUCTURE, MODIFY STRUCTURE, SET SAFETY

COPY TABLE
Makes a copy of a table.

Syntax COPY TABLE <source tablename> TO <target tablename>
[[TYPE] PARADOX | DBASE]

<source table name> The name of the table that you want to copy. You can also copy a table in a
database (defined using the BDE Administrator) by specifying the database as a prefix (enclosed in colons) to
the name of the table, that is, :database name:table name. If the database is not already open, dBASE Plus
displays a dialog box in which you specify the parameters, such as a login name and password, necessary to
establish a connection to that database.

<target table name> The name of the table you want to create. The table type is the same as the source
table. If you copy a table in a database, you must specify the same database as the destination of the target table.

[TYPE] PARADOX | DBASE Specifies the default extension for the both the source table and target
table: .DB for Paradox and .DBF for dBASE. This overrides the current setting of DBTYPE. You cannot change
the table type during the copy; this clause is useful only when using filenames that do not have extensions.

Description Use the COPY TABLE command to make a copy of a table, including all its index, memo, and other associated
files, if any. Unlike the COPY command, the table does not have to be open, and an exact copy of all the records
is always made.
247 dBL Language Reference

COPY TO ARRAY
OODML Use the Database object’s copyTable() method.

See Also COPY, COPY FILE, DELETE FILE, DELETE TABLE, ERASE

COPY TO ARRAY
Copies data from non-memo fields of the current table, overwrites elements of an existing array, and moves the
record pointer to the last record copied.

Syntax COPY TO ARRAY <array>
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]

<array> A reference to the target array

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL, until <array> is filled.

FIELDS <field list> Copies data from the fields in <field list> in the order of <field list>. Without
FIELDS, dBASE Plus copies all the fields the array can hold in the order they occur in the current table.

Description Use COPY TO ARRAY to copy records from the current table to an existing array. COPY TO ARRAY treats
the columns in a one-dimensional array like a single record of fields; and treats a two-dimensional array like a
table, with the rows (the first dimension) of the array like records, and the columns (the second dimension) like
fields.

To copy the fields from a single record, create a one-dimensional array the same size as the number of fields to
copy. To copy all the fields in the record, use FLDCOUNT() to get the number of fields; for example

a = new Array(fldcount())

To copy multiple records, create a two-dimensional array. The first dimension will indicate the number of
records. The second dimension indicates the maximum number of fields. To copy all the records, use
RECCOUNT() to get the number of records; for example

a = new Array(reccount(), fldcount())

If the array has more columns than the table has fields, the additional elements will be left untouched. Similarly,
if a two-dimensional array has more rows than the table, the additional rows are left untouched.

COPY TO ARRAY does not copy memo (or binary) fields; these fields should not be counted when sizing the
target array.

COPY TO ARRAY copies records in their current order and, within each record, in field order unless you use
the FIELDS option to specify the order of the fields to copy.

After copying, the record pointer is left at the last record copied, unless the array has more rows than the table
has records. In this case, the record pointer is left at the end-of-file.

OODML Use two nested loops, the first to traverse the rowset, and the second to copy the value properties of the Field
objects in the rowset’s fields array to the target array’s elements.

Example The following example uses COPY TO ARRAY and APPEND FROM ARRAY to copy records between tables
where the fields are the same data type, but may not have the same field names. (If the field names were the
same, the APPEND FROM command would be easier.) To minimize disk access, records are read in blocks of
100.

PROCEDURE AppendByPosition(cSource)
 #define BLOCK_SIZE 100
 local cTarget, aRec, nRecs, nCopied
 *-- Get alias for current table
 cTarget = alias()
 use (cSource) in select() alias SOURCE
 if reccount("SOURCE") == 0
 *-- If source table is empty, do nothing
Xbase 248

COUNT
 return 0
 endif
 *-- Create array with default block size
 aRec = new Array(BLOCK_SIZE, FLDCOUNT("SOURCE"))
 nCopied = 0
 do while .not. eof("SOURCE")
 *-- Calculate number of records to copy, the smaller of
 *-- the block size and the number of records left
 nRecs = min(BLOCK_SIZE, reccount("SOURCE") - nCopied)
 if nRecs < BLOCK_SIZE
 *-- Resize array for last block to copy
 aRec.resize(nRecs, FLDCOUNT("SOURCE"))
 endif
 select SOURCE
 *-- Copy next block
 copy to array aRec rest
 *-- Move from last record copied to first record in next block
 skip
 select (cTarget)
 append from array aRec
 nCopied = nCopied + nRecs
 enddo
 use in SOURCE
 return nCopied

The COPY TO ARRAY command uses the REST scope to copy the next block of records. Because the number
of records to copy is known (it’s calculated for the nRec variable), NEXT nRec would also work, but it’s
redundant, because the array has been sized to copy the right number of records. The array sizing is important
because that determines the number of records that get appended with APPEND FROM ARRAY.

See Also APPEND FROM ARRAY, DECLARE, REPLACE FROM ARRAY, SET FIELDS, STORE MEMO

COUNT
Counts the number of records that match specified conditions.

Syntax COUNT
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar>]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar> Stores the result of COUNT, a number, to the specified variable (or property).

Description Use COUNT to total the number of visible records. The current index, filter, key constraints, DELETED setting,
and other factors control which records are visible at any time. You may specify further criteria with the
<scope> and FOR and WHILE conditons.

If the COUNT is not stored to a memvar, the result is displayed in a dialog box. If the COUNT is stored to a
memvar and SET TALK is ON, the result is also displayed in the status bar.

COUNT automatically locks the table during its operation if SET LOCK is ON (the default), and unlocks it after
the count is finished. If SET LOCK is OFF, you can still perform a count; however the result may change if
another user changes the table.

You can also count the total number of records in a table using the RECCOUNT() function. However, unlike
COUNT, RECCOUNT() does not let you specify conditions to qualify the records it counts.

OODML Use the Rowset object’s count() method.

See Also AVERAGE, CALCULATE, RECCOUNT(), SUM, TOTAL
249 dBL Language Reference

CREATE SESSION
CREATE SESSION
Creates a new session—now referred to as a workset—and immediately selects it.

Syntax CREATE SESSION

Description Use CREATE SESSION in an application that uses form-based data handling and the Xbase DML.
Applications that only use the data objects generally do not need CREATE SESSION.

A workset is the more precise term for what was called a session in earlier versions of dBASE and is used to
encapsulate separate user tasks. It consists of the set of all 225 work areas and the current settings of most of the
SET commands. There is always an active workset. When dBASE Plus starts, the settings are read from the
PLUS.ini file and all work areas are empty. This is sometimes referred to as the startup workset.

Whenever you open or close a table or change a setting, that occurs in the current workset. Commands that
affect all work areas, like CLOSE DATABASES, affect all work areas in the current workset only. Record
locks are workset-based. If a record is locked in one workset, you cannot lock that same record from another
workset; but you could lock that record if the same table is open in another work area in the same workset.

When you issue CREATE SESSION, a new workset is created and made active. A new unused set of work
areas is created and all settings are reread from the .INI file. Any previously existing worksets are unaffected,
except that they are no longer active. In fact, you cannot change anything about a dormant workset; you must
make it active first.

Whenever a form is created, it is bound to the currently active workset. Any number of forms may be bound to
a single workset. Each workset has a reference count that indicates the number of forms bound to it. The
Command window and Navigator are both bound to the startup workset.

Whenever a form receives focus or any of its methods are called, its workset is activated. This means that all
commands, functions, and methods take place in the context of a specific workset and have no effect on the
tables or settings in other worksets.

Note Worksets have no effect on variables.

When a form is released (either explicitly or when there are no more references to the form) its workset’s
reference count is reduced by one. If that reduces the reference count to zero, the workset is also released.

Whenever a workset is released, any tables that are open in it are closed automatically.

The active workset’s reference count is also checked:

• Just before another workset is activated (usually by giving focus to a form in another workset)

• Whenever CREATE SESSION is executed (before the new workset is created)

• When a form method has finished executing.

If the count is zero, the active workset is released. When a form method is finished, it also selects the workset
that was active when the method started. So if you click a button button on a form that currently does not have
focus, and that button’s onClick event handler (all event handlers are methods) has a CREATE SESSION
command then the sequence of events is as follows:

1 Clicking the form causes a focus change. The active workset is checked; if its reference count is zero, it is
released.

2 The form’s workset is activated.

3 The onClick executes, creating and activating a new workset.

4 The onClick ends. If the reference count of the just-created workset is zero, which it would be if the method
didn’t create any forms after the CREATE SESSION, it is released.

5 The form’s workset, the one that was active when the method was executed, is reactivated. It is now the
active workset.

Clicking the button again would only go through steps 3 through 5, because the form still has focus, so there is
no focus change.

OODML Use Session objects.

Example The following is the onClick event handler for a menu item that opens a customer form:
Xbase 250

CREATE...FROM
function View_Customer_onClick
 create session
 do CUSTOMER.WFM

By using the CREATE SESSION command, each customer form operates independently, as if they were being
viewed by different people on different workstations. Navigation in one form does not affect the other. A record
locked in one form will be respected by another form.

This example demonstrates some of the details of CREATE SESSION. Go to the dBASE Plus\Samples
subdirectory. Select the Tables tab of the Navigator, and type the following statements in the Command
window:

clear all && Release all variables and close all tables
create session && Nothing appears to happen
f = new Form()
use FISH && FISH appears in status bar, table is italicized in Navigator
create session && The status bar is cleared
use SAMPLES && SAMPLES appears in status bar, table is italicized in Navigator

This creates two worksets—call them WS1 and WS2 for reference. The order of the statements within each
workset is irrelevant; they are simply executed in the currently active workset. The Fish table is the currently
selected table in WS1 and the Samples table is the currently selected table in WS2. Form F is bound to WS1.
WS2 has no forms bound to it, so its reference count is zero. The table names are now italic in the Navigator to
indicate that they are open somewhere.

Now watch the italic Samples.dbf while you click the Navigator. Clicking the Navigator selected the startup
workset. In switching worksets, the current workset, WS2, was checked. Its reference count was zero, so it was
released, closing all the tables in it. Now click the Command window. This checks the Navigator’s workset, the
startup workset. Its reference count is at least two for both the Command window and the Navigator, so it is
never released. Now type:

f.alias = {; ? alias()}

This attaches a codeblock to the form so that it becomes a method of the form. Now execute the method:
f.alias() && Displays FISH
? alias() && Blank, no table selected in startup workset

Executing a form’s method selects the form’s workset, where the Fish table is the currently selected table. After
the method is complete, the previously active workset is reselected (note that there is no focus change here).
Finally, watch the italic Fish.dbf in the Navigator as you execute:

release f

The variable is the only reference to the form (it’s not open on-screen), so the form is destroyed, reducing
WS1’s reference count to zero, which releases WS1 and closes all the tables in it.

CREATE...FROM
Creates a table with the structure defined by using the COPY STRUCTURE EXTENDED or
CREATE...STRUCTURE EXTENDED commands.

Syntax CREATE <filename 1>
[[TYPE] PARADOX | DBASE]

FROM <filename 2>
 [[TYPE] PARADOX | DBASE]

<filename 1> The name of the table you want to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

FROM <filename 2>
[TYPE] PARADOX | DBASE Identifies the table that contains the structure of the table you want to
create.
251 dBL Language Reference

CREATE...STRUCTURE EXTENDED
Description The CREATE...FROM command is most often used with the COPY STRUCTURE EXTENDED command in a
program to create a new table from another table that defines its structure, instead of using the interactive
CREATE or MODIFY STRUCTURE commands. To do this, you can

1 Use COPY STRUCTURE EXTENDED to create a table whose records provide information on each field of
the original table.

2 Optionally, modify the structural data in the new table with any dBASE command used to manipulate data,
such as REPLACE.

3 Use CREATE...FROM to create a new table from the structural information in the structure extended file.
The new table is active when you exit CREATE...FROM.

The table created with CREATE...FROM becomes the current table in the currently selected work area. If the
CREATE...FROM operation fails for any reason, no table remains open in the current work area.

If any fields in the table created with COPY STRUCTURE EXTENDED have index flag fields set,
CREATE...FROM also creates a production .MDX file with the specified index tags.

OODML No equivalent.

See Also COPY STRUCTURE, COPY STRUCTURE EXTENDED, CREATE, DISPLAY STRUCTURE, LIST
STRUCTURE, MODIFY STRUCTURE

CREATE...STRUCTURE EXTENDED
Creates and opens a table that you can use to design the structure of a new table.

Syntax CREATE <filename> STRUCTURE EXTENDED
[[TYPE] PARADOX | DBASE]

<tablename> | ? The name of the table you want to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

Description CREATE...STRUCTURE EXTENDED creates an empty table, called a structure-extended table, containing
five fields of fixed names, types, and lengths. The fields correspond to attributes that describe fields in the table
you want to create:

Field Contents
FIELD_NAME Character field that contains the name of the field.
FIELD_TYPE Character field that contains the field's data type.
FIELD_LEN Numeric field that contains the field length.
FIELD_DEC Numeric field that contains the number of decimal places for numeric fields.
FIELD_IDX Character field that indicates if index tags were created on individual fields in

the table.

The CREATE...STRUCTURE EXTENDED command is similar to the COPY STRUCTURE EXTENDED
command. However, unlike COPY STRUCTURE EXTENDED, which creates a table with records providing
information on fields in the current table, CREATE...STRUCTURE EXTENDED creates an empty structure-
extended table. After using CREATE...STRUCTURE EXTENDED to create a new table, add records to define
the structure of a new table. Then use the CREATE...FROM command to create a new table from the field
definitions stored in the structure-extended table.

OODML Use the SQL command CREATE TABLE to create the STRUCTURE EXTENDED table.

See Also COPY STRUCTURE EXTENDED, CREATE, CREATE...FROM

DATABASE()
Returns the name of the current database from which tables are accessed.
Xbase 252

DBF()
Syntax DATABASE()

Description DATABASE() returns the name of the current default database selected with the SET DATABASE command.
If no database is open, the DATABASE() function returns an empty string ("").

Note: Databases are defined with the BDE Administrator.

OODML Check the Database object’s databaseName property.

See Also CLOSE..., OPEN DATABASE, SET DATABASE, SET DBTYPE

DBF()
Returns the name of a table open in the current or a specified work area.

Syntax DBF([<alias>])

<alias> The work area to check.

Description DBF() returns the name of the table open in a specified work area. If the table is a file on disk, as it is with DBF
and DB tables, the filename includes the extension and the drive letter. If SET FULLPATH is ON, the DBF()
function also returns the directory location of the table in addition to the table name.

If no table is in use in the current or specified work area, DBF() returns an empty string ("").

OODML There is no concept of the "current" Query object. In most cases, you can ascertain the name of the table by
parsing the SQL SELECT statement in the Query object’s sql property.

See Also ALIAS(), MDX(), NDX(), SET FULLPATH, TAG(), WORKAREA(), USE

DELETE
Deletes records from the current table.

Syntax DELETE
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

Description DBF tables support the concept of soft deletes, where the record is marked as deleted and normally hidden when
SET DELETED is ON (the default). If you SET DELETED OFF, you can see the deleted records along with the
records that are not marked as deleted. You can RECALL the record to undelete it. To actually remove the
record from the table, you must PACK the table. If you use the LIST or DISPLAY commands to display
records, records marked as deleted are displayed with an asterisk.

For other table types, when you delete a record, it is removed from the table and cannot be recovered. (Some
tables still require you to perform a maintenance operation on the table to reclaim the unused space. For more
information, refer to your database server documentation.)

Relying on soft deletes to be able to recover information from deleted records is not recommended. This
technique does not scale well to other databases, because they don’t support soft deletes. If you want to make
data available for recover, consider using an identically-structured purge table that stores copies of the records
that you have deleted.

Soft deletes are useful when you want to recycle deleted records. This obviates the need to PACK the table. You
BLANK the record before you DELETE it. Then whenever you need to add a new record, you can search for a
deleted record and reuse it.

To delete all records from a table, use ZAP.

OODML Use the Rowset object’s delete() method. There is no support for soft deletes; if you delete() a row in a DBF
table, there is no corresponding method to recall it. You may still use the RECALL command.
253 dBL Language Reference

DELETE TABLE
Example The following function makes a copy of the record to be deleted from the table named Main in the purge table
named Purge:

PROCEDURE DelMainRec
 store automem
 select PURGE
 append automem
 select MAIN
 blank
 delete

See Also PACK, RECALL, SET DELETED, ZAP

DELETE TABLE
Deletes a specified table.

Syntax DELETE TABLE <filename> [[TYPE] PARADOX | DBASE]

<filename> The name of the table that you want to delete.

[TYPE] PARADOX | DBASE Specifies the type of table you want to delete, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

Description Use the DELETE TABLE command to delete a table and its index, memo, and other associated files. Make sure
the table is not in use before you attempt to delete it.

OODML Use the Database object’s dropTable() method.

See Also DELETE FILE, DELETE TAG, ERASE

DELETE TAG
Deletes index tags from tables.

Syntax DELETE TAG <tag name 1>
 [OF <filename 1>]

[, <tag name 2>
 [OF <filename 2>]...]

<tag name 1>, <tag name 2>, ... <tag name n> The index tag names to delete.

OF <filename 1> | ? | <filename skeleton 1> For DBF tables, specifies the .MDX file containing
the tag name to delete. If you specify a file without including an extension, dBASE Plus assumes an .MDX
extension. If you don't specify an index file, dBASE Plus assumes the index tag you want to delete is in the
index file with the same name as the current table.

Description Use DELETE TAG to delete index tags from .MDX files for dBASE tables or secondary indexes on a Paradox
table. dBASE Plus allows a maximum of 47 index tags in a single .MDX file, so deleting unneeded tags frees
slots for new tags as well as reducing the amount of disk space and memory that an .MDX file requires.

For dBASE tables, the .MDX file must be open when you delete the tags. If you delete all tags in an .MDX file,
the .MDX file is also deleted. If you delete the production .MDX file by deleting all index tags, the table file
header is updated to indicate there is no longer a production index associated with the table.

The table associated with the indexes you want to delete must be opened in exclusive mode. When accessing a
Paradox table, specifying DELETE TAG without an argument deletes the primary index.

OODML Use the Database object’s dropIndex() method.

Example The following function deletes all the tags in the current table, which you would do before rebuilding all the tags
from scratch.

PROCEDURE ZapTags
 do while "" # tag(1)
Xbase 254

DELETED()
 delete tag tag(1)
 enddo

See Also CLOSE INDEXES, COPY INDEXES, SET INDEX, TAG()

DELETED()
Indicates if the current record is marked as deleted.

Syntax DELETED([<alias>])

<alias> A work area to check.

Description DELETED() returns true if the current record in the specified work area is marked as deleted otherwise,
DELETED() returns false.

If no table is open in the current or specified work area, DELETED() also returns false.

OODML No support for soft deletes.

See Also DELETE, PACK, RECALL, SET DELETED

DESCENDING()
Indicates if a specified index is in descending order.

Syntax DESCENDING([<.mdx filename expC>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.
Note Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters

shift forward one; the second parameter becomes the first parameter, and so on.

Description DESCENDING() returns true if the index tag specified by the <index position expN> parameter was created
with the DESCENDING keyword; otherwise, it returns false.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, DESCENDING() checks the current master index tag and returns false if the
master index is an .NDX file or there is no master index.

If the specified .MDX file or index tag does not exist, DESCENDING() returns false.

OODML No equivalent

Example See MDX().

See Also FOR(), INDEX, KEY(), MDX(), ORDER(), TAGCOUNT(), TAGNO(), UNIQUE()

DISPLAY
Displays records from the current table in the result pane of the Command window.

Syntax DISPLAY
[<scope>]
[FOR <condition 1>]
255 dBL Language Reference

EDIT
[WHILE <condition 2>]
[[FIELDS] <exp list>]
[OFF]
[TO FILE <filename>]
[TO PRINTER]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

FIELDS <exp list> Field names or expressions whose contents (values) you want to display; the names of
the fields in the list are separated by commas. If you omit <exp list>, dBASE Plus displays all fields in the
current table. The FIELDS keyword is included for readability only; it has no affect on the operation of the
command.

OFF Suppresses display of the record number when displaying records from a DBF table.

TO FILE <filename> Directs output to a file, as well as to the results pane of the Command window. By
default, dBASE Plus assigns a .TXT extension to <filename>.

TO PRINTER Directs output to the default printer, as well as to the results pane of the Command window.

Description Use DISPLAY to view one or more records of the current table in the results pane of the Command window. If
SET HEADINGS is OFF, dBASE Plus doesn't display field names when you issue DISPLAY. DISPLAY
pauses when the results pane is full and displays a dialog box prompting you to display another screenful of
information.

Use the TO FILE clause to send the information to a file. Use the TO PRINTER clause to send the information
to the printer. In either case, you can use SET CONSOLE OFF to suppress the display of the information in the
results pane.

The LIST command is almost identical to DISPLAY, except that:

• The default scope for LIST is ALL.

• LIST doesn't pause for each screenful of information but rather lists the information continuously. This
makes LIST more appropriate when directing output to a file or printer.

Memo fields are displayed as "MEMO" if they contain data or "memo" if they are empty; unless the field is
listed in <exp list>, in which case the contents of the memo field is displayed.

OODML No equivalent

See Also LIST, SET CONSOLE, SET FIELDS, SET HEADINGS

EDIT
Displays fields in the current table for editing.

Syntax EDIT
[COLUMNAR]
[FIELDS <field1> | <Calc field1> = <Exp1>[<Option for Calc field 1>]

[,<field2> | <Calc field2> = <Exp2>[<Option for Calc field 2>]...]]

COLUMNAR Creates a form with the field names in one column and the field controls in another column.

[FIELDS <field list>] Displays the fields specified in <field list> for editing. Field names are separated by
commas. The field list may include calculated fields in the format:

<calculated field name> = <expression>

Description EDIT displays the current record in the current table in a wizard-generated form for editing.

OODML Use a form.

See Also APPEND, BROWSE
Xbase 256

EOF()
EOF()
Indicates if the record pointer is at the end-of-file.

Syntax EOF([<alias>])

<alias> The work area to check.

Description EOF() returns true when the record pointer in the current or specified work area is positioned past the last
record; otherwise it returns false. If you attempt to navigate forward when EOF() is true, an error occurs.

When you first USE a table, EOF() is true if the table is empty, or you are using a conditional index with no
matching records.

Many operations leave the record pointer at the end-of-file when they are complete or when they fail. For
example, EOF() returns true after SCAN processes the last record in a table, when you use SKIP to pass the last
record in a table, when you use LIST with no options, or when SEEK() or SEEK fails to find the specified
record (and SET NEAR is OFF).

The position at the end-of-file is sometimes referred to as the phantom record. When you get the values of the
fields at the phantom record, they are always blank. Attempting to REPLACE field values in the phatom record
causes an error.

If no table is open in the specified work area, EOF() returns false.

OODML The Rowset object’s endOfSet property is true when the row pointer is past either end of the rowset. Unlike
BOF() and EOF(), there is symmetry with the endOfSet property. You can determine which end you’re on
based on the direction of the last navigation.

There is also an atLast() method that determines whether you are on the last row in the rowset, the row before
EOF().

Example The following is an event handler for a button that navigates forward through a table:
PROCEDURE nextButton_onClick
 if .not. eof()
 skip
 endif
 if eof()
 msgbox("Last record", "Navigation", 64)
 endif

This example demonstrates an atypical programming construct: instead of using IF and ELSE, there is an IF
statement for a condition, followed by a separate IF statement for the opposite condition. In this case, it works
like this: if you are already at EOF() you do not want to attempt to navigate forward, because that will cause an
error. But if you end up at EOF(), or if you’re already at EOF(), then you will get a message.

Many processes require traversing the entire table. The SCAN loop is designed to visit each record
automatically, but sometimes you may want to manually code a loop and check for EOF() to see when you are
done. For an example of this, see the example for COPY TO ARRAY.

See Also BOF(), FIND, FOUND(), LOCATE, RECNO(), SEEK, SEEK()

FDECIMAL()
Returns the number of decimal places in a specified field of a table.

Syntax FDECIMAL(<field number expN> [, <alias>])

<field number expN> The position of the field that you want to evaluate. The first field in a table is field
number 1.

<alias> The work area that contains the field to check.

Description FDECIMAL() returns the number of decimal places in a specified field of a table. FDECIMAL() returns zero
if the field has no decimal places, if the field is not a numeric field, or if the table doesn't contain a field in the
specified position.
257 dBL Language Reference

FIELD()
OODML Check the decimalLength property of the Field object.

See Also FIELD(), FLENGTH()

FIELD()
Returns the name of the field in a specified position of a table.

Syntax FIELD(<field number expN> [, <alias>])

<field number expN> The position of the field whose name you want returned. The first field in a table is
field number 1.

<alias> The work area to check.

Description FIELD() returns the name of a field in a table based on the specified <field number expN> parameter. The
example shows a function that performs the reverse operation, returning the field number for a specified field
name.

If the field name has spaces, FIELD() returns the name enclosed in colons, for example:
:Primary power coupling:

FIELD() returns an empty string ("") if the table does not contain a field in the specified position.

OODML Check the fieldName property of the Field object.

Example The following uses the FIELD() function to perform the reverse operation: return the number of a field with the
given name.

PROCEDURE FieldNum(cName, xAlias)
 local nWork, nFld
 if argcount() < 2
 xAlias = workarea()
 endif
 for nFld = 1 to fldcount(xAlias)
 if upper(cName) == upper(field(nFld, xAlias))
 return nFld
 endif
 endfor
 return 0

This function takes an optional alias parameter, just like the FIELD() function. If the alias is not specified, the
current work area number is used.

The names are converted to uppercase for comparison, so the field name specified does not have to match the
case of the field in the table.

See Also DBF(), FLENGTH()

FLDCOUNT()
Returns the number of fields in a table.

Syntax FLDCOUNT([<alias>])

<alias> The work area you want to check.

Description FLDCOUNT() returns the number of fields for the table opened in the current or specified work area.
FLDCOUNT() returns a value of 0 if no table is open in that work area.

OODML Check the size property of Rowset object’s fields array.

See Also FIELD(), DISPLAY STRUCTURE, LIST STRUCTURE, RECCOUNT(), TYPE()
Xbase 258

FLDLIST()
FLDLIST()
Returns the fields and calculated field expressions of a SET FIELDS TO list.

Syntax FLDLIST([<field number expN>])

<field number expN> The position of the field or calculated field expression in a SET FIELDS TO list
whose name you want returned. If you do not specify a field number, FLDLIST() returns the entire field list.

Description FLDLIST() returns the field or calculated field expression in a SET FIELDS TO list that corresponds to a
specified field number. If you do not specify a field number, FLDLIST() returns the entire field list. Each field
name or expression in the field list is separated by a comma. FLDLIST() always returns fully-qualified field
names, that is, it includes the table or alias name. For read-only fields, FLDLIST() appends "/R" to the field
name.

FLDLIST() returns the field list even if SET FIELDS is OFF. If there is no SET FIELDS TO list, or the
specified field number exceeds the number of items in the field list, FLDLIST() returns an empty string ("").

OODML Check the fieldName property of the Field object for a normal field. A calculated field is defined by either its
value property, or by its beforeGetValue event.

See Also SET FIELDS

FLENGTH()
Returns the length of the field in a specified position of a table.

Syntax FLENGTH(<field number expN> [, <alias>])

<field number expN> The position of the field whose length you want returned. The first field in a table
is field number 1.

<alias> The work area you want to check.

Description FLENGTH() returns the length of a field in a table based on the specified <field number expN> parameter. The
field length for numeric fields includes the decimal digits and one for the decimal point character. Certain field
types have fixed lengths. For example, in a DBF table, FLENGTH() returns 8 for date fields and 10 for memo
fields.

FLENGTH() returns 0 if the table does not contain a field in the specified position.

OODML Check the length property of the Field object.

Example The following routine is used to read the data in a generated text file into the corresponding fields of a table.
Character fields in the text file are the same length as in the table. Dates are formatted in six characters as
MMDDYY (which matches the current SET DATE format). Numbers are always twelve characters and
represent currency stored in cents, so it needs to be divided by 100.

function decodeLine(cLine, aDest)
 #define YEAR_LEN 2
 #define NUM_LEN 12
 local nPtr, nFld, cFld, nLen
 nPtr = 1 && Pointer into string
 for nFld = 1 to fldcount()
 cFld = field(nFld) && Store name of field in string variable for reuse
 do case
 case type(cFld) == "C"
 aDest[nFld] = substr(cLine, nPtr, flength(nFld))
 nPtr += flength(nFld)
 case type(cFld) == "D"
 aDest[nFld] = ctod(substr(cLine, nPtr, 2) + "/" + ;
 substr(cLine, nPtr + 2, 2) + "/" + ;
 substr(cLine, nPtr + 4, YEAR_LEN))
 nPtr += 2 + 2 + YEAR_LEN
 case type(cFld) == "N"
 aDest[nFld] = val(substr(cLine, nPtr, NUM_LEN)) / 100
259 dBL Language Reference

FLOCK()
 nPtr += NUM_LEN
 endcase
 endfor

An array is passed to the routine along with the line to read. The field values are stored in the array, which is
appended to the table with APPEND FROM ARRAY in the calling routine (not shown here). The function
defines some manifest constants for the size of a numeric field and whether the year is two or four digits in case
this changes in the future. A FOR loop goes through each field in the table. The name of each field is stored in a
variable for convenience; it’s used repeatedly in the DO CASE structure.

See Also FDECIMAL(), FIELD()

FLOCK()
Locks a table.

Syntax FLOCK([<alias>])

<alias> The work area you want to lock.

Description Use FLOCK() to lock the table in the current work area, or in another specified work area, preventing others
from using the table.

When you lock a table with FLOCK(), only you can make changes to it. However, unlike USE...EXCLUSIVE
and SET EXCLUSIVE ON, FLOCK() lets other users view the locked table while you are using it. When you
lock a table with FLOCK(), it remains locked until you issue UNLOCK or close the table.

FLOCK() is similar to RLOCK(), except that FLOCK() locks an entire table, while RLOCK() lets you lock
specific records of a table. Use FLOCK(), therefore, when you need to have sole access to an entire table or
related tables—for example, when you need to update multiple tables related by a common key.

FLOCK() can lock a table even if another user is viewing data contained in the table. FLOCK() is unsuccessful
only if another user has explicitly locked the table or a record in the table, or is using a command that
automatically locks the table or a record in the table. FLOCK() returns true if it is successful, and false if it is
not.

All commands that change table data cause dBASE Plus to attempt an automatic record or file lock. If dBASE
Plus fails to get an automatic record or file lock, it an error occurs. You might want to use FLOCK() to handle
a lock failure youself, instead of letting the error occur.

When SET REPROCESS is set to 0 (the default) and FLOCK() can't immediately lock a table, dBASE Plus
prompts you to attempt the lock again or cancel the attempt. Until you choose to cancel the function, FLOCK()
repeatedly attempts to lock the table. Use SET REPROCESS to eliminate being prompted to cancel the
FLOCK() function, or to set the number of locking attempts.

When you set a relation to a parent table with SET RELATION and then lock the table with FLOCK(), dBASE
Plus attempts to lock all child tables. For more information about relating tables, see SET RELATION.

OODML Use the Rowset object’s lockSet() method.

See Also BEGINTRANS(), LOCK(), RLOCK(), SET EXCLUSIVE, SET LOCK, SET RELATION, SET
REPROCESS, UNLOCK, USE

FLUSH
Writes data buffers for the current work area to disk.

Syntax FLUSH

Description Use FLUSH to protect data integrity.

When you open a table, dBASE Plus loads a certain number of records from that table into a memory buffer,
along with the portion of each open index that pertains to those records. When another block of records needs to
be read or when you close tables, dBASE Plus writes the records in the buffer back to disk, storing any
modifications you have made.
Xbase 260

FOR()
FLUSH allows you to save information from the data buffer to disk on-demand, without closing the table. Use
FLUSH when you need to store critical information to disk that could otherwise be lost. However, don't use
FLUSH too frequently, as it slows execution. For example, in an order-entry application in which only a few
orders are entered each hour, FLUSH can save data that might be lost if the power is inadvertently turned off;
since orders are entered infrequently, the time needed to execute FLUSH is not important.

OODML Use the Rowset object’s flush() method.

See Also CLOSE TABLES, SET AUTOSAVE

FOR()
Returns the FOR clause of a specified index tag.

Syntax FOR([<.mdx filename expC>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.
Note Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters

shift forward one; the second parameter becomes the first parameter, and so on.

Description FOR() returns a string containing the FOR expression of the specified .MDX tag. FOR() returns an empty
string ("") if the specified index tag does not have a FOR expression.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, FOR() checks the current master index tag and returns an empty string if the
master index is an .NDX file or there is no master index.

If the specified .MDX file or index tag does not exist, FOR() returns an empty string.

OODML No equivalent.

Example See MDX().

See Also INDEX, DESCENDING(), TAG(), TAGCOUNT(), TAGNO(), UNIQUE(), USE

FOUND()
Indicates if the last-issued search command found a match.

Syntax FOUND([<alias>])

<alias> The work area you want to check.

Description FOUND() returns true if LOCATE, CONTINUE, SEEK, LOOKUP(), or SEEK() found a match in the current
or specified table. FOUND() returns false if no previous search has been performed in that work area, or if the
last search was unsuccessful. You can perform searches in different work areas and maintain the status of each
FOUND() operation, independent of the other work areas.

If tables are linked by a SET RELATION TO command, dBASE Plus searches the related tables as you move in
the active table with normal navigation or with a search command. This allows you to determine if there is a
match in related tables.

When SET NEAR is ON and you use SEEK or SEEK(),

• FOUND() returns true if an exact match occurs.
261 dBL Language Reference

GENERATE
• FOUND() returns false for a near match, and the record pointer is moved to the record whose key
immediately follows the value searched for.

When SET NEAR is OFF, FOUND() returns false if a match does not occur.

OODML Check the return value of the Rowset object’s findKey() or findKeyNearest() method.

Example The following statements create a relation between a table of customers and orders, and use FOUND() to show
only those customers that have orders:

use CUSTOMER
use ORDERS in select() order CUST_DATE
set relation to CUST_ID into ORDERS
set filter to found("ORDERS")

See Also CONTINUE, EOF(), LOCATE, LOOKUP(), SEEK, SEEK(), SET NEAR, SET RELATION

GENERATE
Adds random records to the current table.

Syntax GENERATE [<expN>]

<expN> A number of random-data records to add to the current table. If you specify a <expN> value that is
less than or equal to 0, no records are generated. If you don't specify a value for <expN>, dBASE Plus prompts
you for a number.

Description GENERATE fills a table with sample data. If a table contains existing records, GENERATE leaves them intact
and adds <expN> records to the table.

GENERATE does not create data for memo or binary fields.

OODML No equivalent.

See Also none

GO
Moves the record pointer to the specified position in a table.

Syntax GO[TO]
BOTTOM | TOP | <bookmark> | [RECORD] <expN>
[IN <alias>]

TO Include for readability only; you may use GO or GOTO.

BOTTOM | TOP | <bookmark> | [RECORD] <expN> Specifies where to move the record pointer.
The following table describes each of the available keywords or options.

Option Moves the record pointer to
BOTTOM The last record in the table, using the current index order, if any.
TOP The first record in the table, using the current index order, if any
<bookmark> The record saved in <bookmark>
[RECORD] <expN> That record number. Entering a number in the Command window is

equivalent to GO <expN>. The RECORD keyword is included for readability
only; it has no affect on the operation of the command.

IN <alias> The work area where you want to move the record pointer.

Description GO positions the record pointer in a table.

GO <expN> or GO RECORD <expN> moves the record pointer to a specific record, regardless of whether a
master index is open or where that record number occurs in an indexed order. It works only for DBF tables. For
tables that do not support record numbers (that is, Paradox and SQL tables), GO <expN> causes an error.
Xbase 262

INDEX
To go to a specific record, use the BOOKMARK() to get a bookmark for that record and store it in a variable or
property. Then when you need to go back to that record, issue GO <bookmark>.

If an index isn't in use, TOP and BOTTOM refer to the first and last records in a table. If an index is in use for a
table, TOP and BOTTOM refer to the first and last records in the index order.

If a relation is set up among several tables, moving the record pointer in the parent table with GOTO repositions
the record pointer in a child table to a related record. If there is no related record, the child table record pointer is
positioned at the end of the file. Moving the record pointer in a child table, however, doesn't reposition the
record pointer in the parent table.

OODML Use the Rowset object’s first(), last(), and goto() methods.

See Also BOOKMARK(), EOF(), RECNO(), SET DELETED, SET FILTER, SET RELATION, SKIP

INDEX
Creates an index for the current table.

Syntax For DBF tables:
INDEX ON <key exp>
TAG <tag name>

 [OF <.mdx filename>]
[FOR <condition>]
[DESCENDING]
[UNIQUE | DISTINCT | PRIMARY]

or to create dBASE III-compatible .NDX index files:
INDEX ON <key exp> TO <.ndx filename> [UNIQUE]

For DB and SQL tables:
INDEX ON <field list>
PRIMARY | TAG <tag name> [UNIQUE]

<key exp> For DBF tables, <key exp> can be a dBASE expression of up to 220 characters that includes
field names, operators, or functions. The maximum length of the key—the result of the evaluated index <key
exp>—is 100 characters.

<field list> For Paradox and SQL tables, indexes can't include expressions; however, you can create
indexes based on one or more fields. In that case, you specify the index key as a <field list>, separating the
name of each field with a comma.

TAG <tag name> Specifies the name of the index tag for the index

OF <.mdx filename> Specifies the .MDX multiple index file that dBASE Plus adds new index tags to. If
you do not specify an .MDX file, index tags are added to the production .MDX file. If you specify a file that
doesn't exist, dBASE Plus creates it and adds the index tag name. By default, dBASE Plus assigns an .MDX
extension and saves the file in the current directory.

TO <.ndx filename> Specifies the name of an .NDX index file.

FOR <condition> Restricts the records dBASE Plus includes in the index to those meeting the specified
<condition>.

DESCENDING Creates the index in descending order (Z to A, 9 to 1, later dates to earlier dates). Without
DESCENDING, INDEX creates an index in ascending order.

UNIQUE For DBF tables, prevents multiple records with the same <key exp> value from being included in
the index; dBASE Plus includes in the index only the first record with that value. For DB and SQL tables,
specifies creating a distinct index which prevents entry of duplicate index keys in a table.

DISTINCT Prevents multiple records with the same <key exp> value from being included in the table; any
such attempt causes a key violation error. Records marked as deleted are never included in a DISTINCT index.
DISTINCT indexes may be created for DBF tables only.
263 dBL Language Reference

INDEX
PRIMARY Specifies that the index is the primary key for the table. For DBF tables, the PRIMARY index is
a distinct index that is designated as the primary index; it currently has no other special meaning. For DB and
SQL tables, the primary key has a specific meaning. A table may have only one primary key.

Description Use INDEX to organize data for rapid retrieval and ordered display. INDEX doesn't actually change the order of
the records in a table but rather creates an index in which records are arranged in numeric, alphabetical, or date
order based on the value of a key expression. Like the index of a book, with ordered entries and corresponding
page numbers, an index file contains ordered key expressions with corresponding record numbers. When the
table is used with an index, the contents of the table appear in the order specified by the index.

DBF expression indexes To index on multiple fields in a DBF table, you must create an expression
index. When combining fields with different data types, use conversion functions to convert all the fields to the
same data type. Most multi-field expression indexes are character type; numeric and date fields are converted to
strings using the STR() and DTOS() functions. When using the STR() function, be sure to specify the length
of the resulting string so that it matches the numeric field.

Note Do not use the DTOC() function to convert a date to a string. In many date formats, the day comes before the
month, or the month comes before the day and year, resulting in records in the wrong order.

To concatenate the fields, use the + or - operators.
Warning Do not create an index where the length of the index key expression varies from record to record. Specifically,

do not use TRIM() or LTRIM() to remove blanks from strings unless you compensate by adding enough
spaces to make sure the index key values are all the same length. The - operator concatenates strings while
rearranging trailing blanks. Varied key lengths may cause corrupted indexes.

If a function is used in a key expression, keep in mind that the index is ordered according to the function output.
Thus, when you use search for a particular key, you must search for the key expression as it was generated. For
example, INDEX ON SOUNDEX(Name) TO Names creates an index ordered by the values SOUNDEX()
returns. When attempting to find data by the key value, you would have to use something like SEEK
SOUNDEX("Jones") rather than SEEK "Jones".

FOR <condition> limits the records that are included in the index to those meeting the specified condition. For
example, if you use INDEX ON Lastname + Firstname TO Salaried FOR Salary > 24000, dBASE Plus includes
only records of employees with salaries higher than $24,000 in the index. The FOR condition can't include
calculated fields.

The following built-in functions may be used in the index <key exp> and FOR <condition> expressions of a
DBF index tag.

Table 12.1 List of functions supported in DBF expression indexes
ABS()
ACOS()
ANSI()
ASC()
ASIN()
AT()
ATAN()
ATN2()
BITAND()
BITLSHIFT()
BITNOT()
BITOR()
BITRSHIFT()
BITSET()
BITXOR()
BITZRSHIFT()
CEILING()
CENTER()

CHR()
COS()
CTOD()
DATABASE()
DATE()
DAY()
DBF()
DELETED()
DIFFERENCE()
DOW()
DTOC()
DTOR()
DTOS()
ELAPSED()
EMPTY()
EXP()
FCOUNT()
FIELD()

FLOOR()
FV()
HTOI()
ID()
INT()
ISALPHA()
ISBLANK()
ISLOWER()
ISUPPER()
ITOH()
LEFT()
LEN()
LIKE()
LOG()
LOG10()
LOWER()
LTRIM()
MAX()

MEMLINES()
MIN()
MLINE()
MOD()
MONTH()
OEM()
OS()
PAYMENT()
PI()
PROPER()
PV()
RAND()
RAT()
RECNO()
RECSIZE()
REPLICATE()
RIGHT()
ROUND()

RTOD()
RTRIM()
SECONDS()
SIGN()
SIN()
SOUNDEX()
SPACE()
SQRT()
STR()
STUFF()
SUBSTR()
TAN()
TIME()
TRIM()
UPPER()
VAL()
VERSION()
YEAR()

Index sort order In an index, records are usually arranged in ascending order, with lowest key values at
the beginning of the index. Using the DOS Code Page 437 (U.S.) character set, character keys are ordered in
Xbase 264

INDEX
ASCII order (from A to Z and then from a to z); numeric keys are ordered from lowest to highest numbers; and
date keys are ordered from earliest to latest date (a blank date is higher than all other dates). Use the UPPER()
function on the key expression to convert all lowercase letters to uppercase and achieve alphabetical order for
character-type indexes.

Note Most non-U.S. character sets provide a different sort order for characters than the DOS Code Page 437 character
set.

You can reverse the order of an index, arranging records in descending order, by including the DESCENDING
keyword. (You can use DESCENDING only when building .MDX tags.)

Distinct, primary, and unique indexes You may use an index to ensure that there are no duplicate
key values. For example, in a table of customers, each customer is assigned their own unique customer ID
number. To prevent an existing customer ID number from being used by another customer, you can create a
special kind of index on the customer ID field. For DB and SQL tables, this type of index is called a unique
index; the key value for each record in the table must be unique. For DBF tables, this type of index is called a
distinct index; a unique index for a DBF table has a different meaning. For clarity, the DBF terms are used.

A distinct index is created with the DISTINCT option for DBF tables, and the UNIQUE option for DB and SQL
tables. When a table has a distinct index, any attempt to create a duplicate key entry, either by adding a new
record with a duplicate value or by changing an existing record so that its key field(s) duplicates another record,
causes a key violation error. The new or changed record is not written to the table. Distinct indexes for DBF
tables never include records that are marked as deleted.

A table may also have one distinct index designated as its primary index, or primary key. A primary index is
usually created for the ID field or fields that uniquely identify each record in the table. For example, while you
may index on the customer’s name, their ID field is what uniquely identifies each customer, and that is the field
you use for the primary key. For DB tables, a table’s primary key determines the default order for the records in
the table, and you must have a primary key to create other secondary indexes. For DBF tables, a primary key
currently has no special meaning, other than self-documenting the primary key field(s) of the table. The
PRIMARY clause is used to create the primary index. For DB and SQL tables, a primary index may have no
other options other than the field list.

DBF tables support a kind of index that allows duplicate key values in the table, but only shows the first such
record in the index. These are called unique indexes, not to be confused with the distinct unique indexes used by
DB and SQL tables. For example, you may be interested in the names of the cities in which your customers
reside. By using a unique index, each city is listed once (alphabetically), no matter how many customers you
have in that city.

A record’s index key value is tested for uniqueness only when the record is added or updated. For example, suppose
you have a unique index on the City field, and have records in both "Bismark" and "Fargo". If you append another
record in "Bismark", it does not appear in the index, although the table is updated with the new record. If you
then change the first record, which was listed in the index, from "Bismark" to "Fargo", then it too becomes
hidden because there is already a "Fargo" in the index. It also does not automatically expose the other record
with "Bismark", because that record was not updated; no records in "Bismark" are in the index at that moment.
REINDEX explicitly updates all key values in a unique index.

Indexing a table with SET UNIQUE ON has the same effect as INDEX with the UNIQUE option. With DB and
SQL tables, it creates a distinct index. With DBF tables, it creates a unique index.

Using indexes Once a table has been indexed, use LOOKUP(), SEEK, and SEEK() to retrieve data. The
structure of an index file allows these commands to quickly locate values of the key expression.

Whenever data in key fields is modified, dBASE Plus automatically updates all open index files. Index files
closed when changes are made in a table can be opened and then updated using REINDEX.

Multiple index files simplify updating indexes, since dBASE Plus updates all indexes with tag names listed in
.MDX files specified with USE...ORDER or SET ORDER. dBASE Plus automatically opens a production
.MDX file, if one exists, when you open the associated table.

INDEX...TAG creates an index and adds the tag name to a multiple index file. If you don't include OF
<filename>, INDEX...TAG adds the tag name to the production .MDX file. dBASE Plus creates the production
.MDX or the specified file if it doesn't already exist.

INDEX is similar to SORT, another command that allows ordering of a table. Unlike INDEX, though, SORT
physically rearranges the table records, a time-consuming process for large files. To maintain the sorted order,
either new records must be inserted in their proper position, which is also very time-consuming, or the entire
265 dBL Language Reference

ISBLANK()
table must be resorted. Also, SORT doesn't support LOOKUP(), SEEK, or SEEK(), making the process of
locating data in a sorted table much slower.

At the end of an indexing operation, the new index file is the master index, and the record pointer is positioned
at the first record of the new indexed.

OODML Use the Database object’s createIndex() method.

Example The following example creates an index based on the last name and first name in a table:
index on upper(LAST_NAME + FIRST_NAME) tag FULL_NAME

The next example indexes on a customer ID and the order date as the primary key for an Orders table:
index on CUST_ID + dtos(ORDER_DATE) tag CUST_ORD primary

See Also FIND, KEY(), LOOKUP(), ORDER(), REINDEX, SEEK, SEEK(), SET INDEX, SET ORDER, SET
UNIQUE, SORT, TAG(), USE

ISBLANK()
Determines if a specified field or expression is blank.

Syntax ISBLANK(<exp>)

<exp> An expression of any data type.

Description ISBLANK() returns true if a specified expression is blank or null; false if it contains data. A field is blank if it
has never contained a value or if you used the BLANK command on it. ISBLANK() returns a different result
from EMPTY() when used on numeric fields; ISBLANK() differentiates between zero and blank values, while
EMPTY() does not.

ISBLANK() is especially useful when performing functions such as averaging, since it ensures that blank
values are not included in the calculation. If you don't need to differentiate between 0 or blank values in numeric
fields, you can use either ISBLANK() or EMPTY().

OODML No equivalent.

See Also APPEND, BLANK, EMPTY(), SPACE(), TYPE()

ISTABLE()
Tests for the existence of a table in a specified database.

Syntax ISTABLE(<filename>)

<filename> The name of the table to search for. You cannnot use a filename skeleton for ISTABLE(). If
you do, it will return false.

Description Use ISTABLE() to confirm the existence of a table. If the table exists, ISTABLE() returns true; otherwise it
returns false.

OODML Use the Database object’s tableExists() method.

See Also DIR, DISPLAY FILES, FILE(), GETFILE(), PUTFILE(), SET DEFAULT, SET DATABASE, SET
DBTYPE, SET DIRECTORY, SET PATH

KEY()
Returns the key expression of the specified index.

Syntax KEY([<.mdx filename>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.
Xbase 266

KEYMATCH()
<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.
Note Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters

shift forward one; the second parameter becomes the first parameter, and so on.

Description KEY() returns a string containing the key expression of the specified index. To see the value of the key
expression for a given record, store the string returned by KEY() in a private variable. Then use macro
substitution to evaluate the expression.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, KEY() checks the current master index tag and returns an empty string if
there is no master index.

If the specified .MDX file or index tag does not exist, KEY() returns an empty string.

OODML No equivalent.

Example The following example displays the current index key value during navigation for debugging purposes:
PROCEDURE Form_onNavigate
 private cKey
 cKey = key()
 ? "Key value: [" + &cKey + "]"

See Also INDEX, NDX(), ORDER(), SET INDEX, SET ORDER, TAG(), TAGCOUNT(), TAGNO(), USE

KEYMATCH()
Indicates if a specified expression is found in an index.

Syntax KEYMATCH (<exp> [,<index number> [,<alias>]])

where <index number> is:
<index position expN> | [<.mdx filename expC>,] <tag expN>

<exp list> The expression, of the same data type as the index, that you want to look for.

<index position expN> The numeric position of the index in the list of open indexes for the table.

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area.

<tag expN> The numeric position of the index tag in the specified .MDX file.

<alias> The work area you want to check.

Description The KEYMATCH() function determines if a specified key expression is found in a particular index.
KEYMATCH() returns true or false to indicate whether the specified expression was found. SET EXACT
controls whether exact matches of character string data is required.

A primary use of the KEYMATCH() function is to check for duplicate values when adding records. Unlike
SEEK(), KEYMATCH() looks for a matching index value without moving the record pointer and disturbing
the current state of the record buffer.

KEYMATCH() ignores the settings for SET FILTER and SET KEY TO, ensuring the integrity of data in a
table even when you work with a subset of the table records. KEYMATCH() honors SET DELETED, so that
when SET DELETED is ON, existing key values in records marked as deleted are ignored, as if those records
did not exist.

If you specify only an expression (<exp>) whose value you want to match, KEYMATCH() searches the current
master index for an index key with the same value.
267 dBL Language Reference

LIST
To search indexes other than the current master index, you must specify the index by index position. There are
two ways to do this:

• By the index’s position in the list of open indexes. Index numbering is complicated if you have open .NDX
indexes or open non-production .MDX files. For information on index numbering, see SET INDEX.

• By an index tag’s position in an .MDX file. If you do not specify <.mdx filename expC>, the production
.MDX is used.

Either way, it is often easier to reference an index tag by name by using the TAGNO() function to get the
corresponding position number.

OODML No equivalent.

See Also INDEX, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET ORDER, TAGNO(), USE

LIST
Displays records from the current table in the result pane of the Command window.

Syntax LIST
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[[FIELDS] <exp list>]
[OFF]
[TO FILE <filename>]
[TO PRINTER]

Description Both LIST and DISPLAY display records in the results pane of the Command window. There are two
differences between the commands:

• LIST displays continuously until complete, while DISPLAY pauses after each screenful of information.

• The default scope of LIST is ALL, while the default scope of DISPLAY is NEXT 1, the current record only.

Because LIST does not pause between screens, it is more appropriate when directing output to a file or printer.
For more information on the options of LIST, see DISPLAY.

OODML No equivalent.

See Also DISPLAY, SET CONSOLE, SET HEADING

LKSYS()
Returns information about a locked record or file.

Syntax LKSYS(<expN>)

<expN> A number representing the information for LKSYS() to return:

Value Returns
0 Time when lock was placed
1 Date when lock was placed
2 Login name of user who locked record or file
3 Time of last update or lock
4 Date of last update or lock
5 Login name of user who last updated or locked record or file

Description LKSYS() returns multiuser information contained in a _DBASELOCK field of a DBF table. For LKSYS() to
return information, the current table must have a _DBASELOCK field. Use CONVERT to add a
_DBASELOCK field to a table. If the current table doesn't contain a _DBASELOCK field, LKSYS() returns an
empty string for any value of <expN>.
Xbase 268

LOCATE
Note LKSYS() works only with DBF tables.

LKSYS() always returns a string. When LKSYS() returns a date, it is a string containing the date in the current
date format dictated by SET DATE and SET CENTURY. Use CTOD() to convert the date string to a date.

When a record is locked, either explicitly or automatically, the time, date, and login name of the user placing the
lock are stored in the _DBASELOCK field of that record. When a file is locked, this same information is stored
in the _DBASELOCK field of the first physical record in the table.

Passing 0, 1, or 2 as arguments to LKSYS() returns values only after an attempted file or record lock has failed.
If a file or record lock on a converted table fails, the information for LKSYS() arguments 0, 1, and 2 is written
to a buffer from the record's _DBASELOCK field. If you then pass 0, 1, or 2 to LKSYS(), the information is
read from the buffer. The buffer isn't overwritten until you attempt another lock that fails. Thus, 0, 1, and 2
always return the information that was current at the time of the last lock failure.

You can pass 3, 4, or 5 as arguments to LKSYS() whether or not the current record or file is currently locked.
These arguments return information about the last successful record or file lock. When you pass any of these
arguments to LKSYS(), it returns information directly from the _DBASELOCK field rather than from an
internal buffer.

If you pass 2 or 5 to obtain a user login name, and the _DBASELOCK field is only 8 characters wide, LKSYS()
returns an empty string. The first 8 characters of a _DBASELOCK field are the count, time, and date
information of the last update or lock, so the field must be wider than 8 characters to fit part or all of the login
user name. Set the width of the field with CONVERT.

OODML Check the properties of the rowset.fields["_DBASELOCK"] field.

Example The following function is used to lock individual records. If it fails, it uses LKSYS() to display information on
who has the lock and when they got it. SET REPROCESS must be changed to 1 instead of 0 so that if the lock
attempt fails the standard dialog, which does not have as much information, will not be displayed.

PROCEDURE RecLock
 local cMsg
 do while .t.
 if rlock()
 return .t.
 else
 cMsg = "Locked by: " + lksys(2) + chr(13) + ;
 "since: " + lksys(1) + " " + lksys(0)
 if msgbox(cMsg, "Record is locked by another", 5 + 48) == 2
 return .f.
 endif
 endif
 enddo

The MSGBOX() used is a Retry/Cancel dialog box. The button number, which MSGBOX() returns, is 2 if the
Cancel button is clicked or the user presses Esc.

See Also CHANGE(), CONVERT, FLOCK(), RLOCK(), SET LOCK, UNLOCK

LOCATE
Searches a table for the first record that matches a specified condition.

Syntax LOCATE
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL. LOCATE is usually used
with a FOR condition.

Description LOCATE performs a sequential search of a table and tests each record for a match to the specified condition. If
a match is found the record pointer is left at that record. Issuing CONTINUE resumes the search, allowing
additional records meeting the specified condition to be found.
269 dBL Language Reference

LOCK()
Whenever a match is found, FOUND() returns true. If match is not found, the record pointer is left after the last
record checked, which usually leaves it at the end-of-file. Also, FOUND() returns false.

If SET TALK is ON, LOCATE will display the record number of the matching record in the result pane of the
Command window if you are searching a DBF table. If no match is found, LOCATE will display "End of
Locate scope"

Because the default scope of the command is ALL, issuing LOCATE with no options will move the record
pointer to the first record in the table, because that is the first matching record in that scope. However, there is
no practical reason to use LOCATE in this manner. A FOR condition is usually used with LOCATE to find
records that match a condition. An understanding of command scope, as explained on page 12-229, is essesntial
to using LOCATE effectively.

LOCATE does not require an indexed table; however, if an index is in use, LOCATE follows its index order.
When using the = operator to compare strings, LOCATE uses the rules established by SET EXACT to
determine whether the strings match. Use the == operator to perform exact matches regardless of SET EXACT.

The search commands LOCATE and SEEK are each designed for use under particular conditions. LOCATE is
the most flexible, accepting expressions of any data type as input and searching any field of a table. For large
tables, however, a sequential search using LOCATE might be slow.

Use SEEK or SEEK() for greater speed. Both conduct an indexed search, similar to looking up a topic in a book
index and turning directly to the appropriate page, allowing information to be found almost immediately. Once
you use the INDEX command to create an index for a table, SEEK uses this index to quickly identify an
appropriate record.

You can use SEEK and LOCATE in combination. Use SEEK to quickly narrow down a search and then use
LOCATE with the appropriate scope to find the exact you’re looking for.

OODML Use the Rowset object’s beginLocate() and applyLocate() methods.

Example The following example uses SEEK and LOCATE in combination to find the first vendor in Texas that is not in
either Dallas or Houston. The table is indexed on state and city, but you cannot use SEEK alone to find a
matching record.

use VENDOR order STATE_CITY
if seek("TX")
 locate while STATE == "TX" for CITY # "Dallas" .and. CITY # "Houston"
 if found()
 *-- Do something
 endif
endif

If SEEK() finds a vendor in Texas, the WHILE clause of the LOCATE command restricts the sequential search
to Texas. The FOR clause looks for the city match, (or non-match in this case).

See Also CONTINUE, FIND, FOUND(), LOOKUP(), SEEK, SEEK(), SET EXACT

LOCK()
Locks the current record or a specified list of records in a table.

Syntax LOCK([<record list expC>,<alias>] | [<alias>])

<list expC> The list of record numbers to lock, separated by commas.

<alias> The work area in which to lock records.

Description LOCK() is identical to RLOCK(). For more information, see RLOCK().

See Also FLOCK(), RLOCK(), SET LOCK, SET RELATION, SET REPROCESS, UNLOCK

LOOKUP()
Searches a field for a specified expression and, if the expression is found, returns the value of a field within the same
record.
Xbase 270

LUPDATE()
Syntax LOOKUP(<return field>, <exp>, <lookup field>)

<return field> The field whose value you want to return if a match is found.

<exp> The expression to look for in the <lookup field>. Specify an alias when referring to fields outside the
current work area.

<lookup field> The field you want to search for the value <exp>.

The <return field> and <lookup field> are usually fields in the same table, a table that is not in the current work
area. Use the alias name and alias operator (->) to reference fields in other tables.

Description LOOKUP() looks for the first record where <lookup field> matches the specified expression <exp>. The record
pointer is left at the matching record. If no match is found, the record pointer is left at the end-of-file. Either
way, LOOKUP() then returns the value of <return field>.

Therefore, if no match is found, LOOKUP() returns the blank value for that field, either an empty string (""),
zero, a blank date, or false, depending on the data type of <lookup field>. Calling FOUND() will also return
true or false to indicate if the search was successful.

LOOKUP() performs a sequential search, unless an index whose key matches <lookup field> is available in the
lookup table. To minimize the time LOOKUP() takes to search a table, you should create index keys for your
most common lookups.

Because LOOKUP() moves the record pointer you can perform a lookup with related tables, where the <lookup
field> is in the parent table, and <return field> is in the child table.

OODML No equivalent.

Example The following event handler displays the city for a zip code that is typed into the control:
PROCEUDRE zipCode_onChange
 form.city.text = lookup(ZIPCODE->CITY, this.value, ZIPCODE->ZIP_CODE)

See Also FOUND(), LOCATE, SEEK, SEEK()

LUPDATE()
Returns the date of the last change to a table.

Syntax LUPDATE([<alias>])

<alias> The work area you want to check.

Description LUPDATE() returns the last update date of the specified table. If no table is open, LUPDATE() returns a blank
date.

OODML No equivalent. You may use functions to check the last update date of the table file.

See Also DTOC(), SET CENTURY, SET DATE

MDX()
Returns the names of a DBF table’s open .MDX index files.

Syntax MDX([<mdx expN>[, <alias>]])

<mdx expN> A number indicating which open .MDX file whose name to return.

<alias> The work area you want to check.

Description MDX() returns the name of an .MDX file open in the current or specified work area. .MDX files are numbered
in the order in which they were opened. The production .MDX file, the one with the same name as the DBF file,
is number 1.

If <mdx expN> is omitted, the name of the .MDX file containing the current master index tag is returned.
271 dBL Language Reference

MDX()
MDX() includes the drive letter (and colon) in the filename. If SET FULLPATH is ON, MDX() also returns
the directory location of the .MDX file in addition to the drive and name.

If <mdx expN> is higher than the number of open .MDX files, or if you do not specify an index order number
and the master index is an .NDX file, MDX() returns an empty string (""). MDX() also returns an empty string
if there is no .MDX file open.

OODML No equivalent.

Example The following utility function generates a program file that will recreate all indexes from scratch. This
generated program also documents the index tags. It uses the MDX() function to get the name of the .MDX file
that contains the active index tag. If there is no active index tag, the production .MDX is used. Please be aware
that this program does not take into account primary and distinct indexes.

PROCEDURE GenMDX(cFile)
 local cMdx, cMdxFile
 cMdx = mdx()
 if cMdx == ""
 *-- If no active index tag, try production .MDX
 cMdx = mdx(1)
 if cMdx == ""
 msgbox("No MDX file", "Nothing to do", 48)
 return
 endif
 endif

 *-- Set OF clause for non-production .MDX
 cMdxFile = iif(cMdx == mdx(1), "", [of "] + cMdx + ["])
 *-- Remove drive and/or path from .MDX filename
 *-- (after setting OF clause, because that checks cMdx)
 cMdx = substr(cMdx, max(rat(":", cMdx), rat("\", cMdx)) + 1)

 local lSafety
 lSafety = (set("SAFETY") == "ON")
 set safety on

 if argcount() < 1
 cFile = left(cMdx, rat(".", cMdx) - 1) + "X.PRG"
 endif

 set alternate to (cFile)
 set console off
 ?
 set alternate on

 ??"* " + cFile
 ? "*"
 ? "* Index file for " + cMdx
 if cMdxFile == ""
 ?? " (production .MDX)"
 endif
 ? "*"
 ? "* Generated on " + dtoc(date()) + " " + time()
 ? "*"
 ?
 ? [*-- Delete all current tags from specific .MDX only]
 ? [do while "" # tag("] + cMdx + [", 1)]
 ? [delete tag tag("] + cMdx + [", 1)]
 ? [enddo]
 ?

 nNdx = 1
 do while "" # key(cMdx, nNdx)
 ? [index tag] + transform(tag(cMdx, nNdx), "@! XXXXXXXXXX") + ;
 cMdxFile + [on] + key(cMdx, nNdx)
 if "" # for(cMdx, nNdx)
 ?? [for] + for(cMdx, nNdx)
Xbase 272

MEMLINES()
 endif
 if descending(cMdx, nNdx)
 ?? [descending]
 endif
 if unique(cMdx, nNdx)
 ?? [unique]
 endif
 nNdx = nNdx + 1
 enddo

 close alternate
 if .not. lSafety
 set safety off
 endif

The function uses the KEY(), FOR(), DESCENDING(), and UNIQUE() functions to get the definition of
each index.

See Also INDEX, NDX(), SET FULLPATH, SET INDEX, SET ORDER, TAG(), TAGCOUNT(), TAGNO(), USE

MEMLINES()
Returns the number of lines in a memo field.

Syntax MEMLINES(<memo field> [,<line length expN>])

<memo field> The memo field the MEMLINES() function operates on.

<line length expN> Specifies the line length used in calculating the number of lines in a memo field.
<expN> can be set to any number from 8 to 255. If <expN> is not specified, MEMLINES() calculates each line
using the memo width specified using the SET MEMOWIDTH command.

Description The MEMLINES() function returns the number of lines in a memo field based on the memo width specified by
the line length parameter. If you don't specify a line length, MEMLINES() uses the width specified by SET
MEMOWIDTH, which defaults to 50.

If a word doesn't completely fit within the remainder of a line, MEMLINES() wraps that word and everything
on the line following it to the beginning of the next line. If the number of characters in a word is longer than the
default or specified memo field line length, MEMLINES() truncates the word at the end of the line and includes
the remainder of the word at the beginning of the next line.

A carriage return/line feed combination in the memo text always starts a new line. Note that if the carriage
return/line feed is at the end of the memo field contents, the empty blank line that follows it is counted in the
total line count.

OODML No equivalent. You cannot accurately determine the amount of text that can fit on a line when using
proportional fonts.

See Also MLINE(), SET MEMOWIDTH, STORE MEMO

MLINE()
Extracts a specified line of text from a memo field in the current record.

Syntax MLINE(<memo field> [, <line number expN > [, <line length expN>]])

<memo field> The memo field the MLINE() function operates on.

<line number expN > The number of the line in the memo field returned by the MLINE() function. The
default for <line number expN> is 1, the first line.

<line length expN > The number that determines the length of a line in the memo field. <line
length expN> can be set to any number from 8 to 255. If <line length expN> is not set, the SET MEMOWIDTH
setting specifies the length of the line.
273 dBL Language Reference

NDX()
Description MLINE() returns a specified line of text from a memo field. MLINE() treats the text of the memo field as if it
were wordwrapped within a display width specified by the SET MEMOWIDTH setting or by <line
length expN>.

If a word doesn't completely fit within the remainder of a line, MLINE() wraps that word and everything on the
line following it to the beginning of the next line. If the number of characters in a word is longer than the default
or specified memo field line length, MLINE() truncates the word at the end of the line and includes the
remainder of the word at the beginning of the next line.

OODML No equivalent.

Example

See Also MEMLINES(), REPLACE MEMO, SET MEMOWIDTH, STORE MEMO

NDX()
Returns the names of a DBF table’s open .NDX files.

Syntax NDX([<ndx expN> [, <alias>]])

<ndx expN> A number indicating which open .NDX file whose name to return.

<alias> The work area you want to check.

Description NDX() returns the name of the .NDX file open in the current or specified work area. .NDX files are numbered
in the order in which they were opened. The first one is number 1.

If <ndx expN> is omitted, the name of the .NDX file containing the current master index tag is returned.

NDX() includes the drive letter (and colon) in the filename. If SET FULLPATH is ON, NDX() also returns the
directory location of the .NDX file in addition to the drive and name.

If <ndx expN> is higher than the number of open .NDX files, or if you do not specify an index order number and
the master index is an index tag in an .MDX file, NDX() returns an empty string ("").

OODML No equivalent.

See Also DBF(), FIELD(), KEY(), MDX(),ORDER(), SET FULLPATH, SET INDEX, SET ORDER, TAG(), USE

OPEN DATABASE
Establishes a connection to a database server or a database defined for a specific directory location.

Syntax OPEN DATABASE <database name>
[LOGIN <username>/<password>]
[WITH <option string>]
[AUTOEXTERN]

<database name> The name, or alias, of the database you want to open. Database aliases are created
using the BDE Administrator.

<user name>/<password> The user name and password, separated by a slash, required to access the
database.

WITH <option string> Character string specifying server-specific information required to establish a
database server connection. For information about establishing database server connections, refer to your
Borland SQL Link documentation, and contact your network or database administrator for specific connection
information.

AUTOEXTERN Treat all stored procedures as EXTERN. This eliminates the need for the user to EXTERN
SQL any stored procedure calls. Once the database is open, the stored procedures are immediately available. For
use with Interbase and Oracle databases only.

Description The OPEN DATABASE command is used to establish a connection with a database defined with the BDE
Administrator. When opening a database, you need to specify whatever login parameters and database-specific
Xbase 274

ORDER()
information that connection requires. Typically, your network or system administrator can provide you with the
information necessary to establish connections to established databases and database servers at your site.

OODML Use a Database object.

See Also CLOSE..., DATABASE(), SET DATABASE, SET DBTYPE

ORDER()
Returns the name of the current master index.

Syntax ORDER([<alias>])

<alias> The work area you want to check.

Description ORDER() returns the name of the current master index. For DBF tables, this could be either the name of an
index tag in an .MDX file, or the name of an .NDX file (the name only, no drive or extension as returned by the
NDX() function). For all other table types, the name is the name of an index tag.

ORDER() returns an empty string ("") if the table is in its natural order: either its primary key order, if it has a
primary key; or no active index.

Some routines need to use a specific index. Use ORDER() to get the name of the current master index before
switching to the desired index and then use the SET ORDER command to later restore the master index.

OODML Check the indexName property of the Rowset object.

Example In this example, a function switches to a specific index tag before calling another function that creates a new
record:

PROCEDURE NewStudent
 local cOrder
 cOrder = order()
 set order to STUDENT_ID
 NewRec()
 set order to (cOrder)

This example function assumes that the Students table is the currently selected table, which might be ordered
according to name, average test score, or some other index. This function saves the index order of the table in
the variable cOrder. At the end of the function, that index is restored with the SET ORDER command using the
parentheses as indirection operators.

The NewRec function is shown in the example for APPEND.

See Also ALIAS(), KEY(), MDX(), NDX(), SELECT(), SET INDEX, SET ORDER, TAG(), USE

PACK
Removes all records from a DBF table that have been marked as deleted.

Syntax PACK

Description Use PACK to remove records from the current DBF table that were previously marked as deleted by the
DELETE command. You must open the table for exclusive use before using PACK.

After you execute a PACK command, the disk space used by the deleted records is reclaimed when the table is
closed. All open index files are automatically re-indexed after PACK is executed. (Use REINDEX to update
closed indexes.)

Use PACK with caution. Records that have been marked for deletion but not yet eliminated with PACK can be
undeleted and restored to a table using RECALL. Records eliminated with PACK are permanently lost and can't
be recovered.

SET DELETED ON provides many of the benefits of PACK without actually removing records from a table.
With SET DELETED ON, most commands function as if records marked for deletion had been eliminated from
a table.
275 dBL Language Reference

RECALL
Because PACK requires the exclusive use of a table, it may be difficult to find a time to PACK a table for
applications that run continuously. Also for large tables, PACK is time-consuming and requires enough disk
space to make a copy of the table. Consider recycling deleted records instead, which is quicker and safer. For an
example of how to implement record recycling, see the examples for APPEND and BLANK.

To permanently remove all records of the current table in one step, use the ZAP command.

OODML Use the Database object’s packTable() method.

See Also DELETE, RECALL, SET DELETED, ZAP

RECALL
Restores records that were previously marked as deleted in the current DBF table.

Syntax RECALL
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

Description Use RECALL to undelete records that have been marked as deleted in the current DBF table with DELETE but
have not yet been removed with PACK. Executing DELETE marks the record as deleted but doesn’t physically
remove them from the table. If SET DELETED is ON (the default), these deleted records cannot be seen.
RECALL reverses this process, unmarking the records and fully restoring them to the table.

Records eliminated with PACK or ZAP are permanently removed and can't be recovered using RECALL.

When using RECALL, SET DELETED should be OFF; otherwise you will not be able to see the deleted
records you want to recall. Using RECALL on records that are not marked as deleted has no effect.

OODML Soft deletes are not supported.

Example See APPEND for an example of RECALL being used in record recycling.

See Also DELETE, PACK, SET DELETED, ZAP

RECCOUNT()
Returns the number of records in a table.

Syntax RECCOUNT([<alias>])

<alias> The work area you want to check.

Description RECCOUNT() retrieves a count of a table's records from the table header, which holds information about the
table structure. In contrast, COUNT with no options yields a record count by actually counting the table's
records using the table’s current filter, key constraints, the setting of SET DELETED and so on. RECCOUNT()
includes all records, even those marked as deleted, and is always instantaneous; COUNT is not.

If no table is active in the specified work area, RECCOUNT() returns zero.

You can use RECSIZE() in combination with RECCOUNT() to determine the approximate size, in bytes, of a
table.

OODML In some cases, the Rowset object’s rowCount() method will return the same value.

See Also DIR, DBF(), DISKSPACE(), DISPLAY STRUCTURE, RECNO(), RECSIZE()
Xbase 276

RECNO()
RECNO()
For DBF tables, returns the current record number. For all other table types, returns a bookmark of the current
position in a table.

Syntax RECNO([<alias>])

<alias> The work area you want to check.

Description RECNO() returns the current record number of the table in the current or a specified work area, if that table is a
DBF table. For all other table types, RECNO() behaves like BOOKMARK(), returning a bookmark. If no table
is open in the specified work area, RECNO() returns a value of 0.

If the record pointer is at end-of-file (past the last record in the table), RECNO() returns a value that is one more
than the total number of records in the table. Therefore, RECNO() returns a value of 1 if there are no records in
the table—RECCOUNT() would return zero.

The use of BOOKMARK() is recommended instead of RECNO(). Besides returning a consistent data type
with all tables, with BOOKMARK() you can bookmark the position at the end-of-file and GO back to it.
Although RECNO() will return a record number for the end-of-file, you cannot GO to that record number,
because there actually is no record with that number.

OODML Use the Rowset object’s bookmark() method.

See Also BOF(), BOOKMARK(), EOF(), RECCOUNT()

RECSIZE()
Returns the number of bytes in a record of a table.

Syntax RECSIZE([<alias>])

<alias> The work area you want to check.

Description RECSIZE() returns the number of bytes in a record of a table in the current or specified work area. If no table is
open in the specified work area, RECSIZE() returns a value of zero.

LIST STRUCTURE and DISPLAY STRUCTURE also show the size of a table's records.

OODML Use a loop to add up the length properties of the Field objects in the fields array.

Example The following example uses RECSIZE() to determine if there is enough disk space to append the records
contained in another file (which might be on a CD-ROM or other large capacity disk). The other file is opened
with the alias "OTHERFILE":

if reccount("OTHERFILE") * recsize() > diskspace()
 msgbox("Insufficient disk space to append records", "Error", 48)
endif

See Also DBF(), DIR, DISPLAY STRUCTURE, LIST STRUCTURE, RECCOUNT(), RECNO()

REFRESH
Updates data buffers to reflect the latest changes to data.

Syntax REFRESH [<alias>]

<alias> The work area to refresh.

Description Use REFRESH to update specified work area data buffers so that data you display reflects the latest changes
made to tables by other users.

OODML Use the Rowset object’s refresh() method or the Query object’s requery() method.

See Also SET REFRESH
277 dBL Language Reference

REINDEX
REINDEX
Regenerates all open index files in the current work area.

Syntax REINDEX

Description Use REINDEX to manually regenerate all open indexes in the current work area. In a normal application,
indexes remain open as long as their tables are open. These indexes are automatically updated whenever there is
a change to the table, so there is no need to manually REINDEX.

You would use REINDEX if your application uses non-production .MDX files or .NDX files that are not always
open. To update these indexes, open them with the corresponding table and issue REINDEX.

You might also use REINDEX if you suspect that the index files have been damaged. REINDEX rebuilds the
entire index file from scratch.

You must have exclusive use of a table to REINDEX it.

OODML Use the Database object’s reindex() method.

Example In the following example, a DBF file is generated and downloaded from a mainframe on a weekly basis,
overwriting the previous week’s file. The DBF has an .MDX file that must be manually regenerated for each
week’s download before processing the downloaded data. The beginning of the process looks like this:

use DOWNLOAD index PROCESS.MDX exclusive
reindex
set order to NAME
*-- Rest of process

See Also INDEX, SET INDEX, SET ORDER, USE

RELATION()
Returns the link expression defined with the SET RELATION command.

Syntax RELATION(<expN> [,<alias>])

<expN> The number of a relation that you want to return.

<alias> The work area you want to check.

Description RELATION() returns a string containing the expression that links one table with another that was defined with
the SET RELATION command. You must specify the number of the relation; if the table in the current or
specified work area is linked to only one table, that <expN> is the number 1. RELATION() returns an empty
string ("") if no relation is set in the <expN> position.

Use RELATION() to save the link expressions of all SET RELATION settings for later use when restoring
relations. To save the target table (the table into which you SET a RELATION), use the TARGET() function.

OODML Check the detail Rowset object’s masterFields and masterRowset properties, or the detail Query object’s
masterSource property to determine the nature of the master-detail linkage.

See Also ALIAS(), CREATE QUERY, CREATE VIEW, CREATE VIEW...FROM ENVIRONMENT, SELECT(),
SET RELATION, SET VIEW, SET(), TARGET()

RELEASE AUTOMEM
Clears automem variables from memory.

Syntax RELEASE AUTOMEM

Description Automem variables are private or public memory variables that have the same name as the fields of the
currently selected table. These variables can be created manually, or with the STORE AUTOMEM, CLEAR
AUTOMEM, or USE...AUTOMEM commands.
Xbase 278

RENAME TABLE
RELEASE AUTOMEM releases any private or public memory variables that have the same name as one of the
fields in the currently selected table, no matter how or for what purpose the variable was created.

Closing a table or moving to another work area doesn’t automatically release a table’s associated automem
variables. dBASE Plus doesn’t recognize a variable as an automem variable, even if it was created as an
automem variable, if it doesn't have the same name as a field in the current table. But because automem
variables are usually private variables, and private variables are automatically released when the routine that
created them is complete, there is rarely any reason to issue RELEASE AUTOMEM in an application.

OODML The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

See Also CLEAR AUTOMEM, RELEASE, STORE AUTOMEM, USE

RENAME TABLE
Changes the name of a specified table.

Syntax RENAME TABLE <old table name> TO <new table name>
[[TYPE] PARADOX | DBASE]

<old table name> The table you want to rename.

<new table name> The new name of the table. If you rename a table in a database, you must specify the
same database as the destination of the new table. Also, the new table name must be the same type as the old
table.

[TYPE] PARADOX | DBASE Specifies the type of table you want to rename, in case you do not specify
a file extension with <old table name>. This option overrides the current SET DBTYPE setting. The TYPE
keyword is included for readability only; it has no effect on the operation of the command.

Description Use the RENAME TABLE command to change the name of a table and its associated files, if any. You cannot
rename an open table, and the new table name cannot already exist in the same directory or database.

OODML Use the Database object’s renameTable() method.

See Also CLOSE..., COPY, COPY FILE, USE

REPLACE
Replaces the contents of fields with data from expressions.

Syntax REPLACE
<field 1> WITH <exp 1> [ADDITIVE]
[, <field 2> WITH <exp 2> [ADDITIVE]...]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[REINDEX]

<field> WITH <exp> Designates fields to be replaced by the value of the specified expressions. Multiple
fields of a record may be changed by including additional <field n> WITH <exp n> expressions, separated by
commas.

ADDITIVE Adds text to the end of memo field text instead of replacing existing text. You can use
ADDITIVE only when the specified field is a memo field in a DBF table.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

REINDEX Specifies that all affected indexes are rebuilt once the REPLACE operation finishes. Without
REINDEX, dBASE Plus updates all open indexes after replacing each record in the scope. When replacing
279 dBL Language Reference

REPLACE
many or all records in a table that has multiple open indexes, REPLACE executes faster with the REINDEX
option.

Description The REPLACE command overwrites a specified field with new data. The field you select can be any type,
including memo fields. (To replace binary or OLE fields, use REPLACE BINARY and REPLACE OLE.) The
field and the expression specified by the WITH clause must have the same data type.

When storing a long string or the contents of a memo field into a shorter character field, the data is truncated.
Use the ADDITIVE option to add a character string to the end of existing memo field text. You can leave a
blank space at the beginning of the string to provide proper spacing.

Be careful when replacing data in the key fields of the current master index, in more than one record (that is,
with the <scope>, WHILE, or FOR options).dBASE Plus automatically updates all open index files after a
REPLACE operation finishes. After replacing data that changes the value in the key field in the master index,
the record and the record pointer immediately move to the position in the index based on the new value of a key.
If replacement in the key field causes a record (and the pointer) to move down past other records that fall within
the scope or meet the specified conditions, those records are not replaced. If replacement in the key field causes
a record to move up before records that have already been replaced, those records may be replaced again.

To make replacements to an indexed table's key field, you may place the table in natural order with the SET
ORDER TO command, or use other techniques, one of which is shown in the example. Replacements in key
fields other than the key fields of the master index don't affect the order of the current index and can be made
over multiple records without complications.

When replacing a Numeric or Float field in a DBF table, the magnitude of the new value should not exceed the
integer portion of the field. For example, if the Numeric field is defined as width 4 with 1 decimal place, you
cannot have a number greater than 99.9. If so, the field contents are replaced with an approximation to the new
value in scientific notation, if it will fit; otherwise the field contents are replaced with asterisks, destroying
stored data. Scientific notation requires a field width of at least 7 characters. This condition is not an error, but
dBASE Plus will display a numeric overflow warning message in the result pane of the Command window.

Other field types that store numbers, including Long and Short integers, have a numeric range they support.
Make sure that the number you attempt to store does not exceed those ranges.

Use the alias operator in the <field> (that is, alias–>field) to REPLACE fields in tables other than the currently
selected table. You may mix fields from different tables in the same REPLACE statement, although the scope of
the command is based on the current table. If there is no relation between the current table and other tables,
traversing the current table—for example, because of an ALL scope—does not move the record pointer in the
other tables.

OODML Assign values directly to the value properties of the Field objects in the Rowset object’s fields array (in a loop
that traverses the rowset if necessary).

Example The following statement updates salaries to conform to the new minimum wage, which is in the variable
nMinWage:

replace for SALARY < nMinWage SALARY with nMinWage

The following statement gives everyone a 10% raise, and two weeks (80 hours) extra vacation:
replace all SALARY with SALARY * 1.1, VACATION with VACATION + 80

The next example replaces all instances of an inadvertently assigned duplicate customer ID number with their
actual customer number.

PROCEDURE ChangeCustID(oldCust, newCust)
 local cOrder
 cOrder = order()
 set order to CUST_ID
 do while seek(oldCust)
 replace CUST_ID with newCust
 enddo
 set order to (cOrder)

The routine uses the SEEK() function to find any records that have the old customer ID number. The number is
replaced in that record only, which moves the record into its updated position in the index. This movement
doesn’t matter because the loop uses the SEEK() function again to find another match.

The current index order is saved before the loop, and restored at the end of the routine.
Xbase 280

REPLACE AUTOMEM
See Also APPEND, BLANK, BROWSE, EDIT, REINDEX, REPLACE AUTOMEM, REPLACE BINARY, REPLACE
MEMO, REPLACE OLE, SET RELATION, UPDATE

REPLACE AUTOMEM
Replaces fields in the current table that have corresponding automem variables.

Syntax REPLACE AUTOMEM

Description Automem variables are private or public memory variables that have the same name as the corresponding fields
of the current table. Automem variables are used to hold data that will be stored in the fields of records. You can
manipulate data stored in automem variables as memory variables rather than as field values, and you can
validate the data before storing the data to a table.

Create a set of automem variables for the fields in a table with USE...AUTOMEM, CLEAR AUTOMEM, or
STORE AUTOMEM (or create the variable manually). To add new records to a table and fill the fields with
values from corresponding automem variables, use APPEND AUTOMEM. To update the fields of existing
records with values from corresponding automem variables, use REPLACE AUTOMEM.

Use REPLACE AUTOMEM to update all the fields of a record without having to name the fields. By contrast,
with the REPLACE command, you need to name every field you want updated.

Remember that an automem variable and its corresponding field have the same name. When a command allows
an argument that could be either a field or a private or public memory variable, dBASE Plus assumes the
argument refers to a field. To distinguish the memory variable from the field, prefix the names of automem
variables with M->.

REPLACE AUTOMEM updates the current record. It can't update all records within a specified scope or all
records matching a condition, as the REPLACE command can with the options <scope>, FOR <condition>, and
WHILE <condition>.

REPLACE AUTOMEM doesn't replace field data with data from a memory variable with the same name but of
a different data type. Those variables are ignored. If a field does not have a corresponding private or public
variable with the same name, that field is left unchanged.

Note: Read-only field type - Autoincrement

Because APPEND AUTOMEM and REPLACE AUTOMEM write values to your table, the contents of the
read-only field type, Autoincrement, must be released before using either of these commands. In the following
example, the autoincrement field is represented by "myAutoInc":

use table1 in 1
use table2 in 2
select 1 // navigate to record
store automem
release m->myAutoInc
select 2
append automem

OODML The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

See Also APPEND AUTOMEM, CLEAR AUTOMEM, REPLACE, STORE AUTOMEM, USE

REPLACE BINARY
Replaces the contents of a binary field with the contents of a binary file.

Syntax REPLACE BINARY <binary field name> FROM <filename>
[TYPE <binary type user number>]

<binary field name> The binary field of the current table that is replaced by the contents of <filename>.

FROM <filename> Specifies the file to copy to the binary field in the current record. If you specify a file
without including its extension, dBASE Plus assumes a .BMP extension; however, the file may be any type.
281 dBL Language Reference

REPLACE FROM ARRAY
TYPE <binary type user number> Specifies a number that can be used to identify the type of binary
data being stored. By default, dBASE Plus attempts to detect the type of file and assigns the appropriate binary
type. Use the BINTYPE() function to retrieve the type number. The range is from 1 to 32K – 1 for user-defined
file types and 32K to 64K – 1 for predefined types (although any number may be specified within the allowable
range).

Predefined binary type
numbers Description
1 to 32K – 1 (32,767) User-defined file types
32K (32,768) .WAV files
32K + 1 (32,769) Image files

Description Use REPLACE BINARY to copy a binary file to the current record's binary field. You can copy one binary file
to each binary field of each record in a table.

While memo fields may contain types of information other than text, binary fields are recommended for storing
images, sound, or any other binary or BLOB type data.

See class Image for a list of image types that dBASE Plus can automatically detect and display.

OODML Use the Field object’s replaceFromFile() method. The binary type option is not supported.

Example The following event handler displays a dialog to pick an image file, then stores the contents of that file in a
binary field, erasing any previous contents.

PROCEDURE importImageButton_onClick
 local cFile
 cFile = getfile("*.bmp", "Image file to import")
 if "" # cFile
 replace binary IMAG_FIELD from (cFile)
 endif

GETFILE() will return an empty string if no file is selected. In the IF statement, the order of the empty string
and the variable cFile is important. If they were the other way around and SET EXACT is OFF, then the IF
statement would always be false.

The parentheses are used as indirection operators to get the name of the file from the variable. Without them,
dBASE Plus would attempt to append a file named cFile.

The binary type for an image, 32,769, is automatically assigned.

See Also APPEND MEMO, BINTYPE(), COPY BINARY, REPLACE MEMO, REPLACE MEMO...FROM,
REPLACE OLE, RESTORE IMAGE

REPLACE FROM ARRAY
Transfers data stored in an array to the fields of the current table.

Syntax REPLACE FROM ARRAY <array>
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]
[REINDEX]

<array> The name of the array that you want to transfer data from.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is REST. The dimensions and size
of <array> also controls which records are updated.

FIELDS <field list> Restricts data replacement to the fields specified by <field list>.
Xbase 282

REPLACE MEMO
REINDEX Specifies that all affected indexes are rebuilt once the REPLACE FROM ARRAY operation
finishes. Without REINDEX, dBASE Plus updates all open indexes after replacing each record in the scope.
When replacing many or all records in a table that has multiple open indexes, REPLACE FROM ARRAY
executes faster with the REINDEX option.

Description Use REPLACE FROM ARRAY to transfer values from an array into fields of the current table. REPLACE
FROM ARRAY treats the columns in a one-dimensional array like a single record of fields; and treats a two-
dimensional array like a table, with the rows (the first dimension) of the array like records, and the columns (the
second dimension) like fields.

For a one-dimensional array, REPLACE FROM ARRAY will replace the first record in the command scope
that matches the specified condition. If there is no specified scope and condition, the current record is replaced.

For a two-dimensional array, REPLACE FROM ARRAY will attempt to copy each row in the array to a record
in the command scope that matches the specified condition until the end-of-scope or all rows of the array have
been copied, in which case the record pointer is left at the last record replaced. As with the REPLACE
command, be careful if are changing the values of the key fields of the current master index; see REPLACE for
details.

If the array has more columns than the table has fields, the additional elements are ignored. Similarly, if a two-
dimensional array has more rows than can be copied to the table, the additional rows are ignored.

REPLACE FROM ARRAY does not replace memo (or binary) fields; these fields should not be counted when
sizing the array, and cannot be included in the <field list>.

The data types of the array must match those of corresponding fields in the table you are replacing. If the data
type of an array element and a corresponding field don't match, an error occurs.

OODML Use a loop to copy the elements of the array into the value properties of the Field objects in the rowset’s fields
array, nested in another loop to traverse the rowset if necessary.

See Also APPEND FROM ARRAY, COPY TO ARRAY, REPLACE

REPLACE MEMO
Copies a text file into a memo field.

Syntax REPLACE MEMO <memo field> FROM <filename>
[ADDITIVE]

<memo field> The memo field to replace.

FROM <file name> The name of the text file. The default extension is .TXT.

ADDITIVE Causes the new text to be appended to existing text. REPLACE MEMO without the ADDITIVE
option causes dBASE Plus to overwrite any text currently in the memo field.

Description Use the REPLACE MEMO command to insert the contents of a text file into a memo field. You may use an
alias name and the alias operator (that is, alias->memofield) to specify a memo field in the current record of any
open table.

REPLACE MEMO is identical to APPEND MEMO, except that REPLACE MEMO defaults to overwriting the
current contents of the memo field, and has the option of appending, while APPEND MEMO is the opposite.

While memo fields may contain types of information other than text, binary fields are recommended for storing
images, sound, and other user-defined binary type information. Use OLE fields for linking to OLE documents
from other Windows applications.

OODML Use the Field object’s replaceFromFile() method.

Example The following event handler displays a dialog to pick a text file, then stores the contents of that file in a memo
field, erasing any previous contents.

PROCEDURE importTextButton_onClick
 local cFile
 cFile = getfile("*.txt", "Text file to import")
 if "" # cFile
 replace memo MEMO_FIELD from (cFile)
283 dBL Language Reference

REPLACE OLE
 endif

GETFILE() will return an empty string if no file is selected. In the IF statement, the order of the empty string
and the variable cFile is important. If they were the other way around and SET EXACT is OFF, then the IF
statement would always be false.

The parentheses are used as indirection operators to get the name of the file from the variable. Without them,
dBASE Plus would attempt to append a file named cFile.

See Also APPEND MEMO, COPY MEMO, REPLACE BINARY, REPLACE MEMO...WITH ARRAY, REPLACE
OLE

REPLACE OLE
Inserts an OLE document into an OLE field.

Syntax REPLACE OLE <OLE field name> FROM <filename>
[LINK]

<OLE field name> The field where an OLE document is inserted.

FROM <file name> The file that identifies an OLE document, including its extension. There is no default
extension.

LINK LINK stores a pointer to the OLE document. By default, dBASE Plus embeds the OLE document itself
in the specified memo field.

Description Use REPLACE OLE to insert the contents of an OLE document into an OLE field. You can either embed the
actual OLE document in an OLE field (the default) or access the OLE document by linking it to the OLE field.

If you link the OLE document, the OLE field contains only a reference to the OLE document. As long as the
OLE document remains in the same location, the OLE field displays the most current version of the document.

If you embed the OLE document, the OLE field contains a copy of the document. There are no links between
the field and the OLE document: therefore, any changes to the original version of the OLE document are not
reflected in the embedded document.

OODML Use the Field object’s replaceFromFile() method. The file is embedded; you cannot link it.

See Also CLASS OLE

RLOCK()
Locks the current record or a specified list of records in the current or specified table.

Syntax RLOCK([<list expC>, <alias>] | [<alias>])

<list expC> The list of record numbers to lock, separated by commas. If omitted, the current record is
locked.

<alias> The work area to lock.

You don't have to specify record numbers if you want to specify a value for <alias> only. However, if you have
specified record numbers, you must specify an <alias>.

Description Use RLOCK() to lock the current record or a list of records in any open table. If you don't pass RLOCK() any
arguments, it locks the current record in the current table. If you pass only <alias> to RLOCK(), it locks the
current record in the specified table. If RLOCK() is successful in locking all the records you specify, it returns
true; otherwise it returns false. You can lock up to 100 records in each table open at your workstation with
RLOCK().

You can view and update a record you lock with RLOCK(). Other users can view this record but can't update it.
When you lock a record with RLOCK(), it remains locked until you do one of the following:

• Issue UNLOCK

• Close the table
Xbase 284

ROLLBACK()
All commands that change table data cause dBASE Plus to attempt to execute an automatic record or file lock.
If dBASE Plus fails to execute an automatic record or file lock, it an error occurs. You might want to use
RLOCK() to handle a lock failure youself, instead of letting the error occur.

RLOCK() can't lock the records you specify when any of the following conditions exist:

• Another user has locked, explicitly or automatically, the current record or one of the records in <list expC>.

• Another user has locked, explicitly or automatically, the table that contains the records you’re trying to lock.

When SET REPROCESS is set to 0 (the default) and RLOCK() can't immediately lock its records, dBASE Plus
prompts you to attempt the lock again or cancel the attempt. Until you choose to cancel the function, RLOCK()
repeatedly attempts to get the record locks. Use SET REPROCESS to eliminate being prompted to cancel the
RLOCK() function, or to set the number of locking attempts.

RLOCK() is similar to FLOCK(), except FLOCK() locks an entire table. Use FLOCK(), therefore, when you
need to have sole access to an entire table or related tables—for example, when you need to update multiple
tables related by a common key—or when you want to update more than 100 records at a time.

When you set a relation in a parent table with SET RELATION and then lock a record in that table with
RLOCK(), dBASE Plus attempts to lock all child records in child tables. For more information on relating
tables, see SET RELATION.

RLOCK() is equivalent to LOCK().

OODML Use the Rowset object’s lockRow() method.

See Also FLOCK(), SET LOCK, SET RELATION, SET REPROCESS, UNLOCK

ROLLBACK()
Cancels the transaction by undoing all logged changes.

Syntax ROLLBACK([<database name expC>])

<database name expC> The name of the database in which to rollback the transaction.

• If you began the transaction with BEGINTRANS(<database name expC>), you must issue
ROLLBACK(<database name expC>). If instead you issue ROLLBACK(), dBASE Plus ignores the
ROLLBACK() statement.

• If you began the transaction with BEGINTRANS(), <database name expC> is an optional ROLLBACK()
argument. If you include it, it must refer to the same database as the SET DATABASE TO statement that
preceded BEGINTRANS().

Description A transaction works by logging all changes. If an error occurs while attempting one of the changes, or the
changes need to be undone for some other reason, the transaction is canceled by calling ROLLBACK().
Otherwise, COMMIT() is called to clear the transaction log, thereby indicating that all the changes in the
transaction were committed and that the transaction as a whole was posted.

Since new rows have already been written to disk, rows that were added during the transaction are deleted. In
the case of DBF tables, the rows are marked as deleted, but are not physically removed from the table. If you
want to actually remove them, you can pack the table with PACK. Rows that were just edited are returned to
their saved values.

All locks made during a transaction are maintained until the transaction is completed. This ensures that no one
else can make any changes until the transaction is committed or abandoned.

For more information on transactions, see BEGINTRANS().

OODML Call the rollback() method of the Database object.

See Also BEGINTRANS(), COMMIT(), SET EXCLUSIVE
285 dBL Language Reference

SCAN
SCAN
Steps through each record in the current table, executing specified statements on each record that meets specified
conditions.

Syntax SCAN [<scope>] [FOR <condition 1>] [WHILE <condition 2>]
 [<statements>]

ENDSCAN

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

<statements> Statements to execute for each record visited.

ENDSCAN A required keyword that marks the end of the SCAN loop.

Description Use SCAN to process the current table record by record. With no scope options, SCAN starts with the first
record in the table in the current index order and visits all the records, stopping at the end-of-file. You may
specify a different <scope> and a WHILE condition to control the range of records, and a FOR condition that
each record must pass for the <statements> to be executed.

At the end of each loop, dBASE Plus automatically moves the record pointer forward one record in the table
before returning to the beginning of the loop; therefore, don't include a SKIP command. You may use the EXIT
command to exit out of the loop and the LOOP command to go to the next record, skipping all remaining
commands in the loop.

You may nest SCAN loops, except that you cannot nest SCAN loops for the same table.

SCAN works like a DO WHILE .NOT. EOF()...SKIP...ENDDO construct; however, with SCAN you can
specify conditions with FOR, WHILE, and <scope>. SCAN also requires fewer lines of code than DO WHILE.

When using SCAN with an indexed table, don't change the value of a field that is (or is part of) the master index
key. When you change the value of such a field, dBASE Plus repositions the record in the index file, which
might cause unintended results. For example, if you change a key field that causes its record to move to the end
of the index, that record might have the SCAN...ENDSCAN statements executed on it a second time.

If you change work areas within a SCAN loop, select the work area containing the table being scanned before
control passes back to the first statement in the SCAN loop.

OODML This example opens a table named FOO and traverses all the records, copying the value of the character field C1
to a throw-away variable, using a SCAN loop and the OODML equivalent:

use FOO
scan
 x = C1
endscan
use

local q, r
q = new Query("select * from FOO")
r = q.rowset
if r.first()
 do
 x = r.fields["C1"].value
 until not r.next()
endif

Of note:

• A “SELECT * FROM” query is equivalent to a plain USE command.

• A reference to the query’s rowset is assigned to another variable as shorthand. It also executes a bit quicker.

• A SCAN—without any scope qualifiers like REST or NEXT—always starts at the beginning of the table, so
a call to the first() method is needed.

• If first() returns false, there’s nothing to do
Xbase 286

SEEK
• A DO...UNTIL loop is used so that the navigation happens after processing the current row. Since the first()
method returned true to get into the loop, there must be at least one row to process.

• When next() returns false, you’ve hit the EOF, which terminates the loop.

See Also DO WHILE, DO...UNTIL, FOR...NEXT, INDEX, LOCATE, SEEK, SKIP

SEEK
Searches for the first record in an indexed table whose key fields matches the specified expression or expression list.

Syntax SEEK <exp> | <exp list>

<exp> The expression to search for in an index for a DBF table.

<exp list> One or more expressions, separated by commas, to search for in a simple or composite key index
for non-DBF tables.

Description dBASE Plus can search a table for specific information either by a sequential search of a table or by an indexed
search of the table's master index. A sequential search is similar to looking for information in a book by reading
the first page, then the second, and so on, until the information is found or all pages have been read. LOCATE
uses this method, checking each record until the information is found or the last record has been inspected.

An indexed search is similar to looking up a topic in a book index and turning directly to the appropriate page.
Once a table index is created, SEEK can use this index to quickly identify the appropriate record.

SEEK looks for the first match in the index. If a match is found, the record pointer of the associated table is
positioned at the record containing the match, and FOUND() returns true.

Use SKIP to access other records whose key fields match the index key fields or expression. SKIP advances the
record pointer one record; because of the indexed order, other matches immediately follow the first. However,
SKIP after SEEK (unlike CONTINUE after LOCATE) doesn't search for a match; it moves the record pointer
one record whether or not it finds a match. You can combine SEEK and LOCATE or SEEK and SCAN (both
with the WHILE clause) to do a quick indexed search for the first matching record before looking through or
processing all the other matches.

The SET NEAR setting determines whether dBASE Plus, after an unsuccessful SEEK, positions the record
pointer at the end-of-file or at the record in the indexed table immediately after the position at which the value
searched for would have been found. If SET NEAR is OFF (the default) and SEEK is unsuccessful, EOF()
returns true and FOUND() returns false. If SET NEAR is ON and SEEK is unsuccessful, EOF() returns false
(unless the position at which the sought value would have been found is the last record in the index), and
FOUND() returns false.

The expression you look for with SEEK must match the key expression or fields of the master index. For
example, if the master index key uses UPPER(), the search expression must also be in uppercase.

For tables that support composite key indexes based on multiple fields, specify a value for each field in the
composite key, separated by commas.

When you seek a key expression of type character, the rules established by SET EXACT determine if a match
exists. If SET EXACT is OFF (the default) only the beginning characters of the key field need to be used for
SEEK to find a match. For example, if SET EXACT is OFF, SEEK "S" will find "Sanders", or whatever the first
key value is that starts with "S". If SET EXACT is ON, the expression must be identical to the key field for a
match to exist.

SEEK and LOCATE each have their own advantages. SEEK conducts the most rapid searches; however, it
requires an indexed table and can search only for values of the key expression.

If the information for which you are searching is in an unindexed table or is not contained in the key fields of an
index, you can use LOCATE. LOCATE accepts any logical condition, which can specify any fields in the table
in any combination. For large tables, however, a sequential search using LOCATE can be slow. In such cases,
you might want to use INDEX to create a new index and then use SEEK or SEEK().

The SEEK() function works like SEEK followed by FOUND(), except that SEEK searches in the current work
area, while SEEK() can search in the current or a specified work area. However, SEEK() can only search for a
single expression; it does not support composite keys based on multiple fields. SEEK() returns true or false
depending on whether the search is successful.
287 dBL Language Reference

SEEK()
OODML Use the Rowset object’s findKey() or findKeyNearest() methods.

See Also EOF(), FOUND(), INDEX, LOCATE, SEEK(), SET EXACT, SET NEAR

SEEK()
Searches for the first record in an indexed table whose keymatches the specified expression.

Syntax SEEK(<exp> [,<alias>])

<exp> The key value to search for.

<alias> The work area you want to search

Description SEEK() evaluates the expression <exp> and attempts to find its value in the master index of the table opened in
the current or specified work area. SEEK() returns true if it finds a match of the key expression in the master
index, and false if no match is found.

The SEEK() function combines the SEEK command and the FOUND() function, adding the ability to search in
any work area. However, SEEK() does not support composite key indexes based on multiple fields used by
non-DBF tables.

Because an index search is almost always followed by a test to see if the search was successful, when searching
DBF tables, use SEEK() instead of SEEK and FOUND(). FOUND() will return the result of the last SEEK()
as well.

SET NEAR and SET EXACT affect SEEK() the same way they affect SEEK. See SEEK for more details.

OODML Use the Rowset object’s findKey() or findKeyNearest() methods.

Example The following example uses SEEK() to prune a customer table by deleting all records that do not have any
orders.

use CUSTOMERS
use ORDERS in select() order CUST_ID
delete for .not. seek(CUST_ID, "ORDERS")

The Customers table is in the current work area while the SEEK() is performed in the Orders table.

See Also EOF(), FOUND(), INDEX, SEEK, SET EXACT, SET NEAR

SELECT
Sets the current work area in which to open or perform operations on a table.

Syntax SELECT <alias>

<alias> The work area to select.

Description Use SELECT to choose a work area in which to open a table, or to specify a work area in which a table is
already open. Many commands operate on the currently selected work area only, or by default.

To select a table that is already open, its alias name is preferred over the work area number, because tables may
be opened in different work areas depending on conditions. The alias name will always select the right table (or
cause an error if the table is not opened), while the work area number may take you to the wrong table.

Each work area supports its own value of FOUND() and an independent record pointer. Changes in the record
pointer of the active work area have no effect on the record pointers of any other work areas, unless you set a
relation between the work areas with the SET RELATION command.

If the <alias> is in a variable, use the parentheses as indirection operators. For example, if xAlias is a variable
containing a work area number or alias name, use SELECT(xAlias). Otherwise, dBASE Plus will attempt select
a work area with the alias name "xAlias".

OODML There is no concept of the "current" Query object. Use your usual object management techniques to manage
Query objects.

See Also ALIAS(), SELECT(), SET RELATION, USE, WORKAREA()
Xbase 288

SELECT()
SELECT()
Returns the number of an available work area or the work area number associated with a specified alias.

Syntax SELECT([<alias>])

<alias> The work area to return. (If <alias> is a work area number, there is no need to call this function,
because that number is what the function will return.)

Description If you do not specify an alias, SELECT() returns the number of the next available work area, a number between
1 and 225; or zero if all work areas in the current workset are being used. If you specify an alias, SELECT()
determines whether the specified alias name is already in use. If it is, SELECT() returns the work area number
that’s using the alias name; otherwise it returns zero.

Use SELECT() to locate an available work area in which to open a table, or to see if a table is already open so
that you don’t open it again.

OODML There is no concept of the "current" Query object. Use your usual object management techniques to manage
Query objects.

Example It’s common practice to use SELECT() to open a table in the next available work area. This way, you don’t
have to worry about accidentally closing an open table. You then always use the alias name to refer to that table.
For example:

use CUSTOMER in select() order CUST_NAME
use ORDERS in select() order CUST_ORD
use LINEITEM in select() order ORD_LINE
select CUSTOMER

See Also ALIAS(), DBF(), SELECT, WORKAREA()

SET AUTOSAVE
Determines if dBASE Plus writes data to disk each time a record is changed or added.

Syntax SET AUTOSAVE on | OFF

Description Use SET AUTOSAVE ON to reduce the chances of data loss. When SET AUTOSAVE is ON and you alter or
add a record, dBASE Plus updates tables and index files on disk when you move the record pointer. When SET
AUTOSAVE is OFF, changes are saved to disk as the record buffer is filled.

Since dBASE Plus periodically saves table changes to disk, in most situations you don't need to SET
AUTOSAVE ON. SET AUTOSAVE OFF lets you process data faster, since dBASE Plus writes your changes
to disk less often.

OODML AUTOSAVE is always OFF. To force data to be written to disk, call the Rowset object’s flush() method in the
onSave event.

See Also CLOSE TABLES, FLUSH

SET DATABASE
Sets the default database from which tables are accessed.

Syntax SET DATABASE TO [<database name>]

<database name> Specifies the name of the database you want to make the current database.

Description SET DATABASE sets the current database, which defines the default location for tables accessed by dBASE
Plus commands. Using this command, you can select from any databases previously opened with the OPEN
DATABASE command. Databases are defined using the BDE Administrator.

When you issue the SET DATABASE TO command without a database, dBASE Plus restores operation to
accessing tables in the current directory (or in the directory specified by SET PATH) instead of through a
database.
289 dBL Language Reference

SET DBTYPE
OODML Assign the appropriate Database object to the Query object’s database property.

See Also CLOSE..., DATABASE(), OPEN DATABASE, SET DBTYPE

SET DBTYPE
Sets the default table type to either Paradox or dBASE.

Syntax SET DBTYPE TO [PARADOX | DBASE]

PARADOX | DBASE Sets the default table type to a Paradox (DB) or dBASE (DBF) table. The default is
DBASE.

Description SET DBTYPE sets the default type of table used by commands that open or create a table. You can override this
selection by specifying a specific extension, that is, .DBF for a dBASE table or .DB for a Paradox table; or by
using the TYPE option offered by many commands.

SET DBTYPE TO specified without a DBASE or PARADOX argument returns DBTYPE to its default
(dBASE).

OODML No equivalent.

See Also CLOSE..., COPY TABLE, CREATE, DATABASE(), DELETE TABLE, MODIFY STRUCTURE, OPEN
DATABASE, RENAME TABLE, SET DATABASE, USE

SET DELETED
Controls whether dBASE Plus hides records marked as deleted in a DBF table.

Syntax SET DELETED ON | off

Description Use SET DELETED to include or exclude records marked as deleted in a DBF table. When SET DELETED is
OFF, all records appear in a table. When SET DELETED is ON, dBASE Plus excludes records that have been
marked as deleted, hiding them from most operations.

INDEX, REINDEX, and RECCOUNT() aren't affected by SET DELETED.

If two tables are related with SET RELATION, SET DELETED ON suppresses the display of deleted records in
the child table. The related record in the parent table still appears, however, unless the parent record is also
deleted.

OODML Soft deletes are not supported.

See Also DELETE, DELETED(), PACK, RECALL, SET(), SET FILTER, SET RELATION

SET EXACT
Establishes the rules used to determine whether two character strings are equal.

Syntax SET EXACT on | OFF

Description Use SET EXACT to choose between a partial string match and an exact string match for certain Xbase DML
commands, the Array class scan() method, and the = comparison operator. The == comparison operator always
behaves like SET EXACT is ON.

When SET EXACT is OFF, partial string matches are performed. For example, SEEK("S") will find "Smith" in
an index, and "Smith"="S" evaluates to true.

When SET EXACT is ON, the two strings must match exactly, except that trailing blanks are ignored. For
example, SEEK("Smith") will find "Smith " in an index and "Smith"="Smith " will evaluate to true.

A partial string match can be thought of as a "begins with" check. For example, the SEEK() function searches
for an index key value that begins with certain characters, and the = operator checks to see if one string begins
with another string.
Xbase 290

SET EXCLUSIVE
In language drivers that have primary and secondary weights for characters (not U.S. language drivers but most
others), dBASE Plus compares characters by their primary weights when SET EXACT is OFF and by their
secondary weights when SET EXACT is ON. For example, when SET EXACT is OFF, and the current
language driver is German, "drücken" and "drucken" are equal.

See Also SET NEAR

SET EXCLUSIVE
Controls whether dBASE Plus opens tables and their associated index and memo files in exclusive or shared mode.

Syntax SET EXCLUSIVE on | OFF

Description When you issue SET EXCLUSIVE ON, subsequent tables you open—and their associated indexes and
memos—are in exclusive mode, unless you open them with USE...SHARED. When you open a table in
exclusive mode, other users can't open, view, or change the file or any of its associated index and memo files. If
you try to open a table that another user has opened in exclusive mode, or if you try to open in exclusive mode a
table that another user has opened, an error occurs.

Exclusive use of a table is different than a file lock that you would get with FLOCK(). With a file lock, others
may have the table open and can read data, although only one user may have a file lock at any time. With
exclusive use, no one else can have the table open.

SET EXCLUSIVE OFF causes subsequent tables you open—and their associated indexes and memos—to be in
shared mode, unless you open them with USE...EXCLUSIVE. If a table in shared mode is in a shared network
directory, other users on the network with access to the directory can open, view, and change the file and any of
its associated index and memo files.

If you use SET INDEX and the table is open in exclusive mode, dBASE Plus opens the index in exclusive
mode. If the table is open in shared mode by way of an overriding USE...SHARED, dBASE Plus opens the
index in the mode specified by USE.

An index created with INDEX is opened in exclusive mode, regardless of whether the table is opened in shared
or exclusive mode and regardless of the SET EXCLUSIVE setting. After creating an index, you can open the
index in shared mode with USE...INDEX...SHARED or by issuing SET EXCLUSIVE OFF followed by SET
INDEX TO.

The following commands require the exclusive use of a table with either SET EXCLUSIVE ON or
USE...EXCLUSIVE:

• CONVERT
• DELETE TAG
• INDEX...TAG
• MODIFY STRUCTURE
• PACK
• REINDEX
• ZAP

OODML EXCLUSIVE is always OFF. When a method like packTable() requires exclusive access to a table, the method
always attempts to open the table in exclusive mode. If the table is already open in another query, the method
will fail.

See Also FLOCK(), INDEX, RLOCK(), SET INDEX, SET LOCK, USE

SET FIELDS
Defines the list of fields a table appears to have.

Syntax SET FIELDS TO
[<field list> | ALL [LIKE <skeleton 1>] [EXCEPT <skeleton 2>]]

SET FIELDS on | OFF
291 dBL Language Reference

SET FIELDS
<field list> | ALL [LIKE <skeleton 1> | EXCEPT <skeleton 2>] Adds the specified fields to the
list of fields the table appears to have. The fields list may include fields from tables open in all work areas and
may also include read-only calculated fields. The following table provides a description of SET FIELDS TO
options:

Option Description
ALL Adds all fields in the current work area to the field list
LIKE <skeleton 1> Adds all fields in the current work area whose names match <skeleton

1> to the field list
EXCEPT <skeleton 2> Adds all fields in the current work area except those whose names

match <skeleton 2> to the field list
LIKE <skeleton 1>
EXCEPT <skeleton 2>

Adds all fields in the current work area whose names are like <skeleton
1> except those whose names match <skeleton 2> to the field list

Description When there is no field list, or SET FIELDS is OFF, operations in a work area that use all fields (by default) use
all the fields in the currently selected table. For example, if you LIST a Customer table with 10 fields and 500
records, those 10 fields are displayed.

A field list overrides this default behavior, making the table appear to have the fields you specify. This is usually
done to either:

• Restrict the fields to certain fields in the table. For example, you can make the Customer table appear to have
only a customer ID and name, hiding the other 8 fields.

• Include fields in other related tables. For example, you could set a relation to a table of sales people, and
make the Customer table appear to have the customer ID, customer name, and the name of their account
representative.

When a field list is active, it is the field list for all work areas in the workset. Because the fields in a field list
always contain the full alias and field name, the fields in the field list will always be used, even if those fields
are in another, unrelated work area. For example, suppose you create a field list with fields from the Customer
table, and then select the Vendor, which has 90 records and is not related into the Customer table. If you then
issue LIST, you will see 90 records, because the LIST command works on the current work area, but you will
see the fields from the Customer table—the fields from the same record repeated 90 times, because the two
tables are not related, and those are the values of the named fields for each record in the Vendor table.

Therefore, when you create a field list, it is usually used only for the work area in which it is created. If the field
list contains fields from other work areas, some way of synchronizing the movement of the record pointers in
those work areas, usually with SET RELATION, is required.

If there is no field list, SET FIELDS creates the specified field list and activates it. If there is a field list, whether
it’s active or not, SET FIELDS adds the specified fields to the field list, and activates it. Fields in other work
areas that are added to the field list may be referred to by their field name only, without using an alias; those
fields now appear to be fields in the current work area. The alias is still allowed, and is necessary if you have
two fields with the same name from different tables in the field list.

A field may be added to the field list more than once, although this is not recommended. For example, if you
execute SET FIELDS TO ALL twice, you will see all the fields in the current table twice. Be sure to use
CLEAR FIELDS before issuing SET FIELDS if your intent is to create a new field list, not add to an existing
field list. To specify a field in other work areas, prefix the field name with the alias name and alias operator (that
is, alias->field).

You can temporarily disable the field list with SET FIELDS OFF. To reactivate the field list, use SET FIELDS
ON. Adding fields with SET FIELDS always reactivates the field list. If you SET FIELDS ON without using
the SET FIELDS TO <field list> command, no fields are accessible. SET FIELDS TO with no fields has the
same effect as CLEAR FIELDS, deactivating and clearing the field list.

Some commands have a FIELDS option, or some way of specifying fields. You may further restrict the fields
used with this option, but you cannot reference fields that have been hidden because they have not been
included with SET FIELDS.

When a field list is active, fields that are not on the field list cannot be used in expressions. However, some
commands ignore the field list, including:

• INDEX and index expressions
Xbase 292

SET FILTER
• LOCATE
• SET FILTER
• SET RELATION

The fields list specified with SET FIELDS TO can include both table field names and calculated fields. The /R
option provides a setting to specify read-only access to table fields, for example:

salary/R, hours/R

To specify a calculated field, you can specify any valid expression. For example,
gross_pay = salary * hours

OODML No direct equivalent. When accessing the fields array, you may include program logic to include or exclude
specific fields.

Example This example takes a table of customers and a table of sales persons and creates a table that contains only the
customer name and the name of their sales representative.

use CUSTOMER in select()
use SALESPER in select() order SALES_ID
select customer
set relation to SALES_ID into SALESPER
set fields to CUST_NAME = CUSTOMER->NAME, SALES_PERS = SALESPER->NAME
copy to CUSTSALES

The field list contains two calculated fields that are used simply to assign new names to the fields from two
different tables that happen to have the same name.

Although the COPY command has a FIELDS option, it does not support calculated fields. Therefore SET
FIELDS is required for this operation.

See Also CLEAR FIELDS, FLDLIST(), SET(), SET RELATION

SET FILTER
Hides records based on a logical condition.

Syntax SET FILTER TO [<condition>]

<condition> The condition that records must meet to be seen.

Description A filter is a mechanism by which you can temporarily hide, or filter out, those records that do not match certain
criteria so that you can see only those records that do match. The criteria is expressed as a logical expression, for
example,

set filter to upper(FIRST_NAME) == "WALDO"

In this case, you would see only those records in the current table whose First_name field was “Waldo”
(capitalized in any way).

The filter does not take effect until some sort of record navigation is attempted. For example, any command
with an ALL scope will attempt to start at the first record. In this case, the command will start at the first record
that matches the filter condition, and process all matching records. A SKIP command would attempt to navigate
to the next matching record, and SKIP -1 would attempt to navigate to the previous matching record. GO TOP is
often used after SET FILTER to position the record pointer on the first matching record.

Any time you attempt to navigate to a record, the record is evaluated to see if it matches the filter condition. If it
does, then the record pointer is allowed to position itself at that record and the record can be seen. If the record
does not match the filter condition, the record pointer continues in the direction it was moving to find the next
matching record. It will continue to move in that direction until it finds a match or reaches end-of-file. For
example, suppose you issue:

skip 4

If no filter is active, you would move four records forward. If a filter is active, the records pointer will move
forward until it has encountered four records that match the filter condition, and stop at the fourth. That may be
the next four records in the table, if they all happen to match, or the next five, or the next 400, or never, if there
293 dBL Language Reference

SET HEADINGS
aren’t four records after the current record that match. In that last case, the record pointer will be at the end-of-
file.

In other words, when there is no filter active, every record is considered a match. By setting a filter, you filter
out all the records that don’t match certain criteria.

Note You cannot use the special variables this or form in the <condition>. This is explicitly prohibited because these
special variables automatically take on the value of whatever object and form has focus (or fires an event) at any
given moment. Therefore, the filter condition will vary and quite likely be invalid. Generally speaking, you
should not use variables in a filter condition at all, because the variables may go out of scope, making the filter
condition an invalid expression. To solve these problems, use macro substitution, as shown in the example.

Many commands have scope option that includes FOR and WHILE conditions. These conditions are applied in
addition to the filter condition.

SET FILTER applies to the current work area. Each work area may have its own filter condition. To disable the
filter condition, issue SET FILTER TO with no options.

OODML Use the rowset object’s beginFilter() and applyFilter() methods.

Example The following example sets a filter based on the state that is chosen from a combobox on a form:
PROCEDURE setFilter_onClick
 private cState
 cState = form.stateCombobox.value
 set filter to STATE == "&cState"

Note the use of macro substitution inside a literal string. A private variable is used; you cannot use the macro
operator on a local variable. For example, if the variable contains the value "CA", then the macro substitution
would evaluate to:

set filter to STATE == "CA"

See Also SET(), SET DELETED, SET KEY

SET HEADINGS
Controls the display of field names in the output of DISPLAY and LIST.

Syntax SET HEADINGS ON | off

Description When SET HEADINGS is ON, the output of DISPLAY and LIST includes a heading identifying the fields of
the table(s). Issue SET HEADINGS OFF before issuing DISPLAY or LIST to view the output without field-
name headings.

OODML No equivalent.

See Also DISPLAY, LIST

SET INDEX
Opens index files for the current DBF table.

Syntax SET INDEX TO [<filename list> [ORDER [TAG]
<ndx filename> | <tag name> [OF <mdx filename>]]]

<filename list> Specifies the index files to open, including both .NDX and .MDX indexes. The default
extension is .MDX.

ORDER [TAG] <ndx filename> | <tag name> Specifies a master index, which can be an .NDX file
or a tag name contained within an .MDX index file. The TAG keyword is for readability only; it has no effect on
the command.

OF <mdx filename> Specifies a multiple index file containing <tag name>. The default extension is
.MDX.
Xbase 294

SET KEY TO
Description Use SET INDEX to open the specified .NDX and .MDX files in the current work area. Open index files are
updated when changes are made to the associated table. Including an index file list when issuing USE...INDEX
is equivalent to following the USE command with the SET INDEX command.

If the first index opened with SET INDEX is an .NDX file, that index becomes the master index unless you
specify another master index with the ORDER option or the SET ORDER command. If the first index opened
with SET INDEX is an .MDX file and you don't specify the ORDER clause, no master index is defined, and
records in the table appear in record number or natural order. To specify a master index for the current table,
specify the ORDER option or use the SET ORDER command.

Before opening the indexes specified with the command, SET INDEX closes all open index files except the
production .MDX file, the index file with the same name as the current table. Specifying SET INDEX TO
without a list of indexes closes all open .NDX and .MDX files in the current work area, except for the
production index file. You can also use the CLOSE INDEX command. All indexes, including the production
.MDX file, are closed when you close the table.

The order in which you specify indexes with the SET INDEX command isn't necessarily the same as the order
dBASE Plus uses for functions like TAG(). Open indexes for a specified work area are ordered as follows:

1 All .NDX index files in the order you list them in <filename list>.

2 All tags in the production .MDX file, in the order they were created. The tags are listed in order by the
DISPLAY STATUS command.

3 All tags in other open .MDX files.

The order of the open indexes remains the same until you specify another index order with the USE...INDEX or
SET INDEX commands, or you issue an INDEX command.

OODML Assign to the Rowset object’s indexName property.

See Also CLOSE INDEXES, INDEX, KEY(), MDX(), NDX(), ORDER(), REINDEX, SET ORDER, TAG(),
TAGNO(), TAGCOUNT(), USE

SET KEY TO
Constrains the records in a table to those whose key field values falls within a range.

Syntax SET KEY TO
[<exp1> | <exp list 1> |
RANGE

<exp2> [,] | ,<exp3> | <exp2>, <exp 3>
[EXCLUDE] |

LOW <exp list 2>] [HIGH <exp list 3>]
[EXCLUDE]]

[IN <alias>]

<exp1> Shows only those records whose key value matches <exp 1>.

<exp list 1> For tables indexed on a composite (multi-field) key index, shows only those records whose
key field values match the corresponding values in <exp list 1>, separated by commas.

RANGE <exp2> [,] | ,<exp3> | <exp2>, <exp3>
LOW <exp list 2> HIGH <exp list 3> Shows only those records whose key values fall within a range.
Use RANGE for single key values and LOW/HIGH for composite keys. You may use either the RANGE clause
or LOW/HIGH, but not both in the same command. The following table summarizes how SET KEY constrains
records in the master index:

Option Description
RANGE <exp2> [,]
LOW <exp list 2>

Shows only those records whose key values are greater
than or equal to <exp2>/<exp list 2>
295 dBL Language Reference

SET LOCK
EXCLUDE Excludes records whose key values are equal to <exp2>/<exp list 2> or <exp3>/<exp list 3>. If
omitted, these records are included in the range.

IN <alias> The work area in which to set the key constraint.

Description SET KEY TO is similar to SET FILTER; SET KEY TO uses the table’s current master index and shows only
those records whose key value matches a single value or falls within a range of values. This is referred to as a
key constraint. Because it uses an index, a key constraint is instantaneous, while a filter condition must be
evaluated for each record. SET KEY TO with no arguments removes any range of key values previously
established for the current table with SET KEY TO.

The key range values must match the key expression of the master index. For example, if the index key is
UPPER(Name), specify uppercase letters in the range expressions. In determining whether the specified range
expressions match key field expressions, SET KEY TO follows the rules established by SET EXACT. The SET
KEY TO range takes effect after you move the record pointer.

When you issue both SET KEY and SET FILTER for the same table, dBASE Plus processes only records that
are within the SET KEY index range and that also meet the SET FILTER condition.

OODML Use the Rowset object’s setRange() method.

See Also INDEX, KEY(), MDX(), NDX(), TAG(), SET FILTER

SET LOCK
Determines whether dBASE Plus attempts to lock a shared table during execution of certain commands that read the
table but don't change its data.

Syntax SET LOCK ON | off

Description Issue SET LOCK OFF to disable automatic file locking for certain commands that only read a table. This lets
other users change data in the file while you access it with read-only commands. For example, you might want
to issue SET LOCK OFF before using AVERAGE if you don't expect other users to alter the data in the table
you're using significantly. Or, you might want to issue SET LOCK OFF before processing a range of records
that other users aren't going to update.

The following commands automatically lock tables when SET LOCK is ON and don't lock tables when SET
LOCK is OFF:

• AVERAGE
• CALCULATE
• COPY (source file)
• COPY MEMO
• COPY STRUCTURE
• COPY TO ARRAY
• COPY STRUCTURE [EXTENDED] (source file)
• COUNT
• SORT (source file)
• SUM
• TOTAL (source file)

dBASE Plus continues to lock records and tables automatically for commands that let you change data whether
SET LOCK is ON or OFF.

OODML This setting is not applicable.

See Also FLOCK(), RLOCK()

RANGE , <exp3>
HIGH <exp list 3>

Shows only those records whose key values are less than or
equal to <exp3>/<exp list 3>

RANGE <exp2>, <exp3>
LOW <exp list 2> HIGH <exp list 3>

Shows only those records whose key values are greater
than or equal to <exp2>/<exp list 2> and less than or equal
to <exp3>/<exp list 3>

Option Description
Xbase 296

SET MEMOWIDTH
SET MEMOWIDTH
Sets the width of memo field display or output.

Syntax SET MEMOWIDTH TO [<expN>]

<expN> Specifies a number from 8 to 255 that sets the width of memo field display and output. The default
is 50.

Description Use SET MEMOWIDTH to change the column width of memo fields during display and output, and the default
column width for the MEMLINES() and MLINE() functions. Memo fields can be displayed using the
commands DISPLAY, LIST, ?, or ??. SET MEMOWIDTH doesn't affect the display of a memo field in an
Editor control. If the system memory variable variable_wrap is set to true, the system memory variables
_lmargin and _rmargin determine the memo width.

The @V (vertical stretch) picture function causes memo fields to be displayed in a vertical column when _wrap
is true. When @V is specified, the _pcolno system memory variable is incremented by the @V value. This lets
you change the appearance of the printed output of ? or ?? commands by using the @V function. When @V is
equal to zero, memo fields wrap within the SET MEMOWIDTH width.

OODML This setting is not applicable.

See Also ?, ??, DISPLAY, LIST, MEMLINES(), MLINE(), SET(), _lmargin, _rmargin, _wrap

SET NEAR
Specifies where to move the record pointer after a SEEK or SEEK() operation fails to find an exact match.

Syntax SET NEAR on | OFF

Description Use SET NEAR to position the record pointer in an indexed table close to a particular key value when a search
does not find an exact match. When SET NEAR is ON, the record pointer is set to the record closest to the key
expression searched for but not found with SEEK or SEEK(). When SET NEAR is OFF and a search is
unsuccessful, the record pointer is positioned at the end-of-file.

The closest record is the the record whose key value follows the value searched for in the index order, toward
the end-of-file. When SET DELETED is ON or a filter is set with the SET FILTER command, SET NEAR
skips over deleted or filtered-out records in determining the record nearest the key value expression. The record
pointer will be at the end-of-file if search value comes after the key value of the last record in the index order.

With SET NEAR ON, FOUND() and SEEK() return true for an exact match or false for a near match. With
SET NEAR OFF, FOUND() and SEEK() return false if no match occurs.

OODML Use either the findKey() or findKeyNearest() method of the Rowset object.

See Also EOF(), FOUND(), SEEK, SEEK(), SET DELETED, SET FILTER

SET ODOMETER
Specifies how frequently dBASE Plus updates and displays record counter information for certain commands in the
status bar.

Syntax SET ODOMETER TO [<expN>]

<expN> The interval at which dBASE Plus updates the record counter. <expN> must be at least 1 and is
truncated to an integer. If omitted, the default value, 100, is used.

Description Use SET ODOMETER to specify how frequently dBASE Plus updates and displays record counter information
during the execution of certain commands, such as AVERAGE, CALCULATE, COUNT, DELETE,
GENERATE, INDEX, RECALL, SUM, and TOTAL. If the status bar is not enabled, SET ODOMETER has no
effect. The status bar is enabled through _app.statusBar.
297 dBL Language Reference

SET ORDER
If SET TALK is OFF, dBASE Plus does not display any record counter information in the status bar, regardless
of the SET ODOMETER setting. If SET TALK is ON, use SET ODOMETER with a relatively high value to
improve performance.

OODML Use the Session object’s onProgress event.

SET ORDER
Specifies an open index file or tag as the master index of a table.

Syntax SET ORDER TO [[TAG] <tag name> [OF <mdx>] [NOSAVE]]

[TAG] <tag name> The name of an index tag in an open .MDX file or the name of an open .NDX file
(without the file extension). The TAG keyword is included for readability only; TAG has no affect on the
operation of the command.

OF <mdx> The open .MDX file that contains <tag name>. Use this option when two open .MDX files have
a tag with the same name. The default extension is .MDX.

If you use the <tag name> option but don't specify <mdx>, dBASE Plus searches for the named index in the list
of open indexes.

NOSAVE Used to delete a temporary index after the associated table is closed. If you decide after choosing
this option that you want to keep the index, open the index again using SET ORDER without the NOSAVE
option, before you close the table.

Description Use SET ORDER to change the master index of a table without having to close and reopen indexes. You can
choose the master index from the list of .NDX files or .MDX index tags opened with the SET INDEX or
USE...INDEX commands.

If you specify SET ORDER without specifying an index, the table appears in primary key order, if the table has
a primary key; or unindexed, in record number order.

OODML Assign the tag name to the Rowset object’s indexName property.

See Also CLOSE INDEXES, INDEX, KEY(), MDX(), NDX(), ORDER(), REINDEX, SET INDEX, TAG(),
TAGCOUNT(), TAGNO(), USE

SET REFRESH
Determines how often dBASE Plus refreshes the workstation screen with table information from the server.

Syntax SET REFRESH TO <expN>

<expN> A time interval expressed in seconds from 0 to 3,600 (1 hour), inclusive. The default is 0, meaning
that dBASE Plus doesn’t update the screen.

Description Use SET REFRESH to set a refresh interval when working with shared tables on a network. Then, when you use
BROWSE or EDIT to edit shared tables, your screen refreshes at the interval you set, showing you changes
made by other users on the network to the same tables.

If another user has a lock on the file or records you're currently viewing, the file or records won't be refreshed
until that user releases the lock.

OODML Use a Timer object to periodically call the Rowset object’s refreshControls() method.

See Also BROWSE, EDIT, FLOCK(), REFRESH, RLOCK()

SET RELATION
Links two or more open tables with common fields or expressions.

Syntax SET RELATION TO
[<key exp list 1> | <expN 1>
Xbase 298

SET RELATION
INTO <child table alias 1> [CONSTRAIN]
[, <key exp list 2> | <expN 2>

INTO <child table alias 2> [CONSTRAIN]...
[ADDITIVE]]

<key exp list 1> The key expression or field list that is common to both the current table and a child table
and links both tables. The child table must be indexed on the key field and that index must be the master index
in use for the child table.

<expN 1> INTO <child table alias> For dBASE tables only, you can specify <expN> to link records
in a child table. When <expN> is RECNO(), dBASE Plus links the current table to a child table by
corresponding record numbers, in which case the child table doesn't have to be indexed.

INTO <child table alias> <alias> specifies the child table linked to the current table.

<key exp list 2> | <alias 2> INTO <alias 2> ...] Specifies additional relationships from the current
table into other tables.

CONSTRAIN Limits records processed in the child table to those matching the key expression in the parent
table.

ADDITIVE Adds the new relation to any existing ones. Without ADDITIVE, SET RELATION clears
existing relations before establishing the new relation.

Description Use SET RELATION to establish a link between open tables based on common fields or expressions.

Before setting a relation, open each table in a separate work area. When a relation is set, the table in the current
work area is referred to as the parent table, and a table linked to the parent table by the specified key is called a
child table. The child table must be indexed on the fields or expressions that link tables and that index must be
the master index in use for the child table.

A relation between tables is usually set through common keys specified by <key exp list>. The relating
expression can be any expression derived from the parent table that matches the keys of the child table master
index. The keys may be a single field or a set of concatenated fields contained in each table. The fields in each
table can have different names but must contain the same type of data. For Paradox and SQL tables, you can
specify single or composite index key fields.

SET RELATION clears existing relations before establishing a new one, unless you use the ADDITIVE option.
SET RELATION TO without any arguments clears existing relations from the current table without establishing
any new relations.

The CONSTRAIN option restricts access in the child table to only those records whose key values match
records in a parent table. This is the same as using SET KEY TO on the key field of the child table. As a result,
you can't use SET KEY TO and CONSTRAIN at the same time. If a SET KEY TO operation is in effect on the
child table when you specify CONSTRAIN with SET RELATION, dBASE Plus returns a "SET KEY active in
alias" message. If the CONSTRAIN option is in effect when SET KEY TO is specified, dBASE Plus returns the
error "Relation using CONSTRAIN." You can use SET FILTER with the CONSTRAIN option, if you want to
specify additional conditions to qualify records in a child table.

More than one relation can be defined from the same table. Also, more than one relation can be set from the
same parent table if you use the ADDITIVE option or if you specify multiple relations with the same SET
RELATION command. You can also establish additional relations from a child table, thus defining a chain of
relations. Cyclic relations aren't allowed; that is, dBASE Plus returns an error if you attempt to define a relation
from a child table back into its parent table.

When a relation is set from a parent table to a child table, the relation can be accessed only from the work area
that contains the parent table. To access fields of the child table from the current work area, use the alias
operator(->) and prefix the name of fields in the child table by its alias name.

If a matching record can't be found in a linked table, the linked table is positioned at the end-of-file, and EOF()
in the child alias returns true while FOUND() returns false. The setting of SET NEAR does not affect
positioning of the record pointer in child tables.

When a SET SKIP list is active, the record pointer is advanced in each table, starting with the last work area in
the relation chain and moving up the chain toward the parent table.

OODML Use the Rowset object’s masterFields and masterRowset properties, or the Query object’s masterSource
property.
299 dBL Language Reference

SET REPROCESS
Example The first example links a table of reviews to a table of authors. This is a one-to-one link that can be used to get
the name of the lead author (stored in the Authors table) for each review:

use REVIEWS && Open in current work area
use AUTHORS in select() order AUTH_ID && Open in next available work area
set relation to LEAD_AUTH into AUTHORS && Link Reviews to Authors

The Reviews table has a Lead_auth field that contains the ID of the lead author for each review. The Authors
table identifies each author with an ID field named Auth_id. The Auth_id field is indexed by itself, so the index
has the same name.

The following example is a one-to-many link between a customer table and an orders table that shows only
those customers that have made orders in the past:

use CUSTOMER
use ORDERS in select() order CUST_DATE
set relation to CUST_ID into ORDERS
set filter to found("ORDERS")

The Customer table has a Cust_id field that contains the customer ID. The same field is a foreign key in the
Orders table. The Cust_date index is an expression index created with:

index on CUST_ID + dtos(ORDER_DATE) tag CUST_DATE

The SET FILTER command shows only those Customers that have a record in the Orders table.

See Also FOUND(), SELECT, SET SKIP, SKIP

SET REPROCESS
Specifies the number of times dBASE Plus tries to lock a file or record before generating an error or returning false.

Syntax SET REPROCESS TO <expN>

<expN> A number from –1 to 32,000, inclusive, that is the number of times for dBASE Plus to try get a
lock. The default is 0; both 0 and -1 have a special meaning, described below.

Description Use SET REPROCESS to specify how many times dBASE Plus should try to get a lock before giving up.
RLOCK() and FLOCK() return false if the lock attempt fails. For automatic locks, failure to get a lock causes
an error. SET REPROCESS affects RLOCK(), and FLOCK(), and all commands and functions that
automatically attempt to lock a file or records.

SET REPROCESS TO 0 causes dBASE Plus to display a dialog that gives you the option of cancelling while it
indefinitely attempts to get the lock.

Setting SET REPROCESS to a number greater than 0 causes dBASE Plus to retry getting a lock the specified
number of times without prompting.

SET REPROCESS TO -1 causes dBASE Plus to retry getting a lock indefinitely, without prompting.

OODML Set the Session object’s lockRetryCount property.

See Also FLOCK(), ON ERROR, ON NETERROR, RETRY, RLOCK(), SET LOCK

SET SAFETY
Determines whether dBASE Plus asks for confirmation before overwriting a file or removing records from a table
when you issue ZAP.

Syntax SET SAFETY ON | off

Description When SET SAFETY is ON, dBASE Plus prompts for confirmation before overwriting a file or removing
records from a table when you issue ZAP. If you want your application to control the interaction between
dBASE Plus and the user with regard to overwriting files, issue SET SAFETY OFF in your program.

SET SAFETY affects the following commands:

• Commands using a TO FILE option
Xbase 300

SET SKIP
• COPY
• COPY FILE
• COPY STRUCTURE [EXTENDED]
• CREATE/MODIFY commands
• INDEX
• SAVE
• SET ALTERNATE TO
• SORT
• TOTAL
• UPDATE
• ZAP

SET SAFETY also affects the PUTFILE() function
Note SET TALK OFF does not suppress SET SAFETY warnings.

OODML SAFETY is always OFF.

See Also SET TALK

SET SKIP
Specifies how to advance the record pointer through records of linked tables.

Syntax SET SKIP TO [<alias1> [, <alias2>]...]

<alias1> [, <alias2>] ... The work areas defined in the relation.

Description SET SKIP works only with tables that have been linked with the SET RELATION command. Used together, the
SET RELATION and SET SKIP commands determine the way in which the record pointer moves through
parent and child tables.

Use SET SKIP when you set a relation from a parent table containing unique key values to child tables that
contain duplicate key values, that is, a one-to-many relationship. SET SKIP causes commands that move the
record pointer to move the pointer to every record with matching key values in a child table before moving the
record pointer in the parent table. If you define a chain of relations and use SET SKIP to move from one table to
the next down the chain, the record pointer moves to every record in the last child table before the pointer moves
in its parent table.

You do not need to specify the root (parent) alias in the SET SKIP list. SET SKIP TO with no options cancels
any previously defined SET SKIP behavior.

OODML Override the next() method of the detail table. For example:
function next(nArg)
 if argcount() < 1
 nArg := 1 // Skip one row forward by default
 endif
 if not rowset::next(nArg) // Navigate as far as specified, but
 // if end of detail rowset
 this.masterRowset.next(sign(nArg)) // Move forward or backward in master
 if nArg < 0 // If navigating backwards
 this.last() // Go to last matching detail row
 endif
 endif

Then navigate by calling next() in detail rowset—not the master rowset, as you would with SET SKIP.

See Also SET RELATION, SKIP

SET UNIQUE
Determines if unique indexes are always created.

Syntax SET UNIQUE on | OFF
301 dBL Language Reference

SET VIEW
Description When SET UNIQUE is ON, the INDEX command always creates the index as if the UNIQUE option is
specified. The UNIQUE option has different meanings for different table types. For DBF tables, it allows
records with duplicate key values to be stored in the table, but only shows the first record with that key value.

For DB and SQL tables, it prevents records with duplicate key values from being stored in the table; attempting
to do so causes a key violation error. This type of index is referred to as a distinct index. You can create the
same kind of index for DBF tables by using the DISTINCT option.

Whenever you reindex an index file, dBASE Plus maintains the index in the same way it was created. For more
information on unique and distinct indexes, see the INDEX command.

OODML No equivalent.

See Also INDEX, REINDEX, SET(), SET INDEX, SET ORDER, UNIQUE(), USE

SET VIEW
Opens a previously defined .QBE query or .DBF table.

Syntax SET VIEW TO <filename>

<filename> The query or view file containing the commands to define the current working environment or
view. If you specify a file without including its extension, dBASE Plus looks for a .QBE query or a .DBF table.

Description Use SET VIEW to change the working environment of the current workset to one that was previously defined
by CREATE QUERY or CREATE VIEW. The working environment includes open tables and index files, all
relations, the active fields list, and filter conditions.

OODML Use a DataModule object.

See Also CREATE QUERY, CREATE VIEW

SKIP
Moves the record pointer in the current or specified work area.

Syntax SKIP [<expN>] [IN <alias>]

<expN> The number of records dBASE Plus moves the record pointer forward or backward in the table
open in the current or specified work area. If <expN> evaluates to a negative number, the record pointer moves
backward. SKIP with no <expN> argument moves the record pointer forward one record.

IN <alias> The work area in which to move the record pointer.

Description Use SKIP to move the record pointer relative to its current position, in the current index order, if any.

If you issue a SKIP command when the record pointer is at the last record in a table, the record pointer moves to
the end-of-file; EOF() returns true. Issuing any additional SKIP commands (that move forward) causes an
error. Similarly, if you issue a SKIP -1 command when the record pointer is at the first record of a file, BOF()
returns true, and a subsequent negative SKIP command cause an error.

SKIP IN <alias> lets you advance the record pointer in another work area without selecting that work area first
with the SELECT command.

If you are using SKIP in a loop to visit all the records in a table, consider using a SCAN loop instead.

OODML Call the next() method of the desired Rowset object.

See Also BOF(), EOF(), GO, SCAN, SET SKIP

SORT
Copies the current table to a new table, arranging records in the specified order.
Xbase 302

SORT
Syntax SORT TO <filename> [[TYPE] PARADOX | DBASE]
ON <field 1> [/A | /D [/C]]

 [,<field 2> [/A | /D [/C]]...]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[ASCENDING | DESCENDING]

<filename> The new table file to copy and sort the current table's records to.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

ON <field 1> Makes <field 1> the first field of <filename>and sorts <filename> records by the values in
<field 1>, which can be any data type except binary, memo, or OLE.

/A Sorts records in ascending order (A to Z; 1 to 9; past to future (blank dates come after non-blank dates);
false then true). Since this is the default sort order, include /A for readability only.

/D Sorts records in descending order.

/C Removes the distinction between uppercase and lowercase letters. When you specify both A and C, or both
D and C, use only one forward slash (for example, /DC).

<field 2> [/A | /D [/C]] ... Sorts on a second field so that the new table is ordered first according to <field
1>, then, for identical values of <field 1>, according to <field 2>. If a third field is specified, records with
identical values in <field 1> and in <field 2> are then sorted according to <field 3>. The sorting continues in this
way for as many fields as are specified.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

ASCENDING Sorts all specified fields for which you don't include a sort order in ascending order. Since
this is the default, include ASCENDING for readability only.

DESCENDING Sorts all specified fields for which you don't include a sort order in descending order.

Description The SORT command creates a new table in which the records in the current table are positioned in the order of
the specified key fields.

SORT creates a temporary index file. During the sorting process, your disk must have space for this temporary
index file and the new table file.

SORT differs from INDEX in that it creates a new table rather than provide an index to the original table.
Although using SORT is generally not as efficient as using an index to organize tables, you might want to use
SORT for the following applications:

• To archive an outdated table and store it in a sorted order

• To create a table that is a sorted subset of an original table

• To maintain a small table that needs to be sorted in only one order

• To create an ordered table where record numbers are sequential and contiguous

OODML No equivalent.

Example Suppose you have a large table and you want to delete any duplicate records, records that have the same value in
6 important fields. The easiest way to remove duplicate records in general is to index the table so that all
duplicate records are next to each other. Unfortunately, some of the 6 important fields are large; the resulting the
index key would be larger than the allowed limit, 100 characters. So you sort the table to a temporary table
instead.

use THETABLE
sort to SORTTEMP on FIELD1, FIELD2, FIELD3, FIELD4, FIELD5, FIELD6
use SORTTEMP
set fields to KEY = FIELD1 + FIELD2 + FIELD3 + FIELD4 + FIELD5 + FIELD6
local cKey
303 dBL Language Reference

STORE AUTOMEM
do while .not. eof()
 cKey = KEY
 skip
 delete while KEY == cKey
enddo
clear fields

SET FIELDS is used to create a temporary calculated field to make it easier to compare the important field
values for each record.

See Also INDEX

STORE AUTOMEM
Stores the contents of all the current record’s fields to a set of memory variables.

Syntax STORE AUTOMEM

Description STORE AUTOMEM copies every field of the current record to a set of matching automem variables. Each
memory variable has the same name, length, and data type as one of the fields. dBASE Plus creates these
memory variables if they don't already exist.

Automem variables let you temporarily store the data from table records, manipulate the data as memory
variables rather than as field values, and then return the data to the table (using REPLACE AUTOMEM or
APPEND AUTOMEM).

STORE AUTOMEM is one of three commands that create automem variables. The other two, USE <filename>
AUTOMEM and CLEAR AUTOMEM, initialize blank automem variables for the fields of the current table.

When referring to the value of automem variables you need to prefix the name of an automem variable with
M-> to distinguish the variable from the corresponding fields, which have the same name. The M-> prefix is not
needed during variable assignment; the STORE command and the = and := operators do not work on Xbase
fields.

OODML The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

See Also CLEAR AUTOMEM, REPLACE, USE

SUM
Computes a total for specified numeric fields in the current table.

Syntax SUM [<exp list>]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar list> | TO ARRAY <array>]

<exp list> The numeric fields, or expressions involving numeric fields, to sum.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar list> | TO ARRAY <array> Initializes and stores sums to the variables (or properties) of
<memvar list> or stores sums to the existing array <array>. If you specify an array, each field sum is stored to
elements in the order in which you specify the fields in <exp list>. If you don't specify <exp list>, each field sum
is stored in field order. <array> can be a single- or multidimensional array; the array elements are accessed via
their element numbers, not their subscripts.

Description The SUM command computes the sum of numeric expressions and stores the results in specified variables or
array elements. If you store the values in variables, the number of variables must be exactly the same as the
number of fields or expressions summed. If you store the values in an array, the array must already exist, and the
array must contain at least as many elements as the number of summed expressions.
Xbase 304

TAG()
If SET TALK is ON, SUM also displays its results in the result pane of the Command window. The SET
DECIMALS setting determines the number of decimal places that SUM displays. Numeric fields in blank
records are evaluated as zero. To exclude blank records, use the ISBLANK() function in defining a FOR
condition. EMPTY() excludes records in which a specified expression is either 0 or blank.

SUM is similar to TOTAL, which operates on an indexed or sorted table to create a second table containing the
sums of the numeric and float fields of records grouped on a key expression.

OODML Loop through the rowset to calculate the sum.

See Also AVERAGE, CALCULATE, COUNT, TOTAL

TAG()
Returns the name of an open index.

Syntax TAG([<.mdx filename expC>,] [<index number expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.
Note Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters

shift forward one; the second parameter becomes the first parameter, and so on.

Description TAG() returns the name of the specified index, either:

• The tag name of an index in an .MDX file, or

• The name of an .NDX file, without the file extension.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX.

If you do not specify an index tag, TAG() returns the name of the current master index tag, or an empty string if
there is no master index.

If the specified .MDX file or index tag does not exist, TAG() returns an empty string.

OODML No equivalent.

Example See MDX()

See Also DBF(), DISPLAY STATUS, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET ORDER,
TAGCOUNT(), TAGNO(), USE

TAGCOUNT()
Returns the number of active indexes in a specified work area or .MDX index file.

Syntax TAGCOUNT([<.mdx filename> [,<alias>]])

<.mdx filename expC> The .MDX file you want to check. The .MDX must be opened in the specified
work area.

<alias> The work area you want to check.

Description TAGCOUNT() returns the total number of open indexes or the number of index tag names in a specified .MDX
file. TAGCOUNT() returns 0 if there are no indexes or index tags open for the current or specified work area,
or if the .MDX index file specified with <.mdx filename expC> does not exist. If you do not specify an .MDX
file name, TAGCOUNT() returns the total number of indexes in the specified work area: the number of open
305 dBL Language Reference

TAGNO()
.NDX files, plus the total number of tags in all open .MDX files. If you do not specify an alias, TAGCOUNT()
returns the total number of indexes in the current work area.

OODML No equivalent.

See Also DBF(), DISPLAY STATUS, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET ORDER, TAG(),
TAGNO(), USE, WORKAREA()

TAGNO()
Returns the index number of the specified index.

Syntax TAGNO([<tag name expC> [,<.mdx filename expC> [,<alias>]]])

<tag name expC> The name of the index tag that you want to return the position of. If you don't specify a
tag name, TAGNO() returns the position of the current master index.

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<alias> The work area you want to check.

Description TAGNO() returns a number that indicates the position of the specified index name in the list of open indexes in
the current or specified work area. The order of indexes is determined by the order in which they were opened
with the USE or SET INDEX commands.

If you don't specify a tag name, TAGNO() returns the number of the master index. If you don't specify an
.MDX file name, TAGNO() searches the list of open index files in the specified work area, including .NDX
files. If you don't specify an alias, TAGNO() operates on the list of open indexes in the current work area.

TAGNO() returns zero if the specified index tag or .MDX file does not exist.

Use TAGNO() to get the index number of an index when you know the tag name for functions like
DESCENDING(), FOR(), KEY(), and UNIQUE().

OODML No equivalent.

See Also DBF(), DESCENDING(), DISPLAY STATUS, FOR(), KEY(), MDX(), NDX(), ORDER(), SET INDEX,
SET ORDER, TAG(), TAGCOUNT(), UNIQUE(), USE

TARGET()
Returns the name of a table linked with the SET RELATION command.

Syntax TARGET(<expN> [,<alias>])

<expN> The number of the relation that you want to check.

<alias> The work area you want to check.

Description TARGET() returns a string containing the name of the child tables that are linked to a parent table by the SET
RELATION command. You must specify the number of the relation; if the table in the current or specified work
area is linked to only one table, that <expN> is the number 1. TARGET() returns an empty string ("") if no
relation is set in the <expN> position.

Use TARGET() to save the link tables of all SET RELATION settings for later use when restoring relations. To
save the link expression, use the RELATION() function.

OODML No equivalent. The masterSource and masterRowset properties contain references to the parent query or rowset;
TARGET() returns the names of the child tables.

See Also CREATE, CREATE VIEW...FROM ENVIRONMENT, DISPLAY STATUS, RELATION(), SET(), SET
RELATION, SET VIEW
Xbase 306

TOTAL
TOTAL
Creates a table that stores totals for specified numeric fields of records grouped by common key values.

Syntax TOTAL ON <key field> TO <filename> [[TYPE] PARADOX | DBASE]
[<scope>]
[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]

<key field> The name of the field on which the current table has been indexed or sorted.

TO <filename> The table to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

FIELDS <field list> Specifies which numeric and float fields to total. If you don't include FIELDS,
dBASE Plus totals all numeric and float fields.

Description Use TOTAL to total the value of numeric fields in a table and create a second table to store the results. The
numeric fields in the table storing the results contain totals for all records that have the same key field in the
original table.

The current table must be either indexed or sorted on the key field. All records with the same key field become
a single record in the table storing the result totals. All numeric fields appearing in the fields list contain totals.
All other fields contain data from the first record of the set of records with identical keys.

To limit the fields that are created in the new file, or to group on more than one key field, use SET FIELDS as
shown in the example.

TOTAL is similar to SUM, except that SUM operates on an indexed or unindexed table, returning a sum for all
records of each numeric field. SUM doesn't create another table, but stores the results to memory variables or an
array.

OODML No equivalent.

Example Suppose you’re totaling licensee fee revenue for a county, and you want totals for each city, for each different
fee category. First you create an index on the city and fee category:

index on CITY + FEE_CAT tag CITY_FEE

Then you use SET FIELDS to create a calculated key field based on the two fields on which you can TOTAL:
set fields to CITY_FEE = CITY + FEE_CAT
set fields to CITY, FEE_CAT, LIC_PAID
total on CITY_FEE to CITY_PAID

Even though the composite field, which will appear in the result table, has the city and fee category, the city and
fee category fields are included in the field list so that they will appear in the result table as separate fields. The
field containing the license fee paid is also included in the field list, otherwise there would be nothing to total.

See Also AVERAGE, CALCULATE, COUNT, SUM

UNIQUE()
Indicates if a specified index ignores duplicate records.

Syntax UNIQUE([<.mdx filename expC>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.
307 dBL Language Reference

UNLOCK
<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.
Note Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters

shift forward one; the second parameter becomes the first parameter, and so on.

Description UNIQUE() returns true if the index tag specified by the <index position expN> parameter was created with the
UNIQUE keyword or with SET UNIQUE ON; otherwise, it returns false.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, UNIQUE() checks the current master index tag and returns false if there is
no master index.

If the specified .MDX file or index tag does not exist, UNIQUE() returns false.

OODML No equivalent.

Example See MDX()

See Also DESCENDING(), FOR(), INDEX, KEY(), MDX(), NDX(), ORDER(), SET UNIQUE, TAG(),
TAGCOUNT(), TAGNO(), WORKAREA()

UNLOCK
Releases all explicit locks.

Syntax UNLOCK [ALL | IN <alias>]

ALL Releases all explicit locks in all work areas in the current workset.

IN <alias> Releases all explicit locks in the specified work area.

Description Use UNLOCK to unlock file locks you obtained with FLOCK(), or to unlock record locks you obtained with
RLOCK() or LOCK(). Issue UNLOCK at the same workstation as the one at which you issued the FLOCK(),
RLOCK(), and LOCK() functions. UNLOCK can't release locks obtained through other workstations, and
does not release automatic file and record locks.

When you set a relation from parent table to child tables with SET RELATION and then unlock the parent table
or records in the parent table with UNLOCK, dBASE Plus also unlocks child tables or records. For more
information on relating tables, see SET RELATION.

OODML Use the Rowset object’s unlock() method.

See Also FLOCK(), RLOCK(), SET RELATION

UPDATE
Replaces data in the specified fields of the current table with data from another table.

Syntax UPDATE ON <key field> FROM <alias>
REPLACE <field 1> WITH <exp 1>

 [, <field 2> WITH <exp 2>...]
[RANDOM]
[REINDEX]

<key field> The key field that is common to both the current table and the table containing the updated
information.

FROM <alias> The work area that provides updates to the current table.
Xbase 308

USE
REPLACE <field 1> The field in the current table to be updated with data from the table specified by
FROM <alias>.

WITH <exp 1> The expression to store in field <field 1>. Use the FROM table’s alias name and the alias
operator (that is, alias->field) to refer to field values in the FROM table.

[,<field n> WITH <exp n> ...] Specifies additional fields to be updated.

RANDOM Specifies the FROM table is neither indexed nor sorted. (The current table must be indexed on
the key field common to both tables.)

REINDEX Rebuilds open indexes after all records have been updated. Without REINDEX, dBASE Plus
updates all open indexes after updating each record. When the current table has multiple open indexes or
contains many records, UPDATE executes faster with the REINDEX option.

Description The UPDATE command uses data from a specified table to replace field values in the current table. It makes the
changes by matching records in the two files based on a single key field.

The current table must be indexed on the field in the key field. Unless the RANDOM option is used, the table in
the specified work area should also be indexed or sorted on the same field. The key fields must have identical
names in the two tables.

UPDATE works by traversing the FROM table, finding the matching record in the current table (the current
table must be indexed or sorted so that the match can be found quickly), and executing the REPLACE clause. If
there is no match for a record in the FROM table, it is ignored. If there are multiple records in the FROM table
that match a single record in the current table, all the replacements will be applied. For a simple REPLACE
clause, only the last one will appear to have taken effect.

SET EXACT affects the matching, so if you are using a language driver with both primary and secondary
weights (not U.S. language drivers but most others) you should have SET EXACT ON.

OODML Use the update() method of an UpdateSet object. Unlike the UPDATE command, the update(_) method updates all,
rather than selected, fields in a row.

Example Suppose you have a list of students and you receive an update file containing their new grade point averages.
You can use the UPDATE command to update your list of students:

use STUDENTS order STU_ID
use ? alias UPDATES
update on STU_ID from UPDATES replace GPA with UPDATES->GPA RANDOM

The ? option in the USE command displays a dialog box from which you can pick the new file. The file is
always opened with the alias UPDATES.

See Also APPEND FROM, REPLACE, SELECT, SET RELATION

USE
Opens the specified table and its associated index and memo files, if any.

Syntax USE
[<filename1> [[TYPE] PARADOX | DBASE]
[IN <alias>]
[INDEX <filename2> [, <filename3> ...]]
[ORDER [TAG] <.ndx filename> |

 <tag name> [OF <.mdx filename>]]
[AGAIN]
[ALIAS <alias name>]
[AUTOMEM]
[EXCLUSIVE | SHARED]
[NOSAVE]
[NOUPDATE]]

<filename 1> The table you want to open.
309 dBL Language Reference

USE
[TYPE] PARADOX | DBASE Specifies the type of table you want to open, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

IN <alias> The work area in which to open the table. You can specify the work area that is being used by
another table, in which case the other table is closed first.

INDEX <filename2> [, <filename3> ...] Applicable to DBF indexes only. (Indexes on other table
types are specified by the ORDER clause.) Opens up to 100 individual index files for the specified table, which
can include single (.NDX) and multiple index file (.MDX) names and wildcards.

ORDER [TAG] <tag name> Makes the <tag name> index file the master index.

If you don't include the ORDER clause and the first file name after INDEX is a single index .NDX file, the
single index file is the master index. If you don't include ORDER and the first file name after INDEX is a
multiple index .MDX file, the table is in natural order. If the table has a primary key index, it is used; otherwise
the table is unordered.

OF <.mdx filename> The .MDX file that includes <tag name>. Without OF <filename>, dBASE Plus
searches for <tag name> in the table’s production .MDX file, the .MDX file with the same root name as the
table.

ORDER [TAG] <.ndx filename> Makes the single index file, <.ndx filename>, the master index. The
.NDX file must be specified in the INDEX clause. Use the name of the index without the file extension.

AGAIN Opens a table and its related index files in the current or specified work area, leaving the table open
in one or more other work areas. This keyword is superfluous and included for compatiblity. dBASE Plus
always opens tables with AGAIN.

ALIAS <alias name> An alternate alias name to assign to the table.

AUTOMEM Initializes a memory variable for each field of the specified table (not including memo, binary,
or OLE types). The memory variables are assigned the same names and types as the fields.

EXCLUSIVE | SHARED EXCLUSIVE opens the table so that no other users can open the table until you
close it; SHARED allows other users access while the table is opened. This option overrides the current setting
of SET EXCLUSIVE.

NOSAVE Used to open a table as a temporary table. When you close a table opened with NOSAVE, it is
erased along with its associated index and memo files. If you inadvertently open a table with the NOSAVE
option, use COPY to save the data.

NOUPDATE Prevents users from altering, deleting, or recalling any records in the table.

Description The USE command opens an existing table and its associated files, including index and memo files. You need to
open a table before you can access any data stored in the table.

USE with no options closes the open table and its associated files in the current work area. USE IN <alias>,
with no other options, does the same in the specified work area. CLOSE TABLES closes tables in all work
areas.

You can open a table in any work area. It is common practice to USE IN SELECT() to open the table in the first
available work area. If a table is already opened in the specified work area, that table is closed before the
specified table is opened.

USE...INDEX specifies index files that are opened and maintained for a particular table. For a DBF table, its
production .MDX is automatically opened and does not need to be listed.

The ORDER option specifies the master index from the list of indexes opened with the INDEX option and the
production .MDX index. USE...INDEX is identical to USE followed by SET INDEX. See the SET INDEX and
SET ORDER commands for an explanation of the open index order and specifying a master index.

You can include .NDX as well as .MDX index file names with the INDEX option. If a table has an .NDX and an
.MDX index file with the same name, dBASE Plus opens indexes listed in the .MDX index file. In that case, to
open the .NDX file you would need to specify its full name, including its extension.

When opening a table, you can name the work area by including the ALIAS option in the USE command line.
ALIAS names follow the same rules as file names. Aliases are used when referring to a table from another work
Xbase 310

WORKAREA()
area. If you do not specify an <alias name> the table name (without the extension) is used, unless that name is
invalid, because:

• That alias name is already in use by another open table, perhaps because the table is already open in another
work area, or

• The table name is not a valid alias name because it is a single letter from A to J or M, which are all reserved
alias names, or some other reason.

If the table name is not a valid alias, a valid default alias is generated.

The AUTOMEM option creates blank automem variables for the table, as if the CLEAR AUTOMEM command
was executed immediately after opening the table.

Use the NOSAVE option of USE to open a table as a temporary file. dBASE Plus automatically erases the table,
along with its associated memo and index files, when you close the table.

To open a table read-only, which prevents intentional or accidental changes, use the NOUPDATE option.

OODML Use a Query object with "SELECT * FROM <table>" as the sql property.

Example The following opens the Flight table in the Fleet database with a specific index order:
use :FLEET:FLIGHT order :FROM ID:

Note the use of the colon delimiters to both specify a table in a database and an index tag name that has spaces
in it.

See Also ALIAS(), CLOSE TABLES, SELECT, SELECT(), SET INDEX, SET ORDER

WORKAREA()
Returns a number representing the currently selected work area.

Syntax WORKAREA()

Description The WORKAREA() function returns the number of the currently selected work area. Use WORKAREA() in a
program to save the current work area number and then later restore that work area using the SELECT
command.

Using the work area name returned by ALIAS() is generally preferred, but WORKAREA() will work better if
there’s a possibility that no table is in use in the current work area.

OODML There is no concept of the "current" Query object. Use your usual object management techniques to manage
Query objects.

See Also ALIAS(), DBF(), SELECT, SELECT()

ZAP
Removes all records from the current table.

Syntax ZAP

Description ZAP is the fastest way to delete all records from a table. DELETE ALL, followed by PACK, also deletes all
records from a table. Using ZAP requires a table be opened exclusively.

When SET SAFETY is ON and you issue ZAP, dBASE Plus displays a warning message asking you to confirm
the operation before removing records.

OODML Use the Database object’s emptyTable() method.

See Also DELETE, PACK, SET SAFETY
311 dBL Language Reference

C h a p t e r

Chapter 13Local SQL
The Borland Database Engine (BDE) enables access to database tables through the industry-standard SQL
language. Different table formats, for example InterBase® and Oracle, use different dialects of SQL. Local SQL
(sometimes called “client-based SQL”) is a subset of ANSI-92 SQL for accessing DB (Paradox) and DBF
(dBASE) tables and fields (called “columns” in SQL).

Although it is called “local” SQL, the DB and DBF tables may reside on a remote network file server.

For information on the SQL dialect for other table formats, consult your SQL server documentation.

SQL statements are divided into two categories:

• Data definition language
These statements are used for creating, altering, and dropping tables, and for creating and dropping indexes.

• Data manipulation language
These statements are used for selecting, inserting, updating, and deleting table data.

In the examples, an SQL statement may be displayed on multiple lines for readability. But SQL is not line-
oriented. When an SQL statement is specified in a string, as it is in a Query object’s sql property, the entire SQL
statement is specified in a single line. However, if you include a multi-line SQL statement in a program file, you
must add semicolons to the end of each line (except the last) to act as line continuation characters; otherwise, the
statement will not compile correctly.

SQL is not case-sensitive. The convention for SQL keywords is all uppercase, which is used in this chapter.
SQL statements in the rest of the Language Reference may use either uppercase or lowercase.

Naming conventions
This section describes the naming conventions for tables and columns in local SQL.

Tables
Local SQL supports full file and path specifications for table names. Table names with a path, spaces, or other
special characters in their names must be enclosed in single or double quotation marks. You may use forward
slashes instead of backslashes. For example,

SELECT * FROM PARTS.DB // Simple name with extension; no quotes required
SELECT * FROM "AIRCRAFT PARTS.DB" // Name has space; quotes needed
SELECT * FROM "C:\SAMPLE\PARTS.DB" // Filename with path
SELECT * FROM "C:/SAMPLE/PARTS.DB" // Forward slash instead of backslash

Local SQL also supports BDE aliases for table names. For example,
SELECT * FROM :IBAPPS:KBCAT

If you omit the file extension for a local table name, the table is assumed to be the table type specified the
current setting of SET DBTYPE.
312 dBL Language Reference

Operators
Finally, local SQL permits table names to duplicate SQL keywords as long as those table names are enclosed in
single or double quotation marks. For example,

SELECT PASSID FROM "PASSWORD"

Columns
Local SQL supports multi-word column names and column names that duplicate SQL keywords as long as
those column names are

• Enclosed in single or double quotation marks
• Prefaced with an SQL table name or table correlation name

For example, the following column name is two words:
SELECT E."Emp Id" FROM EMPLOYEE E

In the next example, the column name duplicates the SQL DATE keyword:
SELECT DATELOG."DATE" FROM DATELOG

Operators
Local SQL supports the following operators:

Table 13.1 Local SQL operators

Type Operator Type Operator
Arithmetic +

–
*
/

Logical AND
OR
NOT

Comparison <
>
=
<>
>=
<=
IS NULL
IS NOT NULL

String concatenation ||

Note The equality operator is a single equals sign; double equals are not allowed.

Reserved words
The following is an alphabetical list of the 215 words reserved by local SQL:

Table 13.2 List of local SQL reserved words
ACTIVE ADD ALL AFTER
ALTER AND ANY AS
ASC ASCENDING AT AUTO
AUTOINC AVG BASE_NAME BEFORE
BEGIN BETWEEN BLOB BOOLEAN
BOTH BY BYTES CACHE
CAST CHAR CHARACTER CHECK
CHECK_POINT_LENGTH COLLATE COLUMN COMMIT
COMMITTED COMPUTED CONDITIONAL CONSTRAINT
CONTAINING COUNT CREATE CSTRING
CURRENT CURSOR DATABASE DATE
DAY DEBUG DEC DECIMAL
313 dBL Language Reference

Data definition
Data definition
Local SQL supports data definition language (DDL) for creating, altering, and dropping tables, and for creating
and dropping indexes.

Local SQL does not permit the substitution of parameters for values in DDL statements.

The following DDL statements are supported:

• CREATE TABLE

DECLARE DEFAULT DELETE DESC
DESCENDING DISTINCT DO DOMAIN
DOUBLE DROP ELSE END
ENTRY_POINT ESCAPE EXCEPTION EXECUTE
EXISTS EXIT EXTERNAL EXTRACT
FILE FILTER FLOAT FOR
FOREIGN FROM FULL FUNCTION
GDSCODE GENERATOR GEN_ID GRANT
GROUP GROUP_COMMIT_WAIT_TIME HAVING HOUR
IF IN INT INACTIVE
INDEX INNER INPUT_TYPE INSERT
INTEGER INTO IS ISOLATION
JOIN KEY LONG LENGTH
LOGFILE LOWER LEADING LEFT
LEVEL LIKE LOG_BUFFER_SIZE MANUAL
MAX MAXIMUM_SEGMENT MERGE MESSAGE
MIN MINUTE MODULE_NAME MONEY
MONTH NAMES NATIONAL NATURAL
NCHAR NO NOT NULL
NUM_LOG_BUFFERS NUMERIC OF ON
ONLY OPTION OR ORDER
OUTER OUTPUT_TYPE OVERFLOW PAGE_SIZE
PAGE PAGES PARAMETER PASSWORD
PLAN POSITION POST_EVENT PRECISION
PROCEDURE PROTECTED PRIMARY PRIVILEGES
RAW_PARTITIONS RDB$DB_KEY READ REAL
RECORD_VERSION REFERENCES RESERV RESERVING
RETAIN RETURNING_VALUES RETURNS REVOKE
RIGHT ROLLBACK SECOND SEGMENT
SELECT SET SHARED SHADOW
SCHEMA SINGULAR SIZE SMALLINT
SNAPSHOT SOME SORT SQLCODE
STABILITY STARTING STARTS STATISTICS
SUB_TYPE SUBSTRING SUM SUSPEND
TABLE THEN TIME TIMESTAMP
TIMEZONE_HOUR TIMEZONE_MINUTE TO TRAILING
TRANSACTION TRIGGER TRIM UNCOMMITTED
UNION UNIQUE UPDATE UPPER
USER VALUE VALUES VARCHAR
VARIABLE VARYING VIEW WAIT
WHEN WHERE WHILE WITH
WORK WRITE YEAR

Table 13.2 List of local SQL reserved words
Local SQL 314

Data manipulation
• ALTER TABLE
• DROP TABLE
• CREATE INDEX
• DROP INDEX

Data manipulation
This section describes functions available to data manipulation language (DML) statements in local SQL. It
covers

• Parameter substitutions in DML statements
• Aggregate functions
• String functions
• Date function
• Updatable queries

With some restrictions, local SQL supports the following statements for data manipulation:

• SELECT, for retrieving existing data
• INSERT, for adding new data to a table
• UPDATE, for modifying existing data
• DELETE, for removing existing data from a table

Parameter substitutions in DML statements
Parameters can be used in DML statements in place of values. Parameters must always be preceded by a colon
(:). For example,

SELECT LAST_NAME, FIRST_NAME
 FROM "CUSTOMER.DB"
 WHERE LAST_NAME > :parm1 AND FIRST_NAME < :parm2

Assigning an SQL statement with parameters in a Query or StoredProc object automatically creates the
corresponding elements in the object’s params array. You then store values to substitute in that array.

Aggregate functions
The following ANSI-standard SQL aggregate functions are available to local SQL for use with data retrieval:

• SUM(), for totaling all numeric values in a column

• AVG(), for averaging all non-NULL numeric values in a column

• MIN(), for determining the minimum value in a column

• MAX(), for determining the maximum value in a column

• COUNT(), for counting the number of values in a column that match specified criteria

Complex aggregate expressions are supported, such as
 SUM(Field * 10)
 SUM(Field) * 10
 SUM(Field1 + Field2)

String functions
Local SQL supports the following ANSI-standard SQL string manipulation functions for retrieval, insertion,
and updating:

• UPPER(), to force a string to uppercase:
UPPER(<expC>)

• LOWER(), to force a string to lowercase:
315 dBL Language Reference

Data manipulation
LOWER(<expC>)

• TRIM(), to remove repetitions of a specified character from the left, right, or both sides of a string:
TRIM(BOTH | LEADING | TRAILING

<char> FROM <expC>)

• SUBSTRING() to create a substring from a string:
SUBSTRING(<expC> FROM <start expN> FOR <length expN>)

You may use the LIKE predicate for pattern matching in the WHERE clause:
WHERE <expC> LIKE <pattern expC> [ESCAPE <char>]

In <pattern expC>, the % (percent) character stands for zero or more wildcard characters, and the _ (underscore)
stands for a single wildcard character. To include either special character as an actual pattern character, specify
an ESCAPE character and precede the wildcard character with that escape character.

Enclose literal strings in single quotes. To specify a single quote in a literal string, use double single quotes.

Example The following query returns the contents of the Title column, removing any double quotation marks around the
text:

SELECT TRIM(BOTH '"' FROM TITLE) FROM BOOKS

The following query returns all rows where the first three letters of the City column are “San”, capitalized in any
way:

SELECT * FROM CUSTOMER WHERE UPPER(SUBSTRING(CITY FROM 1 FOR 3)) = 'SAN'

The following query returns all rows where the letters “n’t” appear in the Title (e.g. “Can’t”, “Won’t”, “Ain’t”,
“Don’t”):

SELECT * FROM BOOKS WHERE TITLE LIKE '%n''t%'

Date function
Local SQL supports the EXTRACT() function for isolating a single numeric field from a date/time field on
retrieval using the following syntax:

EXTRACT (<extract field> FROM <field name>)

where <extract_field> can be one of: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

In local SQL, EXTRACT() does not support the TIMEZONE_HOUR or TIMEZONE_MINUTE clauses.

Example The following statement extracts the year value from a DATE field:
SELECT EXTRACT(YEAR FROM HIRE_DATE)
 FROM EMPLOYEE

Updatable queries
These restrictions apply to updates:

• Linking fields cannot be updated
• Index switching will cause an error

Restrictions on live queries
Single-table queries are updatable provided that

• There are no JOINs, UNIONs, INTERSECTs, or MINUS operations.

• There is no DISTINCT key word in the SELECT. (This restriction may be relaxed if all the fields of a unique
index are projected.)

• Everything in the SELECT clause is a simple column reference or a calculated field; no aggregation is
allowed.

• The table referenced in the FROM clause is either an updatable base table or an updatable view.
Local SQL 316

ALTER TABLE
• There is no GROUP BY or HAVING clause.

• There are no subqueries that reference the table in the FROM clause and no correlated subqueries.

• Any ORDER BY clause can be satisfied with an index (a simple single-field index for DBF tables).

Restrictions on live joins
Live joins may be used only if

• All joins are left-to-right outer joins.

• All join are equi-joins.

• All join conditions are satisfied by indexes.

• Output ordering is not defined.

• The query contains no elements listed above that would prevent single-table updatability.

Constraints
You can constrain any updatable query by setting the Query object’s constrained property to true before
activating the query. This causes the query to behave more like an SQL-server-based query. New or modified
rows that do not match the conditions of the query will disappear from the result set, although the data is saved.

Statements supported
The rest of this chapter describes the DDL and DML statements supported by local SQL.

ALTER TABLE
Adds or drops (deletes) one or more columns (fields) from a table.

Syntax ALTER TABLE table
ADD <column name> <data type> |
DROP <column name>
[, ADD <column name> <data type> |
DROP <column name> …]

Description Use ALTER TABLE to modify the structure of an existing table. ALTER TABLE with the ADD clause adds
the column <column name> of the type <data type> to <table name>. Use the DROP clause to remove the
existing column <column name> from <table>.

Warning Data stored in a dropped column is lost without warning, regardless of the SET SAFETY setting.

Multiple columns may be added and/or dropped in a single ALTER TABLE command.

Use ALTER TABLE as a means of modifying the structure of a table without using the Table Designer.

Examples The following statement adds a column:
ALTER TABLE "employee.dbf" ADD BUILDING_NO SMALLINT

The next statement drops two columns:
ALTER TABLE "employee.db" DROP LAST_NAME, DROP FIRST_NAME

The following statement drops two columns and adds one:
ALTER TABLE "employee.dbf" DROP LAST_NAME, DROP FIRST_NAME, ADD FULL_NAME CHAR(30)

CREATE INDEX
Creates a new index on a table.

Syntax CREATE INDEX <index name> ON <table name> (<column name> [, <column name>…])
317 dBL Language Reference

CREATE TABLE
Description Use CREATE INDEX to create a new index <index name>, in ascending order, based on the values in one or
more columns <column name> of <table name>. Expressions cannot be used to create an index, only columns.

When working with DBF tables, the index can only be created for a single column. The new index is created as
a new index tag in the production index. A production index is created if it does not exist. Using CREATE
INDEX is the only way to create indexes for DBF tables in SQL.

CREATE INDEX can create only secondary indexes for Paradox tables. Primary Paradox indexes can be
created only by specifying a PRIMARY KEY constraint when creating a new table with CREATE TABLE. The
secondary indexes are created as case-insensitive and maintained, when possible.

CREATE INDEX is equivalent to the INDEX ON <field list> TAG <tag name> syntax in the DML language.

Examples The following statement creates an index on a DBF table:
CREATE INDEX NAMEX ON employee.dbf (LAST_NAME)

The following statement adds an index called ZIP on the ZIP_POSTAL column of the CUSTOMER table:
CREATE INDEX ZIP ON CUSTOMER (ZIP_POSTAL)

CREATE TABLE
Creates a new table.

Syntax CREATE TABLE <table name> (<column name> <data type> [,<column name> <data type>…]
[, PRIMARY KEY(<field name>)])

Description Create a FoxPro, Paradox or dBASE table using local SQL by specifying the file extension when naming the
table:

• DB for Paradox tables
• DBF for FoxPro and dBASE tables

If you omit the file extension for a local table name, the table created is the table type specified in the Default
Driver setting in the System page of the BDE Administrator.

CREATE TABLE has the following limitations:

• Column definitions based on domains are not supported.

• Constraints are limited to PRIMARY KEY. For DBF7 tables, only single-field primary keys are supported
through the CREATE TABLE command. (Use the Table Designer or the Xbase INDEX command to create
complex primary keys.) Primary keys are not supported for earlier versions of DBF.

At least one <column name> <data type> must be defined. The column definition list must be enclosed in
parentheses.

CREATE TABLE is a alternate way of creating a table without using the Table Designer, the Database object’s
copyTable() method, or an UpdateSet object.

Data type mappings for CREATE TABLE
The following table lists SQL syntax for data types used with CREATE TABLE, and describes how those types
are mapped to Paradox (DB) and dBASE (DBF) types by BDE:

SQL syntax DB DBF 7 DBF 5
SMALLINT Short Long Numeric (6,10)
INTEGER Long Integer Long Numeric (20,4)
DECIMAL(x,y) BCD Numeric (x,y) N/A
NUMERIC(x,y) Number Numeric (x,y) Numeric (x,y)
FLOAT(x,y) Number Double Float (x,y)
CHARACTER(n) Alpha Character (n) Character (n)
VARCHAR(n) Alpha Character (n) Character (n)
DATE Date Date Date
BOOLEAN Logical Logical Logical
Local SQL 318

DELETE
x = precision (default: specific to driver)
y = scale (default: 0)
n = length in bytes (default: 0)
1–5 = BLOB subtype (default: 1)

Examples The following example creates a DBF table called SALES with the following structure:

Table 13.3 SALES.DBF structure

Field name Field type Field length Decimal places
SALESID Character 6
CUSTOMERID Character 10
ORDERDATE Date 8
ORDERNMBR Numeric 7 0
ORDERAMT Numeric 9 2
DELIVERED Logical 1

CREATE TABLE SALES (;
 SALESID CHAR(6),;
 CUSTOMERID CHAR(10),;
 ORDERDATE DATE,;
 ORDERNMBR NUMERIC(7,0),;
 ORDERAMT NUMERIC(9,2),;
 DELIVERED BOOLEAN)

The following statement creates a Paradox table with a PRIMARY KEY constraint on the LAST_NAME and
FIRST_NAME columns:

CREATE TABLE "employee.db" (;
 LAST_NAME CHAR(20),;
 FIRST_NAME CHAR(15),;
 SALARY NUMERIC(10,2),;
 DEPT_NO SMALLINT,;
 PRIMARY KEY(LAST_NAME, FIRST_NAME))

DELETE
Deletes rows (records) from a table.

Syntax DELETE FROM <table name> [WHERE <search condition>]

Description Use DELETE to delete rows, or records, from <table name>. Without the WHERE clause, all the rows in the
table are deleted. Use the WHERE clause to specify a <search condition>. Only records matching the <search
condition> are deleted.

The Local SQL DELETE command is similar to the Xbase DELETE command; DELETE FROM with no
WHERE clause is like the Xbase DELETE ALL.

BLOB(n,1) Memo Memo Memo
BLOB(n,2) Binary Binary Binary
BLOB(n,3) Formatted memo N/A N/A
BLOB(n,4) OLE OLE OLE
BLOB(n,5) Graphic N/A N/A
TIME Time N/A N/A
TIMESTAMP Timestamp Timestamp N/A
MONEY Money Numeric (20,4) Numeric (20,4)
AUTOINC Autoincrement Autoincrement N/A
BYTES(n) Bytes N/A N/A

SQL syntax DB DBF 7 DBF 5
319 dBL Language Reference

DROP INDEX
In DBF tables, DELETE only marks rows as deleted; it does not remove them from the table. They may be
recalled using the Xbase RECALL command. To remove the deleted records, use the Xbase PACK command.
In Paradox tables, the rows are actually deleted, and are not recallable.

Example The following example deletes all the rows in a DBF table called CUSTOMER and results in a table with zero
rows:

DELETE FROM CUSTOMER.DBF

The following example marks all the rows in a DBF table called CUSTOMER for deletion, but does not actually
delete the rows from the table:

DELETE FROM CUSTOMER.DBF WHERE CUSTOMER_N > 0

The following example marks all the rows where the CITY field is equal to “Freeport” for deletion in a DBF
table called CUSTOMER:

DELETE FROM CUSTOMER.DBF WHERE CITY = "Freeport"

The following example deletes all the rows where the CITY field is equal to “Freeport” in a Paradox table called
CUSTOMER:

DELETE FROM CUSTOMER.DB WHERE CITY = "Freeport"

DROP INDEX
Drops (deletes) an existing index from a table.

Syntax DROP INDEX <table_name>.<index_name> | PRIMARY

Description Use DROP INDEX to drop, or delete, the index <index name> from <table name>. For DBF tables <index
name> must be the name of a tag in the production index.

The PRIMARY keyword is used to delete a primary Paradox index. For example, the following statement drops
the primary index on EMPLOYEE.DB:

DROP INDEX "employee.db".PRIMARY

To drop any dBASE index, or to drop secondary Paradox indexes, provide the index name. For example, this
statement drops a secondary index on a Paradox table:

DROP INDEX "employee.db".NAMEX

Example The following statement drops the index tag NAME from the production index of a dBASE table called
EMPLOYEE:

DROP INDEX EMPLOYEE.NAME

DROP TABLE
Drops (deletes) a table.

Syntax DROP TABLE <table name>

Description Use DROP TABLE to delete the table <table name> from disk. The associated production index file and memo
file, if any, are also deleted.

Examples The following statement drops a table named EMPLOYEE:
DROP TABLE EMPLOYEE

INSERT
Adds new rows (records) to a table.

Syntax INSERT INTO <table name>
[(<column list>)] VALUES (<value list>) |
SELECT <command>
Local SQL 320

SELECT
Insertion from one table to another through a subquery is not allowed.

Description Use INSERT to add rows, or records, to a table. There are two forms of this command. In the first form, you use
<value list> to specify individual column values that are to be inserted for the new row. The values to be
inserted must match in number, order, and type with the columns specified in <column list>, if <column list> is
specified. Columns in the new row for which no value is given are left blank. If no <column list> is given, the
order of the columns as they appear in the table is assumed. Without a <column list> a value must be provided
for each column in the <value list>.

In the second form, the SELECT clause is executed just like a SELECT command. The row or rows returned by
the SELECT are inserted into <table name>. The columns of the rows returned by the SELECT are matched up
with the columns listed in <column list>. Therefore, the columns returned by SELECT must match in number,
order, and type with the columns specified in <column list>, if <column list> is specified. If no <column list> is
given, the number, order, and type of the columns returned by the SELECT must match the number, order, and
type of the columns in <table name>.

Examples The following statement adds a row to a table, assigning values to two columns:
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID) VALUES (52, "DGPII")

The next statement specifies values to insert into a table with a SELECT statement:
INSERT INTO PROJECTS;
 SELECT * FROM NEW_PROJECTS;
 WHERE NEW_PROJECTS.START_DATE > '06/06/94'

SELECT
Retrieves data from one or more tables.

Syntax SELECT [DISTINCT] <column list>
 FROM <table reference>
 [WHERE <search condition>]
 [ORDER BY <order list>]
 [GROUP BY <group list>]
 [HAVING <having condition>]
 [UNION <select expr>]
 [SAVE TO <table>]

Description Use SELECT to retrieve data from a table or set of tables based on some criteria.

A SELECT that retrieves data from multiple tables is called a join.

<column list> is a comma-delimited list of columns in the table(s) you want to retrieve. The columns are
retrieved in the order given in the list. If two or more tables used by SELECT use the same field names,
distinguish the tables by using the table name and a dot (.). For example, if you’re SELECTing from the
CUSTOMER table and the PRODUCT table, and they both have a field called NAME, enter the fields as
CUSTOMER.NAME and PRODUCT.NAME in <column list>. To retrieve all the columns from <table list>,
use an asterisk (*) for <column list>. To eliminate rows containing duplicate values within the same column,
precede the <column list> with the keyword DISTINCT.

For example, the following statement retrieves data from two columns:
SELECT PART_NO, PART_NAME;
 FROM PARTS

You may include calculated fields in the <column list>, optionally using the AS option to name them. For
example:

SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME, PHONE;
 FROM CUSTOMER

A SELECT statement that contains a join must have a WHERE clause in which at least one field from each table
is involved in an equality check.
321 dBL Language Reference

SELECT
FROM clause
The FROM clause specifies the table or tables from which to retrieve data. <table reference> can be a single
table, a comma-delimited list of tables, or can be an inner or outer join as specified in the SQL-92 standard. For
example, the following statement specifies a single table:

SELECT PART_NO FROM PARTS

The next statement specifies a left outer join for table_reference:
SELECT * FROM PARTS LEFT OUTER JOIN INVENTORY;
 ON PARTS.PART_NO = INVENTORY.PART_NO

WHERE clause
The optional WHERE clause reduces the number of rows returned by a query to those that match the criteria
specified in <search condition>. For example, the following statement retrieves only those rows with
PART_NO greater than 543:

SELECT * FROM PARTS;
 WHERE PART_NO > 543

In addition to scalar comparison operators (=, <, > …) additional predicates using IN, LIKE, ANY, ALL, and
EXISTS are supported.

The IN predicate is followed by a list of values in parentheses. For example, the next statement retrieves only
those rows where a part number matches an item in the IN predicate list:

SELECT * FROM PARTS;
 WHERE PART_NO IN (543, 544, 546, 547)

ORDER BY clause
The ORDER BY clause specifies the order of retrieved rows, using the keywords ASC (the default) and DESC
for ascending and descending, respectively. For example, the following query retrieves a list of all parts listed in
alphabetical order by part name:

SELECT * FROM PARTS;
 ORDER BY PART_NAME ASC

The next query retrieves all part information ordered in descending numeric order by part number:
SELECT * FROM PARTS;
 ORDER BY PART_NO DESC

Calculated fields can be ordered by correlation name or ordinal position. For example, the following query
orders rows by FULL_NAME, a calculated field:

SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME, PHONE;
 FROM CUSTOMER;
 ORDER BY FULL_NAME

Projection of all grouping or ordering columns is not required.

GROUP BY clause
The GROUP BY clause specifies how retrieved rows are grouped for aggregate functions. For example,

SELECT PART_NO, SUM(QUANTITY) AS PQTY;
 FROM PARTS;
 GROUP BY PART_NO

Aggregates in the SELECT clause must have a GROUP BY clause if a projected field is used, as shown in the
example above.

HAVING clause
The HAVING clause specifies conditions records must meet to be included in the return from a query. It is a
conditional expression used in conjunction with the GROUP BY clause. Groups that do not meet the expression
in the HAVING clause are omitted from the result set.
Local SQL 322

SELECT
Subqueries are supported in the HAVING clause. A subquery works like a search condition to restrict the
number of rows returned by the outer, or parent, query. See WHERE Clause.

In addition to scalar comparison operators (=, <, > …) additional predicates using IN, LIKE, ANY, ALL, and
EXISTS are supported.

UNION clause
The UNION clause combines the results of two or more SELECT statements to produce a single table.

Heterogeneous joins
Local SQL supports joins of tables in different database formats; such a join is called a heterogeneous join.

When you specify a table name after selecting a local alias,

• For local tables, specify either the alias or the path.
• For remote tables, specify the alias.

The following statement retrieves data from a Paradox table and a dBASE table:
SELECT DISTINCT C.CUST_NO, C.STATE, O.ORDER_NO;
 FROM CUSTOMER.DB C, ORDER.DBF O;
 WHERE C.CUST_NO = O.CUST_NO

You can also use BDE aliases in conjunction with table names.

SAVE TO clause
The SAVE TO clause saves the data gathered by the SELECT into another table, instead of returning the result
set. Use this option to copy part or all of a table into another table, or to save the result of a join or aggregate to
another table. For example, the following statement averages student scores by grade and stores the result to
another table:

SELECT GRADE, AVG(SCORE);
 FROM STUDENTS;
 GROUP BY GRADE;
 SAVE TO SCORES

Examples The following is a basic query that selects an entire table:
SELECT * FROM BIOLIFE

The following examples show simple SELECTs:
SELECT NAME, PHONE FROM CUSTOMER WHERE STATE_PROV = "CA"
SELECT CUSTOMER_NO FROM CUSTOMER WHERE LAST_NAME = "Johnson"
SELECT PART_NO, SUM(QUANTITY) AS PQTY FROM PARTS GROUP BY PART_NO

The following example illustrates the ORDER BY with a DESCENDING clause:
SELECT DISTINCT CUSTOMER_NO;
 FROM "C:/DATA/CUSTOMER";
 ORDER BY CUSTOMER_NO DESCENDING

The following example illustrates how the SELECT statement is supported as an equivalent to a JOIN:
SELECT DISTINCT P.PART_NO, P.QUANTITY, G.CITY;
 FROM PARTS P, GOODS G;
 WHERE P.PART_NO = G.PART_NO;
 AND P.QUANTITY > 20;
 ORDER BY P.QUANTITY, G.CITY, P.PART_NO

Sub-select queries are supported. The following example illustrates this syntax:
SELECT P.PART_NO;
 FROM PARTS P;
 WHERE P.QUANTITY IN
 (SELECT I.QUANTITY
 FROM INVENTORY I
 WHERE I.PART_NO = 'AA9393')
323 dBL Language Reference

UPDATE
The following example shows a join in which fields from each table are involved in some type of equality check
and require a WHERE clause:

SELECT DISTINCT PARTS.PART_NO, PARTS.QUANTITY, GOODS.CITY;
 FROM PARTS, GOODS;
 WHERE PARTS.PART_NO = GOODS.PART_NO AND PARTS.QUANTITY > 20;
 ORDER BY PARTS.QUANTITY, GOODS.CITY, PARTS.PART_NO

The following example shows the use of the DESCENDING keyword in the ORDER BY clause. Note that in
this case you must also specify DISTINCT.

SELECT DISTINCT CUSTOMER_NO;
 FROM CUSTOMER ;
 ORDER BY CUSTOMER_NO DESCENDING

UPDATE
Adds or changes values in existing columns in existing rows of a table.

Syntax UPDATE <table name>
SET <column name> = <expression> [, <column name> = <expression>…]
WHERE <search condition>

Description Use UPDATE to update (change) values within existing columns in existing rows of a table. The column
specified by <column name> is updated with the value of <expression> in all rows that match the <search
criteria> of the WHERE clause. If the WHERE clause is omitted, the column is updated in all rows in the table.
Multiple columns may be updated in a single UPDATE command. A given column of a table may only appear
once to the left of an equal sign (=) in the SET clause.

Example The following command updates that YTD sales to zero for each customer that was contacted in the previous
calendar year:

UPDATE CUSTOMER SET YTD_SALES = 0 WHERE FIRST_CONT < '01/01/95'
Local SQL 324

C h a p t e r

Chapter 14Data objects
Data objects provide access to database tables and are used to link tables to the user interface.

The Borland Database Engine (BDE) considers the DBF (dBASE/FoxPro) and DB (Paradox) tables types as
Standard tables. The BDE can access any Standard table directly through its path and file name, without having
to use a BDE alias.

All other table types, including InterBase, Oracle, Microsoft SQL Server, Sybase, Informix, and any ODBC
connection, require the creation of a BDE alias through the BDE Administrator. You may also create a BDE
alias to access Standard tables. In that case, the alias specifies the directory in which the tables exist; the
database consists of the Standard tables in that directory, and you may not open any others from another
directory.

All tables, whether or not they require a BDE alias, are accessed through SQL and the data objects.

Understanding the data object hierarchy
To understand the implications of using a BDE alias, you need to understand the class hierarchy of the data objects,
as shown in Figure 14.1.
Figure 14.1Data objects: class hierarchy diagram

At the top of the hierarchy is dBASE Plus itself. Next is the Session class. A session represents a separate user
task, and is required primarily for DBF and DB table security. dBASE Plus supports up to 2048 simultaneous
Data objects 325

class Database
sessions. When dBASE Plus first starts, it already has a default session. Unless your application needs to log in
as more than one person simultaneously, there is usually no need to create your own session objects.

Each session contains one or more Database objects. A session always contains a default Database object, one
that has no BDE alias and is intended to directly access Standard tables. You must create new Database objects
to use tables through a BDE alias. Once you set the BDE alias, activate the Database object, and log in if
necessary, you have access to that database’s tables. You may also log transactions or buffer updates to each
database to allow you to rollback, abandon, or post changes as desired.

Accessing tables
The Query object acts primarily as a container for an SQL statement and the set of rows, or rowset, that results
from it. A rowset represents all or part of a single table or group of related tables. There is only one rowset per
query, but you may have more than one query, and therefore more than one rowset, per database. A rowset
maintains the current record or row, and therefore contains the typical navigation, buffering, and filtering
methods.

The SQL statement may also contain parameters, which are represented in the Query object’s params array.

Finally, a rowset also contains a fields property, which is an array of field objects that contain information about
the fields and the values of the fields for the current row. There are events that allow you to morph the values so
that the values stored in the table are different than the values displayed. Each field object can also be linked to
a visual component through the component’s dataLink property to form a link between the user interface and the
table. When the two objects are linked in this way, they are said to be dataLinked.

Putting the data objects together
If you’re using Standard tables only, at the minimum you create a query, which gets assigned to the default
database in the default session, set the SQL statement and make the query active. If the query is successful, it
generates a rowset, and you can access the data through the fields array.

When accessing tables through a BDE alias, you will need to create a new database, create the query, assign the
database to the query, then set the SQL and make the query active.

If you use the Form or Report designers, you design these relationships visually and code is generated.

Using stored procedures
The object hierarchy for using stored procedures in an SQL-server database is very similar to the one used for
accessing tables. The difference is that a StoredProc object is used instead of a Query object. Above the
StoredProc object, the Database and Session objects do the same thing. If the stored procedure returns a rowset,
the StoredProc object contains a rowset, just like a Query object.

A StoredProc object also has a params array, but instead of simple values to substitute into an SQL statement in
a Query object, the params array of a StoredProc object contains Parameter objects. Each object describes both
the type of parameter—input, output, or result—and the value of that parameter.

Before running the stored procedure, input values are set. After the stored procedure runs, output and result
values can be read from the params array, or data can be accessed through its rowset.

class Database
A session’s built-in database or a BDE database alias, which gives access to tables.

Syntax [<oRef> =] new Database()

<oRef> A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created Database object.
Data objects 326

class Database
Properties The following tables list the properties and methods of the Database class. (No events are associated with this
class.)

Property Default Description
active false Whether the database is open and active or closed
baseClassName Identifies the object as an instance of the Database class

(Property discussed in Chapter 5, “Core language.”)
cacheUpdates false Whether to cache changes locally for batch posting later
className DATABASE Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
databaseName Empty string BDE alias, or empty string for built-in database
driverName Empty string Type (table format or server) of database
handle BDE database handle
isolationLevel Read committed Isolation level of transaction
loginDBAlias Empty string The currently active database alias, or BDE alias, from which

to obtain login credentials (user id and password) to be used
in activating an additional connection to a database.

loginString Empty string User name and password to automatically try when opening
database

name Empty string The name of custom object
parent null Container form or report (Property discussed in Chapter 5,

“Core language.”)
session Default session Session to which a database is assigned
share All How to share the database connection

Method Parameters Description
abandonUpdates() Discards all cached changes
applyUpdates() Attempts to post cached changes
beginTrans() Begins transaction; starts logging changes
close() Closes the database connection (called implicitly

when active is set to false)
commit() Commits changes made during transaction; ends

transaction
copyTable() <source name expC>,

<destination name expC>
Makes a copy of a table in the same database

createIndex() <table name expC>,
<index name expC>,
<key>

Creates an index in the table

dropIndex() <table name expC>,
<index name expC>

Deletes index from table

dropTable() <table name expC> Deletes table from database
emptyTable() <table name expC> Deletes all records from a table
executeSQL() <expC> Pass-through SQL statement
getSchema() "DATABASES" |

"TABLES" |
"PROCEDURES" |
"VIEWS"

Retrieves information about a database

open() Opens the database connection (called implicitly
when active is set to true)

packTable() <table name expC> Removes deleted records from DBF or DB table
and reconsolidates disk usage

reindex() <table name expC> Rebuilds indexes for DBF or DB table
renameTable() <old name expC>,

<new name expC>
Renames table in database
327 dBL Language Reference

class Database
Description All sessions, including the default session you get when you start dBASE Plus, contain a default database,
which can access the Standard table types, DBF (dBASE) and DB (Paradox) tables, without requiring a BDE
alias. Whenever you create a Query object, it is initially assigned to the default database in the default session. If
you want to use Standard tables in the default session you don’t have to do anything with that Query object’s
database or session properties. If you want to use a Standard table in another session, for example to use DBF or
DB table security, assign that session to the Query object’s session property, which causes that session’s default
database to be assigned to that Query object. Default databases are always active; their active property has no
effect.

You may also set up a BDE alias to access Standard tables. By referring to your Standard tables through a data-
base alias, you can move the tables to a different drive or directory without having to change any paths in your
code. All you would have to do is change the path specification for that alias in the BDE Administrator. When
using a BDE alias with Standard tables, you must explicitly give the directory path when opening a table in a different direc-
tory. You cannot use relative pathing from the directory specified by the alias. For example, if your alias is set to:

C:\MyTables

and you want to use a table somewhere else on the hard drive, such as:

 C:\MyTables\TestDir

you must specify the full path without the alias:
 C:\MyTables\TestDir or C:\TestDir

For all non-Standard table types, you will need to set up a BDE alias for the database if you haven’t done so
already. After creating a new Database object, you may assign it to another session if desired; otherwise it is
assigned to the default session. Then you need to do the following:

• Assign the BDE alias to the databaseName property.

• If you need to log in to that database, either set the loginString property if you already know the user name
and password; or let the login dialog appear.

• Set the active property to true. This attempts to open the named database. If it’s successful, you now have
access to the tables in the database. Methods associated with a Database object will not function properly when the
database is not active.

Each database, including any default databases, is able to independently support either transaction logging or
cached updates. Transaction logging allows changes to be made to tables as usual, but keeps track of those
changes. Those changes can then be undone through a rollback(), or OK’d with a commit(). In contrast, cached
updates are not written to the table as they happen, but are cached locally instead. You can then either abandon
all the updates or attempt to apply them as a group. If any of the changes fail to post—for a variety of reasons,
like locked records or hardware failures—any changes that did take are immediately undone, and the updates
remain cached. You can then attempt to solve the problem and reapply the update, or abandon the changes. You
may also want to use cached updates to reduce network traffic.

Each non-Standard database is responsible for its own transaction processing, up to whatever isolation level it
supports. For Standard tables opened through the default database, if you want simultaneous multiple
transactions, you need to create multiple sessions, because each database object can support only one active
transaction or update cache, and there is only one default database per session.

All Database objects opened by the Navigator are listed in the databases array property of the _app object. The
default database of the default session is _app.databases[1].

A Database object also encapsulates a number of table maintenance methods. These methods occur in the
context of the specified Database object. For example, the copyTable() method makes a copy of a table in the
same database. To use these methods on Standard tables, call the methods through the default database of the
default session; for example,

_app.databases[1].copyTable("Stuff", "CopyOfStuff")

rollback() Undoes changes made during transaction; ends
transaction

tableExists() <table name expC> Whether or not specified table exists in database
or on disk

Method Parameters Description
Data objects 328

class DataModule
Example Suppose you have an Access database named PIBMUG.MDB. You create an alias named PIBMUG in the BDE
Administrator. To open that database, execute the following code:

d = new Database()
d.databaseName = "PIBMUG"
d.active = true

The second example logs into a database named PERSONNEL in a new session with a preset user name and
password:

s1 = new Session()
d1 = new Database()
d1.databaseName = "PERSONNEL"
d1.session = s1
d1.loginString = "visitor/jobsavail"
d1.active = true

See also class Query, class Rowset, class Session

class DataModule
An empty container in which to store data objects.

Syntax [<oRef> =] new DataModule()

<oRef> A variable or property in which to store a reference to the newly created DataModule object.

Properties The following table lists the properties of the DataModule class. (No events or methods are associated with this
class.)

Property Default Description
baseClassName DATAMODULE Identifies the object as an instance of the DataModule class

(Property discussed in Chapter 5, “Core language.”)
className (DATAMODULE) Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
name Empty string The name of custom object
parent null Container, form or report
rowset The primary rowset of the data module

Description Use data modules to maintain multiple data objects and the relationships between them. Data modules bear
some similarity to forms, except that they contain data objects only. Session, Database, Query, and StoredProc
objects are contained inside a DataModule object; the class is created visually with the Data Module designer.
They are represented by source code in files with a .DMD extension. You can create custom data modules (in
.CDM files) and subclass them.

The relationships between the objects—in particular any masterSource, masterRowset, or masterFields
properties—in addition to other properties and event handlers, can be set for all the objects in the data module.
A primary rowset is assigned in the data module’s rowset property, just like in a form. Other than rowset, the only
other properties associated with this object are baseClassName, className and parent.

To use the data module, create a DataModRef object in the form or report. For more information, see class
DataModRef.

Example The following data module implements the classic teacher-classes-students database. In addition to those three
tables, there is a fourth linking table called Attend for the many-to-many link between classes and students.

class TeacherClassesStudentsDataModule of DATAMODULE

 this.TEACHER1 = new QUERY()
 this.TEACHER1.parent = this
 with (this.TEACHER1)
 left = 2
 top = 1
 sql = 'select * from "TEACHER.DBF"'
 active = true
 endwith
329 dBL Language Reference

class DataModule
 with (this.TEACHER1.rowset)
 indexName = "FULL_NAME"
 endwith

 this.CLASSES1 = new QUERY()
 this.CLASSES1.parent = this
 with (this.CLASSES1)
 left = 8
 top = 3
 sql = 'select * from "CLASSES.DBF"'
 active = true
 endwith

 with (this.CLASSES1.rowset)
 indexName = "TEACH_NAME"
 masterRowset = parent.parent.teacher1.rowset
 masterFields = "TEACH_ID"
 endwith

 this.ATTEND1 = new QUERY()
 this.ATTEND1.parent = this
 with (this.ATTEND1)
 left = 14
 top = 5
 sql = "@ATTEND STUDENT.SQL"
 params["class_id"] = ""
 masterSource = form.classes1.rowset
 active = true
 endwith

 this.STUDENT1 = new QUERY()
 this.STUDENT1.parent = this
 with (this.STUDENT1)
 left = 20
 top = 7
 sql = 'select * from "STUDENT.DBF"'
 active = true
 endwith

 with (this.STUDENT1.rowset)
 indexName = "STU_ID"
 masterRowset = parent.parent.attend1.rowset
 masterFields = "STU_ID"
 endwith

 this.rowset = this.TEACHER1.rowset

endclass

The Teacher table is ordered by the Full_name index. It is related into a table of classes through the
classes1.rowset.masterRowset property. The Classes table is ordered on the Teach_name tag, a composite index
of the Teach_id field (to match the masterFields) and the class name.

The classes1 query acts as the masterSource for the attend1 query. The Attend table has only two fields,
Class_id and Stu_id. This table can be used to link classes and students in either direction. For this query, the
goal is to create a set of students that attended the class in student name order. The Class_id field from the
classes1 query is the parameter in the parameterized SQL statement stored in “Attend student.SQL” file:

SELECT Student.LAST_NAME, Student.FIRST_NAME, Student.STU_ID
FROM "ATTEND.DBF" Attend
 INNER JOIN "STUDENT.DBF" Student
 ON (Attend.STU_ID = Student.STU_ID)
WHERE Attend.CLASS_ID = :class_id
ORDER BY Student.LAST_NAME, Student.FIRST_NAME

This SQL SELECT performs an inner join (matching rows only) between the Attend and Student table to get the
students’ names so that it can sort on them. (Local SQL requires that the ORDER BY fields be in the result set.)
The “:class_id” in the WHERE clause is substituted with the value of the Class_id field in the masterSource
query (classes1).
Data objects 330

class DataModRef
Finally, to actually display the student information, the student1 query’s rowset specifies attend1.rowset as its
masterRowset; a one-to-one link. The indexName is set to match. This link makes the student information
editable. You could get similar results by using fewer queries with more joins, but then the result would be read-
only.

See also class DataModRef

class DataModRef
A reference to a DataModule object.

Syntax [<oRef> =] new DataModRef()

<oRef> A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created DataModRef object.

Properties The following table lists the properties of the DataModRef class. (No events or methods are associated with this
class.)

Property Default Description
active false Whether the referenced data module is active
baseClassName DATAMODREF Identifies the object as an instance of the DataModule class

(Property discussed in Chapter 5, “Core language.”)
className (DATAMODREF) Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
dataModClass The class name of the data module
filename The name of the file containing the data module class
parent null Container form or report (Property discussed in Chapter 5,

“Core language.”)
ref null A reference to the data module object
share None How to share the data module

Description A DataModRef object is used to access data modules. The filename property is set to the .DMD file that
contains the data module class definition. The dataModClass property is set to the class name of the desired data
module. Then the active property is set to true to activate the data module.

If the share property is All instead of the None, any existing instance of the desired data module class is used.
Otherwise a new instance is created. A reference to the data module is assigned to the ref property.

When a DataModRef object is activated in the Form designer, the DataModule object’s rowset property is
assigned to the form’s rowset property. Therefore you can access the form’s primary rowset, and all other
rowsets relative to it, in the same way, whether you’re using a data module or not. To reference the queries in
the data module from the form, you have to go through two additional levels of objects. For example, instead of:

form.query1.rowset

you would have to use:
form.dataModRef1.ref.query1.rowset

However, if query1.rowset was the primary rowset of the data module, you would still use:
form.rowset

anyway, and in query1.rowset’s event handlers, you would still use:
this.parent.parent.query2.rowset

to access query2.rowset whether you’re using a data module or not, because the two Query objects are in the
same relative position in the object containership hierarchy.

Example The following code excerpt from a form class uses the data module shown in the example for class DataModule,
which is stored in the file "teacher classes students.DMD"

 this.DATAMODREF1 = new DATAMODREF()
 this.DATAMODREF1.parent = this
331 dBL Language Reference

class DbError
 with (this.DATAMODREF1)
 filename = "teacher classes students.dmd"
 dataModClass = "TeacherClassesStudentsDataModule"
 share = 0
 active = true
 endwith

See also class DataModule

class DbError
An object that describes a BDE or server error.

Syntax These objects are created automatically by dBASE Plus when a DbException occurs.

Properties The following table lists the properties of the DbError class. (No events or methods are associated with this
class.)

Property Default Description
baseClassName DBERROR Identifies the object as an instance of the DbError class

(Property discussed in Chapter 5, “Core language.”)
className (DBERROR) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
code BDE error number
context Field name, table name, and so on, that caused error
message Empty string Text to describe the error
nativeCode Server error code

Description When an error using a data object occurs, a DbException is generated. Its errors property points to an array of
DbError objects.

Each DbError object describes a BDE or SQL server error. If nativeCode is zero, the error is a BDE error. If
nativeCode is non-zero, the error is a server error. The message property describes the error.

Example See class DbException.

See also class DbException, class Exception

class DbException
An object that describes a data access exception. DbException subclasses the Exception class.

Syntax These objects are created automatically by dBASE Plus when an exception occurs.

Properties The following table lists the properties of the DbException class. DbException objects also contain those
properties inherited from the Exception class. (No events or methods are associated with the DbException
class.)

Property Default Description
baseClassName DBEXCEPTION Identifies the object as an instance of the DbException class

(Property discussed in Chapter 5, “Core language.”)
className (DBEXCEPTION) Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
errors Array of DbError objects

Description The DbException class is a subclass of the Exception class. It is generated when an error using a data object
occurs. In addition to the dBASE Plus error code and message, it provides access to BDE and SQL server error
codes and messages.

Example The following statements attempt to apply cached updates. If there is an error and the code is compiled with the
debug flag on, the errors are displayed in the result pane of the Command window.
Data objects 332

class DbfField
try
 form.database1.applyUpdates()
catch (DbException e)
 msgbox("Cached updates failed to post", "Fatal error", 16)
 #ifdef DEBUG
 local n
 for n = 1 to e.errors.size
 with e.errors[n]
 ? nativeCode, message
 endwith
 endfor
 #endif
endtry

See also class DbError, class Exception

class DbfField
A field from a DBF (dBASE) table. DbfField subclasses the Field class.

Syntax These objects are created automatically by the rowset.

Properties The following table lists the properties of the DbfField class. DbfField objects also contain those properties
inherited from the Field class. (No events or methods are associated with the DbfField class.)

Property Default Description
baseClassName DBFFIELD Identifies the object as an instance of the DbfField class

(Property discussed in Chapter 5, “Core language.”)
className (DBFFIELD) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
decimalLength 0 Number of decimal places if the field is a numeric field
default Default value for field (DBF7 only)
maximum Maximum allowed value for field (DBF7 only)
minimum Minimum allowed value for field (DBF7 only)
readOnly false Specifies whether the field has read-only access
required false Whether the field must be filled in (DBF7 only)

Description The DbfField class is a subclass of the Field class. It represents a field from a DBF (dBASE) table, and contains
properties that are specific to fields of that table type. Otherwise it is considered to be a Field object.

See also class Field, class PdxField, class Rowset, class SqlField

class DBFIndex
Creates a reference to a DBFIndex object for local tables

Syntax <oRef>=new DBFIndex()

<oRef> A variable or property in which to store a reference to the newly created DBFIndex object.

Properties The following tables list the properties of the DBFIndex class. No events or methods are associated with this
class.

Property Default Description
baseClassName DBFINDEX Identifies the object as an instance of the DBFIndex class
className (DBFINDEX) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
descending False Creates the index in descending order (Z to A, 9 to 1, later

dates to earlier dates). Without DESCENDING, DBFIndex
creates an index in ascending order
333 dBL Language Reference

class Field
Description DBFIndex() is a subclass of INDEX() created specifically for use with DBF tables. If you are using Paradox or
SQL tables, see class INDEX(). Use DBXIndex() to store a reference in a newly created DBFIndex object. A
DBFIndex object requires the setting of only two properties, indexName and expression. However you may find
others, such as descending and unique, particularly helpful. Once you have referenced a DBFIndex object, it’s
easy to create a new index for your table using the database class method: createIndex().

Example d=new DBFIndex()
d.indexName=”index name”
d.expression = "indexexpression"

// other properties
_app.databases[1].createIndex("tablename", d)

indexName Name the index whatever you choose. It may be helpful, however, to select an index name
that provides some indication of it’s function.

expression A simple index expression consists of a single field such as “lastname”, whereas complex
index expressions use a combination of one or more field names, plus valid dBASE operators and functions.
When creating complex expressions you must first convert all fields to the same data type. Most multi-field
expressions are character type; numeric and date fields are converted to strings using the STR() and DTOS()
functions. When using the STR() function, be sure to specify the length of the resulting string so that it matches
the numeric field.

Index order (Ascending vs Descending) Character keys are ordered in ASCII order (from A to Z and
then from a to z); numeric keys are ordered from lowest to highest numbers; and date keys are ordered from
earliest to latest date (a blank date is higher than all other dates)

class Field
A base class object that represents a field from a table and can be used as a calculated field.

Syntax [<oRef> =] new Field()

<oRef> A variable or property in which to store the reference to the newly created Field object for use as a
calculated field.

Properties The following tables list the properties, events. and methods of the Field class.

expression Empty string A dBASE expression of up to 220 characters that includes
field names, operators, or functions

forExpression Empty string Limits the records that are included in the index to those
meeting the specified condition.

indexName Empty string Specifies the name of the index tag for the index
parent null Container form or report
type 0 (MDX) Determines the index type. 0=MDX, 1=NDX
unique False Prevents multiple records with the same expression value from

being included in the index; dBASE Plus includes in the
index only the first record with that value

Property Default Description

Property Default Description
baseClassName FIELD Identifies the object as an instance of the Field class (Property

discussed in Chapter 5, “Core language.”)
className (FIELD) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
fieldName Name of the field the Field object represents, or the assigned

calculated field name
length Maximum length
logicalSubType A database independent name indicating the data subtype of a value

stored in a field
Data objects 334

class Field
Description The Field class acts as the base class for the DbfField (dBASE), PdxField (Paradox), and SqlField (everything
else) classes. It contains the properties common to all field types. Each subclass contains the properties specific
to that table type. You also create calculated fields with a Field object.

Each rowset has a fields property, which points to an array. Each element of that array is an object of one of the
subclasses of the Field class, depending on the table type or types contained in the rowset. Each field object
corresponds to one of the fields returned by the query or stored procedure that created the rowset.

While the fieldName, length, and type properties describe the field and are the same from row to row, the value
property is the link to the field’s value in the table. The value property’s value reflects the current value of that
field for the current row in the row buffer; assigning a value to the value property assigns that value to the row
buffer. The buffer is not written to disk unless the rowset’s save() method is explicitly called or there is an
implicit save, which is usually caused by navigation in the rowset. You can abandon any changes you make to
the row buffer by calling the rowset’s abandon() method.

You may assign a Field object to the dataLink property of a control on a form. This makes the control data-
aware, and causes it to display the current value of the Field object’s value property; if changes are made to the
control, the new value is written to the Field object’s value property.

Calculated fields Use a calculated field to generate a value based on one or more fields, or some other
calculation. For example, in a line item table with both the quantity ordered and price per item, you can
calculate the total price for that line item. There would be no need to actually store that total in the table, which
wastes space.

Because a calculated field is treated like a field in most respects, you can do things like dataLink it to a control
on a form, show it in a grid, or use it in a report. Because a calculated field does not actually represent a field in
a table, writing to its value property directly or changing its value through a dataLinked control never causes a
change in a table.

To create a calculated field, create a new Field object and assign it a fieldName, then add() it to the fields array
of a Rowset object.

Morphed and calculated fields sometimes require display widths that are larger than their field widths.To avoid
truncating the display, use a picture that represents the field’s maximum size.

Note You must assign the fieldName before adding the field to the fields array.

logicalType A database independent name indicating the data type of a value
stored in a field

lookupRowset Reference to lookup table for field
lookupSQL SQL SELECT statement for field lookup values
parent null fields array that contains the object (Property discussed in

Chapter 5, “Core language.”)
type Character The field’s data type
value Empty string Represents current value of field in row buffer

Event Parameters Description
 beforeGetValue When value property is to be read; return value is used as

value
canChange <new value> When attempting to change value property; return value

allows or disallows change
onChange After value property is successfully changed
onGotValue After value is read

Method Parameters Description
copyToFile() <filename expC> Copies data from BLOB field to external file
replaceFromFile() <filename expC>

[, <append expL>]
Copies data from external file to BLOB field

Property Default Description
335 dBL Language Reference

class Index
Because a rowset is not valid until its query opens, you must make the query active before you add the Field
object. The query’s onOpen event, which fires after the query is activated, is a good place to create the
calculated field. To set the value of a calculated field, you can do one of two things

• Assign a code-reference, either a codeblock or function pointer, to the Field object’s beforeGetValue event.
The return value of the code becomes the Field object’s value.

• Assign a value to the Field object’s value property directly as needed, like in the rowset’s onNavigate event.

Example The following example creates a calculated field, using the Field’s beforeGetValue event to calculate the total
price from the quantity and price per item for each line item:

q = new Query()
q.sql := "select * from LINEITEM"
q.active := true

c = new Field()
c.fieldName := "Total"
q.rowset.fields.add(c)
c.beforeGetValue := {||this.parent["Quantity"].value * this.parent["PricePer"].value}

Because this refers to the Field object itself, this.parent refers to the fields array, through which you can access
the other field objects.

See also class DbfField, class PdxField, class Rowset, class SqlField

class Index
An object representing an index from a non-local table

Syntax [<oRef>]=new Index()

<oRef> A variable or property in which to store a reference to the newly created Index object.

Properties The following tables list the properties of the Index class. No events or methods are associated with this class.
For details on each property, click on the property below.

Property Default Description
baseClassName INDEX Identifies the object as an instance of the Index class

(Property discussed in Chapter 5, “Core language.”)
caseSensitive true Whether a search string is required to match the case, upper

or lower, of a field value.
className (INDEX) Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
descending false Creates the index in descending order (Z to A, 9 to 1, later

dates to earlier dates). Without DESCENDING, creates an
index in ascending order.

fields Empty string A list of fields on which the table is indexed
indexName Empty string Specifies the name of the index tag for the index
parent null Container, form or report
unique false Prevents multiple records with the same expression value

from being included in the index. dBASE Plus includes
only the first record for each value.

Description Use Index() to store a reference in a newly created Index object for non-local tables. A subclass of Index,
DBFIndex is available when working with local DBF tables (See class DBFIndex). An Index object requires
setting only two properties, indexName and fields. As the name implies, indexName is the name you'll give the
index, and fields is a list of fields on which the index is based. Once an Index object has been referenced, use the
database class method: createIndex() to create a new index for your table.

Example The following statements create an instance of an Index() object, define it's indexName and fields properties,
and create a new index using createIndex().

i=new Index()
i.indexName :="indexname"
Data objects 336

class LockField
i.fields :="field1;field2; ..."
// other properties
_app.databases[1].createIndex("tablename",i)

class LockField
A _DBASELOCK field in a DBF table.

Syntax These objects are created automatically by the rowset.

Properties The following table lists the properties of the LockField class. (No events or methods are associated with this
class.)

Property Default Description
baseClassName LOCKFIELD Identifies the object as an instance of the LockField class

(Property discussed in Chapter 5, “Core language.”)
className (LOCKFIELD) Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
fieldName _DBASELOCK Name of the field the LockField object represents (read-

only)
lock Date and time of last row lock
parent null fields array that contains the object (Property discussed in

Chapter 5, “Core language.”)
update Date and time of last row update
user Name of user that last locked or updated the row

Description A LockField object is used to represent the _DBASELOCK field in a DBF table that has been CONVERTed.
By examing the properties of a LockField object, you may determine the nature of the last row lock or update.

When a row is locked, either explicitly or automatically, the time, date, and login name of the user placing the
lock are stored in the _DBASELOCK field of that row. When a file is locked, this same information is stored in
the _DBASELOCK field of the first physical record in the table.

If a DBF table has a _DBASELOCK field, the LockField object is always the last field in the fields array, and is
referenced by its field name, “_DBASELOCK".

All the properties of a LockField object are read-only.

See also class Field, CONVERT

class Parameter
A parameter for a stored procedure.

Syntax These objects are created automatically by the stored procedure.

Properties The following table lists the properties of the Parameter class. (No events or methods are associated with this
class.)

Property Default Description
baseClassName PARAMETER Identifies the object as an instance of the Parameter class

(Property discussed in Chapter 5, “Core language.”)
className (PARAMETER) Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
type Input The parameter type

(0=Input, 1=Output, 2=InputOutput, 3=Result)
value The value of the parameter

Description Parameter objects represent parameters to stored procedures. Each element of the params array of a StoredProc
object is a Parameter object. The Parameter objects are automatically created when the procedureName
337 dBL Language Reference

class PdxField
property is set, either by getting the parameter names for that stored procedure from the SQL server or by using
parameter names specified directly in the procedureName property.

A parameter may be one of four types, as indicated by its type property:

• Input: an input value for the stored procedure. The value must be set before the stored procedure is called.

• Output: an output value from the stored procedure. The value must be set to the correct data type before the
stored procedure is called; any dummy value may be used. Calling the stored procedure sets the value
property to the output value.

• InputOutput: both input and output. The value must be set before the stored procedure is called. Calling the
stored procedure updates the value property with the output value.

• Result: the result value of the stored procedure. In this case, the stored procedure acts like a function,
returning a single result value, instead of updating parameters that are passed to it. Otherwise, the value is
treated like an output value. The name of the Result parameter is always “Result”.

A Parameter object may be assigned as the dataLink of a component in a form. Changes to the component are
reflected in the value property of the Parameter object, and updates to the value property of the Parameter object
are displayed in the component.

Example The following statements call a stored procedure that returns an output parameter. The result is displayed in the
result pane of the Command window.

d = new Database()
d.databaseName = "IBLOCAL"
d.active = true
p = new StoredProc()
p.database = d
p.procedureName = "DEPT_BUDGET"
p.params["DNO"].value = "670" // Set input parameter
p.active = true
? p.params["TOT"].value // Display output

The following statements call a stored procedure in a database that does not return any parameter information.
Therefore, the parameters must be declared in the procedureName property. Note that the parameter names are
case-sensitive, and you must initialize any output parameters by assigning a dummy value of the correct data
type.

#define PARAMETER_TYPE_INPUT 0
#define PARAMETER_TYPE_OUTPUT 1
#define PARAMETER_TYPE_INPUT_OUTPUT 2
#define PARAMETER_TYPE_RESULT 3

d = new Database()
d.databaseName = "WIDGETS"
d.active = true
p = new StoredProc()
p.database = d
p.procedureName = "PROJECT_SALES(:month, :units)"
p.params["month"].type = PARAMETER_TYPE_INPUT
p.params["month"].value = 6
p.params["units"].type = PARAMETER_TYPE_OUTPUT
p.params["units"].value = 0 // Output will be numeric
p.active = true
? p.params["TOT"].value // Display output

See also class StoredProc

class PdxField
A field from a DB (Paradox) table. PdxField subclasses the Field class.

Syntax These objects are created automatically by the rowset.
Data objects 338

class Query
Properties The following table lists the properties of the PdxField class. PdxField objects also contain those properties
inherited from the Field class. (No events or methods are associated with the PdxField class.)

Property Default Description
baseClassName PDXFIELD Identifies the object as an instance of the PdxField class

(Property discussed in Chapter 5, “Core language.”)
className (PDXFIELD) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
default Default value for field
lookupTable Empty string Table to use for lookup value
lookupType Empty string Type of lookup
maximum Maximum allowed value for field
minimum Minimum allowed value for field
picture Empty string Formatting template
required false Whether the field must be filled in
readOnly false Whether the field has read-only access

Description This class is called PdxField—not “DbField”—to avoid confusion and simple typographical errors between it
and the DbfField class.

The PdxField class is a subclass of the Field class. It represents a field from a DB (Paradox) table, and contains
properties that are specific to fields of that table type. Otherwise it is considered to be a Field object.

See also class DbfField, class Field, class Rowset, class SqlField

class Query
A representation of an SQL statement that describes a query and contains the resulting rowset.

Syntax [<oRef> =] new Query()

<oRef> A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created Query object.

Properties The following tables list the properties, events, and methods of the Query class.

Property Default Description
active false Whether the query is open and active or closed
baseClassName QUERY Identifies the object as an instance of the Query class (Property

discussed in Chapter 5, “Core language.”)
className (QUERY) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
constrained false Whether the WHERE clause of the SQL SELECT statement will

be enforced when attempting to update Standard tables
database null Database to which the query is assigned
handle BDE statement handle
masterSource null Query that acts as master query and provides parameter values
name Empty string The name of custom object
params AssocArray Associative array that contains parameter names and values for

the SQL statement
parent null Container form or report (Property discussed in Chapter 5, “Core

language.”)
requestLive true Whether you want a writable rowset
rowset object Results of the query
session null Session to which the query is assigned
sql Empty string SQL statement that describes the query
unidirectional false Whether to assume forward-only navigation to increase

performance on SQL-based servers
339 dBL Language Reference

class Query
Description The Query object is where you specify which fields you want from which rows in which tables and the order in
which you want to see them, through an SQL SELECT statement stored in the query’s sql property. The results
are accessed through the query’s rowset property. To use a stored procedure that results in a rowset, use a
StoredProc object instead.

Whenever you create a query object, it is initially assigned to the default database in the default session. If you
want to use Standard tables in the default session you don’t have to do anything with that query’s database or
session properties. If you want to use a Standard table in another session, assign that session to the query’s
session property, which causes that session’s default database to be assigned to that query.

For non-Standard tables, you will need to set up a BDE alias for the database if you haven’t done so already.
After creating a new Database object, you may assign it to another session if desired; otherwise it is assigned to
the default session. Once the Database object is active, you can assign it to the query’s database property. If the
database is assigned to another session, you need to assign that session to the query’s session property first.

After the newly created query is assigned to the desired database, an SQL SELECT statement describing the
data you want is assigned to the query’s sql property.

If the SQL statement contains parameters, the Query object’s params array is automatically populated with the
corresponding elements. The value of each array element must be set before the query is activated. A Query
with parameters can be used as a detail query in a master-detail relationship through the masterSource property.

Setting the Query object’s active property to true opens the query and executes the SQL statement stored in the
sql property. If the SQL statement fails, for example the statement is misspelled or the named table is missing,
an error is generated and the active property remains false. If the SQL statement executes but does not generate
any rows, the active property is true and the endOfSet property of the query’s rowset is true. Otherwise the
endOfSet property is false, and the rowset contains the resulting rows.

Setting the active property to false closes the query, writing any buffered changes.

Example The first example opens a table named VACATION.DBF:
q= new Query()
q.sql = "select * from VACATION"
q.active = true

The second example opens a table named REQS in a database named PERSONNEL in a new session with a
preset user name and password:

s1 = new Session()

updateWhere AllFields Enum to determine which fields to use in constructing the
WHERE clause of an SQL UPDATE statement, used for posting
changes to SQL-based servers

usePassThrough false Controls whether or not a query, with a simple sql select statement
(of the form "select * from <table>), is sent directly to the DBMS
for execution or is setup to behave like a local database table.

Event Parameters Description
canClose When attempting to close query; return value allows or

disallows closure
canOpen When attempting to open query; return value allows or

disallows opening
onClose After query closes
onOpen After query first opens

Method Parameters Description
execute() Executes query (called implicitly when active property is set to

true)
prepare() Prepares SQL statement
requery() Rebinds and executes SQL statement
unprepare() Cleans up when query is deactivated (called implicitly when

active property is set to false)

Property Default Description
Data objects 340

class Rowset
d1 = new Database()
d1.databaseName = "PERSONNEL"
d1.session = s1
d1.loginString = "visitor/jobsavail"
d1.active = true
q1 = new Query()
q1.session = s1
q1.database = d1
q1.sql = "select * from REQS"
q1.active = true

The third example uses an SQL statement with parameters. Note that the parameter name is case-sensitive; the
name in the params array must match the name in the SQL statement:

q1 = new Query()
q1.sql = "select * from CUSTOMER where STATE = :state"
q1.params["state"] = "VA"
q1.active = true

See also class Database, class Rowset, class Session

class Rowset
The data that results from an SQL statement in a Query object.

Syntax These objects are created automatically by the query.

Properties The following tables list the properties, events, and methods of the Rowset class.

Property Default Description
allowDetailNavigation false Allows a rowset to control movement in its linked

detail rowsets so that master and detail rowsets are
navigated as though they were all part of a single,
combined rowset.

autoEdit true Whether the rowset automatically switches to Edit
mode when a change is made in a dataLinked
component.

autoLockChildRows true Whether locking a parent row also automatically
locks its child rows.

autoNullFields true Whether empty fields will assume a null value, or be
filled with blanks, zero or, in the case of logical
fields, false.

baseClassName ROWSET Identifies the object as an instance of the Rowset
class (Property discussed in Chapter 5, “Core
language.”)

className (ROWSET) Identifies the object as an instance of a custom class.
When no custom class exists, defaults to
baseClassName

codePage 0 Returns a number indicating the current code page
associated with a table

endOfSet Whether the row cursor is at either end of the set
exactMatch true Whether rowset searches use a partial string match or

an exact string match
fields Array of field objects in row
filter Empty string Filter SQL expression
filterOptions Match length and case Enum designating how the filter expression should be

applied
handle BDE cursor handle
indexName Empty string Active index tag
languageDriver Empty string Returns a character string indicating the name of the

language driver currently being used.
live true Whether the data can be modified
341 dBL Language Reference

class Rowset
locateOptions Match length and case Enum designating how the locate expression should
be applied

lockType 0 - Automatic Determines whether or not explicit locks can be
released by a call to rowset.save()

masterChild Constrained In a master-detail link, specifies whether or not the
child table’s rowset is constrained.

masterFields Empty string Field list for master-detail link
masterRowset null Reference to master Rowset object
modified false Whether the row has changed
name Empty string The name of custom object
navigateBeforeNextMaster false Indicates that a detail rowset’s row cursor should be

moved before moving its master rowset’s row cursor.
notifyControls true Whether to automatically update dataLinked controls
parent null Query object that contains the Rowset object

(Property discussed in Chapter 5, “Core language.”)
state 0 Enum that describes the mode the rowset is in
tableDriver Empty string Returns a character string indicating the name of the

driver currently being used to access a table.
tableLevel 0 Returns an integer indicating the version of the

current local table.
tableName Empty string Returns a character string indicating the name of the

table the current rowset is based on.
tempTable False Returns a logical (True/.T.) when the current table

(referenced by tableName) is a temporary table.

Event Parameters Description
canAbandon When abandon() is called; return value allows or

disallows abandoning of row
canAppend When beginAppend() is called; return value allows

or disallows start of append
canDelete When delete() is called; return value allows or

disallows deletion
canEdit When beginEdit() is called; return value allows or

disallows switch to Edit mode
canGetRow When attempting to read row; return value acts as an

additional filter
canNavigate When attempting row navigation; return value allows

or disallows navigation
canSave When save() is called; return value allows or

disallows saving of row
onAbandon After successful abandon()
onAppend After successful beginAppend()
onDelete After successful delete()
onEdit After successful beginEdit()
onNavigate <method expN>,

<rows expN>
After rowset navigation

onSave After successful save()

Method Parameters Description
abandon() Abandons pending changes to current row
applyFilter() Applies filter set during rowset’s Filter mode
applyLocate() [<locate expC>] Finds first row that matches specified criteria
atFirst() Returns true if current row is first row in rowset
atLast() Returns true if current row is last row in rowset
beginAppend() Starts append of new row

Property Default Description
Data objects 342

class Rowset
Description A Rowset object represents a set of rows that results from a query. It maintains a cursor that points to one of the
rows in the set, which is considered the current row, and a buffer to manage the contents of that row. The row
cursor may also point outside the set, either before the first row or after the last row, in which case it is
considered to be at the end-of-set. Each row contains fields from one or more tables. These fields are
represented by an array of Field objects that is represented by the rowset’s fields property. For a simple query
like the following, which selects all the fields from a single table with no conditions,
the rowset represents all the data in the table:

select * from CUSTOMER

As the cursor moves from row to row, you can access the fields in that row.

A Query object always has a rowset property, but that rowset is not open and usable and does not contain any
fields until the query has been successfully activated. Setting the Query object’s active property to true opens
the query and executes the SQL statement stored in the sql property. If the SQL statement fails, for example the
statement is misspelled or the named table is missing, an error is generated and the active property remains
false. If the SQL statement executes but does not generate any rows, the active property is true and the endOfSet

beginEdit() Puts rowset in Edit mode, allowing changes to fields
beginFilter() Puts rowset in Filter mode, allowing entry of filter

criteria
beginLocate() Puts rowset in Locate mode, allowing entry of search

criteria
bookmark() Returns bookmark for current row
bookmarksEqual() <bookmark 1>

[,<bookmark 2>]
Compares two bookmarks or one bookmark with
current row to see if they refer to same row

clearFilter() Disables filter created by applyFilter() and clears
filter property

clearRange() Disables constraint created by setRange()
count() Returns number of rows in rowset, honoring filters
delete() Deletes current row
findKey() <key exp> Finds the row with the exact matching key value
findKeyNearest() <key exp> Finds the row with the nearest matching key value
first() Moves row cursor to first row in set
flush() Commits the rowset buffer to disk
goto() <bookmark> Moves row cursor to specified row
isRowLocked() Determines if the current row, in the current session,

is locked
isSetLocked() Determines if the current rowset, in the current

session, is locked
last() Moves row cursor to last row in set
locateNext() [<rows expN>] Finds other rows that match search criteria
lockRow() Locks current row
lockSet() Locks entire set
next() [<rows expN>] Navigates to adjacent rows
refresh() Refreshes entire rowset
refreshControls() Refreshes dataLinked controls
refreshRow() Refreshes current row only
rowCount() Returns logical row count if known
rowNo() Returns logical row number if known
save() Saves current row
setRange() <key exp>

or
<startKey exp> | null
,<endKey exp> | null

Constrains the rowset to those rows whose key field
values falls within a range

unlock() Releases locks set by lockRow() and lockSet()

Method Parameters Description
343 dBL Language Reference

class Rowset
property of the query’s rowset is true. Otherwise the endOfSet property is false, and the rowset contains the
resulting rows.

Once the rowset has been opened, you can do any of the following:

• Navigate the rowset; that is, move the row cursor
• Filter and search for rows
• Add, modify, and delete rows
• Explicitly lock individual rows or the entire set
• Get information about the rowset, including row cursor’s current position

The individual Field objects in a rowset’s fields array property may be dataLinked to controls on a form. As the
row cursor is navigated from row to row, the controls will be updated with the current row’s values, unless the
rowset’s notifyControls property is set to false. Changing the values shown in the controls will change the value
property of the dataLinked Field objects. You may also directly modify the value property of the Field objects.
All of the values are maintained in the row buffer.

Rowset objects support master-detail linking. Navigation and updates in the master rowset change the set of
rows in the detail rowset. The detail rowset is controlled by changing the key range of an existing index in the
detail rowset. The masterRowset and masterFields properties are set in the detail rowset. This allows a single
master rowset to control any number of detail rowsets.

When a query opens, its rowset is in Browse mode. By default, a rowset’s autoEdit property is true, which
means that its fields are changeable through dataLinked controls. Typing a destructive key in a dataLinked
control automatically attempts to switch the rowset into Edit mode. By setting autoEdit to false, the rowset is
read-only, and the beginEdit() method must be called to switch to Edit mode and allow editing. autoEdit has no
effect on assignments to the value of a field; they are always allowed.

The rowset’s modified property indicates whether any changes have been made to the current row. Changes
made to the row buffer are not written until the save() method is called. However, even after save() has been
called, no attempt is made to save data if the rowset’s modified property is false. This architecture lets you
define row-validation code once in the canSave event handler that is called whenever it is needed and only when
it is needed.

In addition to normal data access through Browse and Edit modes, the rowset supports three other modes:
Append, Filter, and Locate, which are initiated by beginAppend(), beginFilter(), and beginLocate()
respectively. At the beginning
of all three modes, the row buffer is disassociated from whatever row it was buffering and cleared. This allows
the entry of field values typed into dataLinked controls or assigned directly to the value property. In Append
mode, these new values are saved as a new row if the row buffer is written. In Filter mode, executing an
applyFilter() causes the non-blank field values to be used as criteria for filtering rows, showing only those that
match. In Locate mode, calling applyLocate() causes the non-blank field values to be used as criteria to search
for matching rows. In all three modes, using the field values cancels that mode. Also, calling the abandon()
method causes the rowset to revert back to Browse mode without using the values.

You can easily implement filter-by-form and locate-by-form features with the Filter and Locate modes. Instead
of using Filter mode, you can assign an SQL expression directly to the rowset’s filter property. The rowset’s
canGetRow event will filter rows based on any dBASE Plus code, not just an SQL expression, and can be used
instead of or in addition to Filter mode and the filter property. You can also use applyLocate() without starting
Locate mode first by passing an SQL expression to find the first row for which the expression is true.

Any row-selection criteria—from the WHERE clause of the query’s SQL SELECT statement, the key range
enforced by a master-detail link, or a filter—
is actively enforced. applyLocate() will not find a row that does not match the criteria. When appending a new
row or changing an existing row, if the fields
in the row are written such that the row no longer matches the selection criteria, that row becomes out-of-set,
and the row cursor moves to the next row, or to the end-of-set if there are no more matching rows. To see the
out-of-set row, you must remove or modify the selection criteria to allow that row.

Row and set locking support varies among different table types. The Standard (DBF and DB) tables fully
support locking, as do some SQL servers. For servers that do not support true locks, the Borland Database
Engine emulates optimistic locking. Any lock request is assumed to succeed. Later, when the actual attempt to
change the data occurs, if the data has changed since the lock attempt, an error occurs.

Any attempt to change the data in a row, like typing a letter in a dataLinked Entryfield control, causes an
automatic row lock to be attempted. If that row is already locked, the lock is retried up to the number of times
Data objects 344

class Session
specified by the session’s lockRetryCount property; if after those attempts the lock is unsuccessful, the change
does not take. If the automatic lock is successful, the lock remains until navigation off the locked row occurs or
the row is saved or abandoned; then the lock is automatically removed.

Example The following code gives everyone an extra day of vacation:
q= new Query()
q.sql = "select * from EMPLOYEE"
q.active = true
do while not q.rowset.endOfSet
 q.rowset.fields["VacHours"].value += 8
 q.rowset.next()
enddo

See also class Database, class Field, class Query, class Session

class Session
An object that manages simultaneous database access.

Syntax [<oRef> =] new Session()

<oRef> A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created Session object.

Properties The following tables list the properties, events, and methods of the Session class.

Property Default Description
baseClassName SESSION Identifies the object as an instance of the Session class

(Property discussed in Chapter 5, “Core language.”)
className (SESSION) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
handle BDE session handle
lockRetryCount 0 Number of times to retry a failed lock attempt
lockRetryInterval 0 Number of seconds to wait between each lock attempt
name Empty string The name of custom object
parent null Container form or report (Property discussed in Chapter 5,

“Core language.”)

Event Parameters Description
onProgress <percent expN>,

<message expC>
Periodically during data processing operations

Method Parameters Description
access() Returns the user’s access level for the session
addPassword() <password expC> Adds a password to the password table for access to

encrypted DB (Paradox) tables
login() <group expC>,

<user expC>,
<password expC>

Logs the specified user into the session to access encrypted
DBF (dBASE) tables

user() Returns the user’s login name for the session

Description A session represents a separate user task, and is required primarily for DBF and DB table security. dBASE Plus
supports up to 2048 simultaneous sessions. When dBASE Plus first starts, it already has a default session.

DBF and DB table security is session-based. (SQL-table security is database-based). To enable the Session
object’s security features, the database it is assigned to must be active. When you create a new Session object, it
copies the security settings of the default session. Therefore, if you have a user log in when dBASE Plus starts,
all the new sessions you create to handle multiple tasks will have the access level.
345 dBL Language Reference

class SqlField
Unlike the Database and Query objects, a Session object does not have an active property. Sessions are always
active. To close a session, you must destroy it by releasing all references to it.

Example This example assigns a new Session object to a database object and, when login is true, makes the database
active.

d = new database
d.databasename := “MyAlias”
s = new session()
d.session := s
if s.login()
 d.active := true
 ? s.user()
 ? s.access()
else
 ? "Login failed"
endif

See also class Database, class Query, class Rowset

class SqlField
A field from an SQL-server-based table. SqlField subclasses the Field class.

Syntax These objects are created automatically by the rowset.

Properties The following table lists the properties of the SqlField class. SqlField objects also contain those inherited from
the Field class. (No events or methods are associated with the SqlField class.)

Property Default Description
baseClassName SQLFIELD Identifies the object as an instance of the SqlField class (Property

discussed in Chapter 5, “Core language.”)
className (SQLFIELD) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
precision The number of digits allowed in an SQL-based field
scale The number of digets, to the right of the decimal point, that can

be stored in an SQL-based field

Description The SqlField class is a subclass of the Field class. It represents a field from an SQL-server-based table,
including any ODBC connection, and contains properties that are specific to fields of that table type. Otherwise
it is considered to be a Field object.

See also class DbfField, class Field, class PdxField, class Rowset

class StoredProc
A representation of a stored procedure call.

Syntax [<oRef> =] new StoredProc()

<oRef> A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created StoredProc object.

Properties The following tables list the properties, events, and methods of the StoredProc class.

Property Default Description
active false Whether the stored procedure is open and active or closed
baseClassName STOREDPROC Identifies the object as an instance of the StoredProc class

(Property discussed in Chapter 5, “Core language.”)
className (STOREDPROC) Identifies the object as an instance of a custom class. When

no custom class exists, defaults to baseClassName
Data objects 346

class StoredProc
Description Use a StoredProc object to call a stored procedure in a database. Most stored procedures take one or more
parameters as input and may return one or more values as output. Parameters are passed to and from the stored
procedure through the StoredProc object’s params property, which points to an associative array of Parameter
Objects.

Some stored procedures return a rowset. In that case, the StoredProc object is similar to a Query object; but
instead of executing an SQL statement that describes the data to retrieve, you name a stored procedure, pass
parameters to it, and execute it. The resulting rowset is accessed through the StoredProc object’s rowset
property, just like in a Query object.

Because stored procedures are SQL-server-based, you must create and activate a Database object and assign
that object to the StoredProc object’s database property. Standard tables do not support stored procedures.

Next, the procedureName property must be set to the name of the stored procedure. For most SQL servers, the
BDE can get the names and types of the parameters for the stored procedure. On some servers, no information is
available; in that case you must include the parameter names in the procedureName property as well.

Getting or specifying the names of the parameters automatically creates the corresponding elements in the
StoredProc object’s params array. Each element is a Parameter object. Again, for some servers, information on
the parameter types is available. For those servers, the type properties are automatically filled in and the value
properties are initialized. For other servers, you must supply the missing type information and initialize the
value to the correct type.

To call the stored procedure, set its active property to true. If the stored procedure does not generate a rowset,
the active property is reset to false after the stored procedure executes and returns its results, if any. This
facilitates calling the stored procedure again if desired, after reading the results from the params array.

If the stored procedure generates a rowset, the active property remains true, and the resulting rowset acts just
like a rowset generated by a Query object.

You can dataLink components in a form to fields in a rowset, or to the Parameter objects in the params array.

database null Database to which the stored procedure is assigned
handle BDE statement handle
name Empty string The name of custom object
params AssocArray Associative array that contains Parameter objects for the

stored procedure call
parent null Container form or report (Property discussed in Chapter 5,

“Core language.”)
procedureName Empty string Name of the stored procedure
rowset object Results of the stored procedure call
session null Session to which the stored procedure is assigned

Event Parameters Description
canClose When attempting to close stored procedure; return value allows

or disallows closure
canOpen When attempting to open stored procedure; return value allows

or disallows opening
onClose After stored procedure closes
onOpen After stored procedure first opens

Method Parameters Description
execute() Executes stored procedure (called implicitly when active

property is set to true)
prepare() Prepares stored procedure call
requery() Rebinds and executes stored procedure
unprepare() Cleans up when stored procedure is deactivated (called

implicitly when active property is set to false)

Property Default Description
347 dBL Language Reference

class TableDef
Example The following statements call a stored procedure that returns an output parameter. The result is displayed in the
result pane of the Command window.

d = new Database()
d.databaseName = "IBLOCAL"
d.active = true
p = new StoredProc()
p.database = d
p.procedureName = "DEPT_BUDGET"
p.params["DNO"].value = "670"
p.active = true
? p.params["TOT"].value // Display output

The following statements call a stored procedure in a database that does not return any parameter information.
Therefore, the parameters must be declared in the procedureName property. Note that the parameter names are
case-sensitive, and you must initialize any output parameters by assigning a dummy value of the correct data
type.

#define PARAMETER_TYPE_INPUT 0
#define PARAMETER_TYPE_OUTPUT 1
#define PARAMETER_TYPE_INPUT_OUTPUT 2
#define PARAMETER_TYPE_RESULT 3

d = new Database()
d.databaseName = "WIDGETS"
d.active = true
p = new StoredProc()
p.database = d
p.procedureName = "PROJECT_SALES(:month, :units)"
p.params["month"].type = PARAMETER_TYPE_INPUT
p.params["month"].value = 6
p.params["units"].type = PARAMETER_TYPE_OUTPUT
p.params["units"].value = 0 // Output will be numeric
p.active = true
? p.params["TOT"].value // Display output

See also class Parameter, class Query

class TableDef
Creates a reference from which to view the definition of a table.

Syntax [<oRef>]=new TableDef()

<oRef> A A variable or property in which to store a reference to the newly created TableDef object.

Properties The following tables list the properties and methods of the TableDef class. No events are associated with this class.)

Property Default Description
baseClassName TABLEDEF Identifies the object as an instance of the TableDef

class
className (TABLEDEF) Identifies the object as an instance of a custom class.

When no custom class exists, defaults to
baseClassName

constraints AssocArray An array of row-level constraints associated with the
table being defined

database Object A reference to the Database object to which the table
being defined is assigned.

fields Object A reference to an array that contains the table's Field
objects

indexes Object A reference to an array that contains the table's Index
objects

language Empty string The Language Driver currently being used to access
the table being defined

parent null Container, form or report
Data objects 348

class UpdateSet
Description A TableDef object allows you to view various aspects of a table's definition. Using the TableDef object does not
let you make changes to the table's definition, but instead provides a means to read information about it's index
tags, fields, constraints and other elements. For information on making changes to a table's definition, see Table
Designer.

To view a table's definition you must create an instance of the object, provide the table name and load the
definition using the TableDef object's load() method.

t=new TableDef()
t.tableName="tablename"
t.load()

Once the table's definition has been loaded, you can view it's contents through The Inspector:
inspect(t)

or using dot notation from the Command Window:
?t.fields.size
?t.fields[n].fieldname // Where n is a number from 1 to the value of “t.fields.size”
?t.indexes.size
?t.indexes[n].indexname // Where n is a number from 1 to the value of “t.indexes.size”

class UpdateSet
An object that updates one table with data from another.

Syntax [<oRef> =] new UpdateSet()

<oRef> A variable or property in which to store a reference to the newly created UpdateSet object.

Properties The following tables list the properties and methods of the UpdateSet class. (No events are associated with this
class.)

Property Default Description
changedTableName Table to collect copies of original values of changed

rows
baseClassName UPDATESET Identifies the object as an instance of the UpdateSet

class (Property discussed in Chapter 5, “Core
language.”)

className (UPDATESET) Identifies the object as an instance of a custom class.
When no custom class exists, defaults to
baseClassName

destination Rowset object or table name that is updated or created
indexName Name of index to use
keyViolationTableName Table to collect rows with duplicate primary keys
parent null Container, form or report
problemTableName Table that collects problem rows
source Rowset object or table name that contains updates

primaryKey Empty string The key expression of the table's primary index
recordCount zero Number of records in the table being defined
tableName Empty string The name of the table being defined
tableType DBASE The current table type
version 7 The tableLevel version number

Method Parameters Description
load() Loads the table's definition into memory

Property Default Description
349 dBL Language Reference

abandon ()
Method Parameters Description
append() Adds new rows
appendUpdate() Updates existing rows and adds new rows
copy() Creates destination table
delete() Deletes rows in destination that match rows in source
update() Updates existing rows

Description The UpdateSet object is used to update data from one rowset to another, or to copy or convert data from one
format to another, either in the same database or across databases.

To update a DBF table with appendUpdate(), delete(), or update(), the indexName property of the UpdateSet
object must be set to a valid index. To update a DB table with the same operations, the DB table’s primary key
is used by default, or you can assign a secondary index to the indexName property.

The source and destination can be either a character string containing the name of a table, or an object reference
to a rowset. If the source is a rowset, the data used in the update can be filtered.

For Standard table names, specify the name of the table and the extension (DBF or DB). For all other tables,
place the database name (the BDE alias) in colons before the table name; that is, in this form:

:alias:table

The named database must be open when the UpdateSet() method is executed.

Example The following example copies the result set from a query on an SQL-based-server to a local DBF file:
d = new Database()
d.databaseName = "SOMESQL"
d.active = true
q = new Query()
q.database = d
q.sql = "select * from SOMETABLE where THIS = 'that' order by ID"
q.active = true

u = new UpdateSet()
u.source = q.rowset
u.destination = "RESULTS.DBF"
u.copy()

This example copies all the rows from the same SQL-based-server table to a local DBF file without using a
Query object:

d = new Database()
d.databaseName = "SOMESQL"
d.active = true

u = new UpdateSet()
u.source = ":SOMESQL:SOMETABLE"
u.destination = "SOMEDUP.DBF"
u.copy()

See also class Database, class Rowset

abandon ()
Abandons any pending changes to the current row.

Syntax <oRef>.abandon()

<oRef> The rowset whose current row buffer you want to abandon.

Property of Rowset

Description Changes made to a row, either through dataLinked controls or by assigning values to the value property of
fields, are not written to disk until the rowset’s save() method is explicitly called or there is an implicit save,
which is usually caused by navigation in the rowset. You can discard any pending changes to the rowset with
the abandon() method. This is usually done in response to the user’s request.
Data objects 350

abandonUpdates ()
You can check the modified property first to see if there have been any changes made to the row. Calling
abandon() when there’s nothing to abandon has no ill effects (although the canAbandon and onAbandon events
are still fired).

You may also want to discard unwritten changes when a query is closed, the opposite of the default behavior. If
you are relying on the query’s event handlers to do this instead of abandoning and closing the query through
code, you must call abandon() during the query’s canClose event and return true from the canClose event
handler; calling abandon() during the onClose event will have no effect, since the onClose event fires after the
query has already closed, and any changes have been written.

When using abandon() to discard changes to an existing row, all fields are returned to their original values and
any dataLinked controls are automatically restored. If the row was automatically locked when editing began, it
is unlocked.

You may also use abandon() to discard a new row created by the beginAppend() method, in which case the
new row is discarded, and the row that was current at the time beginAppend() was called is restored. This is not
considered navigation, so the rowset’s onNavigate does not fire. If you have a onNavigate event handler, call it
from the onAbandon event. abandon() also cancels a rowset’s Filter or Locate mode in the same manner.

The order of events when calling abandon() is as follows:

1 If the rowset has a canAbandon event handler, it is called. If not, it’s as if canAbandon returns true.
2 If the canAbandon event handler returns false, nothing else happens and abandon() returns false.
3 If the canAbandon event handler returns true:

1 The current row buffer/state is abandoned, restoring the rowset to its previous row/state.
2 The onAbandon event fires.
3 abandon() returns true.

While abandon() discards unwritten changes to the current row, there are two mutually exclusive ways of
abandoning changes to more than one row in more than one table in a database, which you can use instead of or
in addition to single-row buffering. Calling beginTrans() starts transaction logging which logs all changes and
allows you to undo them by calling rollback() if necessary. The alternative is to set the database’s
cacheUpdates property to true so that changes are written to a local cache but not written to disk, and then call
abandonUpdates() to discard all the changes if needed.

Example The following onClick event handler for an Abandon button calls the abandon() method for the form’s primary
rowset:

function abandonButton_onClick()
 form.rowset.abandon()

See also abandonUpdates(), beginAppend(), beginTrans(), cacheUpdates, canAbandon, canClose, endOfSet, modified,
onAbandon, rollback(), save()

abandonUpdates ()
Abandons all cached updates in the database.

Syntax <oRef>.abandonUpdates()

<oRef> The database whose cached changes you want to abandon.

Property of Database

Description abandonUpdates() discards all changes to a database that have been cached. Unlike applyUpdates(), it cannot
fail. See cacheUpdates for more information on caching updates.

Changes to the current row that have not been written are still in the row buffer, and have not been cached. To
abandon changes made to the row buffer, call the rowset’s abandon() method.

Example Suppose you have a form that’s used for redeeming prizes for points accumulated for dining at the corporate
cafeteria. As each prize is chosen, the choice is written to the prize redemption table, using cached updates. The
points aren’t actually spent until you press the Redeem button, and you can cancel all the choices that have been
made and start over by pressing the Start Over button. The following is the onClick event handler for the Start
Over button.

function startOverButton_onClick()
351 dBL Language Reference

access ()
 form.rowset.parent.database.abandonUpdates() // Discard cached updates
 form.rowset.abandon() // and current choice

See also abandon(), beginTrans(), cacheUpdates, rollback()

access ()
Returns the access level of the current session for DBF table security.

Syntax <oRef>.access()

<oRef> The session you want to test.

Property of Session

Description DBF table security is session-based. All queries assigned to the same session in their session property have the
same access level.

access() returns a number from 0 to 8. 8 is the lowest level of access, 1 is the highest level of access, and 0 is
returned if the session is not using DBF security.

Example The following method overrides the form’s open() method. It checks the user’s current access level and hides a
button to display the administration form if the access level isn’t high enough. An overriding method is used
instead of the onOpen event because onOpen fires after the form has already opened on-screen, which means
that the administration button might appear briefly before it vanishes.

function open()
 local nAccess
 nAccess = form.rowset.parent.session.access()
 if nAccess == 0 or nAccess > 4
 form.adminButton.visible = false
 endif
 return super::open()

The session is referenced via the form’s primary rowset. The rowset’s parent is the query object, which is
assigned to a session. The access level is stored in a variable for convenience because it needs to be checked
twice: first to make sure security is enabled, and second to check the access level itself.

See also addPassword(), login(), user()

active
Specifies whether an object is open and active or closed.

Property of Database, DataModRef, Query, StoredProc

Description When created, a new session’s default database is active since it does not require any setup. Other Database,
DataModRef, Query, and StoredProc objects do require setup, so their active property defaults to false. Once
they have been set up, set their active property to true to open the object and make it active.

When a Query or StoredProc object’s active property is set to true, its canOpen event is called. If there is no
canOpen event handler, or the event handler returns true, the object is activated. In a Query object, the SQL
statement in its sql property is executed; in a StoredProc object, the stored procedure named in its
procedureName property is called. Then the object’s onOpen event is fired.

To close the object, set its active property to false. Closing an object closes all objects below it in the class
hierarchy. Attempting to close a Query or StoredProc object calls its canClose event. If there is no canClose
event handler, or the event handler returns true, the object is closed. Closing a Database object closes all its
Query and StoredProc objects. After the objects are closed, all the Query and StoredProc objects’ onClose
events are fired.

Activating and deactivating an object implicitly calls a number of advanced methods. You may override or
completely redefine these methods for custom data classes; in typical usage, don’t touch them. When you set
active to true (methods associated with a Database object will not function properly when the database is not active), a
Database object’s open() method is called; activating a query or stored procedure calls prepare(), then
execute(). When you set active to false, a Database object’s close() method is called; deactivating a query or
Data objects 352

addPassword ()
stored procedure calls its unprepare() method. These methods are called as part of the activation or deactivation
of the object, before the onOpen or onClose event.

Closing a query or a StoredProc object that generated a rowset attempts to write any changes to its rowset’s
current row buffer, and to apply all cached updates or commit all logged changes. To circumvent this, you must
call the abandon(), abandonUpdates(), and/or rollback() before the object’s onClose event—for example,
during the canClose event or before setting the active property to false—because onClose fires after the object
has already closed.

Once an object has been closed, you may change its properties if desired and reopen it by setting its active
property back to true.

See also abandon(), abandonUpdates(), canClose, canOpen, onClose, onOpen, rollback()

addPassword ()
Adds a password to the session’s password list for DB table security.

Syntax <oRef>.addPassword(<expC>)

<oRef> The session you want to receive the password.

<expC> The password string.

Property of Session

Description DB table security is based on password lists. If you know a password, you have access to all the files that use
that password. There is no matching between a user name and password. The access level for each file may be
different for the same password.

Password lists are session-based. Once a password has been added to a session, it will continue to be tried for all
encrypted tables. All queries assigned to the same session in their session property use the same password list. If
you attempt to open an encrypted table and there is no valid password that gives access to that table in the list,
you will be prompted for the password. Responding with a password adds it to the list.

The addPassword() method allows you add passwords directly to the session’s password list. You can do this if
you want to add a default password, so that users won’t be prompted, or if you’re writing your own custom login
form, and need to add the password to the session.

Example The following onClick event handler for the login button on a custom login form adds the password typed into
the password1 component, a custom entryfield that obscures text as it is typed, and runs the main form:

function loginButton_onClick()
 form.rowset.parent.session.addPassword(form.password1.value)
 do MAIN.WFM

See also login()

append ()
Adds rows from one rowset or table to another.

Syntax <oRef>.append()

<oRef> The UpdateSet object that describes the append.

Property of UpdateSet

Description Use append() to add rows from a source rowset or table to an existing destination rowset or table. If there is no
primary key in the destination, the rows from the source are always added. If there is a primary key in the
destination, rows with keys that already exist in the destination will be copied to the table specified by the
UpdateSet object’s keyViolationTableName property instead.

To update rows with the same primary key in the destination, use the appendUpdate() method. To move data to
a new table instead of an existing table or rowset, use the copy() method.
353 dBL Language Reference

appendUpdate ()
Example The following code accumulates records from the Daily table in an archive. The Archive table is occasionally
moved to tape, so the code uses the append() or copy() method, depending on whether the Archive table
already exists. The Daily table is stored in a database that supports the CURRENT_DATE SQL function.

d = new Database()
d.databaseName = "TRAFFIC"
d.loginString = "backup/murphy"
d.active = true
q = new Query()
q.database = d
q.sql = "select * from DAILY where POSTED = CURRENT_DATE"
q.active = true

u = new UpdateSet()
u.source = q.rowset
u.destination = "ARCHIVE.DBF"
if _app.databases[1].tableExists("ARCHIVE.DBF")
 u.append()
else
 u.copy()
endif

See also appendUpdate(), copy(), destination, keyViolationTableName, source

appendUpdate ()
Updates one rowset or table from another by updating existing rows and adding new rows.

Syntax <oRef>.appendUpdate()

<oRef> The UpdateSet object that describes the update.

Property of UpdateSet

Description Use appendUpdate() to update a rowset, allowing new rows to be added. You must specify the UpdateSet
object’s indexName property which will be used to match the records. The index must exist for the destination
rowset. The original values of all changed records will be copied to the table specified by the updateSet’s
changedTableName property.

To update existing rows only, use the update() method instead. To always add new rows, use the append()
method.

See also append(), destination, changedTableName, source, update()

applyFilter ()
Applies the filter that was set during a rowset’s Filter mode.

Syntax <oRef>.applyFilter()

<oRef> The rowset whose filter criteria you want to apply.

Property of Rowset

Description Rowset objects support a Filter mode in which values can be assigned to Field objects and then used to filter the
rows in a rowset to show only those rows with matching values. beginFilter() puts the rowset in Filter mode
and applyFilter() applies the filter values. clearFilter() cancels the filter. Because dataLinked controls on
forms write to the value properties of Field objects, a call to those three methods are all you need to implement
a filter-by-form feature in your application.

When applyFilter() is called, the row cursor is repositioned to the first matching row in the set, or to the end-of-
set if there are no matches. The rowset’s filter property is updated to contain the resulting SQL expression used
for the filter. applyFilter() returns true or false to indicate if a match was found.
Data objects 354

applyLocate ()
To filter rows with a condition without using Filter mode, set the rowset’s filter property directly. See the filter
property for more information on how filters are applied to data. To filter rows with dBASE Plus code instead of
or in addition to an SQL expression, use the canGetRow event.

Example The following two event handlers demonstrate the basic filter-by-form functionality. First, before switching to
Filter mode, get the bookmark for the current row:

function beginFilterButton_onClick()
 form.bookmark = form.rowset.bookmark()
 form.rowset.beginFilter()
 // Good place to visually indicate form is now Filter mode

Then when the user attempts to apply the filter criteria, you can try to go back to the row they were on:
function applyFilterButton_onClick()
 form.rowset.notifyControls := false // Suppress display of all this navigation
 if not form.rowset.applyFilter()
 form.rowset.clearFilter() // No matches, get rid of filter
 try
 form.rowset.goto(form.bookmark)
 catch (Exception e) // Couldn't go to saved row (maybe deleted)
 form.rowset.first() // Go to first row in rowset instead
 endtry
 msgbox("No matches found", "Filter", 48)
 endif
 // Undo any visual indications of Filter mode here
 form.rowset.notifyControls := true
 form.rowset.refreshControls() // Refresh controls on form

See also beginFilter(), canGetRow, clearFilter(), endOfSet, filter, filterOptions, value

applyLocate ()
Finds the first row that matches specified criteria.

Syntax <oRef>.applyLocate([<SQL condition expC>])

<oRef> The rowset you want to search for the specified criteria.

<SQL condition expC> An SQL condition expression.

Property of Rowset

Description Rowset objects support a Locate mode in which values can be assigned to Field objects and then used to find
rows in a rowset that contains matching values. beginLocate() puts the rowset in Locate mode and
applyLocate() finds the first matching row. locateNext() finds other matching rows. Because dataLinked
controls on forms write to the value properties of Field objects, a call to those three methods are all you need to
implement a search-by-form feature in your application.

applyLocate() moves the row cursor to the first row that matches the criteria set during the rowset’s Locate
mode.

You may also use applyLocate() without calling beginLocate() first to put the rowset in Locate mode: call
applyLocate() with a parameter string that contains an SQL condition expression. Doing so finds the first row
that matches the condition. (Calling applyLocate() with a parameter when the rowset is in Locate mode
discards any field values entered during Locate mode and uses the specified condition expression only to find a
match.)

Calling applyLocate() with a parameter will attempt an implicit save if the rowset is not in Locate mode and the
rowset’s modified property is true. If the implicit save fails, because the canSave returns false or any other
reason, the search is not attempted.

If a search is attempted, applyLocate() returns true or false to indicate if a match is found. onNavigate always
fires after a search attempt, either on the first matching row, or the current row if the search failed.

applyLocate() will use available indexes to find a match more quickly. When searching on the current index
specified by the rowset’s indexName property, you may find the findKey() and findKeyNearest() methods more
convenient and direct.
355 dBL Language Reference

applyUpdates ()
Example The following statement finds the first row where the City field matches the value typed into a Entryfield
component in a form. Note the use of single quotation marks to delimit the value of the Entryfield component.

form.rowset.applyLocate("CITY = '" + form.cityText.value + "'")

See also beginLocate(), endOfSet, findKey(), findKeyNearest(), locateNext(), locateOptions, value

applyUpdates ()
Attempts to apply all cached updates in the database.

Syntax <oRef>.applyUpdates()

<oRef> The database whose cached updates you want to apply.

Property of Database

Description applyUpdates() attempts to apply all changes to a database that have been cached and returns true or false to
indicate success or failure. If it succeeds, all cached updates are cleared; if it fails, the updates remain cached.
Since applyUpdates() uses a transaction while attempting to apply the changes and you cannot nest transactions
in a database, cached updates and transaction logging with beginTrans() are mutually exclusive. See
cacheUpdates for more information on caching updates.

Changes to the current row that have not been written are still in the row buffer, and have not been cached. To
apply changes made to the row buffer, call the rowset’s save() method before you call applyUpdates().

Example Suppose you have a form that’s used for redeeming prizes for points accumulated for dining at the corporate
cafeteria. As each prize is chosen, the choice is written to the prize redemption table, using cached updates. The
points aren’t actually spent until you press the Redeem button, and you can cancel all the choices that have been
made and start over by pressing the Start Over button. The following is the onClick event handler for the
Redeem button.

function redeemButton_onClick()
 if form.rowset.save() // Save current row
 form.rowset.parent.database.applyUpdates() // Apply cached updates
 endif

See also abandonUpdates(), beginTrans(), cacheUpdates, save()

atFirst()
Returns true if the row cursor is at the first row in the rowset.

Syntax <oRef>.atFirst()

<oRef> The rowset whose position you want to check.

Property of Rowset

Description Use atFirst() to determine if the row cursor is at the first row in the rowset. When atFirst() returns true, the
row cursor is at the first row. In most cases, atFirst() is an inexpensive operation. The current row is usually
compared with a bookmark of the first row made when the query is first opened. However, atFirst() may be
time-consuming for certain data drivers.

A common use of atFirst() is to conditionally disable backward navigation controls. If you know you are on the
first row, you can’t go backward, and you reflect this visually with a disabled control.

The end-of-set is different from the first row, so endOfSet cannot be true if atFirst() returns true. endOfSet is
true if the row cursor is before the first row in the rowset (or after the last row).

Example The following onNavigate event handler sets the enabled properties of the navigation buttons on a form, based
on the return values of atFirst() and atLast().

function Rowset_onNavigate
 if this.endOfSet
 return // Do nothing if end-of-set
 endif
Data objects 356

atLast()
 local lBackward, lForward
 lBackward = not this.atFirst()
 lForward = not this.atLast()
 with this.parent.parent
 buttonFirst.enabled := lBackward
 buttonPrev.enabled := lBackward
 buttonNext.enabled := lForward
 buttonLast.enabled := lForward
 endwith

The event handler does nothing if the rowset is at the end-of-set, expecting that the row cursor will be moved in
the reverse direction of the navigation. If the navigation attempt was forward, the row cursor would be moved
back to the last row, and if the navigation attempt was backward, the row cursor would be moved forward to the
first row. In this way, the rowset is never on the end-of-set. This technique cannot be used for rowsets where
there may not be any matching rows.

See also atLast(), endOfSet, rowNo()

atLast()
Returns true if the row cursor is at the last row in the rowset.

Syntax <oRef>.atLast()

<oRef> The rowset whose position you want to check.

Property of Rowset

Description Use atLast() to determine if the row cursor is at the last row in the rowset. When atLast() returns true, the row
cursor is at the last row. atLast() may be an expensive operation. For example, if you have not navigated to the
last row in a rowset returned by an SQL server, such a navigation would have to be attempted to determine if
you are at the last row, which could be time-consuming for large rowsets.

A common use of atLast() is to conditionally disable forward navigation controls. If you know you are on the
last row, you can’t go forward, and you reflect this visually with a disabled control.

The end-of-set is different from the last row, so endOfSet cannot be true if atLast() returns true; endOfSet is
true if the row cursor is after the last row in the rowset (or before the first row).

Example See atFirst().

See also atFirst(), endOfSet, rowNo()

autoEdit
Specifies whether the rowset automatically switches to Edit mode when changes are made through dataLinked
components.

Property of Rowset

Description When a query (or stored procedure) is activated, its rowset opens in Browse mode. If a rowset’s autoEdit
property is true (the default), typing a destructive keystroke in a dataLinked component automatically attempts
to switch the rowset into Edit mode by implicitly calling beginEdit(). If you set autoEdit to false, data displayed
in a form is read-only, and you must explicitly call beginEdit() to switch to Edit mode.

autoEdit has no effect on assignments to the value of a field; the first assignment to a row always calls
beginEdit() implicitly to secure a row lock.

See also beginEdit(), state

autoLockChildRows
Controls whether or not child rows are automaticallly locked (or unlocked) when a parent row is locked (or
unlocked).
357 dBL Language Reference

autoNullFields
Property of Rowset

Description When true (the default), child rows are automatically locked when a parent row is locked.

When false, child rows are not locked when a parent row is locked.

The autoLockChildRows property can be used to turn off automatic locking of child rows in a data entry form
when locking of the child rows is not needed.

A common use for this would be in a data entry form that uses a datamodule where an indexed parent child link
is setup between a parent table and a lookup table.

Other rows in the parent table can be linked to the same lookup table rows.

If two users attempt to edit two different parent rows that are linked to the same lookup table row, the second
user to attempt an edit will receive an error that the row is locked.

However, if the parent rowset's autoLockChildRows property is set to False, then the locking conflict would not
occur as only the parent rows will be locked.

Example The following is a simple example of one way to use this property.

In a form, if you wish to give the user the option to turn on or off the ability to lock any child / grand child etc...
rows during the locking of a parent row, you can use a Pushbutton as a toggle button.

function PBLOCKCHILDROWSTOGGLE_onClick

if this.text == "autoLockChildRows is ON" //all child / grand child etc... rows CAN be edited while
//parent row is locked

 form.sampledatamodule1.query1.rowset.autoLockChildRows := false
this.text := "autoLockChildRows is OFF"

else //all child / grand child etc... rows can NOT be edited while parent row is locked

form.sampledatamodule1.query1.rowset.autoLockChildRows := true
this.text := "autoLockChildRows is ON"

endif

return

autoNullFields
Determines whether empty fields are assigned a NULL value, or when applicable, filled with spaces, zero or
"false".

Property Rowset

Description When the rowset's autoNullFields property is set to true (the default setting), dBASE Plus allows an empty field
to assume a “null value”. Null values are those which are nonexistent or undefined. Null is the absence of a
value and, therefore, different from a blank or zero value.

When the rowset's autoNullFields property is set to false, numeric fields (long, float, etc.) are assigned a value
of zero, logical fields a value of "false", and character fields are filled with spaces.
A null value in a field may simply indicate data has yet to be entered, as in a new row, or the field has been purposely left
empty . In certain summary operations, null fields are ignored. For example, if you are averaging a numeric field, rows with
a null value in the field would not affect the result as they would if the field were filled with zero, or any other value.

beforeGetValue
Event fired when reading a field’s value property, which returns its apparent value.

Parameters none

Property of Field (including DbfField, PdxField, SqlField)

Description By using a field’s beforeGetValue event, you can make its value property appear to be anything you want. For
example, in a table you can store codes, but when looking at the data, you see descriptions. This effect is called
field morphing. The beforeGetValue event is also the primary way to set up a calculated field.
Data objects 358

beginAppend ()
A field’s beforeGetValue event handler must return a value. That value is used as the value property. During the
beforeGetValue event handler, the field’s value property represents its true value, as stored in the row buffer,
which is read from the table.

Be sure to include checks for blank values—which will occur when a beginAppend() starts—and the end-of-set.
Any attempt to access the field values when the rowset is at the end-of-set will cause an error. Return a null
instead.

beforeGetValue is fired when reading a field’s value property explicitly and when read to update a dataLinked
control. It does not fire when accessed internally for SpeedFilters, index expressions, or master-detail links, or
when calling copyToFile().

To reverse the process, use the field’s canChange event.

Note Morphed and calculated fields sometimes require display widths that are larger than their field widths. To avoid
truncating the display, use a picture that represents the field’s maximum size.

Example In this example, a table of messages stores a message section number, but in the form, the section name is
displayed in a ComboBox component. To display the section name, the section number is located in the table of
section numbers that is opened in the query sections1. Note the tests for the end-of-set and beginAppend()

function messages1_section_beforeGetValue()
 if this.parent.parent.endOfSet
 // When navigating to end-of-set
 return null
 elseif this.value == null
 // For beginAppend()
 return ""
 else
 // Normal lookup, with value in case lookup fails
 local r
 r = this.parent.parent.parent.parent.sections1.rowset
 return iif(r.applyLocate('"Section #" = ' + this.value),;
 r.fields["Name"].value, "Closed section")
 endif

In the event handler, this refers to the field. this.parent.parent refers to the rowset that contains the field (the
first parent is the fields array). The form that contains the query that contains the rowset is
this.parent.parent.parent.parent, from which you can reference the other queries on the form.

An SQL expression to perform the section number lookup is passed to applyLocate(). dBASE Plus
automatically converts the numeric field value to a string when concatenating. If a match is found, the value of
the corresponding Name field is returned; otherwise, a generic string is returned.

See also canChange, onGotValue, value

beginAppend ()
Starts append of a new row.

Syntax <oRef>.beginAppend()

<oRef> The rowset you want to put in Append mode.

Property of Rowset

Description beginAppend() clears the row buffer and puts the rowset in Append mode, allowing the creation of a new row,
via data entry through dataLinked controls, by directly assigning values to the value property of fields, or a
combination of both. The row buffer is not written to disk until the rowset’s save() method is explicitly called
or there is an implicit save, which is usually caused by navigation in the rowset. At that point, a save attempt is
made only if the rowset’s modified property is true; this is intended to prevent blank rows from being added.
Calling beginAppend() again to add another row will also cause an implicit save first, if the row has been
modified.

The integrity of the data in the row, for example making sure that all required fields are filled in, should be
checked in the rowset’s canSave event. The abandon() method will discard the new row, leaving no trace of the
attempt.
359 dBL Language Reference

beginEdit ()
The rowset’s canAppend event is fired when beginAppend() is called. If there is a canAppend event handler, it
must return true or the beginAppend() will not proceed.

The onAppend event is fired after the row buffer is cleared, allowing you to preset default values for any fields.
After you preset values, set the modified property to false, so that the values in the fields immediately after the
onAppend event are considered as the baseline for whether the row has been changed and needs to be saved.

The order of events when calling beginAppend() is as follows:

1 If the rowset has a canAppend event handler, it is called. If not, it’s as if canAppend returns true.
2 If the canAppend event handler returns false, nothing else happens and beginAppend() returns false.
3 If the canAppend event handler returns true, the rowset’s modified property is checked.
4 If modified is true:

1 The rowset’s canSave event is fired. If there is no canSave event, it’s as if canSave returns true.
2 If canSave returns false, nothing else happens and beginAppend() returns false.
3 If canSave returns true, dBASE Plus tries to save the row. If the row is not saved, perhaps because it fails

some database engine-level validation, a DbException occurs—beginAppend() does not return.
4 If the row is saved, the modified property is set to false, and the onSave event is fired.

5 After the current row is saved (if necessary):
1 The rowset is switched to Append mode.
2 The onAppend event fires.
3 beginAppend() returns true.

An exception occurs when calling beginAppend() if the rowset’s live property is false, or if the user has
insufficient rights to add rows.

Example The following event handler is used to add new rows. It carries over the values of some fields from the current
row.

function addButton_onClick()
 local cCity, cZip, cInsp
 // Make copies of field values to carry over
 cCity = form.rowset.fields["City"].value
 cZip = form.rowset.fields["Zip"].value
 cInsp = form.rowset.fields["Inspector"].value
 // Add new row
 if form.rowset.beginAppend()
 form.rowset.fields["City"].value := cCity
 form.rowset.fields["Zip"].value := cZip
 form.rowset.fields["Inspector"].value := cInsp
 form.rowset.modified := false // Clear flag to set baseline for change
 endif

The field values are copied only if beginAppend() succeeds. It could fail if the current row has been modified,
but contains invalid data. In that case, you would not want to overwrite the current field values and clear the
modified flag.

See also abandon(), canAppend, canClose, canNavigate, modified, onAppend, state, save()

beginAppend() is also a method of the Form class

beginEdit ()
Makes contents of a row editable.

Syntax <oRef>.beginEdit()

<oRef> The rowset you want to put in Edit mode.

Property of Rowset

Description By default, a rowset’s autoEdit property is true, which means that data is immediately editable. The rowset
implicitly calls beginEdit() when a destructive keystroke is typed in a dataLinked component. But you can
more strictly control how editing occurs by setting autoEdit to false and explicitly calling beginEdit() as
needed.
Data objects 360

beginFilter ()
As usual, the row buffer is not written until the rowset’s save() method is explicitly called or there is an implicit
save, which is usually caused by navigation in the rowset. The integrity of the data in the row, for example
making sure that there are no invalid entries in any fields, should be checked in the rowset’s canSave event. The
abandon() method will discard any changes to the row. After saving or abandoning any changes, the rowset
goes back to Browse mode.

The rowset’s canEdit event is fired when beginEdit() is called. If there is a canEdit event handler, it must return
true or the beginEdit() will not proceed. The onEdit event is fired after switching to Edit mode.

The order of events when calling beginEdit() is as follows, even if the rowset is already in Edit mode:

1 If the rowset has a canEdit event handler, it is called. If not, it’s as if canEdit returns true.
2 If the canEdit event handler returns false, nothing else happens and beginEdit() returns false.
3 If the canEdit event handler returns true:

1 The rowset attempts to switch to Edit mode by getting an automatic row lock. If the lock cannot be
secured, the mode switch fails and beginEdit() returns false.

2 If the lock is secured, the onEdit event fires.
3 beginEdit() returns true.

An exception occurs if the rowset’s live property is false, or if the user has insufficient rights to edit rows, and
they call beginEdit().

See also abandon(), autoEdit, canEdit, canClose, canNavigate, modified, onEdit, save(), state

beginFilter ()
Puts a rowset in Filter mode, allowing the entry of filter criteria.

Syntax <oRef>.beginFilter()

<oRef> The rowset you want to put in Filter mode.

Property of Rowset

Description Rowset objects support a Filter mode in which values can be assigned to Field objects and then used to filter the
rows in a rowset to show only those rows with matching values. beginFilter() puts the rowset in Filter mode
and applyFilter() applies the filter values. clearFilter() cancels the filter. Because dataLinked controls on
forms write to the value properties of Field objects, a call to those three methods are all you need to implement
a filter-by-form feature in your application.

When beginFilter() is called, the row buffer is cleared. Values that are set either through dataLinked controls or
by assigning values to value properties are used for matching. Fields whose value property is left blank are not
considered. To cancel Filter mode, call the abandon() method.

If navigation is attempted while in Filter mode, Filter mode is canceled and the navigation occurs, relative to the
position of the row cursor at the time beginFilter() was called.

To filter rows with a condition without using Filter mode, set the rowset’s filter property. See the filter property
for more information on how filters are applied to data. To filter rows with dBASE Plus code instead of or in
addition to Filter mode, use the canGetRow event.

See also abandon(), applyFilter(), clearFilter(), filter, filterOptions, state, value

beginLocate ()
Puts a rowset in Locate mode, allowing the entry of search criteria.

Syntax <oRef>.beginLocate()

<oRef> The rowset you want to put in Locate mode.

Property of Rowset

Description Rowset objects support a Locate mode in which values can be assigned to Field objects and then used to find
rows in a rowset that contain matching values. beginLocate() puts the rowset in Locate mode and
applyLocate() finds the first matching row. locateNext() finds other matching rows. Because dataLinked
361 dBL Language Reference

beginTrans ()
controls on forms write to the value properties of Field objects, a call to those three methods are all you need to
implement a search-by-form feature in your application.

When beginLocate() is called, the row buffer is cleared. Values that are set either through dataLinked controls
or by assigning values to value properties are used for matching. Fields whose value property is left blank are
not considered. To cancel Locate mode, call the abandon() method.

If navigation is attempted while in Locate mode, Locate mode is canceled and the navigation occurs, relative to
the position of the row cursor at the time beginLocate() was called.

See also abandon(), applyLocate(), locateNext(), locateOptions, state, value

beginTrans ()
Begins transaction logging.

Syntax <oRef>.beginTrans()

<oRef> The database in which you want to start transaction logging.

Property of Database

Description Separate changes that must be applied together are considered to be a transaction. For example, transferring
money from one account to another means debiting one account and crediting another. If for whatever reason
one of those two changes cannot be done, the whole transaction is considered a failure and any change that was
made must be undone.

Transaction logging records all the changes made to all the tables in a database. If no errors are encountered
while making the individual changes in the transaction, the transaction log is cleared with the commit() method
and the transaction is done. If an error is encountered, all changes made so far are undone by calling the
rollback() method.

Transaction logging differs from caching updates in that changes are actually written to the disk. This means
that others who are accessing the database can see your changes. In contrast, with cached updates your changes
are written all at once later, when and if you decide to post the changes. For example, if you’re reserving seats
on an airplane, you want to post a reservation as soon as possible. If the customer changes their mind, you can
undo the reservation with a rollback. With cached updates, the seat might be taken by someone else between the
time the data entry for the reservation begins and the time it is actually posted.

All locks made during a transaction are maintained until the transaction is completed. This ensures that no one
else can make any changes until the transaction is committed or abandoned.

For SQL-server databases, the Database object’s isolationLevel property determines the isolation level of the
transaction.

A Database object may have only one transaction active at one time; you cannot nest transactions.

See also cacheUpdates, commit(), isolationLevel, rollback()

bookmark ()
Returns the current position in a rowset.

Syntax <oRef>.bookmark()

<oRef> The rowset whose current position you want to return.

Property of Rowset

Description A bookmark represents a position in a rowset. bookmark() returns the current position in the rowset. The
bookmark may be stored in a variable or property so that you can go back to that position later with the goto()
method.

A bookmark is guaranteed to be valid only as long as the rowset stays open. The bookmark uses the current
index represented by the indexName property, if any. The same physical row in the table returns different
Data objects 362

bookmarksEqual ()
bookmarks when different indexes are in effect. When you goto() a bookmark, the index that was in effect
when the bookmark was returned is automatically activated.

Example See the example for applyFilter() for an example of using bookmark() to store the current row in case specified
filter condition finds no matches.

See also bookmarksEqual(), goto()

bookmarksEqual ()
Checks if a given bookmark matches the current row, or if two bookmarks refer to the same row.

Syntax <oRef>.bookmarksEqual(<bookmark1> [, <bookmark2>])

<oRef> The rowset in which to check the bookmark(s).

<bookmark1> The bookmark to check against the current row in the rowset, if only one bookmark is
specified; or the first of two bookmarks to compare.

<bookmark2> The second of two bookmarks to compare.

Property of Rowset

Description Use bookmarksEqual() to check a bookmark against the current row, without having to first use bookmark() to
get a bookmark for the current row. If the bookmark refers to the current row, bookmarksEqual() returns true; if
not it returns false. You may also use bookmarksEqual() to compare two bookmarks to see if they refer to the
same row; the equality operators (= and ==) may also be used to compare two bookmarks.

The bookmark uses the current index represented by the indexName property, if any. The same physical row in
the table returns different bookmarks when different indexes are in effect. When checking a bookmark against
the current row, the rowset must be in the same index order as the bookmark; otherwise bookmarksEqual() will
return false. When comparing two bookmarks, they must have been taken when the same index was in effect; if
not, they will not match.

See also bookmark()

cacheUpdates
Whether to cache updates locally instead of writing to disk as they occur.

Property of Database

Description Normally, when a row buffer is saved, it is written to disk. By setting the cacheUpdates property to true, those
changes are cached locally instead of being written to disk. One reason to do this is to reduce network traffic.
Changes are accumulated and then posted with the applyUpdates() method, after a certain amount of time or a
certain number of changes have been made.

Another reason is to simulate a transaction when you have more than one change in an all-or-nothing situation.
For example, if you need to fill a customer order and reduce the stock in inventory, you cannot let one happen
and not the other. When the changes are posted with applyUpdates(), they are applied inside a transaction at the
database level. Because you cannot nest transactions, you cannot have a transaction with beginTrans() and use
cached updates at the same time. If any of the changes do not post, for example one of the records is locked, all
of the changes that did post are undone and applyUpdates() returns false to indicate failure. The cached updates
remain cached so that you can retry the posting. If all the changes are posted successfully, applyUpdates()
returns true.

Finally, because of the all-or-nothing nature of cached updates, you can use them to allow the user to tentatively
make changes that you can simply discard as a group. For example, you could allow a user to modify a lookup
table. If the user submits the changes they are applied, but if the user chooses to cancel, any changes made can
be discarded by calling the abandonUpdates() method. Note that with cached updates, the changes aren’t
actually written until posted. In contrast, transaction logging actually makes the changes as they happen, but
allows you to undo them if desired.

See also abandonUpdates(), applyUpdates(), beginTrans(), commit(), rollback()
363 dBL Language Reference

canAbandon
canAbandon
Event fired when attempt to abandon rowset occurs; return value determines if changes to row are abandoned.

Parameters none

Property of Rowset

Description A rowset may be abandoned explicitly by calling its abandon() method, or implicitly via the user interface by
pressing Esc or choosing Abandon Row from the default Table menu or toolbar while editing table rows.
canAbandon may be used to verify that the user wants to abandon any changes that they have made. You may
check the modified property first to see if there are any changes to abandon; if not, there is no need to ask.

The canAbandon event handler must return true or false to indicate whether the changes to the rowset, if any,
are abandoned.

Example The following method handles these conditions:

• Abandoning changes to an existing row
• Abandoning a new row
• Choosing to abandon an existing row when there are no changes
• Choosing to abandon a new row when there are no changes
• Abandoning other rowset modes

It uses manifest constants created with the #define preprocessor directive (and available in the VDBASE.H
include file) to represent the options of the state property, which makes the code more readable, and macro-
functions to display a simple alert dialog box to display a yes/no dialog box and return true or false.

#define STATE_CLOSED 0
#define STATE_BROWSE 1
#define STATE_EDIT 2
#define STATE_APPEND 3
#define STATE_FILTER 4
#define STATE_LOCATE 5
#define alert(m) (msgbox(m,"Alert",64))
#define confirm(m) (msgbox(m,"Confirm",4+32)==6)

// User developed code

function Rowset_canAbandon
 if this.state == STATE_EDIT
 if this.modified
 return confirm("Abandon changes?")
 else
 alert("No changes made; nothing to abandon")
 return false // Do not fire onAbandon
 endif
 elseif this.state == STATE_APPEND
 if this.modified
 return confirm("Abandon new entry?")
 else
 return true // Discard new blank row
 endif
 else
 return true // OK to abandon Filter and Locate modes
 endif

See also abandon(), modified, onAbandon

canAppend
Event fired when attempting to put rowset in Append mode; return value determines if the mode switch occurs.

Parameters none

Property of Rowset
Data objects 364

canChange
Description A rowset may be put in Append mode explicitly by calling its beginAppend() method, or implicitly via the user
interface by choosing Append Row from the default Table menu or toolbar while editing table rows. canAppend
may be used to verify that the user wants to add a new row. You can check the modified property first to see if
the user has made any changes to the current row; if not, you may not want to ask.

The canAppend event handler must return true or false to indicate whether beginAppend() proceeds. For
information on how canAppend interacts with other events and implicit saves, see beginAppend().

See also beginAppend(), canSave, modified, onAppend

canChange
Event fired when a change to the value property of a Field object is attempted; return value determines if the
change occurs.

Parameters <new value> The proposed new value.

Property of Field

Description Use canChange to determine whether changes to individual fields occur. canChange fires when something is
assigned to the value property of a Field object, either directly or through a dataLinked control. The proposed
new value is passed as a parameter to the canChange event handler. If the canChange event handler returns
false, the Field object’s value remains unchanged.

While canChange provides field-level validation to see whether changes are saved into the row buffer, use
canSave to provide row-level validation to determine whether the buffer can be saved to disk. You should
always do row-level validation no matter whether you do field-level validation or not.

The canChange event operates separately from database engine-level validation. Even if canChange returns
true, attempting to write an invalid value to a field, for example exceeding a field’s maximum allowed value,
will fail and the field’s value property will remain unchanged.

You can also use canChange to reverse the field morphing performed by beforeGetValue. Inside the canChange
event handler, examine the <new value> parameter and assign the value you want to store in the table directly
to the value property of the Field object. Doing so does not fire canChange recursively. Then have the
canChange event handler return false so that the <new value> does not get saved into the row buffer.

Example In this example, a table of messages stores a message section number, but in the form, the section name is
displayed in a ComboBox component. When a section is chosen by name, the section number is stored in the
table instead with the following canChange event handler. The table of section numbers is opened in the query
sections1.

function messages1_section_canChange(newValue)
 local r
 r = this.parent.parent.parent.parent.sections1.rowset // Lookup table
 if r.applyLocate(["Name" = '] + newValue +[']) // If name found
 this.value = r.fields["Section #"].value // save section #
 endif
 return false // Always return false so that newValue is not saved

In the event handler, this refers to the field. this.parent.parent refers to the rowset that contains the field (the
first parent is the fields array). The form that contains the query that contains the rowset is
this.parent.parent.parent.parent, from which you can reference the other queries on the form.

An SQL expression to perform the section name lookup is passed to applyLocate(). If a match is found, the
value of the corresponding section number field is stord in the value property of the field. Then the event
handler returns false. If no match is found, the field is not changed.

See also beforeGetValue, canSave, onChange, onGotValue, value

canChange is also an event of the TreeView class.
365 dBL Language Reference

canClose
canClose
Event fired when there’s an attempt to deactivate a query or stored procedure; return value determines if the
object is deactivated.

Parameters none

Property of Query, StoredProc

Description If the active property of a Query or StoredProc object is set to false, that object’s canClose event fires. If the
canClose event handler returns false, the close attempt fails and the active property remains true.

A StoredProc object may be deactivated only if it returns a rowset. If it returns values only, the active property
is automatically reset to false after the stored procedure is called; there is nothing to deactivate.

Normally when a Query or StoredProc object closes, it saves any changes in its rowset’s row buffer, if any. In
attempting to save those changes, the rowset’s canSave event is also fired, before canClose. If canSave returns
false, the row is not saved, and the object is not closed.

If you want to abandon uncommitted changes instead of saving them when closing the object, call the rowset’s
abandon() method before closing.

See also abandon(), active, canSave, onClose

canClose is also an event of the Form class.

canDelete
Event fired when attempting to delete the current row; return value determines if the row is deleted.

Parameters none

Property of Rowset

Description A row may be deleted explicitly by calling the delete() method, or implicitly via the user interface by choosing
Delete Rows from the default Table menu or toolbar. canDelete may be used to make sure that the user wants to
delete the current row.

canDelete may also be used to do something with the current row, just before you delete it. In this case, the
canDelete event handler would always return true.

The canDelete event handler must return true or false to indicate whether the row is deleted. For information on
how canDelete interacts with other events, see delete()

Example The following event handler copies the row that is about to be deleted to a separate archive table that is opened
in another query in the form.

function Rowset_canDelete
 local n, rArchive
 rArchive = this.parent.parent.archive1.rowset
 rArchive.beginAppend()
 for n = 1 to this.fields.size
 rArchive.fields[n].value = this.fields[n].value
 endfor
 rArchive.save()
 return true

This canDelete event handler always returns true after making the copy so that the row is deleted.

See also delete(), onDelete

canEdit
Event fired when attempting to put rowset in Edit mode; return value determines if the mode switch occurs.

Parameters none
Data objects 366

canGetRow
Property of Rowset

Description The beginEdit() method is called (implicitly or explicity) to put the rowset in Edit mode. canEdit may be used
to verify that the user is allowed to or wants to edit the row.

The canEdit event handler must return true or false to indicate whether the switch to Edit mode proceeds.

See also beginEdit(), onEdit

canGetRow
Event fired when attempting to read a row into the row buffer; return value determines if the row stays in or is
filtered out.

Parameters none

Property of Rowset

Description In addition to setting an SQL filter expression in the filter property, you can filter out rows through dBASE Plus
code with canGetRow. In a canGetRow handler, the rowset acts as if the row is read into the row buffer. You
can test the value properties of the field objects, or anything else.

If canGetRow returns true, that row is kept. If it returns false, the row is discarded and the next row is tried.

Note that canGetRow fires before applying the constrain on a detail table linked through masterRowset or
masterSource. Therefore, when using this type of link, you cannot check for the existence of detail rows (by
checking the detail rowset’s endOfSet property) or get the values of the first matching detail row in the
canGetRow event handler. To access the matching rows in the linked table during the canGetRow event, you
must manually apply the constrain (using the setRange() or requery() methods) inside the canGetRow instead
of using the built-in properties. Then you are free to access the detail table as usual.

Example Suppose a message database supports private messages that can be seen only by the sender and the recipient.
You can prevent others from seeing private messages with a canGetRow event handler. The name of the user is
stored as a property of the form. That name must match either the From or To fields in the message.

function messages1_canGetRow()
 return this.fields["From"].value == this.parent.parent.userName or
 this.fields["To"].value == this.parent.parent.userName

See also count(), filter

canNavigate
Event fired when attempting navigation in a rowset; return value determines if row cursor is moved.

Parameters none

Property of Rowset

Description Navigation in a rowset may occur explicitly by calling a navigation method like next() or goto(), or implicitly
via the user interface by choosing a navigation option from the default Table menu or toolbar while viewing a
rowset. canNavigate may be used to verify that the user wants to leave the current row to go to another. You
may check the modified property first to see if the user has made any changes to the current row; if not, you may
not want to ask.

canNavigate may also be used to do something with the current row, just before you leave it. In this case, the
canNavigate event handler would always return true.

The canNavigate event handler must return true or false to indicate whether the navigation occurs. For
information on how canNavigate interacts with other events and implicit saves, see next().

See also canSave, first(), goto(), last(), modified, next(), onNavigate

canNavigate is also an event of the Form class.
367 dBL Language Reference

canOpen
canOpen
Event fired when attempting to open a query or stored procedure; return value determines if object is opened.

Parameters none

Property of Query, StoredProc

Description canOpen fires when a Query or StoredProc object’s active property is set to true.

If an event handler is assigned to the canOpen property, the event handler must return true or false to indicate
whether the object is opened and activated.

canOpen may also be used to do something with the query, just before you open it. In this case, the canOpen
event handler would always return true.

See also active, onOpen

canSave
Event fired when attempting to save the row buffer; return value determines if the buffer is written.

Parameters none

Property of Rowset

Description The row buffer may be saved explicitly by calling save() or implicitly, usually by navigating in the rowset. Use
canSave to verify that the data is good before attempting to write it to the disk.

The canSave event handler must return true or false to indicate whether the row is saved. If the user has changed
the current row and attempts to append a new row or navigate, canAppend or canNavigate fires first. If that
event returns true, then the canSave event fires. If canSave returns false, the row is not saved, and the attempted
action does not occur. If canSave returns true, then the row is saved and the action occurs. This allows you to
put row validation code in the canSave event handler that you do not need to duplicate in either canAppend or
canNavigate.

The canSave event operates separately from database engine-level validation. Even if canSave returns true,
attempting to write an invalid row, for example one that fails to pass a table contraint, will fail and cause an
exception.

Example The following event handler verifies that required fields are filled in, and displays a dialog box detailing any
missing data.

function Rowset_canSave()
 local cErrors
 cErrors = "" // String for errors
 if empty(this.fields["Last name"].value)
 cErrors += "- LAST NAME cannot be blank" + chr(13)
 endif
 if empty(this.fields["ZIP"].value)
 cErrors += "- ZIP CODE cannot be blank" + chr(13)
 endif
 if "" # cErrors
 msgbox("Can't save current entry because:" + chr(13) + cErrors, "Bad entry", 48)
 return false
 else
 return true
 endif

See also canAppend, canNavigate, onSave, save()

changedTableName
Name of the table for which you want to collect copies of original values of rows that were changed.
Data objects 368

clearFilter ()
Property of UpdateSet

Description When doing an update() or appendUpdate(), rows will be changed. The original contents of the rows that are
changed are copied to the table specified by the changedTableName property. If the table does not exist, it is
created. If it does exist, it is erased first so that it contains only those rows that were changed on the last update.

By making copies of the original values of the rows that are changed, you can undo the changes by doing
another update(), using the changedTableName table as the source table.

See also appendUpdate(), keyViolationTableName, problemTableName, source, update()

clearFilter ()
Clears any active filter on a rowset.

Syntax <oRef>.clearFilter()

<oRef> The rowset whose filter to clear.

Property of Rowset

Description clearFilter() clears the filter property and any filter set through the rowset’s Filter mode, thereby deactivating
any filters. Rows that were hidden by the filter become visible. The row cursor is not moved.

See also applyFilter(), beginFilter(), filter

clearRange ()
Clears any active range on a rowset.

Syntax <oRef>.clearRange()

<oRef> The rowset whose range to clear.

Property of Rowset

Description clearFilter() clears the range set by the setRange() method. The row cursor is not moved.

See also setRange()

close()
Closes a database connection.

Syntax This method is called implicitly by the Database object.

Property of Database

Description The close() method closes the database connection. It is called implicitly when you set the Database object’s
active property to false. In typical usage, you do not call this method directly.

Advanced applications may override the definition of this method to perform supplementary actions when
closing the database connection. Custom data drivers must define this method to perform the appropriate actions
to close their database connection.

See also active, open()

close() is also a method of the File and Form classes.

codePage
The current code page number associated with a table

Property of Rowset
369 dBL Language Reference

commit ()
Description For characters whose ASCII values are between 128 and 255, a code page number identifies which character set
is used. codePage will return a non-zero value only when the BDE detects a code page in a table's header. Read only.

commit ()
Clears the transaction log, committing all logged changes

Syntax <oRef>.commit()

<oRef> The database whose changes you want to commit.

Property of Database

Description A transaction works by logging all changes. If an error occurs while attempting one of the changes, or the
changes need to be undone for some other reason, the transaction is canceled by calling the rollback() method.
Otherwise, commit() is called to clear the transaction log, thereby indicating that all the changes in the
transaction were committed and that the transaction as a whole was posted.

Example See beginTrans().

See also beginTrans(), cacheUpdates, rollback()

constrained
Specifies whether updates to a rowset will be constrained by the WHERE clause of the query’s SQL SELECT
command. Applies to Standard tables only.

Property of Query

Description When constrained is set to true, any time a row is saved, if the query’s SQL SELECT statement—which was
stored in the sql property and used to generate the rowset—contains a WHERE clause, the newly saved row is
evaluated against the WHERE clause. If the row no longer matches the condition set by the WHERE clause, the
row is considered to be out-of-set, and the row cursor moves to the next row in the set, or to the end-of-set if
already at the last row.

This property applies only to Standard tables and defaults to false, which means that the SQL SELECT
statement is used only to generate the rowset, not to actively constrain it. By setting the constrained property to
true, Standard tables behave more like SQL-server based tables, which always constrain rows according to the
WHERE clause.

See also sql

copy ()
Copies rowset or table to a new table.

Syntax <oRef>.copy()

<oRef> The UpdateSet object that describes the copy.

Property of UpdateSet

Description The Database’s copyTable() method is used to copy a rowset to a new table in the same database, or to a new table in
a different database.

The source and destination properties specify what to copy and where to copy it. Because you can use a rowset
as a source, you can copy only part of a table, by selecting only those rows you want to copy for the rowset.
When using a table name as a destination, that table is created, or overwritten if it already exists. To convert
from one table type to another, create a rowset of the desired result type and assign it to the destination property.

Note: Existing tables used as a destination will be overwritten without warning, regardless of the SET SAFETY
setting.
Data objects 370

copyTable ()
To copy all of the rows from a single table in a database to another new table in the same database, use the
Database’s copyTable() method.

See also copyTable(), destination, source

copy() is also a method of the File class.

copyTable ()
Makes a copy of one table to create another table in the same database.

Syntax <oRef>.copyTable(<source table expC>, <destination table expC>)

<oRef> The database in which you want to copy the table.

<source table expC> The name of the table you want to duplicate.

<destination table expC> The name of the table you want to create.

Property of Database

Description copyTable() copies all of the rows from a single table in a database to another new table in the same database.
The resulting destination table will be the same table type as the source table. Use the UpdateSet’s copy()
method for any other type of row copy.

The table to copy should not be open.

To make a copy of a Standard table, you can always use the default database in the default session by referring
to it through the databases array property of the _app object. For example,

_app.databases[1].copyTable("Stuff", "CopyOfStuff")

See also copy()

copyToFile ()
Copies the contents of a BLOB field to a new file.

Syntax <oRef>.copyToFile(<file name expC>)

<oRef> The BLOB field to copy.

<file name expC> The name of the file you want to create.

Property of Field

Description copyToFile() copies the specified BLOB field (including memo fields) to the named file.

Example The following event handler copies the contents of a memo field named Notes in the current row to a text file.
function exportMemoButton_onClick
 local cFile
 cFile = putfile("Export memo", "*.txt")
 if "" # cFile
 form.rowset.fields["Notes"].copyToFile(cFile)
 endif

See also replaceFromFile()

count ()
Returns the number of rows in a rowset, respecting any filter conditions and events.

Syntax <oRef>.count()

<oRef> The rowset you want to measure.
371 dBL Language Reference

createIndex()
Property of Rowset

Description count() returns the number of rows in the current rowset. For a rowset generated by a simple query like the
following, which selects all the fields from a single table with no conditions, count() returns the number of rows
in the table:

select * from CUSTOMER

You can use count() while a filter is active—with the filter property or the canGetRow event—to count the
number of rows that match the filter condition. This may be time-consuming with large rowsets.

See also canGetRow, filter

count() is also a method of the AssocArray class.

createIndex()
The createIndex() method creates an index for a specified table.

Syntax createIndex.(<tablename expC>,<oRef>)

<table name expC> The name of the table on which you want to create the index.

<oRef> Predefined .dbf index object

Property of Database

Description The createIndex() method creates an index from an instance of a database index object. Before using
createIndex():
• Close all active queries
• The .dbf index object's name and expression properties must be defined (see following example), and cannot

include calculated fields, UDFs, or, since no queries are active, fields in a lookuprowset.

Example d=new DBFIndex()
d.indexName="indextagname"
d.expression="indexexpression" // other properties
_app.databases[1].createIndex("tablename", d)

database
The Database object to which the query or stored procedure is assigned.

Property of Query, StoredProc

Description A query or stored procedure must be assigned to the database that provides access to the tables it wants before it
is activated. When created, a Query or StoredProc object is assigned to the default database in the default
session.

To assign the object to the default database in another session, assign that session to the session property.
Assigning the session property always sets the database property to the default database in that session.

To assign the object to another database in another session, assign the object to that session first. This makes the
databases in that session available to the object.

See also class Database

databaseName
The BDE alias that the object represents.

Property of Database

Description To use a BDE alias, create a Database object and assign the alias to the object’s databaseName property. Then
set the active property to true to activate the database. While the database is active, you cannot change the
databaseName property.
Data objects 372

dataModClass
The databaseName property for a session’s default database is always blank.

See also active

dataModClass
The class name of the desired data module.

Property of DataModRef

Description After setting the filename property to the file that contains the data module class definition, set the
dataModClass property to the name of the desired class.

Note When declaring a class name, the name may exceed 32 characters, but the rest are ignored. When attempting to
use a class, the name should not exceed 32 characters; otherwise the named class may not be found.

See also active, filename

decimalLength
The number of decimal places in a DBF (dBASE) numeric or float field.

Property of DbfField

Description The DBF (dBASE) table format supports two kinds of fields that store numbers: numeric and float. Both field
types have a fixed number of decimal places. The decimalLength property represents the number of decimal
places for any Field objects that represent a numeric or float field. For other field types, decimalLength is zero.

See also readOnly

default
The default value for a field.

Property of DbfField, PdxField

Description default indicates the default value of the field represented by the field object. When a rowset switches to
Append mode to add a new row, the field objects take on their default values.

For date fields, the special value TODAY indicates today’s date. For timestamp fields, the special value NOW
indicates the current date and time.

See also required

delete () [Rowset]
Deletes the current row.

Syntax <oRef>.delete()

<oRef> The rowset whose current row you want to delete.

Property of Rowset

Description delete() deletes the current row in the rowset. When delete() is called, the canDelete event is fired. If there is
no canDelete event handler or the event handler returns true, the current row is deleted, the onDelete event fires,
and the row cursor moves to the next row, or to the end-of-set if the last row was the one that was deleted. This
movement is not considered navigation, so the rowset’s onNavigate does not fire. If you have an onNavigate
event handler, call it from the onDelete event.

While the DBF (dBASE) table format supports soft deletes, in which the rows are only marked as deleted and
not actually removed until the table is packed, there is no method in the data access classes to recall those
records. Therefore a delete() should always be considered final.
373 dBL Language Reference

delete () [UpdateSet]
Example The following code shows how to use delete(), in conjunction with the setRange() method, to delete all rows in
a range or filter.

r = queryname.rowset
r.setRange(insert value here)
// delete all rows that match the range:
if r.first()

do
r.delete()

until r.endofset
endif

See also canDelete, onDelete, packTable()

delete() is also a method of the Array, File, and UpdateSet classes.

delete () [UpdateSet]
Deletes the rows in the destination that are listed in the source.

Syntax <oRef>.delete()

<oRef> The UpdateSet object that describes the delete.

Property of UpdateSet

Description delete() deletes the rows listed in the source rowset or table from the destination rowset or table. The
destination must be indexed.

See also destination, source

delete() is also a method of the Array, File, and Rowset classes.

destination
The target rowset or table of an UpdateSet operation.

Property of UpdateSet

Description The destination property contains an object reference to a rowset or the name of a table that is the target of an
UpdateSet operation. For an append(), update(), or appendUpdate(), it refers to the rowset or table that is
changed. For a copy(), it refers to the rowset or table that receives the copies. If a table name is specified, that
table is created, or overwritten if it already exists. For a delete(), the destination property refers to the table
from which rows are deleted.

The source property specifies the other end of the UpdateSet operation.

See also append(), appendUpdate(), copy(), delete(), source, update()

driverName
The database driver used for the database connection.

Property of Database

Description The driverName property reflects the database driver used for the connection. It’s determined by the database
driver for the database’s BDE alias and set automatically once the database is successfully made active.

For default databases, the driverName matches the System setting in the BDE Administrator.

See also databaseName
Data objects 374

dropIndex()
dropIndex()
The dropIndex() method deletes an index for a specified table

Syntax dropIndex.(<tablename expC>,<indexName expC>)

<table name expC> The name of the table containing the index

<indexname expC> The index tag name

Property of Database

Example _app.databases[1].dropIndex("tablename","indexname")

dropTable ()
Deletes (drops) a table from a database.

Syntax <oRef>.dropTable(<table name expC>)

<oRef> The database in which the table exists.

<table name expC> The name of the table you want to delete.

Property of Database

Description dropTable() deletes a table and any existing secondary files, like memo files and indexes. dropTable() does not
ask for confirmation; the deletion is immediate. The table cannot be open anywhere at the time of the
dropTable(); if it is, dropTable() fails.

To delete a Standard table, you can always use the default database in the default session by referring to it
through the databases array property of the _app object. For example,

_app.databases[1].dropTable("Temp")

See also emptyTable()

emptyTable ()
Deletes all the rows in a table.

Syntax <oRef>.emptyTable(<table name expC>)

<oRef> The database in which the table exists.

<table name expC> The name of the table you want to empty.

Property of Database

Description emptyTable() deletes all of the rows in a table, leaving an empty table structure, as if the table was just created.
emptyTable() does not ask for confirmation; the deletion is immediate. The table cannot be open anywhere at
the time of the emptyTable(); if it is, emptyTable() fails.

To empty a Standard table, you can always use the default database in the default session by referring to it
through the databases array property of the _app object. For example,

_app.databases[1].emptyTable("YtdSales")

See also dropTable()

endOfSet
Specifies whether the row cursor is at the end-of-set.
375 dBL Language Reference

exactMatch
Property of Rowset

Description The row cursor is always positioned at either a valid row or the end-of-set. There are two end-of-set positions:
one before the first row and one after the last row. endOfSet is true if the row cursor is positioned at either end-
of-set position.

When you first make a query active successfully, endOfSet is true if there are no rows that match the specified
criteria in the query’s SQL SELECT statement, or simply no rows in the tables selected.

When you apply a filter by calling applyFilter() or setting the filter property, endOfSet becomes true if there are
no rows that match the filter criteria. Otherwise, the row cursor is positioned at the first matching row.

If you navigate backward before the first row in the set or after the last row in the set, this moves the row cursor
to the end-of-set, so endOfSet becomes true. You can call the first() or last() methods to attempt to move the
row cursor to the first or last row in the set. If after calling one of those methods, endOfSet is still true, then there
are no visible rows in the current set.

Attempting to read a field value while at end-of-set returns a null value.

Attempting to change a field value while at end-of-set causes an error.

See also applyFilter(), filter, first(), last()

exactMatch
Determines whether rowset searches are conducted using a partial string or an exact string match.

Property of Rowset

Description exactMatch allows you to determine what constitutes "equal to" when performing rowset searches. When
exactMatch is set to "true", field values in subsequent searches will be evaluated as a "match" only when they
are identical to your search string.
When you set exactMatch to "false", a partial string, or "begins with" search is performed. Searching for the string "S", for
example, will find "Smith" and evaluate it as a match.

execute()
Executes a query or stored procedure.

Syntax This method is called implicitly by the Query or StoredProc object.

Property of Query, StoredProc

Description The execute() method executes a query or stored procedure. It is called implicitly after prepare() when you set
the object’s active property to true. In typical usage, you do not call this method directly.

Advanced applications may override the definition of this method to perform supplementary actions when
executing the query or stored procedure. Custom data drivers must define this method to perform the
appropriate actions to retrieve a rowset or call a stored procedure.

See also active, prepare()

executeSQL ()
Executes the specified SQL statement.

Syntax <oRef>.executeSQL(<SQL expC>)

<oRef> The database in which you want to execute the SQL statement.

<SQL expC> The SQL statement.

Property of Database
Data objects 376

fieldName
Description Use executeSQL() to perform an SQL operation that does not have a data object equivalent, for example, to use
data definition language (DDL) SQL where no rowset is desired, and for server-specific SQL.

fieldName
The name of the field represented by the Field object.

Property of Field (including DbfField, PdxField, SqlField)

Description The fieldName property contains the name of the field that the Field object represents. The fieldName property
is automatically filled in when the rowset object is generated.

For a calculated field, the fieldName contains the name of the fieldassigned when the Field object is created.

See also name

fields
An array that contains the Field objects in a rowset.

Property of Rowset, TableDef

Description The fields property contains an object reference to the array of field objects in the rowset. These fields can be
accessed by their field name or their ordinal position; for example, if this refers to a rowset:

this.fields["State"].value = "CA" // Assign "CA" to State field
this.fields[1].value = 12 // Assign 12 to first field

To access the value of the field, you must reference the field’s value property. You can use the add() method to
add new Field objects to the fields array as calculated fields.

See also add(), value

fields is also a property of the Browse class.

filename
The name of the file that contains the desired data module.

Property of DataModRef

Description After setting the filename property to the file that contains the data module class definition, set the
dataModClass property to the name of the desired class. Data modules are stored in files with a .DMD
extension.

See also active, dataModClass

filename is also a property of the ReportViewer class.

filter
An SQL expression that filters out rows that do not match specified criteria.

Property of Rowset

Description A filter is a mechanism by which you can temporarily hide, or filter out, those rows that do not match certain
criteria so that you can see only those rows that do match. The criteria is in the form of a character string that
contains an SQL expression, like the one used in the WHERE clause of an SQL SELECT. Simple comparisons
using the basic SQL comparison operators (=, <>, <, >, <=, >=) are supported; other predicates like BETWEEN,
IS NULL, IS NOT NULL and LIKE are not. Multiple comparisons may be joined by AND or OR. For example,

"Firstname = 'Waldo'"
377 dBL Language Reference

filterOptions
In this case, you would see only those rows in the current rowset whose Firstname field was “Waldo”. You can
use the rowset’s Filter mode, initiated by calling the beginFilter() method, to build the expression
automatically, and then apply it with the applyFilter() method. The alternative is to assign the character string
directly to the filter property.

If the filter expression contains a quoted string that contains an apostrophe, precede the apostrophe with a
backslash. Note that the single quote used in SQL expressions for strings and the apostrophe are represented by
the same single quote character on the keyboard. For example, if this is the rowset and you want to display rows
with the Lastname “O’Dell”:

this.filter := "Lastname = 'O\'Dell'"

Setting the filter property causes the row cursor to move to the first matching row. If no rows match the filter
expression, the row cursor is moved to the end-of-set; the endOfSet property is set to true.

While a filter is active, the row cursor will always be at either a matching row or the end-of-set. Any time you
attempt to navigate to a row, the row is evaluated to see if it matches the filter condition. If it does, then the row
cursor is allowed to position itself at that row and the row can be seen. If the row does not match the filter
condition, the row cursor continues in the direction it was moving to find the next matching row. It will continue
to move in that direction until it finds a match or gets to the end-of-set. For example, suppose that this is the
rowset, and you execute the following to your program. If no filter is active, you would move four rows
forward, toward the last row:

this.next(4)

If a filter is active, the row cursor will move forward until it has encountered four rows that match the filter
condition, and stop at the fourth. That may be the next four rows in the rowset, if they all happen to match, or
the next five, or the next 400, or never, if there aren’t four rows after the current row that match. In that last case,
the row cursor will be at the end-of-set.

In other words, when there is no filter active, every row is considered a match. By setting a filter, you filter out
all the rows that don’t match certain criteria.

To clear a filter, you can assign an empty string to the filter property, set the filter equal to null, or call the
clearFilter() method.

In addition to using an SQL expression, you can filter out rows with more complex code by using the
canGetRow event.

Note When a field's lookupSQL property is set, and that field is referenced in the rowset's filter property, the value
being compared by the filter is the field's true value, not the lookup value.

See also applyFilter(), beginFilter(), canGetRow, clearFilter(), endOfSet, filterOptions, setRange()

filterOptions
Determines how values are matched for filtering.

Property of Rowset

Description The filterOptions property is an enumerated property that controls how the value properties in the field objects
entered during Filter mode are matched against the values in the table. These are the options:

Value Effect
0 Match length and case
1 Match partial length
2 Ignore case
3 Match partial length and ignore case

When matching partial length, the entire search value must match all or part of the value in the table, starting at
the beginning of the field. For example, searching for “Central Park”, will match “Central Park West”, but
“West” alone would not.

filterOptions also determines how fields are matched when specifying an SQL expression in the filter property.
Data objects 378

findKey()
The filterOptions property takes effect when you assign the SQL expression to the filter property or call
applyFilter(). Changing filterOptions after activating the filter has no effect (until you change the filter).
The default setting for filterOptions is "Match length and case".

See also applyFilter(), filter

findKey()
Finds the row with the exact matching key value.

Syntax <oRef>.findKey(<exp>)

<oRef> The rowset in which to do the search.

<exp> The value to search for.

Property of Rowset

Description findKey() performs an indexed search in the rowset, using the index specified by the rowset’s indexName
property. It looks for the first row in the index whose index key value matches <exp>, returning true or false to
indicate whether a match is found.

findKey() is a navigation method; calling it fires the canNavigate event. If canNavigate returns false, findKey()
does not attempt a search. If canNavigate returns true, and a search is attempted but fails, the row cursor remains at the
current row and does not encounter an end-of-set. The onNavigate event always fires after a search attempt. For more
information on how navigation methods interact with navigation events and implicit saves, see next().

findKey() always performs a partial key match with strings. For example, findKey("S") will find “Sanders”, or
whatever is the first key value that starts with the letter “S”. To perform a full key match, pad <exp> with
enough extra spaces to match the length of the index key value.

See also applyLocate(), findKeyNearest()

findKeyNearest()
Finds the row with the nearest matching key value.

Syntax <oRef>.findKeyNearest(<exp>)

<oRef> The rowset in which to do the search.

<exp> The value to search for.

Property of Rowset

Description findKeyNearest() performs an indexed search in the rowset, using the index specified by the rowset’s
indexName property. It looks for the first row in the index whose index key value matches <exp>, returning true
or false to indicate if an exact match is found. If an exact match is not found, the row cursor is left at the nearest
match; the row where the match would have been. For example, if “Smith” is followed by “Smythe” in the
index, and the search expression is “Smothers”, the search will fail and the row cursor will be left at “Smythe”.
“Smothers” comes after “Smith” and before “Smythe”, so if it was in the index, it would be where “Smythe” is.

You can think of this exact, or nearest matching, as “equal or the one after,” as long as you remember that
“after” depends on the index order. If the index is descending instead of ascending, then in the previous
example, “Smythe” would be followed by “Smith”, and a search for “Smothers” would end up on “Smith”. The
row cursor will end up on the end-of-set if the search value comes after the last value in the index.

findKeyNearest() is a navigation method; calling it fires the canNavigate event. If canNavigate returns false,
findKeyNearest() does not attempt a search. onNavigate always fires after a search attempt. For more
information on how navigation methods interact with navigation events and implicit saves, see next().

findKeyNearest() always performs a partial key match with strings. For example, findKeyNearest("Smi") will
find “Smith”. To perform a full key match, pad <exp> with enough extra spaces to match the length of the index
key value.

See also applyLocate(), findKey()
379 dBL Language Reference

first ()
first ()
Moves the row cursor to the first row in the rowset.

Syntax <oRef>.first()

<oRef> The rowset in which you want to move the row cursor.

Property of Rowset

Description Call first() to move the row cursor to the first row in the rowset. If a filter is active, it moves the row cursor to
the first row in the rowset that matches the filter criteria.

As a navigation method, first() interacts with canNavigate, onNavigate, and implicit saves. For more
information, see next().

If the endOfSet property is true after a call to first(), then there are no rows that match the filter criteria if there
is a filter set. If there is no filter, then that means there are no rows at all in that rowset.

See also endOfSet, filter, last(), next()

flush()
Commits data buffers to disk.

Syntax <oRef>.flush()

<oRef> The rowset you want to write to disk.

Property of Rowset

Description When a row is saved, the changes are written to the rowset data buffer in memory. This buffer is written to disk
only as needed; for example, before another block of rows are read into the buffer. This eliminates redundant
disk writes that would slow your application.

flush() explicitly writes the rowset’s data buffers to disk. Note that if a disk cache is active, the buffer is written
to the disk cache; the cache decides when to actually write the data onto the physical disk.

refresh() is similar to flush() because in purging cached rows, refresh() writes any rows that have been
changed but not yet committed to disk. flush() writes the rows, but does not purge the data buffer; the rows are
still cached.

Example The following onSave event handler calls the rowset’s flush() method to make sure that the data is written to
disk as each record is saved:

function Rowset_onSave
 this.flush()

See also refresh(), save()

flush() is also a method of the File class.

getSchema()
Returns information about a database.

Syntax <oRef>.getSchema(<item expC>)

<oRef> The database you want to get information about.
Data objects 380

goto ()
<item expC> The information to retrieve, which may be one of the following strings (which are not case-
sensitive):

String Information
DATABASES A list of all databases aliases
PROCEDURES A list of stored procedures defined in the database
TABLES A list of all tables in the database
VIEWS A list of all views in the database

Property of Database

Description Use getSchema() to get a list of all database aliases, or to get information about a specific database. Some
databases may not support PROCEDURES or VIEWS. All lists are returned in an Array object; if the item is not
supported, the array is empty.

Custom data drivers must define this method to return the appropriate information for their database.

Example The following class subclasses the Database class to provide support for RapidFile tables. The code shown here
implements the getSchema() method:

class RapidFileDatabase of Database
 this.path = ""

 function getSchema(cArg)
 local cItem
 cItem = upper(cArg)
 do case
 case cItem == "DATABASES"
 return super::getSchema("DATABASES")
 case cItem == "TABLES"
 local aRet, nFiles
 aRet = new Array()
 nFiles = aRet.dir(this.path + "*.RPD") // Get all RapidFile files
 if nFiles > 0
 aRet.resize(nFiles, 1, 1) // Filenames only in 2-D array
 aRet.resize(nFiles, 0) // Convert to 1-D array
 endif
 return aRet
 case cItem == "PROCEDURES" or cItem == "VIEWS"
 return new Array()
 otherwise
 return super::getSchema(cItem)
 endcase

endclass

goto ()
Moves the row cursor to a specific row in the rowset.

Syntax <oRef>.goto(<bookmark>)

<oRef> The rowset in which you want to move the row cursor.

<bookmark> The bookmark you want to move to.

Property of Rowset

Description Call goto() to move the row cursor to a specific row in the rowset. Store the current row position in a bookmark
with the bookmark() method. Then you can return to that row later by calling goto() with that bookmark as
long as the rowset has remained open. If the rowset has been closed, the bookmark is not guaranteed to return
you to the correct row, since the table may have changed.
381 dBL Language Reference

handle
The bookmark uses the current index represented by the indexName property, if any. The same physical row in
the table returns different bookmarks when different indexes are in effect. When you goto() a bookmark, the
index that was in effect when the bookmark was returned is automatically activated.

If you attempt to goto() a row that is out-of-set, you will generate an error.

As a navigation method, goto() interacts with canNavigate, onNavigate, and implicit saves. For more
information, see next().

Example See applyFilter().

See also bookmark(), endOfSet, next()

handle
The BDE handle of the object.

Property of Database, Query, Rowset, Session, StoredProc

Description The handle property represents the BDE handle for the object in question. The handle can be used if you want to
call BDE functions directly.

See also n/a

handle is also a property of the File class.

indexName [Rowset]
The name of the index to use in the rowset.

Property of DBFIndex, Index, Rowset

Description indexName contains the name of the active controlling index tag for those table types that support index tags. It
is set automatically when the query is activated to represent the tag used in the SQL SELECT’s ORDER BY
clause, if the ORDER BY is satisfied by an index. Assigning a new value to indexName supersedes any ORDER
BY designated in the SQL SELECT statement.

For tables with primary keys, a blank indexName indicates that the primary key is the controlling index.

The index tag is also used in a master-detail link. The index tag of the detail rowset must match the field or
fields specified in the masterFields property.

When specifying an indexName for data in a report, be sure to set the report’s autoSort property to false to
prevent the report from modifying the SQL statement. The modified SQL statement may generate a temporary
result set that has no indexes; attempting to designate an indexName would cause an error.

Example In the following example, a form has a number of radio buttons with text labels like Name and Address that by
design match the name of indexes in the primary rowset of the form. The following onChange event handler,
used by all the radio buttons, sets the index of the primary rowset to the selected radio button.

function indexRadio_onChange
 if this.value
 form.rowset.indexName := this.text
 endif

See also autoSort, masterFields, setRange(), sql

indexName is also a property of the UpdateSet class (page 14-382).

indexName [UpdateSet]
The name of the index to use for indexed UpdateSet operations.

Property of UpdateSet
Data objects 382

isolationLevel
Description The destination rowset or table must be indexed for the update(), appendUpdate(), and delete() operations.
The indexName property specifies the key or tag name that is to be used. For tables with primary keys, the
primary key is used by default. Set the indexName property only if you want to use another key. For DBF
(dBASE) tables, you must specify an index tag name.

See also appendUpdate(), delete(), destination, update()

indexName is also a property of the Rowset class.

isolationLevel
Determines the isolation level of a transaction.

Property of Database

Description The isolationLevel property is an enumerated property that determines the isolation level of a transaction. It
applies to SQL-server database transactions only. For Standard table transactions, it has no effect. These are the
options:

Value Effect
0 Read uncommitted
1 Read committed
2 Repeatable read

The default is Read committed.

See also beginTrans()

isRowLocked
Returns a logical value indicating whether the current rowset has locked the current row.

Syntax <oRef>.isRowLocked()

<oRef> An object reference to the rowset.

Property of Rowset

Description Use isRowLocked() to determine if the same instance of the current row, in the current rowset, is locked before
an attempt is made to edit or delete a record. isRowLocked() returns true to indicate the row is locked and false
to indicate it’s not.

The isRowLocked() method only returns information about the current instance of a rowset. When dealing with
multiple instances of a row or rowset, you'll need to attempt an explicit row lock with the lockRow() method.

See Also isSetLocked(), lockRow(), lockSet(), unlock()

isSetLocked
Returns a logical value indicating whether the current rowset is locked.

Syntax <oRef>.isSetLocked()

<oRef> An object reference to the rowset.

Property of Rowset

Description Use isSetLocked() to determine if same instance of the current rowset, is locked before an attempt is made to
edit or delete. isSetLocked() returns true to indicate the rowset is locked and false to indicate it isn't.

The isSetLocked() method only returns information about the current instance of a rowset. When dealing with
multiple instances of a rowset, you'll need to attempt an explicit rowset lock with the lockSet() method.
383 dBL Language Reference

keyViolationTableName
See Also isRowLocked(), lockRow(), lockSet(), unlock()

keyViolationTableName
Name of the table in which you want to collect rows that could not be added because they would have caused a
key violation.

Property of UpdateSet

Description In tables with primary keys, only one row in the table may have a particular primary key value. If the row to be
added during an append() contains a key value that is the same as an already-existing primary key, that row
cannot be added to the table, since it would have caused a primary key violation. Instead of being added to the
destination rowset or table, that row is copied to the table specified by the keyViolationTableName property.

See also append(), changedTableName, destination, problemTableName

languageDriver
The Language Driver currently being used to access a table

Property of Rowset

Description Returns a character string indicating the name of the Language Driver. Read only.

last ()
Moves the row cursor to the last row in the rowset.

Syntax <oRef>.last()

<oRef> The rowset in which you want to move the row cursor.

Property of Rowset

Description Call last() to move the row cursor to the last row in the rowset. If a filter is active, it moves the row cursor to the
last row in the rowset that matches the filter criteria.

As a navigation method, last() interacts with canNavigate, onNavigate, and implicit saves. For more
information, see next().

If the endOfSet property is true after a call to last(), then there are no rows that match the filter criteria if there
is a filter set. If there is no filter, then that means there are no rows at all in that rowset.

Going to the last row in a rowset may not be an optimized operation on some SQL servers. For those servers,
calling last() may take a long time for large rowsets.

See also endOfSet, filter, first()

length
The maximum length of the field.

Property of Field

Description A field’s length represents the number of bytes used in the table for that field, and for character and numeric
fields, the maximum length of the item that it can store.

For character fields, the length property represents the maximum number of characters in the string. Attempting
to store more characters in that field results in the string being truncated.

For numeric fields, the length property represents the maximum number of characters in the number, including
the digits, and any sign or decimal point. Attempting to store a number with more digits than the maximum
Data objects 384

live
results in numeric overflow, in which the actual value of the number is lost, and is simply considered to be
bigger than the maximum allowed; it is usually represented by a string of asterisks.

See also decimalLength, type

live
Specifies whether the rowset can be modified.

Property of Rowset

Description Before making a query active, you can determine whether the rowset that is generated is editable or not. You
can choose to make it not editable to prevent accidental modification of the data.

See also requestLive

locateNext ()
Applies the locate criteria again to search for another row.

Syntax <oRef>.locateNext([<rows expN>])

<oRef> The rowset in which to move the row cursor.

<rows expN> The Nth row to find. By default, the next row forward.

Property of Rowset

Description When the applyLocate() method is called, it moves the row cursor to the first row that matches the locate
criteria. From then on, you can move forward and backward to other rows that match the same criteria by calling
locateNext().

locateNext() takes an optional numeric parameter that specifies in which direction, forward or backward, to
look and at which match to stop, relative to the current row position. A negative number indicates a search
backward, toward the first row; a positive number indicates a search forward, toward the last row. For example,
a parameter of –3 means to look backward from the current row to find the third matching row.

If the row cursor encounters the end-of-set before the desired match is found, the search stops, leaving the row
cursor at the end-of-set.

As a navigation method, locateNext() interacts with canNavigate, onNavigate, and implicit saves. For more
information, see next().

locateNext() returns true to indicate that the desired match was found and false to indicate that it wasn’t.

See also applyLocate(), beginLocate(), endOfSet

locateOptions
Determines how values are matched for locating.

Property of Rowset

Description The locateOptions property is an enumerated property that controls how the value properties in the field objects
entered during Locate mode are matched against the values in the table. These are the options:

Value Effect
0 Match length and case
1 Match partial length
2 Ignore case
3 Match partial length and ignore case
385 dBL Language Reference

lock
When matching partial length, the entire search value must match all or part of the value in the table, starting at
the beginning of the field. For example, searching for “Century City”, will match “Century City East”, but
“East” alone would not.

locateOptions also determines how fields are matched when using an SQL expression with the applyLocate()
method.
The default setting for locateOptions is "Match length and case".

See also applyLocate(), locateNext()

lock
The date and time of the last successful lock made to the row.

Property of LockField

Description Use lock after a failed lock attempt to determine the date and time of the current lock that is blocking your lock
attempt. The date and time are represented in a string in the following format:

MM/DD/YY HH:MM:SS

This format is accepted by the constructor for a Date object, so you can easily convert the update string into an
actual date/time.

This property is available only for DBF tables that have been CONVERTed.

Example The following form method attempts to lock the current row in the form’s primary rowset. If the lock cannot be
secured, it displays information about the current lock.

function lockRow()
 local cMsg
 form.rowset.parent.session.lockRetryCount := 1
 do while true
 if form.rowset.lockRow()
 return true
 else
 cMsg = "Locked by: " + form.rowset.fields["_DBASELOCK"].user + chr(13) + ;
 "since: " + form.rowset.fields["_DBASELOCK"].lock
 if msgbox(cMsg, "Record is locked by another", 5 + 48) == 2
 return false
 endif
 endif
 enddo

The lockRetryCount for the rowset’s query’s session is set to 1 so that the lockRow() method will try the lock
only once before failing. If left at its default value of zero, dBASE Plus would display its own lock failure
dialog, which doesn’t display as much information, and retries continuously to get the lock, which you don’t
necessarily want to do.

The MSGBOX() used is a Retry/Cancel dialog box. The button number, which MSGBOX() returns, is 2 if the
Cancel button is clicked or the user presses Esc.

See also CONVERT, update, user

lockRetryCount
The number of times to retry a lock attempt.

Property of Session

Description Any attempt to change the data in a row, for example, typing a letter in a dataLinked Entryfield control, causes
an automatic row lock to be attempted. In addition to the automatic row locking, you may request an explicit
row or rowset lock with the lockRow() and lockSet() methods.

If someone else already has a conflicting lock, the initial lock attempt fails. The lockRetryCount property
indicates the number of times the lock attempt will be retried, while the lockRetryInterval indicates the number
Data objects 386

lockRetryInterval
of seconds to wait between each attempt. If after all the attempts the lock has not been secured, the lock request
fails.

See also class Rowset, lockRetryInterval, lockRow(), lockSet()

lockRetryInterval
The number of seconds to wait between each lock retry attempt.

Property of Session

Description Any attempt to change the data in a row, for example, typing a letter in a dataLinked Entryfield control, causes
an automatic row lock to be attempted. In addition to the automatic row locking, you may request an explicit
row or rowset lock with the lockRow() and lockSet() methods.

If someone else already has a conflicting lock, the initial lock attempt fails. The lockRetryCount property
indicates the number of times the lock attempt will be retried, while the lockRetryInterval indicates the number
of seconds to wait between each attempt. If after all the attempts, the lock has not been secured, the lock request
fails.

See also class Rowset, lockRetryCount, lockRow(), lockSet()

lockRow ()
Attempts to lock the current row.

Syntax <oRef>.lockRow()

<oRef> The rowset in which you want to lock the current row.

Property of Rowset

Description An automatic row lock is attempted whenever the value property of a Field object is modified, either directly by
assignment, or indirectly through a dataLinked control.

You may use lockRow() to attempt an explicit row lock. Whether the lock is automatic or explicit, it will fail if
the current row or the entire rowset is already locked.

lockRow() returns true to indicate that the lock was successful and false to indicate that it wasn’t.

Row locking support varies among different table types. The Standard (DBF and DB) tables fully support row
locking; most SQL servers do not. For servers that do not support true locks, the Borland Database Engine
emulates optimistic locking. Any lock request is assumed to succeed. Later, when the actual attempt to change
the data occurs, if the data has changed since the lock attempt, an error occurs.

Example The following checks to see if the current row has been changed before the user navigates to another row. If
changes have been made, an explicit row lock is attempted. If the lock is successful, the date and time of update
is recorded in the row, the row is saved and unlocked, and navigation is permitted. If unsuccessful, the user is
given a choice as to what to do.

function rowset_canNavigate
 if not this.modified
 return true // No changes, row navigation okay
 endif
 local lReturn, nButton
 lReturn = false
 do
 if not this.lockRow() // Try the lock
 nButton = msgBox("Row is locked by another, keep trying? " + ;
 '("Cancel" discards changes)', ;
 "Cannot Save Changes", 3 + 32)
 if nButton = 6
 loop // User clicked "Yes" (try again)
 endif
 lReturn := nButton = 2
 if lReturn // User clicked "Cancel"
387 dBL Language Reference

lockSet ()
 this.abandon()
 endif
 exit // Give up
 endif
 lReturn := true
 this.fields["UPDATED"].value := date() + " at " + time()
 this.save()
 this.unlock()
 until lReturn
 return lReturn

See also lockSet(), lockRetryCount, unlock(), value

lockSet ()
Attempts to lock the entire rowset.

Syntax <oRef>.lockSet()

<oRef> The rowset you want to lock.

Property of Rowset

Description You may use lockSet() to attempt to lock the entire rowset. The rowset cannot be locked if someone else
already has any other row or set locks on the rowset.

Set locks are session-based. Once a lockSet() attempt succeeds, all other lockSet() requests for the same set
from rowsets in queries assigned to the same session will succeed. Query objects must be assigned to different
Session objects for set locking to work properly.

Locking the rowset is not the same as accessing the table exclusively. Exclusive access means that you are the
only one who has the table open. In contrast, locking a rowset allows others to view, but not modify, the rowset.

lockSet() returns true to indicate that the lock was successful and false to indicate that it wasn’t.

Set locking support varies among different table types. The Standard (DBF and DB) tables fully support set
locking, as do a few SQL servers. For servers that do not support true locks, the Borland Database Engine
emulates optimistic locking. Any lock request is assumed to succeed. Later, when the actual attempt to change
the data occurs, if the data has changed since the lock attempt, an error occurs.

See also lockRow(), lockRetryCount, unlock(), value

lockType
Determines whether or not explicit locks can be released by a call to rowset.save().

Property of Rowset

Description Allowed values for lockType are:

• 0 - Automatic = row locks obtained by calling rowset.lockrow() are released by calls to Save() or Abandon()

• 1 - Explicit = row locks obtained by calling rowset.lockrow() are NOT released by calls to Save() or
Abandon()

The default for lockType is 0 - Automatic unless an overriding setting is set In plus.ini or the application's .ini
file.

ini file setting example:

[Rowset]
LockType=0
or
LockType=1

Allows user to set default rowset.lockType via ini setting.
Data objects 388

logicalSubType
logicalSubType
A database independent name indicating the data subtype of the value stored in a field.

Property of CalcField, DbfField, Field, PdxField, SqlField

Description Each database engine has its own set of data types that are referred to as its native data types. A data type in one
database engine may be physically identical to a data type used by another database engine, but have a different
name.

Mapping these native types to a set of database independent (logical) data types allows physically identical data
types to have the same logicalType even when their native data types differ.

For example, the logical type for both a Paradox table’s “Alpha” field and a dBASE table’s “Character” field is
“ZSTRING”. This indicates they are both character strings with a null byte at the end of the string.

Some logicalTypes contain sub groupings, called logicalSubTypes, which specify further the type of data that
can be stored in each field type. It may be necessary, therefore, to also compare logicalSubTypes when checking
for data type compatibility.

For example, a BLOB logicalType may also contain one of the following logicalSubTypes:

logicalSubType
MEMO
BINARY
FMTMEMO
OLEOBJ
GRAPHIC
DBSOLEOBJ
TYPEDBINARY
ACCOLEOBJ

The following table lists possible values for the logicalSubType property:

logicalType logicalSubType Description
FLOAT MONEY Money
BLOB MEMO Text memo

BINARY Binary data
FMTMEMO Formatted text
OLEOBJ OLE object (Paradox)
GRAPHIC Graphics object
DBSOLEOBJ dBASE OLE object
TYPEDBINARY Typed binary data
ACCOLEOBJ Access OLE object

ZSTRING PASSWORD Password
FIXED CHAR type
UNICODE Unicode

INT32 AUTOINC Auto Increment value

Tip: Using the logicalType and logicalSubType properties, you could write a dBASE Plus program to check
whether data from a table containing a DbfField data type can be copied to a table containing a PdxField data
type.

logicalType
A database independent name indicating the data type of the value stored in a field.

Property of CalcField, DbfField, Field, PdxField, SqlField
389 dBL Language Reference

login ()
Description Each database engine has its own set of data types that are referred to as its native data types. A data type in one
database engine may be physically identical to a data type used by another database engine, but have a different
name.

Mapping these native types to a set of database independent (logical) data types allows physically identical data
types to have the same logicalType even when their native data types differ.

For example, the logical type for both a Paradox table’s, “Alpha”, field and a dBASE table’s, “Character”, field
is “ZSTRING”. This indicates they are both character strings with a null byte at the end of the string.

Note The Field object’s type property contains the native type of a field.

The following table lists possible values for the logicalType property:

logicalType Description
UNKNOWN
ZSTRING Null terminated character string
DATE Date (32 bit)
BLOB Short for, "binary large object", a collection of binary data

stored as a single entity in a database management system.
BOOL Boolean
INT16 16 bit signed integer
INT32 32 bit signed integer
FLOAT 64 bit floating point
BCD Binary Coded Decimal
BYTES Fixed number of bytes
TIME Time (32 bit)
TIMESTAMP Time-stamp (64 bit)
UINT16 Unsigned 16 bit integer
UINT32 Unsigned 32 bit integer
FLOATIEEE 80 bit IEEE float
VARBYTES Length prefixed string of bytes
LOCKINFO Lock for LOCKINFO typedef
CURSOR For Oracle Cursor type

Tip Using the logicalType property, you could write a dBASE Plus program to check whether data from a table
containing a DbfField data type can be copied to a table containing a PdxField data type.

login ()
Logs in user to DBF table security for a session.

Syntax <oRef>.login(<group name expC>, <user name expC>, <password expC>)

<oRef> The session to log into.

<group name expC> The group name.

<user name expC> The user name.

<password expC> The password.

Property of Session

Description DBF table security is session-based. All queries assigned to the same session in their session property have the
same access level.

If someone attempts to open an encrypted table and has not logged in to the session, they will be prompted for
the group name, user name, and password. Responding attempts to log the user into the session.
Data objects 390

loginDBAlias
The login() method allows you to log in to the session directly. You can do this if you’re assigning a default
access level, so that users won’t be prompted; or if you’re writing your own custom login form, in which case
you will need to call login() with the values you have gotten.

login() returns true or false to indicate whether the login was successful.

Example The following onClick event handler for the login button on a custom login form logs in the user with the values
typed in the form and runs the main form:

function loginButton_onClick()
 if form.rowset.parent.session.login(form.groupNameText.value, ;
 form.userNameText.value, ;
 form.password1.value)
 do MAIN.WFM
 endif

See also access(), addPassword(), user()

loginDBAlias
The currently active database alias, or BDE alias, from which to obtain login credentials (user id and password)
to be used in activating an additional connection to a database.

Property of Database

Description The loginDBAlias property can be used to setup additional connections to a database without having to prompt
the user each time for login credentials.

The default value for the loginDBAlias property is an empty string.

Using the loginDBAlias property
1 Create a database object.
2 Set the databaseName property of the new database object to the appropriate database alias.
3 From an already active database object, assign the value from its databaseName property to the new database

object's loginDBAlias property.
4 Set active to true on the new database object.

When activating the new database object, dBASE will lookup the user id and password used to login to the
already active database object and submit them to the database engine in the same way it submits a loginString.

If the user id and password are valid, the user will not be prompted to enter any login credentials for the new
database object.

loginString
The user name and password to use to log in to a database.

Property of Database

Description Some databases require that you log in to them to access their tables. When you set the Database object’s active
property to true to open the connection, a login dialog will appear, prompting the user for the user name and
password.

You can prevent the login dialog from appearing by setting the loginString property to a string containing a
valid user name and password of the form “userName/password”. If the user name and password provided
through loginString are not valid, the login dialog will appear when you attempt to activate the database.

lookupRowset
The rowset containing lookup values for a field.

Property of Field
391 dBL Language Reference

lookupSQL
Description Use lookupSQL or lookupRowset to implement automatic lookups for a field. For information on how automatic
lookups work, see lookupSQL.

The simpler implementation is to set the lookupSQL property. This automatically generates a lookup rowset,
which you can reference through the lookupRowset property.

The more advanced technique is to generate your own lookup rowset, which must follow the same structure as
detailed for lookupSQL. Then assign a reference to this rowset to the lookupRowset property. Doing so releases
any internal rowset generated for lookupSQL, if any. This technique might be used if you want to use the same
lookup for multiple fields.

Example The first example updates a Text control with the address for a name chosen from a ComboBox control. The
field that is dataLinked to the ComboBox control has a lookupSQL property, so the lookup rowset is
automatically generated. The address is retrieved through the lookupRowset property. This is the field’s
onChange event handler.

function name_onChange
 local f,r // Variables for the form and lookupRowset
 f = this.parent.parent.parent.parent // Form is 4 parents up
 r = this.lookupRowset.dataLink
 if r.endOfSet // No match
 f.address.text := "" // Blank text
 else
 f.address.text := r.fields["Address"].value + "
" + ;
 r.fields["City"].value + " " + ;
 r.fields["State"].value + " " + ;
 r.fields["Zip"].value
 endif

Whenever the value in the ComboBox control changes, a lookup is performed, moving the row cursor in the
lookup rowset. Wherever it is, you can retrieve the values for any other field in that row, as long as you include
those fields in the SQL SELECT statement.

The second example assigns an existing rowset, opened earlier in the instantiation of the form, to two fields in
the rowset in the query’s onOpen event.

function inspection1_onOpen
 this.rowset.fields["Primary"].lookupRowset := this.parent.inspector1.rowset
 this.rowset.fields["Backup"].lookupRowset := this.parent.inspector1.rowset

See also lookupSQL

lookupSQL
An SQL SELECT statement describing a rowset that contains lookup values for a field.

Property of Field

Description Use lookupSQL or lookupRowset to implement automatic lookups for a field. When a control that supports
lookups, like the ComboBox control, is dataLinked to a field with either lookupSQL or lookupRowset defined,
the control will:

• Populate itself with display values from the lookup rowset
• Lookup the true value of the field in the lookup rowset
• Display the corresponding lookup value in the control
• Do the reverse lookup when the display value in the control is changed
• Write the corresponding true value back to the field

If the display lookup fails, a blank is displayed in the control. If the reverse lookup fails, a null is written to the
field.

The same automatic lookups are applied when accessing the value property of the field. The value of the field
will appear to be the lookup value. Assigning to the value will perform the reverse lookup.

Setting the lookupSQL property is the simpler way of implementing automatic lookups. lookupSQL contains an
SQL statement of the form:

SELECT <lookup field>, <display field> [,...] FROM <lookup table> [<options>]
Data objects 392

lookupTable
The first two fields must be the lookup field and the display field, respectively. The display field may be a
calculated field. You may include other fields so that you can get information about the chosen row. The SQL
SELECT statement may include the usual options; in particular, you may want the table to be ordered on the
lookup field (or use a table where such an index is available) for faster lookups. The SQL statement is executed
in the same database as the query (or stored procedure) that contains field’s rowset.

When an SQL statement is assigned to lookupSQL, the lookupRowset property will contain a reference to the
generated rowset. You may refer to the fields in the matched lookup row through this reference. For advanced
applications, you may assign your own rowset to lookupRowset. This releases the generated rowset.

Note When a field's lookupSQL property is set, and that field is referenced in the rowset's filter property, the value being compared
by the filter is the field's true value, not the lookup value.

Example The following SQL SELECT statement is assigned to the Field object for a Customer ID field in an Orders
table:

select CUST_ID, FIRST_NAME || ' ' || LAST_NAME as FULL_NAME from CUSTOMER

The || symbols act as concatenation operators in SQL (like the + operator in dBASE Plus). Now when
dataLinking to the field or accessing the field’s value, the full name will appear instead of the ID.

See also lookupRowset

lookupTable
The table used for a DB (Paradox) field’s lookup.

Property of PdxField

Description lookupTable contains the name of the lookup table used to assist in the filling in of the field represented by the
PdxField object. For more information on Paradox table lookups, see lookupType.

See also lookupType

lookupType
The type of lookup used by a DB (Paradox) field.

Property of PdxField

Description lookupType specifies the type of lookup used to assist in the filling in of the field represented by the PdxField
object. It is an enumated property that can have one of the following values:

Value Description
0 No lookup
1 Lookup field only, no help
2 Lookup and fill all corresponding fields, no help
3 Lookup field only, with help
4 Lookup and fill all corresponding fields, with help

dBASE Plus does not support the user interface required for Paradox lookup help. Also, validity checking is not
performed whenever all corresponding fields are filled; this is so that (in Paradox) you can substitute the field
value with the value of a same-named field in the lookup table that is not the lookup field.

Therefore, the only support for Paradox lookups in dBASE Plus is for validity checking; to make sure the value
stored in the field is listed in the lookup field in the lookup table, and only when lookupType is set to 1 or 3. For
example, a Customer ID field in an Orders table can check that the Customer ID is listed in the Customer table.
An attempt to store an unlisted value in the field results in a database engine-level exception.

Consider using the automatic lookup provided by lookupSQL and lookupRowset instead.

See also lookupTable, lookupSQL, lookupRowset
393 dBL Language Reference

masterChild
masterChild
Specifies whether the rows in a child table are constrained to only those rows matching the key value from a row
in the parent table.

Property of Rowset

Description The masterChild property is set in the detail rowset (child table in a master-child relation).

masterChild can be set to either:

Value Description
0 Constrained (default)
1 UnConstrained

When constrained, the child table in a relation is filtered so that only rows that match the key value from a row
in a parent table can be navigated to and displayed in a data object. If no child rows match the current parent
row, then no child rows can be navigated to or shown in a data object.

When unconstrained, navigating in a parent table triggers any child tables to be positioned at the first child row
that matches the parent row. All child rows can still be navigated to and displayed in a data object. If no
matching child rows exist for the current parent row, the child table is positioned to the last record for the
current index order.

The masterChild property is ignored if the masterRowset and masterFields rowset properties have not been set
and a link established to the parent table.

See also indexName, masterFields, setRange()

masterFields
A list of fields in the master rowset that link it to the detail rowset.

Property of Rowset

Description The masterFields property is set in the detail rowset. It is a string that contains a list of fields in the master
rowset that are matched against the detail rowset’s active controlling index, as specified by the indexName
property. By setting the property in the detail rowset, one master rowset can control multiple detail rowsets.

The masterRowset property should be set before masterFields. Once masterFields is set, the detail rowset is
constrained to show the detail rows that match the current row in the master rowset. You may cancel the master-
detail link by setting either property to an empty string.

For table formats that support multi-field indexes (DBF does not—it uses expression indexes instead), multiple
fields in the masterFields list are separated by semicolons.

You may link the rowsets through an expression by creating a calculated field in the master rowset and using
that calculated field name in the masterFields list.

Example Suppose you have a Customer.dbf table that you want to link to an Orders.dbf table, to show each customer’s
orders by date. The Customer table has an autoincrement field named Cust_id. The Orders table also has a
Cust_id field and an Order_date field. The index on the Cust_id and Order_date field is defined as:

str(CUST_ID) + dtos(ORDER_DATE)

Because the Cust_id field is converted to a string in the expression index, the Cust_id field in the Customer table
must also be converted to string in a calculated field to link the two tables. (If the Cust_id field was a character
field in both tables, this extra step would be unnecessary, because you could use the Cust_id field as-is to link to
the expression index.)

Use the Customer query’s onOpen event to create the calculated field, arbitrarily named Cust_link:
function customer1_onOpen()
 c = new Field()
 c.fieldName := "CUST_LINK"
 this.rowset.fields.add(c)
Data objects 394

masterRowset
 c.beforeGetValue := {|| str(this.parent["CUST_ID"].value)}

Note that when working in the Form (or other) designer, creating the onOpen event handler for the Customer
query does not immediately execute it. The calculated field will not be present until the query is re-executed.
Toggling the query’s active property alone won’t work, because although the event has been assigned, its code
has not been compiled and is therefore not available. You can force the designer to recompile all the code and
reexecute the query by making a change in the constructor of the form (adding and removing a blank line is
sufficient); then the calculated field will be present.

Once the calculated field is present (it will be in the Field palette), specify the Customer rowset as the
masterRowset of the Orders rowset, and the Cust_link field in the masterFields property.

After the calculated field is created, its beforeGetValue will be streamed in the form class constructor in the
WITH block of the query’s rowset (right after the query itself). This means that the beforeGetValue code is
present in two places, both in the constructor and the onOpen event handler. You can leave them both there, but
if you change the code in the onOpen, you must either also change or remove the assignment in the WITH
block, because it executes after the query’s onOpen event. Or you can remove the code in the onOpen, and
assign the beforeGetValue directly to the calculated Field object in the Inspector.

If you use this relation often, you can create and reuse a data module that contains this code.

See also indexName, masterRowset, masterChild

masterRowset
A reference to the master rowset that is linked the detail rowset.

Property of Rowset

Description The masterRowset property is set in the detail rowset. It is an object reference to the master rowset that
constrains the detail rowset. By setting the property in the detail rowset, one master rowset can control multiple
detail rowsets.

The masterRowset property should be set before masterFields. Once masterFields is set, the detail rowset is
constrained to show the detail rows that match the current row in the master rowset. You may cancel the master-
detail link by setting either property to an empty string.

Example The following example links an employee to the various positions they have held over the years:
emp = new Query()
emp.sql = "select * from EMPLOYEE"
emp.active = true

pos = new Query()
pos.sql = "select * from POSITION"
pos.active = true
pos.rowset.indexName = "EMP_ID"

pos.rowset.masterRowset = emp.rowset // Identify master rowset
pos.rowset.masterFields = "EMP_ID" // Field matches index order

See also indexName, masterChild, masterFields, setRange()

masterSource
A reference to the rowset that acts as the master in a master-detail link and provides parameter values.

Property of Query

Description Use masterSource to create a master-detail link between two queries where parameters are used in the detail
query. masterSource is assigned a reference to the rowset in the master query.

By setting the masterSource property, the parameters in the SQL statement are automatically substituted with
matching fields from the master rowset, thereby constraining the detail query. Calculated fields may be used.
The fields are matched to the parameters by name. The field name match is not case-sensitive.
395 dBL Language Reference

maximum
As navigation occurs in the masterSource rowset, the parameter values are resubstituted and the detail query is
requeried.

An alternate approach to creating a master-detail link is through the masterRowset and masterFields properties.
While masterRowset and masterFields are used to link one rowset to another using an index and matching field
values, masterSource creates a query-to-rowset link between the parameters in the detail query and the master
rowset.

Example Suppose you have a table of customers named CUST, and a table of their orders named ORDERS. The
customers and their orders are both identified by a customer ID field, that happens (by design) to be named
CUST_ID in both tables. The following statements create a master-detail link between two queries.

qCust = new Query()
qCust.sql = "select * from CUST"
qCust.active = true
qOrder = new Query()
qOrder.sql = "select * from ORDERS where CUST_ID = :CUST_ID order by ORDER_DATE"
qOrder.masterSource = qCust.rowset
qCust.active = true

The parameter CUST_ID in the SQL statement for the ORDERS table is automatically filled in with the
CUST_ID field in the CUST table.

See also params, sql

maximum
The maximum allowed value of a field.

Property of DbfField, PdxField

Description maximum specifies the maximum allowed value of the field represented by the field object. A blank value
indicates no maximum. The maximum is the same data type as the field, except for numeric fields that have no
maximum; in that case, maximum is null.

Only character, date, and numeric fields (all variations) have a maximum. DBF tables must be level 7 to support
maximum.

If you dataLink a SpinBox component to a field with a maximum, that value becomes the default rangeMax
property of that component.

See also minimum

minimum
The minimum allowed value of a field.

Property of DbfField, PdxField

Description minimum specifies the minimum allowed value of the field represented by the field object. A blank value
indicates no minimum. The minimum is the same data type as the field, except for numeric fields that have no
minimum; in that case, minimum is null.

Only character, date, and numeric fields (all variations) have a minimum. DBF tables must be level 7 to support
minimum.

If you dataLink a SpinBox component to a field with a minimum, that value becomes the default rangeMin
property of that component.

See also maximum

modified
A flag to indicate whether the current row has been modified.
Data objects 396

name
Property of Rowset

Description The modified property indicates whether the current row has been modified. It is automatically set to true
whenever the value of any Field object is changed, either directly by assignment, or indirectly through a
dataLinked control.

If modified is true, then an attempt to save the row is made if there is navigation off the row or a state switch in
the rowset. If modified is false, then this implicit save is not attempted.

modified is set to false whenever a row is read into the row buffer after navigating to it, is refreshed by
refreshRow() or refresh(), or is saved. You may also set the modified property to true or false manually. For
example, you can set modified to false after assigning some value properties during an onAppend event. This
makes the values you filled in default values, and the row will not be automatically saved if the user does not
add more information.

In addition to tracking changes during normal data entry, the modified property is also set to true during Filter
and Locate modes. This allows you to determine if any criteria have been specified before attempting an
applyFilter() or applyLocate(). When in either of these modes, navigation cancels the mode and moves the row
cursor relative to the last row position, but no save is attempted, even if modified is true.

Example The following example is the onClick event handler for a Reply button in an E-mail viewer. It copies the name
from the From field of the original to the To field of the reply and duplicates the Subject field. After setting the
value properties, the rowset’s modified property is set to false to indicate that these are the default values.

function replyButton_onClick()
 local cTo, cSubject
 cTo = form.rowset.fields["From"].value
 cSubject = form.rowset.fields["Subject"].value
 if form.rowset.beginAppend()
 form.rowset.fields["To"].value = cTo
 form.rowset.fields["Subject"].value = cSubject
 form.rowset.modified = false
 endif

See also refresh(), refreshRow(), value

name
The name of a custom data object

Property of All Data object classes

Description The Data object name property simply identifies the name associated with a particular Data Object. This
property is read-only and is assigned when the object is created.

navigateByMaster
Use the navigateByMaster property to flag a detail rowset to move when its master rowset is moved. The
navigateByMaster property allows detail rowsets and a linked master rowset to be navigated as though they
were part of a single, combined rowset (similar to the xDML SET SKIP command).

Property of Rowset

Description When set to true in a detail rowset, navigateByMaster signals the linked master rowset to navigate through any
matching detail rows before moving to a new master row.

More specifically, navigateByMaster :

• Flags a detail rowset so its row cursor is moved when its master rowset’s next(), first(), or last() methods
are called

• Flags a detail rowset so its atFirst() or atLast() methods are called when its master rowset’s atFirst() or
atLast() methods are called.
397 dBL Language Reference

navigateByMaster
When a master rowset has one or more detail rowset’s with navigateByMaster set to true, the behavior of the
following rowset methods is modified as follows:

first() Ensures that linked detail rowsets are positioned to the first row matching the first master row. After
positioning a master rowset to its first row, the masters first() method positions any linked detail rowsets to
their first matching row, which in turn position any linked grandchild rowsets to their first row matching their
master rowsets. This process continues recursively through the entire tree of linked rowsets.

next() Attempts to move detail and master rowsets such that they appear to have moved one or more rows
relative to their starting positions, as if they were a single combined rowset. next() can be called with an
optional numeric parameter specifying the direction (positive to move forward, negative to move backward) and
number of rows to move. If no parameter is specified, next() defaults to moving one row forward. next() will
return true if it is able to move the number of rows specified, otherwise it returns false.

next() moves the row cursors according to the following rules:

• next() will only move linked detail rowsets that have their navigateByMaster property set to true.
• next() will attempt to move these linked detail rowsets before moving the master rowset.
• If a rowset has more than one linked detail rowset, next() will attempt to move them in the order in which

they were linked to the master rowset. In addition, only detail rows matching the current master row will be
moved (i.e. navigation occurs as if the master-detail link is constrained)

• When moving in a detail rowset, next() will continue moving in the same detail rowset until it moves the
number of rows requested, or it reaches end-of-set (i.e. no more detail rows are found matching the current
master row). If the detail rowset has reached end-of-set, and there are still more rows to be moved, next()
will continue with the next linked detail rowset or, if there are no other linked detail rowsets, next() will
move the master rowset one row and synchronize the linked detail rowsets to:

• their first matching row (if moving forward)
• their last matching row (if moving backward)
• end-of-set (if no matching row is found).

If there are still more rows to be moved to, next() will repeat this process starting once again with the first
linked detail rowset.

• If a linked detail rowset , for example d1, is itself a master rowset and has its own detail rowset , d2, (with
navigateByMaster set to true), it will act as a master rowset and follow the same sequence of events
described above. The net result of this sequence is that the lowest detail rowset (d2 in this example) will be
moved first. When d2 reaches end-of-set, its master rowset, d1, will be moved. When d1 reaches end-of-set,
its master rowset will be moved.

last() Ensures that linked detail rowsets are positioned to the last row matching the last master row. After
positioning a master rowset to its last row, the master’s last() method positions any linked detail rowsets to their
last matching row, which in turn position any linked grandchild rowsets to their last row matching their master
rowsets. This process continues recursively through the entire tree of linked rowsets.

atFirst() Returns true when a master rowset is at the first row and all linked detail rowsets, whose
navigateByMaster properties are set to true, are at their first matching rows. Otherwise returns false.

atLast() Returns true when a master rowset is at the last row and all linked detail rowsets, whose
navigateByMaster properties are set to true, are at their last matching rows. Otherwise returns false.

The navigateByMaster property’s default is false.

To use this property:
In the detail rowset, set navigateByMaster to true

• Specify the master rowset for the form.rowset (using the standard toolbar’s navigation buttons).
• Specify the master rowset as the grid's datalink if you want to setup a grid containing columns from both the

master and linked detail rowsets.
• Set the grandchild rowset's navigateByMaster to true to add additional master detail levels (such as parent,

child, grandchild):

Grid and Browse classes
dBL's Grid class now provides correct rowset navigation when datalinked to a master rowset with at least one
detail rowset whose navigateByMaster is set to true.
Data objects 398

navigateMaster
Similarly, dBL’s Browse class provides correct navigation when controlled by a table using xDML SET
RELATION and SET SKIP commands.

See also atFirst(), atLast(), detailNavigationOverride, endOfSet, first(), last(), navigateMaster(), next(), SET SKIP

navigateMaster
Allows a linked-detail rowset to affect movement in its master rowset so that master and detail rowsets are
navigated as though they were part of a single, combined rowset (similar to the xDML SET SKIP command).

Property of Rowset

Description When a detail rowset’s next() method reaches end-of-set, after having been called explicitly with it’s
navigateMaster property set to true, it will move its master rowset to the next row in the master rowset’s current
order.
The navigateMaster property’s default is false.

See also atFirst(), atLast(), detailNavigationOverride, endOfSet, first(), last(), navigateByMaster(), next(), SET
SKIP

next ()
Moves the row cursor to another row relative to the current position.

Syntax <oRef>.next([<rows expN>])

<oRef> The rowset in which you want to move the row cursor.

<rows expN> The number of rows you want to move. By default, the next row forward.

Property of Rowset

Description next() takes an optional numeric parameter that specifies in which direction, forward or backward, to move and
how many rows to move through, relative to the current row position. A negative number indicates a search
backward, toward the first row; a positive number indicates a search forward, toward the last row. For example,
a parameter of 2 means to move forward two rows.

If a filter is active, it is honored.

If the row cursor encounters the end-of-set while moving, the movement stops, leaving the row cursor at the
end-of-set, and next() returns false. Otherwise next() returns true.

Navigation methods such as next() will cause the rowset to attempt an implicit save if the rowset’s modified
property is true. The order of events when calling next() is as follows:

1 If the rowset has a canNavigate event handler, it is called. If not, it’s as if canNavigate returns true.
2 If the canNavigate event handler returns false, nothing else happens and next() returns false.
3 If the canNavigate event handler returns true, the rowset’s modified property is checked.
4 If modified is true:

1 The rowset’s canSave event is fired. If there is no canSave event, it’s as if canSave returns true.
2 If canSave returns false, nothing else happens and next() returns false.
3 If canSave returns true, dBASE Plus tries to save the row. If the row is not saved, perhaps because it fails

some database engine-level validation, a DbException occurs—next() does not return.
4 If the row is saved, the modified property is set to false, and the onSave event is fired.

5 After the current row is saved (if necessary):
1 The row cursor moves to the designated row.
2 The onNavigate event fires.
3 next() returns true (if the navigation did not end up at the end-of-set).

Other navigation methods go through a similar chain of events.

See also endOfSet, filter, locateNext()
399 dBL Language Reference

notifyControls
notifyControls
Specifies whether dataLinked controls are updated as field values change or the row cursor moves.

Property of Rowset

Description notifyControls is usually true so that dataLinked controls are automatically updated as you navigate from row to
row or when you directly assign values to the value property of Field objects.

You may set notifyControls to false if you are performing some data manipulation and don’t want the overhead
of constantly updating the controls.

When notifyControls is set to true, the controls are always refreshed, as if refreshControls() was called.

See also refreshControls(), value

onAbandon
Event fired after the rowset is successfully abandoned.

Parameters none

Property of Rowset

Description A rowset may be abandoned explicitly by calling its abandon() method, or implicitly via the user interface by
pressing Esc or choosing Abandon Row from the default Table menu or toolbar while editing table rows. While
the canAbandon event fires first to see if the abandon actually takes place, onAbandon fires after the abandon
occurs.

If you are abandoning changes made to a row, the row is automatically refreshed, so there is no need to call
refreshRow() in the onAbandon. However, this is not considered navigation, so if you have an onNavigate
event handler, you should call it from onAbandon.

Example This basic onAbandon event handler calls onNavigate if one is defined.
function Rowset_onAbandon
 if not empty(this.onNavigate)
 this.onNavigate()
 endif

See also abandon(), canAbandon

onAppend
Event fired after the rowset successfully enters Append mode.

Parameters none

Property of Rowset

Description A rowset may be put in Append mode explicitly by calling its beginAppend() method, or implicitly via the user
interface by choosing Append Row from the default Table menu or toolbar while editing table rows. While the
canAppend event fires first to see if the new append actually takes place, onAppend fires after the row buffer has
been cleared and is ready for new values.

You can use onAppend to do things like automatically time stamp the new row or fill in default values. If you
use onAppend to set field values, set the modified property to false at the end of the event handler to indicate that
the row hasn’t been changed by the user. This way, if the user does not add any more data, the row will not be
saved automatically if they navigate to another row or try to append another.

Example The following example saves the user’s network ID to all newly created rows.
function invoice_onAppend()
 this.fields["USER_ID"].value := id()
 this.modified := false
Data objects 400

onChange
This event handler could be used in combination with a table that has default values set for certain fields, like a
timestamp for the date and time of entry. The user’s network ID is not something the database engine can get, so
you have to set this manually.

See also beginAppend(), canAppend, modified

onChange
Event fired after a field’s value property is successfully changed.

Parameters none

Property of Field (including DbfField, PdxField, SqlField)

Description A Field object’s value property may be changed directly by assigning a value to it, or indirectly through a
dataLinked control. When assigning a value, the change occurs during the assignment statement. When using a
dataLinked control, the change doesn’t happen until the user tries to move the focus to another control. In both
cases, canChange fires first to see if the change can actually take place. If it does, the value is changed and then
onChange is fired.

Example The following canChange and onChange event handlers work together to record all change attempts to a field
(even if the modified row is abandoned later). An audit table is open in another query on the form.

function Field_canChange()
 this.initValue = this.value // Save initial value
 return true // Always allow change

function Field_onChange()
 if not this.initValue == this.value // Perform exact comparison
 local r // Assign reference to audit rowset
 r = this.parent.parent.parent.parent.audit1.rowset
 if r.beginAppend()
 r.fields["Field"].value := this.fieldName
 r.fields["Old value"].value := this.initValue
 r.fields["New value"].value := this.value
 r.fields["User"].value := id()
 r.save()
 endif
 endif

See also canChange, value

onChange is also an event of the ListBox, ComboBox, Entryfield, and Editor classes.

onClose
Event fired after a query or stored procedure is successfully closed.

Parameters none

Property of Query, StoredProc

Description An attempt to close a query or stored procedure occurs when its active property, or the active property of the
object’s database, is set to false. If the object’s rowset has been modified, dBASE Plus will try to save it, so the
close attempt can be canceled by the rowset’s canSave event handler. If not, the row is saved.

The close can also be prevented by the Query or StoredProc object’s canClose event handler. If not, the object is
closed, and its onClose event fires.

Because onClose fires after the rowset has closed, you can no longer affect its fields. If you want to do
something with the rowset’s data when the rowset closes, use the canClose event instead, and have the event
handler return true.

See also active, canClose, canSave
401 dBL Language Reference

onDelete
onDelete
Event fired after a row is successfully deleted.

Parameters none

Property of Rowset

Description A row may be deleted explicitly by calling the delete() method, or implicitly via the user interface by choosing
Delete Rows from the default Table menu or toolbar while editing table rows. While the canDelete fires first to
determine if the row is actually deleted, onDelete fires after the row has been removed.

Because the row has been removed by the time onDelete fires, the row cursor is at the next row or the end-of-set
when onDelete fires. However, this movement is not considered navigation, so if you have an onNavigate event
handler, you should call it from onDelete.

See also canDelete, delete()

onEdit
Event fired after the rowset successfully enters Edit mode.

Parameters none

Property of Rowset

Description The beginEdit() method is called (implicitly or explicity) to put the rowset in Edit mode. While the canEdit
event fires first to see if the switch to Edit mode actually takes place, onEdit fires after the rowset has switched
to Edit mode.

You can use onEdit to do things like automatically record when edits take place, or to save original values for
auditing.

See also autoEdit, beginEdit, canEdit

onGotValue
Event fired after a field’s value property is successfully read.

Parameters none

Property of Field (including DbfField, PdxField, SqlField)

Description onGotValue is fired when reading a field’s value property explicitly and when it is read to update a dataLinked
control. It does not fire when the field is accessed internally for SpeedFilters, index expressions, or master-detail
links, or when calling copyToFile().

See also beforeGetValue, value

onNavigate
Event fired after successful navigation in a rowset.

Parameters <method expN> Numeric value that indicates which method was called to fire the event:

Value Method
1 next()
2 first()
3 last()
4 All other navigation

Data objects 402

onOpen
<rows expN> Number of rows next() method was called with. Zero if next() was not used.

Property of Rowset

Description Navigation in a rowset may occur explicitly by calling a navigation method like next() or goto(), or implicitly
via the user interface by choosing a navigation option from the default Table menu or toolbar while viewing a
rowset. While canNavigate fires first before the row cursor has moved to see if the navigation actually takes
place, onNavigate fires after the row position has settled on the desired row or end-of-set.

Because onNavigate fires when moving to the end-of-set and you cannot access field values when you’re at the
end-of-set, you may want to test the rowset’s endOfSet property before you attempt to access field values in
your onNavigate handler.

You can use onNavigate to update non-dataLinked controls or calculated fields. In that case, you may want to
call your onNavigate handler from the onOpen event as well, so that these objects are up-to-date when the
rowset first opens.

When navigation occurs because a row has been abandoned or deleted, onNavigate does not fire. Call the
onNavigate event handler from the onAbandon and onDelete event handler.

Example The following onNavigate event handler calls a custom form method called refreshUnlinked(), which has the
job of updating any controls that are not dataLinked to the rowset. It also displays a message if the end-of-set
has been reached.

function Rowset_onNavigate()
 if this.endOfSet
 msgbox("No more entries", "Alert", 48)
 else
 this.parent.parent.refreshUnlinked()
 endif

In most applications, when navigating to the end-of-set the row cursor is always put back to the previous valid
row. Therefore, the message displayed here will appear when the row cursor is on the end-of-set. Once the
dialog box is dismissed, the row cursor will be moved back. There is no reason to call refreshUnlinked() when
at end-of-set either, because the navigation that follows will cause the method to be called again.

See also canNavigate, first(), goto(), last(), next(), onOpen

onNavigate is also an event of the Form class.

onOpen
Event fired after query or stored procedure is opened successfully.

Parameters none

Property of Query, StoredProc

Description onOpen fires after the Query or StoredProc object has successfully opened after its active property has been set
to true.

Example The following onOpen event handler adds a calculated field to a query.
function invoice1_onOpen()
 c = new Field()
 c.fieldName := "Total"
 this.rowset.fields.add(c)
 c.beforeGetValue := {||this.parent["Qty"].value * this.parent["PricePer"].value}

Note that the this in the second statement refers to the query, but in the codeblock, this refers to the calculated
field.

See also canOpen

onOpen is also an event of most form objects.
403 dBL Language Reference

onProgress
onProgress
Event fired periodically during long-running data processing operations.

Parameters <percent expN> The approximate percent-complete of the operation, from 0 to 100. When a message is
passed, <percent expN> is the value -1.

<message expC> A text message from the database engine.

Property of Session

Description Use onProgress to display progress information during data processing operations such as copying or indexing.

onProgress fires for the following operations:

Database::copyTable() COPY TABLE All UpdateSet methods APPEND FROM
Database::createIndex() COPY TO INDEX ON SORT

The onProgress event handler receives two parameters, but only one of them is valid for any given event. You
may get either:

• A percent-complete from 0 to 100 in <percent expN>, in which case <message expC> is a blank string, or

• A message in <message expC>, in which case <percent expN> is -1.

Example Suppose you want to rebuild an index tag as part of a table maintenance feature, and while it’s working, display
progress information in a form. You could create a form with a Progress control to display the percentage
complete and a Text control for messages. Here are the two pertinent form methods:

function Form_onOpen
 _app.session.onProgress = class::onProgress
 _app.session.form = form
 index on LAST_NAME + FIRST_NAME tag FULL_NAME
 _app.session.onProgress = null

function onProgress(nPercent, msg)
 if nPercent >= 0
 this.form.progress1.value = nPercent
 elseif not empty(msg)
 this.form.message1.text = msg
 endif

By using an onOpen event, everything happens simply by opening the form. First, the onProgress() method in
the form is assigned as the onProgress event handler for the _app object’s session. Then a reference to the
current form is assigned as a property of the session so that the session’s event handler can easily access the
form. Then the actual indexing is performed, and when it’s done, the onProgress event is cleared by assigning
null.

In the onProgess() method, the nPercent parameter is checked. If it’s greater than zero, the method is being
passed an updated percentage, so the Progress control is updated. Otherwise, if the msg parameter is not blank,
its contents are displayed in the Text control on the form.

See also none

onSave
Event fired after successfully saving the row buffer.

Parameters none

Property of Rowset

Description The row buffer may be saved explicitly by calling save(), or implicitly by navigating in the rowset or closing
the rowset. While canSave is fired first to verify that data is good before allowing it to be written, onSave fires
after the row has been saved.
Data objects 404

open()
Example The following onSave event handler calls the rowset’s flush() method to make sure that the data is written to
disk as each record is saved:

function Rowset_onSave
 this.flush()

See also canSave, save()

open()
Opens a database connection.

Syntax This method is called implicitly by the Database object.

Property of Database

Description The open() method opens the database connection. It is called implicitly when you set the Database object’s
active property to true. In typical usage, you do not call this method directly.

Advanced applications may override the definition of this method to perform supplementary actions when
opening the database connection. Custom data drivers must define this method to perform the appropriate
actions to open their database connection.

See also active, close()

packTable ()
Packs a Standard table by removing all deleted rows.

Syntax <oRef>.packTable(<table name expC>)

<oRef> The database in which the table exists.

<table name expC> The name of the table you want to pack.

Property of Database

Description For DBF (dBASE) tables, packTable() removes all the records in a table that have been marked as deleted,
making all the remaining records contiguous. As a result, the records are assigned new record numbers and the
disk space used is reduced to reflect the actual number of records in the table.

For DB (Paradox) tables, packTable() removes all deleted records and redistributes the remaining records in the
record blocks, optimizing the block structure.

Packing is a maintenance operation and requires exclusive access to the table; no one else may have it open at
the time, or packTable() will fail.

To refer to a Standard table, you can always use the default database in the default session by referring to it
through the databases array property of the _app object. For example,

_app.databases[1].packTable("Customer")

A couple observations regarding the packTable() method:

• The packTable() method returns true or false to indicate whether the packing operation was succesfull.

• Packing is a maintenance operation that requires exclusive access to the table. The packTable() method will
fail - return false - if someone else has the table open.

• The packTable() method can return a value of true without any records actually being deleted. A return
value of true only indicates the operation encountered no errors. It does not imply that records were deleted.
If no records were marked as deleted, the packTable() method will return true as long as it does not
encounter any errors.

• In order to catch any errors that might occur, it is recommended that packTable() be used in a try/endtry
construct.

See also delete(), emptyTable()
405 dBL Language Reference

params
params
Parameters for an SQL statement or stored procedure call.

Property of Query, StoredProc

Description The params property contains an associative array that contains parameter names and values, if any, for an SQL
statement in a Query object or a stored procedure call in a StoredProc object.

For a Query object, assigning an SQL statement with parameters to the sql property automatically creates the
corresponding elements in the params array. Parameters are indicated by colons. The values you want to
substitute are then assigned to the array elements in one of two ways:

• Manually, before the query is activated or requeried with requery().

• By assigning a masterSource to the query, in which case parameters are substituted with the matching fields
from the fields array of the masterSource’s rowset. Parameters are matched to fields by name.

For a StoredProc object, the Borland Database Engine will try to get the names and types of any parameters
needed by a stored procedure, once the procedure name is assigned to the procedureName property. This works
to varying degrees for most SQL servers. If it succeeds, the params array is filled automatically with the
corresponding Parameter objects. You must then assign the values you want to substitute to the value property
of those objects.

For SQL servers that do not return the necessary stored procedure information, include the parameters, preceded
with colons, in parentheses after the procedure name. The corresponding Parameter objects in the params array
will be created for you; then you must assign the necessary type and value information.

Example The following statements create a query with a parameter. The parameter in the SQL statement, preceded by a
colon, automatically creates the corresponding element in the params array.

q = new Query()
q.sql = "select * from CUST where CUST_ID = :custid"
q.params["custid"] = 123
q.active = true

See also masterSource, procedureName, requery(), sql

picture
A template that formats input to a DB (Paradox) field.

Property of PdxField

Description A picture uses special template symbols to format data entry into a field. However, many Paradox template
symbols do not match dBASE Plus template symbols, so a picture for a DB field probably won’t work as-is in
the picture property of a control unless it’s very simple, for example “999.99”.

dBASE Plus does not enforce the DB field template. The picture property is informational only.

picture is also a property of some form components.

precision
The number of digits allowed in an SQL-based field.

Property of SqlField

Description The precision property specifies the maximum number of digits that can be stored in a field represented by the
SqlField object. The more digits allowed, the greater the precision, or accuracy, of a number.

See also scale
Data objects 406

prepare ()
prepare ()
Prepares an SQL statement or stored procedure.

Syntax <oRef>.prepare()

<oRef> The object you want to prepare.

Property of Query, StoredProc

Description prepare() prepares the stored procedure named in the procedureName property of a StoredProc object or the
SQL statement stored in the sql property of a Query object. If the object is connected to an SQL-server-based
database, the prepare message is passed on to the server.

Preparing an SQL statement or stored procedure call includes compiling the statement and setting up any
optimizations. If the statement includes parameters, the statement can be prepared first, and, sometime later, you
can get the parameter values from the client. Then the prepared statement and its parameters are ready for
execution. By separating the client and server activities, things run a bit faster.

Preparing is part of the process that occurs when you set an object’s active property to true, so you’re never
required to call prepare() explicitly.

Example In this example, a query is executed using a value that is entered by the user. You can prepare the query first,
placing the parameter in the SQL statement with a colon in front of it:

q = new Query()
q.database = someDatabase
q.sql = "select * from EMPLOYEE where EMP_ID = :id"
q.prepare()

Then when the user enters the value of the parameter, you assign it to the query’s params array and execute the
query:

q.params["id"] = someForm.empIdText.value
q.active = true

Because the query has already been prepared, making it active takes less time. Later, when the parameter
changes, you reassign the parameter and requery:

q.params["id"] = someForm.empIdText.value
q.requery()

See also requery()

problemTableName
Name of the table in which you want to collect rows that could not be used during an update operation because
of some problem other than a key violation.

Property of UpdateSet

Description In addition to key violations, problems during update operations are often caused by things like mismatched
fields. If a row could not be transferred from the source to the destination because of a problem, it is instead
copied to the table specified by the problemTableName property.

See also changedTableName, destination, keyViolationTableName, source

procedureName
The name of the stored procedure to call.

Property of StoredProc

Description Set the procedureName property to the name of the procedure to call. The Borland Database Engine will try to
get the names and types of any parameters needed by the stored procedure.

The following databases return complete parameter name and type information:
407 dBL Language Reference

readOnly
• InterBase
• Oracle
• ODBC, if the particular ODBC driver provides it

The following databases return the parameter name but not the type:

• Microsoft SQL Server
• Sybase

The following database does not return any parameter information:

• Informix

If the BDE can get the parameter names, the params array is filled automatically with the corresponding
Parameter objects. You must then assign the values to substitute to the value property of those objects.

For SQL servers that do not return the necessary stored procedure information, include the parameters, preceded
with colons, in parentheses after the procedure name. Empty Parameter objects will be created.

If the type of the parameter or the data type of the value for output parameters is not provided automatically, it
must be set before calling the stored procedure, in addition to any input values.

Example The following statements call a stored procedure that returns an output parameter. The result is displayed in the
result pane of the Command window.

d = new Database()
d.databaseName = "IBLOCAL"
d.active = true
p = new StoredProc()
p.database = d
p.procedureName = "DEPT_BUDGET"
p.params["DNO"].value = "670"
p.active = true
? p.params["TOT"].value // Display output

The following statement calls a stored procedure in a database that does not return any parameter information.
Therefore, the parameters must be declared in the procedureName property. Note that the parameter names are
case-sensitive, and you must initialize any output parameters by assigning a dummy value of the correct data
type.

#define PARAMETER_TYPE_INPUT 0
#define PARAMETER_TYPE_OUTPUT 1
#define PARAMETER_TYPE_INPUT_OUTPUT 2
#define PARAMETER_TYPE_RESULT 3

d = new Database()
d.databaseName = "WIDGETS"
d.active = true
p = new StoredProc()
p.database = d
p.procedureName = "PROJECT_SALES(:month, :units)"
p.params["month"].type = PARAMETER_TYPE_INPUT
p.params["month"].value = 6
p.params["units"].type = PARAMETER_TYPE_OUTPUT
p.params["units"].value = 0 // Output will be numeric
p.active = true
? p.params["TOT"].value // Display output

See also params

readOnly
Whether a DBF (dBASE) or DB (Paradox) field is read-only.

Property of DbfField, PdxField

Description readOnly indicates whether the field represented by the Field object is read-only or not.

See also required
Data objects 408

ref
ref
A reference to the active data module object.

Property of DataModRef

Description After activating the DataModRef object, you may reference the data module object through the DataModRef
object’s ref property.

Example The following statement, generated by the Form designer, assigns the data module’s primary rowset, the one in
its teacher1 query, as the form’s primary rowset.

this.rowset = this.dataModRef1.ref.teacher1.rowset

See also active, filename

ref is also a property of the ReportViewer class.

refresh ()
Refreshes data in the entire rowset.

Syntax <oRef>.refresh()

<oRef> The rowset you want to refresh.

Property of Rowset

Description To increase performance, rows are cached in memory as they are encountered. If the row cursor revisits a
cached row, it can be reread quickly from memory instead of the disk. refresh() purges all cached rows—not to
be confused with cached updates—for the rowset, forcing dBASE Plus to reread the data from disk. It discards
any changes to the row buffer, so a row that has been modified is not saved. When the rowset is refreshed, any
dataLinked controls are also refreshed with values for the current row if notifyControls is true.

refresh() does not regenerate the rowset. If the rowset is not live, refresh() has no effect. Use requery() to
regenerate the rowset.

See also flush(), live, refreshControls(), refreshRow(), requery(), requestLive

refresh() is also a method of the Form class.

refreshControls ()
Refreshes any controls that are dataLinked to the current row.

Syntax <oRef>.refreshControls()

<oRef> The rowset you want to refresh.

Property of Rowset

Description refreshControls() updates any controls that are dataLinked to Field objects in the rowset, regardless of the
setting of the notifyControls property. The controls are updated with the values in the row buffer, not the values
on disk.

Use refreshRow() first to refresh the fields in the row buffer with the values on disk if desired.

See also notifyControls, refreshRow()

refreshRow ()
Refreshes data in the current row.

Syntax <oRef>.refreshRow()
409 dBL Language Reference

reindex ()
<oRef> The rowset you want to refresh.

Property of Rowset

Description refreshRow() rereads the data for the current row from disk. It discards any changes to the row buffer, so a row
that has been modified is not saved. When the row is refreshed, any dataLinked controls are also refreshed if
notifyControls is true.

Use refresh() to refresh the entire rowset.

See also notifyControls, refreshControls(), refresh()

reindex ()
Rebuilds a Standard table’s indexes from scratch.

Syntax <oRef>.reindex(<table name expC>)

<oRef> The database in which the table exists.

<table name expC> The name of the table you want to reindex.

Property of Database

Description Indexes can become unbalanced during normal use. Occasionally, they can also be corrupted. In both cases, you
can fix the problem by using reindex(), which rebuilds the indexes from scratch.

Reindexing is a maintenance operation and requires exclusive access to the table; no one else may have it open
at the time, or reindex() will fail.

To refer to a Standard table, you can always use the default database in the default session by referring to it
through the databases array property of the _app object. For example,

_app.databases[1].reindex("Customer")

See also n/a

renameTable ()
Renames a table in a database.

Syntax <oRef>.renameTable(<old name expC>, <new name expC>)

<oRef> The database in which to rename the table.

<old name expC> The current name of the table.

<new name expC> The new name of the table.

Property of Database

Description renameTable() renames a table in a database, including all secondary files such as index and memo files.

The table to rename should not be open.

By specifying a path in <new name expC>, the table, together with its' associated files, is moved to that
destination and renamed <new name expC>. Associated files are moved regardless of whether <old name
expC> uses the .dbf designation.
If a path is specified in <old name expC>, and no path is specified in <new name expC>, the table is moved to the location
of the <oRef> database or (in the case of the default database_app.databases[1]) to the default directory.

To rename a Standard table, you can always use the default database in the default session by referring to it
through the databases array property of the _app object. For example,

_app.databases[1].renameTable("Before", "After")

See also copyTable()
Data objects 410

replaceFromFile ()
replaceFromFile ()
Copies the contents of a file into a BLOB field.

Syntax <oRef>.replaceFromFile(<file name expC> [,<append expL>])

<oRef> The BLOB field you want to copy into.

<file name expC> The name of the file you want to copy.

<append expL> Whether to append the new data or overwrite.

Property of Field

Description replaceFromFile() copies the contents of the named file into the specified BLOB field.

By specifying <append expL> as true, the contents of the file are added to the end of the current contents of the
BLOB field. If the parameter is specified as false or left out, the BLOB field will be overwritten and end up
containing only the contents of the file.
If you don't include an extension for <file name expC>, dBASE Plus assigns a .TXT extension. Use "." if you don't wish to
pass a file extension.

Example The following event handler copies the contents of an image file on disk to a binary field named Mugshot in the
current row.

function importImageButton_onClick
 local cFile
 cFile = getfile("*.bmp", "Import mugshot image")
 if "" # cFile
 form.rowset.fields["Mugshot"].replaceFromFile(cFile)
 endif

See also copyToFile()

requery ()

Re-executes the query or stored procedure, regenerating the rowset.

Syntax <oRef>.requery()

<oRef> The query or stored procedure you want to re-execute.

Property of Query, StoredProc

Description requery() re-executes a stored procedure or a query’s SQL statement, generating an up-to-date rowset. Calling
requery() is similar to setting the object’s active property to false and back to true, except that requery() does
not prepare the SQL statement. This includes attempting to save the current row if necessary and closing the
object, firing all the events along the way. If those actions are halted by the canSave or canClose event handlers,
the requery() attempt will stop at that point.

Use requery() when a parameter in the SQL statement has changed to re-execute the query with the new value.

Use refresh() to refresh the rowset without re-executing the query, which is faster. But refresh() has no effect
on a rowset that is not live; use requery() instead.

Example In this example, a query is executed using a value that is entered by the user. You can prepare the query first,
placing the parameter in the SQL statement with a colon in front of it:

q = new Query()
q.database = someDatabase
q.sql = "select * from EMPLOYEE where EMP_ID = :id"
q.prepare()

Then when the user enters the value of the parameter, you assign it to the query’s params array and execute the
query:

q.params["id"] = someForm.empIdText.value
411 dBL Language Reference

requestLive
q.active = true

Because the query has already been prepared, making it active takes less time. Later, when the parameter
changes, you reassign the parameter and requery:

q.params["id"] = someForm.empIdText.value
q.requery()

See also active, live, prepare(), refresh(), requestLive

requestLive
Specifies whether the query should generate an editable rowset.

Property of Query

Description Before making a query active, you can determine whether the rowset that is generated is editable or not. You
can choose to make it not editable to prevent accidental modification of the data.

requestLive defaults to true.

See also live

required
Whether a field is required to be filled in and not left blank.

Property of DbfField, PdxField

Description required indicates whether the field represented by the Field object is a required field; that is, whether it must be
filled in.

See also readOnly

rollback ()
Cancels the transaction by undoing all logged changes

Syntax <oRef>.rollback()

<oRef> The database whose changes you want to rollback.

Property of Database

Description A transaction works by logging all changes. If an error occurs while attempting one of the changes, or the
changes need to be undone for some other reason, the transaction is canceled by calling the rollback() method.
Otherwise, commit() is called to clear the transaction log, thereby indicating that all the changes in the
transaction were committed and that the transaction as a whole was posted.

Since new rows have already been written to disk, rows that were added during the transaction are deleted. In
the case of DBF (dBASE) tables, the rows are marked as deleted, but are not physically removed from the table.
If you want to actually remove them, you can pack the table with packTable(). Rows that were just edited are
returned to their saved values.

All locks made during a transaction are maintained until the transaction is completed. This ensures that no one
else can make any changes until the transaction is committed or abandoned.

Example See the example for beginTrans() for an example using rollback().

See also beginTrans(), cacheUpdates, commit()
Data objects 412

rowCount()
rowCount()
Returns the logical row count.

Syntax <oRef>.rowcount()

<oRef> The rowset you want to count.

Property of Rowset

Description rowCount() returns the logical row count of the rowset, if known. The logical row count is the number of rows
in the rowset, using the rowset's current index and filter conditions.

Determining the logical row count is often an expensive operation, requiring that the rows actually be counted
individually. When the count is not known, rowCount() returns the value -1; it does not attempt to get the count.
If your application requires the actual row count, use the count() method to count the rows if rowCount()
returns -1.

Note rowCount() is different from the function RECCOUNT(). RECCOUNT() returns the number of physical
records in a table. rowCount() returns the logical count in a rowset. These numbers are not guaranteed to be the
same, even with a SELECT * query of a DBF table, because rowCount() must consider deleted records—it
does not know if there are any unless it actually looks—while RECCOUNT() does not.

See also count(), rowNo()

rowNo()
Returns the current logical row number in the rowset.

Syntax <oRef>.rowno()

<oRef> The rowset containing the current row.

Property of Rowset

Description rowNo() returns the current logical row number in the rowset, if known. The logical row number is the relative
row number, using the rowset's current index and filter conditions. The first row is row number 1 and the last
row is equal to the number of rows in the current rowset.

In some cases, for example scrolling with the scrollbar in a grid to an arbitrary location and clicking on a row,
the logical row number is not known, and would have to be calculated. In contrast, if you were to page down
repeatedly to that same location, the row number is known, because it is updated as you move from page to page
in the grid. When the row number is not known, rowNo() returns the value -1.

Note rowNo() is different from the function RECNO(). RECNO() returns the physical record number of the current
row in a DBF table, which never changes (unless the table is PACKed). rowNo() returns the logical row
number; the same physical record will have a different logical row number, depending on the current index and
filter.

See also bookmark(), count(), rowCount()

rowset
A reference to the query’s or stored procedure’s rowset, or a data module’s primary rowset.

Property of DataModule, Query, StoredProc

Description A Query object always contains a rowset property, but that property does not refer to a valid Rowset object until
the query has been activated and the rowset has been opened.

Some stored procedures generate rowsets. If that is the case, the StoredProc object’s rowset property refers to
that rowset after the stored procedure is executed.

A data module may designate a primary rowset. This rowset is assigned to a form’s rowset property by the Form
designer when the data module is used in the form.
413 dBL Language Reference

save ()
For Query and StoredProc objects, the rowset property is read-only.

See also active, fields

rowset is also a property of the Form and StreamSource classes.

save ()
Saves the current row buffer.

Syntax <oRef>.save()

<oRef> The rowset you want to save.

Property of Rowset

Description After a row has been modified, you must call save() to write the row buffer to a rowset or table. By design,
save() has no effect if the rowset’s modified property is false, because supposedly there are no changes to save;
and a successful save() sets the modified property to false, indicating that values in the controls do not differ
from those on the disk. You can manipulate the modified property to control this designed behavior.

The canSave event fires after calling save(). If there is no canSave event handler, or canSave returns true, then
the row buffer is saved, the modified property is set to false, and the onSave event fires.

The row cursor does not move after a save() unless the values saved cause the row to become out-of-set. In that
instance, the row cursor is moved to the next available row or, if there are no more available rows, the end-of-set
.

Changes are written to disk unless the cacheUpdates property is set to true, in which case the changes are cached. Whether
the changes are actually written to a physical disk depends on the operating system and its own disk caches, if any..

See also cacheUpdates, canSave, flush(), modified, onSave

scale
The number of digits, to the right of the decimal point, that can be stored in a SQL-based field. The more digits allowed,
the greater the precision or accuracy of a number.

Property of SqlField

Description The scale property specifies the number of digits, to the right of the decimal point, that can be stored in the SqlField
object.

See also precision

session
The Session object to which the database, query, or stored procedure is assigned.

Property of Database, Query, StoredProc

Description A database must be assigned to a session. When created, a Database object is assigned to the default session.

A query or stored procedure must be assigned to a database, which in turn is assigned to a session. When
created, a Query or StoredProc object is assigned to the default database in the default session.

To assign the object to the default database in another session, assign that session to the session property.
Assigning the session property always sets the database property to the default database in that session.

To assign the object to another database in another session, assign the object to that session first. This makes the
databases in that session available to the object.

See also class Session
Data objects 414

setRange ()
setRange ()
Constrains the rowset to those rows whose key field values falls within a range.

Syntax <oRef>.setRange(<key exp>)

or
<oRef>.setRange(<startKey exp> | null, <endKey exp> | null)

<oRef> The rowset you want to constrain.

<key exp> Shows only those rows whose key value matches <key exp>.

<startKey exp> Shows those rows whose key value is equal to or greater than <startKey exp>.

<endKey exp> Shows those rows whose key value is less than or equal to <endKey exp>.

There are four ways to use setRange():

• Exact match: setRange(<key exp>)

• Range from start to end: setRange(<startKey exp>, <endKey exp>)

• Range from starting value: setRange(<startKey exp>, null)

• Range up to ending value: setRange(null, <endKey exp>)

Property of Rowset

Description setRange() is similar to a filter; setRange uses the rowset’s current index (represented by its indexName
property) and shows only those rows whose key value matches a single value or falls within a range of values.
This is referred to as a key constraint. Because it uses an index, a key constraint is instantaneous, while a filter
condition must be evaluated for each row. Use clearRange() to remove the constraint.

The key range values must match the key expression of the index. For example, if the index key is
UPPER(Name), specify uppercase letters in the range expressions. For character expressions, the key match is
always a partial string match (starting at the beginning of the expression); therefore, an exact match with <key
exp> could match multiple key values if the <key exp> is shorter than the key expression.

When you use both setRange() and a filter (and canGetRow) for the same rowset, you get those rows that are
within the index range and that also meet the filter condition(s).

Rowsets that use masterRowset for master-detail linkage internally apply setRange() in the detail rowset. If you
use setRange() in the detail rowset, it overrides the master-detail key constraint. Navigation in the master
rowset would reapply the master-detail constraint.

See also clearRange(), filter, indexName, masterRowset

share
How to share data access resources.

Property of Database, DataModRef

Description The share property controls how database connections and data modules are shared. share is an enumerated
property that can be one of the following:

Value Description
0 None
1 All

Database objects Multiple Database objects may share the same database connection. Sharing database
connections reduces resource usage on both the client and server. Some servers have a maximum number of
simultaneous connections, so sharing connections will also allow more users to connect to the server.
415 dBL Language Reference

source
When set to All (the default), all Database objects with the same databaseName property (running in the same
instance of dBASE Plus) will share the same database connection. When set to None, each Database object will
use its own connection.

DataModref objects When set to All, all DataModRef objects with the same dataModClass property will
share the same instance of that class; the same DataModule object. This means that, for example navigation
performed by one user of the DataModRef is seen by all users of that same dataModClass if their share property
is also All. Data module sharing is only useful in limited cases. For typical usage, share should be None, the
default.

source
The source rowset or table of an UpdateSet operation.

Property of UpdateSet

Description The source property contains an object reference to a rowset or the name of a table that is the source of an
UpdateSet operation. For an append(), update(), or appendUpdate(), it refers to the rowset or table that
contains the new data. For a copy(), it refers to the rowset or table that is to be duplicated. For a delete(), the
source property refers to the table that contains the list of rows to be deleted.

The destination property specifies the other end of the UpdateSet operation.

See also append(), appendUpdate(), copy(), delete(), destination, update()

sql
The SQL statement that describes the query.

Property of Query

Description The sql property of a Query object contains an SQL SELECT statement that describes the rowset to be
generated. To use a stored procedure in an SQL server that returns a rowset, use the procedureName property of
a StoredProc object instead.

The sql property must be assigned before the Query object is activated.

The SQL SELECT statement may contain an ORDER BY clause to set the row order, a WHERE clause to
select a subset of rows, perform a JOIN, or any other SQL SELECT clause.

But to take full advantage of the data objects’ features—such as locating and filtering—with SQL-server-based
tables, the SQL SELECT used to access a table must be a simple SELECT: all the fields from a single table,
with no options. For example,

select * from CUSTOMER

If the SQL statement is not a simple SELECT, locating and filtering is performed locally, instead of by the SQL
server. If the result of the SELECT is a small rowset, local searching will be fast; but if the result is a large
rowset, local searching will be slow. For large rowsets, you should use a simple SELECT, or use parameters in
the SQL statement and requery() as needed instead of relying on the Locate and Filter features.

Master-detail linking through the masterRowset and masterFields properties with SQL-server-based tables also
requires a simple SELECT. An alternative is master-detail linking though Query objects with the masterSource
property and parameters in the SQL statement. There is no simple SELECT restriction when using Standard
tables.

Parameters in an SQL statement are indicated by a colon. For example,
select * from CUST where CUST_ID = :cust_id

Whenever the SQL property is assigned, it is scanned for parameters. dBASE Plus automatically creates
corresponding elements in the query’s params array, with the name of the parameter as the array index. For
more information, see the params property.

In addition to assigning the SQL statement directly to the sql property, you may also use an SQL statement in an
external file. To use an external file, place an “@” symbol before the file name in the sql property. For example,
Data objects 416

state
@ORDERS.SQL

The external file must be a text file that contains an SQL statement.

Example The following SQL statement will select all the fields in the table MESSAGES:
select * from MESSAGES

See also active, executeSQL(), params, SELECT.

state
An enumerated value indicating the rowset’s current mode.

Property of Rowset

Description The state property is read-only, indicating which mode the rowset is in, as listed in the following table:

Value Mode
0 Closed
1 Browse
2 Edit
3 Append
4 Filter
5 Locate

• When the rowset’s query is not active, the rowset is Closed.

• While the query is active, the rowset is in Browse mode when it’s not in one of the next four modes.

• The rowset is in Edit mode after a successful beginEdit() (implicit or explicit) and it stays in that mode until
the row is saved or abandoned.

• After a successful beginAppend(), it is in Append mode. It stays in that mode until the new row is saved or
abandoned.

• After a beginFilter(), it is in Filter mode. It stays in that mode until there is an applyFilter() or the Filter
mode is abandoned.

• After a beginLocate(), it is in Locate mode. It stays in that mode until there is an applyLocate() or the
Locate mode is abandoned.

Example The following onClick event handler for a button labeled “Apply” tests the rowset’s state property so that it calls
either applyFilter() or applyLocate(), depending on the rowset’s current mode. It uses manifest constants
created with the #define preprocessor directive (and available in the VDBASE.H include file) to represent the
options of the state property, which makes the code more readable.

#define STATE_CLOSED 0
#define STATE_BROWSE 1
#define STATE_EDIT 2
#define STATE_APPEND 3
#define STATE_FILTER 4
#define STATE_LOCATE 5

// User developed code

function applyButton_onServerClick() // Apply Filter or Locate
 do case
 case form.rowset.state == STATE_FILTER
 this.form.rowset.applyLocate()
 case form.rowset.state == STATE_LOCATE
 this.form.rowset.applyFilter()
 endcase

See also abandon(), active, applyFilter(), applyLocate(), autoEdit, beginAppend(), beginEdit(), beginFilter(),
beginLocate(), save()
417 dBL Language Reference

tableDriver
tableDriver
The Driver currently being used to access a table

Property of Rowset

Description Returns a character string indicating the driver currently being used. For example; dBASE, FOXPRO or
PARADOX for native local tables. Advantage 32 bit for Advantage ODBC 32 bit Driver, and ORACLE,
INTERBASE, or MS SQL for SQL link drivers. Read only.

tableExists ()
Checks to see if a specified table exists in a database.

Syntax <oRef>.tableExists(<table name expC>)

<oRef> The database in which to see if the table exists.

<table name expC> The name of the table you want to look for.

Property of Database

Description tableExists() returns true if a table with the specified name exists in the database.

To look for a Standard table, you can always use the default database in the default session by referring to it
through the databases array property of the _app object. For example,

_app.databases[1].tableExists("Billing")

If you do not specify an extension, dBASE Plus will look for both a DBF (dBASE) and DB (Paradox) table with
that name.

tableLevel
The version of the current local table

Property of Rowset

Description Returns an integer indicating the version of the current local table. Currently only the BDE’s dBASE, FoxPro
and Paradox provide a non-zero value for this property. tableLevel values include: 3 for dBASE III, 4 for
dBASE IV, 5 for dBASE V when containing OLE or Binary fields, 5 for Paradox, 7 for Vdb7 and 25 for FoxPro
2.5. Read only.

tableName
The name of the current table

Property of Rowset, TableDef

Description Returns a character string indicating the name of the table a current rowset is based on. Read only.

tempTable
The status of the current table

Property of Rowset

Description Returns a logical True (.T.) when the current dable (referenced by tableName) is a temporary table. Read only.
Data objects 418

type [Field]
type [Field]
The data type of the value stored in a field.

Property of Field (including DbfField, PdxField, SqlField)

Description The type property reflects the data type stored in the field represented by the Field object.

See also beforeGetValue, value [Field]

type [Parameter]
An enumerated value indicating the type of parameter.

Property of Parameter

Description The type property indicates the type of parameter a Parameter object represents, as listed in the following table:

Value Type
0 Input
1 Output
2 InputOutput
3 Result

See the Parameter object’s value property for details on each type.

See also value [Parameter]

unidirectional
Specifies whether to assume forward-only navigation to increase performance on SQL-based servers.

Property of Query

Description If unidirectional is set to true, previously visited rows are not cached and less communication is required
between dBASE Plus and the SQL server. This results in fewer resources consumed and better performance, but
is worthwhile only if you never want to go backward in the rowset.

If unidirectional is true, you may still be able to go backward, depending on the server, but if so it would be
time-consuming.

See also updateWhere

unlock ()
Releases row and rowset locks.

Syntax <oRef>.unlock()

<oRef> The rowset that contains the lock.

Property of Rowset

Description unlock() releases automatic row locks and locks set by lockRow() and lockSet()

You cannot release locks during a transaction.

Example See the example for lockRow() for an example using unlock().

See also beginTrans(), lockRow(), lockSet()
419 dBL Language Reference

unprepare()
Releases the server resources used by a query or stored procedure.

Syntax This method is called implicitly by the Query or StoredProc object.

Property of Query, StoredProc

Description The unprepare() method cleans up after a query or stored procedure is deactivated. It is called implicitly when
you set the object’s active property to false. In typical usage, you do not call this method directly.

Advanced applications may override the definition of this method to perform supplementary actions when
deactivating the query or stored procedure. Custom data drivers must define this method to perform any
necessary actions to clean up when a query or stored procedure is deactivated.

See also active, prepare()

update
The date and time of the last update made to the row.

Property of LockField

Description Use update to determine the date and time the row or table was last updated. The date and time are represented
in a string in the following format:

MM/DD/YY HH:MM:SS

This format is accepted by the constructor for a Date object, so you can easily convert the update string into an
actual date/time.

This property is available only for DBF tables that have been CONVERTed.

Example The following event handler displays the last update date and time in a Text control on a form for the current
row, in GMT format.

function Rowset_onNavigate
 local dUpdate
 dUpdate = new Date(this.fields["_DBASELOCK"].update) // Convert to Date
 this.parent.parent.updateText.text := iif(dUpdate.getDay() == 0, ;
 "No update on record", "Last updated on " + dUpdate.toGMTString())

The day of an invalid or blank date is zero.

See also CONVERT, lock, user

update ()
Updates existing rows in one rowset from another.

Syntax <oRef>.update()

<oRef> The UpdateSet object that describes the update.

Property of UpdateSet

Description Use update() to update a rowset. You must specify the UpdateSet object’s indexName property that will be used
to match the records. The index must exist for the destination rowset. The original values of all changed records
will be copied to the table specified by the UpdateSet object’s changedTableName property.

To add new rows and update existing rows only, use the appendUpdate() method instead.

See also appendUpdate(), destination, changedTableName, source
420 dBL Language Reference

updateWhere
Determines which fields to use in constructing the WHERE clause in an SQL UPDATE statement. SQL-based
servers only.

Property of Query

Description updateWhere is an enumerated property that may be one of the following values:

Value Description
0 All fields
1 Key fields
2 Key fields and changed fields

See also unidirectional

usePassThrough
Controls whether or not a query, with a simple sql select statement (of the form "select * from <table>), is sent
directly to the DBMS for execution or is setup to behave like a local database table.

Property of Query

Description When the usePassThrough property is set to False (the default):

• For query's using a simple sql select statement (in the form "select * from table") which meet the conditions
listed below in "Conditions for Dynamic Caching", the query's rowset, when activated, is setup to behave
like a local, file based database table such as a dBASE .dbf table.

The query result set is managed using a dynamic caching algorithm, as described below in Dynamic Caching
Behavior", which supports the use of index and key-oriented operations.

• Query's using a complex sql select statement, or those which do not meet the conditions described below in
Conditions for Dynamic Caching, will be executed as if the usePassThrough property were set to True.

When the usePassThrough property is set to True, the query's sql statement, is passed directly through to the
database server for execution and the resulting rowset uses a more basic caching algorithm, described below in
"Basic Caching Behavior". The query result set cannot use most index, or key oriented operations.

Conditions for Dynamic Caching
• Query's sql property must contain a simple select statement ("select * from table").

• The database server must support row ID's and/or the table must have a unique or primary key index defined.

Dynamic Caching Behavior
When opening a table to use dynamic caching:

• The fastest index is chosen automatically if none was specified during table open.
• A partial cache is kept, ordered by index.
• The cache contains the current cursor row, plus the last several rows fetched.
• The cache is automatically refreshed ,with up-to-date data, when row navigation occurs and can be manually

refreshed by calling the rowset's refresh() method.
• The order in which a table can be navigated may be set via the rowset's indexName property.
• Key-oriented operations, such as findKey() and setRange(), can be used.

Basic Caching Behavior
Basic caching is used if:

• The conditions for dynamic caching are not met
or
Data objects 421

• The usePassThrough property is set to False

With basic caching:

• Every row fetched is cached on the workstation in case it is needed again.
• The cache is not automatically refreshed. To refresh the cache you must call the query's requery() method or

re-execute the query by setting the query's active property to False and then back to True.
• The order rows are navigated must be set via the sql select statement's ORDER BY clause, rather than via the

rowset's indexName property.
• Key-oriented operations such as findKey() and setRange() are not available.
• However, bookmarks can be used as long as rows can be uniquely identified.

Pros and Cons of Dynamic Caching
• Dynamic caching works well with tables of up to a few million rows.
• Larger tables may take a considerable amount of time to open.

Pros and Cons of Basic Caching
Basic caching can be used to quickly retrieve initial results from queries on large tables (tables with more than a
few million rows) as long as no ORDER BY clause is included in the sql statement. However, you still need to
be careful to limit the number of rows retrieved to the workstation, as every row retrieved is cached in
workstation memory and can quickly use up available memory if the result set is more than a few million rows
in size.

user
The name of the user that last locked or updated the row.

Property of LockField

Description Use user to determine the username of the person that currently has a lock when a lock attempt fails, or the
name of the user that last had a lock on the row. The maximum length of user depends on the size of the
_DBASELOCK field specified when the table was CONVERTed.

This property is available only for DBF tables that have been CONVERTed.

Example See lock.

See also CONVERT, lock, update

user ()
Returns the login name of the user currently logged in to the session.

Syntax <oRef>.user()

<oRef> The session you want to check.

Property of Session

Description user() returns the login name of the user currently logged in to a session on a system that has DBF table security
in place. If no DBF table security has been configured, or no one has logged in to the session, user() returns an
empty string.

See also access(), addPassword(), login()

value [Field]
The value of a field in the row buffer.

Property of Field (including DbfField, PdxField, SqlField)
422 dBL Language Reference

Description All of the Field objects in the rowset’s fields array property have a value property, which reflects the value of
the field in the row buffer, which in turn reflects the values of the fields in the current row.

You may attempt to change the value of a value property directly by assignment, in which case the attempt
occurs immediately, or through a dataLinked control, in which case the attempt occurs when the control loses
focus. In either case, the field’s canChange property fires to see whether the change is allowed. If canChange
returns false, then the assignment doesn’t take; if the change was through a dataLinked control, the control still
contains the proposed new value. If canChange returns true or there is no canChange event handler, the field’s
value is changed and the onChange event fires.

When a field is changed, the rowset’s modified property is automatically set to true to indicate that the rowset
has been changed.

By using a field’s beforeGetValue event, you can make the value property appear to be something else besides
what is in the row buffer.

Example The following example is the onClick event handler for a Reply button in an E-mail viewer. It copies the name
from the From field of the original to the To field of the reply and duplicates the Subject field. After setting the
value properties, the rowset’s modified property is set to false to indicate that these are the default values.

function replyButton_onClick()
 local cTo, cSubject
 cTo = form.rowset.fields["From"].value
 cSubject = form.rowset.fields["Subject"].value
 if form.rowset.beginAppend()
 form.rowset.fields["To"].value = cTo
 form.rowset.fields["Subject"].value = cSubject
 form.rowset.modified = false
 endif

See also beforeGetValue, canChange, modified, onChange, onGotValue

value is also a property of the Parameter and many form classes.

value [Parameter]
The input, output, or result value of a stored procedure.

Property of Parameter

Description Values are transmitted to and from stored procedures through Parameter objects. Each object’s type property
indicates what type of parameter the object represents. Depending on which one of the four types the parameter
is, its value property is handled differently.

• Input: an input value for the stored procedure. The value must be set before the stored procedure is called.

• Output: an output value from the stored procedure. The value must be set to the correct data type before the
stored procedure is called; any dummy value may be used. Calling the stored procedure sets the value
property to the output value.

• InputOutput: both input and output. The value must be set before the stored procedure is called. Calling the
stored procedure updates the value property with the output value.

• Result: the result value of the stored procedure. In this case, the stored procedure acts like a function,
returning a single result value, instead of updating parameters that are passed to it. Otherwise, the value is
treated like an output value. The name of the Result parameter is always “Result”.

If a Parameter object is assigned as the dataLink of a component in a form, changes to the component are
reflected in the value property of the Parameter object, and updates to the value property of the Parameter object
are displayed in the component.

Example The following statements call a stored procedure that returns an output parameter. The result is displayed in the
Script Pad.

d = new Database()
d.databaseName = "IBLOCAL"
d.active = true
p = new StoredProc()
Data objects 423

p.database = d
p.procedureName = "DEPT_BUDGET"
p.params["DNO"].value = "670" // Set input parameter
p.active = true
? p.params["TOT"].value // Display output

See also type

value is also a property of the Field and many form classes.

version
The version of the current local table

Property of TableDef

Description Returns an integer indicating the version of the current local table. Currently only the BDE's dBASE, FoxPro
and Paradox provide a non-zero value for this property. These values include; 3 for dBASE III, 4 for dBASE
IV, 5 for dBASE 5 (when containing OLE or BINARY fields), 7 for Vdb7, 25 for FoxPro 2.5 and 5 for Paradox.
Read-only
424 dBL Language Reference

C h a p t e r

Chapter 15Form objects
Forms are the primary visual components in dBASE Plus applications. You can create forms visually through
the Form wizard or Form designer, or programatically by writing code and saving your work as a .WFM file.

Common visual component properties
These properties, events, and methods are common to many visual form components:

Property Default Description
before The next object in the z-order
borderStyle Default Specifies whether a box border appears (0=Default, 1=Raised, 2=Lowered,

3=None, 4=Single, 5=Double, 6-Drop Shadow, 7=Client, 8=Modal, 9=Etched
In, 10=Etched Out)

dragEffect 0 The type of Drag&Drop operation to be performed (0=None, 1=Copy, 2=Move)
enabled true Whether a component can get focus and operate
fontBold false Whether the text in a component appears in bold face
fontItalic false Whether the text in a component appears italicized
fontName Arial The typeface of the text in a component
fontSize 10 The point size of the text in a component
fontStrikeout false Whether the text in a component appears striked-through
fontUnderline false Whether the text in a component is displayed underlined
form The form that contains a component
height Height in the form’s current metric units
helpFile Help file name
helpId Help index topic or context number for context-sensitive help
hWnd The Windows handle for a component
ID -1 Supplementary control ID number
left 0 The location of the left edge of a component in the form’s current metric units,

relative to the left edge of its container
mousePointer 0 The mouse pointer type when the pointer is over a component
name The name of a component
pageNo 1 The page of the form on which a component appears
parent A component’s immediate container (Property discussed in Chapter 5, “Core

language.”)
printable true Whether a component is printed when the form is printed
speedTip Tool tip displayed when pointer hovers over a component
statusMessage Message displayed in status bar when a component has focus
tabStop true Whether a component is in the tab sequence
Form objects 425

top 0 The location of the top edge of a component in the form’s current metric units,
relative to the top edge of its container

visible true Whether a component is visible
width Width in the form’s current metric units

Event Parameters Description
canRender Reports only: before a component is rendered; return value determines

whether component is rendered. (See page 17-649.)
onDesignOpen <from palette expL> After a component is first added from the palette and then every time the

form is opened in the Form Designer
onDragBegin When a Drag&Drop operation begins for a component
onGotFocus After a component gains focus
onHelp When F1 is pressed—overrides context-sensitive help
onLeftDblClick <flags expN>,

<column expN>,
<row expN>

When the left mouse button is double-clicked

onLeftMouseDown <flags expN>,
<column expN>,
<row expN>

When the left mouse button is pressed

onLeftMouseUp <flags expN>,
<column expN>,
<row expN>

When the left mouse button is released

onLostFocus After a component loses focus
onMiddleDblClick <flags expN>,

<column expN>,
<row expN>

When the middle mouse button is double-clicked

onMiddleMouseDown <flags expN>,
<column expN>,
<row expN>

When the middle mouse button is pressed

onMiddleMouseUp <flags expN>,
<column expN>,
<row expN>

When the middle mouse button is released

onMouseMove <flags expN>,
<column expN>,
<row expN>

When the is moved over a component

onOpen After the form containing a component is opened
onRender Reports only: after a component is rendered. (See page 17-658.)
onRightDblClick <flags expN>,

<column expN>,
<row expN>

When the right mouse button is double-clicked

onRightMouseDown <flags expN>,
<column expN>,
<row expN>

When the right mouse button is pressed

onRightMouseUp <flags expN>,
<column expN>,
<row expN>

When the right mouse button is released

when <form open expL> When attempting to give focus to a component; return value determines
whether the component gets focus.

Method Parameters Description
drag() <type expC>,

<name expC>,
<icon expC>

Initiates a Drag&Drop operation for a component.

move() <left expN>
[,<top expN>
[,<width expN>
[,<height expN>]]]

Repositions and/or resizes a component.

Property Default Description
426 dBL Language Reference

class ActiveX
class ActiveX
Representation of an ActiveX control.

Syntax [<oRef> =] new ActiveX(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created ActiveX object.

<container> The container—typically a Form object—to which you’re binding the ActiveX object.

<name expC> An optional name for the ActiveX object. If not specified, the ActiveX class will auto-
generate a name for the object.

Properties The following table lists the properties of interest in the ActiveX class. (No particular events or methods are
associated with this class.)

Property Default Description
anchor 0 How the ActiveX object is anchored in its container (0=None, 1=Bottom, 2=Top,

3=Left, 4=Right, 5=Center, 6=Container)
baseClassName ACTIVEX Identifies the object as an instance of the ActiveX class (Property discussed in

Chapter 5, “Core language.”)
classId The ID string that identifies the ActiveX control
className (ACTIVEX) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
description A short description of the ActiveX control
nativeObject The object that contains the ActiveX control’s own properties, events, and methods

The following table lists the common properties, events, and methods of the ActiveX class:

Property Event Method
before
borderStyle
dragEffect
form
height
left
name

pageNo
parent
printable
systemTheme
top
width

onDragBegin
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick
onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()
setFocus()

Description An ActiveX object in dBASE Plus is a place holder for an ActiveX control, not an actual ActiveX control.

To include an ActiveX control in a form, create an ActiveX object on the form. Set the classId property to the
component’s ID string.Once the classId is set, the component inherits all the published properties, events, and
methods of the ActiveX control, which are accessible through the nativeObject property. The object can be used
just like a native dBASE Plus component.

See also class OLE

class Browse
A data-editing tool that displays multiple records in row-and-column format.

Syntax [<oRef> =] new Browse(<container> [,<name expC>])

release() Explicitly releases a component from memory.
setFocus() Sets focus to a component

Method Parameters Description
Form objects 427

class Browse
<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Browse object.

<container> The container—typically a Form object—to which you’re binding the Browse object.

<name expC> An optional name for the Browse object. If not specified, the Browse class will auto-
generate a name for the object.

Properties The following tables list the properties, events, and methods of interest in the Browse class.

Property Default Description
alias The table that is accessed
allowDrop false Whether dragged objects (normally a table or table field) can be dropped in the

browse object
anchor 0 How the Browse object is anchored in its container (0=None, 1=Bottom, 2=Top,

3=Left, 4=Right, 5=Center, 6=Container)
append true Whether rows can be added
baseClassName BROWSE Identifies the object as an instance of the Browse class (Property discussed in

Chapter 5, “Core language.”)
className (BROWSE) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorHighlight WindowText

/Window
The color of the highlighted cell

colorNormal WindowText
/Window

The color of all other cells

CUATab true Whether pressing Tab follows CUA behavior and moves to next control, or moves
to next cell

fields The fields to display, and the options to apply to each field
frozenColumn The name of the column inside which the cursor is confined.
lockedColumns 0 The number of columns that remain locked on the left side of the browse grid as it

is scrolled horizontally.
modify true Whether the user can alter data
scrollBar Auto When a scroll bar appears for the Browse object (0=Off, 1=On, 2=Auto,

3=Disabled)

Event Parameters Description
onAppend After a record is added to the table
onChange After the user changes a value
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the Browse display area during a Drag&Drop operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the Browse display area during a
Drag&Drop operation

onDragLeave When the mouse leaves the Browse display area without having dropped an object
onDrop <left expN>

<top expN>
<type expC>
<name expC>

When the mouse button is released over the Browse display area during a
Drag&Drop operation

onNavigate After the user moves to a different record

Method Parameters Description
copy() Copies selected text to the Windows Clipboard
cut() Cuts selected text and to the Windows Clipboard
keyboard() <expC> Simulates typed user input to the Browse object
paste() Copies text from the Windows clipboard to the current cursor position
undo() Reverses the effects of the most recent cut(), copy(), or paste() action
428 dBL Language Reference

class CheckBox
The following table lists the common properties, events, and methods of the Browse class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
form
height
helpFile
helpId
hWnd

ID
left
mousePointer
name
pageNo
parent
printable
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description The Browse object is maintained for compatibility and is suitable only for viewing and editing tables open in
work areas. For forms that use data objects, use a Grid object instead.

Two properties specify which table is displayed in the Browse object.

• The view property of the parent form

• The alias property of the browse object

You can specify individual fields to display with the fields property. For example, if the browse object's form is
based on a query, you use fields to display fields from any of the query's tables. (You must specify a file with
alias before you can use fields.)

See Also class Grid

class CheckBox
A check box on a form.

Syntax [<oRef> =] new CheckBox(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created CheckBox object.

<container> The container—typically a Form object—to which you’re binding the CheckBox object.

<name expC> An optional name for the CheckBox object. If not specified, the CheckBox class will auto-
generate a name for the object.

Properties The following tables list the properties and events of interest in the CheckBox class. (No particular methods are
associated with this class.)

Property Default Description
baseClassName CHECKBOX Identifies the object as an instance of the CheckBox class (Property discussed in

Chapter 5, “Core language.”)
className (CHECKBOX) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnText/BtnFace The color of the checkbox’s text label
dataLink The Field object that is linked to the CheckBox
group The group to which the check box belongs
text <same as name> The text label that appears beside the check box
textLeft false Whether the check box’s text label appears to the left or to the right of the check

box
transparent false Whether the CheckBox object has the same background color or image as its

container
value The current value of the check box (true or false)
Form objects 429

class ColumnCheckBox
Event Parameters Description
onChange After the check box is toggled

The following table lists the common properties, events, and methods of the CheckBox class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId
hWnd

ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use a CheckBox component to represent a true/false value.

See also class RadioButton

class ColumnCheckBox
A checkbox in a grid column.

Syntax These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties The following tables list the properties of interest in the ColumnCheckBox class. (No particular methods are
associated with this class.)

Property Default Description
baseClassName COLUMNCHECKBOX Identifies the object as an instance of the ColumnCheckBox class (Property

discussed in Chapter 5, “Core language.”)
className (COLUMNCHECKBOX) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorHighlight The color of the cell containing the ColumnCheckBox object when the cell has

focus
colorNormal WindowText

/Window
The color of the cell containing the ColumnCheckBox object when the cell
does not have focus

value The current value of the check box (true or false)

Event Parameters Description
beforeCellPaint An event fired just before a grid cell is painted
onCellPaint An event fired right after a grid cell is painted
430 dBL Language Reference

class ColumnComboBox
The following table lists the common properties, events, and methods of the ColumnCheckBox class:

Property Event Method
hWnd
parent

speedTip
statusMessage

onGotFocus
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus

onMiddleDblClick
onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onRightDblClick
onRightMouseDown
onRightMouseUp

none

Description A ColumnCheckBox is a simplified CheckBox control in a grid column. When the enumerated editorType
property of a GridColumn control is set to CheckBox, the column uses a ColumnCheckBox control, which is
accessible through the GridColumn object’s editorControl property.

The box around the checkmark is displayed only for the cell that has focus. For the other cells in the column that
do not have focus, there is only a checkmark if the value is true; or nothing if the value is false—the cell appears
empty.

As with all column controls, the dataLink and width for the control is in the parent GridColumn object, not the
control itself. The height is controlled by the cellHeight of the grid.

See also class CheckBox, class ColumnHeadingControl, class GridColumn, editorControl, editorType

class ColumnComboBox
A combobox in a grid column.

Syntax These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties The following tables list the properties of interest in the ColumnComboBox class. (No particular methods are
associated with this class.)

Property Default Description
autoTrim false whether or not trailing spaces are trimmed from character strings loaded from

the control's dataSource
baseClassName COLUMNCOMBOBOX Identifies the object as an instance of the ColumnComboBox class (Property

discussed in Chapter 5, “Core language.”)
className (COLUMNCOMBOBOX) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorHighlight The color of the text in the ColumnComboBox object when the object has

focus
colorNormal WindowText

/Window
The color of the text in the ColumnComboBox object when the object does
not have focus

dataSource The option strings of the ColumnComboBox object
dropDownHeight The number of options displayed in the drop-down list
dropDownWidth The width of the drop-down list in the form’s current metric units
function A text formatting function
maxLength Specifies the maximum number of characters allowed
picture Formatting template
selectAll true Whether the selectAll behavior is used in the entry field portion of the

columnComboBox
sorted false Whether the options are sorted
style DropDownList The style of the columnComboBox: 0=DropDown, 1=DropDownList
value The value currently displayed in the ColumnComboBox object
Form objects 431

class ColumnEditor
Event Parameters Description
beforeCellPaint An event fired just before a grid cell is painted
beforeCloseUp Fires just before dropdown list is closed.
beforeDropDown Fires just before dropdown list opens.
beforeEditPaint For a style 0 columnComboBox, fires for each keystroke that modifies the

value of the columnComboBox, just before the new value is displayed
onCellPaint An event fired just after a grid cell is painted
onChange Fires when the user takes an action that changes the string in the

columnComboBox.value property. If columnCombobox.value is changed via
editing, fires when columnComboBox object loses focus, but before
onLostFocus

onChangeCancel Fires when the user takes an action that closes the dropdown list without
choosing an item from the list.

onChangeCommitted Fires when the user takes an action to choose an item from the list such as by
left clicking the mouse on an item or pressing Enter with an item highlighted.

onEditPaint For a style 0 columnComboBox, fires for each keystroke that modifies the
value of the columnComboBox, just after the new value is displayed

The following table lists the common properties, events, and methods of the ColumnComboBox class:

Property Event Method
borderStyle
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline

hWnd
mousePointer
parent
speedTip
statusMessage

onGotFocus
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus

onMiddleDblClick
onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onRightDblClick
onRightMouseDown
onRightMouseUp

none

Description A ColumnComboBox is a simplified ComboBox control in a grid column. The combobox is always the
DropDownList style. When the enumerated editorType property of a GridColumn control is set to ComboBox,
the column uses a ColumnComboBox control, which is accessible through the GridColumn object’s
editorControl property.

Only the cell that has focus appears as a combobox. All other cells in the column which do not have focus
appear as ColumnEntryfield controls instead, with no drop-down control.

As with all column controls, the dataLink and width for the control is in the parent GridColumn object, not the
control itself. The height is controlled by the cellHeight of the grid.

See also class ColumnHeadingControl, class ComboBox, class GridColumn, editorControl, editorType

class ColumnEditor
An expandable editor object in a grid column used to enter or display data from memo, text blob or character
fields.

Syntax These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties The following tables list the properties and events of interest in the ColumnEditor class. (No methods are
associated with this class.))

Property Default Description
baseClassName COLUMNEDITOR Identifies the object as an instance of the ColumnEditor class

(Property discussed in Chapter 5, “Core language.”)
className (COLUMNEDITOR) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
432 dBL Language Reference

class ColumnEditor
The following table lists the common properties and events of the ColumnEditor class:

Property Event Method
fontBold
fontItalic
fontName
fontSize
fontStrikeout

fontUnderline
hWnd
parent
speedTip
statusMessage

onGotFocus
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onRightDblClick
onRightMouseDown
onRightMouseUp

none

Description A ColumnEditor object provides functionality similar to that of an Editor object in a grid cell. However, a
ColumnEditor may only be datalinked (via its parent gridColumn object) to a memo field, a text type blob field,
or a character field.

When a ColumnEditor object has focus, a button is displayed which can be used to open an expanded, or drop
down window, in which to view or edit data. Clicking the mouse outside the expanded editor window, or
pressing tab or shift-tab, will close the window.

When not expanded, ColumnEditor objects initially display the first non-blank line of data from its datalinked
field. This is to make it easier for a user to determine what, if any, data has been entered into the field.

To enter or edit data in a ColumnEditor object:
1 Give it focus by clicking on it with a left mouse button, or by using the tab or arrow keys to move to it within

the grid object.

2 Position the mouse where you wish to begin typing, and again click the left mouse button to display an
insertion point. Alternatively you can just press any text key on the keyboard to begin entering text. Once the
ColumnEditor has an insertion point it is said to be in "edit mode". When the ColumnEditor is in edit mode,
the arrow keys will only work to scroll within the ColumnEditor.

To exit the ColumnEditor:
• Click outside the ColumnEditor's cell

or

• Navigate your way out using the tab, or shift-tab, keys.

colorHighlight The color of the text in the ColumnEditor object when the object has
focus

colorNormal WindowText
/Window

The color of the text in the ColumnEditor object when the object
does not have focus

dropDownHeight 8 The height of the ColumnEditor's dropdown editing window. The
dropDownHeight property's value is in units matching the metric of
the current Form.

evalTags true Whether or not to apply embedded formatting tags when displaying
the contents of the columnEditor's datalinked field.

value The value currently displayed in the ColumnEditor object
wrap true Whether to word-wrap the text in the ColumnEditor control.

Event Parameters Description
beforeCellPaint An event fired just before a grid cell is painted
key <char expN>,

<position expN>,
<shift expL>,
<ctrl expL>

When a key is pressed. Return value may change or cancel keystroke.

onCellPaint An event fired right after a grid cell is painted
valid When attempting to remove focus. Must return true, or focus

remains.

Property Default Description
Form objects 433

class ColumnEntryfield
Altering column dimensions
• You may widen a ColumnEditor by widening its grid column.

• You may change the height of a ColumnEditor's grid cell, to display more than one line of data in the grid
cell, by changing the grid's cellHeight property.

• You may change the height of a ColumnEditor's expanded window by changing its dropDownHeight value.

• The expanded window will not expand beyond the edge of the ColumnEditor's Form or Subform.

Formatting text
When the ColumnEditor is contained within a Form whose MDI property is set to true, the Format Toolbar may
be used to apply various formatting options to the text. To access the Format Toolbar:

1 Give the ColumnEditor focus

2 Right click on it to popup a context sensitive menu

3 Select "Show Format Toolbar"

By default, a ColumnEditor will apply any formatting embedded in its datalinked field, when displaying data.
To turn this off:

• Set the ColumnEditor's evalTags property to false

or

• Uncheck "Apply Formatting" via it's right-click popup menu.

See also class Editor, class GridColumn, editorControl, editorType

class ColumnEntryfield
A single-line text input field in a grid column.

Syntax These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties The following tables list the properties and events of interest in the ColumnEntryfield class. (No methods are
associated with this class.)

Property Default Description
baseClassName COLUMNENTRYFIELD Identifies the object as an instance of the ColumnEntryfield class

(Property discussed in Chapter 5, “Core language.”)
className (COLUMNENTRYFIELD) Identifies the object as an instance of a custom class. When no custom

class exists, defaults to baseClassName
colorHighlight The color of the text in the ColumnEntryfield object when the object

has focus
colorNormal WindowText

/Window
The color of the text in the ColumnEntryfield object when the object
does not have focus

function A text formatting function
memoEditor The memo editor control used when editing a memo field
picture Formatting template
validErrorMsg Invalid input The message that is displayed when the valid event fails
value The value currently displayed in the ColumnEntryfield object

Event Parameters Description
beforeCellPaint An event fired just before a grid cell is painted
key <char expN>,

<position expN>,
<shift expL>,
<ctrl expL>

When a key is pressed. Return value may change or cancel keystroke.
434 dBL Language Reference

class ColumnHeadingControl
The following table lists the common properties and events of the ColumnEntryfield class:

Property Event Method
borderStyle
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline

hWnd
parent
speedTip
statusMessage

onGotFocus
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onLeftDblClick
onLeftMouseDown
onLeftMouseUp

none

Description A ColumnEntryfield is a simplified Entryfield control in a grid column. When the enumerated editorType
property of a GridColumn control is set to Entryfield, the column uses a ColumnEntryfield control, which is
accessible through the GridColumn object’s editorControl property.

As with all column controls, the dataLink and width for the control is in the parent GridColumn object, not the
control itself. The height is controlled by the cellHeight of the grid.

See also class ColumnHeadingControl, class Entryfield, class GridColumn, editorControl, editorType

class ColumnHeadingControl
A grid column heading.

Syntax These controls are created for each GridColumn object.

Properties The following tables list the properties of interest in the ColumnHeadingControl class. (No particular methods
are associated with this class.)

Property Default Description
baseClassName COLUMNHEADINGCONTROL Identifies the object as an instance of the ColumnHeadingControl

class (Property discussed in Chapter 5, “Core language.”)
className (COLUMNHEADINGCONTROL) Identifies the object as an instance of a custom class. When no custom

class exists, defaults to baseClassName
colorNormal WindowText

/Window
The color of the control and its text

function A text formatting function
picture Formatting template
value The text displayed in the ColumnHeadingControl object

Event Parameters Description
beforeCellPaint An event fired just before a grid cell is painted
onCellPaint An event fired right after a grid cell is painted

The following table lists the common properties, events, and methods of the ColumnHeadingControl class:

Property Event Method
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline

hWnd
parent

onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onRightDblClick
onRightMouseDown
onRightMouseUp

none

onCellPaint An event fired right after a grid cell is painted
valid When attempting to remove focus. Must return true, or focus remains.

Event Parameters Description
Form objects 435

class ColumnSpinBox
Description Each column in a grid has a ColumnHeadingControl object that represents the column heading. It is accessible
through the GridColumn object’s headingControl property.

As with all column controls, the width for the control is in the parent GridColumn object, not the control itself.
The height is controlled by the cellHeight of the grid.

See also class GridColumn, headingControl

class ColumnSpinBox
An entryfield with a spinner for entering numeric or date values in a grid column.

Syntax These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties The following tables list the properties and events of interest in the ColumnSpinBox class. (No methods are
associated with this class.)

Property Default Description
baseClassName COLUMNSPINBOX Identifies the object as an instance of the ColumnSpinBox class (Property

discussed in Chapter 5, “Core language.”)
className (COLUMNSPINBOX) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorHighlight The color of the text in the ColumnSpinBox object when the object has focus
colorNormal WindowText

/Window
The color of the text in the ColumnSpinBox object when the object does not
have focus

function A text formatting function
picture Formatting template
rangeMax The maximum value
rangeMin The minimum value
rangeRequired false Whether the range values are enforced even when no change has been made
step 1 The value added or subtracted when using the spinner
validErrorMsg Invalid input The message that is displayed when the valid event fails
value The value currently displayed in the ColumnSpinBox object

Event Parameters Description
beforeCellPaint An event fired just before a grid cell is painted
onCellPaint An event fired right after a grid cell is painted
valid When attempting to remove focus. Must return true, or focus remains.

The following table lists the common properties, events, and methods of the ColumnSpinBox class:

Property Event Method
borderStyle
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline

hWnd
parent
speedTip
statusMessage

onGotFocus
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onLeftDblClick
onLeftMouseDown
onLeftMouseUp

none

Description A ColumnSpinBox is a simplified SpinBox control in a grid column. When the enumerated editorType property
of a GridColumn control is set to SpinBox, the column uses a ColumnSpinBox control, which is accessible
through the GridColumn object’s editorControl property.

Only the cell that has focus appears as a spinbox. All other cells in the column which do not have focus appear
as ColumnEntryfield controls instead, with no spinner control.

As with all column controls, the dataLink and width for the control is in the parent GridColumn object, not the
control itself. The height is controlled by the cellHeight of the grid.
436 dBL Language Reference

class ComboBox
See also class ColumnHeadingControl, class SpinBox, class GridColumn, editorControl, editorType

class ComboBox
A component on a form which can be temporarily expanded to show a list from which you can pick a single item.

Syntax [<oRef> =] new ComboBox(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created ComboBox object.

<container> The container—typically a Form object—to which you’re binding the ComboBox object.

<name expC> An optional name for the ComboBox object. If not specified, the ComboBox class will
auto-generate a name for the object.

Properties The following tables list the properties, events, and methods of the ComboBox class.

Property Default Description
autoDrop false Whether the drop-down list automatically drops down when the combobox gets

focus
baseClassName COMBOBOX Identifies the object as an instance of the ComboBox class (Property discussed in

Chapter 5, “Core language.”)
className COMBOBOX Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorHighlight WindowText

/Window
The color of the highlighted cell

colorNormal WindowText
/Window

The color of the text in the ComboBox object

dataLink The Field object that is linked to the ComboBox object
dataSource The option strings of the ComboBox object
dropDownHeight The number of options displayed in the drop-down list
dropDownWidth The width of the drop-down list in the form’s current metric units
sorted false Whether the options are sorted
style DropDown The style of the ComboBox: 0=Simple, 1=DropDown, 2=DropDownList
value The value of the currently selected option

Event Parameters Description
beforeCloseUp Fires just before dropdown list is closed for a style 1 or 2 combobox
beforeDropDown Fires just before dropdown list opens for a style 1 or 2 combobox
beforeEditPaint For a style 0 or 1 combobox, fires for each keystroke that modifies the

value of the combobox, just before the new value is displayed
key <char expN>,

<position expN>,
<shift expL>,
<ctrl expL>

When a key is pressed. Return value may change or cancel keystroke.

onChange After the selection has changed and the ComboBox object loses focus, but
before onLostFocus

onChangeCancel Fires when the user takes an action that closes the dropdown list without
choosing an item from the list for a style 1 or 2 combobox

onChangeCommitted Fires when the user takes an action to choose an item from the list such as
by left clicking the mouse on an item or pressing Enter with an item
highlighted.

onEditPaint For a style 0 or 1 combobox, fires for each keystroke that modifies the
value of the combobox, just after the new value is displayed

onKey <char expN>
<position expN>
<shift expC>
<ctrl expC>

After a key has been pressed (and the key event has fired), but before the
next keypress
Form objects 437

class Container
Method Parameters Description
copy() Copies selected text to the Windows clipboard
cut() Cuts selected text to the Windows clipboard
keyboard() <expC> Simulates typed user input to the ComboBox object
paste() Copies text from the Windows clipboard to the current cursor position
undo() Reverses the effects of the most recent cut(), copy(), or paste() action

The following table lists the common properties, events, and methods of the ComboBox class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use a ComboBox object when you want the user to pick one item from a list. When the user is not choosing an
item, the list is not visible. The list of options is set with the dataSource property.

If a ComboBox is dataLinked to a field object that has implemented its lookupSQL or lookupRowset properties,
the ComboBox will automatically be populated with the appropriate lookup values, and store the corresponding
key values in the dataLinked field.

See also class Entryfield, class ListBox, lookupRowset, lookupSQL

class Container
A container for other controls.

Syntax [<oRef> =] new Container(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Container object.

<container> The container—typically a Form object—to which you’re binding the Container object.

<name expC> An optional name for the Container object. If not specified, the Container class will auto-
generate a name for the object.

Properties The following tables list the properties and events of the Container class (No particular methods are associated
with this class).

Property Default Description
allowDrop false Whether dragged objects can be dropped in the container
anchor 0 How the Container object is anchored in its container (0=None, 1=Bottom,

2=Top, 3=Left, 4=Right, 5=Center, 6=Container)
baseClassName CONTAINER Identifies the object as an instance of the Container class (Property discussed in

Chapter 5, “Core language.”)
className (CONTAINER) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnFace The background color
438 dBL Language Reference

class Editor
The following table lists the common properties, events, and methods of the Container class:

Property Event Method
allowDrop
borderStyle
dragEffect
enabled
first
form
height
hWnd
left

mousePointer
name
pageNo
parent
printable
systemTheme
top
visible
width

canRender
onDesignOpen
onDragBegin
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick

onMiddleMouseDowno
nMiddleMouseUp
onMouseMove
onOpen
onRender
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()

Description Use the Container object to create groups of controls, a custom control that contain multiple controls, or to
otherwise group controls in a form. When a control is dropped in a Container object, it becomes a child object of
the Container object. Its parent property references the container, while its form property references the form.

To make the rectangle that contains the controls invisible, set the borderStyle property to None (3) and the
transparent property to true.

When the Container's enabled property is set to "false", the enabled properties of all contained controls are
likewise set to "false". When the Container's enabled property is set to "true", the enabled properties of the
contained controls regain their individual settings.

See also class Notebook

class Editor
A multiple-line text input field on a form.

Syntax [<oRef> =] new Editor(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Editor object.

<container> The container—typically a Form object—to which you’re binding the Editor object.

<name expC> An optional name for the Editor object. If not specified, the Editor class will auto-generate
a name for the object.

expandable true Reports only: whether the container expands to show all its components
transparent false Whether the container has the same background color or image as its own

container (usually the form)

Event Parameters Description
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the container’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the container’s display area during a
Drag&Drop operation

onDragLeave When the mouse leaves the container’s display area without having dropped an
object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the container’s display area during a
Drag&Drop operation

Property Default Description
Form objects 439

class Editor
Properties The following tables list the properties, events, and methods of interest in the Editor class.

Property Default Description
anchor 0 How the Editor object is anchored in its container (0=None, 1=Bottom, 2=Top,

3=Left, 4=Right, 5=Center, 6=Container)
baseClassName EDITOR Identifies the object as an instance of the Editor class (Property discussed in

Chapter 5, “Core language.”)
border true Whether the Editor object is surrounded by the border specified by borderStyle
className (EDITOR) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorHighlight WindowText

/Window
The color of the highlighted cell

colorNormal WindowText
/Window

The color of the text in the Editor object

columnNo 1 The current column number in the editor
CUATab true Whether pressing Tab follows CUA behavior and moves to next control, or inserts

tab in text
dataLink The Field object that is linked to the Editor object
evalTags true Whether to evaluate any HTML formatting tags in the text or display them as-is
lineNo 1 The current line number in the editor
marginHorizontal The horizontal margin between the text and its rectangular frame.
marginVertical The vertical margin between the text and its rectangular frame.
modify true Whether the text is editable or not
popupEnable true Whether the Editor object’s context menu is available
scrollBar Auto When a scroll bar appears for the Editor object (0=Off, 1=On, 2=Auto,

3=Disabled)
value The string currently displayed in the Editor object
wrap true Whether to word-wrap the text in the editor

Event Parameters Description
key <char expN>,

<position expN>,
<shift expL>,
<ctrl expL>

When a key is pressed. Return value may change or cancel keystroke.

onChange After the string in the Editor object has changed and the Editor object loses
focus, but before onLostFocus

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the Editor’s display area during a
Drag&Drop operation

valid When attempting to remove focus. Must return true, or focus remains.

Method Parameters Description
copy() Copies selected text to the Windows clipboard
cut() Cuts selected text and to the Windows clipboard
keyboard() <expC> Simulates typed user input to the Editor object
paste() Copies text from the Windows clipboard to the current cursor position
undo() Reverses the effects of the most recent cut(), copy(), or paste() action
440 dBL Language Reference

class Entryfield
The following table lists the common properties, events, and methods of the Editor class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use an Editor component to display and edit multi-line text. To display the text but not allow changes, set the
modify property to false.The Editor component understands and displays basic HTML formatting tags. It has a
context menu that is accessible by right-clicking the editor (unless its popupEnable property is false). The
context menu lets you find and replace text, toggle word wrapping and HTML formatting, and show or hide the
Format toolbar.

See also class Entryfield, REPLACE MEMO, replaceFromFile()

class Entryfield
A single-line text input field on a form.

Syntax [<oRef> =] new Entryfield(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Entryfield object.

<container> The container—typically a Form object—to which you’re binding the Entryfield object.

<name expC> An optional name for the Entryfield object. If not specified, the Entryfield class will auto-
generate a name for the object.

Properties The following tables list the properties, events, and methods of interest in the Entryfield class.

Property Default Description
baseClassName ENTRYFIELD Identifies the object as an instance of the Entryfield class (Property discussed in

Chapter 5, “Core language.”)
border true Whether the Entryfield object is surrounded by the border specified by

borderStyle
className (ENTRYFIELD) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorHighlight The color of the text in the Entryfield object when the object has focus
colorNormal WindowText

/Window
The color of the text in the Entryfield object when the object does not have focus

dataLink The Field object that is linked to the Entryfield object
function A text formatting function
maxLength The maximum length of the text in the Entryfield object
memoEditor The memo editor control used when editing a memo field
phoneticLink The control that mirrors the phonetic equivalent of the current value
picture Formatting template
selectAll true Whether the entryfield contents are initially selected when the Entryfield object

gets focus
Form objects 441

class Form
The following table lists the common properties, events, and methods of the Entryfield class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Entryfield objects are the primary data display and entry component.

See also class ComboBox, class Editor, class SpinBox

class Form
A Form object.

Syntax [<oRef> =] new Form([<title expC>])

<oRef> A variable or property in which to store a reference to the newly created Form object.

<title expC> An optional title for the Form object. If not specified, the title will be “Form”.

validErrorMsg Invalid input The message that is displayed when the valid event fails
validRequired false Whether to fire the valid event even when no change has been made
value The value currently displayed in the Entryfield object

Event Parameters Description
key <char expN>,

<position expN>,
<shift expL>,
<ctrl expL>

When a key is pressed. Return value may change or cancel keystroke.

onChange After the string in the Entryfield object has changed and the Entryfield object
loses focus, but before onLostFocus

onKey <char expN>
<position expN>
<shift expC>
<ctrl expC>

After a key has been pressed (and the key event has fired), but before the next
keypress

valid When attempting to remove focus. Must return true, or focus remains.

Method Parameters Description
copy() Copies selected text to the Windows clipboard
cut() Cuts selected text and to the Windows clipboard
keyboard() <expC> Simulates typed user input to the Entryfield object
paste() Copies text from the Windows clipboard to the current cursor position
showMemoEditor() Opens the specified memoEditor
undo() Reverses the effects of the most recent cut(), copy(), or paste() action

Property Default Description
442 dBL Language Reference

class Form
Properties The following tables list the properties, events, and methods of the Form class.

Property Default Description
activeControl The currently active control
allowDrop false Whether dragged objects can be dropped onto the form’s surface
appSpeedBar 2 Whether to hide or display the Standard Toolbar when a form recieves focus. 0=Hide,

1=Display, 2=Use the current _app object's speedBar setting.
autoCenter false Whether the form automatically centers on-screen when it is opened
autoSize false Whether the form automatically sizes itself to display all its components
background Background image
baseClassName FORM Identifies the object as an instance of the Form class (Property discussed in Chapter 5,

“Core language.”)
className (FORM) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
clientEdge false Whether the edge of the form has the sunken client appearance
colorNormal BtnFace Background color
contextHelp false When true, contextHelp Displays a context help question mark (?) next to the form or

subform's close button.
designView A view that is used when designing the form
elements An array containing object references to the components on the form
escExit true Whether pressing Esc closes the form
first The first component on the form in the z-order
hWndClient The Windows handle for the form's client area
hWndParent 0 When used in conjunction with the showTaskBarButton property; determines, or specifies, the

hWnd property for the parent window of a form
icon An icon file or resources that displays when the form is minimized
inDesign Whether the form was instantiated by the Form designer
maximize true Whether the form can be maximized when not MDI
MDI true Whether the form is MDI or SDI
menuFile The name of the form’s .MNU menu file
metric Chars Units of mesurement (0=Chars, 1=Twips, 2=Points, 3=Inches, 4=Centimeters,

5=Millimeters, 6=Pixels)
minimize true Whether the form can be minimized when not MDI
moveable true Whether the form is moveable when not MDI
nextObj The object that’s about to receive focus
persistent false Determines whether custom control, datamodule, menu or procedure files associated

with a form are loaded in the persistent mode.
popupMenu The form’s Popup menu object
refreshAlways true Whether to refresh the form after all form-based navigation and updates
rowset The primary rowset
scaleFontBold false Whether the base font used for the Chars metric is boldface
scaleFontName Arial The base font used for the Chars metric
scaleFontSize 10 The point size of the base font used for the Chars metric
scrollBar Off When a scroll bar appears for the form (0=Off, 1=On, 2=Auto, 3=Disabled)
scrollHOffset The current position of the horizontal scrollbar in units matching the form or subform's

current metric property
scrollVOffset The current position of the vertical scrollbar in units matching the form or subform's

current metric property
showSpeedTip true Whether to show tool tips
showTaskBrButton true Whether to display a button for the form on the Windows Taskbar
sizeable true Whether the form is resizeable when not MDI
smallTitle false Whether the form has the smaller palette-style title bar when not MDI
sysMenu true Whether the form’s system menu icon and close icon are displayed when not MDI
text The text that appears in the form’s title bar
topMost false Whether the form stays on top when not MDI
Form objects 443

class Form
useTablePopup false Whether to use the default table navigation popup when no popup is assigned as the
form’s popupMenu.

view The query or table on which the form is based
windowState Normal The state of the window (0=Normal, 1=Minimized, 2=Maximized)

Event Parameters Description
canClose When attempting to close form; return value allows or disallows closure
canNavigate <workarea expN> When attempting to navigate in work area; return value allows or

disallows leaving current record
onAppend After a new record is added
onChange <workarea expN> After leaving a record that was changed, before onNavigate
onClose After the form has been closed
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the form’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the form’s display area during a
Drag&Drop operation

onDragLeave When the mouse leaves the form’s display area without having dropped
an object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the form’s display area during a
Drag&Drop operation

onMove After the form has been moved
onNavigate <workarea expN> After navigation in a work area
onSelection <control ID expN> After the form is submitted
onSize <expN> After the form is resized or changes windowState

Method Parameters Description
abandonRecord() Abandons changes to the current record
beginAppend() Starts append of new record
close() <expN> Closes the form. <expN> may be used in modal forms, see close() for

details
isRecordChanged() Checks whether the current record buffer has changed
open() Loads and opens the form
pageCount() Returns the highest pageNo of any component
print() <dialog expL>,

<mode expL>
Prints a form as it appears on screen or prints only the data from a
completed form

readModal() Opens the form modally
refresh() Redraws the form
saveRecord() Saves changes to the current or new record
scroll() <horizontal expN>,

<vertical expN>
Programatically scrolls the client area (the contents) of a form

showFormatBar() <expL> Displays or hides the formatting toolbar

Property Default Description
444 dBL Language Reference

class Grid
The following table lists the common properties, events, and methods of the Form class:

Property Event Method
enabled
height
helpFile
helpId
hWnd
left

mousePointer
pageNo
statusMessage
systemTheme
top
visible
width

onDesignOpen
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp

move()
release()
setFocus()

Description A Form object acts as a container for other visual components (also known as controls) and the data objects that
are linked to them. Consequently, releasing a form object from memory automatically releases the objects it
contains.

An object reference to all the visual components in a form is stored in its elements array. All of the visual
components have a form property that points back to the form.

The form has a rowset property that refers to its primary rowset. Components can access this rowset in their
event handlers generically with the object reference form.rowset. For example, a button on a form that goes to
the first row in the rowset would have an onClick event handler like this:

function firstButton_onClick()
 form.rowset.first()

If the form has more than one rowset, each one can be addressed through the rowset property of the Query
objects, which are properties of the form. For example, to go to the last row in the rowset of the Query object
members1, the onClick event handler would look like this:

function lastMemberButton_onClick()
 form.members1.rowset.last()

A form can consist of more than one page. One way to implement multi-page forms is to use the pageNo
property of controls to determine on which page they appear, and use a TabBox control to let users easily switch
between pages. You may also use a NoteBook control to create a multi-page container in a form.

You can create two types of forms: modal and modeless. A modal form halts execution of the routine that
opened it until the form is closed. When active, it takes control of the user interface; users can't switch to
another window in the same application without exiting the form. A dialog box is an example of a modal form;
when it is opened, program execution stops and focus can't be given to another window until the user closes the
dialog box.

In contrast a modeless form window allows users to freely switch to other windows in an application. Most
forms that you create for an application will be modeless. A modeless form window conforms to the Multiple
Document Interface (MDI) protocol, which lets you open multiple document windows within an application
window.

To create and use a modeless form, set the MDI property to true and open the form with the open() method. To
create and use a modal form, set MDI to false and open the form with the readModal() method.

You can also create SDI (Single Document Interface) windows that appear like application windows. To do so,
set the MDI property to false and use SHELL(false). SHELL(false) hides the standard dBASE Plus environment
and lets your form take over the user interface. The dBASE Plus application window disappears, and the form
name appears in the Windows Task List.

See also class NoteBook, class TabBox

class Grid
A grid of other controls.

Syntax [<oRef> =] new Grid(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Grid object.
Form objects 445

class Grid
<container> The container—typically a Form object—to which you’re binding the Grid object.

<name expC> An optional name for the Grid object. If not specified, the Grid class will auto-generate a
name for the object.

Properties The following tables list the properties, events, and methods of interest in the Grid class.

Property Default Description
allowAddRows true Whether navigating down past the last row automatically calls beginAppend()
allowColumnMoving true Whether columns may be moved with the mouse
allowColumnSizing true Whether columns may be sized with the mouse
allowDrop false Whether dragged objects (normally a table or a table field) can be dropped in

the grid
allowEditing true Whether editing is allowed or the grid is read-only
allowRowSizing true Whether rows may be sized with the mouse
alwaysDrawCheckBox true Whether columnCheckBox control is painted with a checkbox for all

checkBox cells in the Grid.
anchor 0 How the Grid object is anchored in its container (0=None, 1=Bottom, 2=Top,

3=Left, 4=Right, 5=Center, 6=Container)
baseClassName GRID Identifies the object as an instance of the Grid class (Property discussed in

Chapter 5, “Core language.”)
bgColor gray Sets the background color for data displayed in grid cells, as well as the empty

area to the right of the last column and below the last grid row.
cellHeight The height of each cell
className (GRID) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorColumnLines silver Sets the color of the grid lines between the data columns
colorHighlight WindowText/

Window
Sets the text color and background color for data displayed in a grid cell that
has focus. Can be overridden by setting the colorHighlight property of a
GridColumn's editorControl to a non-null value.

colorNormal WindowText/
Window

Sets the text color and background color for data displayed in grid cells that do
not have focus. Can be overridden by setting the colorNormal property of a
GridColumn's editorControl to a non-null value.

colorRowHeader WindowText/
BtnFace

Sets the color of the indicator arrow, or plus sign, and the row header
background.

colorRowLines silver Sets the color of the grid lines between the data rows
colorRowSelect HighlightText/

HighLight
Sets the text color and background color for a row of data selected when the
rowSelect property and/or the multiSelect property is true

columnCount The number of columns in the grid
columns An array of objects for each column in the grid
CUATab false Whether pressing Tab follow CUA behavior and moves to next control, or

moves to next cell
currentColumn The number of the column that has focus in the grid
dataLink The Rowset object that is linked to the grid
dragScrollRate 300 The delay time, in milliseconds, between each column scroll when dragging

columns
firstColumn 1 Sets the column to be displayed in the left-most unlocked column position.
frozenColumn The name of the column inside which the cursor is confined.
gridLineWidth 1 Width of grid lines in pixels (0=no grid lines)
hasColumnHeadings true Whether column headings are displayed
hasColumnLines true Whether column (vertical) grid lines are displayed
hasIndicator true Whether the indicator column is displayed
hasRowLines true Whether row (horizontal) grid lines are displayed
hasVScrollHintText true Whether the relative row count is displayed as the grid is scrolled vertically
headingColorNormal WindowText/

BtnFace
Sets the text color and background color for grid column heading controls

headingFontBold true Whether the current heading font style is Bold
446 dBL Language Reference

class Grid
headingFontItalic false Whether the current heading font style is Italic
headingFontName Operating system or

PLUS.ini file setting
Sets the font used to display data in a grid's headingControls

headingFontSize 10 pts. Sets the character size of the font used to display data in a grid's
headingControls

headingFontStrikeout false Whether to display the current heading font with a horizontal strikeout line
through the middle of each character

headingFontUnderline false Whether the current heading font style is Underline
hScrollBar Auto When a horizontal scrollbar appears (0=Off, 1=On, 2=Auto, 3=Disabled)
integralHeight false Whether a partial row at the bottom of the grid is displayed
lockedColumns 0 The number of columns that remain locked on the left side of the grid as it is

scrolled horizontally.
multiSelect false Whether multiple rows may be visually selected
rowSelect false Whether the entire row is visually selected
vScrollBar Auto When a vertical scrollbar appears (0=Off, 1=On, 2=Auto, 3=Disabled)

Event Parameters Description
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the grid’s display area during a Drag&Drop operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the grid’s display area during a Drag&Drop
operation

onDragLeave When the mouse leaves the grid’s display area without having dropped an object
onDrop <left expN>

<top expN>
<type expC>
<name expC>

When the mouse button is released over the grid’s display area during a Drag&Drop
operation

onFormSize After the form containing the grid is resized
onSelChange After moving to another row or column in the grid

Method Parameters Description
firstRow() Returns a bookmark for the row currently displayed in the first row of the grid
getColumnObject() <expN> Returns a reference to theGridColumn object for a designated column
getColumnOrder() Returns a two dimensional array for current column information
lastRow() Returns a bookmark for the row currently displayed in the last row of the grid
refresh() Repaints the grid
selected() Returns an array of bookmarks for the currently selected rows in the grid

Property Default Description
Form objects 447

class GridColumn
The following table lists the common properties, events, and methods of the Grid class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikout
fontUnderline
form
height
helpFile

helpId
hWnd
ID
left
name
pageNo
parent
printable
speedTip
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()
setFocus()

Description The Grid object is a multi-column grid control for displaying the contents of a rowset. The dataLink property is
set to the rowset. Columns are automatically created for each field in the rowset.

Each column is represented by a GridColumn object. If the default columns are used, these objects are hidden, and
all fields are displayed. By explicitly creating a GridColumn object for each column as an element in the grid’s
columns array, you may control the fields that are displayed and assign different kinds of controls in different
columns.

Navigation in the rowset updates any grids that are dataLinked to the rowset, and vice versa. When you
explicitly create GridColumn objects, you may set their dataLink properties to fields in other rowsets, like the
fields in a linked detail table.

See Also class GridColumn

class GridColumn
A column in a grid.

Syntax [<oRef> =] new GridColumn(<grid>)

<oRef> A variable or property—typically an array element of the <grid> object’s columns array—in which
to store a reference to the newly created GridColumn object.

<grid> The Grid object that contains the GridColumn object.

Properties The following tables list the properties of interest of the GridColumn class. (No particular events or methods are
associated with this class.)

Property Default Description
baseClassName GRIDCOLUMN Identifies the object as an instance of the GridColumn class (Property discussed

in Chapter 5, “Core language.”)
className (GRIDCOLUMN) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
dataLink The field object that is linked to the column in the grid
editorControl The editable control that comprises the body of the grid in the column
editorType Default The type of editing control (0=Default, 1=EntryField, 2=CheckBox, 3=SpinBox,

4=ComboBox) in the column
headingControl The control that displays the grid column heading

The following table lists the common properties, events, and methods of the GridColumn class:

Property Event Method
parent width none none
448 dBL Language Reference

class Image
Description Each column in a grid is represented by a GridColumn object. Each GridColumn object is an element in the grid’s
columns array, and contains a reference to a heading control and an edit control. You may assign different kinds of
controls in different columns. The following types of controls are supported:

• Entryfield
• CheckBox
• SpinBox
• ComboBox

When these controls are used in a grid, they have a reduced property set. Each type of field has a default control
type. Logical and boolean fields default to CheckBox. Numeric and date fields default to SpinBox.

See Also class ColumnCheckBox, class ColumnComboBox, class ColumnEntryfield, class ColumnSpinBox, class Grid

class Image
A rectangular region on a form that displays a bitmap image.

Syntax [<oRef> =] new Image(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Image object.

<container> The container—typically a Form object—to which you’re binding the Image object.

<name expC> An optional name for the Image object. If not specified, the Image class will auto-generate
a name for the object.

Properties The following table lists the properties of interest in the Image class. (No particular methods are associated with
this class.)

Property Default Description
alignment Stretch Determines the size and position of the graphic inside the Image object

(0=Stretch, 1=Top left, 2=Centered, 3=Keep aspect stretch, 4=True size)
allowDrop false Whether dragged objects (i.e. the name of a graphic image file) can be dropped

in the image object
anchor 0 How the Image object is anchored in its container (0=None, 1=Bottom, 2=Top,

3=Left, 4=Right, 5=Center, 6=Container)
baseClassName IMAGE Identifies the object as an instance of the Image class (Property discussed in

Chapter 5, “Core language.”)
className (IMAGE) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
dataSource The file or field that is displayed in the Image object
fixed false Whether the Image object’s position is fixed or if it can be “pushed down” or

“pulled up” by the rendering or suppression of other objects. (See page 17-652.)
imgPixelHeight 0 Returns an image's actual height in pixels
imgPixelWidth 0 Returns an image's actual width in pixels

Event Parameters Description
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the image object’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the image object’s display area during a
Drag&Drop operation
Form objects 449

class Line
The following table lists the common properties, events, and methods of the Image class:

Property Event Method
before
borderStyle
dragEffect
enabled
form
height
hWnd
ID
left

mousePointer
name
pageNo
parent
printable
systemTheme
top
visible
width

canRender
onDesignOpen
onDragBegin
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRender
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()

Description Use an Image object to display a bitmap image. The image can be data from a field, or a static image like a
company logo.

dBASE Plus supports the following bitmap image formats:

• Graphics Interchange Format (GIF), including animated GIF
• Joint Photographic Experts Group (JPG, JPEG)
• Portable Network Graphics (PNG)
• X BitMap (XBM)
• Windows bitmap (BMP)
• Windows icon (ICO)
• Device Independent Bitmap (DIB)
• Windows metafile (WMF)
• Enhanced Windows metafile (EMF)
• PC Paintbrush (PCX)
• Tag Image File Format (TIF, TIFF)
• Encapsulated PostScript (EPS)

dBASE Plus will resize images according to the Image object’s alignment property. When resizing, transparent
GIF backgrounds are lost. To prevent resizing, set the alignment property to 4 (True size).

For TIFF, dBASE Plus supports uncompressed, single-bit Group 3, PackBits, and LZW (Lempel-Ziv & Welch)
compression. Group 4 compression is not supported. Color TIFF images must have a palette. Except when
rendering an EPS file on a PostScript-capable printer, dBASE Plus uses the bitmap preview in the EPS file,
which must be in TIFF or WMF format.

See also class Form, class Line, REPLACE BINARY, replaceFromFile()

class Line
A line on a form.

Syntax [<oRef> =] new Line(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Line object.

<container> The container—typically a Form object—to which you’re binding the Line object.

<name expC> An optional name for the Line object. If not specified, the Line class will auto-generate a
name for the object.

onDragLeave When the mouse leaves the image object’s display area without having dropped an
object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the image object’s display area during a
Drag&Drop operation

Event Parameters Description
450 dBL Language Reference

class ListBox
Properties The following tables list the properties of interest of the Line class. (No particular events or methods are
associated with this class.)

Property Default Description
baseClassName LINE Identifies the object as an instance of the Line class (Property discussed in Chapter 5,

“Core language.”)
bottom The location of the bottom end of the Line in the form’s current metric units, relative

to the top edge of its container
className (LINE) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorNormal WindowText Color of the line
fixed false Whether the Line object’s position is fixed or if it can be “pushed down” or “pulled

up” by the rendering or suppression of other objects. (See page 17-652.)
left The location of the left end of the Line in the form’s current metric units, relative to

the left edge of its container
pen Solid The pen style used to draw the line (0=Solid, 1=Dash, 2=Dot, 3=DashDot,

4=DashDotDot)
right The location of the right end of the Line in the form’s current metric units, relative to

the left edge of its container
top The location of the top of the Line in the form’s current metric units, relative to the

top edge of its container
size 1 Width in pixels

The following table lists the common properties, events, and methods of the Line class:

Property Event Method
before
form
ID
name

pageNo
parent
printable
visible

canRender
onDesignOpen

onOpen
onRender

release()

Description Use a Line object to draw a line in a form or report. Note that the position properties—top, left, bottom, and
right—work different for the Line object than they do with other components. The size property controls the
thickness of the line.

A Line has no hWnd because it is drawn on the surface of the form; it is not a genuine Windows control. Despite
its position in the form’s z-order, a Line can never be drawn on top of another component (other than a Line or
Shape).

See also class Form, class Image

class ListBox
A selection list on a form, from which you can pick multiple items.

Syntax [<oRef> =] new ListBox(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created ListBox object.

<container> The container—typically a Form object—to which you’re binding the ListBox object.

<name expC> An optional name for the ListBox object. If not specified, the ListBox class will auto-
generate a name for the object.

Properties The following tables list the properties, events, and methods of interest in the ListBox class.

Property Default Description
allowDrop false Whether dragged objects (i.e. a table field) can be dropped in the ListBox
baseClassName LISTBOX Identifies the object as an instance of the ListBox class (Property discussed in

Chapter 5, “Core language.”)
Form objects 451

class ListBox
The following table lists the common properties, events, and methods of the ListBox class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use a ListBox object to present the user with a scrollable list of items. If the multiple property is true, the user
can choose more than one item. The list of options is set with the dataSource property.The list of items selected
is returned by calling the selected() method.

className (LISTBOX) Identifies the object as an instance of a custom class. When no custom class
exists, defaults to baseClassName

colorHighlight HighlightText
/Highlight

The color of selected options

colorNormal WindowText
/Window

The color of unselected options

curSel The number of the option that has the focus rectangle
dataSource The options strings of the ListBox object
multiple false Whether the ListBox object allows selection of more than one option
sorted false Whether the options are sorted
value The value of the option that currently has focus
vScrollBar Auto When a vertical scrollbar appears (0=Off, 1=On, 2=Auto, 3=Disabled)

Event Parameters Description
key <char expN>,

<position expN>,
<shift expL>,
<ctrl expL>

When a key is pressed. Return value may change or cancel keystroke.

onDragEnter <left expN>
<top expN>
<type expC>
<name expC>

When the mouse enters the ListBox object’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the ListBox object’s display area during
a Drag&Drop operation

onDragLeave When the mouse leaves the ListBox object’s display area without having
dropped an object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the ListBox object’s display area
during a Drag&Drop operation

onSelChange After the focus moves to another option in the list

Method Parameters Description
count() Returns the number of options in the list
selected() Returns the currently selected option(s) or checks if a specified option is selected

Property Default Description
452 dBL Language Reference

class NoteBook
See also class ComboBox

class NoteBook
A multi-page container with rectangular tabs on top.

Syntax [<oRef> =] new NoteBook(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created NoteBook object.

<container> The container—typically a Form object—to which you’re binding the NoteBook object.

<name expC> An optional name for the NoteBook object. If not specified, the NoteBook class will auto-
generate a name for the object.

Properties The following tables list the properties and events of interest in the NoteBook class. (No particular methods are
associated with this class.)

Property Default Description
anchor 0 How the NoteBook object is anchored in its container (0=None, 1=Bottom,

2=Top, 3=Left, 4=Right, 5=Center, 6=Container)
allowDrop false Whether the dragged objects can be dropped on the notebook’s surface
baseClassName NOTEBOOK Identifies the object as an instance of the NoteBook class (Property discussed in

Chapter 5, “Core language.”)
buttons false Whether the notebook tabs appear as buttons instead
className (NOTEBOOK) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnFace Color of the notebook background
curSel The number of the currently selected tab
dataSource The tab names for the notebook
focus Normal When to give focus to the notebook tabs when they are clicked (0=Normal,

1=On Button Down, 2=Never)
multiple false Whether the notebook tabs are displayed in multiple rows, or in a single row

with a scrollbar
visualStyle Right Justify The style of the notebook tabs (0=Right Justify, 1=Fixed Width, 2=Ragged

Right)

Event Parameters Description
canSelChange <nNewSel expN> Before a different NoteBook tab is selected; return value determines if selection

can leave the current tab.
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the NoteBook’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the NoteBook’s display area during a
Drag&Drop operation

onDragLeave When the mouse leaves the NoteBook’s display area without having dropped an
object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the NoteBook’s display area during a
Drag&Drop operation

onSelChange After a different notebook tab is selected
Form objects 453

class OLE
The following table lists the common properties, events, and methods of the NoteBook class:

Property Event Method
before
borderStyle
dragEffect
enabled
first
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()
setFocus()

Description The NoteBook object combines apsects of the Form, Container, and TabBox objects. It’s a multi-page control,
like the Form; it acts as a container, and it has tabs, although they’re on top. Selecting a tab automatically
changes the page of the notebook to display the controls assigned to that page. The notebook’s pageNo property
indicates which page of the form the notebook is in. The notebook’s curSel property indicates the current page
the notebook is displaying.

When the Notebook's enabled property is set to "false", the enabled properties of all contained controls are
likewise set to "false". When the Notebook's enabled property is set to "true", the enabled properties of the
contained controls regain their individual settings.

See also class Container, class TabBox

class OLE
Displays an OLE document that is stored in an OLE field, and lets the user initiate an action in the server application
that created the document.

Syntax [<oRef> =] new OLE(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created OLE object.

<container> The container—typically a Form object—to which you’re binding the OLE object.

<name expC> An optional name for the OLE object. If not specified, the OLE class will auto-generate a
name for the object.

Properties The following tables list the properties, events, and methods of interest in the OLE class.

Property Default Description
alignment Stretch Determines the size and position of the contents of the OLE object (0=Stretch, 1=Top

left, 2=Centered, 3=Keep aspect stretch, 4=True size)
anchor 0 How the OLE object is anchored in its container (0=None, 1=Bottom, 2=Top, 3=Left,

4=Right, 5=Center, 6=Container)
baseClassName OLE Identifies the object as an instance of the OLE class (Property discussed in Chapter 5,

“Core language.”)
border false Whether the OLE object is surrounded by the border specified by borderStyle
className (OLE) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
dataLink The Field object that is linked to the OLE object
linkFileName The OLE document file (if any) that is linked with the current OLE field.
454 dBL Language Reference

class PaintBox
The following table lists the common properties, events, and methods of the OLE class:

Property Event Method
before
borderStyle
dragEffect
enabled
form
height
hWnd
ID
left
mousePointer

name
pageNo
parent
printable
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus

onLostFocus
onOpen

drag()
release()
setFocus()

Description Place an OLE object in a form to view and edit a document stored in an OLE field. For example, if an OLE field
contains a bitmap image created in Paintbrush, double-clicking the OLE object linked to the field starts a
session in Paintbrush and places the image in the Paintbrush work area.

OLE stands for object linking and embedding. When you link a document to an OLE object, the OLE field does
not contain the document itself; instead, it holds a link to a file containing the document. When you embed a
document in an OLE field, a copy of the document is inserted into the OLE field, and no connection is made to
a document file.

By double-clicking the OLE object, the user can invoke the application that created the OLE document.
Therefore, if an image was created in Paintbrush and linked or embedded in the OLE field, double-clicking on
the field starts a session in Paintbrush; the image is displayed in the Paintbrush drawing area, ready for editing.
If the object was linked, any changes made in the Paintbrush session are stored in the document file; if the object
was embedded, the changes are stored in the OLE field only.

An OLE viewer window object displays the contents of an OLE field. (Use the dataLink property to identify the
field.) Each time the record pointer is moved, the contents of the viewer window are refreshed to display the
OLE field in the current record.

See Also class ActiveX, class Image, REPLACE OLE, replaceFromFile()

class PaintBox
A generic control that can be placed on a form.

Syntax [<oRef> =] new PaintBox(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created PaintBox object.

<container> The container—typically a Form object—to which you’re binding the PaintBox object.

<name expC> An optional name for the PaintBox object. If not specified, the PaintBox class will auto-
generate a name for the object.

OLEType Number that reflects whether an OLE field is empty (0), contains an embedded
document (1), or contains a link to a document file (2)

serverName The server application that is invoked when the user double-clicks on an OLE viewer
object

Event Parameters Description
onChange After the contents of the OLE object have changed
onClose After the form containing the OLE object has been closed

Method Parameters Description
doVerb() <OLE verb expN>,

<title expC>
Starts an OLE server session

Property Default Description
Form objects 455

class PaintBox
Properties The following tables list the properties and events of interest in the PaintBox class. (No particular methods are
associated with this class.)

Property Default Description
allowDrop false Whether dragged objects can be dropped in the paintbox
baseClassName PAINTBOX Identifies the object as an instance of the PaintBox class (Property discussed in

Chapter 5, “Core language.”)
className (PAINTBOX) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnText/BtnFace The color of the paintbox
transparent false Whether the paintbox background is the same as the background color or image

of its container

Event Parameters Description
onChar <char expN>,

<repeat expN>,
<flags expN>

After a non-cursor key or key combination is pressed

onClose After the form containing the PaintBox object has been closed
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the PaintBox object’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the PaintBox object’s display area during
a Drag&Drop operation

onDragLeave When the mouse leaves the PaintBox object’s display area without having
dropped an object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the PaintBox object’s display area
during a Drag&Drop operation

onFormSize After the form containing the paintbox is resized
onKeyDown <char expN>,

<repeat expN>,
<flags expN>

After any key is pressed

onKeyUp <char expN>,
<repeat expN>,
<flags expN>

After any key is released

onPaint Whenever the paintbox needs to be redrawn

The following table lists the common properties, events, and methods of the PaintBox class:

Property Event Method
before
borderStyle
dragEffect
enabled
form
height
hWnd
ID
left
mousePointer

name
pageNo
parent
printable
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onMouseOut
onMouseOver
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()
setFocus()

Description The PaintBox object is a generic control you can use to create a variety of objects. It is designed for advanced
developers who want to create their own custom controls using the Windows API. It is simply a rectangular
region of a form that has all the standard control properties such as height, width, and before, as well as all the
standard mouse events.
456 dBL Language Reference

class Progress
In addition to the standard events or properties, the PaintBox object has three events that let you detect
keystrokes entered when it has focus: onChar, onKeyDown, and onKeyUp. These let you create customized
editing controls. The onPaint and onFormSize events let you modify the appearance of the object based on user
interaction.

class Progress
A progress indicator.

Syntax [<oRef> =] new Progress(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Progress object.

<container> The container—typically a Form object—to which you’re binding the Progress object.

<name expC> An optional name for the Progress object. If not specified, the Progress class will auto-
generate a name for the object.

Properties The following tables list the properties of interest in the Progress class. (No particular events or methods are
associated with this class.)

Property Default Description
baseClassName PROGRESS Identifies the object as an instance of the Progress class (Property discussed in

Chapter 5, “Core language.”)
className (PROGRESS) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
rangeMax The maximum value
rangeMin The minimum value
value The current value

The following table lists the common properties, events, and methods of the Progress class:

Property Event Method
before
borderStyle
dragEffect
form
height
hWnd
left
mousePointer

name
pageNo
parent
printable
speedTip
systemTheme
top
visible
width

onDesignOpen
onDragBegin
onLeftMouseDown
onLeftMouseUp

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightMouseDown
onRightMouseUp

drag()
move()
release()

Description Use a Progress object to graphically indicate progress during processing. For example to display percentage
completed, set the rangeMin to 0 and the rangeMax to 100. Then as the process progresses, set the value to the
approximate percentage. The control will display the percentage graphically.

class PushButton
A button on a form.

Syntax [<oRef> =] new PushButton(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created PushButton object.

<container> The container—typically a Form object—to which you’re binding the PushButton object.

<name expC> An optional name for the PushButton object. If not specified, the PushButton class will
auto-generate a name for the object.
Form objects 457

class RadioButton
Properties The following tables list the properties and events of interest in the PushButton class. (No particular methods
are associated with this class.)

Property Default Description
baseClassName PUSHBUTTON Identifies the object as an instance of the PushButton class (Property discussed

in Chapter 5, “Core language.”)
bitmapAlignment 0 (Default) Controls position of bitmaps and text on the pushButton
className (PUSHBUTTON) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnText/BtnFace The color of the button
default false Whether the button is the default button on the form
disabledBitmap The bitmap to display on the button when it’s disabled
downBitmap The bitmap to display on the button when it’s pressed down
focusBitmap The bitmap to display on the button when it has focus
group The group to which the button belongs
speedBar false Whether the button acts like a tool button, which never gets focus
systemTheme true Whether to use XP Visual Style button, or Windows Classic button
text <same as name> The text that appears on the PushButton face
textLeft false When a button has both a bitmap and text label, whether the text appears to the

left or right of the bitmap
toggle false Whether the button acts like a toggle switch, staying down when pressed
upBitmap 0 The bitmap to display on the button when it’s not down and does not have focus
value false Whether the button is pressed (used when toggle is true)

The following table lists the common properties, events, and methods of the PushButton class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use a PushButton object to execute an action when the user clicks it.

class RadioButton
A single RadioButton on a form. The user may choose one from a set.

Syntax [<oRef> =] new RadioButton(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created RadioButton object.

<container> The container—typically a Form object—to which you’re binding the RadioButton object.

<name expC> An optional name for the RadioButton object. If not specified, the RadioButton class will
auto-generate a name for the object.
458 dBL Language Reference

class Rectangle
Properties The following tables list the properties and events of interest in the RadioButton class. (No particular methods
are associated with this class.)

Property Default Description
baseClassName RADIOBUTTON Identifies the object as an instance of the RadioButton class (Property discussed

in Chapter 5, “Core language.”)
className (RADIOBUTTON) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnText/BtnFace The color of the RadioButton’s text label
dataLink The Field object that is linked to the Radio object
group The group to which the RadioButton belongs
text <same as name> The text label that appears beside the RadioButton
textLeft false Whether the RadioButton’s text label appears to the left or to the right of the

RadioButton
transparent false Whether the RadioButton object has the same background color or image as its

container
value Whether the RadioButton is visually marked as selected

Event Parameters Description
onChange After the RadioButton gets selected or loses its selection

The following table lists the common properties, events, and methods of the RadioButton class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use a group of RadioButton objects to present the user a set of multiple choices, from which they can choose
only one.

Each set of choices on a form must have the same group property. If there is only one group of RadioButtons on
a form, the group can be left blank. You may use any string or number as the group.

You may also use true and false in the group property to create RadioButton groups. Use true for the first button
in each RadioButton group, and false for the rest. For example, if you create seven RadioButtons and set the
group property of the first and fourth RadioButton to true, the first three buttons form one group, and the last
four form another. The two groups are independent; the user can select one button in the first group and one
button in the other.

See also class CheckBox

class Rectangle
A rectangle with a caption.

Syntax [<oRef> =] new Rectangle(<container> [,<name expC>])
Form objects 459

class ReportViewer
<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Rectangle object.

<container> The container—typically a Form object—to which you’re binding the Rectangle object.

<name expC> An optional name for the Rectangle object. If not specified, the Rectangle class will auto-
generate a name for the object.

Properties The following tables list the properties of interest of the Rectangle class. (No particular events or methods are
associated with this class.)

Property Default Description
baseClassName RECTANGLE Identifies the object as an instance of the Progress class (Property discussed in

Chapter 5, “Core language.”)
border true Whether the Rectangle object’s rectangle is visible
borderStyle Default Specifies the rectangle style (0=Default, 1=Raised, 2=Lowered, 3=None, 4=Single,

5=Double, 6-Drop Shadow, 7=Client, 8=Modal, 9=Etched In, 10=Etched Out)
className (RECTANGLE) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorNormal BtnText/

BtnFace
The color of the caption and the rectangle fill

patternStyle Solid The fill pattern style (0=Solid, 1=BDiagonal, 2=Cross, 3=Diagcross, 4=FDiagonal,
5=Horizontal, 6=Vertical)

text <same as name> The text caption that appears at the top right of the rectangle
transparent false Determines if the interior of rectangle is, or is not, transparent.

The following table lists the common properties, events, and methods of the Rectangle class:

Property Event Method
before
dragEffect
borderStyle
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height

hWnd
left
mousePointer
name
pageNo
parent
printable
systemTheme
top
visible
width

onDesignOpen
onDragBegin
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()

Description Use a Rectangle object to enclose an area of a form. For example, you can use a Rectangle object to draw a
border around a group of related objects, such as a group of RadioButtons.

To assign a label that describes the group of objects, use the text property. The label appears in the top left
corner of the rectangle.

A Rectangle object does not affect other objects. The user can't give focus to the Rectangle object, and it doesn't
display or modify data.

See Also Class Line, Class Shape

class ReportViewer
A control to display a report on a form.

Syntax [<oRef> =] new ReportViewer(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created ReportViewer object.

<container> The container—typically a Form object—to which you’re binding the ReportViewer object.
460 dBL Language Reference

class ScrollBar
<name expC> An optional name for the ReportViewer object. If not specified, the ReportViewer class
will auto-generate a name for the object.

Properties The following tables list the properties, events and methods of interest in the ReportViewer class.

Property Default Description
allowDrop false Whether dragged objects can be dropped on the ReportViewer object
anchor 0 How the ReportViewer object is anchored in its container (0=None,

1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center, 6=Container)
baseClassName REPORTVIEWER Identifies the object as an instance of the ReportViewer class (Property

discussed in Chapter 5, “Core language.”)
className (REPORTVIEWER) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
filename The name of the .REP file containing the report to view
params Parameters passed to the .REP file
ref A reference to the Report object being viewed
scrollBar Auto When a scroll bar appears for the ReportViewer object (0=Off, 1=On, 2=Auto,

3=Disabled)

Event Parameters Description
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the ReportViewer object’s display area during a
Drag&Drop operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the ReportViewer object’s display
area during a Drag&Drop operation

onDragLeave When the mouse leaves the ReportViewer object’s display area without
having dropped an object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the ReportViewer object’s
display area during a Drag&Drop operation

onLastPage When the last page of a report has been rendered in the reportViewer

Method Parameters Description
reExecute() Regenerates the report

The following table lists the common properties, events, and methods of the ReportViewer class:

Property Event Method
before
borderStyle
dragEffect
form
height
left

name
pageNo
parent
systemTheme
top
width

onDragBegin drag()
move()
release()

Description Use a ReportViewer object to view a report in a form. Assign any parameters to the params property, then set
the filename property to the name of the .REP file; this executes the named report file. You may access the
report object being viewed through the ref property.

If report parameters are assigned after setting the filename property, you must call the reExecute() method to
regenerate the report.

class ScrollBar
A vertical or horizontal scrollbar used to represent a range of numeric values.
Form objects 461

class Shape
Syntax [<oRef> =] new ScrollBar(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created ScrollBar object.

<container> The container—typically a Form object—to which you’re binding the ScrollBar object.

<name expC> An optional name for the ScrollBar object. If not specified, the ScrollBar class will auto-
generate a name for the object.

Properties The following tables list the properties and events of interest in the ScrollBar class. (No particular methods are
associated with this class.)

Property Default Description
baseClassName SCROLLBAR Identifies the object as an instance of the ScrollBar class (Property discussed in

Chapter 5, “Core language.”)
className (SCROLLBAR) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal ScrollBar The color of the scrollbar
dataLink The Field object that is linked to the ScrollBar object
rangeMax The maximum value
rangeMin The minimum value
value The current value
vertical true Whether the scrollbar is vertical or horizontal

Event Parameters Description
onChange After the scrollbar value changes

The following table lists the common properties, events, and methods of the ScrollBar class:

Property Event Method
before
borderStyle
dragEffect
enabled
form
height
helpFile
helpId
hWnd
ID
left

mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description The ScrollBar object is maintained primarily for compatiblity. Use a Slider instead.

See Also class Slider, class SpinBox

class Shape
A simple colored geometric shape.

Syntax [<oRef> =] new Shape(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Shape object.

<container> The container—typically a Form object—to which you’re binding the Shape object.

<name expC> An optional name for the Shape object. If not specified, the Shape class will auto-generate a
name for the object.
462 dBL Language Reference

class Slider
Properties The following tables list the properties of interest of the Shape class. (No particular events or methods are
associated with this class.)

Property Default Description
baseClassName SHAPE Identifies the object as an instance of the Shape class (Property discussed in Chapter

5, “Core language.”)
className (SHAPE) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorNormal WindowText

/Window
The pen and fill color of the shape

drawMode 0 - Normal An enumerated property used to create visual effects using the pen and fill color of the
shape, and the color of the underlying object. See drawMode for details.

penStyle Solid The pen style used to draw the outline of the shape (0=Solid, 1=Dash, 2=Dot,
3=DashDot, 4=DashDotDot)

penWidth 1 Width of the outline in pixels
shapeStyle Circle The type of shape to draw (0=Round Rectangle, 1=Rectangle, 2=Ellipse, 3=Circle,

4=Round square, 5=Square)

The following table lists the common properties, events, and methods of the Shape class:

Property Event Method
before
form
height
left
name
pageno

parent
printable
top
visible
width

canRender
onDesignOpen
onOpen
onRender

move()
release()

Description Use a Shape object to draw a basic geometric shape on a form.

A Shape has no hWnd because it is drawn on the surface of the form; it is not a genuine Windows control.
Despite its position in the form’s z-order, a Shape can never be drawn on top of another component (other than
a Line or Shape).

See Also class Image, class Line, class Rectangle

class Slider
A horizontal or vertical slider for choosing magnitude.

Syntax [<oRef> =] new Slider(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Slider object.

<container> The container—typically a Form object—to which you’re binding the Slider object.

<name expC> An optional name for the Slider object. If not specified, the Slider class will auto-generate a
name for the object.

Properties The following tables list the properties, events, and methods of interest in the Slider class.

Property Default Description
baseClassName SLIDER Identifies the object as an instance of the Slider class (Property discussed in

Chapter 5, “Core language.”)
className (SLIDER) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnFace The color of the slider
enableSelection false Whether to display the selection range
endSelection The value of the end of the selection range
Form objects 463

class SpinBox
The following table lists the common properties, events, and methods of the Slider class:

Property Event Method
before
borderStyle
dragEffect
enabled
form
height
helpFile
helpId
hWnd
ID
left

mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftMouseDown
onLeftMouseUp
onLostFocus

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use a slider to let users vary numeric values visually. Unlike spinboxes, sliders don't accept keyboard input or
use a step value. Instead, the user drags the slider pointer to increase or decrease the value.

As the user moves the slider pointer, the value is continually updated to reflect the position of the pointer. For
example, a slider that varies a numeric value between 1 and 100 sets the value to 50 when the slider pointer is at
the center of the slider.

To set a range for the slider, set rangeMin to the minimum value and rangeMax to the maximum value.

You may also designate a separate selection region inside the slider with the startSelection, endSelection, and
enableSelection properties.

You have complete control over the tick makrs that appear in the slider.

See also class ScrollBar, class SpinBox

class SpinBox
An entryfield with a spinner for entering numeric or date values.

Syntax [<oRef> =] new SpinBox(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created SpinBox object.

<container> The container—typically a Form object—to which you’re binding the SpinBox object.

rangeMax The maximum value
rangeMin The minimum value
startSelection The value of the start of the selection range
tics Auto How to display the tic marks (0=Auto, 1=Manual, 2=None)
ticsPos Bottom Right Where to display the tic marks (0=Both, 1=Bottom Right, 2=Top Left)
value The current value
vertical false Whether the slider is vertical or horizontal

Event Parameters Description
onChange After the slider position changes

Method Parameters Description
clearTics() <expN> Clears all manually-set tic marks
setTic() <expN> Manually sets a tic mark at the specified position
setTicFrequency() <expN> Sets the automatic tic mark interval

Property Default Description
464 dBL Language Reference

class SpinBox
<name expC> An optional name for the SpinBox object. If not specified, the SpinBox class will auto-
generate a name for the object.

Properties The following tables list the properties, events, and methods of interest in the SpinBox class.

Property Default Description
baseClassName SPINBOX Identifies the object as an instance of the SpinBox class (Property discussed in

Chapter 5, “Core language.”)
border true Whether the SpinBox object is surrounded by the border specifed by borderStyle
className (SPINBOX) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
colorHighlight The color of the text in the SpinBox object when the object has focus
colorNormal WindowText

/Window
The color of the text in the SpinBox object when the object does not have focus

dataLink The Field object that is linked to the SpinBox object
function A text formatting function
picture Formatting template
rangeMax The maximum value
rangeMin The minimum value
rangeRequired false Whether the range values are enforced even when no change has been made
selectAll true Whether the entryfield contents are initially selected when the SpinBox object gets

focus
spinOnly false Whether the value may changed using the spinner only or typing is allowed
step 1 The value added or subtracted when using the spinner
validErrorMsg Invalid input The message that is displayed when the valid event fails
validRequired false Whether to fire the valid event even when no change has been made
value The value currently displayed in the SpinBox object

Event Parameters Description
key <char expN>,

<position expN>,
<shift expL>,
<ctrl expL>

When a key is pressed. Return value may change or cancel keystroke.

onChange After the spinner is clicked
onKey <char expN>

<position expN>
<shift expC>
<ctrl expC>

After a key has been pressed (and the key event has fired), but before the next
keypress

valid When attempting to remove focus. Must return true, or focus remains.

Method Parameters Description
copy() Copies selected text to the Windows Clipboard
cut() Cuts selected text to the Windows Clipboard
keyboard() <expC> Simulates typed user input to the SpinBox object
paste() Copies text from the Windows Clipboard to the current cursor position
undo() Reverses the effects of the most recent cut(), copy(), or paste() action
Form objects 465

class SubForm
The following table lists the common properties, events, and methods of the SpinBox class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
speedTip
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description Use a spinbox to let users enter values by typing them in the textbox or by clicking the spinner arrows.

By setting spinOnly to true, you can control the rate at which users change numeric or date values. For example,
one spin box might change an interest rate in increments of hundredths, while another might change a date value
in week increments. Set the size of each increment with the step property; for example, if you set step to 5, each
click on an arrow changes a numeric value by 5 or a date value by 5 days.

To restrict entries to those within a particular range of values, set the rangeMin property to the minimum value
and rangeMax to the maximum value, then set rangeRequired to true.

See Also class Slider

class SubForm
A subclassed Form which behaves as a non-mdi form. A subform can be a child of a form or another subform
object.

Syntax [<oRef> =] new SubForm(<parent oRef>[<title expC>])

<oRef> A variable or property in which to store a reference to the newly created SubForm object.

<parent oRef> A variable or property containing an object reference to the form, or subform, that is to be
the parent of the new subform. Determines the read-only value of the subform's parent property.

<title expC> An optional title for the SubForm object. If not specified, the title will be "SubForm".

Properties The following tables list the properties, events, and methods of the SubForm class.

Property Default Description
activeControl The currently active control
allowDrop false Whether dragged objects can be dropped onto the subform’s surface
autoCenter false Whether the subform automatically centers on-screen when it is opened
autoSize false Whether the subform automatically sizes itself to display all its components
background Background image
baseClassName SUBFORM Identifies the object as an instance of the SubForm class (Property discussed in Chapter

5, “Core language.”)
className (SUBFORM) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
clientEdge false Whether the edge of the subform has the sunken client appearance
colorNormal BtnFace Background color
elements An array containing object references to the components on the subform
escExit true Whether pressing Esc closes the subform
first The first component on the subform in the z-order
466 dBL Language Reference

class SubForm
hWndClient The Windows handle for the subform's client area
icon An icon file or resources that displays when the subform is minimized
inDesign Whether the subform was instantiated by the Form designer
maximize true Whether the subform can be maximized when not MDI
metric Chars Units of mesurement (0=Chars, 1=Twips, 2=Points, 3=Inches, 4=Centimeters,

5=Millimeters, 6=Pixels)
minimize true Whether the subform can be minimized when not MDI
moveable true Whether the subform is moveable when not MDI
nextObj The object that’s about to receive focus
persistent false Determines whether custom control, datamodule, menu or procedure files associated

with a subform are loaded in the persistent mode.
popupMenu The subform’s Popup menu object
refreshAlways true Whether to refresh the subform after all form-based navigation and updates
rowset The primary rowset
scrollBar Off When a scroll bar appears for the subform (0=Off, 1=On, 2=Auto, 3=Disabled)
scrollHOffset The current position of the horizontal scrollbar in units matching the form or subform's

current metric property
scrollVOffset The current position of the vertical scrollbar in units matching the form or subform's

current metric property
showSpeedTip true Whether to show tool tips
sizeable true Whether the subform is resizeable when not MDI
smallTitle false Whether the subform has the smaller palette-style title bar when not MDI
sysMenu true Whether the subform’s system menu icon and close icon are displayed when not MDI
text The text that appears in the subform’s title bar
topMost false Whether the subform stays on top when not MDI
useTablePopup false Whether to use the default table navigation popup when no popup is assigned as the

subform’s popupMenu.
view The query or table on which the subform is based
windowState Normal The state of the window (0=Normal, 1=Minimized, 2=Maximized)

Event Parameters Description
canClose When attempting to close subform; return value allows or disallows closure
canNavigate <workarea expN> When attempting to navigate in work area; return value allows or disallows

leaving current record
onAppend After a new record is added
onChange <workarea expN> After leaving a record that was changed, before onNavigate
onClose After the subform has been closed
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the subform’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the subform’s display area during a
Drag&Drop operation

onDragLeave When the mouse leaves the subform’s display area without having dropped an
object

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the subform’s display area during a
Drag&Drop operation

onMove After the subform has been moved
onNavigate <workarea expN> After navigation in a work area
onSelection <control ID expN> After the subform is submitted
onSize <expN> After the subform is resized or changes windowState

Property Default Description
Form objects 467

class TabBox
Method Parameters Description
abandonRecord() Abandons changes to the current record
beginAppend() Starts append of new record
close() Closes the subform.
isRecordChanged() Checks whether the current record buffer has changed
open() Loads and opens the subform
pageCount() Returns the highest pageNo of any component
print() <dialog expL>,

<mode expL>
Prints a form as it appears on screen or prints only the data from a completed form

refresh() Redraws the subform
saveRecord() Saves changes to the current or new record
scroll() <horizontal expN>,

<vertical expN>
Programatically scrolls the client area (the contents) of a subform

showFormatBar() <expL> Displays or hides the formatting toolbar

The following table lists the common properties, events, and methods of the SubForm class:

Property Event Method
enabled
height
helpFile
helpId
hWnd
left

mousePointer
pageNo
parent
statusMessage
systemTheme
top
visible
width

onDesignOpen
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp

move()
release()
setFocus()

Description Parenting the subform to a form, or another subform, restricts display of the subform to within the client area of
the parent form. When a parent form is closed, it allows the parent form to also close the subform.

A form or subform, containing one or more subforms, internally tracks which subform (if any) is currently
active. When a subform is active, that subform has focus. When a form object is given focus, the active subform
will lose focus and be set to inactive. Clicking on a subform, or subform object, will activate the subform and set
focus either to the subform or the selected object.

A form's canClose event will call the canClose event of any child subforms. If a subform's canClose event
returns false, the form's canClose event will also return false.

Subforms are not currently supported by the Form Designer. However, you can design a form in the Form
Designer and edit the streamed code to designate it a Subform.

class TabBox
A set of folder-style (trapezoidal) bottom-tabs.

Syntax [<oRef> =] new TabBox(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created TabBox object.

<container> The container—typically a Form object—to which you’re binding the TabBox object.

<name expC> An optional name for the TabBox object. If not specified, the TabBox class will auto-
generate a name for the object.
468 dBL Language Reference

class Text
Properties The following tables list the properties and events of interest in the TabBox class. (No particular methods are
associated with this class.)

Property Default Description
anchor 1 - Bottom How the TabBox object is anchored in its container (0=None, 1=Bottom)
baseClassName TABBOX Identifies the object as an instance of the TabBox class (Property discussed in

Chapter 5, “Core language.”)
className (TABBOX) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorHighlight BtnText/BtnFace The color of the selected tab
colorNormal BtnFace The color of the background behind the tabs
curSel The number of the currently selected tab
dataSource The tab names

Event Parameters Description
onSelChange After a different tab is selected

The following table lists the common properties, events, and methods of the TabBox class:

Property Event Method
before
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp
when

drag()
move()
release()
setFocus()

Description A TabBox contains a number of tabs that users can select.

By setting the pageNo property of a TabBox control to zero (the default), you can implement a tabbed multi-
page form where the user can easily switch pages by selecting tabs. Use the pageNo property of a control to
determine on which page the control appears, and use the curSel property and onSelChange event of the
TabBox to switch between pages.

See Also class NoteBook

class Text
Non-editable HTML text on a form.

Syntax [<oRef> =] new Text(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created Text object.

<container> The container—typically a Form object—to which you’re binding the Text object.

<name expC> An optional name for the Text object. If not specified, the Text class will auto-generate a
name for the object.
Form objects 469

class Text
Properties The following tables list the properties and methods of interest in the Text class. (No particular events are
associated with this class.)

Property Default Description
alignHorizontal Left Determines how the text displays within the horizontal plane of its

rectangular frame (0=Left, 1=Center, 2=Right, 3=Justify)
alignment Top left Combines the alignHorizontal, alignVertical, and wrap properties

(maintained for compatibility)
alignVertical Top Determines how the text displays in the vertical plane of its rectangular

frame (0=Top, 1=Center, 2=Bottom, 3=Justify)
anchor 0 How the Text object is anchored in its container (0=None, 1=Bottom,

2=Top, 3=Left, 4=Right, 5=Center, 6=Container)
baseClassName TEXT Identifies the object as an instance of the Text class (Property discussed in

Chapter 5, “Core Language”.)
border false Whether the Text object is surrounded by the border specified by

borderStyle
className (TEXT) Identifies the object as an instance of a custom class. When no custom

class exists, defaults to baseClassName
colorNormal BtnText/BtnFace The color of the text
fixed false Whether the Text object’s position is fixed or if it can be “pushed down”

or “pulled up” by the rendering or suppression of other objects. (See
page 17-652.)

function A text formatting function
leading 0 The distance between consecutive lines; if 0 uses the font's default

leading. (See page 17-655.)
marginHorizontal The horizontal margin between the text and its rectangular frame. (See

page 17-656.)
marginVertical The vertical margin between the text and its rectangular frame. (See

page 17-656.)
picture Formatting template
prefixEnable true Whether to interpret the ampersand (&) character in the text as the

accelerator prefix.
rotate 0 The text orientation, in increments of 90 degrees

(0=0, 1=90, 2=180, 3=270). (See page 17-663.)
supressIfBlank false Whether the Text object is suppressed (not rendered) if it is blank. (See

page 17-664.)
supressIfDuplicate false Whether the Text object is suppressed (not rendered) if its value is the

same as the previous time it was rendered. (See page 17-664.)
text <same as name> The value of the Text object; the text that appears
tracking 0 The space between characters; if zero, uses the font’s default. (See

page 17-665.)
trackJustifyThreshold 0 The maximum amount of added space between words on a fully justified

line; zero indicates no limit. (See page 17-665.)
transparent false Whether the Text object has the same background color or image as its

container
variableHeight false Whether the Text object’s height can increase based on its value. (See

page 17-665.)
verticalJustifyLimit 0 The maximum additional space between lines that can be added to

attempt to justify vertically. If the limit is exceeded the Text object is top
justified. A value of zero means no limit. (See page 17-665.)

wrap true Whether to word-wrap the text in the Text object

Method Parameters Description
getTextExtent() <expC> Returns the width of the specified string using the Text object’s font
470 dBL Language Reference

class TextLabel
The following table lists the common properties, events, and methods of the Text class:

Property Event Method
before
borderStyle
dragEffect
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
systemTheme
top
visible
width

canRender
onDesignOpen
onDragBegin
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRender
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()

Description Use a Text component to display information in a form or report. The text property of the component may
contain any text, including HTML tags.

Use a TextLabel component in forms where the extended functionality of the Text component is not required.

The text property may be an expression codeblock, which is evaluated every time it is rendered.

Note The properties, marginHorizontal, marginVertical, suppressfBlank, suppressfDuplicate, tracking,
trackJustifyThreshold, verticalJustifyLimit and variableHeight are designed to be used only in reports.

See also class Editor, class TextLabel

class TextLabel
Non-editable text on a form or in a report.

Syntax [<oRef> =] new TextLabel(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created TextLabel object.

<container> The container to which you’re binding the TextLabel object.

<name expC> An optional name for the TextLabel object. If not specified, the TextLabel class will auto-
generate a name for the object.

Properties The following tables list the properties, events, and methods of interest in the TextLabel class.

Property Default Description
alignHorizontal Left Determines how the text displays within the horizontal plane of its rectangular

frame (0=Left, 1=Center, 2=Right, 3=Justify)
alignVertical Top Determines how the text displays in the vertical plane of its rectangular frame

(0=Top, 1=Center, 2=Bottom, 3=Justify)
baseClassName TEXTLABEL Identifies the object as an instance of the TextLabel class (Property discussed

in Chapter 5, “Core language.”)
className TEXTLABEL Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal BtnText/BtnFace The color of the text
prefixEnable true Whether to interpret the ampersand (&) character in the text as the accelerator

prefix.
text <same as name> The value of the TextLabel object; the text that appears
transparent false Whether the TextLabel object has the same background color or image as its

container

Method Parameters Description
getTextExtent() <expC> Returns the width of the specified string using the TextLabel object’s font
Form objects 471

class TreeItem
The following table lists the common properties, events, and methods of the TextLabel class:

Property Event Method
before
borderStyle
dragEffect
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
systemTheme
top
visible
width

canRender
onDesignOpen
onDragBegin
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick

onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRender
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()

Description Use a TextLabel component to display information on a form or report, wherever features such as word-wrap
and HTML formatting are not required. TextLabel is a simple, light-duty object which consumes fewer system
resources than the Text component.

The TextLabel component does not support in-place editing on design surfaces.

The text property of the TextLabel component may contain character string data only.

See also class Text

class TreeItem
An item in a TreeView.

Syntax [<oRef> =] new TreeItem(<parent> [,<name expC>])

<oRef> A variable or property—typically of <parent>—in which to store a reference to the newly created
TreeItem object.

<parent> The parent object—a TreeView object for top-level items, or another TreeItem—to which you’re
binding the TreeItem object.

<name expC> An optional name for the TreeItem object. If not specified, the TreeItem class will auto-
generate a name for the object.
472 dBL Language Reference

class TreeView
Properties The following tables list the properties and methods of interest in the TreeItem class. (No particular events are
associated with this class.)

Property Default Description
baseClassName TREEITEM Identifies the object as an instance of the TreeItem class (Property discussed in

Chapter 5, “Core language.”)
bold false Whether the text label is bold
checked false Whether the item is visually marked as checked
className (TREEITEM) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
expanded false Whether the item’s children are shown or hidden
firstChild The first child tree item
handle The Windows tree item handle (similar to hWnd)
image Image displayed between checkbox and text label when item does not have

focus
level The tree level of the item
nextSibling The next tree item with the same parent
noOfChildren The number of child tree items
prevSibling The previous tree item with the same parent
selectedImage Image displayed between checkbox and text label when item has focus
text The text label of the tree item

Method Parameters Description
ensureVisible() Expands the tree and scrolls the tree view if necessary to make the tree item

visible
select() Makes the tree item the selected item in the tree
setAsFirstVisible() Expands the tree and scrolls the tree view if necessary to try to make the tree

item the first (topmost) visible tree item
sortChildren() Sorts the child tree items

The following table lists the common properties, events, and methods of the TreeItem

class:

Property Event Method
name
parent

none release()

Description Each item in a tree view can contain text, an icon image that can change when the the item is selected, and a
checkbox. You can replace the checkbox images with a different pair of images to represent any two-state
condition.

A TreeItem object can contain other TreeItem objects as child objects in a subtree, which can be expanded or
collapsed.

See also class TreeView

class TreeView
An expandable tree.

Syntax [<oRef> =] new TreeView(<container> [,<name expC>])

<oRef> A variable or property—typically of <container>—in which to store a reference to the newly
created TreeView object.

<container> The container—typically a Form object—to which you’re binding the TreeView object.

<name expC> An optional name for the TreeView object. If not specified, the TreeView class will auto-
generate a name for the object.
Form objects 473

class TreeView
Properties The following tables list the properties, events, and methods of interest in the TreeView class.

Property Default Description
allowDrop false Whether dragged objects can be dropped in the tree view
allowEditLabels true Whether the text labels of the tree items are editable
allowEditTree true Whether items can be added or deleted from the tree
anchor 0 How the TreeView object is anchored in its container (0=None, 1=Bottom,

2=Top, 3=Left, 4=Right, 5=Center, 6=Container)
baseClassName TREEVIEW Identifies the object as an instance of the TreeView class (Property discussed in

Chapter 5, “Core language.”)
checkBoxes true Whether each tree item has a checkbox
checkedImage The image to display when a tree item is checked instead of a checked check box
className (TREEVIEW) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
colorNormal WindowText

/Window
The color of the text labels and background

disablePopup false Whether the tree view’s popup menu is disabled
firstChild The first child tree item
firstVisibleChild The first tree item that is visible in the tree view area
hasButtons true Whether + and - icons are displayed for tree items that have children
hasLines true Whether lines are drawn between tree items
image Default image displayed between checkbox and text label when a tree item does

not have focus
imageScaleToFont true Whether tree item images automatically scale to match the text label font height
imageSize The height of tree item images in pixels
indent The horizontal indent, in pixels, for each level of tree items
linesAtRoot true Whether a line connects the tree items at the first level
selected The currently selected tree item
selectedImage Default image displayed between checkbox and text label when a tree item has

focus
showSelAlways true Whether to highlight the selected item in the tree even when the tree view does

not have focus
toolTips true Whether to display text labels as tooltips if they are too long to display fully in the

tree view area as the mouse passes over them
trackSelect true Whether to highlight and underline tree items as the mouse passes over them
uncheckedImage The image to display when a tree item is not checked instead of an empty check

box

Event Parameters Description
canChange Before selection moves to another tree item; return value determines if

selection can leave current tree item
canEditLabel When attempting to edit text label; return value determines whether editing

is allowed
canExpand <oItem> When attempting to expand or collapse a tree item; return value determines

whether expand/collapse occurs
onChange After the selection moves to another tree item
onCheckBoxClick After a checkbox in a tree item is clicked
onDragEnter <left expN>

<top expN>
<type expC>
<name expC>

When the mouse enters the tree view’s display area during a Drag&Drop
operation

onDragOver <left expN>
<top expN>
<type expC>
<name expC>

While the mouse drags an object over the tree view’s display area during a
Drag&Drop operation

onDragLeave When the mouse leaves the tree view’s display area without having dropped
an object
474 dBL Language Reference

abandonRecord()
The following table lists the common properties, events, and methods of the TreeView class:

Property Event Method
before
borderStyle
dragEffect
enabled
fontBold
fontItalic
fontName
fontSize
fontStrikeout
fontUnderline
form
height
helpFile
helpId

hWnd
ID
left
mousePointer
name
pageNo
parent
printable
statusMessage
systemTheme
tabStop
top
visible
width

onDesignOpen
onDragBegin
onGotFocus
onHelp
onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onLostFocus

onMiddleDblClick
onMiddleMouseDown
onMiddleMouseUp
onMouseMove
onOpen
onRightDblClick
onRightMouseDown
onRightMouseUp

drag()
move()
release()
setFocus()

Description A TreeView displays a collapsible multi-level tree. There are four ways to create the tree:

• Explicitly add items with code, like the code generated by the Form Designer.

• Interactively through the TreeView’s runtime user interface (right-clicking or pressing certain keys).

• Data-driven code that reads a table and dynamically creates the tree items.

• Use the TreeView’s loadChildren() method to add items previously saved to a text file using
streamChildren().

The TreeView object acts as the root of the tree. It contains the first level of TreeItem objects, which can contain
their own TreeItem objects, thus forming a tree.

Unlike the deeper levels of the tree, you cannot collapse the first level of a tree. Therefore, you may want to use
only one item at the first level of the tree to make the entire tree collapsible.

See also class TreeItem

abandonRecord()
Abandons changes to the current record.

Syntax <oRef>.abandonRecord()

onDrop <left expN>
<top expN>
<type expC>
<name expC>

When the mouse button is released over the tree view’s display area during
a Drag&Drop operation

onEditLabel <text expC> After the text label in a tree item is edited; may optionally return a different
label value to save

onExpand <oItem> After a tree item is expanded or collapsed

Method Parameters Description
count() Returns the total number of tree items in the tree
getItemByPos() <col expN>

<row expN>
Returns an object reference to a TreeItem object located at a specified
position

loadChildren() <filename expC> Loads and instantiates tree items from a text file
releaseAllChildren() Deletes all tree items in the tree
sortChildren() Sorts the child tree items
streamChildren() <filename expC> Saves (streams) tree item objects and properties to a text file
releaseAllChildren() Deletes all tree items in the tree
visibleCount() Returns the number of tree items visible in the tree view area

Event Parameters Description
Form objects 475

activeControl
<oRef> An object reference to the form.

Property of Form, SubForm

Description Use abandonRecord() for form-based data handling with tables in work areas. When using the data objects,
abandonRecord() has no effect; use the rowset’s abandon() method instead.

Form-based data buffering lets you manage the editing of existing records and the appending of new records.
The temporary record created by beginAppend() and editing changes to the current record are not written to the
table until there is navigation off the record, or until saveRecord() is called. Each work area has its own
separate edit buffer. For example, if you beginAppend() in two separate work areas, you must call
abandonRecord() while each work area is selected to abandon the changes.

Before calling abandonRecord(), you can use isRecordChanged() to determine if changes have been made. If
so, you may want to confirm the action before proceeding.

Example See isRecordChanged().

See Also beginAppend(), isRecordChanged(), saveRecord()

activeControl
Contains a reference to the object that currently has focus.

Property of Form, SubForm

Description Use the activeControl property to reference the object that currently has focus.

An object gets focus in three ways:

• The user tabs to the object.
• The user clicks the object.
• The setFocus() method of the object is executed.

Note When a PushButton's speedBar property is set to true, and therefore a PushButton cannot get focus, the form's
activeControl property does not show the PushButton as being the current activeControl.

See Also before, first, ID, nextObj

alias
Determines the table that is accessed by a Browse object.

Property of Browse

Description Use the alias property to identify a table to display in a browse object. For example, when the form is based on
a .QBE query that opens two or more files in a parent-child relation, you use alias to determine which table
appears in the Browse object.

Aliases are used for tables open in work areas, not data objects. When the form uses data objects, use a Grid
control, which can dataLink directly to a Rowset object.

See Also fields, view

alignHorizontal
Determines the horizontal alignment of text in a Text component.

Property of Text, TextLabel
476 dBL Language Reference

alignment [Image]
Description alignHorizontal determines the way the text displays within the horizontal plane of its rectangular frame. Set it
to one of the following:

Value Alignment
0 Left
1 Center
2 Right
3 Justify (Text object only)

See also alignVertical

alignment [Image]
Determines the size and position of the graphic inside an Image object.

Property of Image

Description If a graphic is smaller than the Image object that displays it, it can be stretched to fill the Image object or
positioned inside the Image object with empty space around it. Assign one of the following settings to the
alignment property of an Image object to determine how the graphic is aligned.

Setting Description
0 (Stretch) Enlarge graphic to fill the entire Image object
1 (Top Left) In the top left corner of the Image object
2 (Center) Centered in the Image object
3 (Keep Aspect Stretch) Maintains the original height/width (aspect) ratio when stretching the graphic until it fills

either dimension of the Image object
4 (True Size) No changes to the graphic

If the graphic is larger than the Image object, both Stretch and Keep Aspect Stretch will reduce the graphic to fit
the Image object so that the entire image is visible. Top Left and Center will both display whatever fits in the
Image object.

True Size does not change the graphic at all. The Image object is dynamically resized to display the graphic.
This is the fastest option, because dBASE Plus doesn’t have to do any stretching or shrinking.

See Also height, width

alignment is also a property of the Text class.

alignment [Text]
Positions text in a Text object.

Property of Text

Description The Text object’s alignment property is maintained primarily for compatibility. It is an enumerated property
that can have the following values:

Setting Description
0 (Top Left) Adjacent to the top edge and the left edge
1 (Top Center) Adjacent to the top edge and centered horizontally
2 (Top Right) Adjacent to the top edge and the right edge
3 (Center Left) Centered vertically and adjacent to left edge
4 (Center) Centered horizontally and vertically
5 (Center Right) Centered vertically and adjacent to right edge
6 (Bottom Left) Adjacent to the bottom edge and the left edge
Form objects 477

alignVertical
The Text object’s alignHorizontal and alignVertical properties control the alignment in the horizontal and
vertical plane separately. They also include options to justify the text. When either property is set, the alignment
property is also changed to match (justify becomes top or left). When the alignment property is set, the other
two properties are changed to match.

Text wrapping is controlled by the wrap property.

See also alignHorizontal, alignVertical, wrap

alignment is also a property of the Image class.

alignVertical
Determines the vertical alignment of text in a Text component.

Property of Text, TextLabel

Description alignVertical determines the way the text displays within the vertical plane of its rectangular frame. Set it to one
of the following:

Value Alignment
0 Top
1 Middle
2 Bottom
3 Justify (Text object only)

See also alignHorizontal

allowAddRows
Whether rows can be added directly through a Grid object.

Property of Grid

Description allowAddRows determines whether moving down past the last row in a grid starts the append of a new row. It
has no control over adding row in other ways, like by calling the rowset’s beginAppend() method. If the rowset
switches to Append mode, the grid will synchronize itself with the rowset and display the new row.

Set allowAddRows to false to prevent the accidental appending of new rows when navigating through a grid.

See also allowEditing

allowColumnMoving
Whether the user may rearrange the columns in a grid with the mouse.

Property of Grid

Description By default, allowColumnMoving is true, which means that the user can rearrange the columns in a grid by
clicking and dragging the column headings. Set allowColumnMoving to false to disable this ability. Since
rearranging columns requires column headings, hasColumnHeadings must be set to true for allowColumnMoving to have
any affect.

7 (Bottom Center) Centered horizontally and adjacent to the bottom edge
8 (Bottom Right) Adjacent to the bottom edge and the right edge
9 (Wrap Left) Same as Top Left
10 (Wrap Center) Same as Top Center
11 (Wrap Right) Same as Top Right

Setting Description
478 dBL Language Reference

allowColumnSizing
See also allowColumnSizing, dragScrollRate

allowColumnSizing
Whether the user may resize the columns in a grid with the mouse.

Property of Grid

Description By default, allowColumnSizing is true, which means that the user can resize the columns in a grid by clicking
and dragging between the columns headings. Set allowColumnSizing to false to disable this ability. Since resizing
columns requires column headings, hasColumnHeadings must be set to true for allowColumnSizing to have any affect.

See also allowColumnMoving, allowRowSizing

allowDrop
For Drag&Drop operations; determines if an object will allow dragged objects to be dropped on it.

Property of Browse, Container, Form, Grid, Image, ListBox, NoteBook, PaintBox, ReportViewer, SubForm, TreeView

Description Set the allowDrop property to true when you want to enable an object’s ability to be a Drop Target. The default
is false.

An object becomes an active Drop Target when its allowDrop property is set to true. Similarly, an object
becomes an active Drop Source when the value of its dragEffect property is set greater than 0. Except for forms,
all Drop Target objects may also be Drop Sources.

See also dragEffect, onDrop, onDragEnter, onDragOver, onDragLeave

allowEditing
Whether a grid is read-only.

Property of Grid

Description By default, allowEditing is true. Set allowEditing to false to make the grid read-only.

See also allowAddRows

allowEditLabels
Whether the text labels of the tree items are editable.

Property of TreeView

Description When allowEditLabels is true, the user can edit the text of the tree items in a tree by pressing F2 or clicking on
a tree item a second time with a tree item selected.

Set allowEditLabels to false to prevent the user from editing all the items in a tree, or use the canEditLabel
event to conditionally allow or prevent editing.

See also allowEditTree, canEditLabel, onEditLabel

allowEditTree
Whether items can be added or deleted from the tree.

Property of TreeView

Description When allowEditTree is true, the user can add another leaf node to a tree item by pressing Ins, or delete a tree
item by pressing Del when the tree item is selected.
Form objects 479

allowRowSizing
Set allowEditTree to false to prevent the user from inserting or deleting items in the tree.

See also allowEditLabels

allowRowSizing
Whether the user may resize the rows in a grid with the mouse.

Property of Grid

Description By default, allowRowSizing is true, which means that the user can resize the rows in a grid by clicking and
dragging between the row indicator in the left column. Set allowRowSizing to false to disable this ability.

See also allowColumnSizing, cellHeight

alwaysDrawCheckBox
Determines if a columnCheckBox control is painted with a checkbox for all checkBox cells in the Grid.

Property of Grid

Description By default, alwaysDrawCheckBox is true.
When alwaysDrawCheckBox is set to True, the checkbox is drawn for all checkBox cells.
When alwaysDrawCheckBox is set to False, the checkbox is only drawn in a cell if it has focus.

anchor
Specifies whether an object stays in the same relative position when its container is resized.

Property of ActiveX, Browse, Container, Editor, Image, Grid, NoteBook, OLE, ReportViewer, TabBox, Text, TreeView

Description Use anchor to specify whether a control should maintain its location and resize itself to match its container,
which is usually the form. Anchored controls claim space in the order in which they are created (the z-order).
Once an anchored control claims space in its container, that space cannot be used by another anchored control.

anchor is an enumerated property and, with the exception of TabBox controls, accepts the following values:

Value Description
0 None, do not anchor
1 Bottom
2 Top
3 Left
4 Right
5 Center
6 Container

When anchored to the bottom or top, the width of the control resizes to match the width of its container. When
anchored to the left or right, the height of the control resizes to match the height of its container. Center and
container anchors behave identically: the control fills the center of the container, sizing itself to fill all the space
not claimed by another anchored control; if there are no other anchored controls in the container, the control
resizes to fill its container.

When used with TabBox controls, the anchor property accepts only these values,
• 0 - Do not anchor
• 1 - Bottom

See Also form, height, width
480 dBL Language Reference

append
append
Whether records can be added directly through a Browse object.

Property of Browse

Description append determines whether moving down past the last record in a browse starts the append of a new record. It
has no control over adding records in other ways, like by calling the form’s beginAppend() method. If a new
record is added, the browse will show it.

Set append to false to prevent the accidental appending of new records when navigating through a browse.

See Also modify

appSpeedBar
Determines whether the Standard Toolbar is displayed.

Property of Form

Description Use the Form's appSpeedBar property to hide or display the Standard Toolbar when a form receives focus.

Value Mode
0 Hide
1 Display
2 Use the current _app object's speedBar setting.

The Form's appSpeedBar property does not change the _app object's current speedBar setting. Instead, when
appSpeedBar is set to 0 or 1, it overrides _app.speedBar when the form receives focus. To change the _app
object's speedBar setting See speedBar [_app], Chapter 16. The default setting for appSpeedBar is 2.

See Also speedBar[_app]

autoCenter
Determines if a form is automatically centered when it is opened.

Property of Form, SubForm

Description Use autoSize to automatically center a form when it is opened. If autoCenter is true, MDI forms are centered in
the MDI frame window; SDI forms are centered on-screen. If autoCenter is false, the form is positioned
according to its top and left properties.

See also autoSize, left, MDI, top

autoDrop
Determines if the drop-down list drops automatically when the combobox gets focus.

Property of ComboBox

Description Set autoDrop to true to make the drop-down list portion of a combobox drop automatically when the combobox
gets focus. Whenever the combobox loses focus, its drop-down list is always closed, no matter how it was
opened.

autoDrop has no effect when the style of the combobox is Simple (0).

See also dropDownHeight, dropDownWidth, style
Form objects 481

autoSize
autoSize
Determines if a form is automatically sized to contain its objects when the form is opened.

Property of Form, SubForm

Description Use autoSize to determine how a form is sized and proportioned.

If you set the autoSize property of a form to true, the form is automatically adjusted to contain its objects when
it is opened. If you set autoSize to false, the form assumes its assigned height and width when it is opened.

When you set the autoSize property of a form to true, the default dimensions are ignored. The user can still
move or resize the form, but if the form is closed and reopened it is automatically resized again to contain its
objects.

See Also autoCenter, height, width

autoTrim
Controls whether or not trailing spaces are trimmed from character strings loaded from the control's dataSource.

Property of columnComboBox, ComboBox

Description When True, enables automatic trimming of trailing spaces from option strings as they are loaded into a
combobox's dropdown list in the following circumstances:

• the combobox is datalinked to a field object that has a lookupSQL and/or lookupRowset defined.

• the combobox's datasource specifies a FIELD in a table

The default for autoTrim is False.

background
A form’s background image.

Property of Form, SubForm

Description Set the background property to the file name of a bitmap you want tiled in the background of your form. See
class Image for the list of bitmap formats supported by dBASE Plus.

You may use any dBASE Plus-supported bitmap format.

Setting a background image supersedes the background color designated by the form’s colorNormal property.

See also class Image, colorNormal, transparent

before
The next object in the z-order of the form.

Property of All form components and menus

Description An object’s before property contains a reference to the next object in the z-order, in other words, the object the
current object comes before. The z-order is the order in which controls are created on the form. It is the same
order in which they are created; the same order as they are listed in the .WFM file. If objects overlap, the one
that is later in the z-order is drawn on top, with the exception of Line and Shape objects, which are always
drawn on the form surface.

The form’s first property contains a reference to the first control in the z-order. The z-order is a closed loop. The
before property of the last control in the z-order points back to the first control.

The form’s tab order is related to the z-order. The objects are in the same order, but only those objects that can
receive focus are in the tab order. All visual components in the form are somewhere in the z-order. Non-visual
components, such as Query objects, are not in the z-order.
482 dBL Language Reference

beforeCellPaint
You must reorder the objects in the form’s class definition, by editing the code in the .WFM file or using the
Form designer to visually reorder the objects.

Example Suppose you have a form that contains a bunch of spinboxes for measurements. You want to be able to set them
all to zero with the click of a button.

function resetButton_onClick()
 local obj
 obj = form.first // First control in z-order
 do
 if obj.className == "SPINBOX"
 obj.value := 0
 endif
 obj := obj.before // Next control in z-order
 until obj == form.first // Until you get back to first control

Compare this loop with the example for elements.

See Also activeControl, elements, first, nextObj

beforeCellPaint
An event fired just before a grid cell is painted

Parameters <bSelectedRow> bSelectedRow is true if the grid cell being painted is part of a selected row. Otherwise
bSelectedRow is false

Property of ColumnCheckBox, ColumnComboBox, ColumnEditor, ColumnEntryField, ColumnHeadingControl,
ColumnSpinBox

Description Use the beforeCellPaint event to change the settings of a GridColumn's editorControl or headingControl just
before the control is used to paint a grid cell.

After the grid cell has been painted, the onCellPaint event will fire. You must use the onCellPaint event to set
the control back to it's prior, or it's default, state. Otherwise, the changes made in the beforeCellPaint event will
affect the other cell's within the same grid column.

Using beforeCellPaint In order to use beforeCellPaint, a grid must be created with explicitly defined
GridColumn objects (accessible through the grid's columns property).

In a beforeCellPaint event handler, you can change an editorControl's or headingControl's properties based
(optionally) on the current value of the cell. Within beforeCellPaint, the current cell value is contained in
this.value.
Initializing a Grid that uses beforeCellPaint When a form opens, a grid on the form is usually painted before
the code setting up any beforeCellPaint event handlers is executed. Therefore, you should call the grid's
refresh() method from the grid’s onOpen event, or form's onOpen event, to ensure the grid is painted correctly
when the form opens.

Warning The grid's painting logic is optimized to only load an editorControl's value when it needs to paint it, or give it
focus. This means the value loaded into other column's editorControls may not be from the same row as the one
used for the currently executing beforeCellPaint event. You should instead, therefore, use the values from the
appropriate rowset field objects in order to ensure you are using values from the correct row.

Example The following example shows the basic use of the beforeCellPaint event:
function column1_beforeCellPaint(bSelectedRow)

if this.value < 0
if.not.bSelectedRow

// Change grid cell color to red on white for a negative number.
this.colorNormal = "red/white"

endif

return

The following example shows the basic use of the onCellPaint event:
function column1_onCellPaint(bSelectedRow)

this.colorNormal = "" // reset to grid default colors
Form objects 483

beforeCloseUp
return

beforeCloseUp
Fires just before dropdown list is closed for a style 1 or 2 combobox (or a style 0 or 1 columnComboBox).

Parameters None

Property of ColumnComboBox, ComboBox

Description beforeCloseUp fires just before the dropdown list is closed for a style 1 or 2 combobox (or a style 0 or 1
columnComboBox).

It can be used, in combination with beforeDropDown, to track when a combobox's dropdown list is open or
closed.

beforeDropDown
An event fired just before a grid cell is painted

Parameters None

Property of ColumnComboBox, ComboBox

Description beforeDropDown fires just before the dropdown list is opened for a style 1 or 2 combobox (or a style 0 or 1
columnComboBox).

It can be used, in combination with beforeCloseUp, to track when a combobox's dropdown list is open or
closed.

Example The following beforeDropDown event handler (along with a onChangeCancel event handler) saves the value of
a combobox in a custom property (beforeDropValue). This allows the combobox's value to be set back to it's
original value, if the user leaves the combobox list without choosing an item.

Function ComboxBox1_onOpen
this.beforeDropValue = ''

function combobox1_beforeDropDown
this.beforeDropValue = this.value
return

function combobox1_onChangeCancel
this.value := this.beforeDropValue

return

beforeEditPaint
For a style 0 or 1 combobox (or style 0 columnComboBox), fires for each keystroke that modifies the value of
the combobox, just before the new value is displayed

Parameters None

Property of ColumnComboBox, ComboBox

Description For a style 0 or 1 combobox (or style 0 columnComboBox), fires for each keystroke that modifies the value of
the combobox, just before the new value is displayed

beforeRelease
Fires before the object has been released and is about to be destroyed.
484 dBL Language Reference

beforeRelease
Parameters None

Property of Most form and Data objects.

Description Use beforeRelease to perform any extra manual cleanup, if necessary, before an object is released.
beforeRelease fires when an object is about to be destroyed.

• beforeRelease will fire under the following conditions:

• When calling the release() method of an object

• When issuing the RELEASE command

• When an object is run without being assigned to a memVar then closing the object.This will destroy the
object from memory causing the the beforeRelease event to fire.

• when using a memVar that is assigned to one of these objects and subsequently releasing the memVar.
Simply closing the object in this instance does not fire beforeRelease.
The beforeRelease event will fire in this case only when the memVar itself is destroyed either by using the
RELEASE command, when the application is closed, or any other circumstance that results in the memVar
being released from memory.

The order in which beforeRelease() fires for a Form and its contained objects is not strictly in the order in which
these objects are released. In some cases, beforeRelease() will fire sooner than an object's actual release when it
is notified by its parent object or by its associated datamodule, database, query, or storedproc object that it will
soon be released.

The order in which objects on a form are actually released has not been changed from earlier versions of dBASE
Plus except for subforms. Subform release has been moved from near the end of the release process up to the
beginning of the release process.

One other change made is that removal of a form's code from memory has been moved later in the release
process so that it occurs after all objects on the form have been released.
This is to prevent CLASS NOT FOUND errors that would otherwise occur if an object's beforeRelease property
is set to a method of its form.

Here is the firing order for beforeRelease() when a form (or subform) is being released:

1. Subforms (if any)
2. Form Components contained in the form's elements array property (this includes any Contaner and Note-

book objects and their contained objects)
3. Menubar assigned to Form's menufile property
4. Popup assigned to Form's popupmenu property
5. Form
6. Database (parented by the form). Each Database object (in turn) notifies any associated Query and Stored-

Proc objects which in turn, notify their Rowset objects.
7. Any other objects assigned to properties or custom properties of the form and that are not in the form's ele-

ments array property. This includes:
• Query or StoredProc objects parented directly to a form and NOT assigned to a database object

• Datamodule objects on the form

• Session objects on the form

• Popup and menu objects parented by the form

• Toolbar objects parented by the form

• Arrays and other non-visual objects parented by the form
Form objects 485

beginAppend()
beginAppend()
Creates a temporary buffer in memory for a record that is based on the structure of the current table, letting the user
input data to the record without automatically adding the record to the table.

Syntax <oRef>.beginAppend()

<oRef> An object reference to the form.

Property of Form, SubForm

Description Use beginAppend() for form-based data handling with tables in work areas. When using the data objects,
beginAppend() has no effect; use the rowset’s beginAppend() method instead.

beginAppend() creates a single record buffer in the current table, without actually adding the record to the table
until saveRecord() is issued. While this buffer exists, the user can input data to the record with controls such as
an entry field or a check box. Use saveRecord() to append the record to the currently active table, and use
abandonRecord() to discard the record. Calling beginAppend() instead of saveRecord() will write the new
record and empty the buffer again so you can add another record. Use isRecordChanged() to determine if the
record has been changed since the beginAppend() was issued.

When appending records with beginAppend() the new record will not be saved when you call saveRecord()
unless there have been changes to the record; the blank new record is abandoned. This prevents the saving of
blank records in the table. (If you want to create blank records, use APPEND BLANK). You can check there
have been changes by calling isRecordChanged(). If isRecordChanged() returns true, you should validate the
record with form-level or row-level validation before writing it to the table.

Using beginAppend() has different results than using either BEGINTRANS() and APPEND BLANK or
APPEND AUTOMEM. With these commands, if you cancel the append operation, you have a record marked as
deleted added to the table. If you use abandonRecord() to cancel the beginAppend() operation, a new record is
never added to the table.

See Also abandonRecord(), isRecordChanged(), saveRecord()

beginAppend() is also a method of the Rowset class (page 14-359)

bgColor
The background color of data displayed in grid cells, as well as the empty area to the right of the last column and
below the last grid row.

Property of Grid

Description You may specify any single color for the background color. For a list of valid colors, see colorNormal.

The effect of the bgColor property on grid cells can be overridden by the background color specified in the Grid
object's colorNormal property by setting it to a valid non-null string. In addition, the bgColor property can be
overridden by setting the bgColor property of a GridColumn's editorControl to a valid non-null string.

The bgColor property defaults to "gray".

bitmapAlignment
Specifies the arrangement of bitmap and text on a push button when both exists.

Property of PushButton

Description Supported options include:

0 Default
1 Left
2 Top
486 dBL Language Reference

bold
When the bitmapAlignment property is set to 0, Default, the bitmap is positioned as follows:

If the pushbutton does not contain text, the bitmap is centered.

If the pushbutton contains both text and a bitmap, the text is positioned according to the setting of the textLeft
property.

• If the textLeft property is set to false, the text is positioned to the right, and the bitmap to the left.
• If the textLeft property is set to true, the text is positioned to the left, and the bitmap to the right.

When the bitmapAlignment property is set to 1, 2, 3, or 4, it overrides the textLeft property's setting as
follows:

1 Left Positions the bitmap to the left, and any text to the right.
2 Top Positions the bitmap at the top, and any text at the bottom.
3 Right Positions the bitmap to the right, and any text to the left.
4 Bottom Positions the bitmap at the bottom, and any text at the top.

Additional considerations:

When the textLeft property is overridden, by setting the bitmapAlignment property to 1, 2, 3, or 4, it will still
affect the alignment when the text occupies more than one line, as follows:

• When the textLeft property is set to true, the text lines are left aligned
• When the textLeft property is set to false, the text lines are centered.

The text and bitmap may overlap when using a setting other than 0 – Default.

bold
Whether the text of an object is bold.

Property of TreeItem

Description Set bold to true to make the text of a TreeItem object bold.

See also fontBold, text

border
Determines whether an object is surrounded with a border.

Property of Editor, Entryfield, OLE, Rectangle, SpinBox, Text

Description The border property is maintained primary for compatability. Every object that has a border property also has a
borderStyle property. One of the choices for borderStyle is None, while border can be either true or false. Both
these properties apply.

If you pick an actual border with borderStyle, border determines whether that border is displayed. If you choose
the None borderStyle, no border will appear, even if border is true.

See Also borderStyle

borderStyle
Determines the border around the object.

Property of Most form components

3 Right
4 Bottom
Form objects 487

bottom
Description borderStyle determines the display style of an object’s rectangular frame. Set it to one of the following:

Value Style
0 Default
1 Raised
2 Lowered
3 None
4 Single
5 Double
6 Drop shadow
7 Client
8 Modal
9 Etched in
10 Etched out

The border is drawn inside the bounds of the object; therefore for thick borders like Drop shadow, there is
noticeably less space in the object for the actual contents.

The border is not drawn if border is false. If borderStyle is None, no border appears even if border is true.

See also border

bottom
The vertical position of the lower end of a Line object.

Property of Line

Description Use the bottom property in combination with the right, left, and top properties to determine the position and
length of a line object.

The unit of measurement in a form or report is controlled by its metric property. The default metric for forms is
characters, and for reports it’s twips.

See Also left, metric, right, top, width

buttons
Whether a notebook’s tabs appear as buttons

Property of NoteBook

Description Set buttons to true if you want the notebook tabs to appear as separate buttons instead of tabs attached to the
notebook page.

See also visualStyle

canChange
Event fired before selection moves to another tree item; return value determines if selection can leave current tree
item.

Parameters none

Property of TreeView

Description Use canChange to prevent focus from moving to another item in the tree unless certain conditions are met. The
canChange event handler can either return a value of true, which allows the focus to move, or false, which
prevents the focus change.
488 dBL Language Reference

canClose
The event handler usually uses the tree view’s selected property to get the currently selected tree item. Note that
if no tree item is selected, the property contains null, so your event handler must check for that. In particular,
when deleting a tree item, the focus must move to another tree item, and the currently selected item has just been
deleted, and therefore selected will be null.

Example The following canChange event handler makes sure that the tree item’s text label does not have any spaces in it:
function TREEVIEW1_canChange
 if not empty(this.selected) // Make sure there is a currently selected item
 if " " $ this.selected.text
 msgbox("Spaces are not allowed", "Alert", 48)
 return false
 endif
 endif
 return true

Note that you would probably also use the onEditLabel event to warn the user of an invalid text label at the time
they change it.

See also onChange, select(), selected

canChange is also an event of the Field class.

canClose
Event fired when an attempt is made to close the form; return value determines if the form can be closed.

Parameters none

Property of Form, SubForm

Description Use canClose to prevent a form from closing until certain conditions are met.

The canClose event handler can either return a value of true, which allows the form to close, or false, which
prevents the form from closing.

When a form is closed by calling close() or clicking the Close icon, pending changes in the data buffer are
saved. When attempting to close, the form fires the current control’s valid event, if any, so there’s no need to
verify individual controls if they have valid event handlers. However, you should always perform form- or row-
level validation to check controls that you have not visited.

Example The following canClose event handler fires the form’s row-level validation method:
function form_canClose()
 return form.recValid() // If row is bad, don't close

See Also close(), onClose

canClose is also a method of the Query class (page 14-366)

canEditLabel
Event fired when attempting to edit text label; return value determines if editing is allowed.

Parameters none

Property of TreeView

Description Use canEditLabel to conditionally allow editing of a tree item’s text label. The canEditLabel event handler can
either return true to allow editing, or false to prevent it.

Set allowEditLabels to false to prevent all label editing. In that case, canEditLabel will never fire.

Example The following canEditLabel event handler prevents editing in the first level of the tree:
{|| this.selected.level > 1}

See also allowEditLabels, onEditLabel
Form objects 489

canExpand
canExpand
Event fired when attempting to expand or collapse a tree item; return value determines whether expand/collapse
occurs.

Parameters <oItem> The TreeItem whose + or - has been clicked.

Property of TreeView

Description Use canExpand to conditionally allow the expansion or collapsing of a tree item’s subtree. The canExpand
event handler can either return true to allow the action, or false to prevent it.

The canExpand event only affects the user interface. You can still expand or collapse a tree item
programmatically by setting the item’s expanded property, in which case canExpand does not fire.

Example Suppose you want to display customer and their orders in a tree view named custTree. To make the form load
faster, you initially add only the first order for each customer (so that customer with orders will have the +
button), then load all other orders on-demand through the canExpand event. You call the following method in
the form’s overridden open() method so that the tree is initialized before the form opens:

function initTree
 local tCust
 if form.rowset.first()
 do
 tCust = new TreeItem(form.custTree, ;
 "C" + form.rowset.fields["CUST_ID"].value)
 tCust.demandLoaded = false // Create new properties
 tCust.bookmark = form.rowset.bookmark()
 with tCust
 text = form.rowset.fields["LAST_NAME"].value.rightTrim() + "," + ;
 form.rowset.fields["FIRST_NAME"].value.rightTrim()
 if not form.orders1.rowset.endOfSet
 with new TreeItem(tCust, ;
 "O" + form.orders1.rowset.fields["ORDER_NUM"].value)
 text = form.orders1.rowset.fields["ORDER_NUM"].value + " " + ;
 form.orders1.rowset.fields["ORDER_DATE"].value
 endwith
 endif
 endwith
 until not form.rowset.next()
 endif

Unique names are generated for each level of tree items and passed as the second parameter to the TreeItem
class constructor; duplicate names are not allowed. The customer and order rowsets are linked with
masterRowset so that navigation in the customer rowset automatically navigates to the corresponding orders.
The text property is assigned inside a WITH block in case other stock properties are assigned in the future,
which would also go inside the WITH block. The custom demandLoaded and bookmark properties for the top-
level tree item must be created outside the WITH block; you can’t create properties in a WITH block. Here is
the canExpand event handler:

function CUSTTREE_canExpand
 local t, r
 t = this.selected // TreeItem being expanded
 r = form.orders1.rowset // Detail rowset
 if not t.expanded and not t.demandLoaded
 form.rowset.goto(t.bookmark)
 do while r.next() // Start with second detail row (if any)
 with new TreeItem(t, "O" + r.fields["ORDER_NUM"].value)
 text = r.fields["ORDER_NUM"].value + " " + ;
 r.fields["ORDER_DATE"].value
 endwith
 enddo
 t.demandLoaded := true
 endif
 return true
490 dBL Language Reference

canNavigate
The event handler creates some short-hand variables for the tree item being expanded and the order rowset. It
then checks to see if the tree item is being expanded (it is if its expanded property is false to begin with) and has
not been demand-loaded yet. If so, it goes to the saved bookmark and immediately tries to go to the second
matching order. By calling next() at the top of the DO WHILE loop, nothing happens if there is only one
matching order, and that’s all that is needed to loop through all the matching orders.

After adding the rest of the orders, the custom demandLoaded property is set to true so that this code is skipped
the next time this customer’s tree item is expanded. Finally, the event handler always returns true to allow the
expansion (or collapse, if that’s what triggered the event).

Note that this technique would not work in a situation where the first detail row might change while the user is
viewing the tree. In that case, when the detail rows are demand-loaded, the row that was loaded when then tree
was initialized would be loaded again, causing an error with the duplicate name. But if, for example, the orders
are stored chronologically, this could not happen.

See also expanded, hasButtons, onExpand

canNavigate
Event fired when an attempt is made to navigate in a table; return value determines if the record pointer moves.

Parameters <workarea expN> The work area number where the navigation is attempted.

Property of Form, SubForm

Description The form’s canNavigate event is used mainly for form-based data handling with tables in work areas. It also
fires when attempting navigation in the form’s primary rowset.

Use canNavigate to prevent navigation until certain conditions are met. Navigation saves pending changes in
the data buffer, so you should call row- or form-level validation in the canNavigate to make sure data should be
saved.

Because canNavigate fires while still on the current record, you may also use it to perform some action just
before you leave. In this case, the canNavigate would always return true to allow the navigation.

When using tables in work areas, canNavigate will not fire unless the form is open and has controls dataLinked
to fields. For example, if you USE a table, create and open an empty Form, assign an canNavigate event
handler, and SKIP in the table, the canNavigate will not fire simply because the form is open.

When attempting navigation in the form’s primary rowset, the form’s canNavigate fires before the rowset’s
canNavigate, and the <workrea expN> parameter is zero. If the form’s canNavigate returns false, nothing
further happens; the rowset’s canNavigate does not fire, and no navigation occurs.

Example The following canNavigate event handler fires the form’s row-level validation method, but only if the
navigation occurred in the current table; for example not in some table being used for a lookup.

function form_canNavigate(nWorkArea)
 if nWorkArea == workarea()
 return form.recValid() // If row is bad, don't move
 else
 return true
 endif

See Also onNavigate, rowset

canNavigate is also a method of the Rowset class

canSelChange
Event fired before another NoteBook tab is selected; return value determines if the new tab is selected.

Parameters <nNewSel expN> The number of the tab about to be selected.

Property of NoteBook
Form objects 491

cellHeight
Description Use canSelChange to prevent the user from selecting another NoteBook tab until certain conditions are met. The
parameter passed by the event, nNewSel, is an integer value representing the number of the NoteBook tab to be
selected. The tabs are numbered (beginning with 1) according to the order of the array elements in the
NoteBook’s dataSource property.

Because canSelChange fires while still on the current NoteBook tab, you may also use it to perform some action
just before you allow the new tab to be selected. In this case, the canSelChange event handler would always
return true to allow selection of the new tab.

Example The following canSelChange event handler fires the form’s row-level validation method if the currently
selected tab is 2, and the form’s rowset has been modified. If the validation fails, the new tab will not be
selected. If the row is valid and the user has selected tab 1, some processing is performed on NoteBook page 1
before it is displayed.

function NOTEBOOK1_canSelChange(nNewSel)
 if this.curSel = 2
 if form.rowset.modified
 if NOT form.recValid() // If row is bad, don't allow tab selection to change
 return false
 endif
 if nNewSel = 1
 class::PreparePage() // Refresh some data on NoteBook page 1
 endif
 endif
 endif
 return true

See also class NoteBook, curSel, onSelChange

cellHeight
The height of each cell in the grid.

Property of Grid

Description The cellHeight property reflects the height of the cells in the body of the grid.

See also allowRowSizing

checkBoxes
Whether each tree item has a checkbox.

Property of TreeView

Description When checkBoxes is true, each tree item has a checkbox to the left of the text label and optional icon image.
This checkbox is linked to the tree item’s checked property. Whenever a checkbox is checked or unchecked, the
tree’s onCheckBoxClick event fires.

Use the checkedImage and uncheckedImage image properties to specify alternate images instead of the standard
checkbox. Set checkBoxes to false to hide and disable the checkboxes in the tree.

See also checked, checkedImage, image, onCheckBoxClick, uncheckedImage

checked
Whether the item is visually marked as checked.

Property of TreeItem

Description TreeItem objects may be visually checked and unchecked by the user, or by assigning a value to the checked
property. If checked is true, the tree item’s checkbox is checked, or its checkedImage is displayed. If checked is
false, the tree item’s checkbox is unchecked, or its uncheckedImage is displayed.
492 dBL Language Reference

checkedImage
See also checkBoxes, checkedImage, onCheckBoxClick, uncheckedImage

checkedImage
The image to display when a tree item is checked instead of a checked check box.

Property of TreeView

Description Use checkedImage to display a specific icon instead of the standard checked checkbox for the tree items in the
tree that are checked. uncheckedImage optionally specifies the icon to display for tree items that are not
checked. The tree must have its checked property set to true to enable checking; each tree item has a checked
property that reflects whether the item is checked.

The checkedImage property is a string that can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies an icon resource and the DLL file that holds it.

• FILENAME <filename>
specifies an ICO icon file.

See also checkBoxes, checked, imageScaleToFont, imageSize, uncheckedImage

classId
The ID string of an ActiveX control.

Property of ActiveX

Description To use an ActiveX control in a form, set the classId property to the control’s ID string.

See also nativeObject

clearTics()
Clears manually-set tic marks in a Slider object.

Syntax <oRef>.clearTics(<expN>)

<oRef> The Slider object whose tics are to be cleared.

<expN> A numeric value, or an expression which evaluates to a numeric value.

Property of Slider

Description Call clearTics() to clear all tic marks set by setTic(). <expN> can be any expression which evaluates to a
positive, negative or fractional numeric value (fractional values are truncated). If <expN> is zero, no tic marks
are cleared. If it is non-zero, all manually set tic marks are cleared.

See also setTic(), tics, ticsPos

clientEdge
Whether an object appears to have a beveled inside edge.

Property of Form, SubForm

Description Set clientEdge to true to bevel a form’s inside edge.

See also background, borderStyle
Form objects 493

close ()
close ()
Closes a form or a report.

Syntax <oRef>.close([<expN>])

<oRef> An object reference to the form or report to close.

<expX> An optional value to be returned by a form opened with readModal().

Property of Form, SubForm

Description Use close() to close an open form or report. Modal forms (forms opened using the readModal() method) may
optionally return a value to the calling form or program. The returned value may be any data type.

When you try to close a form, dBASE Plus does the following:

1 Fires the valid event of the current object. If it returns a value of false, the form doesn't close.
2 Fires the onLostFocus event of the current object.
3 Fires the canClose event of the form. If it returns false, the form doesn’t close.
4 Fires the onLostFocus event of the form.
5 Removes the form and the objects it contains from the screen.
6 Fires the onClose event of the form.
7 Removes the form from memory if there are no other object references pointing to the form.

When a form is closed with close() or by clicking the Close icon, any pending changes in the record buffer are
saved, as if saveRecord() was called. Closing a form by pressing Esc abandons changes before closing (if
escExit is true).

close() returns false if the form was not closed successfully. If the form definition is not removed from
memory, you can open the form again with open().

See also canClose, open(), readModal()

close() is also a method of the Database and File classes.

colorColumnLines
The color of the lines that separate the columns in a Grid object.

Property of Grid

Description The colorColumnLines property controls the color of the lines that separate columns in a Grid object. When the
colorColumnLines property is set to null, the color of a Grid object's column lines will revert to the default
value, "silver". The color of the lines in a Grid Object’s top and left headers is not affected by this property.

See also colorRowLines, gridLineWidth, hasColumnLines, hasRowLines

colorHighlight
Sets the color of the object that has focus.

Property of Browse, ColumnEditor, ComboBox, Editor, Entryfield, Grid, ListBox, SpinBox, TabBox

Description Use the colorHighlight and colorNormal properties of an object so that users can differentiate visually when an
object has focus and when it doesn't. You may choose from the same color settings as the colorNormal property.

The colorHighlight of most controls defaults to an empty string, meaning it is colored no differently when it has
focus. For this reason, you may set a particular color in the control’s colorNormal property without having to
override a default colorHighlight color as well.

For Grid objects, the colorHighlight property sets the text, and background, color for data displayed in a grid
cell that has focus. It can be overridden by setting the colorHighlight property of a GridColumn's editorControl
to a non-null value. The default setting for Grid objects is "WindowText/Window".
494 dBL Language Reference

colorNormal
The color scheme in a TabBox is different. There, the colorNormal designates the color of the background
behind the tabs, and the colorHighlight is the color of the selected tab. The unselected tabs are a fixed color,
WindowText/Window.

See also colorNormal

colorNormal
The color of an object.

Property of Most form objects

Description Use the colorNormal and colorHighlight properties of an object so users can differentiate visually when an
object has focus and when it doesn't.

For some controls, in particular background colors, you specify a single color. For other controls, you specify
two color settings with colorNormal: a foreground color (for text), and a background color. Color settings must
be separated with a forward slash (/). Each color may be one of the following five color types, in any
combination:

• Windows-named color
• Basic 16-color color code
• Hexadecimal RGB color triplet
• User-defined color name
• JavaScript color name

Color settings are not case-sensitive.
For Grid objects, the colorNormal property sets the text, and background, color for data displayed in grid cells that do not
have focus. It can be overridden by setting the colorNormal property of a GridColumn's editorControl to a non-null value.
The default setting for Grid objects is "WindowText/Window".

Windows-named colors are taken from the settings in the Display Properties. If the colors are changed in the
Display Properties while a form is open, the form and any controls that use these values will change
automatically. You can use any of the following Windows-named color settings for either the foreground or
background color:

Table 15.1 Windows-named colors

Color
Corresponding Display Properties Appearance
Color

ActiveBorder Active window border
ActiveCaption Active title bar
AppWorkspace Application background
Background Desktop
BtnFace 3D objects
BtnHighlight A shade lighter than 3D objects
BtnShadow A shade darker than 3D objects
BtnText 3D objects font
CaptionText Active title bar font
GrayText preset gray—not available
Highlight Selected items
HighlightText Selected items font
InactiveBorder Inactive window border
InactiveCaption Inactive title bar
InactiveCaptionText Inactive title bar font
InfoText ToolTip
InfoBk ToolTip font
Menu Menu
MenuText Menu font
Scrollbar A shade lighter than 3D objects
Form objects 495

colorNormal
The following one- and two-letter basic color codes (with an optional + or * for brightness) are provided
primary for compatibility with earlier versions of dBASE.

Table 15.2 Basic 16-color color codes

Color
name

Foreground
code

Background
code

Black N N
Dark Blue B B
Green G G
Cyan GB or BG GB or BG
Dark Red R R
Purple RB or BR RB or BR
Brown RG or GR RG or GR
Light Gray W W
Dark Gray N+ N*
Blue B+ B*
Bright Green G+ G+
Bright Cyan GB+ or BG+ GB* or BG*
Red R+ R*
Magenta RB+ or BR+ RB* or BR*
Yellow RG+ or GR+ RG* or GR*
White W+ W*

Hexadecimal RGB (Red Green Blue) color triplets are expressed backwards in dBASE Plus; that is, Blue,
Green, Red. You may specify one of approximately 16 million colors using a triplet. The color will be displayed
as well as the settings of the display allow.

You may create your own RGB combinations and give them a name with the DEFINE COLOR command.

Finally, dBASE Plus supports JavaScript-standard color names. The following table lists those colors and their
corresponding RGB values.

Window Window
WindowFrame preset drop shadow—not available
WindowText Window font

Table 15.3 JavaScript color names and RGB values

Color Red Green Blue
aliceblue F0 F8 FF
antiquewhite FA EB D7
aqua 00 FF FF
aquamarine 7F FF D4
azure F0 FF FF
beige F5 F5 DC
bisque FF E4 C4
black 00 00 00
blanchedalmond FF EB CD
blue 00 00 FF
blueviolet 8A 2B E2
brown A5 2A 2A
burlywood DE B8 87
cadetblue 5F 9E A0

Table 15.1 Windows-named colors

Color
Corresponding Display Properties Appearance
Color
496 dBL Language Reference

colorNormal
chartreuse 7F FF 00
chocolate D2 69 1E
coral FF 7F 50
cornflowerblue 64 95 ED
cornsilk FF F8 DC
crimson DC 14 3C
cyan 00 FF FF
darkblue 00 00 8B
darkcyan 00 8B 8B
darkgoldenrod B8 86 0B
darkgray A9 A9 A9
darkgreen 00 64 00
darkkhaki BD B7 6B
darkmagenta 8B 00 8B
darkolivegreen 55 6B 2F
darkorange FF 8C 00
darkorchid 99 32 CC
darkred 8B 00 00
darksalmon E9 96 7A
darkseagreen 8F BC 8F
darkslateblue 48 3D 8B
darkslategray 2F 4F 4F
darkturquoise 00 CE D1
darkviolet 94 00 D3
deeppink FF 14 93
deepskyblue 00 BF FF
dimgray 69 69 69
dodgerblue 1E 90 FF
firebrick B2 22 22
floralwhite FF FA F0
forestgreen 22 8B 22
fuchsia FF 00 FF
gainsboro DC DC DC
ghostwhite F8 F8 FF
gold FF D7 00
goldenrod DA A5 20
gray 80 80 80
green 00 80 00
greenyellow AD FF 2F
honeydew F0 FF F0
hotpink FF 69 B4
indianred CD 5C 5C
indigo 4B 00 82
ivory FF FF F0
khaki F0 E6 8C
lavender E6 E6 FA
lavenderblush FF F0 F5
lawngreen 7C FC 00
lemonchiffon FF FA CD
lightblue AD D8 E6

Table 15.3 JavaScript color names and RGB values

Color Red Green Blue
Form objects 497

colorNormal
lightcoral F0 80 80
lightcyan E0 FF FF
lightgoldenrodyellow FA FA D2
lightgreen 90 EE 90
lightgrey D3 D3 D3
lightpink FF B6 C1
lightsalmon FF A0 7A
lightseagreen 20 B2 AA
lightskyblue 87 CE FA
lightslategray 77 88 99
lightsteelblue B0 C4 DE
lightyellow FF FF E0
lime 00 FF 00
limegreen 32 CD 32
linen FA F0 E6
magenta FF 00 FF
maroon 80 00 00
mediumaquamarine 66 CD AA
mediumblue 00 00 CD
mediumorchid BA 55 D3
mediumpurple 93 70 DB
mediumseagreen 3C B3 71
mediumslateblue 7B 68 EE
mediumspringgreen 00 FA 9A
mediumturquoise 48 D1 CC
mediumvioletred C7 15 85
midnightblue 19 19 70
mintcream F5 FF FA
mistyrose FF E4 E1
moccasin FF E4 B5
navajowhite FF DE AD
navy 00 00 80
oldlace FD F5 E6
olive 80 80 00
olivedrab 6B 8E 23
orange FF A5 00
orangered FF 45 00
orchid DA 70 D6
palegoldenrod EE E8 AA
palegreen 98 FB 98
paleturquoise AF EE EE
palevioletred DB 70 93
papayawhip FF EF D5
peachpuff FF DA B9
peru CD 85 3F
pink FF C0 CB
plum DD A0 DD
powderblue B0 E0 E6
purple 80 00 80
red FF 00 00

Table 15.3 JavaScript color names and RGB values

Color Red Green Blue
498 dBL Language Reference

colorRowHeader
Example Both of the following strings represent the color orange and can be used as the colorNormal property:
0x00a5ff
orange

See also background, colorHighlight, DEFINE COLOR (page 16-606), transparent

colorRowHeader
Specifies the color of the indicator arrow or plus sign, and of the row header background.

Property of Grid

Default WindowText/BtnFace

Description Use the colorRowHeader property to set the color of the row header. The foreground color specifies the color of
the indicator arrow or plus sign. The background color specifies the row header background color.

Values for this property are can be set using the Color Property Builder in the Form Designer. You can access
this dialog box by clicking the wrench tool next to the colorRowHeader property in the Inspector.

For more information on the Color Property Builder, see the dBASE Plus Help topic, Color Property Builder
dialog box.

colorRowLines
The color of the lines that separate the rows in a Grid object.

rosybrown BC 8F 8F
royalblue 41 69 E1
saddlebrown 8B 45 13
salmon FA 80 72
sandybrown F4 A4 60
seagreen 2E 8B 57
seashell FF F5 EE
sienna A0 52 2D
silver C0 C0 C0
skyblue 87 CE EB
slateblue 6A 5A CD
slategray 70 80 90
snow FF FA FA
springgreen 00 FF 7F
steelblue 46 82 B4
tan D2 B4 8C
teal 00 80 80
thistle D8 BF D8
tomato FF 63 47
turquoise 40 E0 D0
violet EE 82 EE
wheat F5 DE B3
white FF FF FF
whitesmoke F5 F5 F5
yellow FF FF 00
yellowgreen 9A CD 32

Table 15.3 JavaScript color names and RGB values

Color Red Green Blue
Form objects 499

colorRowSelect
Property of Grid

Description The colorRowLines property controls the color of the lines that separate rows in a Grid object. When the
colorRowLines property is set to null, the color of a Grid object's row lines will revert to the default value,
"silver". The color of the lines in a Grid Object’s top and left headers is not affected by this property.

See also colorColumnLines, gridLineWidth, hasColumnLines, hasRowLines

colorRowSelect
Text and background color for visually selected rows of data.

Property of Grid

Description When the rowSelect property and/or the multiSelect property is true, the colorRowSelect property sets the text
color and background color for a row of data that has been selected. The default for colorRowSelect is
HighlightText/HighLight.

columnCount
The number of columns in the grid.

Property of Grid

Description columnCount is a read-only property that contains the number of columns in the grid; either the number of
columns that are automatically created when no GridColumn objects are specified, or the number of
GridColumn objects explicitly added.

See also columns, currentColumn

columnNo
The current position of the cursor in a line of text.

Property of Editor

Description Use the columnNo property to find the position of the cursor in the current line of text in an Editor window.
When the Editor window is empty, columnNo will be 1.

columnNo can be used with lineNo to identify the character at the cursor by indexing into the contents of the
Editor’s value property.

columnNo is read-only.

Example The following code returns the value of the character at the cursor position in the Editor window:
Function ThisCharacter
 local cIndex
 cIndex = form.EDITOR1.lineNo * form.EDITOR1.columnNo
 return substr(form.EDITOR1.value, cIndex, 1)

See also lineNo, value

columns
An array of objects for each column in the grid.

Property of Grid

Description A grid’s columns array contains explicitly created GridColumn objects, one for each column. If no GridColumn
objects are created, the grid automatically creates columns, but the columns array is empty.
500 dBL Language Reference

contextHelp
See also columnCount, currentColumn

contextHelp
Displays a context help question mark (?) next to the form or subform's close button.

Property of Form, SubForm

Description When contextHelp is set to true and mdi, maximize, and minimize are set to False, a button displaying a
question mark (?) will display to the left of the form or subform's Close button in the top right portion of the
form's title bar.
Clicking the mouse on the contextHelp button starts contextHelp mode which changes the mouse pointer and
allows the user to click on a form component to trigger the component's onHelp() event. Note: clicking on the
form itself will do nothing at this point.
onHelp() can be used to perform a context sensitive help lookup for the component.
The default for contextHelp is false..

See also onHelp

Example The following is a sample form which usees the contextHelp property to put a question mark in the form's title
so it can be used to fire the form objects' onHelp() methods.

** END HEADER -- do not remove this line
//
// Generated on 12/21/2007
//
parameter bModal
local f
f = new Form_ContextHelp_testForm()
if (bModal)
 f.mdi = false // ensure not MDI
 f.readModal()
else
 f.open()
endif
class Form_ContextHelp_testForm of FORM
 with (this)
 onHelp = {;msgbox("This is the form Class")}
 height = 16.0
 left = 6.8571
 top = 14.4091
 width = 71.5714
 text = ""
 mdi = false
 contextHelp = true
 maximize = false
 minimize = false
helpId = ""
 helpFile = ""
 endwith
this.EDITOR1 = new EDITOR(this)
 with (this.EDITOR1)
 onHelp = {;MsgBox("This is the Editor Class")}
 height = 4.0
 left = 7.0
 top = 2.5
 width = 20.0
 value = ""
 endwith
this.COMBOBOX1 = new COMBOBOX(this)
 with (this.COMBOBOX1)
 onHelp = class::COMBOBOX1_ONHELP
 height = 1.0
 left = 35.0
 top = 5.0
 width = 12.0
Form objects 501

copy()
 style = 1// DropDown
endwith
this.GRID1 = new GRID(this)
 with (this.GRID1)
 onHelp = {;msgbox("gridclass")}
 height = 4.0
 left = 22.0
 top = 9.5
 width = 12.0
 endwith
function COMBOBOX1_onHelp
 MsgBox("This is a Combobox with a linked method in onHelp")
 return
endclass

copy()
Copies selected text to the Windows clipboard.

Syntax <oRef>.copy()

<oRef> An object reference to the control from which to copy the text.

Property of Browse, ComboBox, Editor, Entryfield, SpinBox

Description Use copy() when the user has selected text and wants to copy it to the Windows clipboard.

When calling this method from a pushbutton’s onClick event, the pushbutton should have its speedBar property
set to true, so that it doesn’t get focus. Otherwise, the edit control loses focus when the button is clicked, and
there’s nothing to copy.

If you have assigned a menubar to the form, you can use a menu item assigned to the menubar’s editCopyMenu
property instead of using the copy() method of individual objects on the form.

See also cut(), editCopyMenu, paste(), undo()

count()
Returns the number of prompts in a listbox, or the number of items in a tree.

Syntax <oRef>.count()

<oRef> An object reference to the listbox or tree whose items to count.

Property of ListBox, TreeView

Description Use a listbox’s count() method when you can't anticipate the number of prompts a listbox might have at
runtime. For example, when you specify “FILE *.*” for the dataSource property, the number of prompts
depends on the number of files in the current directory.

When using an array as the dataSource for a listbox, you can check the array’s size property to get the number
of items.

The tree view’s count() method returns the total number of items in the entire tree, even if they are not
displayed or hidden in a collapsed subtree. Use the visibleCount() method to count the items that are visible in
the tree view.

See also dataSource, multiple, selected(), visibleCount()

CUATab
Determines cursor behavior when you press Tab while a control has focus.

Property of Browse, Editor, Grid
502 dBL Language Reference

currentColumn
Description When CUATab is true, pressing Tab moves to the next control in the form's tab order. When CUATab is false,
pressing Tab moves to the next field in a Grid or Browse object or moves the cursor to the next tab stop in an
Editor object.

The same applies to pressing Shift+Tab, except that the movement is in reverse.

See also tabStop

currentColumn
The number of the column that has focus in the grid.

Property of Grid

Description Use the currentColumn property as an index into the columns array to refer to the GridColumn object that
represents the column that currently has focus.

See also columnCount, columns

curSel
Determines which prompt is selected in a component.

Property of ListBox, NoteBook, TabBox

Description Use curSel to get or set which prompt in a ListBox, NoteBook, or TabBox is highlighted. The prompts are
determined by the component’s dataSource property. The first prompt is prompt number 1.

Assigning a value to curSel fires the control’s onSelChange event, as if the change was made manually.

Example Suppose a form displays status information about an account on page 1, and background information on page 2,
with a TabBox to choose pages. Clicking the Add button switches the form to page 2 so the user can add the
data for the new account. By setting the curSel of the tabbox, the tabbox is updated, and onSelChange for the
tabbbox changes the pageNo of the form.

function addButton_onClick()
 form.rowset.beginAppend()
 form.pageTabbox.curSel := 2

See the example for onSelChange for the tabbox’s onSelChange event handler.

See also count(), dataSource, selected()

cut()
Cuts selected text and places it on the Windows Clipboard.

Syntax <oRef>.cut()

<oRef> An object reference to the control from which to cut the text.

Property of Browse, ComboBox, Editor, Entryfield, SpinBox

Description Use cut() when the user has selected text and wants to remove it from the edit control and place it on the
Windows clipboard.

When calling this method from a pushbutton’s onClick event, the pushbutton should have its speedBar property
set to true, so that it doesn’t get focus. Otherwise, the edit control loses focus when the button is clicked, and
there’s nothing to cut.

If you have assigned a menubar to the form, you can use a menu item assigned to the menubar’s editCutMenu
property instead of using the cut() method of individual objects on the form.

See also copy(), editCutMenu, paste(), undo()
Form objects 503

dataLink
dataLink
The Field object that is linked to the component.

Property of Many form components

Description You link a form component to a table’s field by assigning a reference to the dataLink property of the
component. The reference you assign is to the Field object that represents the field in an open query. This
assignment is called dataLinking. When a form component and Field object are linked in this way, they are said
to be dataLinked.

Exception: a Grid object is dataLinked to a rowset, not a field.

For compatibility with earlier versions of dBASE Plus, you may also assign the field name in a string. This
technique is used for form-based data handling with tables open in work areas only.

Both field and component objects have a value property. (Fields in a table open in a work area do not have any
properties, but they have a value; the concept is the same.)When they are dataLinked, changes in one object’s
value property are echoed in the other. The form component’s value property reflects the value displayed in the
component at any given moment. If the component’s value is changed, it is copied into the field after the
component loses focus.

The value property for all fields in a rowset are set when you first open a query and updated as you navigate
from row to row. The value properties for components dataLinked to those fields are also updated at the same
time, unless the rowset’s notifyControls property is set to false. You can also force the components to be
updated by calling the rowset’s refreshControls() method, which is useful if you have set a field’s value
property through code.

Form-based data events such as onNavigate will not work unless the form has controls dataLinked to fields. For
example, if you USE a table, create and open an empty Form, assign an onNavigate event handler, and SKIP in
the table, the onNavigate will not fire simply because the form is open.

The dataLink property is similar to the [--imageSource--] property used for Image objects, except that data
displayed through the dataLink property can be changed, while data displayed through the [--imageSource--]
property is always read-only.

A component’s dataLink is automatically set when you use the Form wizard or use a field in the Field palette.

Example The following is the statement in a .WFM file that assigns the dataLink property to a field in a rowset:
dataLink = form.student1.rowset.fields["LAST_NAME"]

Note that this is a link to the field object itself, not the object’s value property.

The equivalent link for a field in a table open in a work area would look like:
dataLink = "STUDENT->LAST_NAME"

See also [--imageSource--] [Image], value

dataSource [options]
The options that are displayed in a ComboBox, ListBox, NoteBook, or TabBox object.

Property of ComboBox, ListBox, NoteBook, TabBox

Description Use the dataSource property to set the options that are displayed in a ComboBox, ListBox, NoteBook, or TabBox
object. The dataSource property for a ComboBox or ListBox is a string in one of the following five forms:

• ARRAY <array>
creates prompts from elements in an array object.

• FIELD <field name>
creates prompts from all the values in a field in a table file.

• FILENAME [<filename skeleton>]
creates prompts from file names in the current default directory that match the optional filename skeleton.
504 dBL Language Reference

dataSource [options]
• STRUCTURE
creates prompts from all the field names in the currently selected table.

• TABLES
creates prompts from the names of all tables in the currently selected database. For the default database, this
is all the .DBF and .DB files in the current dirctory.

For a NoteBook or TabBox, only the ARRAY dataSource is allowed. The dataSource string in general is not
case-sensitive, except that if you specify a literal array, the array contents will appear as specified.

Adding elements to an array after it has been assigned as a component’s dataSource may not automatically
update the component’s options. Files added to the directory after the dataSource property has been set to a file
mask will not automatically appear either.

To update the dataSource, you need to reassign the dataSource property. In most cases, you can simply reassert
the property by assigning its current value to itself. For example, if you had originally specified all the GIF files
in the current directory, the dataSource property assignment would look like this:

with (this.fileCombobox)
 dataSource = "FILENAME *.GIF"
endwith

To update the file list when you press an Update button on your form, the button’s onClick would look like this:
function updateButton_onClick()
 form.fileCombobox.dataSource += ""

You don’t have to specify what the dataSource string is again, since it’s already contained in the dataSource
property. The += operator adds an empty string to reassign the value, which reasserts the dataSource. This
makes your code easier to maintain, since the dataSource string is specified in only one place.

When using a FIELD as the datasource string, you can use the fields value:
form.rowset.fields["myfield"].value

Or a reference to a field object:
form.rowset.fields["myfield"]

When using an array in the dataSource string, you can use a literal array, for example,
array {"Chocolate", "Strawberry", "Vanilla"}

Or you can use a reference to an array object, for example,
array aFlavors

If you use a reference, that array must exist at the time the dataSource property is assigned. Since the
dataSource property contains that string (in this example, array aFlavors), if you reassert the dataSource
property as shown above, an updated version of the named array must exist. In this example, the array aFlavors
must be accessible in the method updateButton_onClick().

For this reason, when using an updatable array as the dataSource property, the array is usually created as a
property of the form. This makes the array equally accessible from the component that uses the array and from
any other component that tries to reassert the dataSource property. In this example, the array aFlavors would be
created as a property of the form, and the dataSource string would contain:

array form.aFlavors

The reference form.aFlavors is valid from the event handler of any component on the form.

Example The following onOpen event handler reads the contents of a field in a table into an array to be used as the
ComboBox object’s options. A table of ice cream flavors has already been opened in a query named flavors1.

function flavorCombobox_onOpen()
 form.aFlavors = new Array()
 if form.flavors1.rowset.first()
 do
 form.aFlavors.add(form.flavors1.rowset.fields["Name"].value)
 until not form.flavors1.rowset.next()
 endif
 this.dataSource := "array form.aFlavors"
Form objects 505

dataSource [Image]
Later, if someone adds a new flavor, they can add it to the array and update the ComboBox object immediately.
(The flavor will be added to the table once it’s approved by the flavor committee.)

function addFlavorButton_onClick()
 form.aFlavors.add(this.form.newFlavorText.value) // Add new flavor
 form.flavorCombobox.dataSource += "" // Reassert by adding empty string

See also curSel, selected()

dataSource [Image]
The bitmap that is displayed in an Image object.

Property of Image

Description An Image object can display either a static file from disk, a resource image, or a bitmap stored in a table. Set the
dataSource property to either one of the following:

• A string containing the word FILENAME, a space, and the name of a file. The string is not case-sensitive.

• A string of the form “RESOURCE <resource id> <dll name>”, which specifies a bitmap resource and the
DLL file that holds it.

• A string containing the form BINARY, a space, and the name of a binary field in a table open in a work area
that contains bitmapped images.

• A reference to a field object in an open query that contains bitmapped images.

If you assign a field object (or a field in a work area) as the dataSource, the Image object will automatically
update as you navigate from row to row, unless the rowset’s notifyControls property is set to false.

The dataSource property is similar to the dataLink property used for Field objects, except that data displayed
through the dataLink property can be changed, while data displayed through the dataSource property is always
read-only.

An Image object’s dataSource is automatically set when you use the Form Wizard or use a bitmap image field
in the Field Palette.

Example The following string would set the dataSource of an Image object to the file LOGO.GIF in the current directory:
filename LOGO.GIF

See also dataLink

dataSource is also a property of the ComboBox, ListBox, NoteBook, and TabBox classes (page 15-504).

default
Determines if a pushbutton is the form’s default pushbutton.

Property of PushButton

Description Use the default property to make a pushbutton the default pushbutton when the user submits a form by pressing
Enter. This behavior is used primarily for dialog boxes, with the either the OK or Cancel button being the
default, whichever is more appropriate. Setting the default property of a pushbutton to true gives the pushbutton
a visual highlight that identifies it as the default.

Setting the default property to true causes two things to happen when the user presses Enter when the focus is
not on a pushbutton:

• The onClick subroutine of the default pushbutton executes.

• The ID property of the default pushbutton is passed to the form’s onSelection event handler.

However, if the user clicks on any pushbutton, the onClick event handler of that pushbutton executes. The ID
value of that pushbutton is passed to the onSelection event, even if the default property of another pushbutton is
true.

If you give more than one pushbutton a default value of true, the last pushbutton to get the value is the default.
506 dBL Language Reference

description
The default property will only work when SET CUAENTER is set to ON. When CUAENTER is OFF, the
Enter key emulates the Tab key and merely shifts focus to the next control.

See also onClick, onSelection, SET CUAENTER

description
A short description for an ActiveX control.

Property of ActiveX

Description An ActiveX object’s description property contains a short description of the ActiveX control it represents. The
description is provided by the control and is read-only.

designView
Designates a .QBE query or table that is used when designing a form.

Property of Form

Description Use designView to facilitate creating and dataLinking a form that uses form-based data handling with tables in
work areas. The value in designView is ignored at runtime. When using the data objects, do not use designView
or view.

There are two main instances in which you may want to use designView instead of view.

• If you know which tables will be open when the form is opened at runtime, use designView to avoid opening
the tables again with view when the form is opened.

• If you don’t know which tables will be open when the form is opened at runtime, but need certain tables open
to design the form, use designView to automatically open the tables at design time, regardless of the tables
needed at runtime.

If you specify a view property for a form, you should not also specify a designView property.

See also dataLink, view

disabledBitmap
Specifies the graphic image to display in a pushbutton when the pushbutton is disabled.

Property of PushButton

Description Use disabledBitmap to indicate visually when a pushbutton is not available for use. A pushbutton is disabled
when its enabled property is set to false.

The disabledBitmap setting can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

• FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

When you specify a character string for the pushbutton with text and an image with disabledBitmap, the image
is displayed with the grayed-out character string

See also class Image, downBitmap, enabled, focusBitmap, textLeft, upBitmap

disablePopup
Whether the tree view’s popup menu is disabled.

Property of TreeView
Form objects 507

doVerb()
Description The tree has a right-click popup menu that allows the user to insert, delete, and edit items. Set disablePopup to
true to disable this popup menu.

Even if the popup is disabled, the user can still edit the items by clicking twice or pressing F2, and insert and
delete items by pressing Ins and Del. Set allowEditLabels and allowEditTree to false to prevent these actions.

See also allowEditLabels, allowEditTree

doVerb()
Starts an action in an OLE server application.

Syntax <oRef>.doVerb(<verb expN> [, <title expC>])

<oRef> The OLE control that contains the linked or embedded object.

<verb expN> The numeric value of the OLE verb.

<title expC> An optional text string to display in the title bar of the server window.

Property of OLE

Description Use doVerb() to initiate an action from an OLE document stored in an OLE field and to specify what action to
take.

Every OLE object accepts one or more verbs. Each verb determines which actions are taken, and each is
represented by a number.

Example Most sound applications accept one of two verbs:

• 0 (Play) plays a sound stored in an OLE field.
• 1 (Edit) opens the Sound Recorder to edit the sound.

Double-clicking the OLE control plays the sound, but to edit the sound, use a button that calls the OLE control’s
doVerb() method:

function editSound_onClick()
 form.soundOLE.doVerb(1)

See also OLEType

downBitmap
Specifies the graphic image to display in a pushbutton when the user presses the button.

Property of PushButton

Description Use downBitmap to give visual confirmation when the user clicks a pushbutton. When the user releases the
mouse button or moves the pointer off the pushbutton, the image and/or text specified by focusBitmap and text
is displayed.

The downBitmap setting can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

• FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

When you specify a character string for the pushbutton with text and an image with downBitmap, the image is
displayed with the character string.

See also class Image, disabledBitmap, enabled, focusBitmap, textLeft, upBitmap

drag()
Initiates a Drag&Drop Copy or Move operation for a dBASE Plus UI object.
508 dBL Language Reference

dragEffect
Syntax <oRef>.drag(<type expC>, <name expC>, <icon expC>)

<oRef> The object to be copied or moved.

<type expC> A string, typically identifying the object’s type.

<name expC> A string, typically containing the name of the object.

<icon expC> The filename of a cursor icon to be displayed while the object is being dragged. This
parameter is required, but is currently unused. The default Windows OLE cursor will be displayed.

Property of Many Form objects

Description Use drag() to initiate a Drag&Drop operation for a Drop Source object. Drop Source objects may only be
dropped upon “active” Drop Target objects; that is, any object whose allowDrop property is set to true. The
drag() method is typically called from within the Drop Source’s onLeftMouseDown event handler.

drag() returns true or false, according to the success of the drop operation.

For Copy operations, <type expC> and <name expC> are passed directly from the Drop Source’s drag()
method to a Drop Target’s onDragEnter, onDragOver, and onDrop events. Other than a length restriction of
260 characters, these parameters have no mandatory format and may be used to communicate any information.

The type of operation initiated is determined by the object’s dragEffect property, and the state of the Control
key when the mouse button is pressed. The following table shows the possible settings and resulting operations:

dragEffect Control key Operation type
0 - None (ignored) None (dragging disabled)
1 - Copy (ignored) Copy
2 - Move up Move
2 - Move down Copy

For a Move operation, the dragged object moves with the mouse and may only be dropped within its containing
object, e.g. a parent Form or Container. The operation will only take place if the containing object is also an
active Drop Target. The Move operation terminates when the mouse button is released. The Target’s onDrop
event is not fired for Move operations.

For a Copy operation, the dragged object appears to remain in place and may be dropped either within its
containing object, or on any active Drop Target object. When the mouse button is released, the Drop Target’s
onDrop fires, processes the event, then returns true or false to the initiating drag() method.

Example In the following example, the onLeftMouseDown event of a TreeView object is used to initiate a Drag&Drop
Copy operation. The filename containing the TreeView’s child TreeItems, along with a string identifying the
TreeView as the Drop Source, is passed to the Drop Target. If the drop attempt fails or the Drop Target’s
onDrop returns false, the drag() method cleans up by deleting the file.

function TREEVIEW1_onLeftMouseDown(flags, col, row)
local cFileName
cFileName = funique("TREE????.TXT") // File to hold child TreeItems
this.streamChildren(cFileName)
if not this.drag(this.className, cFileName, "")

delete file (cFileName)
endIf
return

See also dragEffect, allowDrop, onDrop, onDragBegin

dragEffect
For Drag&Drop operations; specifies a drag processing mode for a Drop Source object.

Property of Many Form objects

Description Use dragEffect to enable or disable dragging for a Drop Source object, and to specify the default drag
processing mode.
Form objects 509

dragScrollRate
Each time a Drag&Drop operation is attempted for a Drop Source object, the value of dragEffect and the state of
the Control key are evaluated. The following table shows the possible values for dragEffect, and the effect of the
Control key on the resulting operation:

dragEffect Control key Operation type
0 - None (default) N/A None (dragging disabled)
1 - Copy (ignored) Copy
2 - Move up Move
2 - Move down Copy

An object becomes an active Drop Source when the value of its dragEffect property is set greater than 0.
Similarly, an object becomes an active Drop Target when its allowDrop property is set to true. Except for
forms, all Drop Target objects may also be Drop Sources.

See also allowDrop, drag(), onDrop

dragScrollRate
The delay time between each column scroll when dragging columns.

Property of Grid

Description The dragScrollRate property controls how fast the grid scrolls horizontally when rearranging columns in the
grid by dragging. The delay time is measured in milliseconds.

See also allowColumnMoving

drawMode
Specifies how the colors of a Shape object appear on the underlying surface..

Property of Shape

Description Use drawMode to create visual effects with the pen and brush (fill) colors of a Shape object.

dBASE Plus compares the colors specified by the colorNormal property of the Shape to the color of the
underlying surface (usually a form), and renders a result according to drawMode.

In the table below, "Pen" refers to both the pen and brush colors of the Shape. "Merge" (bitwise OR), "Mask"
(bitwise AND), and "XOR" indicate the type of bitwise operation to be performed on the pixel RGB values of
the "Pen" and the drawing surface, while "NOT" means the operation involves the inverse, or complement
(color negative), of one or both colors.

You can specify any of these settings for drawMode:

Value Description
0 – Normal Color specified in the Shape colorNormal property (100% opacity)
1 – Inverse Inverse (color negative) of the drawing surface color. Note: this setting

disregards the Pen color
2 – Merge Pen NOT Combination of the Pen color and the inverse of the drawing surface color
3 – Mask Pen NOT Combination of the colors common to both the Pen and the inverse of the

surface
4 – Merge NOT Pen Combination of the surface color and the inverse of the Pen color
5 – Mask NOT Pen Combination of the colors common to both the surface and the inverse of

the Pen
6 – Merge Pen Combination of the Pen color and the surface color
7 – NOT Merge Pen Inverse (color negative) of Merge Pen
8 – Mask Pen Combination of the colors common to both the Pen and the surface
9 – NOT Mask Pen Inverse (color negative) of Mask Pen
510 dBL Language Reference

dropDownHeight
See also class Shape, background, colorNormal

dropDownHeight
The number of lines displayed in the list portion of the combobox.

Property of ColumnEditor, ComboBox

Description Use dropDownHeight to specify how much information will appear when a user drops down a list from a combo
box.

See also autoDrop, dropDownWidth, style

dropDownWidth
The width of the list portion of the combobox.

Property of ComboBox

Description The width of the drop-down list of a combobox may be different than the width of the text entry portion. If
dropDownWidth is zero (the default), the width of the drop-down list is sized to match the width of the control.
Otherwise, the combobox’s dropDownWidth setting is used.

The dropDownWidth is expressed in the form’s current metric units (the same as the width).

See also autoDrop, dropDownHeight, width

editorControl
The editable control that comprises the body of the grid in the column.

Property of GridColumn

Description The editorControl property contains an object reference to the editable control in the grid column. The type of
control is determined by the editorType property.

See also class ColumnCheckBox, class ColumnComboBox, class ColumnEntryfield, class ColumnSpinBox, editorType,
headingControl

editorType
The type of editing control in the grid column.

Property of GridColumn

Description editorType is an enumerated property that determines the type of editable control used for the data in the
column. It may have one of the following values:

Value Description Control
0 Default Depends on column data type
1 Entryfield ColumnEntryfield
2 CheckBox ColumnCheckBox
3 SpinBox ColumnSpinBox
4 ComboBox ColumnComboBox

10 – XOR Pen Combination of the colors in the Pen and the surface, but not common to
both

11 – NOT XOR Pen Inverse (color negative) of XOR Pen

Value Description
Form objects 511

elements
You may access the control through the editorControl property.

See also class ColumnCheckBox, class ColumnComboBox, class ColumnEntryfield, class ColumnSpinBox,
editorControl, headingControl

elements
An array containing object references to all the components in a form.

Property of Form, SubForm

Description The elements array contains an object reference for each visual component in a form. Other types of objects, like
data objects, are not included.

You can determine the number of components in the form by checking the elements array’s size property. Each
element in the array can be addressed by its element number or by the name of the component.

The elements array is not a member of the Array class, but rather an ObjectArray class with specific capabilities
for managing a list of objects. It does not support most of the methods of the Array class. The elements array is
not meant to be changed directly, although it is safe to scan to get the object references for the components in
the form.

Example Suppose you have a form that contains a bunch of spinboxes for measurements. You want to be able to set them
all to zero with the click of a button.

function resetButton_onClick()
 local nObj
 for nObj = 1 to form.elements.size
 if form.elements[nObj].baseClassName == "SPINBOX"
 form.elements[nObj].value := 0
 endif
 endfor

Compare this loop with the example for before.

See also before, name

enabled
Determines if an object can get focus and operate.

Property of Most form components

Description When you set the enabled property of an object to true, the user can select and use the object. When you set the
enabled property to false, the object is dimmed and the user can't select or use the object. This is a visual
indication that the object cannot get focus. The object is removed from the tab sequence and clicking the object
has no effect.

Example Suppose you have a checkbox to echo output to a file and an entryfield for the file name. When the checkbox is
unchecked, you disable the entryfield:

function outputFileCheckbox_onChange()
 form.outputFileEntryfield.enabled := this.value

The enabled properties of the Container and Notebook components differ somewhat from those of other form
components. When the Container or Notebook's enabled property is set to "false", the enabled properties of all
contained controls are likewise set to "false". When it's set to "true", the enabled properties of the contained
controls regain their individual settings.

See also visible, when

enabled is also a property of the Timer class (page 9-128)
512 dBL Language Reference

enableSelection
enableSelection
Whether the selection range is displayed in the Slider object.

Property of Slider

Description If enableSelection is true, the selection range set by the slider’s startSelection and endSelection properties is
displayed inside the slider as a colored area with matching tic marks. You may use the selection range to show
the current or preferred range.

If enableSelection is false, the startSelection and endSelection properties have no effect.

See also endSelection, startSelection

endSelection
The high end of the selection range in a Slider object.

Property of Slider

Description endSelection contains the high value in the selection range. It should be equal to or higher than startSelection,
and between the rangeMin and rangeMax values of the slider.

The selection is not displayed unless the slider’s enableSelection property is true.

See also enableSelection, rangeMax, rangeMin, startSelection

ensureVisible()
Makes the tree item visible in the tree view.

Syntax <oRef>.ensureVisible()

<oRef> An object reference to the tree item you want to display.

Property of TreeItem

Description Use ensureVisible() when you want to make sure that a tree item is visible in the tree view. The tree is expanded
and scrolled if necessary to make the item visible. If the tree item is already visible, nothing happens.

See also select(), setAsFirstVisible()

escExit
Determines if the user can close a form by pressing Esc.

Property of Form, SubForm

Description Set escExit to false to prevent the user from closing a form by pressing Esc.

You can verify that the user wants to close the form by using the form’s canClose event handler. Closing a form
by pressing Esc abandons all pending changes in the data buffer, as if abandonRecord() was called.

When a form is opened with readModal(), it returns false when it is closed by pressing Esc.

See also canClose

evalTags
Whether to evaluate HTML tags in the text.

Property of ColumnEditor, Editor
Form objects 513

expanded
Description dBASE Plus supports common HTML formatting tags. You may choose to evaulate any tags that appear in the
text of the editor and apply the formatting, or to leave the HTML tag as-is so that they can be edited.

Use the Format toolbar to format the text with HTML tags. You may also type in the tags manually, but they
will not be interpreted until you toggle evalTags to true.

The editor’s evalTags property corresponds to the Apply Formatting option in the editor’s popup menu. The
Format toolbar is not active if the editor’s evalTags property is false.

See also popupEnable, showFormatBar()

expanded
Whether the tree item’s children are shown or hidden.

Property of TreeItem

Description A tree item’s subtree may be expanded or collapsed visually by the user, or by assigning a value to the expanded
property. If expanded is true, the subtree is displayed. If expanded is false, the subtree is hidden.

See also noOfChildren

fields
Specifies the fields to display in a Browse object, and the field options to apply to each field.

Property of Browse

Description The fields is a string with the following the following format:
<field 1> [<field option list 1>] |
<calculated field 1> = <exp1> [<calculated field option list 1>]

 [, <field 2> [<field option list 2>] |
 <calculated field 2> = <exp1> [<calculated field option list 2>], ...]

The fields are displayed in the order they're listed, and the <field option list> affects the way each field is
displayed. The options are as follows:

Option Description
\<column width> The width of the column within which the field appears
\B = <exp 1>, <exp 2> RANGE option; forces any value entered in <field 1> to fall within <exp

1> and <exp 2>, inclusive.
\H = <expC> HEADER option; causes <expC> to appear above the field column in the

browse, replacing the field name
\P = <expC> PICTURE option; formats the field according to the picture template

<expC>
\V = <condition>
[\E = <expC>]

VALID option; allows a new field value to be entered only when
<condition> evaluates to true
ERROR MESSAGE option; \E = <expC> causes <expC> to appear when
<condition> evaluates to false

Calculated fields are read-only and are composed of an assigned field name and an expression that results in the
calculated field value, for example:

Commission = Rate * Saleprice

Options for calculated fields affect the way these fields are displayed. These options are as follows:

Option Description
\<column width> The width of the column within which the calculated field is displayed
\H = <expC> Causes <expC> to appear above the calculated field column in the browse,

replacing the calculated field name
514 dBL Language Reference

filename
Example The following fields string:
CONTCITY->CITY_NAME\H="Contract City"\15,CONTCITY->CONTACT\H="Contact Person"\25

Displays two fields in the browse from the Contcity table:

• The City_name field, with the heading “Contract City” in a column 15 characters wide

• The Contact field, with the heading “Contact Person” in a column 25 characters wide

See also alias, dataLink, dataSource, SET FIELDS

fields is also a property of the Rowset class (page 14-377)

filename
The name of the file that contains the desired report.

Property of ReportViewer

Description Set the filename property to the file that contains the report class definition. Reports are stored in files with a
.REP extension.

The .REP file is executed when you assign the filename property, even if the form is not open. Normally, report
parameters (if any) are assigned to the params array before setting the filename property; if they are assigned
after setting the filename property, you must call the ReportViewer object’s reExecute() method to regenerate
the report.

See also params, reExecute()

filename is also a property of the DataModRef class (page 14-377)

first
A reference to the first component in a containing object’s z-order.

Property of Form, Container, Notebook, SubForm

Description Use the first property to reference the first component in the containing object’s z-order. For more information
on component z-order within containing objects, see before.

If the first component can receive focus, it gets focus initially when you open a form. Otherwise, the next
component in the z-order is tried until one is found that can receive focus.

first is a read-only property.

Example See before.

See also before

firstChild
The first child tree item.

Property of TreeItem, TreeView

Description firstChild is a read-only property that contains an object reference to the object’s first child tree item. If the
object has no children, firstChild is null.

Example The following method calls itself recursively to traverse the items in a tree, applying code to each tree item
encountered:

function traverseTree(tRoot, kProcess)
 local t
 t = tRoot.firstChild // Start with first item in the tree
 do while t # null // if any, and repeat until done
 kProcess(t) // Process each tree item
Form objects 515

firstColumn
 class::traverseTree(t, kProcess) // Call recursively for sub-tree
 t := t.nextSibling // Next item at same level
 enddo

The following code calls the method to traverse the entire tree treeview1 and display each item’s basic
properties:

function dumpTreeButton_onClick
 class::traverseTree(form.treeview1, {|t|; ? t.level, t.checked, t.text})

See also firstVisibleChild, nextSibling, prevSibling

firstColumn
Index of the column to be displayed in the left-most unlocked column position.

Property of Grid

Description The firstColumn property is an index, starting with the left-most unlocked column equal to one, that specifies
the first column to be displayed after the locked columns. Setting this property will cause the selected column to
be scrolled to the left-most unlocked column display position. While the firstColumn property is a writable, its
value is not streamed to the source code by the form designer, so when the form containing the grid is opened
during run mode, the firstColumn property is initialized to its default value of one.

As implied above, the lockedColumns property affects the display position and the index values associated with
the firstColumn property. To avoid unexpected results, these properties are implemented so any change in the
lockedColumns property will reset the firstColumn property to one.

See also lockedColumns

firstRow()
Returns a bookmark for the row currently displayed in the first row of the grid.

Syntax <oRef>.firstRow()

<oRef> A reference to a grid object.

Property of Grid

Description Calling the firstRow() method returns a bookmark to the row currently displayed on the grid's first, or top, row.
If the grid is not datalinked to any rowset, the firstRow() method returns null.

Example The firstRow() method can be used to preserve, and later return to, the top displayed row in the grid. Use a
rowset's goto() method to position a rowset to a previously bookmarked row.

// After a user scrolls through a grid and clicks to change view displayed in form...

f.saveFirst = f.g.firstrow()
f.current = q.rowset.bookmark()

// To restore grid to same display as before

q.rowset.goto(f.savefirst) // positions grid to previously saved firstrow
q.rowset.goto(f.current) // if the previously saved current row was visible before

// it will be visible now, so grid moves current row highlight to
// already visible row displaying data from f.current row.

See Also lastRow()

firstVisibleChild
The first tree item that is visible in the tree view area.

Property of TreeView
516 dBL Language Reference

focus
Description firstVisibleChild is a read-only property that contains an object reference to the first tree item that is visible at
the top of the tree view area. Note that this is not necessarily a top-level tree item.

See also firstChild, setAsFirstVisible()

focus
When to give focus to the notebook tabs when they are clicked.

Property of NoteBook

Description The focus property determines whether the notebook tabs (or buttons if buttons is true) get focus when they are
clicked. It is an enumerated property with the following possible values

Setting Description
0 (Normal) Tab does not focus if tab changes
1 (On Button Down) Tab always gets focus
2 (Never) Tab never gets focus

:

You can always give focus to the notebook tabs with the Tab and Shift+Tab keys if its tabStop property is true.
If a tab already has focus, clicking will keep focus in the tabs, no matter what the focus property is.

See also buttons, tabStop

focusBitmap
Specifies the graphic image to display in a pushbutton when the pushbutton has focus.

Property of PushButton

Description Use focusBitmap to indicate visually when a pushbutton is selected.

The focusBitmap setting can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

• FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

When you specify a character string for the pushbutton with text and an image with focusBitmap, the image is
displayed with the character string.

See also class Image, disabledBitmap, downBitmap, enabled, textLeft, upBitmap

fontBold
Specifies whether the component displays its text in bold type.

Property of Many form components

Description Set fontBold to true if you want the component to display its text in boldface.

For Grid objects, the fontBold property can be overridden by setting the fontBold property of a GridColumn's
editorControl to a non-null value.

See also fontItalic, fontName, fontSize, fontStrikeout, fontUnderline

fontItalic
Specifies whether the component displays its text in italics.
Form objects 517

fontName
Property of Many form components

Description Set fontItalic to true if you want the component to display its text in italics.

For Grid objects, the fontItalic property can be overridden by setting the fontItalic property of a GridColumn's
editorControl to a non-null value.

See also fontBold, fontName, fontSize, fontStrikeout, fontUnderline

fontName
The typeface of the component’s text.

Property of Many form components

Description Set fontName to the name of the typeface you want to apply to the text in the component. For Grid objects, the
fontName property can be overridden by setting the fontName property of a GridColumn's editorControl to a non-null value.
The fontName property defaults to that set by your operating system or the PLUS.ini file.

Note: In order to use TrueType fonts in European countries which do not use the Western Europe code page (1252),
you must specify the language (also referred to as the "script"). Since dBASE Plus does not list available
language scripts for TrueType fonts, you must specify it in the fontName property--either in code or through the
Inspector--using the exact TrueType font name. To do it through the Inspector, for example, choose a text
component, choose the fontName property in the Inspector, and, instead of choosing from available fonts on the
list, type in the name of the language script. We recommend all languages be entered in English, e.g.:

Times New Roman Greek
Verdana Turkish
Arial Baltic
MS Gothic Cyrillic
Courier New Central Europe

The following PLUS.ini file settings ensure that the initial font created for a new control uses the language you
want:

[DefaultFonts]
Application=<strFontName>,<intPointSize>
Controls=<strFontName>,<intPointSize>

The Application setting specifies the font used for the Navigator and Inspector, while the Controls setting
specifies the default font used for forms and controls. You can also create your own custom controls to specify
the font and language you want to use.

See also fontBold, fontItalic, fontSize, fontStrikeout, fontUnderline

fontSize
The point size of the component’s text.

Property of Many form components

Description Set fontSize to the point size in which you want the text of the component to be displayed. There are
approximately 72 points per inch. Common text is from 8 to 12 points. Default: 10.

For Grid objects, the fontSize property can be overridden by setting the fontSize property of a GridColumn's
editorControl to a non-null value.

See also fontBold, fontItalic, fontName, fontStrikeout, fontUnderline

fontStrikeout
Specifies whether the component displays its text struck through.

Property of Many form components
518 dBL Language Reference

fontUnderline
Description Set fontStrikeout to true if you want the component to display its text struck through.

For Grid objects, the fontStrikeout property can be overridden by setting the fontStrikeout property of a
GridColumn's editorControl to a non-null value.

See also fontBold, fontItalic, fontName, fontSize, fontUnderline

fontUnderline
Specifies whether the component displays its text underlined.

Property of Many form components

Description Set fontUnderline to true if you want the component to display its text underlined.

For Grid objects, the fontUnderline property can be overridden by setting the fontUnderline property of a
GridColumn's editorControl to a non-null value.

See also fontBold, fontItalic, fontName, fontSize, fontStrikeout

form
The form or report that contains the component.

Property of All form components.

Description A component’s form property is a reference to the form or report that contains it. It is set automatically when the
component is created and cannot be changed.

Use the form property in component event handlers and methods to generically refer to the object that contains
the component.

In a form, a component’s form and parent property refer to the same thing—the form—if the component is
placed directly on the form. However, if for example you place a component in a NoteBook control on a form,
then the component’s parent is the NoteBook control, not the form; and the NoteBook control’s parent is the
form. In a report, components are contained deeper in the object hierarchy and their parents are never the report.

By using the form property, you can immediately get back to the top of the object hierarchy and refer to its
properties, events, or methods; or refer to other objects in the form or report.

In addition to the form property, a local variable named form is also created for any event handler for form,
report, or a visual component. The form variable is not created for events in other kinds of classes. The variable
and the form property both refer to the same object. In most event handlers, the form variable is used.

Example The following is an onClick event handler for a button that puts the form’s primary rowset—a data access
component—in Append mode to add a new row.

function addButton_onClick()
 this.form.rowset.beginAppend() // Use form property to get to other objects in form

The following function uses the form variable instead of the form property, and behaves identically:
function addButton_onClick()
 form.rowset.beginAppend()

See also name, parent

frozenColumn
The field name of the column in which the cursor is confined.

Property of Browse, Grid

Description Use frozenColumn to confine the cursor in a single column of the grid. The other columns in the grid are
displayed, but you cannot put the cursor in them.
Form objects 519

function
frozenColumn expects the field name of the column (a string). To release the cursor from the column, assign an
empty string to the frozenColumn property.

See also lockedColumns

function
Formats text in an object.

Property of Entryfield, SpinBox, Text

Description Use a formatting function to format the display and entry of data. While a picture gives you character-by-
character control, a function formats the entire value.

dBASE Plus recognizes the following function symbols:

Symbol Description
(Encloses negative numbers in parentheses.
! Converts letters to uppercase.
^ Displays numbers in exponential form.
$ Inserts a dollar sign or the symbol defined with SET CURRENCY TO instead of

leading spaces.
A Restricts entry to alphabetic characters.
B Left-aligns a numeric entry.
C Displays CR (credit) after a positive number.
D Displays and accepts entry of a date in the current SET DATE format.
E Displays and accepts entry of a date in European (DD/MD/YY) format.
I Centers the entry.
J Right-aligns the entry.
L Displays numbers with leading zeros.
R Inserts literal characters into the display without including them in the field.
T Removes leading and trailing spaces from character values.
V<n> ? and ?? command only: Wraps a character string within a width specified by <n>.
X Displays DB (debit) after a negative number.
Z Displays zeros as a blanks.

Example Suppose you want a character field to be right-aligned, and all the letters typed to be converted into uppercase.
Set the function of the control to “J!”.

See also picture

getColumnObject()
Returns a reference to the GridColumn object for a designated column

Syntax <oRef>.getColumnObject(<exp N>)

<oRef> The name of the Grid object

<exp N> An integer representing the column position. For the leftmost column in a grid, n=1.

Property of Grid

Description Each column in a grid is represented by a GridColumn object. For a grid that has custom columns defined, the
getColumnObject() method will return a reference to the GridColumn object for column position <n>.

<exp n> is an integer from 1 up to the number of columns in the grid where;

• n=1 indicates the current leftmost column

• n=2 indicates the current second column from the left
520 dBL Language Reference

getColumnOrder()
and so on.

The getColumnObject() method provides a means to determine the current column order, save the column order
to disk and restore it later on.

If a grid does NOT have custom columns defined, the getColumnObject() method returns a null value.

getColumnOrder()
Returns a two-dimensional array, the columns of which are QueryName and FieldName.

Syntax <oRef>.getColumnOrder()

<oRef> The name of the Grid object

Property of Grid

Description When the allowColumnMoving property is set to it's default setting, true, the user is able to rearrange columns
in a grid by clicking and dragging the column headings. Using the getColumnOrder() method, the new array
values can be saved using the form’s onClose event and subsequently restored using the form’s onOpen event.

getItemByPos()
Returns an object reference to a TreeItem object located at a specified position.

Syntax [<oRef> =] getItemByPos(<col expN>, <row expN>)

<oRef> A variable or property in which to store the TreeItem object reference returned by getItemByPos(_).

<col expN> The horizontal position, within a TreeView object, to check for a TreeItem.

<row expN> The vertical position, within a TreeView object, to check for a TreeItem.

Property of TreeView

Description Use getItemByPos(), within a TreeView mouse event handler, to determine on which TreeItem object the user
clicked. If no TreeItem was clicked, getItemByPos() returns a null value.

Example In the onLeftMouseDown() event for a treeview object, use the getItemByPos() method as follows:
function TREEVIEW1_onLeftMouseDown(flags, col, row)

oItem = THIS.getItemByPos(col, row)
if type('oItem') = 'O' // oItem contains an object referencel

// do something with the item
endif

getTextExtent()
Returns the length of a text string based on the current font settings of the Text control.

Syntax <oRef>.getTextExtent(<expC>)

<oRef> The Text object used to calculate the text size.

<expC> The string to measure

Property of Text, TextLabel

Description getTextExtent() calculates the width required to display <expC> in the Text or TextLabel object, using the
object’s current font settings. It returns a value in the form’s current metric.

See also fontBold, fontItalic, fontName, fontSize, metric, scaleFontBold, scaleFontName, scaleFontSize
Form objects 521

gridLineWidth
gridLineWidth
The width of the grid lines in a Grid object.

Property of Grid

Description gridLineWidth controls the width, in pixels, of the lines that separate the cells in a Grid object.

See also hasColumnLines, hasRowLines

group
Creates component groups in the form’s tab order.

Property of CheckBox, PushButton, RadioButton

Description Use group to determine if an object is part of a group within which the user can move focus with the arrow keys.
Pressing Tab does not move the focus within the group; it moves to the next object outside the group. All
objects in a group must be of the same class, and must follow one another in the tabbing (Z) order of the form.

RadioButtons must be used in groups of two or more. Only one RadioButton in the group may be selected at any
time.

Use true and false to create groups. Set the group property of the first object in the group to true. For all
following objects that belong to the group, set group to false. The next object with a group setting of true begins
another group.

Example Suppose you’re creating an order entry screen. For the options “Cash, Check, or Charge,” you place three
adjacent RadioButton objects, set the group property of the first RadioButton to true, and set the group property
of the next two to false. For the options “Phone, Fax, or E-mail,” you place three more RadioButton objects with
the group property of the first set to true to start the new group.

See also tabStop

handle
The Windows tree item handle

Property of TreeItem

Description Each tree item has an internal handle. This handle is similar to the hWnd handle for each control on a form. This
handle may be used for low-level API calls to manipulate the individual items in the tree view

See also hWnd

hasButtons
Whether + and - icons are displayed for tree items that have children.

Property of TreeView

Description When hasButtons is true, tree items that have child items have a + or - icon to indicate whether the subtree is
collapsed or expanded. Clicking the icon expands and collapses the tree.

Set hasButtons to false to prevent these icons from appearing. The user can still expand and collapse a subtree
by pressing Shift+minus and Shift+plus on the numeric keypad. To prevent these keys from expanding or
collapsing the tree, use the canExpand event.

See also canExpand, hasLines
522 dBL Language Reference

hasColumnHeadings
hasColumnHeadings
Whether column headings are displayed.

Property of Grid

Description Set hasColumnHeadings to false to suppress column headings in a grid. If hasIndicator is also false, the grid
will contain data cells only. hasColumnHeadings must be set to true to allow the user to move, or resize,
columns in a grid.

See also hasIndicator

hasColumnLines
Whether column (vertical) grid lines are displayed.

Property of Grid

Description Set hasColumnLines to false to suppress the vertical lines that separate columns in the grid.

See also gridLineWidth, hasRowLines

hasIndicator
Whether the indicator column is displayed.

Property of Grid

Description The indicator column is the left-most column in the grid, and contains an icon indicating the current column.
The icon changes when a row is being appended.

Set hasIndicator to false to suppress the indicator column. If hasColumnHeadings is also false, the grid will
contain data cells only.

See also hasColumnHeadings

hasLines
Whether lines are drawn between tree items.

Property of TreeView

Description Set hasLines to false to display items in the tree view without the normal connecting branch lines. To disable
lines at the root level only, leave hasLines true and set linesAtRoot to false.

See also hasButtons, linesAtRoot

hasRowLines
Whether row (horizontal) grid lines are displayed.

Property of Grid

Description Set hasRowLines to false to suppress the horizontal lines that separate rows in the grid.

See also gridLineWidth, hasColumnLines

hasVScrollHintText
Whether the relative row count is displayed as the grid is scrolled vertically.
Form objects 523

headingColorNormal
Property of Grid

Description When hasVScrollHintText is true, a relative row count, like “12 of 600” is continuously updated and displayed
next to the vertical scrollbar as it is scrolled.

Set hasVScrollHintText to false to suppress the message.

See also vScrollBar

headingColorNormal
Determines the text and background color for grid column heading controls.

Property of Grid

Description Use the headingColorNormal property to set the text color and background color for grid column heading
controls. This property can be overridden by setting a grid column headingControl's colorNormal property to a
valid non-null value. The default for the headingColorNormal property is WindowText/BtnFace.

headingControl
The control that displays the grid column heading.

Property of Grid

Description The headingControl property contains an object reference to the ColumnHeadingControl object that contains
the column heading. The editable control in the column is referenced through the editorControl property.

See also class ColumnHeadingControl, editorControl

headingFontBold
Determines whether the current heading font style is Bold.

Property of Grid

Description When the headingfontBold property is set to true, sets the current heading font style to bold. This property can
be overridden by setting a grid column headingControl's fontBold property to a non-null value. The
headingFontBold property defaults to true.

headingFontItalic
Determines whether the current heading font style is Italic.

Property of Grid

Description When the headingfontItalic property is set to true, sets the current heading font style to italic. This property can
be overridden by setting a grid column headingControl's fontItalic property to a non-null value. The
headingFontItalic property defaults to false.

headingFontName
Determines to font used to display data in a grid's headingControls

Property of Grid

Description Use the headingFontName property to set the font used to display data in a grid's headingControls. The
headingFontName property can be overridden by setting a grid column headingControl's fontName property to a
valid non-null value.

The headingFontName property defaults to that set by your operating system, or the PLUS.ini file.
524 dBL Language Reference

headingFontSize
headingFontSize
Determines the character size of the current heading font.

Property of Grid

Description When the headingfontSize property is set to true, sets the font's character size for data displayed in a grid's
headingControls. This property can be overridden by setting a grid column headingControl's fontSize property
to a value greater than zero. The headingFontSize property defaults to 10 points.

headingFontStrikeout
Determines whether the current heading font style is Strikeout.

Property of Grid

Description When the headingFontStrikeout property is set to true, displays the current heading font with a horizontal
strikeout line through the middle of each character. The headingFontStrikeout property can be overridden by
setting a grid column headingControl's fontStrikeout property to a non-null value. The headingFontStrikeout
property defaults to false.

headingFontUnderline
Determines whether the current heading font style is Underline.

Property of Grid

Description When the headingFontUnderline property is set to true, the current heading font style is set to Underline. This
property can be overridden by setting a grid column headingControl's fontUnderline property to a non-null
value. The headingFontUnderline property defaults to false.

height
The height of an object. For Form and SubForm objects, the height of their client areas.

Property of Form, SubForm, Form objects and Report objects: Band, PageTemplate, StreamFrame.

Description Form objects: The value of the height property includes any border, bevel or shadow effect assigned to the
object.

Forms and SubForms: The value of the height property includes only the client area. It does not include the
window border or titlebar.

• When a Form or SubForm is opened, and has a horizontal scrollbar (see the scrollbar property), the Form or
SubForms' width is automatically reduced by the width of the horizontal scroll bar (16 pixels).

• The minimum height of a Form or SubForm is zero.

The height property is numeric and expressed in the current metric unit of the Form or Subform that contains the
object.

The unit of measurement in a form or report is controlled by its metric property. The default metric for forms is
"characters", and for reports it’s "twips".

See also expandable, left, move(), top, width

helpFile
Identifies a Windows Help file (.HLP) that contains context-sensitive Help topics.

Property of Most form objects.
Form objects 525

helpId
Description Use helpFile in combination with helpId to provide context-sensitive help from a Windows Help file. Context-
sensitive help appears for the object that has focus when the user presses F1, or chooses Help | Context
Sensitive Help from the default menu.

After creating the Windows Help file, follow these steps:

1 Assign the name of the Help file to the form’s helpFile property. This assigns the default Help file for all
help topics.

2 Assign a context ID or index string for the form’s default Help topic to the form’s helpId property.

3 For individual controls that have their own help, assign the appropriate value to the control’s helpId property.

4 If an individual control has a topic in a different Help file, assign that file to the control’s helpFile property.
Warning If you assign the F1 key as the shortCut key to your own menu item, pressing F1 executes the onClick for that

menu item; it does not display context-sensitive help. Context-sensitive help is also disabled if you assign an
onHelp event handler.

See also helpId, onHelp

helpId
Specifies the Help context ID or index entry for an object.

Property of Most form objects

Description Use helpId in combination with helpFile to assign context-sensitive help to a control. Context-sensitive help
appears for the object that has focus when the user presses F1, or chooses Help | Context Sensitive Help from
the default menu.

Warning If you assign the F1 key as the shortCut key to your own menu item, pressing F1 executes the onClick for that
menu item; it does not display context-sensitive help. Context-sensitive help is also disabled if you assign an
onHelp event handler.

The helpId is a string that contains either:

• A context ID number, preceded by the “#” symbol, for example:
#2002

Choosing help displays the topic with that context ID number. If that context ID is not found, Help displays
an error.

• A help index string, for example
Deleting accounts

Choosing help searches the index for that string. If only one topic is found that uses that index string, it is
displayed. If there are multiple matches, Help displays a Topics Found dialog, letting the user choose which
topic to view. If the string is not found in the index, the Help index is displayed, with the helpId property as
the current search value.

As with helpFile, you may set a default helpId in the form. If the control that has focus does not have its own
helpId property, the form’s value is used.

See also helpFile, onHelp

hScrollBar
Determines when an object has a horizontal scroll bar.

Property of Grid
526 dBL Language Reference

hWnd
Description The hScrollBar property determines when and if a control displays a horizontal scrollbar. It may have any of
four settings:

Value Description
0 (Off) The object never has a horizontal scroll bar.
1 (On) The object always has a horizontal scroll bar.
2 (Auto) Displays a horizontal scroll bar only when needed.
3 (Disabled) The horizontal scroll bar is visible but not usable.

See also vScrollBar

hWnd
The Windows object handle for the form object.

Property of Most form objects

Description Use hWnd when you need to pass the handle of an form object to a Windows API function or other external
DLL.

hWnd vs hWndClient
hWndClient is the handle for the parent window that contains a form’s controls. In contrast, hWnd is the handle for the form
itself; the parent of the hWndClient window, and the grandparent of the controls.

The hWnd property is read-only.

See also EXTERN, hWndClient

hWndClient
The Windows object handle of the window that contains a form’s controls.

Property of Form, SubForm

Description hWndClient is the handle for the parent window that contains a form’s controls. In contrast, hWnd is the handle
for the form itself; the parent of the hWndClient window, and the grandparent of the controls.

See also hWnd

hWndParent
For a non-mdi form (a form with form.mdi = false), the hWndParent property can be used in conjunction with
the showTaskBarButton property to determine, or specify, the hWnd property for the parent window of a form.

Property of Form

Description When a form’s showTaskBarButton property is set to false, calling the form's open() method will cause its
hWndParent property to be set to the hWnd property of a hidden parent window.

Windows will not create a Taskbar button for a window if it has a parent window associated with it.

Alternatively, before opening a non-mdi form, you can set the hWndParent property to an open forms' hWnd
property. If you also set the showTaskBarButton property to false, the specified hWndParent will be assigned as
the parent window for the non-mdi form when that form is opened.

Switching between dBASE Plus, or a dBASE Application, and other Windows programs

When running a non-modal and non-mdi form, you must set the form's hWndParent property to the appropriate
parent hWnd (ex. _app.frameWin.hWnd), during the form's open() method, to ensure the form will always stay
on top when switching between dBASE Plus, or a dBASE Application, and other Windows programs.

Example To open a main non-mdi form that has a Window's taskbar button;
Form objects 527

icon
f = new form()
f.mdi = false
f.open()

To open a child non-mdi form that does not have a Window's taskbar button;
c = new form()
c.mdi = false
c.hWndParent = f.hWnd
c.showTaskBarButton = false
c.open() // or c.readModal()

See also hWnd, hWndClient, showTaskBarButton

icon
Specifies an icon file (.ICO) or resource that displays when a form is minimized.

Property of Form, SubForm

Description Use icon to specify an image to be used when a form is minimized. The icon property is a string that can take
one of two forms:

• RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

• FILENAME <filename>
specifies an .ICO file.

See also minimize, windowState

ID
Identifies an object with a numeric value.

Property of Most form components

Description Use ID to give a unique supplementary identifier to an object.

In most cases, you use an object’s name or compare object references directly to determine the identity of an
object. ID is used primary with the the onSelection event, which is an antiquated and rarely-used event.

The ID property defaults to -1.

See also onSelection

image
Image displayed between checkbox and text label when a tree item does not have focus.

Property of TreeItem, TreeView

Description The tree view may display images to the left of the text label of each tree item. If the tree has checkboxes, the
image is displayed between the checkbox and the text label.

The image property of the TreeView object specifies the default icon image for all tree items when they do not
have focus. You may designate specific icons for each TreeItem object to override the default. Use the
selectedImage property to specify icons for when a tree item has focus. If any individual item in the tree has its
image or selectedImage property set, space is left in all tree items for an icon, even if they don’t have one.

The image property is a string that can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies an icon resource and the DLL file that holds it.

• FILENAME <filename>
specifies an ICO icon file.
528 dBL Language Reference

imageScaleToFont
See also imageScaleToFont, imageSize, selectedImage

imageScaleToFont
Whether tree item images automatically scale to match the text label font height.

Property of TreeView

Description When imageScaleToFont is true, the image, selectedImage, checkedImage, uncheckedImage, and default
checkbox images all scale to match the height of the text label font, controlled by the fontName and fontSize
properties.

See also checkedImage, image, imageSize, selectedImage, uncheckedImage

imageSize
The height of tree item images in pixels.

Property of TreeView

Description imageSize reflects the height of the image, selectedImage, checkedImage, uncheckedImage, and default
checkbox images in a tree view. You may assign a size if imageScaleToFont is false.

See also checkedImage, image, imageScaleToFont, selectedImage, uncheckedImage

imgPixelHeight
Returns an image's actual height in pixels.

Syntax <oRef>.imgPixelHeight

<oRef> A reference to an image object.

Property of Image

Description The imgPixelHeight property is readonly and returns the actual height of the image currently loaded into an
image object.

When no image is loaded into an image object, the imgPixelHeight property returns 0 (the default).

The imgPixelHeight property can be used with the imgPixelWidth property to retrieve the actual size of an
image in pixels.

The image object's height and width properties can then be set to display the image at its actual size without
either clipping part of the image or scaling the image to fit the image object.

See also imgPixelWidth

imgPixelWidth
Returns an image's actual width pixels.

Syntax <oRef>.imgPixelWidth

<oRef> A reference to an image object.

Property of Image

Description The imgPixelWidth property is readonly and returns the actual width of the image currently loaded into an
image object.

When no image is loaded into an image object, the imgPixelWidth property returns 0 (the default).
Form objects 529

indent
The imgPixelWidth property can be used with the imgPixelHeight property to retrieve the actual size of an
image in pixels.

The image object's height and width properties can then be set to display the image at its actual size without
either clipping part of the image or scaling the image to fit the image object.

See also imgPixelHeight

indent
The horizontal indent, in pixels, for each level of tree items.

Property of TreeView

Description The indent property reflects the amount of indent, in pixels, for each level of tree items, as indicated by the tree
item’s level property. Note that indentation at the root level is also affected by branch lines at the root, which are
controlled by the hasLines and linesAtRoot properties.

See also hasLines, level, linesAtRoot

inDesign
Whether the object was instantiated normally or by a visual designer.

Property of Form, Report, SubForm

Description The Form and Report designers create a special instance of the form or report when designing them. Some
actions that occur when the form or report is executed also take place when it is designed, such as the activation
of queries. However, other things are missing; the Header is not executed and parameters that are usually passed
are not present.

The inDesign property is true when the object was created for design instead of execution. Use it to take
shortcut actions to allow the design of the object without error.

See also onDesignOpen

integralHeight
Whether a partial row at the bottom of the grid is displayed.

Property of Grid

Description Set integralHeight to true to show complete rows only. If true and the row at the bottom of the grid is clipped,
the entire row is hidden. When false (the default), the partial row is shown.

See also cellHeight

isRecordChanged()
Returns a logical value that indicates whether data in the current record buffer has been modified.

Syntax <oRef>.isRecordChanged(<keystroke expC>)

<oRef> An object reference to the form.

Property of Form, SubForm

Description Use isRecordChanged() for form-based data handling with tables in work areas. When using the data objects,
isRecordChanged() has no effect; check the rowset’s modified property instead.

Form-based data buffering lets you manage the editing of existing records and the appending of new records.
Editing changes to the current record are not written to the table until there is navigation off the record, or until
530 dBL Language Reference

key
saveRecord() is called. Each work area has its own separate edit buffer. isRecordChanged() returns true if the
any fields in the currently selected work area have changed; otherwise it returns false.

Example The following example shows the onClick event handler for a Cancel button. It checks if any changes have been
made to the current record. If there has, it asks for confirmation before abandoning the changes.

function cancelButton_onClick()
 if form.isRecordChanged()
 if msgbox("Are you sure you want to lose these changes?", "Cancel", 4+32) # 6
 return // Did not choose Yes, don't cancel (or anything else)
 endif
 else
 form.abandonRecord()
 endif

See also abandonRecord(), beginAppend(), saveRecord()

key
Event fired when the user types a keystroke in a control; return value may alter or cancel the keystroke.

Parameters <char expN> The ASCII value of the character typed.

<position expN> The position of the new character in the string.

<shift expL> Whether the Shift key was down.

<ctrl expL> Whether the Ctrl key was down.

Property of ComboBox, Editor, Entryfield, ListBox, SpinBox

Description Use key to evaluate and possibly modify each character that the user enters in a control, or to perform some
action for each keystroke.

The key event handler must return a numeric or a logical value. A numeric value is interpreted as the ASCII
code of a character, which automatically replaces the character input by the user. A logical value is interpreted
as a decision to accept or reject the character input by the user.

Keystrokes simulated by a control’s keyboard() method will fire the key event, as will the KEYBOARD
command when the control has focus.

Note: You cannot trap all keystroke combinations with key. Many Alt+ and Ctrl+ key combinations are reserved for
menu and operating system commands, such as Ctrl+X and Ctrl+V for standard Windows cut-and-paste,
Alt+F4 to close the application window, etc. These and other common shortcut key combinations will not cause
a control’s key event to fire.

See also keyboard(), KEYBOARD, onKey, picture

keyboard()
Stuffs a character string into an edit control, simulating typed user input.

Syntax <oRef>.keyboard(<keystroke expC>)

<oRef> The control to receive the keystrokes.

<keystroke expC> A string, which may include key codes.

Property of Browse, ComboBox, Editor, Entryfield, SpinBox

Description Use keyboard() when you want to simulate typing keystrokes into a control. The control does not have to be the
one that has focus.

Note If you want to set a value in a control, it’s better to assign the value property directly.
Form objects 531

lastRow()
Use curly braces (“{ }”), enclosed by quotation marks, in <keystroke expC> to indicate cursor keys or characters
by ASCII code. The following key labels may be used inside the curly braces:

Alt+0 through Alt+9 Ctrl+LeftArrow Enter RightArrow
Alt+A through Alt+Z Ctrl+PgDn Esc Shift+F1 through Shift+F9
Backspace Ctrl+PgUp F1 through F12 Space or Spacebar
Backtab Ctrl+RightArrow Home Shift+Tab
Ctrl+A through Ctrl+Z Ctrl+Tab Ins Tab
Ctrl+End Del LeftArrow UpArrow
Ctrl+F1 through Ctrl+F10 DnArrow PgDn
Ctrl+Home End PgUp

You may specify a character by its ASCII code by enclosing the value in the curly braces. If the value inside the
curly braces is not a recognized key label or ASCII value, the curly braces and whatever is between them are
ignored.

Calling keyboard() immediately fires the control’s key event, if any. In contrast, the KEYBOARD command
stuffs keystrokes in the main typeahead buffer. The control that has focus then picks up the keys from the
typeahead buffer as usual.

See also key, KEYBOARD (page 16-617)

lastRow()
Returns a bookmark for the row currently displayed in the last row of the grid.

Syntax <oRef>.lastRow()

<oRef> A reference to a grid object.

Property of Grid

Description Calling the lastRow() method returns a bookmark to the row currently displayed on the grid's last, or bottom,
row. Note that if the grid's integralHeight property is set to false, the last row may be partly, or mostly, hidden
by the bottom border of the grid.

If the grid is not datalinked to any rowset, the lastRow() method returns null.

See Also firstRow()

left
The position of the left edge of an object relative to its container.

Property of Form, SubForm and all form contained objects.

Description The unit of measurement in a form or report is controlled by its metric property. The default metric for forms is
characters, and for reports it’s twips.

See also height, move(), right, top, width

level
The tree level of the item.

Property of TreeItem

Description The tree item’s read-only level property cotains the nesting level of the item. The top level in the tree is level
number one.

See also firstChild, noOfChildren
532 dBL Language Reference

lineNo
lineNo
The current line in an Editor object.

Property of Editor

Description Use lineNo to move the cursor to a specified line in an Editor object, or to determine what line the cursor is on.

When you set lineNo, the cursor moves to the beginning of the specified line.

See also columnNo, wrap

linesAtRoot
Whether a line connects the tree items at the first level.

Property of TreeView

Description Set linesAtRoot to false to disable the connecting branch lines at the first level of the tree. To disable all branch
lines, set hasLines to false.

See also hasLines

linkFileName
Identifies which OLE document file (if any) is linked with the current OLE field when that field is displayed in an
OLE viewer.

Property of OLE

Description Use linkFileName to identify which OLE document file is linked with the current OLE field when that field is
displayed in an OLE viewer. linkFileName is a read-only property.

See also OLEType, serverName

loadChildren()
Loads and instantiates TreeItems from a text file.

Syntax <oRef>.loadChildren(<expC>)

<oRef> The TreeView object to contain the TreeItems.

<expC> The name of the file containing the TreeItem objects and properties.

Description Use loadChildren() to load TreeItem object definitions and properties from a text file, and instantiate them as
the children of an existing TreeView object. The file containing the TreeItems may have been created in a text
editor, or by any TreeView object’s streamChildren() method.

loadChildren() releases all existing child TreeItems in the TreeView and replaces them with the TreeItems in
the text file.

See also TreeView, TreeItem, streamChildren()

lockedColumns
The number of columns that remain locked on the left side of the grid as it is scrolled horizontally.

Property of Browse, Grid

Description The lockedColumns property specifies the number of contiguous columns on the left side of the grid that do not
move when you are scrolling the grid. The number must be between zero and the number of columns in the grid.
Form objects 533

maximize
When the grid is scrolled horizontally, the number of columns you locked will remain displayed in the same
position. Note that if you allow column moving, the user can rearrange the columns; whatever columns end up
on the left are locked.

Set lockedColumns to zero to unlock all columns.

Any change in the lockedColumns property will reset the firstColumn property to one.

See also allowColumnMoving, firstColumn, frozenColumn

maximize
Determines if a form can be maximized when it’s not MDI.

Property of Form, SubForm

Description Set maximize to false to disable the maximize icon and the Maximize option in the system menu. You must set
maximize before you open the form. If both maximize and minimize are false, their icons do not appear in the
title bar. If either one is true, they both appear, with one of them disabled.

minimize has no effect unless the form’s MDI property is false; if it is true, the form follows the MDI
specification and has its maximize icon enabled.

See also MDI, minimize, moveable, sizeable, sysMenu

maxLength
Specifies the maximum number of characters allowed in an entryfield.

Property of Entryfield

Description When an Entryfield control is dataLinked to a field, the control automatically reads the length of the field into
its maxLength property to set the maximum number of characters allowed.

You may set maxLength manually to override this setting, or when using an entryfield that is not dataLinked to
a field. If you set the maxLength longer than the field, the entry is allowed, but the field value will be truncated
when the value is stored in the table.

See also picture

MDI
Determines if a form conforms to the Multiple Document Interface (MDI) standard.

Property of Form

Description MDI is a Windows specification for opening multiple document windows within the application window. Most
word processors are MDI applications. In dBASE Plus, all windows are forms. MDI forms have the following
characteristics:

• Like application windows, they are moveable and sizeable.

• They are listed on the Windows menu of the application.

• They have a a title bar, and in that title bar are the system menu, minimize, maximize, and close icons.

• When one MDI form is maximized, all other MDI forms in the same application are maximized.

• When they are active, their menus replace the menus in the main menu bar.

• They cannot be modal.

• The shortcut keystroke to close the form is Ctrl+F4.

The opposite of MDI is SDI (Single Document Interface), where each document is in its own application
window. The Windows Explorer is an SDI application. SDI forms have the following features:
534 dBL Language Reference

memoEditor
• They each have complete control over their appearance; whether they are movable, sizeable, have a title bar,
or any control icons enabled.

• Each form is listed separately in the Windows Taskbar.

• Their menus appear in the form.

• They can be modeless or modal.

• They can be set to always display on top of other windows, or appear as palette windows.

• The shortcut keystroke to close the form is Alt+F4.

A form’s MDI property determines whether a form is MDI or SDI. When MDI is true, the following properties
are ignored:

• maximize
• minimize
• moveable
• sizeable
• smallTitle
• sysMenu
• topMost

Those properties default to the corresponding values for an MDI form.

Because an MDI form cannot be modal, you cannot open an MDI form with the readModal() method.

See also maximize, minimize, moveable, sizeable, smallTitle, sysMenu, topMost

memoEditor
A reference to a control’s memo editor object.

Property of Entryfield

Description When editing a memo field with a dataLinked entryfield, you may open an Editor object in another form by
double-clicking the entryfield, or by calling the entryfield’s showMemoEditor() method.

When the editor is open, the entryfield’s memoEditor property contains a reference to that Editor object. You
may use the memoEditor property to manipulate the editor, or close the form that contains it. The memo editor
is a standard Editor object, anchored to a form, so the form is the memoEditor object’s form and parent object.

See also showMemoEditor()

menuFile
Assigns a menubar to a form.

Property of Form

Description Use menuFile to designate the menu that is displayed when the form has focus. If a form’s menuFile property is
empty, a default menu is displayed when the form has focus.

Menubars created by the Menu designer are stored in .MNU files, which is the default extension for file names
assigned to menuFile. Assigning a file to menuFile executes the named file with the form as the parameter. The
default bootstrap code for a .MNU file creates a menu named root as a child of the form. The file assigned to
menuFile is automatically loaded as a procedure file. The procedure file’s reference count is decremented when
the form is released; if that was the last form that used that menu file, it is automatically unloaded.

See also class MenuBar (page 16-597), popupMenu

metric
The units of measurement for the position and size of an object.
Form objects 535

minimize
Property of All form objects.

Description metric is an enumerated property that can have the following values:

Value Description
0 Chars (default)
1 Twips
2 Points
3 Inches
4 Centimeters
5 Millimeters
6 Pixels

The Chars metric is based on the average height and width for characters in a specific base font. The base font is
set through the form’s scaleFontBold, scaleFontName, and scaleFontSize properties.

All position and size properties such as top, left, height, and width are expressed in the form’s current metric
units. The form’s metric cannot be changed once the form is opened. If the form is closed, changing the metric
scales the position and size properties of all the components on the form.

When a control is saved as a custom control, the metric of the form is saved with the control definition. This
way, when the control is dropped on another form, assigning the original metric of the control will resize the
control appropriately on the new form.

See also scaleFontBold, scaleFontName, scaleFontSize

minimize
Determines if a form can be minimized when it’s not MDI.

Property of Form, SubForm

Description Set minimize to false to disable the minimize icon and the Minimize option in the system menu. The form can
still be minimized in other ways, such as choosing Minimize All Windows from the context menu of the
Windows Taskbar. You must set minimize before you open the form. If both maximize and minimize are false,
their icons do not appear in the title bar. If either one is true, they both appear, with one of them disabled.

minimize has no effect unless the form’s MDI property is false; if it is true, the form follows the MDI
specification and has its minimize icon enabled.

See also maximize, MDI, moveable, sizeable, sysMenu

modify
Determines if the user can alter data in a Browse or Editor object.

Property of Browse, Editor

Description Set modify to false when you want to make a control read-only.

See also append

mousePointer
Changes the appearance of the mouse pointer.

Property of Most form objects

Description Use mousePointer to provide a visual cue when the user moves the mouse pointer over an object. For example,
one pointer style might mean an object is disabled, while another pointer style might mean the object is ready
for input.
536 dBL Language Reference

move ()
You can specify the following settings for mousePointer:

0
(Default)

N/A 7 (Size S)

1 (Arrow) 8 (Size
NWSE)

2 (Cross) 9 (Size E)

3 (I-
Beam)

 10 (UpArrow)

4 (Icon) 11 (Wait)

5 (Size) 12 (No)

6 (Size
NESW)

 13 (Hand)

See also onMouseMove, speedTip

move ()
Repositions and resizes an object.

Syntax <oRef>.move(<left expN> [, <top expN> [, <width expN> [, <height expN>]]])

<oRef> The object to move or resize.

<left expN> The new left property.

<top expN> The new top property.

<width expN> The new width property. To change the size of the image, you must specify both the <left
expN> and the <top expN>.

<height expN> The new height property.

Property of Most form objects

Description Use move() to reposition and/or resize an object in one step. You could assign the four properties directly, but
doing so would require four separate steps, and the object would have to be moved and/or resized after each
step. Using move() is faster.

If you want to resize the object without moving it, pass the current left and top properties as parameters to
move(), along with the new width and height.

If you’re using move() to resize an image, the object’s alignment property should be set to either Stretch (0) or
Keep Aspect Stretch (3).

Example The following are two onClick event handlers for buttons that zoom and unzoom a bitmap image.
function zoomButton_onClick()
 with form.mapImage
 move(left, top, 60, 20)
 endwith

function unzoomButton_onClick()
 with form.mapImage
 move(left, top, 30, 10)
 endwith

See also alignment, height, left, onMove, top, width

moveable
Determines if a form can be moved when it’s not MDI.
Form objects 537

multiple
Property of Form, SubForm

Description Set moveable to false to prevent the form from being moved in the usual manner. Dragging the title bar has no
effect, and the Move option in the system menu is disabled. However, if sizeable is true, you can move the
edges of the form and in-effect move the form.

sizeable has no effect unless the form’s MDI property is false; if it is true, the form follows the MDI
specification and is always resizeable.

See also MDI, onMove, sizeable, sysMenu

multiple
Specifies whether a ListBox object allows selection of more than one item at a time, or whether a NoteBook object
can have more than one row of tabs.

Property of ListBox, NoteBook

Description Set multiple to true if you want to allow the selection of more than one item at one time in a ListBox object. The
selections—whether there’s one, many, or none—are returned by the ListBox object’s selected() method.

If a NoteBook object’s multiple property is false, all its tabs are displayed in a single row. If there are more tabs
than will fit in the width of the notebook, scroll arrows appear. If you set multiple to true, the tabs are stacked,
taking up as many rows as needed, decreasing that amount of space below the tabs. The notebook’s visualStyle
property has more effect when multiple is true.

See also selected(), visualStyle

multiSelect
Whether multiple rows are visually selected.

Property of Grid

Description multiSelect is like rowSelect, except that you can select multiple rows. Use the selected() method to get the
bookmarks for the rows that have been selected.

See also rowSelect, selected()

name
The name of the form property that is used to refer to a component.

Property of All form components

Description A component’s name property reflects the name of the property of the form that is used to refer to the
component.

For example, if pushing one button makes another button visible, the code looks like this:
function oneButton_onClick()
 form.anotherButton.visible = true

In oneButton’s event handler, form refers to the form that contains the button, and anotherButton is a property of
the form that contains an object reference to the PushButton object anotherButton.

When the form was created in the Form designer, the name property of the PushButton object was set to
anotherButton. When the form is saved into a .WFM file, the resulting code for the button looks like this:

this.anotherButton = new PushButton(this)
with (this.anotherButton)
 left = 10
 top = 0
 width = 8
endwith
538 dBL Language Reference

nativeObject
The name of the button is never assigned to the name property. Instead, the name of the button is determined by
the name of the form property that contains the reference to the object. This is true for any form component that
has a name property.

To change the name of a component in the .WFM file, change the name of the property in the initial assignment
statement and the WITH statement below it.

When you read a component’s name property, dBASE Plus returns the name of the property that the
component’s parent (the form unless the component is in a Container or NoteBook object) uses to refer to the
object. The name is always all-uppercase.

If you assign a value to a component’s name property, you actually change the name of the form property that
contains the component’s object reference. While this is allowed, there aren’t many reasons you would want to
do that—avoid it.

See also elements, form, ID, parent

nativeObject
The object that contains the native properties, events, and methods of the ActiveX control.

Property of ActiveX

Description An ActiveX object’s nativeObject property contains a reference to an object that contains the properties, events,
and methods, of the actual ActiveX control. Placing the native properties in a separate object prevents name
conflicts between the properties of the dBASE Plus ActiveX object, and any ActiveX control it represents.

The nativeObject object is empty until the classId property is set.

Example Suppose the ActiveX control on your form has a Launch() method. This method is called through the
nativeObject property; for example:

function launchButton_onClick()
 form.someActiveX.nativeObject.Launch()

See also classId

nextObj
The object that is going to get focus during a focus change.

Property of Form, SubForm

Description nextObj contains a reference to the control that is going to get focus during a focus change, for example when
you click on another control or press Tab or Shift+Tab. If no focus change is pending, nextObj is null.

Example Use nextObj in valid event handlers to determine if validation is needed before moving to the other control. For
example, the following event handler determines if the selected control is a Cancel button:

function somedata_valid()
 if form.nextObj == form.cancelButton
 return true // Don't bother with validation code
 else
 // Validate as usual
 endif

Note that this approach only works if the Cancel button is not the next button in the tab order. Otherwise
pressing Tab would make nextObj the Cancel button, but simply tabbing to that button doesn’t mean the user
will click it. In that case, you would want to validate the data. You can remove the Cancel button from the tab
order so that the user must click the button or press the accelerator key for the button, which would cancel the
form.

See also activeControl, before
Form objects 539

nextSibling
nextSibling
The next tree item with the same parent.

Property of TreeItem

Description The read-only nextSibling property contains an object reference to the next tree item (down) that has the same
parent. If the tree item is the last one, nextSibling is null.

Use nextSibling to loop forward through the items in a tree (or subtree).

Example See the example for firstChild which uses nextSibling to loop through all the items in a tree.

See also firstChild, noOfChildren, parent, prevSibling

noOfChildren
The number of child tree items.

Property of TreeItem

Description The read-only noOfChildren property contains the number of children a tree item has. It goes down one level
only; it does not count grandchildren.

See also firstChild, level, parent

OLEType
Returns a number that reveals whether an OLE field is empty, contains an embedded document, or contains a link to
a document file.

Property of OLE

Description Use OLEType to determine the state of an OLE field. It is a read-only property that may have one of the
following three values:

Value Description
0 Empty
1 Document link
2 Embedded document

See also linkFileName, serverName

onAppend
Event fired when a record is added to a table.

Parameters none

Property of Browse, Form, SubForm

Description The form’s (or browse’s) onAppend event is used mainly for form-based data handling with tables in work
areas. It also fires when the onAppend event of the form’s primary rowset fires.

Use onAppend to make your application respond each time the user adds a record. onAppend fires after the new
record is saved. If the record is saved because the user navigated to another record, onAppend fires after arriving
at the other record, before onNavigate.

onAppend will not work unless the form is open and has controls dataLinked to fields. For example, if you USE
a table, create and open an empty Form, assign an onAppend event handler, and APPEND BLANK, the
onAppend will not fire simply because the form is open.
540 dBL Language Reference

onCellPaint
See also onAppend, onChange, onNavigate

onAppend is also an event of the Rowset class (page 14-400).

onCellPaint
An event fired right after a grid cell is painted.

Parameters <bSelectedRow> bSelectedRow is true if the grid cell being painted is part of a selected row. Otherwise
bSelectedRow is false

Property of ColumnCheckBox, ColumnComboBox, ColumnEditor, ColumnEntryField, ColumnHeadingControl,
ColumnSpinBox

Description Use the onCellPaint event to change the settings of a GridColumn's editorControl or headingControl just after
the control is used to paint a grid cell.

The onCellPaint event should be used after a beforeCellPaint event has changed the properties of a
GridColumn's editorControlor headingControl. You must use the onCellPaint event to set the control back to
its prior state or to its default state. Otherwise, the changes made in the beforeCellPaint event will affect the
other cell's within the same grid column.
Using onCellPaint In order to use onCellPaint, a grid must be created with explicitly defined GridColumn
objects (accessible through the grid's columns property).

In an onCellPaint event handler, you can change an editorControl's or headingControl's properties based
(optionally) on the current value of the cell. Within onCellPaint, the current cell value is contained in this.value.
Initializing a Grid that uses onCellPaint When a form opens, a grid on the form is usually painted before the
code setting up any onCellPaint event handlers is executed. Therefore, you should call the grid's refresh()
method from grid’s onOpen event, or the form's onOpen event, to ensure the grid is painted correctly when the
form opens.

Warning The grid's painting logic is optimized to only load an editorControl's value when it needs to paint it, or give it
focus. This means the value loaded into other column's editorControls may not be from the same row as the one
used for the currently executing onCellPaint event. You should instead, therefore, use the values from the
appropriate rowset field objects in order to ensure you are using values from the correct row.

Example The following example shows the basic use of the onCellPaint event:
function column1_onCellPaint(bSelectedRow)

this.colorNormal = "" // reset to grid default colors
return

The following example shows the basic use of the beforeCellPaint event:
function column1_beforeCellPaint(bSelectedRow)

if this.value < 0
if.not.bSelectedRow

// Change grid cell color to red on white for a negative number.
this.colorNormal = "red/white"

endif

return

onChange
When the contents of the component have been changed.

Parameters none

Property of Many form objects

Description onChange fires when the user changes data, which includes the following actions:

• Inserts or removes a checkmark in a checkbox
• Selects a different RadioButton in the radiobutton group
Form objects 541

onChangeCommitted
• Selects a different item in a tree
• Changes a value in an entryfield
• Changes a value in the text box portion of a combo box or a spin box
• Clicks the spinner on a spinbox
• Moves the scroll thumb in a scrollbar object
• Changes a value in a field and moves to another row in a browse

The onChange event of an OLE object fires each time the record pointer moves from one record to another. The
onChange event of a form fires after moving to another record, if the previous record was changed, but only if
the form is open and has controls dataLinked to fields.

Example The following onChange event handler for a radiobutton sets the wrap property of an editor control on the same
form to match:

function wrapCheckbox_onChange()
 form.editor1.wrap := this.value

In this example, three radiobuttons, whose text properties happen to match the names of the index tags of the
current table, use the same onChange event handler. When a different radiobutton is selected, onChange fires
twice: once for the radiobutton that was deselected, and once for the button that is selected. The value of the
radiobutton is checked to set the index for the radiobutton that was clicked.

function indexRadios_onChange
 if this.value
 set order to (this.text)
 endif

See also valid

onChange is also an event of the Field class (page 14-401).

onChangeCommitted
Fires when the user takes an action to unambiguously choose an item from the list

Parameters none

Property of columnComboBox, Combobox

Description onChangeCommitted will fire in the following cases:

• Left click on an item in the listbox (all styles) when the item is different from the current ComboBox value.

• Press Enter with an item highlighted in the dropdown list for a style 1 or 2 ComboBox (or a style 0 or 1
columnComboBox) when the item is different from the current ComboBox value.

• For style 0 or for style 1 or 2 ComboBox (with the dropdown list closed) (or a style 0 or 1
columnComboBox), press the Up Arrow, Down Arrow, PgUp, or PgDn keys.

• Left click on the ComboBox button for a style 1 or 2 ComboBox (or a style 0 or 1 columnComboBox) when
the dropdown list is open and the highlighted item in the dropdown list is different from the current
ComboBox value.

onChangeCommitted() will not fire for a style 1 or 2 ComboBox (or a style 0 or 1 columnComboBox) when the
dropdown list is open and the Up Arrow, Down Arrow, PgUp, or PgDn keys are pressed. (Note that this is
different from the onChange() event which does fire in these cases).

onChangeCommitted() fires only after the ComboBox's value property has been updated with the selected
value.

When the dropdown list closes, either onChangeCommitted will fire or onChangeCancel will fire, not both.

onChangeCancel
Fires when the user takes an action that closes the dropdown list without choosing an item from the list for a
style 1 or 2 combobox (or a style 0 or 1 columnComboBox)
542 dBL Language Reference

onChar
Parameters none

Property of columnComboBox, Combobox

Description onChangeCancel fires when the dropdown list closes in the following situations:

• When the user left clicks the mouse anywhere except on the dropdown list window or the combobox
dropdown button

• When the user presses the tab key or escape key while the dropdown list is open

• When the user left clicks on the Close button for the form containing the combobox

onChangeCancel can be used to detect that the user has closed the dropdown list without clearly and
unambiguously choosing an item from the list. In some situations it may be necessary to detect this and,
possibly, set the combobox value back to a previous value since the current combobox value may have been
changed due to the user navigating through the dropdown list.

When the dropdown list closes, either onChangeCancel will fire or onChangeCommitted will fire, not both.

onChar
Event fired when a “printable” key or key combination is pressed while the control has focus.

Parameters <char expN> The ASCII code of the key or key combination

<repeat count expN> The number of times the keystroke is repeated based on how long the key is held
down.

<key data expN> A double-byte value that contains information about the key released, stored in separate
bit fields. The bits of this parameter contain the following information:

Bit
numbers Description

0–7 Keyboard scan code (OEM dependent)
8 Extended key (1 if true) such as right Alt and Ctrl, and numbers on numeric keypad

9–12 Reserved
13 Context code: 1 if Alt was pressed during keystroke
14 Previous key state: 1 if key was held down
15 Transition state: 1 if key is being released, 0 if key is pressed (usually 0)

Property of PaintBox

Description If you have created a PaintBox object to develop a custom edit control, use onChar to do something when the
object has focus and the user presses a key; that is, when they type a normal character.

onChar is similar to onKeyDown. However, onChar doesn’t fire for non-printable keys, such Caps Lock, while
onKeyDown fires for any key pressed.

See also onKeyDown, onKeyUp

onCheckBoxClick
Event fired after a checkbox in a tree item is clicked.

Parameters none

Property of TreeView

Description onCheckBoxClick fires after the user has clicked a tree item’s checkbox. Check the checked property of the
tree’s currently selected tree item to see whether the checkbox is now checked or not.

See also checkBoxes, checked
Form objects 543

onClick
onClick
After a button is clicked.

Parameters none

Property of Menu, PushButton

Description Use onClick to execute code when you click a button or choose a menu item.

Example The following onClick event handler for an Add button puts the form’s primary rowset in Append mode to
allow entry of a new row.

function newButton_onClick()
 form.rowset.beginAppend()

The onClick of a menu item often executes a method of the form. In this example, a menu item calls the onClick
event handler of the equivalent button on the form.

function addMenu_onClick()
 form.newButton.onClick()

This example demonstrates a Next Page button in a report.
function nextPageButton_onClick()
 form.endPage := ++form.startPage
 form.render()

See also onChange

onClose
After the form has been closed.

Parameters none

Property of Form, OLE, PaintBox, SubForm

Description Use onClose to perform any extra manual cleanup, if necessary, when you close a form or report. Normally,
dBASE Plus automatically discards anything in the form when you close it. You might use onClose if you
created an object in the onOpen that you did not bind to the form or report.

Before executing the onClose event handler, dBASE Plus does the following:

1 Executes the canClose event handler (if any) of the form. If it returns false, the form does not close; nothing
further happens.

2 Executes the valid event handler (if any) of the object that currently has input focus. If it returns a value of
false, the form does not close; nothing further happens.

3 Executes the onLostFocus event handler (if any) of the object that currently has input focus.

4 Executes the onLostFocus event handler (if any) of the form.

The onClose events of an OLE control executes when the parent form is closed, after the onClose of that form.

See also close(), onOpen

onClose is also an event of the Query and StoredProc classes (page 14-401).

onDesignOpen
After a form or component is loaded in the Form designer.

Parameters <from palette expL> Whether the component was added from the palette. If true, the component has just
been created. If false, the component has been reloaded into the Form designer (when editing an existing form).

Property of All form objects.
544 dBL Language Reference

onDragBegin
Description Use onDesignOpen to execute code whenever a form or component is loaded into the Form Designer, either
when it is first created (for components only), or when it is subsequently loaded into the Form Designer.

onDragBegin
For Drag&Drop operations; when a drag operation actually begins.

Parameters (none)

Property of Many Form objects

Description Use onDragBegin to perform actions when a drag operation commences for a Drop Source object.

The onDragBegin event only fires when the Drag&Drop operation was initiated by the Drop Source object’s
drag() method.

See also drag(), dragEffect

onDragEnter
For Drag&Drop operations; when the mouse enters the display area of an active Drop Target object.

Parameters <nLeft expN> The entry position of the mouse pointer relative to the left edge of the Drop Target object.
<nTop expN> The entry position of the mouse pointer relative to the top edge of the Drop Target object.
<cType expC> A character or string, typically identifying the dragged object’s type.

<cName expC> A string, typically containing the name of an object or a file.

Property of Browse, Container, Form, Grid, Image, ListBox, NoteBook, PaintBox, ReportViewer, SubForm, TreeView

Description Use onDragEnter to perform actions when the mouse enters the display area of an active Drop Target during a
Drag&Drop operation.

A numeric value returned by the onDragEnter event handler determines whether a drop will be allowed, or may
change the type of drop operation. The permitted return values are:

Value Drop Effect
0 No drop permitted
1 (default) Drop permitted: Copy
2 Drop permitted: Move

If onDragEnter is not explicitly defined for a Drop Target object or no value is returned, a default value of 1 is
assumed.

Note onDragEnter is not invoked for files dragged from the dBASE Plus Navigator window.

Example In the following example, a ListBox onDragEnter is used to determine whether or not a drop will be allowed:
function LISTBOX1_onDragEnter(nLeft, nTop, cType, cName)

nReturn = 0 // Default is no drop
if cType == “F” // Test for file being dragged

try // (in case cName is not char)
if file(cName) // See if file exists

nReturn = 1 // Drop will be allowed
endIf

catch (Exception e)
// (Ignore error)

endTry
endIf
return nReturn

See also onDragLeave, onDragOver, allowDrop, drag()
Form objects 545

onDragLeave
onDragLeave
For Drag&Drop operations; when the mouse leaves an active Drop Target object’s display area without having
dropped anything.

Parameters (none)

Property of Browse, Container, Form, Grid, Image, ListBox, NoteBook, PaintBox, ReportViewer, SubForm, TreeView

Description Use onDragLeave to perform actions when the mouse leaves the display area of an active Drop Target object
during a Drag&Drop operation.

The onDragLeave event only fires when a drop was allowed, but not actually performed.

Note onDragLeave is not invoked for files dragged from the dBASE Plus Navigator window.

See also onDragEnter, onDragOver

onDragOver
For Drag&Drop operations; event fired while the mouse drags an object over an active Drop Target object’s display
area.

Parameters <nLeft expN> The position of the mouse relative to the left edge of the Drop Target object.
<nTop expN> The position of the mouse relative to the top edge of the Drop Target object.
<cType expC> A character or string, typically identifying the dragged object’s type.

<cName expC> A string, typically containing the name of an object or a file.

Property of Browse, Container, Form, Grid, Image, ListBox, NoteBook, PaintBox, ReportViewer, SubForm, TreeView

Description Use onDragOver to perform actions while an object is being dragged over the display area of an active Drop
Target object. This allows you to control whether or not the dragged object may be dropped at specific mouse
cursor locations.

A numeric value returned by the onDragOver event handler determines whether a drop is allowed, or may
change the type of drop operation allowed at the specified cursor position. The permitted return values are:

Value Drop Effect
0 No drop permitted
1 (default) Drop permitted: Copy
2 Drop permitted: Move

onDragOver will not be fired if the Drop Target’s onDragEnter event handler was invoked and returned zero
(no drop permitted).

If onDragOver is not explicitly defined for a Drop Target object or no value is returned, a default value of 1 is
assumed.

Note onDragOver is not invoked for files dragged from the dBASE Plus Navigator window.

See also onDragEnter, onDragLeave

onDrop
For Drag&Drop operations; when the mouse button is released over an active Drop Target object during a
Drag&Drop Copy operation.

Parameters <nLeft expN> •
• The position of the dropped object relative to the left edge of the Drop Target object.

• The editor's current columNo character position.

<nTop expN> •
546 dBL Language Reference

onDrop
• The position of the dropped object relative to the top edge of the Drop Target object

• The editor's current lineNo position.

<cType expC>
• A character or string, typically identifying the dropped object’s type.

• If a file is being dropped onto the editor, this parameter will contain an "F".

• If text is being dropped onto the editor, this parameter will contain a "T".

<cName expC>
• A string, typically containing the name of an object or a file.

• The filename or text being dropped onto the editor.

Property of Browse, Container, Editor, Form, Grid, Image, ListBox, NoteBook, PaintBox, ReportViewer, SubForm,
TreeView

Description Use onDrop to perform actions when the mouse button is released over an active Drop Target object during a
Drag&Drop Copy operation. The onDrop event does not fire for a Move operation.

When a Copy operation is initiated from a Drop Source’s drag() method, <cType expC> and <cName expC>
will contain the parameter strings passed by the method.

Files may be dragged from the dBASE Plus Navigator, or from any Windows® OLE Drag and Drop compliant
application. What is received in <cType expC> depends on which drag-initiating application is used (i.e.
Explorer, WinZip, etc.), but will usually be “F” for a file. <cName expC> will usually contain the filename.

When multiple files are selected and dragged, onDrop will fire multiple times in succession, once for each file
in the selected block.

Note: When files are dragged from the dBASE Plus Navigator window, the onDragEnter, onDragOver, and
onDragLeave events will not fire. However, these events will fire when files are dragged from OLE Windows
applications.

Note: Mouse button “Up” events are “consumed” by onDrop events. This prevents, for example, the firing of a Drop
Target object’s onLeftMouseUp event when the left mouse button is used for a Drag&Drop Copy operation. If
the drop fails, the onDrop must explicitly call the mouse button Up handler function.

The Editor class and onDrop
When FALSE is returned by onDrop, the drop will not occur.

When TRUE is returned by onDrop, and a file is being dropped, the file's contents will be inserted into the
editor starting at:

lineNo = nTop+1, columnNo = 1

When TRUE is returned by onDrop, and text is being dropped, the text will be inserted into the editor starting
at:

lineNo = nTop, columnNo = nLeft

Example The following illustrates the “drop” side of a Drag&Drop Copy operation between two TreeView objects (see
the drag() example). The Target’s onDrop expects cType to contain the class name “TreeView”, and cName to
contain the name of a text file produced by the Source TreeView’s streamChildren() method. If the parameters
are correct, the event calls loadChildren() to repopulate the Target TreeView from the text file.

If the drop fails and there is an onLeftMouseUp event handler, it is explicitly called.
function TREEVIEW1_onDrop(nLeft, nTop, cType, cName)
 local lReturn
 lReturn = false // Initialize return value
 if cType == this.className // Validate first parameter
 if file(cName) // Validate second parameter
 try // Trap potential errors
 this.loadChildren(cName) // Process
 delete file (cName) // Clean up
 lReturn = true // Return success
Form objects 547

onEditLabel
 catch (Exception e)
 msgBox(e.message, "Copy failed") // Some error, no drop
 endTry
 endIf
 endIf
 if not lReturn
 if type(“this.onLeftMouseUp“) == “FP”// Test for mouse Up event handler
 this.onLeftMouseUp() // “Fire” if present
 endIf
 endIf
 return lReturn

See also allowDrop, drag(), dragEffect, onDragBegin, onDragEnter, onDragLeave, onDragOver, onDrop

onEditLabel
Event fired after the text label in a tree item is edited; may optionally return a different label value to save.

Parameters <text expC> The not-yet-posted text label.

Property of TreeView

Description onEditLabel fires after the user has pressed Enter or clicked away to submit their label change.

If the onEditLabel event handler returns a character string, that string is saved as the text property of the tree
item instead of <text expC>. If the event handler returns any other type, or returns nothing, <text expC> is used
as-is.

Example The following onEditLabel event handler converts all labels to camel-case by converting the string to proper-
case and removing all spaces:

function TREEVIEW1_onEditLabel(text)
 local cRet
 cRet = proper(text)
 do while " " $ cRet
 cRet := stuff(cRet, at(" ", cRet), 1, "")
 enddo
 return cRet

See also allowEditLabels, canEditLabel

onEditPaint
For a style 0 or 1 combobox (or a style 0 columnComboBox), fires for each keystroke that modifies the value of
the combobox, just after the new value is displayed.

Parameters None

Property of ColumnComboBox, ComboBox

Description For a style 0 or 1 combobox (or a style 0 columnComboBox), fires for each keystroke that modifies the value of
the combobox, just after the new value is displayed.

onEditPaint fires just after displaying the new value for a ComboBox. It does not fire if the keystroke does not
modify the ComboBox.

onExpand
Event fired after a checkbox in a tree item is clicked.

Parameters <oItem> The TreeItem whose + or - has been clicked.

Property of TreeView
548 dBL Language Reference

onFormSize
Description The onExpand event fires after the user has expanded or collapsed a tree item’s subtree through the user
interface, usually by clicking the + or - icon. Check the expanded property of the tree’s currently selected tree
item to see whether the subtree is now expanded or not.

See also canExpand, hasButtons

onFormSize
Event fired whenever the parent form of a PaintBox object is resized.

Parameters none

Property of Grid, PaintBox

Description The onFormSize event fires whenever the parent form of a Grid or PaintBox object is resized, restored, or
maximized. This lets you reposition or resize the object based on the form’s new size. For example, you could
use onFormSize to implement behavior similar to the anchor property, keeping the bottom of the PaintBox
object positioned at the bottom of the form.

For PaintBox objects, the onFormSize event is similar to onPaint. However, onPaint is triggered when the
parent form is opened, or when items covering the paintbox object are moved away.

See also onPaint

onGotFocus
Event fired when a component gains focus.

Parameters none

Property of Form and all form components that get focus

Description onGotFocus fires whenever the form or component gains focus.

See also onLostFocus

onHelp
Event fired when the user presses F1 while an object has focus, instead of context-sensitive help.

Parameters none

Property of Most form objects

Description Use onHelp to override the built-in context-sensitive help system (based on the helpFile and helpId properties)
and execute your own code when the user presses F1. For example, you might use onHelp if you have not yet
written a Help file, if the help you want to give is very simple, or you want dBASE Plus to drive the help (as you
would with an an online assistant).

As with context-sensitive help, if you assign an onHelp event handler to a form, that is the default handler for all
the controls in the form. Each control may then have its own onHelp if necessary; otherwise, the form’s onHelp
is fired when the user presses F1.

See also helpFile, helpId

onKey
Event fired after a keypress has been processed for a control.

Parameters <char expN> The ASCII value of the key pressed, or the value returned by the key event.

<position expN> The current position of the cursor in the control.
Form objects 549

onKeyDown
<shift expL> Whether the Shift key was down.

<ctrl expL> Whether the Ctrl key was down.

Property of ComboBox, Editor, Entryfield, ListBox, SpinBox

Description Use onKey to evaluate the contents of a control, or to perform some action after each keystroke has been
processed either by the control’s key event, or the operating system.

Keystrokes simulated by a control’s keyboard() method will fire the onKey event, as will the KEYBOARD
command when the control has focus.

Note: You cannot trap all keystroke combinations with onKey. Many Alt+ and Ctrl+ key combinations are reserved
for menu and operating system commands, such as Ctrl+X and Ctrl+V for standard Windows cut-and-paste,
Alt+F4 to close the application window, etc. These and other common shortcut key combinations will not cause
a control’s onKey event to fire.

Example The following code uses the contents of an Entryfield to perform an indexed search in a form’s rowset after each
character is typed:

function LASTNAME_onKey(nChar, nPosition, bShift, bControl)
 form.rowset.findKey(upper(this.value))

See also key, keyboard(), KEYBOARD, picture

onKeyDown
Event fired when any key is pressed while the control has focus.

Parameters <virtual key expN> The Windows virtual-key code of the key released. For a list of virtual-key codes, see
the Win32 Programmer’s Reference (search for “Virtual-key Codes” in the index).

<repeat count expN> The number of times the keystroke is repeated based on how long the key is held
down.

<key data expN> A double-byte value that contains information about the key reelased, stored in separate
bits. The bits of this parameter contain the following information:

Bit
numbers Description

0–7 Keyboard scan code (OEM dependent)
8 Extended key (1 if true) such as right Alt and Ctrl, and numbers on numeric keypad

9–12 Reserved
13 Context code: always 0 for onKeyDown
14 Previous key state: 1 if key was held down
15 Transition state: always 0 for onKeyDown

Property of PaintBox

Description Use onKeyDown and onKeyUp for complete control of keystrokes while a PaintBox object has focus. Each key
is treated separately, with none of their normal relationships, and pressing and releasing the key are two separate
actions. For example, holding down Shift and pressing the A key is normally interpreted as a capital “A”. With
onKeyDown and onKeyUp:

• onKeyDown fires when the Shift is pressed
• onKeyDown continues to fire as the Shift is held down
• onKeyDown fires when the A is pressed
• onKeyDown continues to fire if the A is held down
• onKeyUp fires when the A is released
• Releasing a key stops the repeat action of onKeyDown for the Shift key
• onKeyUp fires when the Shift is released

To know that this was a capital “A”, you would have to keep track of the fact that the Shift key was down when
the A key was pressed.
550 dBL Language Reference

onKeyUp
A similar event, onChar is used when you want the PaintBox to respond to normal “printable” characters. For
example, onChar would fire just once, getting the ASCII code for the capital “A”. onKeyDown and onKeyUp
deal with Windows virtual-key codes, which are not the same as the key character value in many cases.

See also onChar, onKeyUp

onKeyUp
Event fired when any key is released while the control has focus.

Parameters <virtual key expN> The Windows virutal-key code of the key released. For a list of virtual-key codes, see
the Win32 Programmer’s Reference (search for “Virtual-key Codes” in the index).

<repeat count expN> The number of times the keystroke is repeated based on how long the key is held
down; always 1 for onKeyUp.

<key data expN> A double-byte value that contains information about the key reelased, stored in separate
bits. The bits of this parameter contain the following information:

Bit
numbers Description

0–7 Keyboard scan code (OEM dependent)
8 Extended key (1 if true) such as right Alt and Ctrl, and numbers on numeric keypad

9–12 Reserved
13 Context code: always 0 for onKeyUp
14 Previous key state: always 1 for onKeyUp
15 Transition state: always 1 for onKeyUp

Property of PaintBox

Description Use onKeyUp with onKeyDown for complete control of keystrokes while a PaintBox object has focus. For more
information, see onKeyDown.

See also onChar, onKeyDown

onLastPage
Event that fires right after the last page of a report has been rendered.

Parameters none

Property of reportViewer

Description The onLastPage event can be used to:

• Detect that a report's last page has been reached.
• Provide a place to insert code that would enable, or disable, the appropriate toolbar and menu options.

onLeftDblClick
Event fired when the user double-clicks a form or an object.

Parameters <flags expN> A single-byte value that tells you which other keys and mouse buttons were pressed when
the user double-clicked the button.

<col expN> The horizontal position of the mouse when the user double-clicked the button.

<row expN> The vertical position of the mouse when the user double-clicked the button.

Property of Most form objects
Form objects 551

onLeftMouseDown
Description Use onLeftDblClick to perform an action when the user double-clicks with the left mouse button.
onLeftDblClick can also trap Shift, Ctrl, middle mouse button, or right mouse button presses if they occur at the
same time the user double-clicks the button.

You can test the state of multiple keys that have been pressed simultaneously.The state of each of the three
mouse buttons and the Shift and Ctrl keys is stored in a separate bit in the <flags expN> parameter, as follows:

Bit number Flag for
0 Left mouse button
1 Right mouse button
2 Shift
3 Ctrl
4 Middle mouse button

To check if the key or button was down, use the BITSET() function with the <flags expN> as the first
parameter, and corresponding the bit number as the second parameter. BITSET() will return true if the key or
button was down, and false if it was not.

The <col expN> and <row expN> parameters contain values that are relative to the object that fired the event.
For example, the upper left corner of a button is always row 0, column 0, even if that button is in the bottom
corner of the form.

All other onLeft-, onRight-, and onMiddle- mouse events operate in the same way, and receive the same
parameters.

When you double-click a button, its button events fire in the following order:

1 mouse down
2 mouse up
3 mouse double click
4 mouse up

Example Suppose you have a secret function that you want to activate by double-clicking a Text object while holding
down the Shift, Ctrl, and right mouse button:

function someText_onLeftDblClick(flags, col, row)
 if bitset(flags, 1) and bitset(flags, 2) and bitset(flags, 3)
 // Do secret function
 endif

See also BITSET(), onLeftMouseDown, onLeftMouseUp, onMiddleDblClick, onRightDblClick

onLeftMouseDown
Event fired when the user presses the left mouse button while the pointer is over a form or an object.

Description Use onLeftMouseDown to perform an action when the user presses the left mouse button. Other than the
initiating action, this event is identical to onLeftDblClick.

See also drag(), onLeftDblClick, onLeftMouseUp, onMiddleMouseDown, onRightMouseDown

onLeftMouseUp
Event fired when the user releases the left mouse button while the pointer is over a form or an object.

Description Use onLeftMouseUp to perform an action when the user releases the left mouse button. Other than the initiating
action, this event is identical to onLeftDblClick.

See also onLeftDblClick, onLeftMouseDown, onMiddleMouseUp, onRightMouseUp
552 dBL Language Reference

onLostFocus
onLostFocus
Event that fires when a component loses focus.

Parameters none

Property of Form and all form components that get focus

Description onLostFocus fires whenever the component loses focus.

onLostFocus differs from valid, which specifies a condition that must evaluate to true before the object can lose
focus.

See also onChange, onGotFocus, valid

onMiddleDblClick
Event fired when the user double-clicks with the middle mouse button while the pointer is on a form or an object.

Description Use onMiddleDblClick to perform an action when the user double-clicks with the middle mouse button. Other
than the initiating action, this event is identical to onLeftDblClick.

See also onLeftDblClick, onMiddleMouseDown, onMiddleMouseUp, onRightDblClick

onMiddleMouseDown
Event fired when the user presses the middle mouse button while the pointer is over a form or an object.

Description Use onMiddleMouseDown to perform an action when the user presses the middle mouse button. Other than the
initiating action, this event is identical to onLeftDblClick.

See also onLeftDblClick, onLeftMouseDown, onMiddleMouseDown, onMiddleMouseUp, onRightMouseDown

onMiddleMouseUp
Event fired when the user releases the middle mouse button while the pointer is over a form or an object.

Description Use onMiddleMouseUp to perform an action when the user releases the middle mouse button. Other than the
initiating action, this event is identical to onLeftDblClick.

See also onLeftDblClick, onLeftMouseUp, onMiddleDblClick, onMiddleMouseDown, onRightMouseUp

onMouseMove
Event fired when the user moves the mouse over a form or control.

Parameters <flags expN> A single-byte value that tells you which keys and mouse buttons were pressed while the user
moved the mouse. You can interpret this value with the BITSET() function, which examines individual bits in
numeric values. For more information, see onLeftDblClick.

<col expN> The horizontal position of the mouse inside the bounds of the object.

<row expN> The vertical position of the mouse inside the bounds of the object.

Property of Most form objects

Description Use onMouseMove to perform actions when the user moves the mouse over an object. A control’s
onMouseMove fires when the mouse moves over that control. The form’s onMouseMove fires when the mouse
moves over an area of the form where there is no control.
Form objects 553

onMouseOut
The <col expN> and <row expN> parameters contain values that are relative to the object that fired the event.
For example, the upper left corner of a button is always row 0, column 0, even if that button is in the bottom
corner of the form.

Example The following onMouseMove event handler makes a button harder to click.
function PUSHBUTTON1_onMouseMove(flags, col, row)
 static jump = {|| 2 + rand() * 2}
 local nLeft, nTop
 // Calculate horizontal movement
 nLeft = this.left + jump() * sign(rand() - 0.5)
 if nLeft < 0
 nLeft = form.width - this.width - jump()
 elseif nLeft > form.width - this.width
 nLeft = jump()
 endif
 // Calculate vertical movement
 if row < this.height / 2
 nTop = this.top + jump() * row
 else
 nTop = this.top - jump() * (this.height - row)
 endif
 if nTop < 0
 nTop = form.height - this.height - jump()
 elseif nTop > form.height - this.height
 nTop = jump()
 endif
 this.move(nLeft, nTop)

See also onLeftDblClick, speedTip

onMouseOut
Event fired when the user moves a mouse from over a control, form or subform.

Parameters <flags expN> A single-byte value that tells you which other keys and mouse buttons were pressed when
the mouse was moved from over a control, form or subform.

<col expN> The horizontal position of the mouse when it was moved from over a control, form or subform.

<row expN> The vertical position of the mouse when it was moved from over a control, form or subform.

Property of All form objects, Form, Subform

Description Use onMouseOut to perform an action when the user moves a mouse from over a control, form or subform The
onMouseOut event can also trap Shift, Ctrl, middle mouse button, or right mouse button presses if they are
present at the time the user moved the mouse from over the form, subform or control.

You can test the state of multiple keys that have been pressed simultaneously. The state of each of the three
mouse buttons and the Shift and Ctrl keys is stored in a separate bit in the <flags expN> parameter, as follows:

Bit number Flag for
0 Left mouse button
1 Right mouse button
2 Shift
3 Ctrl
4 Middle mouse button

To check if the key or button was down, use the BITSET() function with the <flags expN> as the first
parameter, and corresponding the bit number as the second parameter. BITSET() will return true if the key or
button was down, and false if it was not.
554 dBL Language Reference

onMouseOver
The <col expN> and <row expN> parameters contain values that are relative to the object that fired the event.
For example, the upper left corner of a button is always row 0, column 0, even if that button is in the bottom
corner of the form.

onMouseOver
Event fired when the user moves a mouse over a control, form or subform.

Parameters <flags expN> A single-byte value that tells you which other keys and mouse buttons were pressed when
the mouse was moved over a control, form or subform.

<col expN> The horizontal position of the mouse when it was moved over a control, form or subform.

<row expN> The vertical position of the mouse when it was moved over a control, form or subform.

Property of All form objects, Form, Subform

Description Use onMouseOver to perform an action when the user moves a mouse over a control, form or subform The
onMouseOver event can also trap Shift, Ctrl, middle mouse button, or right mouse button presses if they are
present at the time the user moved the mouse over the form, subform or control.

You can test the state of multiple keys that have been pressed simultaneously. The state of each of the three
mouse buttons and the Shift and Ctrl keys is stored in a separate bit in the <flags expN> parameter, as follows:

Bit number Flag for
0 Left mouse button
1 Right mouse button
2 Shift
3 Ctrl
4 Middle mouse button

To check if the key or button was down, use the BITSET() function with the <flags expN> as the first
parameter, and corresponding the bit number as the second parameter. BITSET() will return true if the key or
button was down, and false if it was not.

The <col expN> and <row expN> parameters contain values that are relative to the object that fired the event.
For example, the upper left corner of a button is always row 0, column 0, even if that button is in the bottom
corner of the form.

onMove
Event fired after the user moves the form.

Parameters <left expN> The new horizontal position of the upper left corner of the form’s client area.

<top expN> The new vertical position of the upper left corner of the form’s client area.

Property of Form, SubForm

Description Use onMove to perform actions automatically when a form is moved.

The two parameters passed to the event handler indicate the new position of the client area of the form, the area
below the title bar and inside the edges of the form. To get the new position of the entire form, check the form’s
left and top properties directly.

See also onSize
Form objects 555

onNavigate
onNavigate
Event fired when the record pointer in a table in a work area is moved.

Parameters <workarea expN> The work area number where the navigation took place.

Property of Browse, Form, SubForm

Description The form’s (or browse’s) onNavigate event is used mainly for form-based data handling with tables in work
areas. It also fires when there is navigation in the form’s primary rowset.

Use onNavigate to make your application respond each time the user moves from one record to another.

When using tables in work areas, onNavigate will not fire unless the form is open and has controls dataLinked
to fields. For example, if you USE a table, create and open an empty Form, assign an onNavigate event handler,
and SKIP in the table, the onNavigate will not fire simply because the form is open.

When navigating in the form’s primary rowset, the form’s onNavigate fires after the rowset’s onNavigate, and
the <workrea expN> parameter is zero.

Example The following onNavigate event handler calls a custom form method called refreshUnlinked() method to
update components on the form that are not dataLinked directly to fields so that the components contain the
correct information as the user moves from record to record. It does this only if the navigation occurred in the
main work area, the one that’s usually selected; not in another work area that, for example, has a lookup table.

function Form_onNavigate(nWorkArea)
 if nWorkArea == workarea()
 form.refreshUnlinked()
 endif

For example, you might display the current record number in a Text component, which does not get
automatically updated.

function refreshUnlinked()
 form.recnoText.text := "" + recno() + "/" + reccount()

See also canNavigate, rowset

onNavigate is also an event of the Rowset class (page 14-402).

onOpen
After the form or component has been opened.

Parameters none

Property of All form objects.

Description onOpen events fire after a form has been opened by either open() or readmodal(). First the onOpen event for the
form or report fires, then the onOpen for each component, if one has been assigned. Use onOpen to set up items
in the form that cannot be set in the Form designer.

Example The following example is the onOpen event handler for the FISH.WFM form. It assigns the popup in FISH.POP
as the popup menu for the form. There is no way to set up a popup menu directly in the Form designer.

function Form_onOpen
 set procedure to FISH.POP additive
 this.popupMenu := new fishPopup(this,"POPUP")

In this example, a CheckBox control toggles the wrap property of an editor on the same form. It reads the wrap
property of the editor when the form is opened. This way, the two properties are in sync, and you don’t have to
set the checkbox’s value property whenever you change the editor’s wrap property.

function wrapCheckbox_onOpen()
 this.value := form.editor1.wrap

See also onClose

onOpen is also an event of the Query and StoredProc classes (page 14-403).
556 dBL Language Reference

onPaint
onPaint
Event fired whenever a PaintBox object needs to be redrawn.

Parameters none

Property of PaintBox

Description onPaint is called whenever a PaintBox object needs to be redrawn. Events that trigger onPaint include:
• the parent form is opened
• a minimized parent form is restored or maximized
• a window or object which has been covering the paintbox object is moved away

See also onFormSize

onRightDblClick
Event fired when the user double-clicks with the right mouse button while the pointer is on a form or an object.

Description Use onRightDblClick to perform an action when the user double-clicks with the right mouse button. Other than
the initiating action, this event is identical to onLeftDblClick.

This event will not fire for the form if you have a popup menu assigned to the form’s popupMenu property.

See also onLeftDblClick, onMiddleDblClick, onRightMouseDown, onRightMouseUp, popupMenu

onRightMouseDown
Event fired when the user presses the right mouse button while the pointer is on a form or an object.

Description Use onRightMouseDown to perform an action when the user presses the right mouse button. Other than the
initiating action, this event is identical to onLeftDblClick.

If the form has a popup menu assigned to its popupMenu property, the sequence of events when you right-click
the form is:

1 The popup menu appears
2 After making a choice or dismissing the menu, the onRightMouseDown event fires.
3 If a choice was made from the popup menu, its onClick fires.

See also onLeftDblClick, onLeftMouseDown, onMiddleMouseDown, onRightDblClick, onRightMouseUp, popupMenu

onRightMouseUp
Event fired when the user releases the right mouse button while the pointer is on a form or an object.

Description Use onRightMouseUp to perform an action when the user releases the right mouse button. Other than the
initiating action, this event is identical to onLeftDblClick.

This event will not fire for the form if you have a popup menu assigned to the form’s popupMenu property.

See also onLeftDblClick, onLeftMouseUp, onMiddleMouseUp, onRightDblClick, onRightMouseDown, popupMenu

onSelChange
Event fired when a selection is changed in a component.

Parameters none

Property of Designer, Grid, ListBox, NoteBook, TabBox
Form objects 557

onSelection
Description onSelChange is used in components that have a specific set of options to choose from; the tabs in a NoteBook or
TabBox, the items in a ListBox, and the rows or columns in a Grid. It fires whenever the focus changes from
one option to another or, in the case of a Grid, when navigation occurs in either rows or columns.

Example The following is the standard onSelChange event handler for a tabbox used to display the pages of a multi-page
form.

function pageTabbox_onSelChange()
 form.pageno := this.curSel

The pageNo of the form is changed to the corresponding tab number, reflected in the tabbox’s curSel property.

See also curSel, onChange, selected()

onSelection
Event fired when the user submits a form.

Parameters <id expN> The ID property of the control that had focus when the form was submitted.

Property of Form, SubForm

Description A form is submitted when the user either:

• Presses Enter when the form has focus and no Editor, Grid, or Browse object has focus.
• Presses Spacebar when a pushbutton has focus.
• Clicks a pushbutton.

The concept of submitting a form is antiquated and rarely used. You should code the onClick event handler for a
specific pushbutton, and set the default property of a pushbutton to true so that pushbutton is clicked when
Enter is pressed.

Note The default property will work as described above only when SET CUAENTER is ON. When CUAENTER is
OFF, the Enter key emulates the Tab key and merely shifts focus to the next control.

See also default[Field], default[Form], SET CUAENTER, ID, onClick

onSize
Event fired after the user resizes a form.

Parameters <nType> A number that indicates how the user resized the form. It has three possible values:

Value Description
0 The user resized the form with the mouse or restored the form

from a maximized or minimized condition.
1 The user minimized the form.
2 The user maximized the form.

<width> The new width of the client area of the form.

<height> The new height of the client area of the form.

Property of Form, SubForm

Description Use onSize to perform actions when the user resizes a form.

The two parameters passed to the event handler indicate the new size of the client area of the form, the area
below the title bar and inside the edges of the form. To get the new size of the entire form, check the form’s
width and height properties directly.

Some controls have an onFormSize event that fires when the form is resized; any actions specific to those
controls should be handled with that event. Other controls have an anchor property, and are resized to
automatically.
558 dBL Language Reference

open ()
Example Suppose you have a form with a horizontal Line object that goes all the way across the form. You could handle
form resizing by making the line excessively long, or you can resize it with the form’s onSize event handler:

function form_onSize(nSizeType, nWidth, nHeight)
 form.line1.right := nWidth
 return

See also anchor, MDI, onFormSize, sizeable, windowState

open ()
Opens a form.

Syntax <oRef>.open()

<oRef> The form to open.

Property of Form, SubForm

Description Use open() to open a form.

The form you open with open() is modeless, and has the following characteristics:

• While the form is open, focus can be transferred to other forms.

• Execution of the routine that opened the form continues after the form is opened and active.

See also close(), onOpen, readModal()

open() is also a method of the File class (page 11-214).

pageCount()
Returns the highest numbered page used in a form.

Syntax <oRef>.pageCount()

<oRef> An object reference to the form you want to check.

Property of Form, SubForm

Description pageCount() returns the highest pageNo used by the controls in the form. (There are actually no pages or page
objects in a form.)

In most cases, you know how many pages there are in a form because you decide on which pages to place the
form’s controls. Use pageCount() if you do not want to keep track of the highest page manually, or if the form
creates objects on different pages dynamically.

Example The following is the onClick event handler for a button that displays the next page on a form. If the last page is
displayed, the button is disabled.

function nextButton_onClick()
 if ++form.pageno >= form.pageCount() // Goto next page, and if it's the last page
 this.visible := false // You can't go any further
 endif

See also pageNo

pageNo
The page of the form on which a component appears, or the form’s active page.

Property of All form objects.

Description All form objects have a pageNo property that can be between 0 and 255. The form’s pageNo property indicates
the form’s active page, the one it is displaying. All the components in the form that have the same pageNo as the
form are displayed on that “page”; the rest are hidden. There are no actual pages or page objects to manage.
Form objects 559

params
When a form’s pageNo property is zero, all components are displayed. If a component’s pageNo property is
zero, it appears on all pages. For example, a company logo that appears on every page can be placed on page
zero.

The pageNo property can be changed at any time. Changing a form’s pageNo displays another page of the form.
Changing a component’s pageNo moves that component to that page.

In addition to the pageNo property, you can set a component’s visible property if you want to hide or display it
under particular circumstances.

Example Suppose you have a 12-page survey form. There are buttons to move to the next and previous pages. These
buttons are on page zero, so that they appear on every page. The Previous button has its visible property initially
set to false, because the form starts on page 1 and there is no previous page to go to. When you get to page 12,
you want to hide the Next button, since there are no more pages.

The onClick event handlers for the two buttons would look like:
function nextPageButton_onClick()
 if ++form.pageno >= 12 // Goto next page, and if it's the last page
 this.visible := false // You can't go any further
 endif
 form.prevButton.visible := true // Always make previous button visible

function prevPageButton_onClick()
 if --form.pageno <= 1 // Goto previous page, and if it's the first page
 this.visible := false // You can't go any further
 endif
 form.nextButton.visible := true // Always make next button visible

The prefix increment and decrement operators are used so that the page number is changed before it is tested.
It’s not necessary to see if you should be allowed to change pages; if the button is visible, you can go in that
direction. Finally, going in one direction always makes it possible to go the other way.

See also visible

params
Parameters passed to a report.

Property of ReportViewer

Description The params property contains an associative array that contains parameter names and values, if any, that are
passed to the specified .REP file. The parameters are passed in the order they are assigned to the params
property.

Normally, report parameters are assigned to the params array before setting the filename property; if they are
assigned after setting the filename property, you must call the ReportViewer object’s reExecute() method to
regenerate the report.

Example Suppose you have a form that uses a ReportViewer to preview a report of the grade point average of all students.
You include the option of showing students in a specific grade, by using a SpinBox for the grade number, and a
CheckBox to enable or disable the grade restriction. From the CheckBox or SpinBox components’ onChange
event, you call the following form method to redisplay the report with the latest options:

function viewReport()
 if form.gradeCheckbox.value // Use grade
 form.reportViewer1.params["grade"] = form.gradeSpinbox.value
 else // No grade, remove the element
 form.reportViewer1.params.removeAll() // Only one element, so just removeAll()
 endif
 form.reportViewer1.reExecute() // Re-execute report with new parameters

The .REP file has the following statements in the Header:
if argcount() >= 1
 local r
 r = new GPAReport()
 r.streamSource1.rowset.filter := "GRADE = " + argvector(1)
 r.render()
560 dBL Language Reference

paste()
 return
endif

If a parameter is passed, the report’s StreamSource object’s rowset’s filter property is set so that only the
specified grade is shown. The report is rendered, and the RETURN statement prevents the execution of the
standard report bootstrap code.

See also filename

params is also a property of the Query and StoredProc classes (page 14-406).

paste()
Copies text from the Windows clipboard to the control.

Syntax <oRef>.paste()

<oRef> An object reference to the control in which to paste the text.

Property of Browse, ComboBox, Editor, Entryfield, SpinBox

Description Use paste() when the user wants to copy text from the Windows clipboard into the specified control.

If you have assigned a menubar to the form, you can use a menu item assigned to the menubar’s editPasteMenu
property instead of using the paste() method of individual objects on the form.

See also copy(), cut(), editPasteMenu, undo()

patternStyle
Specifies the background hatching pattern.

Property of Rectangle

Description Use patternStyle to select a background hatching pattern for a Rectangle object.

You can specify the following settings for patternStyle

Table 15.4Fill patterns

Value Description Example
0 Solid
1 BDiagonal
2 Cross
3 Diagcross
4 FDiagonal
5 Horizontal
6 Vertical

The color of the pattern is determined by the foreground and background colors specified in the rectangle’s
colorNormal property.

See also colorNormal

pen
Specifies the pattern of a Line object.

Property of Line

Description Use pen to control the appearance of a Line object when its size is 1.
Form objects 561

penStyle
You can specify any of five settings for pen:

Table 15.5Pen patterns

Value Description Example
0 Solid
1 Dash
2 Dot
3 Dash Dot
4 DashDotDot

If the line’s size is greater than 1, the pen property is ignored and the line is always drawn with a solid pen.

See also size

penStyle
Specifies the type of line to be used as the border of a Shape object.

Property of Shape

Description Use penStyle to control the appearance of the border of a Shape object when the penWidth is 1.

You can specify any of five settings for penStyle:

Value Description Example
0 Solid
1 Dash
2 Dot
3 Dash Dot
4 DashDotDot

If penWidth is greater than 1, the penStyle property is ignored and the outline is always drawn with a solid pen.

See also penWidth, shapeStyle

penWidth
Specifies the width in pixels of the line used as the border of a Shape object.

Property of Shape

Description Use penWidth to specify the thickness of the line used to border a shape object. If you set penWidth to a value
greater than 1, then penStyle is always treated as 0 (Solid).

See also penStyle, shapeStyle

persistent
Determines whether custom control, datamodule, menu or procedure files associated with a form are loaded in
the persistent mode.

Property of Form, SubForm

Description When set to true, the persistent property prevents files from being closed directly, through CLOSE ALL and
CLOSE PROCEDURE, or implicitly, through SET PROCEDURE TO. To close a file which has been tagged
"persistent", you must include the PERSISTENT designation at the end of the command, i.e, CLOSE ALL
PERSISTENT, CLOSE PROCEDURE PERSISTENT.

When set to true, the persistent property has the following effects:
562 dBL Language Reference

phoneticLink
• When the form is being modified in the Form Designer, all SET PROCEDURE TO statements streamed
in the form class definition will have the PERSISTENT option specified.

• When the form runs, the form file itself, and any menu and datamodule files it uses, are internally loaded
as PERSISTENT.

The execution of explicit SET PROCEDURE TO statements are not affected by the persistent property of the
form. The presence (or absence) of the PERSISTENT option in any given SET PROCEDURE TO command
determines whether it is loaded as "persistent". However, if the Form Designer was used, and form.Persistent is
set to True, all SET PROCEDURE TO statements will be loaded as "persistent".

phoneticLink
Contains a reference to the control that mirrors the phonetic equivalent of the current value.

Property of Entryfield

Description phoneticLink is used in double-byte operating systems to store the single-byte phonetic representation of a value
in an entryfield. It contains an object reference or the name of the mirror Entryfield object.

picture
A formatting template for text.

Property of Entryfield, SpinBox, Text

Description Specify the picture property with a character string called a template. A template can consist of

• Picture template characters, which represent and modify individual characters in the text string.

• Function symbols, which usually modify the entire text string. (For information on function symbols, see the
function property.)

• Literal characters, which are inserted into the text string.

Here are the picture template characters:

9 Restricts entry of character data to numbers, and restricts entry of numeric data to numbers and
+ and - signs

Restricts entry to numbers, spaces, periods, and signs
! Converts letters to uppercase
$ Inserts a dollar sign or the symbol defined with SET CURRENCY TO instead of leading

blanks
% Inserts a percent sign as the right-most character of a numeric template
* Inserts asterisks in place of leading spaces
. Marks the position of the decimal point
, Separates thousands with a comma (or with another character indicated by SET

SEPARATOR)
A Restricts entry to alphabetic characters
L Restricts entry to T, t, F, f, Y, y, N, or n, and converts it to uppercase
N Restricts entry to letters and numbers
X Allows any character
Y Restricts entry to Y, y, N, or n, and restricts display to Y and N

You may include function symbols in a template by preceding them with the @ symbol. If you combine
template characters and function symbols in the same template, list function symbols first and separate them
from the template characters with a space.

If the data is longer than the length of the picture string, it is truncated to match.

When displaying a calculated or morphed field, use a picture that represents the field’s maximum size.
Form objects 563

popupEnable
The $ or * picture codes can be used interchangeably with 9 in a numeric picture string. Any * in the string
overrides any $ in the string.

For example;

When this template
is used The value 12.45 Will display as

99999.99 12.45
$$$$$.$$ $$$12.45
*****.** ***12.45

99999.99% 12.45%

Example The following picture is for a phone number field that stores the digits only. By using the R function, preceded
by the @ symbol in the picture, the literal characters in the template are not stored in the value, and are inserted
when the value is displayed:

@R (999) 999-9999

Suppose you’re using a morphed field that stores an ID number but displays a name. The name can be a
maximum of 30 characters, so you set the picture property of Entryfield component that displays the name to 30
“X” characters:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

See also function

picture is also a property of the PdxField class

popupEnable
Whether an editor’s popup menu is available.

Property of Editor

Description An Editor object has a popup menu that contains options to:

• Find and replace text
• Toggle its wrap and evalTags properties
• Show the Format toolbar

You may set the popupEnable property to false to prevent this menu from appearing when the user right-clicks
the Editor object.

See also evalTags, showFormatBar(), wrap

popupMenu
Specifies a pop-up menu for a form.

Property of Form, SubForm

Description After creating the Popup object as a child of the form, assign a reference to that Popup object to the form’s
popupMenu property to have the popup appear when the user right clicks on the form. In this way, you may
have more than one popup menu defined for a form and change the popup menu that appears as needed.

Note You cannot name your popup popupMenu; that would conflict with the name of the existing property.

Example The following example is the onOpen event handler for the FISH.WFM form. It assigns the popup in FISH.POP
as the popup menu for the form.

function Form_onOpen
 set procedure to FISH.POP additive
 this.popupMenu := new fishPopup(this,"POPUP")
564 dBL Language Reference

prefixEnable
After opening the FISH.POP file as a procedure file to load the popup class that it contains, the second statement
creates the Popup object as a child object of the form with the name “POPUP”, and assigns the resulting object
to the form’s popupMenu property.

See also class Popup (page ???), useTablePopup

prefixEnable
Determines whether the ampersand (&) character is interpreted as the accelerator key prefix.

Property of Text, TextLabel

Description When prefixEnable is true, the ampersand character is interpreted as the accelerator key prefix; the ampersand
is not displayed, and the character that follows it is used as the accelerator key for the control that follows the
Text object in the z-order. The accelerator key appears underlined.

Set prefixEnable to false to treat the ampersand as a normal character, so that it can be displayed within a Text
control.

See also shortCut, text

prevSibling
The previous tree item with the same parent.

Property of TreeItem

Description The read-only prevSibling property contains an object reference to the previous tree item (up) that has the same
parent. If the tree item is the first one, prevSibling is null.

See also firstChild, nextSibling, noOfChildren, parent

print()
Prints a form as it appears on screen, or prints only the data from a completed form.

Syntax <oRef>.print([<dialog expL>[, <mode expL>]])

<oRef> An object reference to the form you want to print.

<dialog expL> An optional parameter that determines whether to display the standard print dialog. If
omitted, the dialog is displayed by default. If the dialog is not displayed, the form is printed according to the
settings of _app.printer.

<mode expL> An optional parameter that selects which method to use when printing. This parameter
defaults to true and can be passed via either of the following:

• true Specifies that a screen image of the form will be printed
• false Specifies that the form’s data be printed for use in filling out a printed form

Property of Form, SubForm

Description Use the print() method to print a form on a selected printer. Executing the print() method opens the standard
Print dialog box. If the user clicks OK, the current page of the form is printed on the selected printer.

When passing true as a second parameter: You may set the printable property of individual
controls to false to prevent them from printing.

See also printable

printable
Whether the component is printed when the form is printed.
Form objects 565

rangeMax
Property of Most form components.

Description You may suppress the printing of individual components on the form by setting their printable property to false.

See also print()

rangeMax
Determines the upper limit for values in a component.

Property of Progress, ScrollBar, Slider, SpinBox

Description Use RangeMax in combination with RangeMin to specify a range restriction for values entered into a
component. (rangeMax sets the upper limit and rangeMin sets the lower limit.) For example, an application that
lets the user input a percentage would prevent the input of a value less than 0 or greater than 100. The same
ranges would apply for a Progress component showing percent complete.

In a SpinBox component, if the value is too high, the value is set to rangeMax. SpinBox components allow both
numbers and dates; the rangeMax must be the same data type. The Progress, Slider, and ScrollBar allow
numbers only. rangeMax must be greater than rangeMin.

Note Range restrictions in a SpinBox have effect only when the rangeRequired property is true.

See also rangeMin, rangeRequired, step, value

rangeMin
Determines the lower limit for values in a component.

Property of Progress, ScrollBar, Slider, SpinBox

Description Use rangeMin in combination with rangeMax to specify a range restriction for values entered into a component.
(rangeMin sets the lower limit and rangeMax sets the upper limit.) For example, an application that lets the user
input a percentage would prevent the input of a value less than 0 or greater than 100. The same ranges would
apply for a Progress component showing percent complete.

In a SpinBox component, if the value is too low, the value is set to rangeMin. SpinBox components allow both
numbers and dates; the rangeMin must be the same data type. The Progress, Slider, and ScrollBar allow
numbers only. rangeMin must be less than rangeMax.

Note Range restrictions in a SpinBox have effect only when the rangeRequired property is true.

See also rangeMax, rangeRequired, step, value

rangeRequired
Determines whether the range you specify with the rangeMax and rangeMin properties is enforced.

Property of SpinBox

Description Set rangeRequired to true to enforce a range limitation specified by the rangeMax and rangeMin properties.
You may set rangeRequired to false to temporarily disable range checking.

When range checking is active, existing values are checked when they are displayed in the control. The spinbox
also will not allow the entry of a number that is higher than rangeMax or lower than rangeMin. If the
number—an existing number or new number—is out of range, the spinbox will change the number to the range
limit; to rangeMax if the number is too large, or to rangeMin if the number is too small.

See also rangeMax, rangeMin, spinOnly, step, valid

readModal()
Opens a form as a modal window and returns an optional value.
566 dBL Language Reference

reExecute()
Syntax <oRef>.readModal()

<oRef> The form to open.

Property of Form

Description Use readModal() to open a form as a modal window. A modal window has the following characteristics:

• While the form is open, focus can't be transferred to other forms.

• Execution of the routine that opened the form stops until the form is closed. When the form is closed, control
transfers to the statement after the one that opened the form.

The form’s close() method takes an optional parameter. If the form is closed with a parameter, the value of that
parameter is returned by readModal(). Otherwise readModal() returns false.

Many applications use modal forms as dialog boxes, which typically require users to take an action before the
dialog box can be closed.

You can't open a form with the readModal() method when the MDI property is set to true.

To open a form as a modeless window, use the open() method.

Example The standard bootstrap code generated for a .WFM form file contains code to open the form with readModal()
if the DO the .WFM with the parameter true, for example:

do ABOUT.WFM with true

By adding a couple of lines in the Header of the .WFM, you can make the form open modally by default. For
example:

openForm(true) // Call bootstrap with true
function openForm() // Convert bootstrap into its own function
// Everything below is geneated code
** END HEADER -- do not remove this line
//
// Generated on 09/28/97
//
parameter bModal
local f
f = new AboutForm()
if (bModal)
 f.mdi = false // ensure not MDI
 f.readModal()
else
 f.open()
endif

This is appropriate for forms that are always modal and do not have a return value, like About and Print dialogs.

See also close(), MDI, open()

reExecute()
Re-executes the report.

Syntax <oRef>.reExecute()

<oRef> The ReportViewer object that contains the report to re-execute.

Property of ReportViewer

Description Call reExecute() to execute the report again with a new set of parameters. To render another page in the existing
report, call the report’s render() method through the ReportViewer object’s ref property.

Example See params

See also params, ref
Form objects 567

ref
ref
A reference to the Report object in a ReportViewer.

Property of ReportViewer

Description Use the ReportViewer object’s ref property to access the report displayed.

Example Suppose you have a simple report preview form. To display the next page of the report, you increment the
report’s startPage and re-render() the report through the ReportViewer object’s ref property.

function nextPage_onClick()
 with form.reportViewer1.ref
 endPage = ++startPage
 render()
 endwith

See also active, filename

ref is also a property of the DataModRef class (page 14-409).

refresh()
Redraws the form or grid.

Syntax <oRef>.refresh()

<oRef> The object to refresh

Property of Form, Grid, SubForm

Description Use a form’s refresh() method to update the controls on the form to reflect the current state of the data in the
buffer when using tables in work areas. To update the data buffer, use the REFRESH command first. When
using the data objects, call the rowset’s refreshControls() method instead.

Call a grid’s refresh() method to repaint the grid. The current row in the rowset becomes the top row in the grid,
and all visible columns are repainted from the current row down.

See also REFRESH, refreshAlways, refreshControls()

refresh() is also a method of the Rowset class (page 14-409)

refreshAlways
Whether to update the form after all form-based navigation and updates.

Property of Form, SubForm

Description Set refreshAlways to false when performing extensive navigation or data processing during an event. When
refreshAlways is true, dBASE Plus updates the form periodically during processing, which causes flicker and
slows the process. When refreshAlways is false, the form is not updated until the event has completed.

You may force the update for the form during the event by calling refresh().

See also refresh()

release ()
Explicitly releases an object from memory.

Syntax <oRef>.release()

<oRef> An object reference to the object you want to release.

Property of All form objects; all report objects except Band and StreamFrame.
568 dBL Language Reference

releaseAllChildren ()
Description dBASE Plus manages memory and resources used by objects automatically. When there are no more variables
or properties that reference an object and that object is not visible onscreen, the object is destroyed. Any
components that are contained in the object, such as the components of a form, are also destroyed when the
container is destroyed. Because of this automatic object management, there is usually no reason to call
release().

release() explicitly releases an object from memory, returning true if successful. Any references that point to
that object become invalid; attempting to use such a reference results in an error. If these references are tested
with EMPTY(), it returns true.

For example, you might want to get rid of a single component in a form. You could release() that component,
but in most cases you could just as easily hide the component by setting its visible property to false.

See also RELEASE OBJECT

releaseAllChildren ()
Deletes all tree items in the tree.

Syntax <oRef>.releaseAllChildren()

<oRef> The TreeView object you want to clear.

Property of TreeView

Description Call releaseAllChildren() to delete the entire contents of a tree view so that you can start over. To delete an
individual tree item and it subtree, call the tree item’s release() method.

See also count(), firstChild, release()

right
The position of the right edge of an object relative to its container.

Property of Line

Description The unit of measurement in a form or report is controlled by its metric property. The default metric for forms is
characters, and for reports it’s twips.

See also left, size

rowHeight
The height of each option row in a listBox object..

Property of ListBox

Description The rowHeight property specifies the height (in the current form metric) of each option row in a listBox object.
The default value is 17 pixels converted into the current form metric. For the default form metric of Chars,
rowHeight will default to 0.77 Chars.

rowSelect
Whether the entire row is visually selected.

Property of Grid

Description Set rowSelect to true to create the visual effect of highlighting the entire row in the grid.

See also multiSelect, selected()
Form objects 569

rowset
rowset
The form’s primary rowset.

Property of Form, SubForm

Description For forms that use data objects, the rowset property identifies the form’s primary rowset.

If the form uses only one query, then the Form designer assigns that query’s rowset as the primary rowset. If the
form uses a data module, the Form designer assigns the data module’s primary rowset as the form’s primary
rowset.

The primary rowset is where navigation and other actions from the default menu and toolbar take place.
Navigation in the primary rowset causes the form’s canNavigate and onNavigate events to fire.

Example A button on a form that goes to the first row in the primary rowset would have an onClick event handler like
this:

function firstButton_onClick()
 form.rowset.first()

See also canNavigate, class Rowset, onNavigate, view

rowset is also a property of the DataModule, Query, and StoredProc classes.

saveRecord()
Saves changes to the current record in the currently active table.

Syntax <oRef>.saveRecord()

<oRef> An object reference to the form.

Property of Form, SubForm

Description Use saveRecord() for form-based data handling with tables in work areas. When using the data objects,
saveRecord() has no effect; use the rowset’s save() method instead.

Form-based data buffering lets you manage the editing of existing records and the appending of new records.
Editing changes to the current record are not written to the table until there is navigation off the record, or until
saveRecord() is called. Each work area has its own separate edit buffer. For example, if you have two controls
dataLinked to two different work areas, and you change both controls, you must call saveRecord() while each
work area is selected to commit the changes.

To append a new record, call beginAppend(). This empties the record buffer for the currently selected work
area. Calling saveRecord() writes the new record to the table, leaving you at the newly added record. Calling
beginAppend() instead of saveRecord() will write the new record and empty the buffer again so you can add
another record.

When appending records with beginAppend() the new record will not be saved when you call saveRecord()
unless there have been changes to the record; the blank new record is abandoned. This prevents the saving of
blank records in the table. (If you want to create blank records, use APPEND BLANK). You can check there
have been changes by calling isRecordChanged(). If isRecordChanged() returns true, you should validate the
record with form-level or row-level validation before writing it to the table.

To abandon the changed or new record instead of saving it, call abandonRecord().

See also abandonRecord(), isRecordChanged(), saveRecord()

scaleFontBold
Whether the base font used for the Chars metric of a form is boldface.

Property of Form
570 dBL Language Reference

scaleFontName
Description The Chars metric of a form is based on the average height and width for characters in a specific base font. The
base font is set through the form’s scaleFontBold, scaleFontName, and scaleFontSize properties.

scaleFontBold determines whether the base font is boldface. Boldface fonts are wider than non-boldface fonts.

See also metric, scaleFontName, scaleFontSize

scaleFontName
The base font typeface used for the Chars metric of a form.

Property of Form

Description The Chars metric of a form is based on the average height and width for characters in a specific base font. The
base font is set through the form’s scaleFontBold, scaleFontName, and scaleFontSize properties.

scaleFontName is the name of the base font typeface.

See also metric, scaleFontBold, scaleFontSize

scaleFontSize
The point size of the base font used for the Chars metric of a form.

Property of Form

Description The Chars metric of a form is based on the average height and width for characters in a specific base font. The
base font is set through the form’s scaleFontBold, scaleFontName, and scaleFontSize properties.

scaleFontSize is the size of the base font, in points.

See also metric, scaleFontBold, scaleFontName

scroll()
Gives the appearance of scrolling the client area, of a form or subform, by moving the form's border window
over the form's client area.

Syntax <oRef>.scroll(<horizontal expN>,<vertical expN>_)

<oRef> An object reference to the Form or SubForm.

<horizontal expN> Horizontal position of top left corner of the form’s client area

<vertical expN> Vertical position of top left corner of the form’s client area

Property of Form, SubForm

Description The scroll() method allows you to programatically "scroll" the client area of a form or subform. Relative to the
form's initial position at (0,0), the form will move over the client area to a position designated by the values of
<horizontal expN> and <vertical expN>.

Calling form.scroll(10, 10) while form.metric is set to 0 - Chars, moves the form's border window to a position
10 chars to the right and 10 chars down from its initial position of 0, 0. Any controls or data on the form will
appear to be scrolled up and to the left of their initial positions.

By subsequently calling form.scroll(20, 20), the form's border window will be scrolled to a position 20 chars
down and 20 chars to the right of its initial position, 0,0. Again the form's contents will appear to move up and
to the left.

If you next call form.scroll(5, 5), the form's border window will be scrolled to a position 5 chars down and 5
chars to the right of its initial position, 0, 0. However, since the previous position (20,20) was further down and
to the right, the form's contents will appear to be scrolled down and to the right relative to their previous
positions.
Form objects 571

scrollBar
Note that the coordinates specified are always relative to the initial position of the form, not the form's most
recent position.

To use the scroll() method, a form or subform's scrollbar must be visible and enabled. This can be done by;

• Setting the scrollBar property to 1 (On).

or

• Setting the scrollBar property to 2 (Auto), and sizing the form or subform so it's client area, or contents,
occupy a larger area than the form itself. This displays and enables the scrollbars.

See also metric, scrollBar

scrollBar
Determines when an object has a scroll bar.

Property of Browse, Editor, Form, ReportViewer, SubForm

Description The scrollBar property determines when and if a control displays a scrollbar. It may have any of four settings:

Value Description
0 (Off) The object never has scroll bars.
1 (On) The object always has scroll bars.
2 (Auto) Displays scroll bars only when needed.
3 (Disabled) The scroll bars are visible but not usable.

See also autoSize

scrollHOffset
Contains the current position of the horizontal scrollbar in units matching the form or subform's current metric
property.

Property of Form, Subform

Description The value in the scrollHOffset property is relative to the left edge of the form. On a form with no scrollbars, or
with its horizontal scrollbar in its unscrolled position, the value of the scrollHOffset property is zero.

• As the horizontal scrollbar is moved to the right, the value of the scrollHOffset property increases.

• As the horizontal scrollbar is moved to the left, the value of the scrollHOffset property decrease

scrollVOffset
Contains the current position of the vertical scrollbar in units matching the form or subform's current metric
property.

Property of Form, Subform

Description The value in the scrollVOffset property is relative to the top of the form. On a form with no scrollbars, or with its
vertical scrollbar in its unscrolled position, the value of the scrollVOffset property is zero.

• As the vertical scrollbar is moved downward, scrollVOffset increases.

• As the vertical scrollbar is moved upward, scrollVOffset decreases.

select()
Makes the tree item the selected item in the tree.
572 dBL Language Reference

selectAll
Syntax <oRef>.select()

<oRef> An object reference to the tree item you want to select.

Property of TreeItem

Description Use select() to programmatically select a tree item. The tree view is scrolled and expanded if necessary to
display the selected tree item.

See also selected, showSelAlways

selectAll
Determines if the value contained in a control initially appears selected (highlighted) when tabbing to the control.

Property of ColumnCombobox, Combobox, Entryfield, SpinBox

Description Set selectAll to true to give the user a shortcut for deleting or replacing the initial value in an entry field, a spin
box, a columnComboBox, or a combobox. The entire value is highlighted when the user tabs to the control. The
first character the user enters overwrites the value. Pressing Del or Backspace deletes the value. Pressing a
direction key (such as Home or End) removes the highlight without erasing the value.

Clicking a control ignores selectAll; the cursor goes to the position clicked, and nothing is highlighted.

comboBox, or columnComboBox ...

• The default for selectAll is True.

• Setting selectAll to False prevents the entire combobox value from being highlighted when the combobox is
given focus or when scrolling through option strings in the dropdown list.

selected
The currently selected tree item.

Property of TreeView

Description The selected property contains an object reference to the currently-selected tree item in the tree view, the one
that has focus. If no item is selected, selected contains null.

selected is usually used in TreeView event handlers, which fire for all items in the tree.

selected is read-only. To programmatically select an item, call the item’s select() method.

See also canChange, select(), showSelAlways

selected()
Returns the currently selected item(s) in an object, or checks if a specified item is selected.

Syntax <oRef>.selected([<item expN>])

<oRef> An reference to the object you want to check.

<item expN> The item number to check. If omitted, the currently selected item(s) are returned. This
parameter is allowed only for the ListBox control; the Grid method takes no parameters.

Property of Grid, ListBox

Description Calling selected() with no parameters returns the control’s currently selected item or items. If a listbox’s
multiple property is false, selected() returns the currently selected item in the listbox. If multiple is true,
selected() returns an array containing the currently selected items, one element per selection.

For a grid, selected() returns bookmarks to the row or rows (in an array) that are selected when rowSelect or
multiSelect are true.
For a ListBox, selected() also returns bookmarks when the datasource is a field object.
Form objects 573

selectedImage
As with any Array object, check its size property to determine how many items have been selected. The items in
the selected() array are listed in the order they were selected.

If you specify <item expN>, selected() will return the prompt string for that numbered item if the item is
selected, or an empty string if the item is not selected.

The ListBox object’s value property contains the value of the item that currently has focus, whether it’s selected
or not.

Example The following onClick event handler copies all the selected items in the ListBox object select1 into another
ListBox object named select2:

function makeSelections_onClick()
 form.select2.dataSource := "array form.select1.selected()"

See also count(), multiple, multiSelect, rowSelect, value

selectedImage
Image displayed between checkbox and text label when a tree item has focus.

Property of TreeItem, TreeView

Description The tree view may display images to the left of the text label of each tree item. If the tree has checkboxes, the
image is displayed between the checkbox and the text label.

The selectedImage property of the TreeView object specifies the default icon image for all tree items to display
when that tree item has focus. You may designate specific icons for each TreeItem object to override the default.
Use the image property to specify icons for when the tree item does not have focus. If any individual item in the
tree has its image or selectedImage property set, space is left in all tree items for an icon, even if they don’t have
one.

The selectedImage property is a string that can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies an icon resource and the DLL file that holds it.

• FILENAME <filename>
specifies an ICO icon file.

See also image, imageScaleToFont, imageSize, selected

serverName
Identifies the server application that is invoked when the user double-clicks an OLE viewer object.

Property of OLE

Description serverName is a read-only property that contains the name of the OLE server for the current contents of the OLE
control. You may use serverName to anticipate which server application is activated if the user double-clicks
the current OLE viewer object.

See also linkFileName, OLEType

setAsFirstVisible()
Makes the tree item visible as the first (topmost) in the tree view.

Syntax <oRef>.setAsFirstVisible()

<oRef> An object reference to the tree item you want to display.

Property of TreeItem
574 dBL Language Reference

setFocus ()
Description Use setAsFirstVisible() when you want to make sure that a tree item is visible in the tree view as close to the top
of the tree view area as possible. The tree is expanded and scrolled if necessary to make the item visible.

If the tree item is close to the bottom, the tree is scrolled as high as possible.

See also ensureVisible(), select()

setFocus ()
Sets focus to a component.

Syntax <oRef>.setFocus()

<oRef> A reference to the object to receive focus.

Property of Form and all form components that get focus

Description Calling a component’s setFocus() method moves the focus to that component (unless it already has
focus).When you call a form’s setFocus() method, the component on the form that last had focus gets the focus.

See also onGotFocus

setTic()
Manually sets a tic mark in a Slider object.

Syntax <oRef>.setTic(<expN>)

<oRef> The Slider object whose tic mark to set.

<expN> The location of the tic mark.

Property of Slider

Description To manually set tic marks in a slider, set the slider’s tics property to Manual. Call clearTics() to clear any
previously set tic marks. Then call setTic() with the location of each tic mark.

The <expN> should be between the rangeMin and rangeMax of the Slider control.

See also clearTics(), rangeMax, rangeMin, tics, ticsPos

setTicFrequency()
Sets the tic mark interval for automatic tic marks in a Slider object.

Syntax <oRef>.setTicFrequency(<expN>)

<oRef> The Slider object whose tic mark to set.

<expN> The frequency of the tic marks.

Property of Slider

Description For automatic tic marks, set the slider’s tics property to Auto. The default interval is 1. Call setTicFrequency()
to use another interval value.

See also tics, ticsPos

shapeStyle
Determines the shape of a Shape object.

Property of Shape
Form objects 575

showFormatBar()
Description Use shapeStyle to specify a shape for a Shape object. The shapes you can specify are as follows:

Value Shape
0 Rectangle with rounded corners
1 Rectangle
2 Ellipse
3 Circle
4 Square with rounded corners
5 Square

See also colorNormal, penStyle, penWidth

showFormatBar()
Displays or hides the Format toolbar.

Syntax <oRef>.showFormatBar(<expL>)

<oRef> A Form object.

<expL> true to show the toolbar, false to hide the toolbar.

Property of Form, SubForm

Description You may show or hide the Format toolbar when the form has focus by calling showFormatBar().

See also evalTags

showMemoEditor()
Displays or hides the memo editor control for an entryfield.

Syntax <oRef>.showMemoEditor(<expL>)

<oRef> The Entryfield that’s dataLinked to the memo field.

<expL> true to show the editor, false to hide the editor.

Property of Entryfield

Description When an entryfield control is dataLinked to a memo field, double-clicking the control opens a memo editor in a
form. You may show or hide this editor by calling showMemoEditor().

See also memoEditor

showSelAlways
Whether to highlight the selected item in the tree even when the tree view does not have focus.

Property of TreeView

Description When showSelAlways is true, the tree view highlights the selected item even when the tree view does not have
focus. This highlight is different than when the tree view does have focus, but still visually indicates the selected
item.

When showSelAlways is false, no item is highlighted when the tree view does not have focus. Even though no
item is highlighted, the tree view’s selected property still points to the item that had focus last.

See also selected
576 dBL Language Reference

showSpeedTip
Determines if tool tips defined for a control appear.

Property of Form

Description Set showSpeedTip to false to suppress the display of all tool tips defined in the controls’ speedTip property.

See also speedTip

showTaskBarButton
Determines if a button will be created on the Windows Taskbar for the form. For a non-mdi forms only.

Property of Form

Default True

Description Set the showTaskBarButton property to true to display a button for the form on the Windows Taskbar.

When a form’s showTaskBarButton property is set to false, calling the form's open() method will cause its
hWndParent property to be set to the hWnd property of a hidden parent window.
When the showTaskBarButton property is set to true, the hWndParent remains set at 0.

Switching between dBASE Plus, or a dBASE Application, and other Windows programs

Set the showTaskBarButton property to false before opening a form, via its readModal() method, to ensure that
a modal form always stays on top when switching between dBASE Plus, or a dBASE Application, and other
Windows programs.

When running a non-modal and non-mdi form, however, you must also set the form's hWndParent property to
the appropriate parent hWnd (ex. _app.frameWin.hWnd), during the form's open() method, to ensure the form
will always stay on top when switching between these programs.

Example The following code shows a simple method of using the showTaskBarButton property. When this form is
opened, there will NOT be a button for the it appearing on the Windows TaskBar.

f = new form()
f.mdi = false
f.showTaskBarButton = false // Prevent taskbar button from appearing
f.open()

See also class Form, hWndParent

sizeable
Determines if the user can resize a form when it’s not MDI.

Property of Form, SubForm

Description Set sizeable to false to prevent the form from being resized. You must set sizeable before you open the form.

sizeable has no effect unless the form’s MDI property is false; if it is true, the form follows the MDI
specification and is always resizeable.

See also maximize, MDI, minimize, moveable, onSize, sysMenu

smallTitle
Determines if the form has the small palette-style title bar when it’s not MDI.

Property of Form, SubForm
Form objects 577

Description Set the smallTitle property to true to make the form look like a palette window, with the smaller title bar and no
minimize, maximize, taskbar entry, or system menu icons. You must set smallTitle before you open the form.

The smallTitle property has no effect unless the form’s MDI property is false; if it is true, the form follows the
MDI specification and has a normal-sized title bar.

To enable a showTaskBarButton property to display a Windows Taskbar button, set the showTaskBarButton
must be set to true and the smallTitle properties to false.

See also MDI

sortChildren()
Sorts child tree items.

Syntax <oRef>.sortChildren()

<oRef> The tree object whose children to sort.

Property of TreeItem, TreeView

Description sortChildren() sorts the child tree items of a tree view or tree item according to the text labels of the tree items.
The sort is not case-sensitive and goes one level deep only.

sorted
Determines whether the prompts in a listbox or a combobox are listed in sorted order or in natural order.

Property of ComboBox, ListBox

Description Set sorted to true when you want the prompts in a list box or a combo box to appear in sorted order
(alphabetically, numerically, or chronologically). For example, a list of names is more accessible if it is sorted
alphabetically.

The natural order of a list box or a combo box depends on the order in which the prompts are generated. For
example, when you specify "FILE *.*" for the dataSource property of a list box, the prompts consist of the file
names in the default directory. The prompts are created in the order in which the files are listed in the directory,
so they are not necessarily arranged alphabetically when you set sorted to false.

sorted has no effect when the dataSource property of the list box or combo box specifies "FIELD" followed by
a field name. In this case, the order of prompts in the list box or combo box depends on the record sequence in
the table containing the specified field.

See also dataSource

speedBar
Determines whether a pushbutton behaves like a toolbar button or a standard pushbutton.

Property of PushButton

Description Set speedBar to true when you want a pushbutton to behave like a toolbar button. A toolbar button is not
included in the tab order of a form, so you can’t get to it by pressing Tab or Shift+Tab; and when clicked, it
does not receive focus.

For example, navigation controls on a form usually have their speedBar property set to true. When you navigate
from row to row, the control that has focus, typically one dataLinked to a field, never loses focus.

See also tabStop

speedTip
Specifies the tooltip text that appears when the mouse remains on a control for more than one second.
578 dBL Language Reference

Property of ActiveX, Browse, CheckBox, ComboBox, Container, Editor, Entryfield, Grid, Image, ListBox, NoteBook, OLE, PaintBox,
Progress, PushButton, RadioButton, Rectangle, ScrollBar, Slider, SpinBox, TabBox, Text, TextLabel, ToolButton,
TreeView.

Description Use speedTip to create a tool tip that appears when the mouse rests on a control. Usually this message gives the
user a clue as to the function of the control. To suppress the display of these tool tips, set the showSpeedTip
property of the form to false.

• A speedTip's text will appear whether or not the relevant object has focus (In dBASE Plus, an object does not
get focus as the cursor passes over).

• A speedTip's text will not appear unless the relevant object is;

• enabled (it's enabled property set to true)

• and

• visible (it's visible property set to true)
• Whether or not a PushButton's speedTip text appears does not depend on the setting of it's speedBar property.

See also showSpeedTip, statusMessage

spinOnly
Determines if users can enter a value in the text box portion of a spin box.

Property of SpinBox

Description A spinbox lets users enter values in a text box or select values by clicking the arrows on the right edge of the
spinbox. When you set the spinOnly property to false, the text box is enabled. When you set the spinOnly
property to true the text box is disabled, restricting input to a predefined step value.

See also step

startSelection
The low end of the selection range in a Slider object.

Property of Slider

Description startSelection contains the low value in the selection range. It should be equal to or less than endSelection, and
between the rangeMin and rangeMax values of the slider.

The selection is not displayed unless the slider’s enableSelection property is true.

See also enableSelection, rangeMax, rangeMin, endSelection

statusMessage
The message to display on the status bar while an object has focus.

Property of Form and all form components that can receive focus

Description Use statusMessage to provide instructions to the user when the user selects an object. If you set the
statusMessage of the form, that message is displayed in the status bar when a component’s statusMessage is
blank.

See also speedTip

step
Determines how the amount added or subtracted by clicking an arrow in a spinbox.
Form objects 579

Property of SpinBox

Description Use step to control the rate at which a user can increase or decrease a numeric or date value. For example, a
program that expresses large dollar values only in increments of $500.00 would give a spinbox a step value of
500.

See also rangeMax, rangeMin, spinOnly

streamChildren()
Writes (streams) TreeItem objects and properties to a text file.

Syntax <oRef>.streamChildren(<expC>)

<oRef> The TreeView parent object of the TreeItems.

<expC> The name of the file to contain the TreeItem objects and properties.

Description Use streamChildren() to save the child TreeItems of a TreeView object to a text file. The filename may be any
valid filename. If the file exists, it will be overwritten; if not, it will be created.

streamChildren() streams the class definition and properties (except for TreeItem method overrides) of all of
the TreeItems in the TreeView. It does not stream the class definition for the parent TreeView, thereby enabling
you to attach the streamed TreeItems to a different TreeView object using that TreeView’s loadChildren()
method.

Note: streamChildren() will overwrite any existing filename without warning, even with SAFETY ON. Always first
check for the existence of the new filename, or use the FUNIQUE() function to create a unique filename.

See also TreeView, TreeItem, loadChildren()

style
Specifies which parts of a combobox are usable and which parts are displayed automatically.

Property of ComboBox

Description Use style to determine how the user selects values in a combobox.

The user selects a value from a combobox by entering initial characters in an entryfield or by selecting the value
directly from the prompt list. The style property determines whether the entryfield accepts input, and how the
prompt list is displayed.

You can give style one of three values:

Style value Description
0 (Simple) The prompt list does not drop down, and there is no arrow button. The

combobox height property determines how much of the prompt list is
displayed (the default is no prompts, only the entryfield is displayed). If the
combobox contains more prompts than can be displayed in the visible list
portion, a scrollbar will appear.
The user can select from the list or type in the entryfield.

1 (DropDown) The user has to click the arrow to display the drop-down list. The user can
either type in the entryfield, or select from the list.

2 (DropDownList) The user has to click the arrow to display the drop-down list. The entryfield
does not accept input; the user must choose from the list.

Set autoDrop to true to make the prompt list drop automatically when a style 1 or 2 combobox gets focus.

Pressing Alt+DownArrow when the combobox has focus also displays the drop-down list.

See also autoDrop, dropDownHeight, dropDownWidth
580 dBL Language Reference

sysMenu
Determines if a form has a control menu and close icon when it’s not MDI.

Property of Form, SubForm

Description Set sysMenu to false to hide the control menu and close icon on a form. You must set sysMenu before you open
the form.

sysMenu has no effect unless the form’s MDI property is false; if it is true, the form follows the MDI
specification and always has a control menu and close icon.

See also maximize, MDI, minimize, moveable, sizeable

systemTheme
Determines whether a pushButton is displayed using the current XP Visual Style, Windows Vista Style or the
Classic Windows style.

Property of Most form objects

Default true

Description Set the systemTheme property to true (the default) to display the object using the current Windows XP, or
Windows Vista Visual Style.

Set the systemTheme property to false to display the object using the Classic style.

When the systemTheme property is set to true, the following conditions must also be met in order to display the
object using the Windows XP, or Windows Vista Visual Style:

• dBASE Plus or a dBASE Plus runtime application must be running on Windows XP, or newer version of
Windows.

• A Windows XP, or Windows Vista manifest file must be in use for dBASE Plus or a dBASE Plus runtime
application.

Note A manifest file is a special XML-based file that enables System Themes in Windows XP and Windows Vista.

For dBASE Plus, this file is named, "Plus.exe.manifest", and resides in the dBASE Plus install path of the \Bin
folder

For all dBASE Plus runtime applications, this file is named, "PlusRun.exe.manifest", and must reside in the
same folder as the dBASE runtime executable (PlusRun.exe)

tabStop
Determines if the user can select an object by pressing Tab or Shift+Tab.

Property of All form components that can receive focus

Description Set the tabStop property to false when you want to remove an object from the tab order of the parent form. For
example, a TabBox object to select pages on a form is often not put in the tab order because it’s not a data entry
control. (For data entry purposes, you could put a button at the end of the tab order to move the user to the next
page.)

If you have a PushButton component that you don’t want in the tab order, you may not want it to receive focus
either. If that’s the case, set its speedBar property to true instead, which prevents both tabbing and focus.

See also before, speedBar

text
The non-editable text that appears in a component.
Form objects 581

Property of Browse, CheckBox, Form, Menu, PushButton, RadioButton, Rectangle, SubForm, Text, TextLabel, TreeItem

Description The text of a CheckBox or RadioButton object is the descriptive text that appears beside the actual CheckBox or
RadioButton. The text of a TreeItem object is the item’s editable text label. The text of a PushButton object is
the text that appears on the button face, and the text of a Menu object is the menu prompt.

The text of a Rectangle object is the caption text that appears at the top of the control. The text of a Form object
is the text that appears in the form’s title bar. The text property has no effect in a Browse object; the property
exists for compatibility only.

The text of a Text or TextLabel object is the content of the object. For a Text object, this is the actual HTML
text that is displayed in the form or report.

You may assign any of the following types of data to the text property of a Text component:

• Boolean
• Numeric
• Integer
• Character
• Object
• Null
• DateTime
• Codeblock

If you assign a codeblock to the text property, it must return a value. Use either an expression codeblock or a
statement codeblock that uses RETURN to return a value. The codeblock is evaluated whenever it is rendered.

Creating accelerator keys Use a pick character to create an accelerator key to let the user select a
menu item or simulate clicking a CheckBox, RadioButton, or PushButton by pressing Alt and the pick character.
To designate a character as a pick character, precede it with an ampersand (&) in the object’s text property. The
pick character is underlined when the object is displayed. A pick character may also be used for the text of a
Text, TextLabel or Rectangle object; pressing the key combination gives focus to the first control that follows
the object in the z-order that can receive focus.

Note When a PushButton's speedBar property is set to "true", accelerator keys are ignored.

Example If the following string is assigned to a Menu object’s text property, the menu has the character A as its pick
character; pressing Alt+A selects the menu item.

Select &All

See also prefixEnable, textLeft, value

textLeft
Whether the component’s text displays to the left or the right of the graphic element.

Property of CheckBox, PushButton, RadioButton

Description The CheckBox, PushButton, and RadioButton objects combine a text label and a graphic element.

Set textLeft to true if you want to text to display on the left side of the control. By default, textLeft is false, so the
text displays on the right.

The PushButton uses the upBitmap, downBitmap, focusBitmap, disabledBitmap properties to display a bitmap
on the button face and, for a pushButton, the textLeft property.can be overridden by the bitmapAlignment
property.

See also bitmapAlignment, disabledBitmap, downBitmap, focusBitmap, text, upBitmap

tics
How to display the tic marks in a Slider object.

Property of Slider
582 dBL Language Reference

Description tics is an enumerated property that can be one of the following values:

Value Description
0 Auto
1 Manual
2 None

If tics is Auto, set the tic mark interval with setTicFrequency(). For Manual tics, use the setTic() method. Use
the ticsPos property to set where the tic marks are displayed.

See also setTic(), setTicFrequency(), ticsPos

ticsPos
Where to display the tic marks in a Slider object.

Property of Slider

Description ticsPos is an enumerated property that can be one of the following values:

Value Description
0 Both
1 Bottom Right
2 Top Left

Tic marks are displayed if the tics property is not set to None. If the slider is vertical, the tic marks are displayed
on the right or left side of the slider, or both. If the slider is horizontal, the tic marks are displayed on the top or
bottom, or both.

Make sure the Slider object is large enough to display the tic marks.

See also tics, vertical

toggle
Determines if a button acts as a two-state toggle.

Property of PushButton

Description Set toggle to true to have a PushButton object behave like a two-state toggle button that stays down when
clicked. Clicking the button again makes it pop back up.

To check the state of a toggle button, check its value property.

See also downBitmap, upBitmap, value

toolTips
Whether to display text labels as tooltips if they are too long to display fully in the tree view area as the mouse passes
over them.

Property of TreeView

Description When toolTips is true, tree item text labels are displayed as tooltips if necessary as the mouse passes over them.
The tooltip displays directly over the obscured text label, in the exact position where the text label should
appear.

In general, this allows the user to see the entire text label without having to scroll the tree view back and forth
horizontally. However, some portion of the tree item must be visible; if the tree item is completely outside the
Form objects 583

tree view area, the item will not appear simply by pointing the mouse where the item would be (because the
mouse is outside the bounds of the TreeView object).

See also trackSelect

top
The position of the top edge of an object relative to its container.

Property of Form, SubForm, and all form contained objects.

Description The unit of measurement in a form or report is controlled by its metric property. The default metric for forms is
characters, and for reports it’s twips.

The container for an MDI form is the main dBASE Plus application window, also known as the MDI frame
window, below the menu and any toolbars docked on the top of the window. For a non-MDI form, the container
is the screen.

See also height, left, MDI, move(), width

topMost
Specifies whether a form displays on top of all other forms when it’s not MDI.

Property of Form, SubForm

Description Set a form’s topMost property to true to make the form stay in the foreground while focus transfers to other
windows. If more than one open form has topMost set to true, those windows behave normally in relation to
each other, while always staying on top of all other windows.

topMost has an effect only when the MDI property is false.

See also MDI, windowState

trackSelect
Whether to highlight and underline tree items as the mouse passes over them.

Property of TreeView

Description Set trackSelect to true to give the user an extra visual indication of which tree item the mouse is currently over.

See also toolTips

transparent
Specifies whether an object’s background matches the background color or image of its container.

Property of CheckBox, Container, PaintBox, RadioButton, Rectangle, Text, TextLabel

Description By setting an object’s transparent property to true, its background takes on the the background color or image
of its container, making the background appear to be transparent. Note that the background is not actually
transparent; if the coontrol overlaps another control, you will still see the background of the container, not the
portion of the control that has been overlapped.

See also background, borderStyle, colorNormal

uncheckedImage
The image to display when a tree item is not checked instead of an empty check box.
584 dBL Language Reference

Property of TreeView

Description Use uncheckedImage to display a specific icon instead of the standard empty checkbox for the tree items in the
tree that are not checked. checkedImage optionally specifies the icon to display for tree items that are checked.
The tree must have its checked property set to true to enable checking; each tree item has a checked property
that reflects whether the item is checked.

The uncheckedImage property is a string that can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies an icon resource and the DLL file that holds it.

• FILENAME <filename>
specifies an ICO icon file.

See also checkBoxes, checked, checkedImage, imageScaleToFont, imageSize

undo()
Reverses the effects of the last Cut or Paste action.

Syntax <oRef>.undo()

<oRef> An object reference to the control you want to restore.

Property of Browse, ComboBox, Editor, Entryfield, SpinBox

Description Use undo() when the user wants reverse the effects of the last Copy, Cut or Paste action.

If you have assigned a menubar to the form, you can use a menu item assigned to the menubar’s editUndoMenu
property instead of using the undo() method of individual objects on the form.

See also copy(), cut(), editUndoMenu (page 16-609), paste()

upBitmap
Specifies the graphic image to display in a pushbutton when it isn't selected.

Property of PushButton

Description Use upBitmap to give visual confirmation that a pushbutton is enabled and the user is not clicking it.

The upBitmap setting can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

• FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

When you specify a character string for the pushbutton with text and an image with upBitmap, the image is
displayed with the character string.

See also class Image, disabledBitmap, downBitmap, enabled, focusBitmap, textLeft

useTablePopup
Specifies whether to use the default table navigation popup when no popup has been assigned to a form.

Property of Form, SubForm

Description Set useTablePopup to true to have the default table navigation popup displayed when the user right-clicks the
form and no popup has been assigned to the form’s popupMenu property.

If a popup is assigned to popupMenu, that popup is always used.

See also popupMenu
Form objects 585

valid
Event fired when attempting to leave a control; return value determines if focus can be removed.

Parameters none

Property of Editor, Entryfield, SpinBox

Description Use valid to validate data. valid fires when attempting to leave the control only when data has been changed,
unless validRequired is true; then valid always fires.

The valid event handler must return true or false. If it returns true, operation continues normally. If it returns
false, the validErrorMsg is displayed in a dialog box and the focus remains on the control.

valid does not fire if the user never visits the control, even if validRequired is true. Therefore, unless the control
is the first or only control on the form that gets focus, you should always use form-level or row-level validation
in addition to control-level or field-level validation.

To enforce a simple numeric range in a SpinBox control, use rangeMax and rangeMin instead of valid.

To perform an action when a control loses focus, use onLostFocus.

Example The following event handler is assigned as the valid event handler for an order number entryfield in a form for
entering new orders. The order numbers are preprinted on a paper form. The validation checks if the order
number is valid, and if it’s valid, whether the order has already been entered.

function ORDER_NUM_valid
 local lRet
 lRet = false
 if form.nextObj == form.cancelButton
 lRet := true // Allow cancel
 elseif empty(this.value) or ;
 transform(val(this.value), "@L " + this.picture) # this.value
 this.validErrorMsg := "Order number must be four digits"
 elseif keymatch(this.value, tagno("ORDER_NUM"))
 this.validErrorMsg := "That order has already been entered"
 else
 lRet := true
 endif
 return lRet

The order number field is the first field in the form that gets focus, so the user must get by this validation to
continue. If they click the Cancel button—on this form, it’s appropriately named cancelButton—the validation
is bypassed so that the user can cancel the new order. The format of the field value is checked to make sure it is
not blank and the correct length. A picture is set in the control to enforce digits-only, but it can’t check for
length; the valid routine does. Finally, KEYMATCH() checks if that order number has already been entered. If
it passes these checks, the valid returns true. If either check fails, the validErrorMsg is set appropriately and the
event handler returns false so that the message is displayed and the focus remains in the control.

See also RangeMax, RangeMin, RangeRequired, ValidErrorMsg, ValidRequired, When

validErrorMsg
Specifies the message to display when the valid event handler returns false.

Property of Entryfield, SpinBox

Description When validating data with valid, set the validErrorMsg property of the control to a more specific error message
than the default, “Invalid input”. You may set a static message for each specific control, for example “Bad
account number"; or you may dynamically set the validErrorMsg from within the valid event with specifics
about the particular error, for example “Account number requires six digits” or “Account expired”.

See also valid, validRequired
586 dBL Language Reference

validRequired
Determines if the validevent fires even if the data is not changed.

Property of Entryfield, SpinBox

Description Set validRequired to true to validate existing data as well as new data. For validRequired to take effect, you
must assign a valid event handler.

You typically set validRequired to true when you change a validation condition and need to verify and update
existing data. For example, a business might add a digit to its account numbers and change the valid event
handler of an entry field to require the new digit. If the validRequired property is set to true, dBASE Plus also
detects any existing account numbers that lack the digit and forces the user to make appropriate changes.

valid does not fire if the user never visits the control, even if validRequired is true. Therefore, unless the control
is the first or only control on the form that gets focus, you should always use form-level or row-level validation
in addition to control-level or field-level validation.

See also rangeRequired, valid, validErrorMsg

value
The component’s current value.

Property of CheckBox, ColumnEditor, ComboBox, Editor, Entryfield, ListBox, Progress, PushButton, RadioButton,
ScrollBar, Slider, SpinBox

Description A component’s value property reflects its value, which is

• The value that is displayed in a Entryfield, Editor, SpinBox, or ComboBox component

• true if a CheckBox component is checked; false if it’s not checked

• true if a RadioButton component is the one in its group that is selected; false if it’s not selected

• The item that has focus in a ListBox component

• The interpolated number for the current position in a Slider, Progress, or ScrollBar object.

• true if a toggle PushButton is down; false if it’s up

Both field and component objects have a value property. (Fields in a table open in a work area do not have any
properties, but they have a value; the concept is the same.)When they are dataLinked, changes in one object’s
value property are echoed in the other. The form component’s value property reflects the value displayed in the
component at any given moment. If the component’s value is changed, it is copied into the field.

The value property for all fields in a rowset are set when you first open a query and updated as you navigate
from row to row. The value properties for components dataLinked to those fields are also updated at the same
time, unless the rowset’s notifyControls property is set to false. You can also force the components to be
updated by calling the rowset’s refreshControls() method, which is useful if you have set a field’s value
property through code.

When reading or writing values to dataLinked components, you can use the value property of either the visual
component or the field object; there’s no difference, although you should be consistent. You may choose to
program the visual interface, if the underlying data is more likely to change; or you might choose to work with
the data objects, so you don’t have to worry about the names of the form components and whether they’re
correctly dataLinked. In general, it’s easier and more portable for data object events to access the fields, so
you’re more likely to assign to the value properties of the fields.

When the multiple property of a ListBox component is set to true, the "item that has focus", and subsequently
determines the value of the value property, is the most recently selected, or unselected, item. Do not assume an
item has focus because it is the last highlighted item on a list or because it was the most recently highlighted
item. For example, suppose you have a ListBox containing options 1 through 4 which are then selected in the
order 1, 4, and 2. Although the last highlighted item on the list is selection 4, the value property would be
determined by the value of option 2, the last selected option. In the event that option 1 is then unselected, it
would receive focus and determine the value of the value property even though it is not one of the highlighted
items.
Form objects 587

See also curSel, dataLink, rangeMax, rangeMin, toggle

value is also a property of the Field (page 14-422) and Parameter (page 14-423) classes.

vertical
Determines whether a Slider or ScrollBar object is vertical or horizontal.

Property of ScrollBar, Slider

Description Slider and ScrollBar objects may be horizontal or vertical. If vertical is true it’s vertical; if vertical is false, it’s
horizontal.

Changing the vertical property does not resize the object. For example, if you have a long horizontal scrollbar,
setting vertical to true results in a short, fat vertical scrollbar.

See also height, width

view
Specifies the name of a .QBE query or a table on which a form is based.

Property of Form, SubForm

Description Use view for form-based data handling with tables in work areas. When using the data objects, do not use view.

view determines which tables are automatically opened whenever the form is opened. You may specify a single
table, or a .QBE query file. If you specify a single table, dBASE Plus internally issues CLOSE DATABASES to
close all tables open in work areas (in the current workset) before opening the specified table in work area 1, in
its natural or primary key order.

A .QBE file is a program file that is supposed to open one or more tables in a specific index order, and contains
the appropriate Xbase DML commands such as SET RELATION and SET SKIP to create a multi-table view. In
.QBE files generated by earlier versions of dBASE Plus, the first command in the file is CLOSE DATABASES,
so using a generated .QBE also closes all open tables.

The specified table is opened (or the .QBE is executed) immediately when the view property is assigned.

Instead of using the view property, you may open the necessary tables yourself. All tables containing fields that
are dataLinked to controls on the form must be open when the form is instantiated; otherwise the dataLink
propeties will fail (because the specified fields cannot be found), causing an error.

If one form opens another form that is supposed to use the current record in the first form, you don’t want to set
the view property in the second form, because instantiating that second form would close the tables used by the
first form. This is a common situation where a form would use the current view, and not have anything assigned
to its view property.

If a form does not have its own view, you may assign a designView property to the form so that the necessary
tables are opened when you edit the form in the Form designer. The designView property has no effect when
you actually run the form.

Example The following are example values for view:
ZIPCODES.DBF // A single DBF table in the current directory
:IBLOCAL:EMPLOYEE // A table in a database
ORDERS.QBE // A .QBE file in the current directory

See also Alias, DataLink, DataSource, DesignView

visible
Specifies whether a component is visible.

Property of All form components.
588 dBL Language Reference

Description Use the visible property to conditionally hide a component. You may also disable a component without making
it invisible by setting its enabled property to false. This makes the component appear grayed-out. Depending on
the application, it may be more appropriate to completely hide something when it’s not needed, or to let the user
see it but not be able to do anything with it.

See also enabled

visibleCount()
Returns the number of tree items visible in the tree view area.

Syntax <oRef>.visibleCount()

<oRef> The tree view to check.

Property of TreeView

Description visibleCount() returns the number of tree items that are visible in the tree view area. To count all the tree items,
whether or not they are visible, use the count() method.

See also count(), setAsFirstVisible()

visualStyle
The style of the tabs in a NoteBook object.

Property of NoteBook

Description visualStyle is an enumerated property that can be one of the following values:

Value Description
0 Right Justify
1 Fixed Width
2 Ragged Right

The Fixed Width style makes all tabs the same width. The Right Justify and Ragged Right Styles are the same
when the notebook’s multiple property is false; the tabs are sized to the width of their text label.

When multiple is true and there are enough tabs to create multiple rows, Right Justify makes the tab edges line
up on both the left and right sides, while Ragged Right lines up the tabs on the left edge only.

See also dataSource, multiple

vScrollBar
Determines when an object has a vertical scroll bar.

Property of Grid, ListBox

Description The vScrollBar property determines when and if a control displays a vertical scrollbar. It may have any of four
settings:

Value Description
0 (Off) The object never has a vertical scroll bar.
1 (On) The object always has a vertical scroll bar.
2 (Auto) Displays a vertical scroll bar only when needed.
3 (Disabled) The vertical scroll bar is visible but not usable.

See also hScrollBar
Form objects 589

when
Event fired when attempting to give focus to an object; return value determines if object gets focus.

Parameters <form open expL> true for when the when event handler is called when the form is opened; false from
then on.

Property of All form components that can get focus (except NoteBook)

Description Use when to conditionally prevent an object from getting focus without disabling the object. If you set an
object’s enabled property to false, the object will appear grayed-out and disabled. This is a visual indication that
the object cannot get focus. The object is removed from the tab sequence and clicking the object has no effect.

If an object is enabled, you may define a when event handler to determine if an object is available. The event
handler must return true to allow the object to get focus. If it returns false, the object does not get focus. If the
object was clicked, focus remains on the object that previously had focus. If Tab or Shift+Tab was pressed, the
focus goes to the next control in the tab sequence.

Using when gives you the flexibility of displaying a message or taking some other action when the focus is not
allowed. But in most cases, it’s better to conditionally disable controls so that they are clearly not available. For
example, if you have a checkbox to echo output to a file and an entryfield for the file name, you can disable the
entryfield when the checkbox is unchecked in the checkbox’s onChange event handler.

If the when event handler returns true, or there is no when event handler, onGotFocus fires after the object
receives focus.

The when event for all controls is fired when the form first opens. Use the <form open expL> parameter if
necessary to distinguish that event from all other normal focus attempts.

Calling an object's setFocus() method invokes a call to the when event handler, and the when event's return
value determines the success of the setFocus(). The success or failure of the setFocus() method is not,
however, returned to the calling routine.

The firing order for Events when opening a form:
1 The form's open() method is called
2 The when event for each control is fired according to the z-order
3 The form's onOpen event is fired
4 The onOpen event for each control is fired according to the z-order

The firing order for Form object Events:
Clicking on a form object will result in the following events firing in this order;
1 The when event
2 The onGotFocus event
3 A mouse event such as, onLeftDblClick

Navigating to a form object by using the Tab key will result in the following events firing in this order;

1 The when event
2 The onGotFocus event

Tip ON KEY LABEL TAB <command> will perform an action (<command>) when the user presses the TAB key
(See ON KEY). However, even though ON KEY LABEL TAB is set to perform <command>, pressing Shift-
Tab will still move to another form object (the preceding one in the z-order) and fire it's events in the above
order.

See also enabled, onGotFocus, valid

width
The width of an object For Form and SubForm objects, the width of their client areas..

Property of Form, SubForm and all form contained objects.
590 dBL Language Reference

Description Use an object’s width property in combination with its height property to adjust the size of an object.

Form contained objects: The value of the width property includes any border, bevel or shadow effect assigned
to the object.

Forms and SubForms: The value of the width property includes only the client area. It does not include the
window border.

• When a Form or SubForm is opened and has a vertical scrollbar (see scrollbar property), it's width is
automatically reduced by the width of the vertical scroll bar (16 pixels).

• When a Form or SubForm's mdi property is true, the operating system enforces a minimum width of 88
pixels (without a vertical scrollbar) or 104 pixels (with a vertical scrollbar). These enforced minimums will
be used should you attempt to set the width property to a lower value.

The width property is numeric and expressed in the current metric unit of the form or subform that contains the
object.

The default metric unit is "characters", which is the average width of characters in the form’s base font (default
scaleFontName is "MS Sans Serif", default scaleFontSize is 8 points). Thus, if the parent forms' metric unit is
set to characters, and its' scaleFontName or scaleFontSize properties are changed, the objects on the form are
automatically scaled relative to the new font size.

Exception The width property of Line objects is used to set the thickness of the line and is always measured in "pixels".

See also height, left, move(), top

windowState
The maximized/minimized state of the form window.

Property of Form, SubForm

Description Use windowState to get or set the display state of a form. A window may be maximized, minimized, or in its
non-maximized “normal” (restored) state. The appearance of the window also depends on whether it is an MDI
window, as noted in the following table.

Setting Effect on an MDI form Effect on a non-MDI form
0 (Normal) If minimized or maximized, the form is restored to

its most recent non-maximized size and position
within the MDI frame window.

If minimized or maximized, the form is restored to
its most recent non-maximized size and position on
the screen.

1 (Minimized) Reduces a normal or maximized form to an
iconized title bar at the bottom of the MDI frame
window.

Reduces a normal or maximized form to an iconized
button on the Windows taskbar.

2 (Maximized) Enlarges the form to the extent of the MDI frame
window.

Enlarges the form to the extent of the screen.

The MDI frame window is the main dBASE Plus application window.

If you assign a value to windowState that changes its state, the form’s onSize event fires and the form is also
given focus. To give focus to the window without changing its state, call the form’s setFocus() method.

Example

See also MDI, moveable, onSize, sizeable

wrap
Determines if an Editor or Text object wraps text automatically.

Property of ColumnEditor, Text, Editor
Form objects 591

Description Use wrap to wrap long lines of text in the editor or in a text object. When wrap is true, text won’t exceed the
width of the object and a horizontal scrollbar will not appear. The Text or Editor object will attempt to break
each line at a space.

If wrap is false, long lines extend past the right edge of the Editor. If scrollBar is On or Auto, a horizontal
scrollbar is used (where needed) to view long lines of text. Even without scrollbars, you can use the cursor to
move to the end of long lines.

See also scrollBar
592 dBL Language Reference

C h a p t e r

Chapter 16Application shell
This section covers supporting application elements such as menus, popups, toolbars, standard dialogs, keyboard
behavior, and the _app object.

_app
The global object representing the currently running instance of dBASE Plus.

Syntax The _app object is automatically created when you start dBASE Plus.

Properties The following tables list the properties and events of the _app object. (No methods are associated with the _app
object.)

Property Default Description
allowDEOExeOverride true Whether a dBASE Plus application checks for external objects
allowYieldOnMessage false Whether dBASE Plus checks for messages during progam execution
baseClassName APPLICATION Identifies the object as an instance of the dBASE Plus application (Property

discussed in Chapter 5, “Core language.”)
className (APPLICATION) Identifies the object as an instance of a custom class. When no custom class

exists, defaults to baseClassName
databases Object array An array containing references to all database objects used by the Navigatior
ddeServiceName DBASE The name used to identify each instance of dBASE Plus when used as a DDE

service
detailNavigationOverride 0 (Use rowset’s

detail setting)
Whether or not a rowset’s allowDetailNavigation and
navigateBeforeNextMaster properties are overridden.

errorAction 4 (Show Error
Dialog)

Default action to be taken when an error is encountered

errorHTMFile error.htm Filename of an HTM file template (runtime web apps only)
errorLogFile PLUSErr.LOG Filename of the error log file to be used when the _app object's errorAction

property is set to 2,3, or 5.
errorLogMaxSize 100 Approximate maximum size of the error log file (kilobytes)
errorTrapFilter 0 (Trap all errors) Enables, or disables, the detection of certain kinds of errors.
exeName Drive, path and filename of the currently running instance of PLUS.exe or a

dBASE Plus application .exe.
frameWin Object The dBASE Plus MDI frame window
insert true Whether text typed at the cursor is inserted or overwrites existing text
language The currently used display language in the design and runtime environments.

Read only.
printer Object Configuation properties for the default printer
session Object The default Session object
Application shell 593

_app.frameWin
Description Use _app to control and get information about the currently running instance of dBASE Plus. The insert
property controls the insert or overwrite behavior of typed text in all forms, the Source Editor, and the
Command window. It is toggled by pressing the Insert key. You may show or hide the default toolbars and the
status bar. To control other aspects of the main application window, use the _app.frameWin object.

The databases array contains references to all databases opened by the Navigator. The default database is the
first element in that array. The session property points to the default session. Therefore
_app.databases[1].session and _app.session point to the same object.

To use dBASE Plus as a DDE server, set the ddeServiceName to a unique identifier if there is more than one
instance of dBASE Plus running or if you want your application to have a specific DDE service name other than
the default "dBASE", then assign an onInitiate event handler to handle the service request. For more
information and an example of using ddeServiceName, see Chapter 19, “Extending dBASE Plus with DLLs,
OLE and DDE”.

The _app object is also used to store important global values and other objects used by your application.
Dynamically creating properties of _app is better than creating public variables. Variables may be inadvertently
released or conflict with other variable names. Objects referenced only in variables cannot communicate with
each other using object-oriented techniques like objects attached to the same parent object—in this case _app—
can.

Example To set Insert off for your application:
_app.insert = false

The following example attaches a form manager object (a custom class) to the _app object.
set procedure to MANAGER.CC additive
_app.manager = new FormManager()

See Also _app.frameWin

_app.frameWin
The dBASE Plus MDI frame window.

Syntax The _app.frameWin object is automatically created when you start dBASE Plus.

sourceAliases Object array A read-only array containing references to all Source Aliases defined in the
PLUS.ini.

speedBar true Whether to display the default toolbar
statusBar true Whether to display the status bar at the bottom of the MDI frame window
terminateTimerInterval 5000 milliseconds Determines the amount of time, in milliseconds, between the closing of an

application .exe and the removal of PLUSrun.exe from the Web servers
memory

web false Indicates whether an application .exe was built using the WEB parameter

Event Parameters Description
onInitiate <topic expC> When a client application requests a DDE link with dBASE Plus as the

server, and no DDETopic object for the specified topic exists in memory.

Method Parameters Description
addToMRU() <filename>,

<launchMode>
When called, adds a file to the “most recently used” files list located on the
“Files | Recent Files” and “Files | Recent Projects” menus.

executeMessages() When called, handles pending messages during execution of a processing
routine..

Property Default Description
594 dBL Language Reference

class Menu
Properties The following table lists the properties of the _app.frameWin object. (No events are associated with the
_app.frameWin object.)

Property Default Description
baseClassName FRAMEWINDOW Identifies the object as an instance of an MDI frame window (Property discussed in

Chapter 5, “Core language.”)
className (FRAMEWINDOW) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
hWnd The Windows handle to the frame window
text dBASE Plus The title displayed in the frame window

systemTheme true Whethor or not to use the common controls in the manifest file for Windows XP or
Windows Vista.

visible true Whether the frame window is visible
windowState The state of the frame window: 0=Normal, 1=Minimized, 2=Maximized

Method Parameters Description
hasHScrollBar() Indicates whether a frame window uses a horizontal scrollbar..
hasVScrollBar() Indicates whether a frame window uses a vertical scrollbar.

Description _app.frameWin represents the main dBASE Plus application window. This window is the frame window that
contains all MDI windows during development and in an MDI application. If your application uses SDI
windows only, the MDI frame window is usually hidden with the SHELL() function.

If you assign a MenuBar to _app.frameWin, that menu becomes the default menu that is visible when no MDI
windows are open, or the current MDI window has no menu of its own. If you are using SHELL() to hide the
Navigator and Command window in an MDI application, you must call SHELL() after assigning the
_app.frameWin menu.

Example The following statements are used at the beginning of an application to set the title in the MDI frame window to
the name of the application, attach a default menu, and hide the Navigator and Command window.

_app.frameWin.text := "Data Dazzler 3000"
do EMPTY.MNU with _app.framewin
set procedure to EMPTY.MNU additive
shell(false, true)

See also SHELL()

class Menu
A menu item in a menubar or popup menu.

Syntax [<oRef> =] new Menu(<parent>)

<oRef> A variable or property—typically of <parent>—in which to store a reference to the newly created
Menu object.

<parent> The parent object—a MenuBar, Popup, or another Menu object—that contains the Menu object.

Properties The following tables list the properties, events, and methods of the Menu class.

Property Default Description
baseClassName MENU Identifies the object as an instance of the Menu class.
before The next sibling menu object
checked false Whether to display a checkmark next to a menu item.
checkedBitmap An image to represent the mark to appear next to the menu item if checked is true.
className (MENU) Identifies the object as an instance of a custom class. When no custom class exists, defaults

to baseClassName
Application shell 595

class Menu
Description Menu objects represent the individual menu items, or prompts, in a menu system. They can be attached to
MenuBar objects, Popup objects, or other Menu objects so that:

• When attached to a menubar, they are the top-level menu items, such as the standard File and Edit menus.

• Menu items attached to a top-level menu item form the drop-down menu, such as the standard Cut and Paste
menu items in the top-level Edit menu.

• Menu items attached to a popup comprise the items in the popup.

• Any other menu items that have menu items attached to them become cascading menus.

Unless a menu item has other menu items attached to it (making it a cascading menu) selecting the menu item
fires its onClick event. Actions are assigned to each menu item by creating an onClick event handler for the
menu object.

The actions for the standard Undo, Cut, Copy, and Paste menu items and the Window menu are handled by
assigning the menu items to the menubar’s editUndoMenu, editCutMenu, editCopyMenu, editPasteMenu, and
WindowMenu properties respectively.

Menu objects are also used as separators in a drop-down or popup menu by setting their separator property to
true. In this case, the menu item serves no other purpose and cannot be a cascading menu or have an onClick
event handler.

Creating accelerators and pick characters There are two ways to let the user choose a menu item
by using the keyboard (which may be used at the same time):

• Assign a key combination to the menu item’s shortCut property. This is sometimes called an accelerator. For
example, Ctrl+C is usually used for the Cut menu item. Pressing the accelerator chooses the menu item even
if the menu item is not visible.

• Specify a pick character in the text prompt of the menu item by preceding it with an ampersand (&). Pick
characters work only when the menu item is visible. For top-level items in a menubar, you must press Alt and
the pick character to activate the menu. Once the menu system is activated, pressing Alt in combination with
the pick character is optional.

enabled true Determines if the menu can be selected.
helpFile Help file name
helpId Help index topic or context number for context-sensitive help
ID -1 Supplementary ID number for menu item
name The name of the menu item.
parent The menu item’s immediate container
separator false Whether the menu object is a separator instead of a selectable menu item.
shortCut The key combination that fires the onClick event.
statusMessage The message to display on the status bar when the menu item has focus.
text The text of the menu item prompt.
uncheckedBitmap An image to represent the mark to appear next to the menu item if checked is false.

Event Parameters Description
onClick After the menu item is chosen.
onHelp When F1 is pressed—overrides context-sensitive help

Method Parameters Description
release() Explicitly removes the menu object from memory.

Property Default Description
596 dBL Language Reference

class MenuBar
Note Assigning F1 as the shortCut key for a menu item disables the built-in context-sensitive help based on the
helpFile and helpId properties. The onClick for the menu item will be called instead. Therefore, if you have a
menu item for Help it should not have F1 assigned as its shortCut key unless you want to handle help yourself.

Example This excerpt from a .MNU file shows the definition of the top-level Edit menu item and its Undo menu item,
where this is the MenuBar object:

 this.EDIT = new MENU(this)
 with (this.EDIT)
 text = "&Edit"
 endwith

 this.EDIT.UNDO = new MENU(this.EDIT)
 with (this.EDIT.UNDO)
 text = "&Undo"
 shortCut = "Ctrl+Z"
 endwith

The names of the menu prompts match the names of the menu objects as a convenience; it is not required. Note
the use of the ampersand to designate the pick characters and that the Undo menu item’s parent is the Edit menu.
At the end of the MenuBar object constructor, the Undo menu item is assigned to the menubar’s editUndoMenu
property to enable the standard Undo behavior:

this.editUndoMenu = this.EDIT.UNDO

See Also class MenuBar, class Popup, editUndoMenu, editCutMenu, editCopyMenu, editPasteMenu, WindowMenu

class MenuBar
A form’s menu.

Syntax [<oRef> =] new MenuBar(<parent> [, <name expC>])

<oRef> A variable or property in which to store a reference to the newly created MenuBar object.

<parent> The form (or the _app.frameWin object) to which you’re binding the MenuBar object.

<name expC> An optional name for the MenuBar object. The Menu Designer always uses the name
"root". If not specified, the MenuBar class will auto-generate a name for the object.

Properties The following table lists the properties of the Menubar class.

Property Default Description
baseClassName MENUBAR Identifies the object as an instance of the MenuBar class.
className (MENUBAR) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
editCopyMenu A menu item that copies selected text from a control to the Windows clipboard.
editCutMenu A menu item that deletes selected text from a control and copies it to the Windows

clipboard.
editPasteMenu A menu item that pastes text from the Windows clipboard to the edit control with

focus.
editUndoMenu A menu item that restores the form to the state before the last edit operation was

performed.
ID -1 A supplementary ID number for the object
name The menubar object's name.
parent An object reference that points to the parent form.
WindowMenu A top-level menu that lists open MDI windows.

Event Parameters Description
onInitMenu When the menu is opened.
Application shell 597

class MenuBar
Method Parameters Description
release() Explicitly removes the menubar object from memory.

Description A MenuBar object represents the top-level menu for a form. It contains one or more Menu objects which
comprise the individual top-level menu items. The top-level menu of a form is displayed at the top of the form if
the form’s MDI property is false, or in the MDI frame window if the form’s MDI property is true when the form
has focus.

You may also designate a menubar that appears in the MDI frame when no MDI forms have focus by assigning
a menubar to the _app.frameWin object.

The MenuBar object automatically binds itself to the <parent> form. Unlike other controls, you usually do not
assign the resulting <oRef> as a property of the form, since this is done automatically, using the <name expC>
that is specified. The Menu Designer always uses the name "root", so a form’s menu is referred to with the
object reference:

form.root

Example The following is the code generated by the Menu Designer for a basic menu that contains an empty File menu,
the standard Edit menu, and a Window menu which lists all the open MDI forms. Note that the standard
bootstrap code at the top of the file takes a form object as a parameter, and then binds the menubar object to that
form using the name "root".

** END HEADER -- do not remove this line
//
// Generated on 01/09/98
//
parameter formObj
new BASICMENU(formObj, "root")

class BASICMENU(formObj, name) of MENUBAR(formObj, name)

 this.FILE = new MENU(this)
 with (this.FILE)
 text = "&File"
 endwith

 this.EDIT = new MENU(this)
 with (this.EDIT)
 text = "&Edit"
 endwith

 this.EDIT.UNDO = new MENU(this.EDIT)
 with (this.EDIT.UNDO)
 text = "&Undo"
 shortCut = "Ctrl+Z"
 endwith

 this.EDIT.CUT = new MENU(this.EDIT)
 with (this.EDIT.CUT)
 text = "Cu&t"
 shortCut = "Ctrl+X"
 endwith

 this.EDIT.COPY = new MENU(this.EDIT)
 with (this.EDIT.COPY)
 text = "&Copy"
 shortCut = "Ctrl+C"
 endwith

 this.EDIT.PASTE = new MENU(this.EDIT)
 with (this.EDIT.PASTE)
 text = "&Paste"
 shortCut = "Ctrl+V"
598 dBL Language Reference

class Popup
 endwith

 this.WINDOW = new MENU(this)
 with (this.WINDOW)
 text = "&Window"
 endwith

 this.windowMenu = this.WINDOW
 this.editCutMenu = this.EDIT.cut
 this.editCopyMenu = this.EDIT.copy
 this.editPasteMenu = this.EDIT.paste
 this.editUndoMenu = this.EDIT.undo
endclass

See Also _app.frameWin, class Menu, class Popup, menuFile

class Popup
A popup menu assigned to a form.

Syntax [<oRef> =] new Popup(<parent> [, <name expC>])

<oRef> A variable or property in which to store a reference to the newly created Popup object.

<parent> The form to which you’re binding the Popup object.

<name expC> An optional name for the Popup object. If not specified, the Popup class will auto-generate
a name for the object.

Properties The following tables list the properties, events and methods of the Popup class.

Property Default Description
alignment Align Center Aligns the popup menu horizontally relative to the right-click location (0=Align Center,

1=Align Left, 2=Align Right).
baseClassName POPUP Identifies the object as an instance of the Popup class.
className (POPUP) Identifies the object as an instance of a custom class. When no custom class exists, defaults

to baseClassName
id -1 A supplementary ID number for the object
left Sets the position of the left border.
name The popup object's name.
parent An object reference that points to the parent form.
top Sets the position of the top border.
trackRight true Determines whether the popup menu responds to a right mouse click for selection of a

menu item.

Event Parameters Description
onInitMenu After the popup menu is opened.

Method Parameters Description
open() Opens the popup menu.
release() Explicitly removes the popup object from memory.

Description A Popup object represents a context or popup menu that is displayed when you right-click a form. You may also
open the popup explicitly by calling its open() method.
Application shell 599

class ToolBar
A form may have any number of popup menu bound to it. Only one menu at time can be assigned to the form’s
popupMenu property; that is the menu that appears when right-clicking the form.

The popup contains Menu objects that represent the menu items in the popup.

Example

See Also class Menu, popupEnable, popupMenu

class ToolBar
A toolbar assigned to a form.

Properties The following tables list the properties, events and methods of the ToolBar class.

Property Default Description
baseClassName TOOLBAR Identifies the object as an instance of the ToolBar class.
className (TOOLBAR) Identifies the object as an instance of a custom class. When no custom class exists,

defaults to baseClassName
flat true Logical value which toggles the appearance of buttons on the toolbar between

always raised (false) to only raised when the pointer is over a button (true).
floating false Logical value that lets you specify your toolbar as docked (false) or floating (true).
form null Returns the object reference of the form to which the toolbar is attached.
hWnd 0 Returns the toolbar’s handle.
imageHeight 0 Adjusts the default height for all buttons on the toolbar. Since all buttons must have

the same height, if ImageHeight is set to 0, all buttons will match the height of the
tallest button. If ImageHeight is set to a non-zero positive number, images assigned
to buttons are either padded (by adding to the button frame) or truncated (by
removing pixels from the center of the image or by clipping the edge of the image).

imageWidth 0 Specifies the width, in pixels, for all buttons on the toolbar.
left 0 Specifies the distance from the left side of the screen to the edge of a floating

toolbar.
text String that appears in the title bar of a floating toolBar.
top 0 Specifies the distance from the top of the screen to the top of a floating toolbar.
visible true Logical property that lets you hide or reveal the toolbar.

Event Parameters Description
onUpdate Fires repeatedly while application is idle to update the status of the toolbuttons

Method Parameters Description
attach() <form> Establishes link between the toolbar and a form
detach() <form> Breaks link between the toolbar and a form

Description Use class ToolBar to add a toolbar to a form.

Example Here’s an example of an object definition program, MYTOOLBR.PRG, which defines a basic two-button
toolbar for use in any form or application.

parameter FormObj
 if pcount() < 1
 msgbox("DO mytoolbr.prg WITH <form reference>")
 return
 endif
t = findinstance("myTBar")
if empty(t)
 ? "Creating toolbar"
 t = new myTBar()
endif
try
 t.attach(FormObj)
600 dBL Language Reference

class ToolButton
catch (Exception e)
 // Ignore already attached error
 ? "Already attached"
endtry
class myTBar of toolbar
 this.imagewidth = 16
 this.flat = true
 this.floating = false
 this.b1 = new toolbutton(this)
 this.b1.bitmap = 'filename ..\artwork\button\dooropen.bmp'
 this.b1.onClick = {;msgbox("door is open")}
 this.b1.speedtip = 'button1'
 this.b2 = new toolbutton(this)
 this.b2.bitmap = 'filename ..\artwork\button\doorshut.bmp'
 this.b2.onClick = {;msgbox("door is shut")}
 this.b2.speedtip = 'button2'
endclass

See Also class ToolButton

class ToolButton
Defines the buttons on a toolbar.

Properties The following tables list the properties and events of the ToolButton class. (No methods are associated with this
class.)

Property Default Description
baseClassName TOOLBUTTON Identifies the object as an instance of the ToolButton class.
bitmap Graphic file (any supported format) or resource reference that contains one or more

images that are to appear on the button.
bitmapOffset 0 Specifies the distance, in pixels, from the left of the specified Bitmap to the point at

which your button graphic begins. This property is only needed when you specify a
Bitmap that contain a series of images arranged from left to right. Use with
BitmapWidth to specify how many pixels to display from the multiple-image
Bitmap. Default is 0 (first item in a multiple-image Bitmap).

bitmapWidth 0 Specifies the number of pixels from the specified Bitmap that you want to display
on your button. This property is only needed when you specify a Bitmap that
contain a series of images arranged from left to right. Use with BitmapOffset, which
specifies the starting point of the image you want to display.

checked false Returns true if the button has its TwoState property set to true. Otherwise returns
false.

className (TOOLBUTTON) Identifies the object as an instance of a custom class. When no custom class exists,
defaults to baseClassName

enabled true Logical value that specifies whether or not the button responds when clicked. When
set to false, the operating system attempts to visually change the button with
hatching or a low-contrast version of the bitmap to indicate that the button is not
available.

parent N/A An object reference that points to the parent ToolBar.
separator false Logical value that lets you set a vertical line on the toolbar to visually group

buttons. If you specify a separator button, only its Visible property has any
meaning.

speedTip Specifies the text that appears when the mouse rests over a button for more than
one second.

twoState true Logical value that determines whether the button displays differently when it has
been depressed and consequently sets the Checked property to true.

visible false Logical value that lets you hide (false) or show (true) the button.
Application shell 601

addToMRU()
Event Parameters Description
onClick After the button is clicked.

Description Use class ToolButton to define the buttons on an existing toolbar.

Example See class ToolBar.

See Also class ToolBar

addToMRU()
Use the addToMRU() method to add a file to the “most recently used” files list located on the “Files | Recent
Files” and “Files | Recent Projects” menus.

Syntax _app.addToMRU(<filename>, <launchMode>)

<filename> File name and optional path or alias

In order to be added to the Recent Files list:
• If no alias is specified, a file must exist and must not have an extension of .TMP

• If an alias IS specified, it is added to the list without first checking if it exists

In order to be added to the Recent Projects list:
A file must have an extension of .PRJ and <launchMode> must be 4 - "Run"

<launchMode> A number from 0 to 12 specifying how the file should be launched, or opened, when a
user selects it from the Recent Files list.

Table 16.1

Number Launch Mode Description
0 Use the default method based on files extension
1 Launch as if user selected, "File | New", from menu
2 reserved
3 Open file in appropriate designer
4 "Run" the file

for Projects: Open in Project Explorer
for Programs: DO <program>
for Tables: Edit Records
for Queries: Edit Records

5 Alternate "Run"
for Programs: DEBUG
for Tables: APPEND
for Queries: SET VIEW only
for ...qry: SET VIEW only

6 Open a table via USE
7 reserved
8 Close
9 Open in Source Editor
10 Compile
11 Debug
12 Build
602 dBL Language Reference

allowDEOExeOverride
Property of _app object

Description The addToMRU() method can be called from a dBL program that runs in the dBASE Plus IDE. If called in a
dBASE Plus runtime application, it will RETURN without doing anything.

allowDEOExeOverride
Determines whether an application will search for external objects.

Property of _app object

Description Dynamic External Objects (DEO) is active in dBASE Plus by default, which allows applications to perform an
automatic search for external objects. Setting the allowDEOExeOverride property to false prevents procedures,
built into an application .exe, from being overridden by external objects, by first searching within the
application .exe. Only procedures that do NOT exist within the .exe are then searched for outside of the
application .exe.

When allowDEOExeOverride is false:
dBASE Plus searches for objects as follows:

1 It looks inside the application's .exe file, the way Visual dBASE did in the past.

2 It looks in the "home" folder from which the application was launched.

3 It looks in the .ini file to see if there's a series of search paths specified. It checks all the paths in the list
looking for the object file requested by the application.

When allowDEOExeOverride is true (the default):
dBASE Plus searches for objects as follows:

1 It looks in the "home" folder from which the application was launched.

2 It looks in the .ini file to see if there's a series of search paths specified. It checks all the paths in the list
looking for the object file requested by the application.

3 It looks inside the application's .exe file, the way Visual dBASE did in the past.
The default setting for the allowDEOExeOverride property is true.

allowYieldOnMsg
Enables or disables the message pump during execution of dBASE Plus applications.

Property of _app object

Description Use allowYieldOnMsg to allow dBASE Plus to be more responsive while the interpreter is running a lengthy
routine.

When allowYieldOnMsg is set to false, the default setting, dBASE Plus does NOT check for messages until the
interpreter completes running the current program. Setting allowYieldOnMsg to false will speed up processing.

When allowYieldOnMsg is set to true, the dBASE Plus interpreter periodically checks for messages waiting to
be processed and, if found, sends them to the appropriate routines.

Messages pumped when allowYieldOnMsg is set to true include the following:

• WM_PAINT - signals dBASE Plus to repaint a control, container, form, or framewindow to update its
contents.

• WM_CLOSE - signals dBASE Plus to close a window.

• WM_QUERYENDSESSION - signals that the current user is logging out of Win 9x, Win NT, Win ME, or
2000, which in turn, causes dBASE Plus to shut down.

• WM_QUIT - signals that the user has closed dBASE Plus by
• Clicking the X in the upper right of the frame window
Application shell 603

attach()
• Selecting "Close" from the menu which appears when right clicking on the title bar of the frame window.
• Pressing "Alt-F4".

attach()
Establishes link between a toolbar and a form.

Syntax <toRef>.attach(<oRef>)

<toRef> An object reference to the toolbar.

<oRef> An object reference to the form.

Property of ToolBar

Description Along with detach(), this method lets you manage toolbars in your application by connecting and disconnecting
the objects as needed.

Typically, however, a toolbar is attached when a form calls a program in which the toolbar is defined, as is done
in the included CLIPBAR.PRG sample:

parameter FormObj, bLarge
 private typeCheck
 local t, bNew
 bNew = false
 if (PCOUNT() == 0)
 MSGBOX("To attach this toolbar to a form use: " + ;
 CHR(13) + CHR(13) + ;
 "DO " + PROGRAM() + " WITH <form reference>","Alert")
 else
 typeCheck = FindInstance("ClipToolbar")
 if (TYPE("typeCheck") == "O")
 t = typeCheck
 else
 SET PROCEDURE TO (PROGRAM()) ADDITIVE
 t = new ClipToolbar(bLarge)
 bNew := true
 endif
 t.attach(FormObj)
 endif
return (bNew)

See Also detach()

charSet
Returns the name of the global character set.

Property of _app object

Description Use the charSet property to display the name of the current global character set. This is the same name returned
by LIST STATUS or DISPLAY STATUS in the Command window. The charSet property is read-only.

See Also ANSI(), CHARSET(), lDriver

checked
Determines if a checkmark appears beside a menu item.

Property of Menu

Description Use checked to indicate that a condition or a process is turned on or off.
604 dBL Language Reference

checkedBitmap
The checkmark appears to the left of the menu command when you set the checked property to true; the
checkmark is removed when you set the checked property to false.

You may specify a bitmap to display instead of the checkmark with the checkedBitmap property, and a bitmap
to display when checked is false with the uncheckedBitmap property.

Example Suppose you want to show or hide all rows where the age of the person listed is under 18. You have a menu
prompt "Show minors" with the following onClick event handler:

function showMinors_onClick()
 if this.checked
 form.rowset.filter := "AGE >= 18"
 else
 form.rowset.clearFilter()
 endif
 this.checked := not this.checked

If the option is already checked, you hide the rows by setting a filter. If the option is unchecked, you clear the
filter so that all rows are shown. In either case, you flip the value of the checked property.

See Also checkedBitmap, uncheckedBitmap

checkedBitmap
A bitmap to display instead of a checkmark when a menu item is checked.

Property of Menu

Description Use checkedBitmap to display a bitmap instead of a checkmark when a menu item’s checked property is true.

The checkedBitmap setting can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

• FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

Note The display area in the menu item is very small (13 pixels square with Small fonts). If the bitmap is too large,
the top left corner is displayed. Also, the color of the bitmap when the menu item is highlighted changes,
depending on the system menu highlight color. Therefore, you may want to limit yourself to simple
monochrome bitmaps.

See Also checked, uncheckedBitmap

CLEAR TYPEAHEAD
Clears the typeahead buffer, where keystrokes are stored while dBASE Plus is busy.

Syntax CLEAR TYPEAHEAD

Description If you have not issued a SET TYPEAHEAD TO 0 command, the keyboard typeahead buffer stores keystrokes
the user enters while dBASE Plus is busy processing other data. When the processing is complete and keyboard
input is enabled again, dBASE Plus processes and deletes the values in the buffer in the order they were entered
until the buffer is empty. Use CLEAR TYPEAHEAD to discard any keystrokes that may have been entered
during processing, to ensure that the keyboard data currently being processed comes directly from the keyboard.

For example, if you want to be able to fill in multiple screens quickly, one after the other, you would not issue
CLEAR TYPEAHEAD during processing. This would let you continue typing data while data from one screen
was being saved and the next (blank) one being displayed. The data you entered during processing would be
entered onto the new screen when it appeared. On the other hand, if you want to make sure that no data is
entered until the next screen is displayed, issue CLEAR TYPEAHEAD after displaying the blank screen and
before beginning data entry.

See Also KEYBOARD, SET TYPEAHEAD
Application shell 605

databases
databases
An array containing references to all database objects used by the Navigator.

Property of _app object

Description Use the databases property to reference an array of database objects associated with the _app object. The
default database, _app.databases[1], is the first element in that array.

To add a database to the array:
d = new database()
d.databaseName = "MyBDEAlias"
d.active = true
_app.databases.add(d)

To work with tables referenced by that alias:
_app.databases[2].copyTable("Stuff", "CopyOfStuff")

ddeServiceName
The name used to identify each instance of dBASE Plus when used as a DDE (Dynamic Data Exchange) service

Property of _app object

Description The _app object’s ddeServiceName property contains the service name for the current instance of dBASE Plus;
the default is "dBASE". You may change the ddeServiceName if there is more than one instance of dBASE Plus
running, or if you want to identify your dBASE Plus application with a specific DDE service name.

DEFINE COLOR
Creates and names a customized color.

Syntax DEFINE COLOR <color name>
<red expN>, <green expN>, <blue expN>

<red expN>, <green expN>, <blue expN> Specifies the proportions of red, green, and blue (RGB)
that make up the defined color. Each number determines the intensity of the color it represents, and can range
from 0 (least intensity) to 255 (greatest intensity).

Description Use DEFINE COLOR to create a custom color. Once you have defined <color name>, you can use it instead of
one of the standard colors such as R, W, BG, silver, lemonchiffon, and so on.

The color you create with DEFINE COLOR is based on three numbers, <red expN>, <green expN>,
and<blue expN>. Adjusting these numbers alters the color you create. For example, increasing or decreasing
<green expN> increases or decreases the amount of green contained in the customized color.

Use the GETCOLOR() function to open a dialog box in which you create a custom color or choose from a
palette of available colors. After exiting GETCOLOR(), issue DEFINE COLOR with the values it returns to
define the desired color.

You can't override any standard color definitions. For a full list of standard colors, see the color property.

Colors defined with DEFINE COLOR are active only during the current dBASE Plus session. If you restart
dBASE Plus, you must redefine the colors. You may redefine a custom color as often as you wish. Changing the
definition of a color does not automatically change the color of objects that have been set to that color; you must
reassign the color.

Example The following example defines some standard departmental colors from RGB values stored in a table:
function setCorporateColors(cDeptName)
 local q, r
 q = new Query("select * from COLORSCHEME")
 r = q.rowset
 if r.applyLocate("DEPTNAME = '" + cDeptName + "'")
606 dBL Language Reference

detach()
 private rgbValue // Use private var for ¯o
 rgbValue = r.fields["BACKGROUND"].value
 define color DEPT_BG &rgbValue
 rgbValue = r.fields["LOGO"].value
 define color DEPT_LOGO &rgbValue
 rgvValue = r.fields["TEXT"].value
 define color DEPT_TEXT &rgbValue
 endif

The function takes the department name as a parameter. If that department has a listing in the table, RGB values
like "115,180,40" are read from the table and used for different standard colors, such as the background and text
color. ¯o substitution is used to convert the value strings into the literal numeric values, separated by
commas, that are expected by the DEFINE COLOR command.

Presumably, default departmental colors have already been defined so that if no match is found, the color names
can be used.

See Also colorNormal, GETCOLOR()

detach()
Breaks links between a toolbar and a form.

Syntax <toRef>.detach(<oRef>)

<toRef> An object reference to the toolbar.

<oRef> An object reference to the form.

Property of ToolBar

Description Along with attach(), this method lets you manage toolbars in your application by connecting and disconnecting
the objects as needed.

Typically, however, a toolbar is detached as part of a form’s cleanup routines, as is done in the following
example:

function close
 private sFolder
 sFolder = this.restoreSet.folder
 CLOSE FORMS
 SET DIRECTORY TO &sFolder.
 this.toolbars.appbar.detach(_app.framewin)
 with (_app)
 framewin.text := this.restoreSet.frameText
 speedbar := this.restoreSet.speedBar
 app := null
 endwith
 shell(true, true)
 return

See Also attach()

detailNavigationOverride
Controls whether or not a rowset’s navigateMaster and navigateByMaster properties are overridden.

Property of _app object

Description

Value Description
0 Use rowset’s detail setting
1 Always Navigate Detail Rowsets
2 Never Navigate Detail Rowsets
Application shell 607

editCopyMenu
0 Use rowset’s actual navigateMaster and navigateByMaster properties to determine whether or not to
navigate through detail rowsets when navigating through a master rowset.

1 All rowsets display SET SKIP behavior. Rowsets behave as if their navigateMaster and navigateByMaster
properties were set to true.

2 All rowsets will not display SET SKIP behavior. Rowsets behave as if their navigateMaster and
navigateByMaster properties were set to false.

The default setting for detailNavigationOverride is 0.

Whenever you change the value of detailNavigationOverride, calling the refresh() method of any grid with
datalinked rowsets will cause the grid to display correctly.

See Also navigateByNextMaster, navigateMaster

editCopyMenu
Specifies a menu item that copies selected text from a control to the Windows Clipboard.

Property of MenuBar

Description editCopyMenu contains a reference to a menu object users select when they want to copy text.

You can use the editCopyMenu property of a form's menubar to copy selected text to the Windows Clipboard
from any edit control in the form, instead of using the control's Copy() property. In effect, editCopyMenu calls
Copy() for the active control. This lets you provide a way to copy text with less programming than would
otherwise be needed. The Copy menu item is automatically disabled when no text is selected, and enabled when
text is selected.

For example, suppose you have a Browse object (b) and an Editor object (e) on a form (f). To implement text
copying, you could specify actions that would call b.Copy() or e.Copy() whenever a user wanted to copy text.
However, if you use a menubar, you can set the editCopyMenu property to the menu item the user will select to
copy text. Then, when the user selects that menu item, the text is automatically copied to the Windows
Clipboard from the currently active control. You don't need to use the control's Copy() property at all.

If you use the Menu designer to create a menubar, editCopyMenu is automatically set to an item named Copy on
a pulldown menu named Edit when you add the Edit menu to the menubar:

this.EditCopyMenu = this.Edit.Copy

Example See WindowMenu.

See Also CLASS MENUBAR, Copy(), editCutMenu, editPasteMenu, editUndoMenu, WindowMenu

editCutMenu
Specifies a menu item that cuts selected text from a control and places it on the Windows Clipboard.

Property of MenuBar

Description editCutMenu contains a reference to a menu object users select when they want to cut text.

You can use the editCutMenu property of a form's menubar to cut (delete) selected text and place it on the
Windows Clipboard from any edit control in the form, instead of using the control's Cut() property. In effect,
editCutMenu calls Cut() for the active control. This lets you provide a way to copy text with less programming
than would otherwise be needed. The Cut menu item is automatically disabled when no text is selected and
enabled when text is selected.

For more information, see editCopyMenu.

Example See WindowMenu.

See Also CLASS MENUBAR, Cut(), editCopyMenu, editPasteMenu, editUndoMenu, WindowMenu
608 dBL Language Reference

editPasteMenu
editPasteMenu
Specifies a menu item that copies text from the Windows clipboard to the currently active edit control.

Property of MenuBar

Description editPasteMenu contains a reference to a menu object users select when they want to paste text to the cursor
position in the currently active edit control.

You can use the editPasteMenu property of a form's menubar to paste text from the Windows Clipboard into
any edit control in the form, instead of using the control's Paste() property. In effect, editPasteMenu calls
Paste() for the active control. This lets you provide a way to paste text with less programming than would
otherwise be needed. The Paste menu item is automatically disabled when the clipboard is empty, and enabled
when text is copied or cut to the Clipboard.

For more information, see editCopyMenu.

Example See WindowMenu.

See Also CLASS MENUBAR, Paste(), editCopyMenu, editCutMenu, editUndoMenu, WindowMenu

editUndoMenu
Specifies a menu item that reverses the effects of the last Cut, Copy, or Paste action.

Property of MenuBar

Description editUndoMenu contains a reference to a menu object users select when they want to undo their last Cut, Copy,
or Paste action.

You can use the editUndoMenu property of a form's menubar to undo a Cut or Paste action from any edit control
in the form, instead of using the control's Undo() property. In effect, editUndoMenu calls Undo() for the active
control. This lets you provide a way to undo with less programming than would otherwise be needed.

For more information, see editCopyMenu.

Example See WindowMenu.

See Also CLASS MENUBAR, Undo(), editCopyMenu, editCutMenu, editPasteMenu, WindowMenu

errorAction
Default action to be taken when an error is encountered.

Property of _app object

Description Use errorAction to handle errors, and error reporting, when a TRY. . . CATCH or ON ERROR handler is not in
affect. If the error occurs within a try...catch, or if an on error handler is active, the TRY...CATCH or ON
ERROR handlers will retain control.

errorAction is an enumerated property with the following values:

Value Description
0 Quit
1 Send HTML Error & Quit
2 Log Error & Quit
3 Send HTML Error, Log Error & Quit
4 Show Error Dialog (Default)
5 Log Error & Show Error Dialog

Option 0 dBASE Plus will shutdown cleanly without reporting the error.
Application shell 609

errorHTMFile
Options 1 and 3 dBASE Plus will to use the file specified in errorHtmFile as a template to format error
information sent out as an HTML page. These options are only appropriate when running a dBASE Plus Web
application that was invoked via a web server such as Apache or IIS (Internet Information Server).

The default value for errorHtmFile is error.htm.

If error.htm cannot be found, or an error occurs when trying to open or read it into memory, dBASE Plus will
use a built-in default HTML template that matches the default US English error.htm.

Options 2, 3, and 5 dBASE Plus will log the error to disk using the file specified in errorLogFile. If the
error log file cannot be opened, for instance when another application has it opened exclusively, dBASE Plus
will try up to 15 times to open the file and write the log entry. dBASE Plus will wait approximately 300
milliseconds between retries. Should all 15 attempts fail, dBASE Plus will proceed without logging the error.

Option 4 This is the default option which displays an error dialog offering the option to Fix, Ignore, or Cancel the
error.

Option 5 dBASE Plus will log the error and display an error dialog. The error dialog offers the option to
Fix, Ignore, or Cancel.

errorHTMFile
Filename of an HTM file template. Used for runtime web apps only.

Property of _app object

Description Use the errorHTMFile property to designate a name for the HTM file used to format an error page sent back to
the browser. The filename may include an explicit path or source alias. When a path is not included, the
application .exe path is assumed. The default filename for errorHTMFile is Error.HTM. dBASE Plus' error
handling code will only try to use the errorHtmFile property when errorAction is set to option 1 - Send HTML
Error & Quit or 3 - Send HTML Error, Log Error & Quit.

HTM file template may contain the following replaceable tokens:

Token Description
%d Date and Time of error
%e Application EXE filename
%s Source filename
%p Name of procedure or function in which error occurred
%l Source line number
%c Location where error code is displayed
%m Location where error message is displayed

errorLogFile
Specifies the filename of the error log file to be used when the _app objects’ errorAction property is set to 2, 3, or 5.

Property of _app object

Description Use the errorLogFile property to designate a filename for the error log file generated when an error occurs, and
the errorAction property is set to option 2, 3 or 5. The filename may include an explicit path. When a path is not
included, the application .exe path is assumed. The default filename for errorLogFile is PLUSErr.LOG

Information is saved to the log file in the following order:

• Date and Time of error
• Application Path and Filename (as contained in _app.exeName)

• When running PLUS.exe, this will be the path to PLUS.exe.
• When running an application exe, this will be the full path and name of the application exe.

• Source File Name (if available)
• Procedure or Function Name (if available)
610 dBL Language Reference

errorLogMaxSize
• Line Number (if available)
• Error Code
• Error Message

errorLogMaxSize
Approximate maximum size of error log file in kilobytes.

Property of _app object

Description The errorLogMaxSize property is used to limit the size of an error log file. On a web server or regular file
server, limiting the error log size prevents slowly using up all available disk space.

When the size of the file specified in errorLogFile exceeds errorLogMaxSize x 1024, dBASE Plus will skip past
the first 10 percent of log entries, find the start of the next complete log entry, and copy the remaining 90
percent of the log file to a new file. Once the log file has been copied successfully, the original log file is deleted
and the new log file is renamed to the name specified in errorLogFile.

If you do not want to limit the size of the error log file, set errorLogMaxSize to zero (0).
The default for errorLogMaxSize is 100. The minimum value allowed is zero and the maximum is 2048.

errorTrapFilter
Use the errorTrapFilter property to enable, or disable, the detection of certain kinds of errors.

Property of _app object:

Default 0 - Trap all errors.

Description This property can be set:
• Programmatically, by assigning the desired value from a dBL program.

or
• Via a setting in the dBASE Plus or application ini file as follows:

[ErrorHandling]
ErrorTrapFilter=0

or
[ErrorHandling]
ErrorTrapFilter=1

Currently supported options are:

0 Trap all errors. Provides the same level of error trapping introduced in dBASE Plus 2.5
1 Ignore interpreter memory access violations. Provides the same level of error trapping available

in versions of dBASE Plus prior to 2.5.

executeMessages()
Use the executeMessages() method to periodically process pending messages while running a lengthy
processing routine.

Syntax <oRef>.executeMessages()

<oRef>

Property of _app object

Description When called, executeMessages() checks for messages in the dBASE message queue. If found, they are
processed and executed.
Application shell 611

exeName
While the dBASE interpreter is executing, messages may accumulate in the dBASE message queue - typically
mouse, keyboard or paint messages. By calling the executeMessages() method during a long processing
routine, dBASE can be made responsive to these messages rather than having to wait until the processing
routine ends.

exeName
The drive, path and filename of the currently running instance of PLUS.exe or a dBASE Plus application .exe.

Property of _app object

Description exeName is a read-only property used to support error handling.

When running PLUS.exe, the exeName property will include the drive, path, and file name for the currently
running instance of PLUS.exe.
For example:

C:\Program Files\dBASE\Plus\bin\PLUS.exe

When running a dBASE Plus application .exe, exeName will include the drive, path, and file name of the
running application.
In both instances, the exeName property preserves the case of the folder and .exe names (except on Win 9x where it is
converted to uppercase). When starting an application .exe as a parameter to PLUSrun.exe, the exeName property will use
the case entered on the command line for the applications path & name.

GETCOLOR()
Calls a dialog box in which you can define a custom color or select a color from the color palette. Returns a character
string containing the red, green, and blue values for the color selected.

Syntax GETCOLOR([<title expC>])

<title expC> A character string to appear as the title of the dialog box.

Description Use GETCOLOR() to open a dialog box in which you can choose a color from a palette of predefined colors or
create a customized color. In this dialog box, you choose and create colors in the same way you do if you use the
Color Palette available when you choose Color in the Windows Control Panel.

GETCOLOR() returns a string in the format "red value, green value, blue value", with each color value ranging
from 0 to 255; for example "115,180,40". If you cancel the color dialog, GETCOLOR() returns an empty string.

You can use the string returned by GETCOLOR() in a related command, DEFINE COLOR, to use a specific
color in a program.

Example The following event handler displays the color dialog to choose a color in a color scheme:
function backgroundColorButton_onClick
 private rgbValue // Use private for ¯o
 rgbValue = getcolor()
 if rgbValue # ""
 form.colorscheme1.rowset.fields["BACKGROUND"].value = rgbValue
 define color SAMPLE_BG &rgbValue
 form.sampleBackground.colorNormal = "SAMPLE_BG"
 endif

If a color is chosen, the RGB string is stored in a field in a color scheme table, but the row is not saved, in case
the user changes their mind. A sample color is defined (or redefined), and a sample rectangle’s color is set to the
newly defined color.

Note that you can assign RGB values directly to a color property, but those RGB values are expected to be in
hexadecimal and in BGR (blue-green-red) order, for example "0x28b473" instead of "115,180,40". It’s easier to
define a custom color than to do the conversion.

See Also DEFINE COLOR
612 dBL Language Reference

GETFONT()
GETFONT()
Calls a dialog box in which you select a character font. Returns a string containing the font name, point size, font
style (if you choose a style other than Regular), and family.

Syntax GETFONT([<title expC>
[, <fontstr expC>]])

<title expC> A character string to appear as the title of the dialog box. Whenever the <fontstr expC> parameter
is used, the <title expC> parameter must also be present, as a valid title string or a null string (""), in order to specify the use
of the default dialog title.

<fontstr expC> A character string containing the default font settings to be used in the dialog box. This
string has the same format as the results string returned by this dialog,

fontstr = “fontName, pointsize [, [B] [I] [U] [S]] [,fontFamily]”

where the style options, B => Bold, I => Italic, U => Underline, and S => Strikeout, can appear in any order,
and in either upper or lower case.

The following are valid examples of the GETFONT() syntax:
GETFONT()
GETFONT("My Title")
GETFONT("","Arial,14,BU")

Whereas,
GETFONT(,"Arial,14,BU")

will result in an error dialog.

Description Use GETFONT() to place the values associated with a specified font into a character string, as shown in the
following examples. If you want to add a font to the [Fonts] section of PLUS.inibut don't know its exact name or
family, use GETFONT(). Then add the information GETFONT() returns into PLUS.ini.

Example mNormal = GETFONT() && choose Arial, Regular, 10-pt
? mNormal && returns "Arial,10,Swiss"
mBold = GETFONT() && choose Helvetica bold, 12-pt
? mBold && returns "Helvetica,12,B,Swiss"

hasHScrollBar()
Use the hasHScrollBar() method to determine if a frame window is using a horizontal scrollbar.

Syntax <oRef>.hasHScrollBar()

<oRef> <oRef> a reference to the _app.FrameWin object.

Property of _app.frameWin

Description By indicating whether a horizontal scrollbar is present, the hasHScrollBar() method allows a form to more
accurately determine how much room is available within the frame window.

The hasHScrollBar() method returns True if the frame window has a horizontal scrollbar.

Example See hasVScrollBar()

See Also hasVScrollBar()

hasVScrollBar()
Use the hasVScrollBar() method to determine if a frame window is using a vertical scrollbar.

Syntax <oRef>.hasVScrollBar()

<oRef> <oRef> a reference to the _app.FrameWin object.
Application shell 613

INKEY()
Property of _app.frameWin

Description By indicating whether a vertical scrollbar is present, the hasVScrollBar() method allows a form to more
accurately determine how much room is available within the frame window.

The hasVScrollBar() method returns True if the frame window has a vertical scrollbar.

Example The following example uses the hasVScrollBar() method to determine if the frame window is using a vertical
scrollbar, and to store a value for the remaining available height in a variable.

vScrollBarHeight = 23
availableHeight = _app.frameWin.height
if _app.frameWin.hasVScrollBar()

availableHeight = availableHeight - vScrollBarHeight
endif

form.height = availableHeight

See Also hasHScrollBar()

INKEY()
Gets the first keystroke waiting in the keyboard typeahead buffer. Can also be used to wait for a keystroke and return
its value.

Syntax INKEY([<seconds expN>] [, <mouse expC>])

<seconds expN> The number of seconds INKEY() waits for a keystroke. Fractional times are allowed. If
<expN> is zero, INKEY() waits indefinitely for a keystroke. If <expN> is less than zero, the parameter is
ignored.

<mouse expC> Determines whether INKEY() returns a value when you click the mouse. If <expC> is
"M" or "m", INKEY() returns –100. If <expC> is not "M" or "m", INKEY() ignores a mouse click and waits
for a keystroke.

Description The keyboard typeahead buffer stores keystrokes the user enters while dBASE Plus is busy. A very fast typist
may also fill the keyboard typeahead buffer—dBASE Plus is busy trying to keep up. These keystrokes are
normally handled automatically; for example, characters are typed into entryfields and menu choices are made.
Use INKEY() to handle the keystrokes yourself.

INKEY() returns the decimal value associated with the first key or key combination held in the keyboard
typeahead buffer and removes that keystroke from the buffer. If the typeahead buffer is empty, INKEY()
returns the value of zero.

Table 16.2 INKEY() return values

Key pressed
Return
value

Shift+key
return value

Ctrl+Key
return value

Alt+key*
return value

0 48 Depends on
keyboard

–404 –452

1 49 Depends on
keyboard

–404 –451

2 50 Depends on
keyboard

–404 –450

3 51 Depends on
keyboard

–404 –449

4 52 Depends on
keyboard

–404 –448

5 53 Depends on
keyboard

 0 –447

6 54 Depends on
keyboard

–30 –446

7 55 Depends on
keyboard

–404 –445
614 dBL Language Reference

INKEY()
8 56 Depends on
keyboard

–404 –444

9 57 Depends on
keyboard

–404 –443

a 97 65 1 –435
b 98 66 2 –434
c 99 67 3 –433
d 100 68 4 –432
e 101 69 5 –431
f 102 70 6 –430
g 103 71 7 –429
h 104 72 8 –428
i 105 73 9 –427
j 106 74 10 –426
k 107 75 11 –425
l 108 76 12 –424
m 109 77 13 –423
n 110 78 14 –422
o 111 79 15 –421
p 112 80 16 –420
q 113 81 17 –419
r 114 82 18 –418
s 115 83 19 –417
t 116 84 20 –416
u 117 85 21 –415
v 118 86 22 –414
w 119 87 23 –413
x 120 88 24 –412
y 121 89 25 –411
z 122 90 26 –410
F1 (Ctrl+\) 28 –20 –10 –30
F2 –1 –21 –11 –31
F3 –2 –22 –12 –32
F4 –3 –23 –13 –33
F5 –4 –24 –14 –34
F6 –5 –25 –15 –35
F7 –6 –26 –16 –36
F8 –7 –27 –17 –37
F9 –8 –28 –18 –38
F10 –9 –29 –19 –39
F11 –544 –546 –548 –550
F12 –545 –547 –549 –551
Left Arrow 19 –500 1 0
Right Arrow 4 –501 6 0
Up Arrow 5 5 5 0
Down Arrow 24 24 24 0
Home (Ctrl+]) 26 26 29 0
End 2 2 23 0
Tab 9 –400 0 0

Table 16.2 INKEY() return values (continued)

Key pressed
Return
value

Shift+key
return value

Ctrl+Key
return value

Alt+key*
return value
Application shell 615

INKEY()
*Note The Alt+key value returned for all character keys, except lower-case letters a through z, is the character value minus
500. For lower-case letters, the Alt+key values are the same as those for upper-case letters.

Because of the event-driven nature of dBASE Plus, INKEY() is rarely used. When it is used, it’s in one of three
ways:

• When keystrokes are expected to be buffered, INKEY() is used to get those keystrokes.

• In a loop that’s busy doing something, INKEY() is used to see if a key has been pressed, and if so to take an
action.

• INKEY() can be used to wait for a keystroke, and then take an action.

In any of these cases, because dBASE Plus is busy executing your INKEY() code, it will not respond to
keystrokes and mouse clicks as it normally would.

To check if there is a key waiting in the buffer without removing it, or to determine a value in the buffer in a
position other than the first position, use NEXTKEY().

Example Execute the following program and follow the on-screen directions:
? "In the next 5 seconds, press [C] and [Alt+F]
sleep 5
? inkey()
? inkey()

While dBASE Plus is sleeping, it stores the values 67 and –430 in the typeahead buffer. INKEY() returns 67,
and a second INKEY() returns –420.

The following example continuously executes a loop that shows the value of INKEY() and the character typed.
The loop ends when the Escape key (ASCII 27) is pressed:

CLEAR
SET ESCAPE OFF
* ESCAPE ON will interrupt the program and the
* Escape key will not be trapped by INKEY()
? "Press Esc to continue"
k=0
DO WHILE k <> 27
 k=INKEY()
 ? k
 IF k>0
 ?? CHR(k) && show the key and the ascii char
 ENDIF
ENDDO
SET ESCAPE ON

The following example displays a message and waits up to 10 seconds or until any key or mouse button is
clicked:

? "This message will display for 10 seconds max"
Pause=inkey(10,"m")
IF Pause=0
 ? "You waited the 10 seconds"
ENDIF

See Also CLEAR TYPEAHEAD, KEYBOARD, NEXTKEY(), ON KEY, READKEY(), SET TYPEAHEAD

Enter 13 0 –402 0
Esc (Ctrl+[) 27 27 - -
Ins 22 0 0 0
Del 7 –502 7 7
Backspace 127 127 –401 –403
PgUp 18 18 31 0
PgDn 3 3 30 0

Table 16.2 INKEY() return values (continued)

Key pressed
Return
value

Shift+key
return value

Ctrl+Key
return value

Alt+key*
return value
616 dBL Language Reference

KEYBOARD
KEYBOARD
Inserts keystrokes into the typeahead buffer.

Syntax KEYBOARD <expC> [CLEAR]

<expC> A character string, which may include mnemonic strings representing key labels.

CLEAR Empties the typeahead buffer before inserting <expC>.

Description Use KEYBOARD to simulate keystrokes by placing or "stuffing" them in the typeahead buffer.

KEYBOARD can place any number of characters in the typeahead buffer, up to the limit specified by SET
TYPEAHEAD; subsequent characters are ignored. If SET TYPEAHEAD is 0, you may KEYBOARD one
character.

Keystrokes simulated with KEYBOARD are treated like normal keystrokes, going into the control that
currently has focus. Some controls support a keyboard() method that enables you to send keystrokes to that
specific control.

In addition to the simple alphanumeric keys on the keyboard, you may also use mnemonic strings to simulate
must function keys. For a list of mnemonic strings, see the keyboard() method.

Example The following method is a Key event handler for a custom entryfield that executes a SEEK in the current
workarea as keys are pressed—an incremental search control.

function Key(nChar, nPosition)
 if nextkey() # 0 // If keys pending
 return (nChar # 255) // do nothing, and suppress keystroke if value is 255
 endif
 if nChar == 255 // If keystroke is special value 255
 if not isblank(this.value)
 this.seek() // call control's seek() method to do actual SEEK
 endif
 else
 if nChar >= 32 and nChar < 255
 keyboard "{255}" // For alphanumeric keystrokes, stuff special key 255
 endif
 endif
 return nChar

Like all Key event handlers, this one receives two parameters: the value of the keystroke, and the current
position in the control. This method does not use the position parameter. It does use a specific keystroke, which
is chosen so that it does not conflict with typical keys. That keystroke has the INKEY() value 255.

The method first checks if there are keystrokes pending in the keyboard typeahead buffer—which would happen
for a fast typist—and if so, no further action is taken, since those pending keystrokes would immediately cause
the Key event handler to fire again, and any action at this point would be wasted.

For an alphanumeric keystroke—that is, one that is not a control or function key—the special key is stuffed into
the keyboard buffer by the KEYBOARD command. This causes the Key event to be fired again, after the key
that was actually typed goes into the entryfield as usual. The Key method detects the special key and perfoms
the SEEK, which is coded in a separate seek() method for modularity; that is, the SEEK behavior may be
modified without changing the Key method.

The KEYBOARD command is used instead of the keyboard() method because the keyboard() method inserts
keystrokes directly into the control, causing the Key event to fire immediately from within the Key event
handler, which in turn would cause the stuffed keystroke to be handled before the key that was actually typed.
The KEYBOARD command uses the general typeahead buffer instead, and the keys would be handled in
sequence.

See Also INKEY(), NEXTKEY()
Application shell 617

language
language
Identifies the display language currently used in the design and runtime environments. This property is read
only.

Property of _app object

Description Use the app object's language property to determine which language version of dBASE Plus was installed. It's
value is read on startup from the PLUS.ini file or, in the case of deployed dBASE Plus applications, from the
applications .INI file.

If multiple languages have been installed, the value of the language property is determined by the first language
installed (what gets written to the PLUS.ini file), or a language selected via the Desktop Properties dialog.
Languages selected via the Desktop Properties dialog will only take affect if you have the appropriate language
.DLLs installed.

lDriver
Returns the global language driver name and description.

Property of _app object

Description Use the lDriver property to view information about the current global language driver. Information displayed,
name and description, is the same as that returned by LIST STATUS or DISPLAY STATUS in the Command
window. The lDriver property is read-only.

See Also ANSI(), charSet, CHARSET(), codepage, languageDriver, LDRIVER()

MSGBOX()
Opens a dialog box that displays a message and pushbuttons, and returns a numeric value that corresponds to the
pushbutton the user chooses.

Syntax MSGBOX(<message expC>, [<title expC>, [<box type expN>]])

<message expC> The message to display in the dialog box.

<title expC> The title to display in the title bar of the dialog box.

<box type expN> A numeric value that determines which icon (if any) and which pushbuttons to display
in the dialog box. To specify a dialog box with pushbuttons and no icon, use the following numbers:

<box type expN> Pushbuttons
0 OK
1 OK, Cancel
2 Abort, Retry, Ignore
3 Yes, No, Cancel
4 Yes, No
5 Retry, Cancel

To specify a dialog box with pushbuttons and an icon, add any of the following numbers to <box type expN>:

Number to add Icon displayed

16

32
618 dBL Language Reference

MSGBOX()
When a dialog box has more than one pushbutton, the left most pushbutton is normally the default, However, if
you add 256 to <box type expN>, the second pushbutton is the default, and if you add 512 to <box type expN>,
the third pushbutton is the default.

If you omit <box type expN>, box type 0—one with just the title, message, and an OK button—is used by
default.

Note If you specify <box type expN>, make sure it’s a valid combination of the choices outlined above. An invalid
number may result in a dialog box that you cannot close.

Description Use MSGBOX() to prompt the user to make a choice or acknowledge a message by clicking a pushbutton in a
modal dialog box.

While the dialog box is open, program execution stops and the user cannot give focus to another window. When
the user chooses a pushbutton, the dialog box disappears, program execution resumes, and MSGBOX() returns
a numeric value that indicates which pushbutton was chosen.

Pushbutton Return value
OK 1
Cancel 2
Abort 3
Retry 4
Ignore 5
Yes 6
No 7

Example The simplest dialog box displays a message only, for example:
calculate avg(SALARY) to nAvgSalary
msgbox("The average salary is $" + ltrim(str(nAvgSalary, 10, 2)), "Results")

With only one OK button, you don’t care what the return value from MSGBOX() is. You can put an icon in the
dialog box to dress it up:

msgbox("The average salary is $" + ltrim(str(nAvgSalary, 10, 2)), "Results", 64)

This example shows a dialog asking for confirmation before proceeding:
function revertButton_onClick
 if msgbox("Undo changes to this record?", "Revert", 4) == 6
 form.rowset.abandon()
 endif

In addition to adding an icon to the confirmation dialog, in this case you probably want "No", the second
pushbutton, to be the default. You can also make your code easier to write and more readable by creating
manifest constants for the various return values:

#define BUTTON_OK 1
#define BUTTON_CANCEL 2
#define BUTTON_ABORT 3
#define BUTTON_RETRY 4
#define BUTTON_IGNORE 5
#define BUTTON_YES 6
#define BUTTON_NO 7

48

64

Number to add Icon displayed
Application shell 619

NEXTKEY()
These manifest constants would be defined in a standard include file, and included in the Header of the form.
You could then use them in any of the methods of the form. With these three enhancements, the IF statement
would look like:

 if msgbox("Undo changes to this record?", "Revert", 4+48+256) == BUTTON_YES

While you could do the math in advance (4 + 48 + 256 = 308), dBASE Plus is perfectly capable of doing it at
runtime with no noticeable delay. In fact, you could extend this idea by using the preprocessor to create standard
MSGBOX() combinations, for example:

#define CONFIRM(m,t) (msgbox(m,t,4+32)==BUTTON_YES)

This combines the dialog box options and the test to see if the Yes button was clicked. Then in your programs,
you would use the CONFIRM() macro like a function that returns a logical value:

if CONFIRM("This record will be lost forever! You sure?", "Delete")

See Also readModal(), WAIT

NEXTKEY()
Checks for and returns a keystroke held in the keyboard typeahead buffer.

Syntax NEXTKEY([<expN>])

<expN> The position of the key or key combination in the typeahead buffer. If <expN> is omitted,
NEXTKEY() returns the value of the first keystroke in the buffer. If <expN> is larger than the number of
keystrokes in the buffer, NEXTKEY() returns 0.

Description The keyboard typeahead buffer stores keystrokes the user enters while dBASE Plus is busy. A very fast typist
may also fill the keyboard typeahead buffer—dBASE Plus is busy trying to keep up. These keystrokes are
normally handled automatically; for example, characters are typed into entryfields and menu choices are made.
Use NEXTKEY() to check if there are any buffered keystrokes, or to look for a keystroke in a specific position
in the buffer.

NEXTKEY() returns the decimal value associated with the key or key combination held in the keyboard typeahead
buffer at the specified position in the buffer. Unlike INKEY(), NEXTKEY() does not remove the keystroke from
the buffer. If the buffer is empty or there is no keystroke at the specified position, NEXTKEY() returns a value
of zero.

For a list of keystroke values, see INKEY().

Example The following method is a Key event handler for a custom entryfield that executes a SEEK in the current
workarea as keys are pressed—an incremental search control. It checks if there are keystrokes pending in the
keyboard typeahead buffer—which would happen for a fast typist—and if so, no SEEK is executed, since those
pending keystrokes would immediately cause another SEEK.

function Key(nChar, nPosition)
 if nextkey() # 0 // If keys pending
 return (nChar # 255) // do nothing, and suppress keystroke if value is 255
 endif
 if nChar == 255 // If keystroke is special value 255
 if not isblank(this.value)
 this.seek() // call control's seek() method to do actual SEEK
 endif
 else
 if nChar >= 32 and nChar < 255
 keyboard "{255}" // For alphanumeric keystrokes, stuff special key 255
 endif
 endif
 return nChar

Like all Key event handlers, this one receives two parameters: the value of the keystroke, and the current
position in the control. This method does not use the position parameter. It does use a specific keystroke, which
is chosen so that it does not conflict with typical keys. That keystroke has the INKEY() value 255.

For an alphanumeric keystroke—that is, one that is not a control or function key—the special key is stuffed into
the keyboard buffer by the KEYBOARD command. This causes the Key event to be fired again, after the key
620 dBL Language Reference

ON ESCAPE
that was actually typed goes into the entryfield as usual. The Key method detects the special key and perfoms
the SEEK, which is coded in a separate seek() method for modularity; that is, the SEEK behavior may be
modified without changing the Key method.

See Also INKEY()

ON ESCAPE
Changes the default behavior of the Esc key so that it executes a specified command instead of interrupting
command or program execution.

Syntax ON ESCAPE [<command>]

<command> The command to execute when the following conditions are in effect:

• SET ESCAPE is ON
• The user presses Esc during command or program execution

The <command> may be any valid dBASE Plus command, including a DO command to execute a program file,
a function call that executes a program or function loaded in memory, or a codeblock.

ON ESCAPE without a <command> option disables any previous ON ESCAPE <command>.

Description The primary purpose of the Esc key is to interrupt command or program execution. This behavior may be
changed with ON ESCAPE; either way it occurs only when SET ESCAPE is ON (its default setting).

When no ON ESCAPE <command> is in effect, pressing Esc interrupts program execution and displays the
dBASE Plus Program Interrupted dialog box. If ON ESCAPE <command> is in effect, pressing Esc during
program execution executes the specified command instead and then continues program execution.

While executing a command (like CALCULATE) from the Command window, pressing Esc with ON
ESCAPE <command> in effect executes <command> and then terminates the command, returning control to
the Command window. If no ON ESCAPE <command> is in effect, pressing Esc during a command from the
Command window simply terminates that command and displays a message in the status bar.

Note that user interface elements such as menus, forms, and dialog boxes handle Esc differently, usually
closing or dismissing that UI element. (For forms, this behavior is controlled by its escExit property.) In those
cases, ON ESCAPE and SET ESCAPE have no effect. In fact, with the exception of dialog boxes and forms
opened with ReadModal(), because of the event-driven nature of dBASE Plus there is no program executing
when you use a menu or type into a form, so there is nothing to interrupt.

Use ON KEY to specify a new meaning or mapping for Esc or any other key. If both ON KEY and ON
ESCAPE are in effect, ON KEY takes precedence when Esc is pressed. In other words, while ON ESCAPE
changes the Escape behavior, ON KEY changes the meaning of the Esc key, so that pressing it no longer causes
that Escape behavior. While the Escape behavior affects only programs or commands that are executing, ON
KEY works at all times.

If you issue ON ESCAPE<command> in a program, you should disable the current ON ESCAPE condition by
issuing ON ESCAPE without a <command> option before the program ends. Otherwise, the ON ESCAPE
condition remains in effect for any subsequent commands and programs you issue and run until you exit dBASE
Plus.

Example The following example uses ON ESCAPE to substitute a small program, PrgEscape, for the Escape key. In this
example, the programmer has wrongly programmed an endless loop that requires the use of Escape to debug.
When escape is pressed, the program and line will be shown:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
* So that other program files can access PrgEcape
SET ESCAPE ON
ON ESCAPE DO PrgEscape WITH PROGRAM(1),LINENO()
DO WHILE .t. && set up an endless loop
 x="always allow a way out"
 y=" of a do while loop"
 z="Press Escape to stop"
 ? x
 ? y
 ? z
Application shell 621

ON KEY
ENDDO

Procedure PrgEscape
PARAMETERS prg,line
? "Programmed Escape:",prg,line
SUSPEND

See Also escExit, ON ERROR, ON KEY, SET ESCAPE

ON KEY
Changes the keyboard mapping to execute a command when a specified key or key combination is pressed.

Syntax ON KEY [LABEL <key label>] [<command>]

LABEL <key label> Identifies the key or key combination that, when pressed, causes <command> to
execute. Without LABEL <key label>, dBASE Plus executes <command> when you press any key. ON KEY
LABEL is not case-sensitive.

<command> The command that is executed when you press the key or key combination. If you omit
<command>, the command previously assigned by ON KEY is disabled.

Description Each key on the keyboard has a default meaning or mapping. For alphanumeric keys, that mapping simply types
that character. Function keys have predefined actions. The Esc key terminates program execution. Use ON
KEY to specify a command that executes when the user presses a key or key combination, overriding the default
mapping.

Actions defined by ON KEY will interrupt programs, but not commands; in a program, the ON KEY action will
occur after the current command has completed and then the program will continue. ON KEY also doesn't affect
the execution of some commands or functions that are specifically looking for keystrokes, such WAIT or
INKEY(). On the other hand, if you KEYBOARD a key that has been remapped, the remapped behavior will
occur.

When you issue both ON KEY LABEL <key label> <command> and ON KEY <command>, the key or key
combination you specify with ON KEY LABEL <key label> <command> takes precedence and executes its
associated <command>. This way you can define actions for specific keys, and a default global action for all
other keys. There may be only one ON KEY specification for each specific key and one global action defined at
a given time.

ON KEY without arguments removes the effect of all previously-entered ON KEY <command> commands,
with or without a LABEL.

To change the default Escape behavior, which interrupts the currently executing program or command, use ON
ESCAPE. If both ON KEY and ON ESCAPE are in effect, ON KEY takes precedence when Esc is pressed. In
other words, while ON ESCAPE changes the Escape behavior, ON KEY changes the meaning of the Esc key,
so that pressing it no longer causes that Escape behavior. While the Escape behavior affects only programs or
commands that are executing, ON KEY works at all times.

To assign strings to function keys, use SET FUNCTION. If both ON KEY on SET FUNCTION are in effect,
ON KEY takes precedence.

ON KEY LABEL The <key label> for the standard alphanumeric keys is simply the character on that key,
for example, A, b, 2, or @. Use the following key label names to assign special keys or key combinations with
ON KEY LABEL <key label>.

Key identification <key label>
Backspace Backspace
Back Tab Backtab
Delete Del
End End
Home Home
Insert Ins
Page Up PgUp
622 dBL Language Reference

ON KEY
Example The following example displays selected fields from 10 records, pauses for 3 seconds and adds more records to
the screen. ON KEY LABEL command is used to branch the program to procedures that either reverse the
record pointer, enter a browse window, or exit scrolling:

CLEAR
SET TALK OFF
PUBLIC mExit
mExit=.F.
ON KEY LABEL F8 DO BackUp
ON KEY LABEL F9 DO Details
ON KEY LABEL F10 DO GetOut
USE Clients Order Company
? CENTER("INSTRUCTIONS")
? CENTER("Press F8 to go back X records")
? CENTER("Press F9 to Browse all fields")
? CENTER("Press F10 to exit")
?
WAIT "Slow Browse - Press any key when ready"
Cnt=1
DO WHILE .NOT. EOF() .AND. .NOT. mExit
 DISPLAY NEXT 10 Company, Contact
 Pause=INKEY(3)
ENDDO
SET TALK ON
ON KEY
RETURN

PROCEDURE BackUp
CLEAR
SKIP -9
RETURN

PROCEDURE Details
SKIP -9
BROWSE
RETURN

PROCEDURE GetOut
mExit=.T.
RETURN

See Also INKEY(), KEYBOARD, ON ESCAPE, SET FUNCTION

Page Down PgDn
Tab Tab
Left arrow Leftarrow
Right arrow Rightarrow
Up arrow Uparrow
Down arrow Dnarrow
F1 to F12 F1, F2, F3, ...
Control+<key> Ctrl-<key> or Ctrl+<key>
Shift+<key> Shift-<key> or Shift+<key>
Alt+<key> Alt-<key> or Alt+<key>
Enter Enter
Escape Esc
Space bar Spacebar

Key identification <key label>
Application shell 623

onInitiate
onInitiate
Event fired when a client application requests a DDE link with dBASE Plus as the server, and no DDETopic
object for the specified topic exists in memory.

Parameters <topic expC> The requested DDE topic.

Property of _app object

Description The onInitiate event executes a DDE (Dynamic Data Exchange) initiation-handler routine. You write this
routine to create DDETopic objects, which handle DDE server events.

A DDE client application initiates a DDE link by specifying the DDE service name and a topic. The _app
object’s ddeServiceName property contains the service name for the current instance of dBASE Plus; the default
is "dBASE". You may change the ddeServiceName if there is more than one instance of dBASE Plus running, or
if you want to identify your dBASE Plus application with a specific DDE service name.

Once the client application locates the desired dBASE Plus server by service name, it attempts to create a link
on a specific topic. If a DDETopic object already exists in memory for the named topic, that object is used and
the link is completed. If there is no DDETopic object for that topic, the onInitiate event fires. The onInitiate
event handler must then create the DDETopic object, using that topic as a parameter to the constructor, and
RETURN the resulting object to complete the link.

Example See the InitStockDDE() function in the class DDETopic example.

See also class DDETopic

onInitMenu
Specifies code that executes when a menubar or popup is opened.

Property of MenuBar, Popup

Description OnInitMenu is called whenever a menubar or popup is invoked, and is processed before the menubar's child
menus or the popup is displayed.

You can use onInitMenu to determine the status of menu items that will be displayed. For example, use
onInitMenu to determine if the enabled or checked property of a menu item should be true or false.

Example Parameter FormObj
NEW SAMPLEMENU(FormObj,"Root")
CLASS SAMPLEMENU(FormObj,Name) OF MENUBAR(FormObj,Name)
 this.OnInitMenu = {; ? "Menu opened!"}
 DEFINE MENU FILE OF THIS;
 PROPERTY;
 Text "&File"
 DEFINE MENU EXIT OF THIS.FILE;
 PROPERTY;
 Text "E&xit",;
 OnClick {; Form.Close()}
ENDCLASS

See Also Checked, Enabled

onUpdate
Fires repeatedly while application is idle to refresh toolbuttons.

Property of ToolBar

Description This event maintains the status of toolbuttons on a toolbar by firing whenever the application hosting the toolbar
is idle.
624 dBL Language Reference

separator
separator
Determines if a menu item is a separator line instead of a menu option.

Property of Menu

Description Set Separator to True when you want to use a menu item as a separator between groups of menu commands.
When Separator is true, other properties such Text and onClick are ignored.

Example For example, a menu titled Accounting might use a separator to emphasize the distinction between Accounts
Receivable items and Accounts Payable items.

DEFINE FORM f1
DEFINE MENU Main OF f1
DEFINE MENU mOpt1 OF f1.Main;
 PROPERTY;
 Text "Option 1"
DEFINE MENU mSlct1 OF f1.Main.mOpt1;
 PROPERTY;
 Text "Select 1"
DEFINE MENU mLine1 OF f1.Main.mOpt1;
 PROPERTY;
 Separator .T.
DEFINE MENU mSlct2 OF f1.Main.mOpt1;
 PROPERTY;
 Text "Select 2"
DEFINE MENU mLine2 OF f1.Main.mOpt1;
 PROPERTY;
 Separator .T.
DEFINE MENU mSlct3 OF f1.Main.mOpt1;
 PROPERTY;
 Text "Select 3"
OPEN FORM f1

See Also none

SET CONFIRM
Controls the cursor's movement from one entry field to the next during data entry.

Syntax SET CONFIRM ON | off

Description When SET CONFIRM is OFF, dBASE Plus moves the cursor immediately to the next input area when the
current one is full. When SET CONFIRM is ON, the cursor moves to the next input area only when you press
Enter or a cursor-control key, or when you click another input area with the mouse.

Use SET CONFIRM ON to prevent moving the cursor from one input area to the next automatically, thus
avoiding data-entry errors such as the overflow of contents from one input area into the next. Use SET
CONFIRM OFF when input speed is more important.

SET CUAENTER
Determines whether Enter simulates Tab in a form.

Syntax SET CUAENTER ON | off

Default The default for SET CUAENTER is ON. To change the default, update the CUAENTER setting in PLUS.ini.
To do so, either use the SET command to specify the setting interactively, or enter the CUAENTER parameter
directly in PLUS.ini.

Description The CUA (Common User Access) interface standard dictates that the Tab key moves focus from one control to
another, while the Enter key submits the entire form (which fires the form’s onSelection event). Use SET
CUAENTER to control whether Enter follows the CUA standard. If SET CUAENTER is OFF, the Enter key
emulates the Tab key, moving the focus to the next control.
Application shell 625

SET ESCAPE
There are two good reasons to ignore the CUA behavior:

• In many forms, especially ones that take advantage of the numeric keypad, using the Enter key to move to
the next control speeds data entry.

• For non-trivial forms, there are usually a number of pushbuttons which take completely different actions; for
example, adding a new record, deleting the current record, navigating forward, navigating backward, etc. If
you press Enter while the focus is in an entryfield for example, the act of submitting the form tells you
nothing about what the user wants to do next.

In fact, few applications consider the action of submitting the form; the onSelection event is rarely used. When
the onSelection event is left undefined, nothing happens when you press Enter (except in a control like the
Editor). So you might as well make the Enter key do something useful and have it move the focus to the next
control.

Regardless of the setting of SET CUAENTER, you can move focus from object to object with the mouse or by
pressing Tab and Shift-Tab.

Example The following example creates a basic form with three entry fields from the Contact table and two pushbuttons
to advance or retard the record pointer. SET CUAENTER OFF is used to make the cursor behave as it would in
a DOS application, that is, advance between fields or to the pushbuttons when the user presses Enter. Changing
the command to SET CUAENTER ON causes the cursor to respond only to the TAB key and mouse clicks:

SET PROCEDURE TO PROGRAM(1) ADDITIVE
DEFINE FORM Main FROM 0,0 to 13,40;
 PROPERTY ColorNormal "BG+/BG",;
 Text "System Update"
DEFINE TEXT T1 OF Main AT 3,5 ;
 PROPERTY TEXT "Enter Current Time (24 hour):",;
 Width 30
DEFINE ENTRYFIELD F1 OF Main AT 3,28 ;
 PROPERTY Value SPACE(8), Picture "99:99:99",;
 Width 8
DEFINE TEXT T2 OF Main AT 5,5 ;
 PROPERTY TEXT "Enter Current Date",;
 Width 20
DEFINE ENTRYFIELD F2 OF Main AT 5,28 ;
 PROPERTY Value {}, Picture "99/99/99",;
 Width 8
DEFINE PUSHBUTTON Update OF Main AT 9,7;
 PROPERTY TEXT "Update System Time and Date",;
 Height 2, Width 26, OnClick Update
OPEN FORM Main

PROCEDURE Update
SET DATE TO DTOC(Form.F2.Value)
SET TIME TO Form.F1.Value
? "Update complete"
CLOSE FORM Main
RETURN

See Also onSelection

SET ESCAPE
Specifies whether pressing Esc interrupts program execution.

Syntax SET ESCAPE ON | off

Default The default for SET ESCAPE is ON. To change the default, set the ESCAPE parameter in PLUS.ini.

Description The primary purpose of the Esc key is to interrupt command or program execution. While this behavior may be
changed with ON ESCAPE, this behavior occurs only when SET ESCAPE is ON.

Typically, SET ESCAPE is ON during application development. This allows you to stop processes which are
taking too long or have run amok. When an application is deployed, you should either:

• SET ESCAPE OFF so that the user cannot cause your application to terminate abnormally, or
626 dBL Language Reference

SET FUNCTION
• Define a specific ON ESCAPE behavior so that your application or process can shutdown or be cancelled
gracefully, usually after confirming that the user really wants to do so.

Note If SET ESCAPE is OFF and you have not used ON KEY or some other method to interrupt your program, you
can interrupt program execution only by forcing the termination of dBASE Plus or your dBASE Plus
application. Forced termination can cause data loss.

Note that user interface elements such as menus, forms, and dialog boxes handle Esc differently, usually
closing or dismissing that UI element. (For forms, this behavior is controlled by its escExit property.) In those
cases, ON ESCAPE and SET ESCAPE have no effect. In fact, with the exception of dialog boxes and forms
opened with ReadModal(), because of the event-driven nature of dBASE Plus there is no program executing
when you use a menu or type into a form, so there is nothing to interrupt.

Example In the following example there is a bug in the subroutine WontWork. The instructions and the loop test do not
correspond. With SET ESCAPE ON, you can press the Escape key to interrupt the program You can then
choose SUSPEND to examine the variable MORE or to follow the program through the loop:

SET ESCAPE ON
DO WontWork

PROCEDURE WontWork
More = ""
DO WHILE More <> "X" && should be Upper(More)<>"X"
 ? "Beginning the loop"
 * ...
 WAIT "Enter E to exit the loop" TO More
ENDDO

See Also ON ESCAPE, ON KEY

SET FUNCTION
Assigns a string to a function key or to a combination of the Ctrl (control) key or the Shift key and a function key.

Syntax SET FUNCTION <key> TO <expC>

<key> A function key number, function key name, or character expression of a function key name—for
example, 3, F3, or "F3". Specify a character expression for <key> to assign a key combination using the Ctrl or
Shift key with a function key. Type "CTRL+" or "SHIFT+" and then a function key name—for example,
"shift+F5" or "Ctrl+f3". The function key names are not case-sensitive and you may use a hyphen in place of the
plus sign. You can't combine Ctrl and Shift, such as "Ctrl+Shift+F3".

<expC> Any character string, often the text of a command. Use a semicolon (;) to represent the Enter key.
Placing a semicolon at the end of a command has the effect of executing that command when you press the
function key in the Command window. You can execute more than one command by separating each command
in the list with a semicolon.

Default The following function key settings are in effect when dBASE Plus starts:

Key Command Key Command
F1 HELP; F7 DISPLAY MEMORY;
F3 LIST; F8 DISPLAY;
F4 DIR; F9 APPEND;
F5 DISPLAY STRUCTURE; F10 Activates the menu
F6 DISPLAY STATUS;

Description Use SET FUNCTION to simulate typing a string with a single keystroke. These strings are usually commands
to be executed in the Command window, or common strings used in data entry.

Note F2 is reserved for toggling between views while in the Browse window. You can program it, but it will not be
recognized when in the Browse window. You cannot program F10, or any combination using F11 or F12. You
also cannot program keys that are used as standard Windows functions, such as Ctrl-F4.
Application shell 627

SET MESSAGE
When you press the programmed function key or key combination, the assigned string appears at the cursor.
Strings for the Command window usually end in a semicolon, which represents the Enter key. The simulated
Enter key causes the command to be executed immediately.

While SET FUNCTION is specifically intended to simulate typing a string, you can use the ON KEY command
to program a function key or any other key to execute any command. For example, these two commands
(executed separately, not consecutively):

set function f7 to "display memory;"
on key label f7 display memory

would both cause the F7 key to execute the DISPLAY MEMORY command if the key was pressed on a blank
line in the Command window. But suppose the line in the Command window contained the word "field" and the
cursor was at the beginning of that line. Then with SET FUNCTION F7, pressing the function key would cause
the string "display memory" to be typed into the line, resulting in "display memoryfield", and then the Enter
key would be simulated, causing dBASE Plus to attempt to display a field named "memoryfield" in the current
workarea. With ON KEY LABEL F7, the DISPLAY MEMORY command would be executed with nothing
being typed into the Command window.

If the cursor was in an entryfield for a city in a form, then with SET FUNCTION F7, you would get the city of
"display memory" and the cursor would move to the next control if SET CUAENTER was OFF. Again, with
ON KEY LABEL F7, the DISPLAY MEMORY command would be executed without affecting the data entry.

To see the list of strings currently assigned to function keys, use DISPLAY STATUS.

Example The following example changes the F8 key to the string "modify command ". Without the semicolon at the end,
you type the name of the file you want to edit and press Enter:

set function f8 to "modify command "

See Also DISPLAY STATUS, ON KEY

SET MESSAGE
Specifies the default message to display in the status bar.

Syntax SET MESSAGE TO [<message expC>]

<message expC> The message to display

Description Use SET MESSAGE to set the default message that appears the status bar. Menu items and controls on forms
have a statusMessage property. When that object has focus, and that property is not empty, that message is
displayed instead.

SET MESSAGE TO without the option <message expC> sets the default message to an empty string, and
removes any message from the status bar.

The status bar may be suppressed by setting the _app.statusBar property to false.

SET TYPEAHEAD
Sets the size of the typeahead buffer, where keystrokes are stored while dBASE Plus is busy.

Syntax SET TYPEAHEAD TO <expN>

<expN> the size of the keyboard typeahead buffer, any number from 0 to 1600.

Default The default size of the typeahead buffer is 50 characters. To change the default, set the TYPEAHEAD
parameter in PLUS.ini.

Description The keyboard typeahead buffer stores keystrokes the user enters while dBASE Plus is busy, for example while
reindexing a table. When the processing is complete and the application is ready to accept keystrokes, dBASE
Plus fetches and deletes the values in the buffer in the order they were entered. Any keys typed while there are
still keystrokes in the buffer are added to the end of the buffer.
628 dBL Language Reference

SHELL()
If the size of the typeahead buffer is set to 50, dBASE Plus can store values for 50 keypresses; further
keystrokes are ignored without any warnings. A large typeahead buffer is useful if the user does not want to stop
typing when dBASE Plus is unavailable for processing direct keyboard input.

For some programs, you may want to disable the typeahead buffer with SET TYPEAHEAD TO 0. This ensures
that user input comes directly from the keyboard, rather than from the typeahead buffer.

For example, if you want to be able to fill in multiple forms quickly, one after the other, you might SET
TYPEAHEAD to a relatively high number during form processing. This would let you continue typing data
while one form was being saved and the next (blank) one being displayed. The data you entered during
processing would be entered onto the new form when it appeared. On the other hand, if you want to make sure
that no data is entered until the form is displayed on the screen, you can issue SET TYPEAHEAD TO 0.

You can also clear the typeahead buffer manually with CLEAR TYPEAHEAD.

SET TYPEAHEAD limits the number of characters you can put into the typeahead buffer using KEYBOARD.

See Also CLEAR TYPEAHEAD, KEYBOARD

SHELL()
Hides or restores the components of the application shell: the Command window (and Navigator) and the MDI
frame window. Returns a logical value corresponding to the previous SHELL() state.

Syntax SHELL([<expL1>, [<expL2>]])

<expL1> The value that determines whether to display the shell.

<expL2> The value that determines whether to force the display of the MDI frame window. If <expL1> is
true, the full shell is on and <expL2> is ignored. If <expL1> is false, <expL2> defaults to false.

Description SHELL() controls the display of the components of the application shell:

• The Command window

• The Navigator

• The MDI frame window, which contains the Command window, Navigator, and all MDI forms and their
toolbars and menus. This window is represented by the _app.frameWin object.

In dBASE Plus, SHELL() defaults to true; all three components are displayed. In a compiled application,
SHELL() defaults to false; none of the elements are displayed, unless either:

• An MDI form is open, in which case the MDI frame window must be displayed to contain the MDI form(s),
or

• A menu has been assigned to _app.frameWin.

In either case, the MDI frame window stays visible regardless of the <expL2> value.

Use SHELL(.F.) in programs to temporarily hide the standard dBASE Plus environment, allowing your
application to take control of the user's working environment. To restore the dBASE Plus interactive
environment, issue SHELL(.T.). The environment is also restored when the user closes the form that SHELL()
is activated for.

SHELL(.F., .F.) operates differently when you are working in a form that is defined as a top-level MDI form
(formname.MDI=.F.) or in a form that is not a top-level MDI form (formname.MDI=.T.).

• When formname.MDI=.F. for the active form, SHELL(.F., .F.) appears to remove dBASE Plus from the
user's system. The form name becomes the application name that appears in the Windows Task List in place
of "dBASE Plus." This makes your application look like a standalone application, and is the typical use for
SHELL().

• When formname.MDI=.T. for the active form, the menu system associated with the form appears as the
menu at the top of the screen instead of at the top of the form. The user remains in dBASE Plus, but the
dBASE Plus menu is replaced by the menu defined by the active form. However, the user can still access the
SpeedBar if it is active. The user can click in the Command window to close the form.
Application shell 629

shortCut
Using SHELL() in a program has the same effect as changing the Visible property of the FrameWin object of
_app, as shown in the following example. For more information, see _app.

SHELL(.F.) && same effect as next line
_app.FrameWin.Visible = .F.

If you issue SHELL(.F.) in the Command window, you exit to Windows momentarily and then return to dBASE
Plus.

Example This example shows the code generated by the form designer for a Shell Test form that simply sets the left
double click button to SHELL(.t.) and the right double click button to SHELL(.f.).

LOCAL f
f = NEW SHELL ()
f.Open()

CLASS SHELL OF FORM
 this.OnRightDblClick = {shell(.t.)}
 this.OnLeftDblClick = {shell(.f.)}
 this.EscExit = .T.
 this.mdi = .f.
 * set mdi=.t. to see effect with mdi
 this.Text = "Shell Test .t."
 this.Width = 48.00
 this.Top = 2.00
 this.Left = 2.00
 this.Height = 15.00
 this.Minimize = .F.
 this.Maximize = .F.
ENDCLASS

When the form is activated e.g. with DO Shell.wfm, the Shell Test form appears on the screen (with mdi=.f.).
Double clicking with the left mouse button makes other windows in the dBASE Plus screen disappear. Double
clicking with the right button makes them reappear. * When you set mdi=.t., the Shell Test form can be accessed
by pressing Ctrl Tab to show the Windows windows.

See Also _app, DEFINE, QUIT, SET DESIGN

shortCut
Specifies a key combination that fires the OnClick event of a menu object.

Property of Menu

Description Use ShortCut to provide a quick way to execute a menu command with the keyboard. For example, if you assign
the character string "CTRL+S" to a menu option’s ShortCut property, the user can execute that menu option by
pressing Ctrl+S.

The value you specify with ShortCut is displayed next to the prompt you specify with the Text property.

Example NEW operator syntax:
FileMnt= NEW MENU ITEM(this)
FileMnt.ShortCut = "Alt+F"

DEFINE object syntax:
DEFINE MENU ITEM FileMnt OF THIS;
 PROPERTY ShortCut "Alt+F"

To view a list of dBASE keyboard combinations, see these topics in Help:

• dBASE Plus Classic keyboard mappings

• Brief Editor keyboard mappings

See Also onClick
630 dBL Language Reference

SLEEP
SLEEP
Pauses a program for a specified interval or until a specified time.

Syntax SLEEP
<seconds expN> |
UNTIL <time expC> [,<date expC>]

<seconds expN> The number of seconds to pause the program. The number must be greater than zero
and no more than 65,000 (a little over 18 hours). Fractional times are allowed. Counting starts from the time you
issue the SLEEP command.

UNTIL <time expC> Causes program execution to pause until a specified time (<time expC>) on the
current day. If you also specify <date expC>, the program pauses until the time on that day. The time and date
dBASE Plus uses are the system time and date. You can set the system time with SET TIME and the system
date with SET DATE TO. If the time has already passed, SLEEP UNTIL <time expC> has no effect.

The <time expC> argument is a 24-hour time that matches the format returned by the TIME() function. A
typical format for <time expC> is "HH:MM:SS". The delimiter is conventionally a colon but can be changed
through the Regional Settings in the Windows Control Panel. The time string must include the seconds.

<date expC> An optional date until which the program is to pause. The <date expC> argument is a
character expression (not a date expression) that represents a date in the current date format; it would match the
string returned by the DTOC() function. For example, if SET DATE is AMERICAN, the format would be
"MM/DD/YY".

If the date has already passed, SLEEP UNTIL <time expC> [,<date expC>] has no effect. If you want to specify
a value for <date expC>, you must also specify a value for <time expC>.

Description Use SLEEP to pause a program either for <seconds expN> seconds or until a specified time (<time expC>). The
specified time is the same day the program is running unless you specify a date with <date expC>. If SET
ESCAPE is ON, you can interrupt SLEEP by pressing Esc.

Note If SET ESCAPE is OFF, there is no way to interrupt SLEEP. However, you can use Ctrl+Esc and Alt+Tab to
switch to another Windows application, or Alt+F4 to exit dBASE Plus.

Although SLEEP can generate a pause from the Command window, programmers use it primarily within
programs. For example, you can use SLEEP to generate a pause between multiple displaying windows or to
allow a user to read a message on the screen or complete an action. Pauses are also useful when you need to
delay program execution until a specific time.

While SLEEP is active, dBASE Plus is considered busy; that is, busy sleeping. Program execution is suspended,
keystrokes go into the typeahead buffer, and dBASE Plus does not respond to events like mouse clicks or
timers. If you want an event to occur at a specified time without putting dBASE Plus to sleep, use a Timer
object.

SLEEP is an alternative to using a DO WHILE loop, a FOR loop, or WAIT to generate pauses in a program.
SLEEP is more accurate than using loops because it's independent of the execution speed of the system. You can
also use INKEY(<expN>) if you want the user to be able to interrupt the pause and continue with program
processing.

Example The following example uses SLEEP to delay execution for five seconds:
sleep 5

The next example uses SLEEP to delay execution until 7:30 p.m. on the same day the program is running. If it’s
already past 7:30 p.m., execution is delayed until that time the next day:

#define SLEEP_TIME "19:30:00"
if time() > SLEEP_TIME
 sleep until SLEEP_TIME, dtoc(date() + 1)
else
 sleep until SLEEP_TIME
endif

The last example uses SLEEP to delay execution until 11:59:59 p.m. on December 31, 1999 (SET DATE is
AMERICAN):

sleep until "23:59:59", "12/31/99"
Application shell 631

See Also class Timer, INKEY(), SET DATE TO, SET TIME, WAIT

sourceAliases
An associative array containing object references to currently defined Source Aliases

Property of _app object

Description The sourceAliases property is a read-only associative array which contains object references to all source aliases
defined in the PLUS.ini. To loop through the elements of the array, use the firstKey property:

aKey = _app.sourceAliases.firstKey // Get first key in the AssocArray

Once you have the key value for the first element, use the nextKey() method to get key values for the rest of the
elements:

for nElements = 1 to _app.sourceAliases.count()
aKey := _app.sourceAliases.nextKey(aKey) // Get next key value
? aKey, _app.SourceAliases[aKey] // display

endfor
Values in the sourceAliases array can also be accessed from the Source Aliases section of the Properties | Desktop Properties
dialog.

speedBar
Determines whether to display the default toolbar

Property of _app object

Description _app.speedBar is set at dBASE Plus startup to whatever setting is stored in PLUS.ini, or an application's .ini file.
You can view or change this setting at the Standard option in the PLUS.ini [Toolbars] section.

[Toolbars]

Standard=1 // for _app.speedBar = True

or

Standard=0 // for _app.speedBar = False

_app.speedBar defaults to "True".

See Also appSpeedBar

terminateTimerInterval
Determines the number of milliseconds it takes to remove an orphaned PLUSrun.exe from a web servers memory.

Property of _app object

Description The terminateTimerInterval property allows you to set a value for the interval between termination of a dBASE
Plus application and termination of the dBASE Plus runtime for Web based applications. This property is
relevant only for applications built using the BUILD command's WEB parameter.

See Also _app, BUILD, web

trackRight
Determines if the user can select a popup menu item with a right mouse click.

Property of Popup

Description When TrackRight is true (the default), users can select popup menu items with either the right mouse button or
the left mouse button.
16-632 dBL Language Reference

Set TrackRight to false if you don't want users to be able to select items from a popup menu with a right mouse
click.

Example f = NEW Form()
DEFINE POPUP p OF f;
 PROPERTY;
 TrackRight .F.

See Also onClick

uncheckedBitmap
A bitmap to display when a menu item is not checked.

Property of Menu

Description Use uncheckedBitmap to display a bitmap when a menu item’s checked property is false. If no bitmap is
specified, nothing is displayed when a menu item is not checked.

The uncheckedBitmap setting can take one of two forms:

• RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

• FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

Note The display area in the menu item is very small (13 pixels square with Small fonts). If the bitmap is too large,
the top left corner is displayed. Also, the color of the bitmap when the menu item is highlighted changes,
depending on the system menu highlight color. Therefore, you may want to limit yourself to simple
monochrome bitmaps.

See Also checked, checkedBitmap

WAIT
Pauses the current program, displays a message in the results pane of the Command window, and resumes execution
when any key is pressed. The keystroke may be stored in a variable.

Syntax WAIT [<prompt expC>] [TO <memvar>]

<prompt expC> A character expression that prompts the user for input. If you don't specify
<prompt expC>, dBASE Plus displays "Press any key to continue..." when you issue WAIT.

TO <memvar> Assigns a single character to the memory variable you specify for <memvar> as a
character-type variable. If <memvar> doesn't exist, dBASE Plus creates it. If <memvar> does exist, WAIT
overwrites it.

Description Use WAIT to halt program execution temporarily. Pressing any key exits WAIT and resumes program
execution. WAIT is usually used during application development to display information and create simple
breakpoints. It is usually not used in deployed applications.

In simple test applications, you can also WAIT to get a single key or character. If the user presses Enter without
typing any characters, WAIT assigns an empty string ("") to <memvar>.

Note If SET ESCAPE is ON, pressing Esc at the WAIT prompt causes dBASE Plus to interrupt program execution.
If SET ESCAPE is OFF, pressing Esc in response to WAIT causes program execution to resume the same as
any other key.

Example Wait can be used without a prompt or an input variable:
WAIT

The default prompt then appears on the next row, in column 0:
* Press any key to continue ...

The following example shows WAIT with a prompt:
Application shell 633

WAIT "Press any key to move to the next screen"

This examples shows WAIT with a prompt and input variable:
WAIT "Do you wish to print the report (Y/N)? " to Answer

See Also SET ESCAPE

web
Indicates whether the application .exe was built using the WEB parameter

Property of _app object

Description The web property provides a means to determine whether the WEB parameter was used when an application
was built. Compiling an application by including the BUILD command's WEB parameter allows it to load faster
and use fewer resources than a non-WEB application. Additionally, when a web application .exe is run directly,
rather than as a parameter to PLUSrun.exe, using the WEB parameter allows it to detect when it’s been
prematurely terminated by a Web server (as happens when an application takes too long to respond). If a
premature termination occurs, PLUSrun.exe also terminates to prevent it from becoming stranded in memory.
A timeout value, the number of milliseconds it takes to remove an orphaned PLUSrun.exe from memory, can be
set through the _app objects's terminateTimerInterval property.

See Also _app, _app.frameWin, terminateTimerInterval

WindowMenu
Specifies a menu object that displays a list of all open MDI windows.

Property of MenuBar

Description WindowMenu contains a reference to a menu object that has a menubar as its parent. When users open this
menu object, dBASE Plus displays a pulldown list of all open MDI windows.

WindowMenu automatically places a separator line on the pulldown list between any menu prompts and the list
of open windows. The currently active window shows a check next to the window name.

If you use the Menu Designer to create a menubar, WindowMenu is automatically set to an item named
Window on the menubar:

this.WindowMenu = this.Window

Example NEW SAMPLEMENU(FormObj,"Root")
CLASS SAMPLEMENU(FormObj,Name) OF MENUBAR(FormObj,Name)
 DEFINE MENU FILE OF THIS;
 PROPERTY;
 Text "&File"
 DEFINE MENU EXIT OF THIS.FILE;
 PROPERTY;
 Text "E&xit"
 DEFINE MENU EDIT OF THIS;
 PROPERTY;
 Text "&Edit"
 DEFINE MENU UNDO OF THIS.EDIT;
 PROPERTY;
 Text "&Undo"
 DEFINE MENU CUT OF THIS.EDIT;
 PROPERTY;
 Text "Cu&t"
 DEFINE MENU COPY OF THIS.EDIT;
 PROPERTY;
 Text "&Copy"
 DEFINE MENU PASTE OF THIS.EDIT;
 PROPERTY;
 Text "&Paste"
 DEFINE MENU WINDOW OF THIS;
634 dBL Language Reference

 PROPERTY;
 Text "&Window"
 DEFINE MENU ARRANGE OF THIS.WINDOW;
 PROPERTY;
 Text "&Arrange"
 DEFINE MENU HELP OF THIS;
 PROPERTY;
 Text "&Help"
 DEFINE MENU ABOUT OF THIS.HELP;
 PROPERTY;
 Text "&About"
 This.EditUndoMenu = This.Edit.Undo
 This.EditCutMenu = This.Edit.Cut
 This.EditCopyMenu = This.Edit.Copy
 This.EditPasteMenu = This.Edit.Paste
 This.WindowMenu = This.Window
ENDCLASS

See Also CLASS MENUBAR, editCopyMenu, MDI
Application shell 635

C h a p t e r

Chapter 17Report objects
Report objects generate formatted output from data in tables. The Report wizard and Report designer allow you
to create and modify reports visually. Reports are saved as code in a .REP file that you can modify.

Measurements in reports default to twips (20th of a point). There are exactly 1440 twips per inch.

At the top of the report object class hierarchy is the Report class. A Report object acts as a container for four
main groups of objects:

• Data objects, which give access to data in tables

• Query objects
• Database objects
• Session objects

These objects are created and used the same way they are in forms, except that a report does not have a
primary rowset like a form does.

• Report layout objects, which determine the appearance of the page and where data is output, or streamed

• PageTemplate objects
• StreamFrame objects

A Report object contains one or more PageTemplates, and each PageTemplate usually contains one or more
StreamFrames.

• Data stream objects, which read and organize the data from a query’s rowset and stream it out to a report’s
StreamFrame objects

• StreamSource objects
• Band objects
• Group objects

Each StreamSource object contains a Band object that is assigned to its detailBand property. The contents of
the detailBand are rendered for each row in the rowset. A StreamSource may also have one or more Group
objects, which group data and have their own header and footer Band objects.

• Visual components—objects that display the report’s data

• Text objects
• Image objects
• Line objects
• Rectangle objects
• Shape objects
• CheckBox objects
• RadioButton objects

These objects are created as properties of a PageTemplate object if they are fixed elements on the page, such
as a report’s date and page number; otherwise they are properties of a Band object and are used to display
data.
636 dBL Language Reference

A simple report example
The primary method of displaying information in a report is through Text objects. For text that varies, such as
the data from the rowset, the text property of the Text object is set to an expression codeblock, which is
evaluated every time the object is rendered. By using an expression in the codeblock that accesses the fields in
the rowset, the Text object displays data from tables.

You may use the other visual components in a report to display static images or images from a table, draw lines,
or display table data with check boxes or radio buttons.

Note Visual component objects are used in forms as well as reports, and most of the properties, methods, and events
associated with the objects are described in Chapter 15, “Form objects.” Some Text object properties used only
in reports are described in this chapter.

A simple report example
To get a sense of how everything fits together, imagine a report of students grouped by grade, with the total
number of students in each grade.

The report has a query that accesses the table of students, named students1; a StreamSource object, by default
named streamSource1, to stream the data from the query; and a PageTemplate object, by default named
pageTemplate1, that describes the physical attributes of the page, such as its dimensions, background color, and
margins.

pageTemplate1 contains one StreamFrame object, by default named streamFrame1, where the data stream will
be rendered. It occupies most of the space inside pageTemplate1’s margins. The rest of the space is used by Text
components that display the report title, date, and page.

streamFrame1 has a streamSource property that identifies its StreamSource object. It is assigned
streamSource1.

streamSource1 has a rowset property that identifies the StreamSource object’s rowset. It is assigned
students1.rowset.

students1.rowset and streamFrame1 are now linked. To fill streamFrame1 with data, the report engine will
traverse students1.rowset, from the first row to the last row. But at this point, no data will be displayed, because
there are no visual components in any Band objects.

Text components are assigned to streamSource1.detailBand. The text properties of these components are
expression codeblocks that refer to the value properties of the fields of the rowset of the StreamSource object.
For example, the text of the Text component that displays the student’s last name is

{||this.form.students1.rowset.field["Last name"].value}

When a visual component is placed in a report, its form property refers to the report.

To group the data, a Group object, named group1 by default, is assigned to streamSource1. Its groupBy property
contains the name of the group field, “Grade”. The report engine will watch the value of this field in the rowset,
that is:

students1.rowset.field["Grade"].value

and whenever the value of the field changes, a new group begins. Therefore, it’s important that the data is sorted
by grade. If the report’s autoSort property is true, all of the report’s queries will automatically be sorted to
match the groups in the StreamSource objects.

group1 has two Band objects of its own: a header band and a footer band, assigned to the headerBand and
footerBand properties respectively. The headerBand is currently empty, and the footerBand displays the count
of the students in that grade.

The Group object’s agCount() method counts the number of rows in the group. To display that number, the text
of the Text component in the footerBand is set to the following expression codeblock:

{||"Count: " + this.parent.parent.agCount({||this.parent.rowset.fields["ID"].value})}

The expression codeblock concatenates the text label with the return value of the Group object’s agCount()
method. To get to that method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.
Report objects 637

class Band
The agCount() method expects a code reference as a parameter that it can evaluate. If the return value is not
null, the count is incremented. The code reference here is another expression codeblock that uses dot operators:

• this is the Group object group1.

• group1’s parent is streamSource1.

• streamSource1’s rowset is students1.rowset, the rowset that the report engine is traversing to fill
streamFrame1.

That’s all the objects that go into a report of students, grouped by grade, with the number of students in each
grade. There are two final details that are needed to make the report work.

Because a report can have multiple PageTemplate objects, a Report object has a firstPageTemplate property that
refers to the PageTemplate object to use for the first page. It is assigned pageTemplate1.

Each PageTemplate object has a nextPageTemplate property that refers to the PageTemplate object to use when
the current page is done. For pageTemplate1, it is assigned a reference to itself. This means that the same page
layout is used for every page in the report.

Everything described in this sample report can be handled automatically by the Report Wizard. To run the
report, call the Report object’s render() method.

How a report is rendered
When a Report object’s render() method is called, the first thing the report does is check its firstPageTemplate
property to find the first page to render. It renders the page by rendering all the components and StreamFrame
objects assigned to it, in the order they were originally created (the same order as they appear in the class
definition in the .REP file).

To render a StreamFrame object, dBASE Plus looks to its streamSource property. The Band objects in that
StreamSource object—the detailBand and the headerBand and footerBand of any groups—are rendered in the
StreamFrame object to fill it with data.

Before each component in the band is rendered, its canRender event fires. The canRender event can be used to
supplement the supressIfBlank and supressIfDuplicate properties of the Text component by returning false, but
it is more often used to alter the properties of a component just before it is rendered. For example, you can set a
component’s colorNormal to red if it’s going to display a negative number. When used this way, the canRender
event handler does what it wants and returns true, so that component is rendered. After the component is
rendered, its onRender event fires. You can use the onRender event to reset the component to its original state.

Until the data from the StreamSource object is exhausted—that is unless the StreamSource object’s rowset
reaches the end-of-set—dBASE Plus knows that it needs to fill another StreamFrame. If there is another
StreamFrame object in the same PageTemplate that used the same streamSource, the report engine will continue
to stream bands from that StreamSource into that StreamFrame.

For example, if a PageTemplate has three tall StreamFrame objects side-by-side that have the same
streamSource property, data would be printed in three columns on each page. To create a page of labels, create
one StreamFrame for each label, all with the same streamSource property. Then set the beginNewFrame
property of the streamSource’s detailBand to true, so that each row of data is rendered in a new StreamFrame.

If there are no more StreamFrame objects that can be filled on the current page, another page is scheduled. The
current PageTemplate object’s nextPageTemplate property refers to the PageTemplate to use.

Once the current page has finished rendering, the Report object’s onPage event fires. If there is another page
scheduled, it is rendered. Its StreamFrame objects are filled with data and the process repeats itself until all the
StreamSource objects are exhausted. The onPage event fires one last time and the report is done.

class Band
Contains the objects to output for a single row in a stream, or the header or footer of a group.

Syntax These objects are automatically created by the StreamSource and Group objects.
638 dBL Language Reference

class Group
Properties The following table lists the properties and events of the Band class. (No methods are associated with this class.)

Property Default Description
beginNewFrame false Whether rendering always starts in a new StreamFrame
className BAND Identifies the object as an instance of the Band class (Property discussed in Chapter 5, “Core

language.”)
context Normal The context in which the band is being rendered: (0=Normal) or for (1=For Drilldown

summary)
expandable true Whether the band will increase in size automatically to accommodate the objects within it
firstOnFrame Whether the band is being rendered for the first time in a StreamFrame.
height 0 The height of the band in the Report object’s current metric units. (See page 15-525.)
name The name of the Band object. (See page 15-538.)
parent The StreamSource or Group object that contains the Band (Property discussed in Chapter 5,

“Core language.”)
renderOffset The offset of the bottom of the band from the top of the current stream frame.
streamFrame The StreamFrame object in which the band is currently rendering.
visible Whether the band is visible. (See page 15-588.)

Event Parameters Description
onRender After the contents of the band have rendered
preRender Before the contents of the band are rendered

Description A Band object acts as a container for visual components. They are created automatically for StreamSource and
Group objects and cannot be created manually. There are three kinds of Band objects: detail bands, header
bands, and footer bands.

A detail band is assigned to a StreamSource’s detailBand property. The contents of the band are output once for
each row in the StreamSource’s rowset. Header and footer bands are assigned to a Group object’s headerBand
and footerBand properties respectively. They are rendered at the beginning and end of each group.

For a detail band, setting its beginNewFrame property to true causes each row from the StreamSource’s rowset
to be rendered in a new StreamFrame, which is the desired behavior when creating labels.

For a summary-only report, leave the detail band empty and set its height to zero.

When a band’s expandable property is true and it contains components, the band will expand to show those
components, even if its height is set to zero.

See also class StreamSource, class Group

class Group
Describes a group in a report.

Syntax [<oRef> =] new Group(<streamSource>)

<oRef> A variable or property—typically of <streamSource>—in which you want to store a reference to the
newly created Group object.

<streamSource> The StreamSource object to which the Group object binds itself.

Properties The following tables list the properties and methods of the Group class. (No events are associated with this
class.)

Property Default Description
className GROUP Identifies the object as an instance of the Group class. (Property discussed in

Chapter 5, “Core language.”)
drillDown None How the group’s bands are displayed in drilldown format.
Report objects 639

class PageTemplate
Description Use Group objects to group data and calculate aggregate values for the group. Groups may be nested, and are
handled in the order that they are created (the same order that they appear in the class definition in a .REP file).

The groupBy property contains the name of the field that defines the group, and may include an optional
ascending or descending modifier. Whenever the value of that field changes, a new group starts. Therefore, the
data must be sorted on the grouping field(s).

A Group object’s headerBand is rendered before each group and its footerBand is rendered afterward. If the
headerEveryFrame property is true, the group’s headerBand is rendered at the beginning of every
StreamFrame.

If the Report object’s autoSort property is true, data in a report is automatically sorted to match groups.

The Report object has its own Group object that is referred to by its reportGroup property. Its groupBy property
is an empty sting, and the group is used for report-wide aggregates.

You may organize the report in drilldown format: the header and footer bands showing summary information
are displayed first, followed by the detail rows. This allows you to see summary information at the top, and then
“drill down” to the supporting data.

See also class Report, class Band

class PageTemplate
Describes the layout of a page of a report.

Syntax [<oRef> =] new PageTemplate(<report>)

<oRef> A variable or property—typically of <report>—in which you want to store a reference to the newly
created PageTemplate object.

<report> The Report object to which the PageTemplate object binds itself.

footerBand Specifies a Band that renders after a group of detail bands.
groupBy A character string containing the field name by which groups are formed. If

blank, the group is for the entire report.
headerBand Specifies a Band that renders before a group of detail bands.
headerEveryFrame false Specifies whether to repeat the headerBand when a Group spans more than one

StreamFrame.
name The name of the Group object. (See page 15-538.)
parent The Report or StreamSource object that contains the Group. (Property discussed

in Chapter 5, “Core language.”)

Method Parameters Description
agAverage() <codeblock> Aggregate method that returns the mean average for a group
agCount() <codeblock> Aggregate method that returns the number of items in a group
agMax() <codeblock> Aggregate method that returns the highest value within a group
agMin() <codeblock> Aggregate method that returns the lowest value in a group
agStandardDeviation() <codeblock> Aggregate method that returns the standard deviation of the values in a group
agSum() <codeblock> Aggregate method that returns the total of a group
agVariance() <codeblock> Aggregate method that returns the variance of the values in a group
release() Explicitly releases the Group object from memory

Property Default Description
640 dBL Language Reference

class Report
Properties The following tables list the properties and methods of the PageTemplate class. (No events are associated with
this class.)

Property Default Description
background Background image on the page. (See page 15-482.)
className PAGETEMPLATE Identifies the object as an instance of the PageTemplate class (Property discussed in

Chapter 5, “Core language.”)
colorNormal white Background color for the page. (See page 15-495.)
gridLineWidth 0 Width of lines around elements in the report (0=no grid lines). (See page 15-522.)
height Height of the page in current metric units. (See page 15-525.)
marginBottom .75 inch =

1080 twips
The space between the bottom of the page and the usable area of the PageTemplate

marginLeft .75 inch =
1080 twips

The space between the left side of the page and the usable area of the PageTemplate

marginRight .75 inch =
1080 twips

The space between the right side of the page and the usable area of the
PageTemplate

marginTop .75 inch =
1080 twips

The space between the top of the page and the usable area of the PageTemplate

name The name of the PageTemplate object. (See page 15-538.)
nextPageTemplate The PageTemplate object that is used for the following page
parent The Report object that contains the PageTemplate (Property discussed in Chapter 5,

“Core language.”)
width Width of the page in current metric units. (See page 15-590.)

Method Parameters Description
release() Explicitly releases the PageTemplate object from memory

Description A PageTemplate object describes the layout of a page, including its background color or image. It acts as a
container for StreamFrame objects and visual components, which represent fixed output, such as a report date
and page number.

The location of these objects is relative to (and restricted by) the four margin- properties that dictate the usable
area of the page. Changing the marginLeft or marginTop will move everything that’s inside the PageTemplate.
A PageTemplate’s dimensions - it’s height and width - correspond to your printer’s current Paper Size settings.

Although you may create multiple PageTemplate objects in a report, for example a different first page or
alternating odd and even pages, the Report Designer currently does not support multiple PageTemplate objects
visually.

In the Report Designer, the dotted area represents the useable portion of the PageTemplate, with the surrounding
white area indicating the margins. The Report Designer shows only that area which corresponds to a
PageTemplate.

See also class Report, class StreamFrame

class Report
A container and controller of report elements.

Syntax [<oRef> =] new Report()

<oRef> A variable or property in which you want to store a reference to the newly created Report object.

Properties The following tables list the properties, events, and methods of the Report class.

Property Default Description
autoSort true Whether to automatically sort data to match specified groups
className REPORT Identifies the object as an instance of the Report class (Property discussed in Chapter 5, “Core

language.”)
Report objects 641

class StreamFrame
Description A Report object acts as the controlling container for all the objects that make up the report, including data
access, page layout, and data stream objects.

The reportGroup property refers to a report-level Group object that can be used for report-wide summaries.
This Group object is created automatically.

To generate the report, call its render() method. The report’s output property determines where the report is
rendered: to the screen, a printer, or a file. The report’s printer object contains properties that control output to a
printer (or printer file). Call the printer object’s choosePrinter() method before calling render() to allow the
user to choose a printer.

You can control the pages that are output by setting the startPage and endPage properties.

See also class PageTemplate, class StreamSource, class Group

class StreamFrame
Describes an area on a page into which output is streamed.

Syntax [<oRef> =] new StreamFrame(<pageTemplate>)

<oRef> A variable or property—typically of <pageTemplate>—in which you want to store a reference to
the newly created StreamFrame object.

<pageTemplate> The PageTemplate object to which the StreamFrame object binds itself.

endPage –1 Last page number to render (–1 for no limit)
elements An array containing object references to the visual components on the reports
firstPageTemplate Reference to the first PageTemplate object, which describes the first page
inDesign Whether the report was instantiated by the Report designer
MDI Whether the report window is an MDI window
metric Twips Units of measurement (0=Chars, 1=Twips, 2=Points, 3=Inches, 4=Centimeters,

5=Millimeters, 6=Pixels)
output Default Target media (0=Window, 1=Printer, 2=Printer file, 3=Default, 4=HTML, 5=CGI Response)
outputFilename Name of file if output goes to a file (Printer, HTML, or CGI)
printer An object describing various printer output options
reportGroup Reference to a Group object for the report as a whole, for master counts and totals
reportPage Current page number being rendered
reportViewer null Reference to the ReportViewer object that instantiated the report, if any.
scaleFontBold false When the metric is Chars, determines whether the Char units of the ScaleFont assume that the

font is bold
scaleFontName Arial When the metric is Chars, the typeface of the font used as the basis of measurement
scaleFontSize 10 When the metric is Chars, the point size of font used as the basis of measurement
startPage 1 First page number to output
title Title of the report; appears in the title bar of the preview window.

Event Parameters Description
onDesignOpen After the report is first loaded into the Report Designer.
onPage After a page is rendered

Method Parameters Description
close() Closes the report window
isLastPage() Determines whether there are any more pages to render
release() Explicitly releases the Report object from memory
render() Generates the report

Property Default Description
642 dBL Language Reference

class StreamSource
Properties The following table lists the properties and events of the StreamFrame class. (No methods are associated with
this class.)

Property Default Description
borderStyle Default The border around the StreamFrame object (0=Default, 1=Raised, 2=Lowered,

3=None, 4=Single, 5=Double,
6-Drop Shadow, 7=Client, 8=Modal, 9=Etched In, 10=Etched Out)

className STREAMFRAME Identifies the object as an instance of the StreamFrame class (Property discussed in
Chapter 5, “Core language.”)

form Reference to the report that contains the StreamFrame object. (See page 15-519.)
height 0 Height of the StreamFrame object in its PageTemplate’s Report’s current metric

units. (See page 15-525.)
left 0 The location of the left edge of the StreamFrame object in its PageTemplate’s

Report’s current metric units, relative to the PageTemplate’s marginLeft. (See
page 15-532.)

marginHorizontal 0 Horizontal margin inside the StreamFrame
marginVertical 0 Vertical margin inside the StreamFrame
name The name of the StreamFrame object. (See page 15-538.)
parent The PageTemplate object that contains the StreamFrame (Property discussed in

Chapter 5, “Core language.”)
streamSource Reference to a StreamSource object that contains objects to be rendered in the

StreamFrame
top 0 The location of the top edge of the StreamFrame object in its PageTemplate’s

Report’s current metric units, relative to the PageTemplate’s marginTop. (See
page 15-584.)

width Width of the StreamFrame object in its PageTemplate’s Report’s current metric units.
(See
page 15-590.)

Event Parameters Description
canRender Before the StreamFrame is rendered; return value determines whether StreamFrame is

rendered
onRender After the contents of the StreamFrame have rendered

Description A StreamFrame object describes a rectangular region inside the margins of a PageTemplate into which data
from a StreamSource object is rendered.

Although you may create multiple StreamFrame objects in a PageTemplate, the Report Designer currently does
not support multiple StreamFrame objects visually.

See also class PageTemplate, class StreamSource

class StreamSource
Describes a data source for streaming.

Syntax [<oRef> =] new StreamSource(<report>)

<oRef> A variable or property—typically of <report>—in which you want to store a reference to the newly
created StreamSource object.

<report> The Report object to which the StreamSource object binds itself.
Report objects 643

agAverage()
Properties The following tables list the properties and methods of the StreamSource class. (No events are associated with
this class.)

Property Default Description
className STREAMSOURCE Identifies the object as an instance of the StreamSource class (Property discussed in

Chapter 5, “Core language.”)
detailBand A Band object that corresponds to the rowset
maxRows The maximum number of rows the StreamSource will provide per StreamFrame per page
name The name of the StreamSource object. (See page 15-538.)
parent The Report object that contains the StreamSource (Property discussed in Chapter 5, “Core

language.”)
rowset The Rowset object that drives the StreamSource

Method Parameters Description
beginNewFrame() Forces the next band to display in a new StreamFrame.
release() Explicitly releases the StreamSource object from memory

Description A StreamSource object acts as the common ground between a rowset that contains data you want to display and
a band that contains components to display that data.

Every StreamFrame is assigned a StreamSource. The same StreamSource object may be assigned to multiple
StreamFrame objects. The data from a StreamSource is rendered in all the StreamFrame objects that are linked
to it. You may limit the number of rows that are rendered per StreamFrame, and therefore per page, by setting
the StreamSource object’s maxRows property.

A StreamSource object may contain Group objects that group data to perform aggregate functions.

See also class Report, class StreamFrame, class Band

agAverage()
Aggregate method that returns the mean average for a group.

Syntax <oRef>.agAverage(<codeblock>)

<oRef> The Group object that defines the group you want to summarize.

<codeblock> A codeblock or pointer to a function that returns the value to average.

Property of Group

Description Use agAverage() to calculate the mean average of the value returned by <codeblock> in the group.
<codeblock> is usually an expression codeblock that returns the value property of a field in the Group object’s
parent StreamSource object’s rowset.

If <codeblock> returns a null value, it is not considered in the average.

You may call agAverage() at any time. If necessary, the report engine will look ahead to calculate the result.

Example Suppose you’re reporting test scores, grouped by age. You display the average in an Text component in the
group’s footerBand. The text of the Text component is an expression codeblock that calls the agAverage()
method:

{||this.parent.parent.agAverage({||this.parent.rowset.fields["Score"].value})}

To get to the Group object’s agAverage() method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.

The expression codeblock that is passed to agAverage() also uses dot operators:
644 dBL Language Reference

agCount()
• this is the Group object that performs the calculation.
• The Group object’s parent is the StreamSource.
• The StreamSource object contains the rowset.

See also agCount(), agMax(), agMin(), agStandardDeviation(), agSum(), agVariance()

agCount()
Aggregate method that returns the number of items in a group.

Syntax <oRef>.agCount(<codeblock>)

<oRef> The Group object that defines the group you want to summarize.

<codeblock> A codeblock or pointer to a function that returns the value you want to count.

Property of Group

Description Use agCount() to count the number of items in the group. <codeblock> is usually an expression codeblock that
returns the value property of a field in the rowset of the Group object’s parent StreamSource object.

If <codeblock> returns a null value, that item is not counted, so that empty rows will be skipped. To count a row
even if it is empty, have the <codeblock> return a constant non-null value, for example,

{||1}

You may call agCount() at any time. If necessary, the report engine will look ahead to calculate the result.

Example Suppose you’re reporting test scores, grouped by age. You display the number of tests scored in an Text
component in the group’s footerBand. The text of the Text component is an expression codeblock that calls the
agCount() method:

{||this.parent.parent.agCount({||this.parent.rowset.fields["Score"].value})}

To get to the Group object’s agCount() method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.

The expression codeblock that is passed to agCount() also uses dot operators:

• this is the Group object that performs the calculation.
• The Group object’s parent is the StreamSource.
• The StreamSource object contains the rowset.

See also agAverage(), agMax(), agMin(), agStandardDeviation(), agSum(), agVariance()

agMax()
Aggregate method that returns the highest value within a group.

Syntax <oRef>.agMax(<codeblock>)

<oRef> The Group object that defines the group you want to summarize.

<codeblock> A codeblock or pointer to a function that returns the value you want to track.

Property of Group

Description Use agMax() to return the highest value returned by <codeblock> in the group. <codeblock> is usually an
expression codeblock that returns the value property of a field in the rowset of the Group object’s parent
StreamSource object.

If <codeblock> returns a null value, it is ignored.

You may call agMax() at any time. If necessary, the report engine will look ahead to determine the result.
Report objects 645

agMin()
Example Suppose you’re reporting test scores, grouped by age. You display the highest score in an Text component in the
group’s footerBand. The text of the Text component is an expression codeblock that calls the agMax() method:

{||this.parent.parent.agMax({||this.parent.rowset.fields["Score"].value})}

To get to the Group object’s agMax() method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.

The expression codeblock that is passed to agMax() also uses dot operators:

• this is the Group object that performs the calculation.
• The Group object’s parent is the StreamSource.
• The StreamSource object contains the rowset.

See also agAverage(), agCount(), agMin(), agStandardDeviation(), agSum(), agVariance()

agMin()
Aggregate method that returns the lowest value within a group.

Syntax <oRef>.agMin(<codeblock>)

<oRef> The Group object that defines the group you want to summarize.

<codeblock> A codeblock or pointer to a function that returns the value you want to track.

Property of Group

Description Use agMin() to return the lowest value returned by <codeblock> in the group. <codeblock> is usually an
expression codeblock that returns the value property of a field in the rowset of the Group object’s parent
StreamSource object.

If <codeblock> returns a null value, it is ignored.

You may call agMin() at any time. If necessary, the report engine will look ahead to determine the result.

Example Suppose you’re reporting test scores, grouped by age. You display the lowest score in an Text component in the
group’s footerBand. The text of the Text component is an expression codeblock that calls the agMin() method:

{||this.parent.parent.agMin({||this.parent.rowset.fields["Score"].value})}

To get to the Group object’s agMin() method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.

The expression codeblock that is passed to agMin() also uses dot operators:

• this is the Group object that performs the calculation.
• The Group object’s parent is the StreamSource.
• The StreamSource object contains the rowset.

See also agAverage(), agCount(), agMax(), agStandardDeviation(), agSum(), agVariance()

agStdDeviation()
Aggregate method that returns the standard deviation of the values in a group.

Syntax <oRef>.agStdDeviation(<codeblock>)

<oRef> The Group object that defines the group you want to summarize.

<codeblock> A codeblock or pointer to a function that returns the value you want to sample.

Property of Group
646 dBL Language Reference

agSum()
Description Use agStdDeviation() to calculate the standard deviation of the value returned by <codeblock> in the group.
<codeblock> is usually an expression codeblock that returns the value property of a field in the rowset of the
Group object’s parent StreamSource object.

If <codeblock> returns a null value, it is not considered in the sample.

You may call agStdDeviation() at any time. If necessary, the report engine will look ahead to calculate the
result.

Example Suppose you’re reporting test scores, grouped by age. You display the standard deviation in an Text component
in the group’s footerBand. The text of the Text component is an expression codeblock that calls the
agStdDeviation() method:

{||this.parent.parent.agStdDeviation({||this.parent.rowset.fields["Score"].value})}

To get to the Group object’s agStdDeviation() method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.

The expression codeblock that is passed to agStdDeviation() also uses dot operators:

• this is the Group object that performs the calculation.
• The Group object’s parent is the StreamSource.
• The StreamSource object contains the rowset.

See also agAverage(), agCount(), agMax(), agMin(), agSum(), agVariance()

agSum()
Aggregate method that returns the total of a group.

Syntax <oRef>.agSum(<codeblock>)

<oRef> The Group object that defines the group you want to summarize.

<codeblock> A codeblock or pointer to a function that returns the value you want to total.

Property of Group

Description Use agSum() to calculate the total of the value returned by <codeblock> in the group. <codeblock> is usually an
expression codeblock that returns the value property of a field in the rowset of the Group object’s parent
StreamSource object.

If <codeblock> returns a null value, it is ignored.

You may call agSum() at any time. If necessary, the report engine will look ahead to calculate the result.

Example Suppose you’re tracking overtime hours, grouped by employee. You display the average in an Text component
in the group’s footerBand. The text of the Text component is an expression codeblock that calls the agSum()
method:

{||this.parent.parent.agSum({||this.parent.rowset.fields["Overtime"].value})}

To get to the Group object’s agSum() method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.

The expression codeblock that is passed to agSum() also uses dot operators:

• this is the Group object that performs the calculation.
• The Group object’s parent is the StreamSource.
• The StreamSource object contains the rowset.

See also agAverage(), agCount(), agMax(), agMin(), agStandardDeviation(), agVariance()
Report objects 647

agVariance()
agVariance()
Aggregate method that returns the variance of the values in a group.

Syntax <oRef>.agVariance(<codeblock>)

<oRef> The Group object that defines the group you want to summarize.

<codeblock> A codeblock or pointer to a function that returns the value you want to sample.

Property of Group

Description Use agVariance() to calculate the variance of the value returned by <codeblock> in the group. <codeblock> is
usually an expression codeblock that returns the value property of a field in the rowset of the Group object’s
parent StreamSource object.

If <codeblock> returns a null value, it is not considered in the sample.

You may call agVariance() at any time. If necessary, the report engine will look ahead to calculate the result.

Example Suppose you’re reporting test scores, grouped by age. You display the variance in an Text component in the
group’s footerBand. The text of the Text component is an expression codeblock that calls the agVariance()
method:

{||this.parent.parent.agVariance({||this.parent.rowset.fields["Score"].value})}

To get to the Group object’s agVariance() method from a component in the footerBand,

• this is the component.
• The component’s parent is the footerBand.
• The footerBand’s parent is the Group.

The expression codeblock that is passed to agVariance() also uses dot operators:

• this is the Group object that performs the calculation.
• The Group object’s parent is the StreamSource.
• The StreamSource object contains the rowset.

See also agAverage(), agCount(), agMax(), agMin(), agSum(), agVariance()

autoSort
Whether to automatically sort data to match specified groups.

Property of Report

Description For groups to work properly, data must be sorted to match the groups.

If a Report object’s autoSort property is true (the default), then the sql property of any query that is accessed by
a StreamSource object that has groups will be modified automatically to include an ORDER BY clause that
sorts the rowset in the correct order.

For example, if you have two Group objects, the first grouping by the field State and the second by Zip, then
even if the query’s sql property is set as:

select * from SALES

the rowset will actually be generated internally with the SQL statement:
select * from SALES order by STATE, ZIP

If autoSort is false, the rowset is not altered by the report engine. It assumes that the query is correct and
contains the necessary fields in the right order. Therefore, if you use the indexName property to set the rowset
order, you should set autoSort to false; otherwise it defeats the purpose of using indexName.

See also groupBy
648 dBL Language Reference

beginNewFrame
beginNewFrame
Specifies whether rendering always starts in a new StreamFrame.

Property of Band

Description Set the beginNewFrame property of the StreamSource object’s detailBand to true if you want each row to be
rendered in its own StreamFrame. If you have one StreamFrame in each PageTemplate, you will get one row per
page. If you have multiple StreamFrames in each PageTemplate, each one will have at most one row of data.

You would create a page of labels by creating a StreamFrame for each label, set all the StreamFrame objects’
streamSource property to the same StreamSource, and set its detailBand’s beginNewFrame property to true.

Set the beginNewFrame property of a group’s headerBand to true if you want each group to start in a new
StreamFrame. If you have one StreamFrame per page, that makes each group start on a new page.

If the beginNewFrame property of a group’s footerBand is true, then whenever it is rendered, it will start in a
new StreamFrame. For example, you could print a summary page for a report by creating a large footerBand for
the Report object’s reportGroup and set its beginNewFrame property to true.

See also beginNewFrame(), headerEveryFrame

beginNewFrame ()
Forces the next band to display in a new StreamFrame.

Property of StreamSource

Description Use beginNewFrame() to conditionally force the next band—whether it is a detailBand, headerBand, or
footerBand—to display in a new StreamFrame. In effect, it’s as if that band’s beginNewFrame property is
temporarily set to true.

Example See the example for renderOffset for an example using beginNewFrame().

See also beginNewFrame, maxRows, renderOffset

context
Reports the context in which the band is being rendered.

Property of Band

Description Check the band’s context property to determine the context in which it’s being rendered. context is a read-only
enumerated property that can have the following values:

Value Context
0 Normal
1 For drilldown summary

For detail bands, the value will always be Normal, since they are never rendered in the drilldown summary. For
footer and header bands, the value will change accordingly.

The context property is checked primarily during the canRender event of components in a header or footer band
when the the header or footer is shown in both the summary and details in a drilldown report; you can change
the content of the component accordingly.

See also drillDown

canRender
Just before the component is rendered; return value determines whether the component is displayed.
Report objects 649

choosePrinter()
Parameters none

Property of All visual components on a report, StreamFrame

Description canRender fires for visual components only when they are in a report. It is fired every time the object is
rendered. For a component in a detail band, that means for every row in the rowset.

While you can use canRender to evaluate some condition and return false to prevent the component from being
displayed, the more common use of canRender is to alter a component’s properties conditionally and always
return true. You can create a calculated field in a report by altering an HTML component’s text property in its
canRender event handler.

You can use the onRender event to reset the component to its default state afterward, or always choose the
desired state in the canRender event.

For a StreamFrame object, the canRender event fires before it attempts to retrieve data from its streamSource.
Note that it is the rendering of StreamFrame objects that cause additional pages to be scheduled. If a report has
only one stream frame, and its canRender returns false so that it is not rendered, no more pages will be printed;
the report will terminate. You can call streamSource.beginNewFrame() to skip the current stream frame, but in
that case, its canRender event handler must return true.

Example Suppose you’re printing a balance sheet and you want to highlight all the negative numbers by making them red.
The default colorNormal property of the Text component is black. Use the following canRender event handler
to set the colorNormal property appropriately just before the component is rendered:

function someFigure_canRender()
 this.colorNormal := iif(this.text() < 0, "red", "black")
 return true

Because the text property of the Text component is an expression codeblock, to get the value that is going to be
displayed, call the component’s text property. Don’t forget to RETURN true; otherwise the component is never
displayed.

See also onRender

choosePrinter()
Opens a print setup or print dialog to allow a user to select the printer and set other print or report properties.

Syntax <oRef>.choosePrinter([<title expC>][, <expL>])

<oRef> A reference to the printer object whose choosePrinter() method you wish to call.

<title expC> Optional custom title for the print or printer setup dialog box.

<expL> If true, choosePrinter() will display the "Print Setup" dialog. If false, choosePrinter() will display
the standard Windows "Print" dialog.

Property of printer class

Description When calling the choosePrinter() method of the _app.printer object, the "Print Setup" dialog will display, by
default.

When calling the choosePrinter() method of a printer object that is attached to a report object, the standard
Print dialog will display, by default. If the user sets a start page and end page to print, their settings will be
copied into the attached report's startPage and endPage properties.

If a report object's startPage and endPage values are already set when the associated choosePrinter() method is
called, these values will be defaulted into the Print dialog.

For either dialog, user selections will be copied into the corresponding printer object properties

detailBand
The Band object in a StreamSource, which displays data from the rowset.

Property of StreamSource
650 dBL Language Reference

drillDown
Description A StreamSource object automatically has a Band object assigned to its detailBand property. This is the band
that is rendered to display data in the rowset.

Visual components for displaying detail rows in the report should be created as a property of the StreamSource
object’s detailBand.

See also beginNewFrame, footerBand, headerBand

drillDown
How the group’s bands are displayed in drilldown format.

Property of Group

Description By choosing a drilldown format, the header and footer bands in the specified group are displayed first, followed
by the detail rows. The drillDown property controls whether the header and footer bands are repeated with the
detail rows. drillDown is an enumerated property that can have one of the following values:

Value Description
0 None—do not format as drilldown (default)
1 Drilldown. Do not repeat headers or footers
2 Drilldown, repeat headers
3 Drilldown, repeat footers
4 Drilldown, repeat headers and footers

See also context

endPage
The last page number to render.

Property of Report

Description When rendering to a window (the default), only one page, the startPage, is rendered at a time. When rendering
to a printer or file, pages are rendered from the startPage to the endPage.

By default, endPage is –1, which means that all the pages in the report are rendered. Set endPage to a number
greater than zero to set the last page to render. When and if the report engine gets to that page, it stops after it
has finished rendering it.

Example

See also output, render(), startPage, isLastPage()

expandable
Specifies whether an object will increase in size automatically to accommodate the objects within it.

Property of Band, Container

Description If a Band or Container object’s expandable property is true (the default), it will increase in size to display all the
components inside it, even if its height is set to zero.

Set expandable to false if you want to make the size and number of rows displayed on each page constant, no
matter what is displayed.

See also fixed, height (page 15-525)
Report objects 651

firstOnFrame
firstOnFrame
Whether the band is being rendered for the first time in the StreamFrame.

Property of Band

Description Check the firstOnFrame property in a component’s canRender event if you want to render it (or don’t want to
render it) the first time the component’s band is being rendered in a StreamFrame only.

Example If you place column headings inside a StreamFrame, you can create Text components in the detail band that
have the following canRender event:

{||this.parent.firstOnFrame}

See also beginNewFrame

firstPageTemplate
The PageTemplate object that is used for the report’s first page.

Property of Report

Description Because a report may have multiple PageTemplate objects, the firstPageTemplate property is used to identify
the PageTemplate that the report should render as its first page.

Once the first PageTemplate has been chosen, each PageTemplate object has a nextPageTemplate property that
identifies the page to render next.

See also nextPageTemplate

fixed
Specifies whether an object’s position in a band is fixed or if it can be “pushed down” or “pulled up” by the
rendering or suppression of other objects.

Property of Visual components in a band.

Description Consider two components in a band named object1 and object2. Suppose that

• The bottom of object1 is at or above the top of object2.
• object1’s variableHeight property is true.
• object1 grows in height to accommodate the data in it.
• The bottom of object1 is now below the top of object2.

Then if object2’s fixed property is false (the default), object2 will be pushed down by object1 so that object2’s
top will be at the bottom of object1. This in turn might push down other objects in the band.

object2 can also be pulled up if the bottom of object1 is at or above the top of object2 and object1 is suppressed
by its supressIfBlank or supressIfDuplicate properties.

The horizontal position of the objects in question doesn’t matter, only the vertical position of their top and
bottom ends.

If an object’s fixed property is true, it is not moved by the rendering or suppression of other objects.

After the band has been rendered, all the objects return to their original positions and sizes.

See also expandable, variableHeight, supressIfBlank, supressIfDuplicate

footerBand
The Band object that renders after each group.

Property of Group
652 dBL Language Reference

groupBy
Description A Group object automatically has a Band object assigned to its footerBand property. This band is rendered after
each group is completed; that is, just before the next group starts or at the end of the rowset. It usually contains
components that display summary information.

For components in the footerBand, the Group object’s aggregate functions will return summary values for the
group that has just completed.

Example Suppose you’re printing a list of students grouped by grade. At the end of each grade, you want to display the
number of students in that grade. In the Group object’s footerBand, you create an Text component with the
following expression codeblock assigned to its text property:

{||"Count: " + this.parent.parent.agCount({||this.parent.rowset.fields["ID"].value})}

See also beginNewFrame, detailBand, headerBand

groupBy
The name of the field upon which groups are formed.

Property of Group

Description dBASE Plus groups rows by monitoring the value of a field in the rowset. The groupBy property contains the
name of a field as a character string with an optional ascending or descending sort designation (not case-
sensitive, ascending is the default). You may abbreviate ascending as “ASC” and descending as “DESC”. For
example, if you’re grouping by the Age field, you could have one of the following strings as the groupBy
property:

Age
Age asc
Age desc
Age ascending
Age descending

The ascending and descending options have an effect only if the report’s autoSort property is set to true. In that
case, dBASE Plus will make sure that the data in the rowset is sorted by the correct field in the correct direction.

No matter what the value of autoSort is, the named field must exist in the rowset. dBASE Plus looks for that
field in the rowset’s fields array, just as you would. For example,

rowset.fields["Age"].value

Because dBASE Plus uses the rowset’s fields array, you can group on calculated fields. There are two ways to
do this. You can create a calculated field in a SQL SELECT statement, in which case set autoSort to true; or you
can create the calculated field by adding a Field object to the rowset’s fields array, in which case you must set
autoSort to false, because the named field doesn’t exist in the table, so you can’t sort on it. You would still have
to make sure that the rows are sorted in the correct order so that all the rows in the same group are contiguous in
the rowset.

Example Suppose you’re tracking sales and want to generate a summary report, grouped by quarter. The data stores the
actual date, so you’ll need to calculate the quarter.

To calculate the quarter, divide the month of the date by 3 and round up:

Month Month number Divided by 3 Rounded up
January 1 1/3 1
March 3 1 1
April 4 1 1/3 2
December 12 4 4

You can add the calculated field in the query’s onOpen event:
function sales1_onOpen()
 local c
 c = new Field() // Create a new Field object
 c.fieldName := "Quarter" // Give it a name
 this.rowset.fields.add(c) // Add it to the fields array
Report objects 653

headerBand
 c.beforeGetValue := {||ceiling(month(this.parent.fields["Date"].value) / 3)}

The group’s groupBy property is set to “Quarter”. You still need to sort the report by date so that the groups will
be in the right order. You can’t use autoSort, since it will try to sort by a field named “Quarter”, and there isn’t
one. So you use the following SQL SELECT statement in the query’s sql property:

select * from OVERTIME order by OVERTIME."DATE"

DATE is an SQL reserved word, so you need to place the field name in quotes and use the table name.

See also autoSort

headerBand
The Band object that renders before each group.

Property of Group

Description A Group object automatically has a Band object assigned to its headerBand property. This band is rendered
before the start of a new group, including the first group in the report; and if the Group object’s
headerEveryFrame property is true, at the beginning of every StreamFrame. It usually contains components that
identify the current group or display summary information.

Example Suppose you’re tracking sales and want to generate a summary report, grouped by quarter. You’ve already
created a calculated field “Quarter” that contains a number from 1 to 4. To print “1st quarter”, “2nd quarter” and
so forth, set the text property of an Text component to the following expression codeblock (all in one line):

{||{"1st","2nd","3rd","4th"}
[this.parent.parent.parent.rowset.fields["Quarter"].value] +
" quarter"}

This codeblock uses a literal array that contains the corresponding text for the quarter number. To get the
quarter number in the calculated field “Quarter” from the Text component:

• this is the component
• the component’s parent is the headerBand
• the headerBand’s parent is the Group object
• the group’s parent is the StreamSource object
• from the StreamSource object, you can access its rowset

See also beginNewFrame, detailBand, footerBand, headerEveryFrame

headerEveryFrame
Specifies whether to repeat a group’s headerBand when a group spans more than one StreamFrame.

Property of Group

Description A group’s headerBand is rendered at the beginning of the group. By default, headerEveryFrame is false; that
means that if the contents of the group go into another frame, the headerBand is not repeated.

Set headerEveryFrame to true if you want a group’s headerBand to be rendered at the top of every
StreamFrame. For example, if you have one StreamFrame per page, setting headerEveryFrame to true will print
the headerBand at the top of each page, underneath the fixed components (for example column headings) on the
page.

If you have nested groups with headerEveryFrame set to true for each headerBand, the header bands will
appear in group order at the top of every StreamFrame.

The headerBand’s beginNewFrame property determines whether the header band for a new group should start
in a new StreamFrame. In contrast, headerEveryFrame determines whether the header band should be repeated
in subsequent StreamFrame objects.

See also beginNewFrame, headerBand
654 dBL Language Reference

isLastPage()
isLastPage()
Returns true or false to let you know if additional pages are due to be rendered.

Syntax <oRef>.isLastPage()

<oRef> An object reference to the report you want to check.

Property of Report

Description isLastPage() returns true if the current page is the last page of the report, and false if additional pages are to be
rendered.

Its main purpose is to allow you to make informed decisions about whether or not to display a button to display
additional pages. You may also use isLastPage() to display something on the last page of a report.

dBASE Plus does not determine in advance how many pages a report will take. It renders the report one page at
a time by filling all the StreamFrame objects on that page with data drawn from the StreamFrame objects’
streamSource. If there is more data to render and all the StreamFrame objects in the page are full, another page
is scheduled.

If the page being rendered is before the report’s startPage, the rendering is not output. When rendering to a
window (the default), rendering stops once a page is output; the window only displays one page at a time.
Rendering to a printer or file renders multiple pages. After the page has finished rendering, if another page is
scheduled, it is rendered. The process repeats until all the pages are rendered, or the report’s endPage page is
rendered. In that case, the rendering process stops, even though another page may be scheduled.

isLastPage() ignores the endPage setting and determines if another page is scheduled to be rendered. It can be
reliably called only after the last StreamFrame on a PageTemplate has been rendered, since it is the rendering of
StreamFrame objects that determines the scheduling of new pages.

isLastPage() is usually called from the canRender event handler for a component attached to the
PageTemplate—not in a band—that is defined after all the StreamFrame objects. The order in which objects are
created and assigned in the report class constructor directly determines their order of definition and rendering.

Example The following is the canRender event handler for a next page button on the PageTemplate. It hides the button on
the last page of the report.

{||not this.form.isLastPage()}

See also canRender, endPage, startPage

leading
The distance between consecutive lines inside a component.

Property of Text

Description leading controls the line spacing within an Text component. By default, it’s zero, which uses the default line
space for the font.

You can set leading to a non-zero value to set the baseline-to-baseline distance of the text in the component.

See also alignVertical, tracking, verticalJustifyLimit

marginBottom
The space between the bottom of the page and the usable area of the PageTemplate.

Property of PageTemplate

Description Use marginBottom in conjunction with the PageTemplate’s other margin- properties to define the usable area of
the page. The position of StreamFrame objects and components bound to the PageTemplate is relative to the top
left corner of the usable area and cannot extend beyond the bottom right corner.
Report objects 655

marginHorizontal
marginBottom indicates the distance, in the report’s current metric units, between the bottom of the page and the
bottom of the usable area.

When using multiple PageTemplate objects, you can position items differently just by changing the margins.
For example, you may use different left and right pages that have increased margins on the inside edge (the
gutter space) for binding.

See also marginLeft, marginRight, marginTop

marginHorizontal
The horizontal margin between the edge of the object and its contents.

Property of Editor, Text, StreamFrame

Description An object’s horizontal margin is the same on both the left and right sides. In a Text component, the text is
indented inside its rectangular frame. The left position of all bands inside a StreamFrame object are relative to
the horizontal margin on the left and restricted by the horizontal margin on the right.

marginHorizontal is measured in the form or report’s current metric units.

See also marginVertical

marginLeft
The space between the left edge of the page and the usable area of the PageTemplate.

Property of PageTemplate

Description Use marginLeft in conjunction with the PageTemplate’s other margin- properties to define the usable area of the
page. The position of StreamFrame objects and components bound to the PageTemplate is relative to the top left
corner of the usable area and cannot extend beyond the bottom right corner.

marginLeft indicates the distance, in the report’s current metric units, between the left edge of the page and the
left edge of the usable area.

When using multiple PageTemplate objects, you can position items differently just by changing the margins.
For example, you may use different left and right pages that have increased margins on the inside edge (the
gutter space) for binding.

See also marginBottom, marginRight, marginTop

marginRight
The space between the right edge of the page and the usable area of the PageTemplate.

Property of PageTemplate

Description Use marginRight in conjunction with the PageTemplate’s other margin- properties to define the usable area of
the page. The position of StreamFrame objects and components bound to the PageTemplate is relative to the top
left corner of the usable area and cannot extend beyond the bottom right corner.

marginRight indicates the distance, in the report’s current metric units, between the right edge of the page and
the right edge of the usable area.

When using multiple PageTemplate objects, you can position items differently just by changing the margins.
For example, you may use different left and right pages that have increased margins on the inside edge (the
gutter space) for binding.

See also marginBottom, marginLeft, marginTop
656 dBL Language Reference

marginTop
marginTop
The space between the top of the page and the usable area of the PageTemplate.

Property of PageTemplate

Description Use marginTop in conjunction with the PageTemplate’s other margin- properties to define the usable area of the
page. The position of StreamFrame objects and components bound to the PageTemplate is relative to the top left
corner of the usable area and cannot extend beyond the bottom right corner.

marginTop indicates the distance, in the report’s current metric units, between the top of the page and the top of
the usable area.

When using multiple PageTemplate objects, you can position items differently just by changing the margins.
For example, you may use different left and right pages that have increased margins on the inside edge (the
gutter space) for binding.

See also marginBottom, marginLeft, marginRight

marginVertical
The vertical margin between the edge of the object and its contents.

Property of Editor, Text, StreamFrame

Description An object’s vertical margin is the same on both the top and bottom. All rendering in the object, whether it’s text
in a Text component or bands inside a StreamFrame object, is relative to the vertical margin on the top and
restricted by the vertical margin on the bottom.

marginVertical is measured in the form or report’s current metric units.

See also marginHorizontal

maxRows
The maximum number of rows a StreamSource will provide to a StreamFrame on each page.

Property of StreamSource

Description Use maxRows to limit the number of rows displayed in each StreamFrame. For example, on a page with a single
StreamFrame, if maxRows is 10, only 10 rows maximum will displayed in the StreamFrame on each page.

See also beginNewFrame, beginNewFrame()

nextPageTemplate
The PageTemplate object that is used for the following page.

Property of PageTemplate

Description Because a report may have multiple PageTemplate objects, the firstPageTemplate property is used to identify
the PageTemplate that the report should render as its first page.

Once the first PageTemplate has been chosen, each PageTemplate object has a nextPageTemplate property that
identifies the page to render next.

For a report that uses the same page over and over, the same PageTemplate object is used for both the report’s
firstPageTemplate property and that PageTemplate’s own nextPageTemplate property.

You can create a different introduction or cover page for a report by specifying the cover page as the report’s
firstPageTemplate property, and then set the cover page’s nextPageTemplate property to the PageTemplate for
the body pages.
Report objects 657

onPage
To alternate left and right pages, set the nextPageTemplate of the left page to the right page, and vice versa.
Then specify the page on the right as the report’s firstPageTemplate.

See also firstPageTemplate

onPage
After the page has finished rendering.

Parameters none

Property of Report

Description onPage fires after each page has finished rendering, including the last page. By that time, it’s too late to do
anything to the page, but you can take actions for the next page.

In an onPage event handler, the report’s reportPage property indicates the page that has just finished rendering.

Example Suppose you’re going to print a report, make two-sided copies, and bind them. You want to shift the margins
slightly on both pages to accommodate the binding. The right pages need to move to the right and the left pages
need to move to the left. Other than that, the pages are identical.

You can use the onPage event handler to shift the margins of the PageTemplate after each page has printed, in
preparation for the next page:

function Report_onPage()
 #define TWIPS(x) ((x)*1440)
 if this.reportPage % 2 == 0 // Finished left page, start right
 this.pageTemplate1.marginLeft = TWIPS(1.0)
 this.pageTemplate1.marginRight = TWIPS(0.5)
 else // Finished right page, start left
 this.pageTemplate1.marginLeft = TWIPS(0.5)
 this.pageTemplate1.marginRight = TWIPS(1.0)
 endif

Pages on the left are even-numbered. An even number modulo 2 yields zero, so if a left page has just been
printed, the margins are set to those for a right page, and vice versa.

onRender
After the component is rendered.

Parameters none

Property of All visual components in a report, Band, StreamFrame

Description onRender fires for visual components only when they are in a report. It is fired every time the object is rendered,
after it has finished rendering. For a component in a detail band, that means for every row in the rowset.

You can use the onRender event to reset the component to its default state after changing it in its canRender
event.

onRender also fires for the Band objects, after all the objects in that band have been rendered (for a detail band,
after every row); and StreamFrame objects, after that StreamFrame has been rendered, on each page.

Example Suppose you’re printing a list of test scores, grouped by age. You have a headerBand that prints in every
StreamFrame. After printing in the first StreamFrame, you want it to add the word “continued”. Every time a
new group starts, you want to remove the word. There is also a footerBand to print totals for the group.

You create an Text object with the following expression codeblock as its text property:
{||"Age: " + this.parent.parent.parent.rowset.fields["Age"].value}

In the component’s onRender event, you change the codeblock to include the word “continued”:
function header1_html1_onRender()
 this.text = {||"Age: " + ;
 this.parent.parent.parent.rowset.fields["Age"].value + " continued"}
658 dBL Language Reference

output

p

So now, once it is rendered at the beginning of the group, it is changed so that it will contain the word
“continued” for the rest of the group.

To change it back for the start of a new group, use the following onRender event handler for the Text
component in the footerBand:

function footer1_html1_onRender()
 this.text = {||"Age: " + this.parent.parent.parent.rowset.fields["Age"].value}

This restores the original codeblock at the end of the group, preparing the Text component for the beginning of
the next group.

See also canRender

output
Designates the target medium for the report.

Property of Report

Description Set the report’s output property to designate how you want the report to be rendered. output may contain one of
the following values:

Value Target
0 Window
1 Printer
2 Printer file
3 Default
4 HTML file
5 CGI Response

The Default output is to a window. When rendering to a window, only one page at a time is rendered.

If you designate either Printer file or HTML file, the report’s outputFilename property must be set to the name
of the target file.

The CGI Response option allows HTML report output to be streamed directly out to Web servers. Reports
which have been compiled and built into executables (.EXEs) can be called and run directly from a URL typed
into the Web browser. In the design environment, the CGI Response option behaves identically to the HTML
File output option in that the report output is written to outputFilename. In the runtime environment,
outputFilename is ignored and the HTML output is automatically streamed to stdout.

See also outputFilename, printer

outputFilename
The name of the target output file.

Property of Report

Description If a report’s output property is set to Printer file, HTML, or CGI Response, the outputFilename property must be
set to the target file.

When the output property is CGI Response, outputFilename is ignored in the runtime environment. It is only
used when the report is run in the design environment.

The file will contain the output from the report. If the file already exists, it will be overwritten.

See also output
Report objects 659

preRender
preRender
Before the band begins rendering.

Parameters none

Property of Band

Description A band’s preRender event fires before the band starts rendering. Note that unlike canRender, you cannot
prevent the band from rendering in the preRender event handler.

See also canRender, onRender

printer
An object that describes various printer output options.

Property of Report

Description A printer object contains properties for the following printer options:

Property Default Description
color Monochrome Whether the output should be in color/grayscale or plain monochrome (0=Default,

1=Monochrome, 2=Color)
copies 1 Number of copies
duplex None Whether to print in duplex, and in which orientation (0=Default, 1=None,

2=Vertical, 3=Horizontal)
orientation Portrait The orientation of the output (0=Default, 1=Portrait, 2=Landscape)
paperSize printer-dependent The size of the paper to use
paperSource printer-dependent The paper tray or bin to use
printerName The name of the target printer (blank for default printer)
printerSource dBASE Plus default Which printerName to use (0=dBASE Plus default, 1=Windows default, 2=Specific)
resolution High Graphics resolution (0=Default, 1=Draft, 2=Low, 3=Medium, 4=High)
trueTypeFonts Depends on the

currently specified
default printer

How to handle TrueType fonts (0=Default, 1=Bitmap, 2=Download, 3=Substitute,
4=Outline)

and one method:

Method Parameters Description
choosePrinter() <title expC>

<expL>
Displays Print or Print Setup dialog to allow user to choose a printer and set printing
options.

Each Report object has its own printer object which controls the report output. The global _app object also has
a printer object that represents the default printer.

• The color property determines whether the default output should be color, greyscale, plain monochrome, or
default (the printer driver's default). If you do not have a color printer attached, colors will be evaluated and
printed to greyscale.

• The copiesc property lets you set the number of copies to print.

• The duplex property is used to determine whether to print in duplex mode for printers that support this
option.

• The orientation property is used to determine whether a report should print in portrait, or landscape mode.

• The papersize property allows you to set the paper size for the report. It uses a numeric scheme that varies
based on the printer driver. Some printers support paper sizes that others do not.
660 dBL Language Reference

render()

p

• For printers that support this option, the papersource property allows you to determine which tray, or bin, the
paper will come from. You should be able to change the papersource on the fly, which might prove useful
should you wish to print company letterhead on a report’s cover page only.

• The printerName property stores the name of the printer. If a report’s printer object’s printerName property
is blank, the printer specified in _app.printer.printerName is used (all other properties in the report’s printer
object are applied). If _app.printer.printerName is blank, the default Windows printer is used. In most cases
you should not set this property. Among other things, the printerName property will be saved in the report's
source code, which might cause problems should you attempt to render the report on a computer that does not
have this printer available.

• The printerSource property determines which printerName should be used. For the reason stated above (see
printerName), using the choosePrinter() method is recommended.

• The resolution property allows you to set the resolution for your report's output. This might prove useful if
you were using a dot matrix printer to test your report. Since high resolution output on these printers is
usually tediously slow, you could drop the resolution to low when testing, and only use high resolution for
the final output.

• The trueTypeFonts property can be used to determine how the printer will handle TrueType fonts. For the
most part it is probably safest to leave this alone.

• Call the choosePrinter() method to allow the user to choose a printer and set printing options. Each printer
object’s choosePrinter() method changes the printer settings for that object.

Calling the report object's choosePrinter() method
report.printer's choosePrinter()

allows you to set the printer for the current report. This could be useful in a networked office where several
printers are available. Each user could designate a printer where their report should be sent.

Calling the _app object's choosePrinter() method
_app.printer.choosePrinter()

sets the printer for your whole application; the same as the CHOOSEPRINTER() function.

See also output

render()
Renders the reports to the designated target.

Syntax <oRef>.render()

<oRef> An object reference to the report you want to render.

Property of Report

Description Call a Report object’s render() method to generate the report. The output of the report goes to the target
designated by the report’s output property.

The report engine renders the report internally and outputs the results starting with the page designated by the
startPage property. When rendering to a window (the default), rendering stops once a page is output; the
window only displays one page at a time. Rendering to a printer or file renders multiple pages. It continues to
render all the objects on each page until it exhausts all StreamSource objects, or it has finished rendering the
page designated by the endPage property.

Example The following is the onClick event handler for button on the report that displays the next page. It increments the
startPage and re-renders the report.

{; this.form.startPage++; this.form.render()}

See also endPage, output, startPage
Report objects 661

renderOffset
renderOffset
The offset of the bottom of the band from the top of the current stream frame.

Property of Band

Description renderOffset is a read-only property that contains the position of the bottom of the band that was just rendered,
measured from the top of the stream frame, in the report’s current metric units. It is updated just before the
band’s onRender event fires.

A common use of renderOffset is to prevent a band from being split between two pages when using expandable
bands—that is, bands that can vary in height. The renderOffset in checked the onRender event. If the offset is
too close to the bottom, less than a predetermined minimum size, the stream source’s beginNewFrame()
method is called to force the output to the next stream frame. For fixed height bands, the stream source’s
maxRows property would used instead.

Example The following onRender event handler for the detailBand of the stream source prevents a band from being split
between two pages by checking the renderOffset.

function DETAILBAND_onRender
 if this.renderOffset > this.streamFrame.height - 1000
 this.parent.beginNewFrame()
 endif

A minimum height of 1000 twips is used in this example. The band references the current StreamFrame through
the streamFrame property. The band’s parent is the StreamSource, which has the beginNewFrame() method.

See also beginNewFrame, beginNewFrame(), expandable, maxRows, streamFrame

reportGroup
A Group object for the report as a whole.

Property of Report

Description A Report object automatically has a Group object assigned to its reportGroup property. The groupBy property
of this Group object is an empty string.

Use the reportGroup to calculate aggregates for the entire report, for example, a grand total; and for items in a
report introduction or summary.

A reportGroup has a headerBand, a footerBand, and aggregate methods, just like any other Group object.
Because the parent of the reportGroup is the Report object instead of a StreamSource or Group object, the
object reference path to data is slightly different for components in the reportGroup.

reportPage
The current page number being rendered.

Property of Report

Description The reportPage property contains the number of the page that is being rendered.

During an onPage event, the reportPage is the page that has just finished rendering.

Example To display the current page number on a report, create an Text component on the PageTemplate that contains
the following expression codeblock as its text property:

{||"Page " + this.parent.parent.reportPage}

See also isLastPage(), onPage
662 dBL Language Reference

reportViewer

p

reportViewer
A reference to the ReportViewer object that instantiated the report.

Property of Report

Description Use the reportViewer property to reference the ReportViewer object that instantiated the report. You may
access the form that contains the ReportViewer through the ReportViewer object’s form property.

If the report was not instantiated through a ReportViewer object, reportViewer is null.

rotate
The orientation of an object, in 90-degree increments.

Property of Text

Description To rotate the text inside an Text component, set its rotate property to one of the following values:

Value Clockwise rotation
0 none
1 90 degrees
2 180 degrees
3 270 degrees

startPage
The first page number to output.

Property of Report

Description When rendering to a window (the default), only one page, the startPage, is rendered at a time. When rendering
to a printer or file, pages are rendered from the startPage to the endPage.

By default, startPage is 1, which means that all the pages that are rendered are output. Set startPage to a
number greater than 1 to delay the beginning of the output.

The report engine must still render each page until it gets to the startPage because it dynamically paginates the
report. The position of a row in a report may change whenever someone changes the table, so use caution when
using startPage to display segments of a report.

Example

See also endPage, output, render()

streamFrame
The StreamFrame object in which the band is currently rendering.

Property of Band

Description The read-only streamFrame property contains a reference to the StreamFrame object in which the band is
currently rendering. In addition to being a direct reference to that object, it is particularly useful when you have
more than one stream frame, and want to take different actions dependent on which stream frame is being
rendered.

streamSource
The StreamSource object that contains objects to render in the StreamFrame.

Property of StreamFrame
Report objects 663

supressIfBlank
Description A StreamFrame object’s streamSource property identifies the StreamSource object that supplies the
StreamFrame object’s data stream.

If multiple StreamFrame objects have the same streamSource property, that StreamSource will stream data to
those StreamFrame objects in series, in the order in which the StreamFrame objects were created (the same
order as they are listed in the class definition in the .REP file).

If multiple StreamFrame objects have different streamSource properties, each StreamFrame will be filled from
its own StreamSource object (in the same order as above) until all the StreamFrame objects in the page are
filled. If a particular StreamFrame object’s StreamSource is exhausted, it is no longer filled. When all
StreamSource objects are exhausted, all the objects on that last PageTemplate are rendered, and the report is
done.

supressIfBlank
Specifies whether an object is suppressed, or not rendered, if it is blank.

Property of Text

Description supressIfBlank has an effect only for visual components that are in a report. If true, it suppresses the rendering
of the component if its display value is blank.

For example, suppose you’re printing two-line addresses with the city underneath. If the second address line is
blank, you don’t want it to occupy any space. By setting that component’s supressIfBlank property to true, if it’s
blank, nothing gets rendered and all the components below it that have their fixed properties set to false are
moved up to fill the space.

Components are rendered in their z-order, the order in which they are defined in the report. supressIfBlank does
not affect the position of components that have already been rendered. The z-order of the components in the
report should match their top-to-bottom order; otherwise supressIfBlank will have no effect.

By default supressIfBlank is false. You can also use the component’s canRender event to suppress rendering.

See also canRender, supressIfDuplicate

supressIfDuplicate
Specifies whether an object is suppressed, or not rendered, if its value is the same as the previous time it was
rendered.

Property of Text

Description supressIfDuplicate has an effect only for visual components that are in a report. If true, it suppresses the
rendering of the component if its display value is the same as the previous time it was rendered in the same
report, even if the previous time was in another group in the report.

Use supressIfDuplicate to eliminate duplicating the same data value over and over again for multiple rows in a
report. For example, you may have information sorted by date. With supressIfDuplicate set to true, each date
will be rendered only once.

By default supressIfDuplicate is false. You can also use the component’s canRender event to suppress
rendering.

See also canRender, supressIfDuplicate

title
The title of a report.

Property of Report

Description The title property contains the title of the report. It is displayed in the title bar of the report preview window.
664 dBL Language Reference

tracking

p

tracking
The amount of extra space between characters.

Property of Text

Description tracking adds extra space between characters within an Text component. By default, it’s zero, which means no
extra spacing.

You can set tracking to a non-zero value to add extra space between characters.

See also alignHorizontal, leading, trackJustifyThreshold

trackJustifyThreshold
The maximum amount of added space allowed between words in a fully justified line. Exceeding that amount
switches to character tracking.

Property of Text

Description trackJustifyThreshold sets a threshold for the amount of extra space between words that can be added to try to
justify the line. If a line requires more than the threshold amount, the line is justified by adding space between
each character in the line, in addition to the maximum space between each word.

If a line contains only one word and trackJustifyThreshold is non-zero, the word will be fully justified with
character tracking, unless it is on the last line of text. The last line of text is never justified.

An Text component’s alignHorizontal property must be set to Justify in order for trackJustifyThreshold to have
any effect.

See also alignHorizontal, tracking

variableHeight
Whether an object’s height can increase automatically to accommodate its contents.

Property of Text

Description Set variableHeight to true so that an object can grow to accommodate its contents. If an object’s height is not
large enough to display everything, it is increased. variableHeight does not shrink objects to fit their contents.

If the object is in a Band object in a report and it grows, it might push down other objects in the band if those
objects have their fixed property set to false.

By default variableHeight is false.

See also fixed

verticalJustifyLimit
The maximum amount of added space allowed between lines in a vertically justified object. Exceeding that
amount makes the text top-aligned instead.

Property of Text

Description verticalJustifyLimit sets the maximum amount of extra space between lines that can be added to try to vertically
justify the lines in an object. If the maximum amount does not justify the lines, dBASE Plus gives up and makes
the text top-aligned instead.

An Text component’s alignVertical property must be set to Justify in order for verticalJustifyLimit to have any
effect.

See also alignVertical, leading
Report objects 665

C h a p t e r

Chapter 18Text streaming
This chapter describes dBASE Plus commands that control text streaming to the Command window, a file, or a
printer.

?
Outputs the results or return values of one or more expressions to a new line in the Command window results
pane. You can also simultaneously stream output to a print buffer and/or text file.

Syntax ?
[<exp 1>

[PICTURE <format expC>]
[FUNCTION <function expC>]
[AT <column expN>]
[STYLE [<fontstyle expN>] or [<fontstyle expC>]]

[,<exp 2>…]

<exp 1>[,<exp 2> ...] Expression(s) of any data type. Output consists of expression results or return
values.

PICTURE <format expC> Formats <exp 1>, or a specified portion of it, with the picture template
<format expC>, a character expression consisting of one of the following:

• Template characters.

• Function symbols preceded by @. (You can also use the FUNCTION option, discussed below.)

• Literal characters.

• A combination of template characters, function symbols, and literal characters.

• A variable containing the character expression.

You can use all the template character and function symbols except A, M, R, and S.

FUNCTION <function expC> Formats all characters in <exp 1> with the function template
<function expC>, which must contain one or more function symbols. When you specify function symbols with
the FUNCTION option, you don't have to precede them with @.

AT <column expN> Specifies a character position at which to start the line. The <column expN>
argument, effectively a temporary indent, must be between 0 and 255. Note: The AT parameter is ignored if
_wrap is true.

STYLE [] or [<style expC>] Specifies a font number or style for printed output only.
Does not apply to file or Command window output (files always use the default printer font, typically Courier,
and Command window font style is controlled through Command window properties). See description below
for print STYLE specification details.
666 dBL Language Reference

?

Description Use ? to output the results or return values of one or more expressions to a new line in the Command window
results pane. You can also simultaneously stream output to a print buffer and/or text file.

Output can be streamed to any or all of these targets at the same time, and streaming to a print buffer or file can
be switched on or off any time without affecting the stream to other targets.

You can also stream output using the ?? command. The difference is that ?? appends output to the current line
and ? always outputs to a new line.

To use either command, type ? or ?? in the input pane of the Command window (or issue it from a program),
follow it with your expression(s) and any optional parameters, then press Enter. The results or return values are
immediately streamed to the results pane of the Command window as well as to a print buffer and/or file, if
either of those streams is turned on.

To erase the contents of the results pane any time, use the CLEAR command in the input pane. Note that this
command only clears the results pane of the Command window and does not affect output to a print buffer or
file, if either stream is turned on.

To clear all or a portion of the input pane, select the portion you want to clear and press Del.

Streaming output to a text file
To stream output to a file, first specify a target file with the command SET ALTERNATE TO, e.g.,

set alternate to "c:\output.log"

A filename is required (no default is supplied).

Then turn on the file output stream with the command SET ALTERNATE ON.

If you specify a file name without an extension, .TXT is appended to the name. If you don’t specify a path, the
current path (as shown in the Navigator "Look In" path selector) is used.

You can pause streaming to a file with the command SET ALTERNATE OFF (and resume it again with SET
ALTERNATE ON), but to stop streaming and close the file, you must either use CLOSE ALTERNATE or
switch output files by issuing another SET ALTERNATE TO command with a different filename or with no
filename parameter.

Only one file at a time can be open for text output streaming, and the contents of that open file cannot be viewed
until the file is closed using one of the methods above.

If the file you specify in a SET ALTERNATE TO command already exists, you’re given the option of
overwriting the existing file. If you choose No, text the named file is not opened for text streaming. In addition,
if another file was already open for output, streaming to that file stops and the file is closed. To reopen the
closed file, you must reissue SET ALTERNATE TO with the filename; to resume output (append to the
previously closed file at the point output was cut off), use ADDITIVE as described below, then reissue the SET
ALTERNATE ON command.

If you do choose Yes and overwrite the existing file, the file is immediately emptied. Text streaming will not
start again, however, until you issue the SET ALTERNATE ON command.

To append to an existing file, use ADDITIVE with SET ALTERNATE TO:
set alternate to "c:\output.log" additive

The overwrite warning is not issued when ADDITIVE is used.
Tip Since ? begins with a line feed to create each new output line, the first line in a new output file or print buffer

will be blank. If you want the first line to contain text output instead, use the ?? command for the first item
(rather than the ? command).

?? "first item"
? "second item"

Streaming output to a printer
To stream output to a print buffer, use SET PRINTER ON. To print the contents of the print buffer to your
current printer, use SET PRINTER TO. To print the buffer to a different printer, specify a port or network
printer, e.g.,

set printer to lpt1
or
Text streaming 667

?

set printer to \\server9\printer4

The print buffer continues to receive output until you print the contents of the buffer or issue SET PRINTER
OFF.

To format printed output in a particular font, size and style, you can either specify a font in "Font,Size,Style"
format or use GETFONT() to choose a style. Either way, the font definition is applied to the ? command’s
STYLE parameter to format the associated line, word or block. This example shows three ways to set the font:

// turn on the print buffer
set printer on
// assign a font definition to the variable headingStyle by using getfont()
headingStyle = getfont()
? "Program Log" style headingStyle
// you can also specify a font and apply it without using getfont()
bodyStyle = "Arial,9,Swiss"
// font formatting for the date() item in this block
// is specified directly with the STYLE parameter
? "Date: " style "Arial,9,BI,Swiss", date() style bodyStyle
// print the two lines to the default printer
set printer to

You can get definitions for any font on your system by using GETFONT() to open a Font dialog, selecting your
font options, and examining the result:

s = getfont()
? s
// selecting 16-pt Arial bold in the Font dialog returns "Arial,16,B,Swiss"

To apply a print style to the default font, you can use codes as shown below in place of a font specification:
//make default text:
? "bold" style "B"
? "italic" style "I"
? "strikeout" style "S"
? "underlined" style "U"
? "superscript" style "R"
? "subscript" style "L"
? "or use any combination, such as bold italic" style "BI"

To overstrike a line of text from a program file in printed output, use the AT option with _wrap set to false. To
overwrite rather than overstrike text in printed output, use the AT option with _wrap set to true, which causes
only the second line to print.

To override both an overall _alignment setting and individual paragraph alignments in a memo field, use the B,
I, or J functions.

Tip If SET SPACE is ON (startup default; to test, use ? SET("SPACE")), a space is inserted between multiple
expressions streamed out to the same line and between expressions appended to the current line with the ??
command. To remove the spaces for literal formatting, use SET SPACE OFF.

Example This example uses ? and ?? to display a first and last name in various formats:
Firstname="Sally "
Lastname ="Stephens "
? Firstname,Lastname
// simple display, no formatting or positioning
// Sally Stephens

? Firstname picture "@T"
?? " "
?? Lastname picture "@!"
// trim Firstname, make lastname uppercase
// Sally STEPHENS

? Lastname STYLE "B"
?? Firstname AT 20
// display in fixed columns.
// Lastname will print in boldface
// Stephens Sally
668 dBL Language Reference

??
This example formats –3273.68 four different ways:
n=-3273.68
? n picture "9,999,999.99" // insert commas
// -3,273.68
? n picture "9,999,999" // no decimals
// -3,274
? n picture "@L 9,999,999" // zero fill
// -0003,274
? n picture "@(BT" // use () for negative number, left-align, and trim
// (3273.68)

See Also ??, _alignment, _wrap, DISPLAY, GETFONT(), LIST, PRINTJOB, SET MEMOWIDTH, SET
ALTERNATE, SET PRINTER, SET SPACE, TEXT

??
Appends the value of one or more expressions to the current line in the Command window, print buffer or a file.

Syntax ??
[<exp 1>

[PICTURE <format expC>]
[FUNCTION <function expC>]
[AT <column expN>]
[STYLE [<fontstyle expN>] [<fontstyle expC>]]

[,<exp 2>…]

Description The ?? command is identical to the ? command, except it appends output to the end of the current line rather
than to a new line.

Example See ? command

See Also ?

???
Sends output directly to the printer, bypassing the installed printer driver. This command is provided for
compatibility with dBASE IV but is not recommended in dBASE Plus

Syntax ??? <expC>

<expC> A character string to send to the printer.

Description ??? is used in the DOS environment to send printer control codes when the current printer driver does not
support a particular printing capability. Printer codes instruct a printer to modify its printing style (italic, bold,
and underlined) and page orientation (portrait or landscape).

If you do want to send printer codes with ??? in dBASE Plus, test their behavior with the print driver you intend
to use. ???_is supported only for very commonly used printers, such as the HP Laser_Jet series, and might not
be supported in your environment.

In dBASE Plus, you can use ? with the STYLE option for font style, and the _porientation system memory
variable for page orientation.

Example The following examples present four alternative methods for sending Esc-E to a Hewlett_Packard Laserjet to
reset the printer:

??? CHR(27)+"E" && function/ASCII code + letter
??? "{ESC}E" && control character specifiers
??? "{27}{69}" && ASCII only
??? "{27}E" && ASCII and letters_Ç5_

See Also ?, _porientation, CLOSE PRINTER, SET PRINTER
Text streaming 669

CHOOSEPRINTER()
CHOOSEPRINTER()
Opens a printer setup dialog box. Returns false if you cancel out of the dialog, true otherwise.

Syntax CHOOSEPRINTER([<title expC>][, <expL>])

<title expC> Optional custom title for the printer setup dialog box.

<expL> If true, CHOOSEPRINTER() will display the "Print Setup" dialog. If false, CHOOSEPRINTER()
will display the standard "Print" dialog.”

Description Use CHOOSEPRINTER() to open a printer setup dialog box, which lets you change the current printer or
printer options.

p=chooseprinter()
? p
// opens the printer setup dialog; p = false only if the dialog is cancelled
chooseprinter ("Tip: For 2-sided printing, see Options, Paper/Output options")
// opens the printer setup dialog with a printing tip in the title

If you use CHOOSEPRINTER() to switch printers, SET PRINTER TO, _pdriver, _plength, and _porientation
will automatically point to the new printer.

To activate a specific printer driver, you can also use _pdriver.

Menu equivalent: File | Print opens the Print dialog, which offers a printer selection list and properties dialog for
the selected printer.

The CHOOSEPRINTER() function is maintained only for backward compatibility. We suggest using the
printer object for the _app or reports.

_app.printer.choosePrinter() //sets the default printer
report.printer.choosePrinter()//sets the printer for that instance of the report

See Also _pdriver, CLOSE PRINTER, SET DEVICE, SET PRINTER

CLEAR
Clears the Command window results pane.

Syntax CLEAR

Description Use CLEAR to remove the contents of the results pane of the Command window.

CLOSE ALTERNATE
Close the text stream file opened with SET ALTERNATE

Syntax CLOSE ALTERNATE

Description CLOSE ALTERNATE is equivalent to issuing SET ALTERNATE TO with no filename. See SET
ALTERNATE for details.

See also CLOSE ALL, SET ALTERNATE

CLOSE PRINTER
Close the print buffer, sending buffered output to the printer.

Syntax CLOSE PRINTER

Description CLOSE PRINTER is equivalent to issuing SET PRINTER TO with no options. See SET PRINTER for details.

See also CLOSE ALL, SET PRINTER
670 dBL Language Reference

EJECT
EJECT
Advances printer paper to the top of the next page.

Syntax EJECT

Description Use EJECT to position printed output on the page. If you are using a tractor-feed printer (such as a dot matrix
printer) and the paper is correctly positioned, EJECT advances the paper to the top of the next sheet. If you are
using a single-sheet printer (such as a laser printer), EJECT prints any data in the print queue and ejects the
page. Before printing or executing EJECT, connect and turn on the printer.

EJECT works in conjunction with _padvance, _plength, and _plineno. If _padvance is set to "FORMFEED" (the
default), issuing the EJECT command from dBASE Plus is equivalent to using your printer's formfeed button or
sending the formfeed character (ASCII 12) to the printer. If _padvance is set to "LINEFEEDS", issuing EJECT
sends individual linefeeds to the printer until _plineno equals _plength, then resets _plineno to 0. Then, _pageno
is incremented by 1. For more information, see _padvance.

EJECT is often used in when printing reports. For example, if PROW() returns a value that is close to the
bottom of the page, issue EJECT to continue the report at the top of the next page. EJECT automatically resets
the printhead to the top left corner of the new page, which is where PROW() = 0 and PCOL() = 0.

EJECT is the same as EJECT PAGE, except EJECT PAGE also executes any page-handling routine you've
defined with ON PAGE.

Example In this example, one line is written to the printer and EJECT is then used to ensure that further commands are
written on the next page:

set printer on
? "This page intentionally left blank"
eject

See Also _padvance, _plength, _plineno, EJECT PAGE, ON PAGE, PCOL(), PROW(), SET PRINTER, SET PROW

EJECT PAGE
Advances printer paper to the top of the next page and executes any ON PAGE command.

Syntax EJECT PAGE

Description Use EJECT PAGE with ON PAGE to control the ejection of pages by a printer. If you define a page-handling
routine with ON PAGE AT LINE <expN> and then issue EJECT PAGE, dBASE Plus checks to see if the
current line number (_plineno) is greater than the line number specified by <expN>. If _plineno is less than the
ON PAGE line, EJECT PAGE sends sufficient linefeeds to trigger the ON PAGE page-handling routine.

If _plineno is greater than the ON PAGE line, or if you don't have an ON PAGE page-handling routine, EJECT
PAGE advances the output as follows:

• If _padvance is set to "FORMFEED" and SET PRINTER is ON, dBASE Plus issues a formfeed (ASCII code
12).

• If _padvance is set to "LINEFEEDS" and SET PRINTER is ON, dBASE Plus issues sufficient linefeeds
(ASCII code 10) to advance to the next page. It uses the formula _plength – _plineno to calculate the number
of linefeeds.

• If you direct output to a destination other than the printer (for example, if you use SET ALTERNATE or SET
DEVICE), dBASE Plus uses the formula _plength – _plineno to calculate the number of linefeeds.

After ejecting a page, EJECT PAGE increments _pageno by 1 and resets _plineno to 0.

Example See ON PAGE

See Also ?, ??, _padvance, _pageno, _plength, _plineno, EJECT, ON PAGE, PRINTJOB...ENDPRINTJOB, SET
ALTERNATE, SET DEVICE, SET PRINTER, SET PROW
Text streaming 671

ON PAGE
ON PAGE
Executes a specified command when printed output reaches a specified line on the current page.

Syntax ON PAGE
[AT LINE <expN> <command>]

AT LINE <expN> Identifies the line number at which to execute the specified page-formatting command.

<command> The command to execute when printed output reaches the specified line number, <expN>. To
execute more than one command, issue ON PAGE DO <filename>, where <filename> is a program or
procedure file containing the sequence of commands to execute.

Description Use ON PAGE to specify a command to execute when printed output reaches a specific line number. ON PAGE
with no options disables any previous ON PAGE statement.

The value of the _plineno system variable indicates the number of lines that have been printed on the current
page. As soon as the _plineno value is equal to the value you specify for <expN>, dBASE Plus executes the ON
PAGE command.

Use the ON PAGE command to print headers and footers. For example, the on page command can call a
procedure when the _plineno system memory variable reaches the line number that signifies the end of a page.
In turn, that procedure can call two procedures, one to print the footer on the current page and one to print the
header on the next page.

You can begin header routines with EJECT PAGE to ensure that the header text prints at the top of the
following page. EJECT PAGE also sets the _plineno system memory variable to 0. Use the ? command at the
beginning of a header procedure to skip several lines before printing the header information. You can also use
the ? command at the end of the procedure to skip several lines before printing the text for the page.

Begin footer routines with the ? command to move several lines below the last line of text. You can use the ??
command with the _pageno system memory variable to print a page number for each page on the same line as
the footer.

To calculate the appropriate footer position, add the number of lines for the bottom margin and the number of
lines for the footer text to get the total lines for the bottom of the page. Subtract this total from the total number
of lines per page. Use this result to specify a number for the AT LINE argument. If the footer text exceeds the
number of lines per page, the remainder prints on the next page.

Example This example uses EJECT PAGE in conjunction with ON PAGE to print a footer on each page. In this example,
a page length of 5 is set up (lines 0 through 4). Text is printed on four lines: 0,1,2,3, and the footer prints on line
4. Eight lines of text are printed on two pages:

set talk off
clear
set printer on
_padvance="LINEFEEDS"
_plength=5
_pageno=1
eject
on page at line 3 do Page_Brk
printjob
for i = 1 to 8
 ?? "Line of text ",_pageno,_plineno,i
 ?
endfor
on page // turn off on page
endprintjob
close printer

procedure Page_Brk
?? " Page Footer",_pageno,_plineno
eject page
return
//// Page Line i
// This prints out as:
//
672 dBL Language Reference

PCOL()
// Line of text 1 0 1
// Line of text 1 1 2
// Line of text 1 2 3
// Line of text 1 3 4
// Page Footing 1 4
// Line of text 2 0 5
// Line of text 2 1 6
// Line of text 2 2 7
// Line of text 2 3 8
// Page Footer 2 4

See Also ?, ??, _pageno, _plineno, EJECT PAGE, PRINTJOB...ENDPRINTJOB, SET PCOL, SET PRINTER, SET
PROW

PCOL()
Returns the printing column position of a printer. Column numbers begin at 0.

Syntax PCOL()

Description Use PCOL() to determine the horizontal printing position of a printer—that is, the column at which the printer
is set to begin printing. Use PCOL() in mathematical statements to direct the printer to begin printing at a
position relative to its current column position. For example, PCOL() + 5 represents a position five columns to
the right of the current position, and PCOL() – 5 represents a position five columns to the left of the current
position.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font of the parent form window.

PCOL() returns a column number that reflects the current value of _ppitch, regardless of whether you're
printing with proportional or monospaced fonts. If you're printing with a proportional font, you can add and
subtract fractional numbers to and from the PCOL() value to move the printing position accurately.

SET PRINTER must be ON for PCOL() to return a column position; otherwise, it returns 0.

Example The following example writes "Jack & Jill" to the printer. It uses PCOL() to note the column position three
times, at the beginning, after "Jack", and after "Jill":

set talk off
set printer on
// now ?s are directed to printer
? // sets printer at col 0 of next line
beginpos=pcol() // note the current column
?? "Jack"
lastjackpos=pcol()
?? " & Jill"
lastjillpos=pcol()
set printer off
close printer
? beginpos // 0.00
? lastjackpos // 4.00
? lastjillpos // 11.00
set talk on

See Also COL(), PROW(), SET DEVICE, SET PCOL, SET PRINTER

PRINTJOB...ENDPRINTJOB
Uses the values stored in system memory variables to control a printing operation.

Syntax PRINTJOB
<statements>
ENDPRINTJOB
Text streaming 673

PRINTSTATUS()
<statements> Any valid dBL statements.

Description Use PRINTJOB...ENDPRINTJOB to control a printing operation with the values of the system memory
variables _pbpage, _pepage, _pcopies, _peject, and _plineno. When dBASE Plus begins executing PRINTJOB,
it does the following:

1 Closes the current print document (if any) and begins a new one, as if you had issued CLOSE PRINTER
before issuing PRINTJOB

2 Ejects a page if _peject is set to "BEFORE" or "BOTH"

3 Sets _pcolno to 0

When dBASE Plus reaches ENDPRINTJOB, it does the following:

1 Ejects a page if _peject is set to "AFTER" or "BOTH"
2 Resets _pcolno to 0

Before using PRINTJOB...ENDPRINTJOB, set the relevant system memory variables and issue SET PRINTER
ON. After ENDPRINTJOB, use CLOSE PRINTER to close and print the document.

Example The following example uses PRINTJOB to print one line of text making three copies:
_pcopies=3 // 3 copies
_peject="none" // no page eject before or after
_plineno=0 // initialized to 0
set printer on
printjob
? "A one line print job"
?
endprintjob
close printer // initiate printing
// prints:
// A one line print job
//
// A one line print job
//
// A one line print job
//

See Also _pbpage, _pcopies, _peject, _pepage, _plineno, EJECT, EJECT PAGE, ON PAGE, SET PRINTER

PRINTSTATUS()
Returns true if the print device is ready to accept output.

Syntax PRINTSTATUS([<port name expC>])

<port name expC> A character expression such as "lpt1" that identifies the printer port to check.

Description Use PRINTSTATUS() to determine whether you've designated a printer port as an output device with SET
PRINTER TO <port name expC>. In dBASE Plus, the Windows Print Manager spools print output to and
manages the printer port. Therefore, the Print Manager informs you when a printer isn't ready to receive output.

If you don't pass <port name expC> to PRINTSTATUS(), it checks the default port you specified with SET
PRINTER TO. PRINTSTATUS() returns only false if you haven't specified a printer port with SET PRINTER
TO or if the port you specify hasn't been set with SET PRINTER TO.

Note dBASE Plus automatically executes SET PRINTER TO on startup if the WIN.INI file contains a valid printer
definition. See your Windows documentation for information on WIN.INI settings.

Example This example reads the default PRINTSTATUS and then queries LPT1, LPT2 and LPT3:
? printstatus()
? printstatus("lpt1")
? printstatus("lpt2")
? printstatus("lpt3")

See Also CLOSE..., SET DEVICE, SET PRINTER
674 dBL Language Reference

PROW()
PROW()
Returns the printing row position of a printer. Row numbers begin at 0.

Syntax PROW()

Description Use PROW() to determine the vertical printing position of a printer—that is, the row at which the printer is set
to begin printing. Use PROW() in mathematical statements to direct the printer to begin printing at a position
relative to its current row position. For example, PROW() + 5 represents a position five rows below the current
position and PROW() – 5 represents a position five rows above the current position.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font of the parent form window.

If you're printing with a proportional font, you can add and subtract fractional numbers to and from the
PROW() value to move the printing position accurately. If you issue ? without the STYLE option and use only
integer coordinates, dBASE Plus uses the default printer font (typically Courier or another monospaced font).

SET PRINTER must be ON for PROW() to return a row position; otherwise, it returns 0.

See Also PCOL(), ROW(), SET PROW

SET ALTERNATE
Controls the recording of input and output in an alternate text file.

Syntax SET ALTERNATE on | OFF

SET ALTERNATE TO [<filename> | ? | <filename skeleton> [ADDITIVE]]

<filename> | ? | <filename skeleton> The alternate text file, or target file, to create or open. The ?
and <filename skeleton> options display a dialog box in which you can specify a new file or select an existing
file. If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then
in the path you specify with SET PATH. If you specify a file without including its extension, dBASE Plus
assumes .TXT.

ADDITIVE Appends dBASE Plus output that appears in the results pane of the Command window to the
specified existing alternate file. If the file doesn't exist, dBASE Plus returns an error message.

Default The default for SET ALTERNATE is OFF. To change the default, set the ALTERNATE parameter in the
[OnOffSetting Settings] section of PLUS.ini. To set a default file name for use with SET ALTERNATE, specify
an ALTERNATE parameter in the [CommandSettings] section of PLUS.ini.

Description Use SET ALTERNATE TO to create a record of dBASE Plus output and commands. You can edit the contents
of this file with the Text Editor for use in documents, or store it on disk for future reference. You can record,
edit, and incorporate command sequences into new programs.

SET ALTERNATE TO <filename> only opens an alternate file, while SET ALTERNATE ON | OFF controls
the storage of input and output to that file. Only one alternate file can be open at a time. When you issue SET
ALTERNATE TO <filename> to open a new file, dBASE Plus closes the previously open alternate file.

When SET ALTERNATE is ON, dBASE Plus stores output to the results pane of the Command window in the
text file you've opened by previously issuing SET ALTERNATE TO <filename>. An alternate file must be
open for SET ALTERNATE ON to have an effect. SET ALTERNATE doesn't affect a program's output; it only
determines when that output is saved in the alternate file. (Keyboard entries in the Command window aren't
stored to the alternate file.)

To prevent your text file from beginning with a blank line, use two question marks (??) before the first word that
you send to the alternate file.

Issuing SET ALTERNATE OFF does not close the alternate file. Before accessing the contents of an alternate
file, formally close it with CLOSE ALTERNATE or SET ALTERNATE TO (with no file name). This ensures
that all data recorded by dBASE Plus for storage in the alternate file is transferred to disk, and automatically
turns SET ALTERNATE to OFF.
Text streaming 675

SET CONSOLE
If SET SAFETY is ON and you don't use the ADDITIVE option, and a file exists with the same name as the
target file, dBASE Plus displays a dialog box asking if you want to overwrite the file. If SET SAFETY is OFF
and you don't use the ADDITIVE option, any existing file with the same name as the target file is overwritten
without warning.

Example This example uses the SET ALTERNATE commands to write text to the screen and an ASCII file:
set alternate to Rose
// Open Rose.txt for text output
? "Opening alternate file" // to screen only
set alternate on
// ?,?? commands now go to Rose.txt
? "A rose "
set alternate off // Stop storing to Rose.txt.
?? "tended carefully in your garden "
set alternate on // Add to Rose.txt.
?? "is a rose "
?? "is a rose "
? "You will be proud of"
close alternate // Close Rose.txt
// Rose.txt contains:
// A rose is a rose is a rose
// You will be proud of

See Also CLOSE..., SET DEVICE

SET CONSOLE
Controls the display of output in the results pane of the Command window during program execution.

Syntax SET CONSOLE ON | off

Description When SET CONSOLE is ON, dBASE Plus displays all text stream output in the results pane of the Command
window. Use SET CONSOLE OFF to disable this output. For example, if you are creating a text file with SET
ALTERNATE, you usually do not need to see the output in the Command window at the same time. By using
SET CONSOLE OFF, your program will execute faster.

Whenever the input pane of the Command window gets focus, SET CONSOLE is always turned ON. The SET
CONSOLE command has no effect when issued in the Command window.

You may use the WAIT command while SET CONSOLE is OFF; however, dBASE Plus displays neither the
prompt for the input nor the input itself.

Example In the following example, SET CONSOLE is used with SET ALTERNATE when creating a text file:
set console off
?
set alternate to RESULTS.TXT
// Generate text file
close alternate
set console on

After disabling output to the Command window, the ? command is used to help ensure that the output in the text
file starts at the beginning of the line.

See also SET ALTERNATE, SET PRINTER, WAIT

SET MARGIN
Sets the width of the left border of a printed page.

Syntax SET MARGIN TO <expN>

<expN> The column number at which to set the left margin. The valid range is 0 to 254, inclusive. You can
specify a fractional number for <expN> to position output accurately with a proportional font.
676 dBL Language Reference

SET PCOL
Default The default for SET MARGIN is 0. To change the default, set the MARGIN parameter in PLUS.ini.

Description Use SET MARGIN to adjust the printer offset for the left margin for all printed output. The margin established
by SET MARGIN becomes the printer's column 0 position. set margin resets the value of the _ploffset system
memory variable but doesn't affect the value of the _lmargin system memory variable.

Use SET MARGIN to adjust the position of text on the printed page according to the type of paper. For
example, if you're printing to three-hole paper, you might need to increase the left border. You can also use SET
MARGIN to compensate for the placement of paper in the printer. For example, if the paper is off-center in the
printer, you can adjust the width of the left border to properly place the text.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font.

If you change the value of SET MARGIN, dBASE Plus takes the current value of _ppitch into consideration
when calculating the cell width of the coordinate plane. This happens regardless of whether you're printing with
proportional or monospaced fonts.

Example This example displays the 10 digits with the default margin and then sets the margin to column 10 and displays
the 10 digits this time indented:

set printer on
set margin to 0 // The default
? "1234567890"
set margin to 10
? "1234567890"
? _ploffset
set margin to 0 // reset margin
set printer off
close printer

Produces:
// this displays as:
// 1234567890
// 1234567890
// 10
//
// _ploffset is set by set margin

See Also _indent, _lmargin, _ploffset, _rmargin

SET PCOL
Sets the printing column position of a printer, which is the value of PCOL().

Syntax SET PCOL TO <expN>

<expN> The column number to which to set PCOL(). The valid range is 0 to 32,767, inclusive.

Description Use SET PCOL to set the horizontal printing position of a printer, which is the value the PCOL() function
returns. Generally, you use the command SET PCOL TO 0 to reset the printer column to the left edge of the
page.

When you move the printing position to a new line, dBASE Plus reinitializes PCOL() to 0, so SET PCOL
affects the value of PCOL() for the current line only. When you send output to your printer, dBASE Plus
updates PCOL() by adding 1 to the current PCOL() value for each character it sends to the printer. The printing
position moves one column for each character the printer prints.

When you send a printer control code or escape sequence to your printer, the printing position doesn't move.
(Printer control codes and escape sequences are strings that give the printer instructions, such as to print
underlining, boldface type, or different fonts.) Although control codes and escape sequences don't move the
printing position, dBASE Plus nonetheless increments the PCOL() value by the number of characters that you
send to the printer. Each control code character increments the value of PCOL() by 1 just like any other
Text streaming 677

SET PRINTER
character. As a result, the value of PCOL() might not reflect the actual printing position. Use SET PCOL to
reset the value of PCOL() to the same value as the printing position.

To send a control code to the printer without changing the value of PCOL(), save the current value of PCOL()
to a memory variable, send the control code to the printer, then SET PCOL to the contents of the memory
variable.

Example The following example writes "Jack & Jill" to the printer. It uses PCOL() to note the column position three
times, at the beginning, after "Jack", and after "Jill":

set talk off
set printer on
// now ?s are directed to printer
? // printer at col 0 of next line
beginpos=pcol() // note the current column
?? "Jack"
lastjackpos=pcol()
?? " & Jill"
lastjillpos=pcol()
// prints:
// Jack & Jill
set printer off
close printer
? beginpos // 0.00
? lastjackpos // 4.00
? lastjillpos // 11.00
// Displays column positions for reference

See Also PCOL(), PROW(), SET PROW

SET PRINTER
The SET PRINTER TO setting specifies a file to receive streaming output, or uses a device code recognized by
the Windows Print Manager to designate a printer. The On/Off setting controls whether dBASE Plus also
directs streaming output that appears in the Command window to the device or file specified by SET PRINTER
TO.

Syntax SET PRINTER on | OFF

SET PRINTER TO [<filename> | ? | <filename skeleton>] | [<device>]

<filename> | ? | <filename skeleton> The text file to send output to instead of the printer. By default,
dBASE Plus assigns a .PRT extension to <filename> and saves the file in the current directory. The ? and
<filename skeleton> options display a dialog box, in which you specify the name of the target file and the
directory to save it in.

<device> The printer port of the printer to send output to. Specify printers and their ports with the Windows
Control Panel.

Default The default for SET PRINTER is OFF. To change the default, set the PRINT parameter in the
[OnOffCommandSettings] section in PLUS.ini. The default for SET PRINTER TO is the default printer you
specify with the Windows Control Panel.

Description Use SET PRINTER TO to direct streaming output from commands such as ?, ??, and LIST to a printer or a text
file. SET PRINTER TO with no option sends this output to the default printer.

Use SET PRINTER ON/OFF to enable or disable the printer you specify with SET PRINTER TO.

To send streaming output to a file rather than the printer, issue SET PRINTER TO FILE <filename>. When you
issue SET PRINTER TO FILE <filename>, issuing SET PRINTER ON directs streaming output to the text file
<filename> rather than to the printer. The file has the default extension of .PRT.

When SET PRINTER is OFF, dBASE Plus directs streaming output only to the result pane of the Command
window. SET PRINTER must be ON to output data to a text file unless you issue a command with its TO
PRINTER option. The following example illustrates this behavior:

set printer off
set printer to file test.prt
678 dBL Language Reference

SET PROW
type file.txt // displays on screen only
type file.txt to print // output sent to screen and test.prt

Example The following example uses SET PRINTER ON and OFF:
set printer to // Set printer to default
set printer on
? "Hello" // to printer
set printer off
? prow(),pcol() // only displayed to screen
close printer // initiate printing
set printer to // resets to default
set printer to prn // sets to DOS output device
set printer to lpt1
set printer to null
set printer to file Test
// Test.prt receives streaming output, including any control codes,
// that would have gone to the printer.

See Also SET ALTERNATE, SET CONSOLE

SET PROW
Sets the current row position of a printer's print head, which is the value of PROW().

Syntax SET PROW TO <expN>

<expN> The row number to which to set PROW(). The valid range is 0 to 32,767, inclusive.

Description Use SET PROW to set the vertical printing position of a printer, which is the value the PROW() function
returns. Generally, you use the command SET PROW TO 0 to reset the printer row to top-of-page.

See Also PCOL(), PROW(), SET PCOL

SET SPACE
Determines whether dBASE Plus inserts a space between expressions displayed or printed with a single ? or ??
command.

Syntax SET SPACE ON | off

Default The default for SET SPACE is ON. To change the default, set the SPACE parameter in PLUS.ini.

Description Use SET SPACE OFF when you use a single ? or ?? command to print a list of expressions and you don't want
spaces between the expressions. If you want the expressions printed with spaces between them, issue SET
SPACE ON.

SET SPACE has no effect on multiple ? or ?? commands. For example, if you issue the command ?? <exp>
twice, the second instance of <exp> will be printed adjacent to the first, even if SET SPACE is ON. However, if
SET SPACE is ON and you issue ?? <exp>, <exp> as a single command, there will be a space between the two
instances of <exp>.

Example This example displays a first and a last name using SET SPACE ON and then SET SPACE OFF:
Firstname="Rachel"
Lastname ="Jayes"
set space on // the default
? Firstname,Lastname
// Rachel Jayes
set space off
? Firstname,Lastname
// RachelJayes
// The two variables are not separated

See Also ?, ??, LTRIM(), RTRIM(), TRIM()
Text streaming 679

_alignment
_alignment
Left-aligns, right-aligns, or centers ? and ?? command output within margins specified by _lmargin and
_rmargin when _wrap is true.

Syntax _alignment = <expC>

<expC> The character expression "LEFT", "CENTER", or "RIGHT". You can enter <expC> in any
combination of uppercase and lowercase letters.

Default The default for _alignment is "LEFT".

Description Use _alignment to left-align, right-align, or center output from the ? and ?? commands between the margins you
set with _lmargin and _rmargin. The _alignment setting is effective only when _wrap is true (true).

To control the alignment of text within a field, use the "B," "I," and "J" format options with the PICTURE or
FUNCTION options.

Example The following example sets wrap on and then prints in the three different alignments: left, center, and right:
savewrap=_wrap // save last wrap setting
_wrap=true // must be true for alignment
savealign=_alignment // save last alignment setting
_alignment="left"
? "Hello left"
_alignment="right"
? "Hello right"
_alignment="center"
? "Hello center"
_alignment=savealign // reset
_wrap=savewrap // reset

See Also ?, ??, _lmargin, _rmargin, _wrap, SET MARGIN

_indent
Specifies the number of columns to indent the first line of a paragraph of ? command output when _wrap is true.

Syntax _indent = <expN>

<expN> The column number, relative to the left margin, where the first line of a new paragraph begins. You
can specify a fractional number for <expN> to position output accurately with a proportional font.

Default The default for _indent is 0.

Description Use _indent to specify where the first line of a new paragraph begins relative to the left margin. (Specify the left
margin with _lmargin.) The _indent setting is effective only when _wrap is true.

When you direct ? output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font.

If you change the value of _indent, dBASE Plus takes the current value of _ppitch into consideration when
calculating the cell width of the coordinate plane. This happens regardless of whether you're printing with
proportional or monospaced fonts.

To indent the first line of a paragraph, use a value greater than 0. For example, to begin the line five columns to
the right of the left margin, set _indent to 5. To create a hanging indent (sometimes called an outdent), use a
negative value. For example, to begin the first line five columns to the left of the left margin, set _indent to -5.
Using the default value of 0 (no indent or outdent) aligns all lines in a paragraph to the left margin. The sum of
_lmargin and _indent must be greater than 0 and less than _rmargin.

Example The following example sets wrap on and indents the first line of a text that wraps around:
_indent=3 // set the indentation
savewrap=_wrap // save last wrap setting
680 dBL Language Reference

_lmargin
_wrap=true // must be true for alignment
savelmargin=_lmargin // save last alignment setting
_lmargin=5
savermargin=_rmargin // save last alignment setting
_rmargin=20
? "New York, Chicago and Boston are "+;
 "cold in wintertime."
// Now the text wraps around between columns 5 and 20
//
// New York,
// Chicago and
// Boston are cold
// in wintertime.
//
_rmargin=savermargin // restore the previous margin
_lmargin=savelmargin // restore the previous margin
_wrap=savewrap // reset wrap

See Also ?, ??, _alignment, _lmargin, _ploffset, _rmargin, _wrap, SET MARGIN

_lmargin
Defines the left margin for ? and ?? command output when _wrap is true.

Syntax _lmargin = <expN>

<expN> The column number of the left margin. The valid range is 0 to 254, inclusive. You can specify a
fractional number for <expN> to position output accurately with a proportional font.

Default The default for _lmargin is 0.

Description Use _lmargin to set the left margin for ? and ?? command output. If you're sending output to a printer, _lmargin
sets the left margin from the _ploffset (page left offset) column. For example, if _ploffset is 10 and _lmargin is
5, output prints from the 15th column. The _lmargin setting is effective only when _wrap is true.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font.

If you change the value of _lmargin, dBASE Plus takes the current value of _ppitch into consideration when
calculating the cell width of the coordinate plane. This happens regardless of whether you're printing with
proportional or monospaced fonts.

If you use _indent to specify the indentation of the first line of each paragraph, the combined values of _lmargin
and _indent must be less than the value of _rmargin.

Example The following example uses _lmargin. It sets wrap on and then changes the left margin and displays text:
_wrap=true // must be true for _lmargin
_lmargin=0
? "01234567890"
_lmargin=5
? "Changing the margin"
// produces:
// 01234567890
// Changing the margin

See Also ?, ??, _alignment, _indent, _ploffset, _rmargin, _wrap, SET MARGIN, Style

_padvance
Determines whether the printer advances the paper of a print job with a formfeed or with linefeeds.

Syntax _padvance = <expC>
Text streaming 681

_pageno
<expC> The character expression "FORMFEED" or "LINEFEEDS".

Default The default for _padvance is "FORMFEED".

Description Use _padvance to specify whether dBASE Plus advances the paper to the top of the next sheet one sheet at a
time using a formfeed character, or one line at a time using linefeed characters. If you use the default
"FORMFEED" setting, the paper advances according to the printer's default form length setting.

Tractor-feed printers (such as dot matrix printers) generally use a "LINEFEEDS" setting, while form feed
printers (such as laser printers) generally use a "FORMFEED" setting.

Note Sending CHR(12) to the printer always issues a formfeed, even if you set _padvance to "LINEFEEDS".

Use the "LINEFEEDS" setting if you change the length of the paper or want to print a different number of lines
than the default form length of the printer without adjusting its setting. For example, to print short pages, such as
checks that are 20 lines long, set _plength to the length of the output (20 in this example) and _padvance to
"LINEFEEDS."

The number of linefeeds dBASE Plus uses to reach the top of the next page depends on whether you issue an
eject during streaming or non-streaming output mode.

An eject occurs during streaming output mode when you issue:

• EJECT PAGE without an ON PAGE handler

• EJECT PAGE with an ON PAGE handler when the current line position is past the ON PAGE line

• PRINTJOB or ENDPRINTJOB and _peject causes an eject

In these cases, dBASE Plus calculates the number of linefeeds to send to the print device using the formula
_plength – _plineno.

An eject occurs in nonstreaming output mode when you issue:

• EJECT

• SET DEVICE TO PRINTER and force a page eject with the @ command

In these cases, dBASE Plus calculates the number of linefeeds to send to the print device using the formula
_plength – MOD(PROW(), _plength).

Example There are two _padvance settings:
_padvance="formfeed"
_padvance="linefeeds"

See Also _peject, _plength, EJECT, EJECT PAGE, PRINTJOB...ENDPRINTJOB, ON PAGE, SET DEVICE

_pageno
Determines or sets the current page number.

Syntax _pageno = <expN>

<expN> An integer from 1 to 32,767, inclusive.

Description Use _pageno to number pages of streaming output from commands such as ?, ??, and LIST.

With _pageno, you can determine the current page number or set the page number to a specific value. Use it to
print page numbers in a report or, when combining documents, to assign an incremented number to the first
page of the second document.

A page break occurs when the value of _plineno (the line number count) becomes greater than the value of
_plength (the currently defined printed page length in lines). At each page break of streaming output, dBASE
Plus automatically increments the value of _pageno.

Example This example prints 100 lines of output and prints a heading on line 1 of each page:
set talk off
set printer on
_pageno=1
for i=1 TO 100
682 dBL Language Reference

_pbpage
 if _plineno=1 // At first line of page
 ? "Top of Page ",_pageno
 endif
 ? "Line",i
endfor
set printer to
close printer
set talk on

See Also ?, ??, _pbpage, _pepage, _plength, _plineno, LIST, ON PAGE

_pbpage
Specifies the page number of the first page PRINTJOB prints.

Syntax _pbpage = <expN>

<expN> The page number at which to begin printing. The valid range is 1 to 32,767, inclusive. Specify a
positive integer for <expN>.

Default The default for _pbpage is 1.

Description Use _pbpage to begin printing a print job at a specific page number. Pages with numbers less than _pbpage don't
print. To stop printing at a specific page number, use _pepage.

If you set _pbpage to a value greater than _pepage, dBASE Plus returns an error.

Example This example uses _pbpage to omit a page of a report. It outputs 100 lines and prints the page and line number
on each line as in the example for _plineno. Here, the beginning page number is set to 2 so that page 1 does not
print:

_pageno=1
_pbpage=2 // begin on page 2
set printer on
printjob
for i=1 TO 100
 ?? "Page",_pageno," Line",_plineno
 ? // now force a linefeed
endfor
endprintjob
set printer off
close printer // start printing

See Also _pageno, _pepage, PRINTJOB...ENDPRINTJOB

_pcolno
Identifies or sets the current column number of streaming output.

Syntax _pcolno = <expN>

<expN> The column number at which to begin printing. The valid range is 0 to 255, inclusive. You can
specify a fractional number for <expN> to position output accurately with a proportional font.

Default The default for _pcolno is 0.

Description Use _pcolno to position printing streaming output from commands such as ?, ??, and LIST.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font.

If you change the value of _pcolno, dBASE Plus takes the current value of _ppitch into consideration when
calculating the cell width of the coordinate plane. This happens regardless of whether you're printing with
proportional or monospaced fonts.
Text streaming 683

_pcopies
The PCOL() function also returns the current printhead position of the printer, but if SET PRINTER is OFF, the
PCOL() value doesn't change. _pcolno, on the other hand, returns or assigns the current position in the
streaming output regardless of the SET PRINTER setting.

Example This example displays the numbers 1 through 5. It uses _pcolno to position the numbers so that each number
begins at its own position:

set talk off
for i=1 to 5
 _pcolno=i // set the column position
 string=ltrim(str(i))
 // convert i to a single character
 ?? string
 ?
endfor
set talk on
// the output looks like this
// 1
// 2
// 3
// 4
// 5

See Also ?, _plineno, _rmargin, PCOL(), SET DEVICE, SET PRINTER

_pcopies
Specifies the number of copies to print for a PRINTJOB.

Syntax _pcopies = <expN>

<expN> The number of copies to print. The valid range is 1 to 32,767, inclusive. Specify a positive integer
for <expN>.

Default The default for _pcopies is 1.

Description Use _pcopies to print a specific number of copies of a print job. You can assign a value to _pcopies in the
Command window or in a program. The value of _pcopies has an effect only when you send a print job to the
printer by issuing PRINTJOB. In a program, assign a value to _pcopies before issuing PRINTJOB.

Example This example uses _pcopies to print the print job three times:
_pcopies=3 // Three copies
set printer on
printjob
? "Very Small Report"
endprintjob
set printer off
close printer

See Also PRINTJOB...ENDPRINTJOB

_pdriver
Identifies the current printer driver or activates a new driver.

Syntax _pdriver = <expC>

<expC> The name of the printer driver to activate.

Default The default for _pdriver is the printer driver you specify with the Windows Control Panel. If you haven't
specified a printer driver with the Control Panel, the value of _pdriver is an empty string ("").

Description Use _pdriver to identify the current printer driver or to activate an installed driver. (To install a new printer
driver, use the Windows Control Panel.)
684 dBL Language Reference

_pecode
The _pdriver value contains two elements separated by a comma: the base file name of the Windows driver file
and the name of the printer as it appears in WIN.INI. The current driver might not identify a printer name, in
which case, _pdriver contains only the driver file name. For example, if the current printer driver is for the HP
Laserjet IIISi PostScript printer, _pdriver may contain the value "pscript,HP LaserJet IIISi PostScript". To
activate this driver, issue the command _pdriver = "pscript,HP LaserJet IIISi PostScript".

To activate a driver from within dBASE Plus, it may be easier to use CHOOSEPRINTER() than to assign a
value to _pdriver. To activate a driver in Windows, use the Printers program of the Windows Control Panel.
CHOOSEPRINTER() opens the Print Setup dialog box, in which you can also select options such as paper size,
source, and orientation (portrait or landscape). In the Windows Control Panel, you can choose Setup to select
these options.

Example Use _pdriver to determine the current print driver:
? _pdriver
// With an Epson FX 80, the response is:
// EPSON9,Epson FX-80
// With an HP Laserjet running postscript, the
// response is:
// pscript,HP LaserJet IIISi PostScript

You can set the print driver with _pdriver:
_pdriver="pscript"

See Also _pform, _ppitch, _pquality, CHOOSEPRINTER(), SET PRINTER

_pecode
System variable initialized to an empty string.

Syntax _pecode = <expC>

<expC> Character expression up to 255 characters.

Default Empty string.

Description During execution of a ENDPRINTJOB command dBASE will send the contents of _PECODE to the printer.

_peject
Determines whether dBASE Plus ejects a sheet of paper before and after a PRINTJOB.

Syntax _peject = <expC>

<expC> The character expression "before", "after", "both", or "none".

Default The default for _peject is "before", which tells the printer to eject a sheet of paper before starting the print job.

Description Use _peject to specify if and when the printer should eject a sheet of paper. Assign a new value to _peject (and
to any other system memory variable) before issuing PRINTJOB in a program to make the new value affect the
print job.

The following table describes _peject options.

<expC> Result
"before" Eject sheet before printing the first page
"after" Eject sheet after printing the last page
"both" Eject sheet before and after the print job
"none" Don't eject sheet before or after the print job
Text streaming 685

_pepage
Note The _peject system memory variable is distinct from the EJECT command, which tells the printer to advance
the paper to the top of the next page.

Example This example shows the four possible _peject setting. The last setting is operational in the PRINTJOB:
_peject="before"
_peject="after"
_peject="both"
_peject="none"
// _peject must be set before printjob
printjob
 ? "Hello World"
endprintjob

See Also _padvance, EJECT, EJECT PAGE, PRINTJOB...ENDPRINTJOB

_pepage
Specifies the page number of the last page of a print job.

Syntax _pepage = <expN>

<expN> The page number of the last page to print. The valid range is 1 to 32,767, inclusive. You must
specify a positive integer for <expN>.

Default The default for _pepage is 32,767.

Description Use _pepage to stop printing a print job at a specific page number. Pages with numbers greater than _pepage
don't print. To begin printing at a specific page number, use _pbpage.

If you set _pepage to a value less than _pbpage, dBASE Plus returns an error.

Example This example selects two pages from a PRINTJOB. The program prints 500 lines of output and prints the page
and line number on each line as in the example for _plineno. Here, the ending page number is set to 2 so that
only pages 1 and 2 print:

_pageno=1
_pbpage=1 // reset the default pbpage
_pepage=2 // end on page 2
set printer on
printjob
for i=1 TO 500
 ?? "Page",_pageno," Line",_plineno
 ? // now force a linefeed
endfor
endprintjob
set printer off
close printer // begin printing

The ? command issues a linefeed before processing consequently in this case, the correct line number is
obtained by using ??.

See Also _pageno, _pbpage, PRINTJOB...ENDPRINTJOB

_pform
Identifies the current print form file or activates another one.

Syntax _pform = <filename>

<filename> The name of a print form file (.PRF).

Default The default for _pform is an empty string ("").
686 dBL Language Reference

_plength
Description Use _pform to determine the name of the current print form file or to activate another one. A print form file
(.PRF) is a binary file that contains print settings for printing a print job. The print form file contains the
following system memory variables:

Variable Action
_padvance Determines whether the printer advances the paper with a formfeed or linefeeds.
_pageno Determines or sets the current page number.
_pbpage Specifies the page number at which PRINTJOB begins printing.
_pcopies Specifies the number of copies to print in a printjob.
_pdriver Activates a specified printer driver. (If the print form file is from dBASE Plus IV,

dBASE Plus ignores this value.)
_peject Controls page ejects before and after PRINTJOB.
_pepage Specifies the number of the last page that PRINTJOB prints.
_plength Specifies the number of lines per page for streaming output.
_ploffset Determines the width of the left border on a printed page.
_ppitch Sets the printer pitch, the number of characters per inch that the printer prints.
_pquality Specifies if the printer prints in letter-quality or draft mode.
_pspacing Sets the line spacing for streaming output.

When you specify a print form file by assigning its name to _pform, the values stored in the file are assigned to
their respective variables. Jobs you send to the printer then behave in accordance with these variables.

Example This example assumes there are two reports, Report1 and Report2. It uses Report1's print form file,
Report1.PRF to print Report2:

_pform= "Report1"
report form Report2

See Also PRINTJOB...ENDPRINTJOB

_plength
Specifies the number of lines per page for streaming output.

Syntax _plength = <expN>

<expN> The number of lines per page. The valid range is 1 to 32,767, inclusive. You can specify a fractional
number for <expN> to position output accurately with a proportional font.

Default The default page length is determined by the default page size of the current printer driver and the current page
orientation (portrait or landscape).

Description Use _plength to specify a page length that is different from the default of the current printer driver. For example,
to print short pages, such as checks that are 20 lines long, set _plength to the length of the output (20 in this
example) and _padvance to "LINEFEEDS" to advance to the top of the next page.

When you change printer drivers or page orientation, dBASE Plus changes the value of _plength automatically.
You can change printer drivers in dBASE Plus by issuing CHOOSEPRINTER() or by assigning a value to
_pdriver. In Windows, you can change printer drivers with the Printers program of the Control Panel (however,
it won't take effect until you quit dBASE Plus and start a new dBASE Plus session). You can change page
orientation in any of these ways or, in dBASE Plus, by changing the value of _porientation.

Example This example sets the form length to 10 lines and prints 25 lines of output. Each line simply prints line number
and count (1 through 25). A three-line heading prints "Top of Page" on each line 1:

_plength=10
_pageno=1
_plineno=0
set printer on
for i=1 TO 25
 if _plineno=0 // At first line of page
 ?
Text streaming 687

_plineno
 ? "Top of Page ",_pageno
 ?
 endif
 ? "Line",_plineno,"i=",i
endfor
set printer off
close printer
// The first two pages are:
//
// Top of Page 1
//
// Line 3.00 i= 1
// Line 4.00 i= 2
// Line 5.00 i= 3
// Line 6.00 i= 4
// Line 7.00 i= 5
// Line 8.00 i= 6
// Line 9.00 i= 7
//
// Top of Page 2
//
// Line 3.00 i= 8
// Line 4.00 i= 9
// Line 5.00 i= 10
// Line 6.00 i= 11
// Line 7.00 i= 12
// Line 8.00 i= 13
// Line 9.00 i= 14

See Also _padvance, _pdriver, _porientation, CHOOSEPRINTER(), EJECT, EJECT PAGE

_plineno
Identifies or sets the current line number of streaming output.

Syntax _plineno = <expN>

<expN> The line number at which to begin printing. The valid range is 0 to _plength – 1. You can specify a
fractional number for <expN> to position output accurately with a proportional font.

Default The default for _plineno is 0.

Description Use _plineno to position printing streaming output from commands such as ?, ??, and LIST.

The PROW() function also returns the current printhead position of the printer, but if SET PRINTER is OFF,
the PROW() value doesn't change. _plineno, on the other hand, returns or assigns the current position in the
streaming output regardless of the SET PRINTER setting.

Example This example prints 32 lines of output on four pages. The page length is set at 10 lines per page, and the report
prints the page and line number on each line using _pageno and _plineno:

_pbpage=1 // reset the default pbpage
_pepage=32767 // reset the default pepage
_plength=10 // set the page length to 10 lines
_pageno=1
set printer on
printjob // printjob resets _plineno to 0
for i=1 TO 32
 if _plineno=0 // At first line of page
 //?
 ? "Top of Page ",_pageno
 ?
 endif
 ?? "Page",_pageno," Line",_plineno,i
 ? // now force a linefeed
endfor
endprintjob
688 dBL Language Reference

_ploffset
set printer off
close printer
// The first two pages of output appear as follows:
//
// Top of Page 1
// Page 1 Line 2.00 1
// Page 1 Line 3.00 2
// Page 1 Line 4.00 3
// Page 1 Line 5.00 4
// Page 1 Line 6.00 5
// Page 1 Line 7.00 6
// Page 1 Line 8.00 7
// Page 1 Line 9.00 8
//
// Top of Page 2
// Page 2 Line 2.00 9
// Page 2 Line 3.00 10
// Page 2 Line 4.00 11
// Page 2 Line 5.00 12
// Page 2 Line 6.00 13
// Page 2 Line 7.00 14
// Page 2 Line 8.00 15
// Page 2 Line 9.00 16

See Also _pcolno, _plength, _ppitch, EJECT PAGE, ON PAGE, PCOL(), PROW()

_ploffset
Displays or sets the width of the left border of a printed page.

Syntax _ploffset = <expN>

<expN> The column number at which to set the left margin. The valid range is 0 to 254, inclusive. You can
specify a fractional number for <expN> to position output accurately with a proportional font.

Default The default for _ploffset is 0. To change the default, set the MARGIN parameter in PLUS.ini.

Description Use _ploffset (page left offset) to specify the distance from the left edge of the paper to the left margin of the
print area. Use _lmargin to set the left margin from the _ploffset column. For example, if _ploffset is 10 and
_lmargin is 5, output prints from the 15th column.

The _ploffset system memory variable is equivalent to the SET MARGIN value. Changing the value of one
changes the other. For more information, see SET MARGIN.

Example See SET MARGIN

See Also _indent, _lmargin, SET MARGIN

_porientation
Determines whether the printer prints in portrait or landscape mode.

Syntax _porientation = <expC>

<expC> The character expression "PORTRAIT" or "LANDSCAPE".

Default The default for _porientation is the orientation you specify with the Printers program of the Windows Control
Panel or, in dBASE Plus, with the CHOOSEPRINTER() function. By default, this orientation is portrait.

Description Use _porientation to specify whether you want to print in portrait or landscape mode. When you print in portrait
mode, each page is read vertically; a standard American letter-size piece of paper is 8.5 inches wide by 11
inches long. When you print in landscape mode, each page is read horizontally; a standard American letter-size
piece of paper is 11 inches wide by 8.5 inches long.

Most printer drivers support landscape printing; however, if you specify landscape while using a printer driver
that doesn't support it, the printer continues to print in portrait mode, possibly truncating text.
Text streaming 689

_ppitch
Changing page orientation automatically resets _plength.

If _porientation is changed during printing, it will only take effect when _plineno = 0 or after a page eject
occurs. Since _plineno may be greater than 0 when a print routine begins, you should set _plineno = 0 before
attempting to change the orientation of a page.

Example _porientation has two settings:
_porientation="portrait"
_porientation="landscape"

It takes effect only on a page boundary.

See Also _pdriver, _plength, _ppitch, SET PRINTER

_ppitch
Sets the printer pitch, the number of characters per inch that the printer prints.

Syntax _ppitch = <expC>

<expC> The character expression "pica", "elite", "condensed", or "default".

Default The default for _ppitch is "default", the pitch defined by your printer's settings or by setup codes or commands
you sent to the printer before you started dBASE Plus. "Default" means that dBASE Plus hasn't sent any pitch
control codes to the printer.

Description Use _ppitch to set the pitch (characters per inch) on the printer. The _ppitch setting sends a control code
appropriate to the current printer driver. Use the Windows Control Panel or CHOOSEPRINTER() to select the
printer driver.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose sizes depend on the value of
_ppitch. The height of each character cell is determined by the size of the font.

The following table lists _ppitch values.

_ppitch value Character cell width
"pica" 1/10" (10 characters/inch)
"elite" 1/12" (12 characters/inch)
"condensed" 1/17" (17 characters/inch)

If you change the value in other system memory variables such as _lmargin, _rmargin, and _ploffset, dBASE
Plus takes the current value of _ppitch into consideration when calculating the cell width of the coordinate
plane. This happens regardless of whether you're printing with proportional or monospaced fonts.

Example This example shows the three settings of _ppitch:
s_ppitch=_ppitch // save current pitch
set printer on
_ppitch="pica"
? "John Brown's body: 10 characters per inch"
_ppitch="elite"
? "John Brown's body: 12 characters per inch"
_ppitch="condensed"
? "John Brown's body: 17 characters per inch"
_ppitch=s_ppitch // restore original setting
close printer

_ppitch is not valid for all printers.

See Also _pdriver, _pquality, CHOOSEPRINTER()
690 dBL Language Reference

_pquality
_pquality
Specifies whether the printer prints in letter-quality or draft mode. Used primarily with dot-matrix printers; the
_pquality value usually has no effect on printers that don't support draft mode, such as laser and Postscript
printers.

Syntax _pquality = <expL>

<expL> The logical expression true for letter quality and false for draft quality.

Default The default for _pquality is false for draft mode.

Description Use _pquality to determine whether the printer prints in letter-quality or draft mode. Letter-quality mode
produces printed copy of higher quality (finer resolution) than draft; however, draft mode usually prints more
quickly than letter-quality, depending on the printer.

Example This example shows the two settings for print quality. Print quality cannot be changed in mid page and might or
might not be available on your printer:

close printer
set printer on
_pquality= false // draft quality
? "John Brown's body"
close printer
_pquality= true // letter quality
? "John Brown's body"
close printer

See Also _pdriver, _ppitch

_pscode
System variable initialized to an empty string.

Syntax _pscode = <expC>

<expC> Character expression up to 255 characters.

Default Empty string.

Description During execution of a PRINTJOB command dBASE will send the contents of _PSCODE to the printer.

_pspacing
Sets the line spacing for streaming output.

Syntax _pspacing = <expN>

<expN> The amount of line spacing. The valid range is 1 to 3, inclusive:

• A value of 1 represents single spacing.

• A value of 2 represents double spacing. There is one blank line between printed lines.

• A value of 3 represents triple spacing. There are two blank lines between printed lines.

Paragraph spacing is in multiples of the height of the line just printed, which depends on the tallest font used in
printing the line. You can specify a fractional number for <expN> to space text by partial line heights.

Default The default for _pspacing is 1, which sets line spacing to single-line.

Description Use _pspacing to set the line spacing of streaming output from commands such as ?, ??, and LIST. To insert a
single blank line into output, use the ? command.
Text streaming 691

_rmargin
Example This example uses _pspacing to set the spacing to 1 then 2 lines between lines of text and finally back to 1 line:
_pspacing=1
? "Jack 1"
? "Jill 1"
_pspacing=2
? "Jack 2"
? "Jill 2"
_pspacing=1
? "Jack 1"
? "Jill 1"
// produces:
// Jack 1
// Jill 1
//
// Jack 2
//
// Jill 2
// Jack 1
// Jill 1

Notice that _pspacing takes place immediately so that the double spacing occurs before Jack 2 and before Jill 2.

See Also ?, ??, _ppitch, DISPLAY, LIST

_rmargin
Defines the right margin for ? and ?? command output when _wrap is true.

Syntax _rmargin = <expN>

<expN> The column number of the right margin. The valid range is 0 to 255, inclusive. You can specify a
fractional number for <expN> to position output accurately with a proportional font.

Default The default for _rmargin is 79.

Description Use _rmargin to set the right margin for output from the ? and ?? commands. The value of _rmargin must be
greater than the value of _lmargin or _lmargin + _indent. For example, if _lmargin and _indent are both set to 5,
_rmargin must be greater than 10 to display at least one column of output.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font.

If you change the value of _rmargin, dBASE Plus takes the current value of _ppitch into consideration when
calculating the cell width of the coordinate plane. This happens regardless of whether you're printing with
proportional or monospaced fonts.

Example The following example sets wrap on and then changes the left margin and displays text:
savewrap=_wrap // save last wrap setting
_wrap=true // must be true for alignment
savelmargin=_lmargin // save last alignment setting
_lmargin=5
savermargin=_rmargin // save last alignment setting
_rmargin=20
? "New York, Chicago and Boston are cold in wintertime."
// Now the text wraps around between columns 5 and 20
_rmargin=savermargin // restore the previous margin
_lmargin=savelmargin // restore the previous margin
_wrap=savewrap // reset wrap

See Also ?, ??, _alignment, _indent, _lmargin, _ploffset, _wrap, SET MARGIN
692 dBL Language Reference

_tabs
_tabs
Sets one or more tab stops for output from the ? and ?? commands.

Syntax _tabs = <expC>

<expC> The list of column numbers for tab stops. If you set more than one tab stop, the numbers must be in
ascending order and separated by commas. Enclose the entire list in quotation marks. You can specify fractional
numbers for <expC> to position output accurately with a proportional font.

Default The default for _tabs is an empty string ("").

Description Use _tabs to define a series of tab stops. If _wrap is true, dBASE Plus ignores tab stops equal to or greater than
_rmargin.

When you direct output to the printer, dBASE Plus maps each character according to the coordinate plane, a
two-dimensional grid. The coordinate plane is divided into character cells whose widths depend on the value of
_ppitch. See the table in the description of _ppitch, which lists _ppitch values. The height of each character cell
is determined by the size of the font.

If you change the value of _tabs, dBASE Plus takes the current value of _ppitch into consideration when
calculating the cell width of the coordinate plane. This happens regardless of whether you're printing with
proportional or monospaced fonts.

If you send a tab character, CHR(9), with ? or ??, dBASE Plus expands it to the amount of space required to
reach the next tab stop. If the tab character you send is past the last tab stop, dBASE Plus ignores it, displaying
output starting in the current column.

Example The following program makes two tab stops at columns 5 and 20 The array A is displayed beginning at the first
tab stop, and its position in the array (i) is displayed at the second tab stop:

_tabs="5,20" // tab stops at columns 5 and 20
a = { "One", "Two" }
for i=1 to 2
 ? chr(9),A[i],chr(9),ltrim(str(i))
endfor
// chr(9) is equivalent to the tab key
// produces:
// One 1
// Two 2

See Also ?, ??, _indent, _lmargin, _rmargin, _wrap, CHR(), MODIFY COMMAND

_wrap
Determines if streaming output wraps between margins specified by _lmargin and _rmargin.

Syntax _wrap = <expL>

<expL> The logical expression true or false.

Default The default for _wrap is false, which disables wrapping.

Description Set _wrap to true to wrap streaming output from commands such as ?, ??, and LIST within the margins you
specify with _lmargin and _rmargin.

When you enable wrapping, dBASE Plus wraps text onto the next line, breaking between words or numbers,
when the output reaches the right margin. When you disable wrapping, dBASE Plus extends text beyond the
right margin, moving to the next line only when a carriage return and linefeed combination (CR/LF) occurs in
the text.

The print formatting commands _alignment, _indent, _lmargin, and _rmargin require _wrap to be true.

When _wrap is true, dBASE Plus stores streaming output in a buffer until it finishes displaying or printing the
current line. If you generate output with the ? command, follow it with another ? command to force the last line
of text to print.
Text streaming 693

Example _lmargin=5
_rmargin=15
string="Now is the time for all men and women to come to..."
_wrap=false
? string
// wrap false displays as:
// Now is the time for all men and women to come to...
_wrap=true
? string
// wrap true displays as:
// Now is the
// time for
// all men and
// women to
// come to...

See Also ?, ??, _alignment, _indent, _lmargin, _ploffset, _rmargin, PRINTJOB...ENDPRINTJOB
694 dBL Language Reference

C h a p t e r

Chapter 19Extending dBASE Plus
with DLLs, OLE and DDE

The classes and elements described in this chapter allow you to extend dBASE Plus to work with Dynamic Link
Libraries (DLLs) and other Windows resources, as well as communicate directly with other Windows programs
through both the Object Linking and Embedding (OLE) and Dynamic Data Exchange (DDE) mechanisms.

class DDELink
Initiates and controls a DDE link between dBASE Plus and a server application, allowing dBASE Plus to send
instructions and data-exchange requests to the server.

Syntax [<oRef> =] new DDELink()

<oRef> A variable or property in which to store a reference to the newly created DDELink object.

Properties The following tables list the properties, events, and methods of the DDELink class.

Property Default Description
baseClassName DDELINK Identifies the object as an instance of the DDELink class (this

property is described in Chapter 5, “Core language.”)
className (DDELINK) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
server The name of the server you specified with the initiate() method
timeout 1000 Determines the amount of time in milliseconds that dBASE

Plus waits for a transaction before returning an error
topic The name of the topic you specified with the initiate() method

Event Parameters Description
onNewValue <item expC>,

<value expC>
When an item in the server application changes

Method Parameters Description
advise() <item expC> Requests that the server notify the client when the item in the

server changes
execute() <cmd expC> Sends instructions to the server in its own language
Extending dBASE Plus with DLLs, OLE and DDE 695

class DDELink
Description Use a DDELink object to open a channel of communication (known as a DDE link) between dBASE Plus and
an external Windows application (known as a server).

You can exchange data and instructions through this link, making the two applications work together. For
example, you could use a DDELink object to open, send data to, format and print a document in your word
processor, or open a spreadsheet and then exchange and update table data. You can also run separate dBASE
Plus sessions and use one as a DDE client and the other as a server (as shown in the class DDELink and class
DDETopic examples).

A DDE link is established with the initiate() method. If the server application isn’t already running, initiate()
attempts to start it. If the link attempt is unsuccessful, initiate() returns false.

Example This sample application uses a DDE link to send data to a DDE server and optionally receive notification
updates. The server program, shown in the class DDETopic example, runs in a second instance of dBASE Plus.
For a demonstration of multiple-client DDE interaction, create and run another form using this same code, but
change the DDE topic from “TEST” to any other name. At the same time, try linking another DDE client to the
dBASE Plus server program using some other Windows program, such as Microsoft Word (code for a Word 95
macro to do just that appears at the bottom of this topic).

** END HEADER -- do not remove this line
//
// Generated on 02/24/00
//
parameter bModal
local f
f = new stockclientForm()
if (bModal)
 f.mdi = false // ensure not MDI
 f.readModal()
else
 f.open()
endif

class stockclientForm of FORM
 with (this)
 onOpen = class::FORM_ONOPEN
 onClose = class::FORM_ONCLOSE
 scaleFontBold = false
 height = 6
 left = 4
 top = 2
 width = 42
 text = "Stock Client 2000"
 autoCenter = true
 mdi = false
 endwith

this.NOTIFYTEXT = new TEXT(this)
 with (this.NOTIFYTEXT)
 height = 1
 left = 2
 top = 2
 width = 38

initiate() <server expC>,
<topic expC>

Starts a conversation with a DDE server application

peek() <item expC> Retrieves a data item stored by the server
poke() <item expC>,

<value exp>
Sends a data item to the server

reconnect() Restores a DDE link that was terminated with terminate()
release() Explicitly removes the DDELink object from memory
terminate() Terminates the link with the server application
unadvise() <item expC> Asks the server to stop notifying the DDELink object when an

item in the server changes

Method Parameters Description
Extending dBASE Plus with DLLs, OLE and DDE 696

class DDELink
 border = true
 colorNormal = "BtnText"
 fontSize = 8
 text = "Welcome to Stock Client 2000"
 borderStyle = 7// Client
 endwith

this.SHARES = new SPINBOX(this)
 with (this.SHARES)
 height = 1
 left = 2
 top = 4
 width = 12
 picture = "99999"
 step = 10
 rangeMax = 10000
 rangeMin = 1
 fontSize = 8
 value = 10
 rangeRequired = true
 borderStyle = 7// Client
 endwith

this.BUYBUTTON = new PUSHBUTTON(this)
 with (this.BUYBUTTON)
 onClick = class::BUYBUTTON_ONCLICK
 height = 1
 left = 18
 top = 4
 width = 10
 text = "&Buy"
 fontSize = 8
 group = true
 value = false
 endwith

this.SELLBUTTON = new PUSHBUTTON(this)
 with (this.SELLBUTTON)
 onClick = class::SELLBUTTON_ONCLICK
 height = 1
 left = 30
 top = 4
 width = 10
 text = "&Sell"
 fontSize = 8
 group = true
 value = false
 endwith

this.NOTIFYBUYCHECKBOX = new CHECKBOX(this)
 with (this.NOTIFYBUYCHECKBOX)
 onChange = class::NOTIFYBUYCHECKBOX_ONCHANGE
 height = 0.8636
 left = 2
 top = 1
 width = 16
 text = "Notify on Buy"
 colorNormal = "WindowText/BtnFace"
 fontSize = 8
 value = false
 group = true
 endwith

this.NOTIFYSELLCHECKBOX = new CHECKBOX(this)
 with (this.NOTIFYSELLCHECKBOX)
 onChange = class::NOTIFYSELLCHECKBOX_ONCHANGE
 height = 0.8636
 left = 24
 top = 1
697 dBL Language Reference

class DDELink
 width = 16
 text = "Notify on Sell"
 colorNormal = "WindowText/BtnFace"
 fontSize = 8
 value = false
 group = true
 endwith

function BUYBUTTON_onClick
 form.ddeClientObj.poke("Buy", "" + form.shares.value)
 return

function form_onClose
 form.ddeClientObj.terminate()
 form.ddeClientObj.release() // Destroys parent reference to form
 return

function form_onOpen
 this.ddeClientObj = new StockDDELink()
 with this.ddeClientObj
 if initiate("STOCKSERVER", "TEST")
 parent = this
 timeout = 2000
 msgbox("Connecting to " + server ;
 + ". Account holder: " + topic ;
 + ". Current holdings: " + peek("Buy"),;
 "Stock Client 2000")
 else
 msgbox("Could not connect to StockServer", ;
 "Connection failed", 16)
 form.close()
 endif
 endwith

function NOTIFYBUYCHECKBOX_onChange
 if this.value
 form.ddeClientObj.advise("Buy")
 else
 form.ddeClientObj.unAdvise("Buy")
 endif
 return

function NOTIFYSELLCHECKBOX_onChange
 if this.value
 form.ddeClientObj.advise("Sell")
 else
 form.ddeClientObj.unAdvise("Sell")
 endif
 return

function SELLBUTTON_onClick
 form.ddeClientObj.poke("Sell", "" + form.shares.value)
 return

endclass

class StockDDELink of DDELink
 this.parent = null

function onNewValue(item, value)
 this.parent.notifyText.text := "Notified of changes in: " + item + ;
 " now: " + value
endclass

This Word for Windows 95 macro also lets you communicate with the dBASE Plus DDE stock server program
described in the class DDETopic example. You can use this macro from within Word at the same time as you
use the dBASE Plus DDE client application described above to communicate with the dBASE Plus server
running in a separate instance.

‘Word 95 macro to communicate with dBASE Plus Stock Server dde sample
Sub MAIN
Extending dBASE Plus with DLLs, OLE and DDE 698

class DDETopic
 DDETerminateAll
 channel = DDEInitiate("STOCKSERVER", "TEST")
 DDEPoke channel, "sell", "150"
 DDETerminate channel
End Sub

See Also class DDETopic, class OleAutoClient

class DDETopic
Determines the actions taken when dBASE Plus receives requests from a DDE client.

Syntax [<oRef> =] new DDETopic(<topic expC>)

<oRef> A variable or property in which to store a reference to the newly created DDETopic object. This
object reference must be returned by the _app object’s onInitiate event handler.

<topic expC> The name of the topic to which the DDETopic object responds.

Properties The following tables list the properties, events, and methods of the DDETopic class.

Property Default Description
baseClassName DDETOPIC Identifies the object as an instance of the DDETopic class (this

property is described in Chapter 5, “Core language.”)
className (DDETOPIC) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName
topic The DDETopic object's topic

Event Parameters Description
onAdvise <item expC> After an external application creates a hot link
onExecute <cmd expC> When a client application sends a command to dBASE Plus
onPeek <item expC> When the client requests a value from dBASE Plus
onPoke <item expC>,

<value expC>
When the client sends a new value for a dBASE Plus item

onUnadvise <item expC> After a client removes a hot link from a particular item

Method Parameters Description
notify() <item expC> Notifies all interested client applications that a dBASE Plus

item was changed
release() Explicitly removes the DDETopic object from memory

Description Use a DDETopic object to determine what dBASE Plus does for a client application when dBASE Plus is the
server in a DDE link. dBASE Plus may act as a DDE server for one or more topics; client applications must
specify the topic they are interested in when they create the DDE link. (A client application may link to more
than one topic at a time.)

As a server application, dBASE Plus accepts either a generic command string, or a named item-value pair from
a client application. It must respond to requests for a named data item, and notify interested client applications
when a item value changes.

You usually create a DDETopic object in an initiation-handler routine, which you assign to the onInitiate event
of the _app object. The initiation-handler executes when a client application requests a DDE link with dBASE
Plus and no DDETopic object exists in memory for the desired topic. Each newly-created DDETopic object
must be returned by the onInitiate event handler; that object is automatically stored internally to respond to
client requests on that topic.
699 dBL Language Reference

class OleAutoClient
When dBASE Plus acts as a DDE server, the topics and item names it maintains internally are not case-
sensitive; topic and item names that match existing names (regardless of case) will be changed to those names
before being passed to events. When writing event handlers, be aware that the names may vary in case—use
UPPER() or LOWER() to make the names consistent in the program logic.

For information on using dBASE Plus as a client application, see class DDELink.

Example The following program creates a DDE service in an instance of dBASE Plus. This server handles information
passed to it from multiple DDE clients, including those set up in the dBASE Plus application (using a separate
dBASE Plus instance) and Microsoft Word macro shown in the the class DDELink example.

set procedure to program(1) additive

_app.ddeServiceName = "STOCKSERVER"
_app.onInitiate = InitStockDDE
_app.framewin.text = "Stock Server 2000"
? "Ready for DDE server requests for:", _app.ddeServiceName

function InitStockDDE(newTopic)
 // DDETopic object not in memory, create it
 local x
 x = new StockDDETopic(newTopic)
 ? "Initialized server for topic:", newTopic
 return x // Must return requested topic

class StockDDETopic(t) of DDETopic(t)
 this.adviseList = new AssocArray()
 this.value = 100

function onAdvise(item)
 ? this.topic, "ADVISE on changes in:", item
 this.adviseList[upper(item)] = null // Create element with dummy value

function onExecute(cmd)
 ? this.topic, "EXECUTE:", cmd
 // This server does not support any commands

function onPeek(item)
 ? this.topic, "PEEK:", item
 return this.value

function onPoke(item /* Buy or Sell */, value /* Shares */)
 ? this.topic, "POKE:", item, value
 if upper(item) = "SELL"
 this.value -= val(value)
 elseif upper(item) = "BUY"
 this.value += val(value)
 endif
 // Notify clients if item in adviseList
 if this.adviseList.isKey(upper(item))
 ? this.topic, "NOTIFY change in:", item
 this.notify(upper(item)) // Implicitly calls onPeek to get value
 endif
 ? "Value is now:", this.value

function onUnadvise(item)
 if this.adviseList.isKey(upper(item))
 ? this.topic, "cancel ADVISE on changes in:", item
 this.adviseList.removeKey(upper(item))
 endif
endclass

See Also class DDELink

class OleAutoClient
Creates an OLE2 controller that attaches to an OLE2 server.

Syntax [<oRef> =] new OleAutoClient(<server expC>)
Extending dBASE Plus with DLLs, OLE and DDE 700

class OleAutoClient
<oRef> A variable or property in which you want to store a reference to the newly created OleAutoClient
object.

<server expC> The name of the OLE Automation server. The name is of the form, “app.object”; for
example, “word.application”

Properties The properties, events, and methods of each instance of the OleAutoClient class depend on the attached OLE
automation server.

Description OLE automation allows you to control another application, an OLE automation server, through an OLE
automation client. For example, with a full-featured word processor as an OLE automation server, you could do
the following all on the server machine:

• Start the word processor
• Open an order form
• Fill in data that was entered in a client browser
• Fax that order form to a customer
• Close the word processor

With dBASE Plus as the host for the OLE automation client, you could control the entire process from a
browser. You don’t even need the word processor to be installed on the dBASE Plus client, just on the dBASE
Plus server machine.

dBASE Plus’s dynamic object model is a natural host for OLE automation clients. Because there is no need to
declare the capabilities of the OLE automation server as you would with a statically linked language, you can
specify any OLE Automation server at run time, and use whatever capabilities it has.

Once you create the OleAutoClient object, the properties, events, and methods the OLE automation server
provides are accessed through the OleAutoClient object, just as with stock dBASE Plus objects. You can also
inspect() the OleAutoClient object’s properties.

Example These examples show how to use OleAutoClient to gather a list of Microsoft Word “Normal” template macros
and run a Word macro from dBASE Plus. Examples are provided for both Word 95 and Word 97.

Word 95 example 1:
// Assign a new Word.Basic object.
// If Word is already running, the object uses the running instance.
// If Word is not running, an instance is created, but hidden.
// To make the instance visible, use the Word AppShow() command.

w = new OleAutoClient("word.basic")
w.AppShow()

// Clear the Command window,
// list all macros and descriptions in the Normal template
clear
for m = 1 to w.countmacros(0)
 n = w.macroname(m, 0)
 ? n
 ? w.macrodesc(n)
next count

// to run a macro named "Macro1"
w.toolsmacro("Macro1",true)

// Dismiss the object. If Word was already open when this routine was run, it remains open but releases the object. If
you opened Word with this routine, the object is released and Word is removed from the task list. If you also made
Word visible with AppShow(), the app is closed.
w= ""

Word 95 example 2. Scenario: A form offers lists containing two corresponding associative arrays of Word
documents and available printers. When the user selects a document and a printer, a single button opens the
selected Word document, shows Word’s printer set up dialog, prints the document and then closes the
document.

function printButton_onClick()
 local w
 w = new OleAutoClient("word.basic")
 w.FileOpen(this.form.aDocs[this.form.docSelect.value])
 w.FilePrintSetup(this.form.aPrinter[this.form.printerSelect.value])
701 dBL Language Reference

advise()
 w.FilePrint()
 w.FileClose()

Word 97 example (equivalent to 95 example 1):
// Assign a new Word application object.
// If Word is already running, the object uses the running instance.
// If Word is not running, an instance is created, but hidden.
// To show it, you can use Word's Visible property.

w = new OleAutoClient("Word.Application.8")
w.Visible = true

// Clear the Command window,
// list the names of all macros (grouped into VBComponents in Word 97)
// in the Normal template.
clear
for i = 1 to w.NormalTemplate.VBProject.VBComponents.Count
? w.NormalTemplate.VBProject.VBComponents.Item(i).Name
next i
w.Application.Run("Macro1")
w.Application.Quit()

advise()
Creates a DDE hot link to enable the passing of notification messages whenever a specified topic item changes in
the server application.

Syntax <oRef>.advise(<item expC>)

<oRef> A reference to the DDELink object that wants to get notified.

<item expC> The name of the topic item you want to monitor.

Property of DDELink

Description Use the advise() method to create a hot link to an item in a server topic. A hot link requires the server
application to notify dBASE Plus when the value of a specified item changes.

A server topic can be anything that the server application understands, but it is most often a document,
spreadsheet, or database that you specified when you called the initiate() method to create the DDE link with
the external application. If, for example, you use initiate() to open a spreadsheet application as the server
application and a worksheet as a topic, you could specify any item or range in the worksheet as the topic item
you want monitored for changes.

The DDELink object’s onNewValue event will fire with the item name and new value as parameters whenever
the named item changes.

Example See class DDELink.

See Also initiate(), onNewValue, unadvise()

execute()
Sends a command string to a DDE server application in its own language.

Syntax <oRef>.execute(<cmd expC>)

<oRef> A reference to the DDELink object that has the link.

<cmd expC> Command or macro to send to the DDE server application.

Property of DDELink

Description Use the execute() method to send commands to DDE server applications.
Extending dBASE Plus with DLLs, OLE and DDE 702

extern
The command string must be in the language of the server application, or any other string that the server
expects.

Be sure to enclose commands in the delimiters required by the server application. For example, Quattro Pro
commands must be enclosed in braces ({ }), while Word for Windows 95 commands are enclosed in brackets
([]). Some applications accept multiple commands separated by brackets. For information, consult your DDE
server documentation.

Before you can send a command string to a server, you must open the server application, open the document,
and establish a DDE link. For information on establishing DDE links, see initiate().

Example This example opens a Word for Windows 95 document, prints it, and closes the connection.
w = new ddelink()
w.initiate("winword","c:\my documents\myletter.doc")
w.execute("[FILEPRINT]")
w.terminate()
w = ""

See Also initiate(), poke()

extern
Declares a prototype for a non-dBL function contained in a DLL file.

Syntax extern [cdecl | pascal | stdcall] <return type> <function name>
([<parameter type> [, <parameter type> …]])
<filename>

or
extern [cdecl | pascal | stdcall] <return type> <user-defined function name>

([<parameter type> [, <parameter type> …]])
<filename>
FROM <export function name expC> | <ordinal number expN>

Because you create a function prototype with extern, parentheses are required as with other functions.

cdecl | pascal | stdcall Sets the function calling convention. The default is stdcall.

<function name> The export name of the function. The export name of an external function is contained
in the DEF file associated with the DLL file that holds the function, or explicitly exported in the source code.

Note With stdcall and cdecl, function names are case-sensitive.

<return type> and <parameter type> A keyword representing the data type of the value returned by
the function, and the data type of each argument you send to the function, respectively. The following tables list
the keywords you can use.

Parameters or return values

Keyword

as pointer

dBASE Plus
data type

Data type size

int ptr int Numeric 4 bytes (32 bits)
long ptr long Numeric 4 bytes (32 bits)
short ptr short Numeric 2 bytes (16 bits)
char Numeric 1 byte (8 bits)

string String Null-terminated
handle Numeric 4 bytes (32 bits)
CUINT ptr CUINT Numeric 4 bytes (32 bits)
CULONG ptr CULONG Numeric 4 bytes (32 bits)
CUSHORT ptr CUSHORT Numeric 2 bytes (16 bits)
CUCHAR Numeric 1 byte (8 bits)
703 dBL Language Reference

extern
Parameters only

In most cases, if the function expects a pointer as a parameter, dBASE Plus will pass a pointer to the value. If a
function returns a pointer, dBASE Plus will get the value at the pointer and convert it into the appropriate
dBASE Plus data type.

char is actually a numeric data type, represeting a single-byte value. When passing a char parameter, you may
pass a string; dBASE Plus sends the ASCII value of the first character in the string. The return value is always a
number.

If the function has no parameters or returns no value, declare the data type as void.

You may use the … parameter declaration if the calling convention is stdcall to designate a variable number of
parameters.

Using strings dBASE Plus is a Unicode application; using strings is more complicated in 32-bit
programming than in 16-bit programming. Many Windows API functions have both an A (ANSI) and W (wide-
character) version. The A functions use single-byte characters, and the W versions use double-byte characters.
When calling the A version of a function, always use string. When calling the W version of a function, always If
the DLL file is not already loaded into memory, extern loads it automatically. If the DLL file is already in
memory, extern increments the reference counter. Therefore, it isn't necessary to execute LOAD DLL before
using EXTERN.

The reference counter is incremented only the first time, regardless of how many times you execute the LOAD
DLL and extern statements.

You may include a path in <filename>. If you omit the path, dBASE Plus looks in the following directories for
the DLL by default:

1 The directory containing PLUS.exe, or the directory in which the .EXE file of your compiled application is
located.

2 The current directory.

3 The 32-bit Windows system directory (for example, C:\WIN95\SYSTEM).

4 The 16-bit Windows system directory, if present (for example, C:\WINDOWS\SYSTEM).

5 The Windows directory (for example, C:\WINNT)

6 The directories in the PATH environment variable

The path specification is necessary only when the DLL file is not in one of these directories.

<user-defined function name> The name you give to the external function instead of the export name.
This is usually used to rename the A or W version of a function to the generic name. When you specify <user-
defined function name> (instead of <function name>), you must use the FROM clause to identify the function in
the DLL file.

FROM <export function name expC> | <ordinal number expN> Identifies the function in the
DLL file specified by <filename>. <export function name expC> identifies the function by its name.
<ordinal number expN> identifies the function with a number.

Description Use extern to declare a prototype for an external function written in a language other than dBASE Plus. A
prototype tells dBASE Plus to convert its arguments to data types the external function can use, and to convert
the value returned by the external function into a data type dBASE Plus can use.

float ptr float Numeric 4 bytes (32 bits)
double ptr double Numeric 8 bytes (64 bits)
CLDOUBLE ptr CLDOUBLE Numeric 10 bytes (80 bits)
boolean ptr boolean Logical 4 bytes (32 bits)
void none N/A

Keyword

as pointer

dBASE Plus
data type

Data type size

ptr String
… N/A
Extending dBASE Plus with DLLs, OLE and DDE 704

initiate()
To call an external DLL function, first prototype it with extern. Then, using the name of the function you
specified with extern, call the function as you would any dBASE Plus function. You must prototype an external
function before you can call that function in dBASE Plus.

The external function may be in any 32-bit DLL, such as the Windows API or a third-party DLL file. Although
most library code is contained in files with extensions of DLL, such code can be held in EXE files, or even in
DRV or FON files.

Example Suppose you want to add the Cascade option to your menubar’s Window menu. This ability is not built-in, but it
can be done easily through the Windows API. To cascade the windows, you send a message to the MDI client
window. To get the MDI client window, use the Windows GetParent() function. The SendMessage() function
is used to send the message. You add the following to the Header of your .MNU file:

if type("GetParent") # "FP"
 extern CHANDLE GetParent(CHANDLE) User32
endif
if type("SendMessage") # "FP"
 extern CLONG SendMessage(CHANDLE, CUINT, CWORD, CLONG) User32 from "SendMessageA"
endif
#define WM_MDICASCADE 0x0227

The .MNU file is executed when you assign the file to a form’s menuFile property, which includes the code in
the Header. The two functions are prototyped with extern. First, the TYPE() function is used to see if the
function has already been externed. If so, there’s no need to do it again.

The GetParent() function is straightforward: it takes a window handle and returns the handle of the window’s
parent. A form’s window handle is contained in its hWnd property. SendMessage() is a bit more complicated. It
has both an A version and a W version. The W version does not work in Windows 95, so the A version is used.
Note that the function name after the FROM is in quotes—it has to be a character or numeric expression—while
the prototyped function name does not. SendMessage() takes a handle to the window, the message, and two
parameters to the message. It returns a result value.

Finally, the #define preprocessor directive is used to define a manifest constant for the cascade message
number. This #define may be found in the WINUSER.H file, one of the Windows header files in the \Include
subdirectory.

Once all the setup is done, calling the function is easy. The onClick handler for the Cascade menu item is the
codeblock:

{; SendMessage(GetParent(form.hWnd), WM_MDICASCADE, 0, 0)}

The manifest constant in the codeblock is replaced at compile-time. If you examine the codeblock, you will see
the number, not the manifest constant.

See Also LOAD DLL, RELEASE DLL, TYPE() (page 5-70)

initiate()
Starts a conversation with an external application or aliased DDE server.

Syntax <oRef>.initiate(<server expC>, <topic expC>)

<oRef> A reference to the DDELink object through which you want to initiate the DDE link.

<server expC> The executable filename of the server application (normally the .EXE extension isn’t
necessary) or the alias name of a running DDE server.

<topic expC> Name of a built-in DDE topic, document, or other topic.

Property of DDELink

Description Use initiate() to open a channel of communication (known as a DDE link) between dBASE Plus and a running
external Windows application or aliased DDE server.

If you call an external application with initiate(), dBASE Plus tries to open the application if it is not already
running. initiate() returns true if the connection is successful, and false if the connection attempt fails.

To close the DDE link, use terminate().
705 dBL Language Reference

LOAD DLL
Example See class DDELink.

See Also reconnect(), terminate()

LOAD DLL
Initiates a DLL file.

Syntax LOAD DLL [<path>] <DLL filename>

[<path>] <DLL name> The name of the DLL file. <path> is the directory path to the DLL file in which
the external function is stored.

Description Use LOAD DLL to make the resources of a DLL file available to your application.
Note dBASE Plus uses 32-bit DLLs only; it cannot use 16-bit DLLs.

You can also use LOAD DLL to check for the existence of a DLL file. For example, you can use the ON
ERROR command to execute an error trapping routine each time the LOAD DLL command can't find a
specified DLL file.

LOAD DLL does not use the dBASE Plus path to find DLL files. Instead, it searches the following directories:

1 The directory containing PLUS.exe, or the directory in which the .EXE file of your compiled application is
located.

2 The current directory.

3 The 32-bit Windows system directory (for example, C:\WIN98\SYSTEM).

4 The 16-bit Windows system directory, if present (for example, C:\WINDOWS\SYSTEM).

5 The Windows directory (for example, C:\WINNT)

6 The directories in the PATH environment variable

A DLL file is a precompiled library of external routines written in non-dBL languages such as C and Pascal. A
DLL file can have any extension, although most have extensions of .DLL.

When you initialize a DLL file with LOAD DLL, dBASE Plus can access its resources; however, it doesn't
become resident in memory until your program or another Windows program uses its resources.

To access a DLL function, create a dBL function prototype with EXTERN. Then, using the name you specified
with EXTERN, call the routine as you would any dBL function.

Example The following example uses LOAD DLL to initialize an image resource from a .DLL file:
load dll MyPicts.dll
define form Pics from 2,2 TO 20,40
define image MyPict of Pics;
 property dataSource "resource MyPicts.dll 1001", top 5, left 5
open form Pics

See Also EXTERN, RELEASE DLL

notify()
Notifies all interested client applications that a dBASE Plus item was changed.

Syntax <oRef>.notify(<item expC>)

<oRef> A reference to the DDETopic object in which the item changed.

<item expC> Name of the item that has changed.

Property of DDETopic

Description Use notify() in a DDE server program to tell all interested client applications that an item in the dBASE Plus
server was changed.
Extending dBASE Plus with DLLs, OLE and DDE 706

onAdvise
Client applications ask to be notified of changes by calling their equivalent of the DDELink object’s advise()
method. dBASE Plus automatically maintains an internal list of these clients so that when the notify() method is
called, the appropriate DDE message is sent to each client, if any. For a dBASE Plus client, that message fires
the onNewValue event.

onPoke event handlers often call notify() when an external application sends dBASE Plus a poke request. For
example, a Quattro Pro data-exchange application might use its {POKE} command to send dBASE Plus a
value, causing the onPoke event handler to execute. The onPoke routine could insert the value into a field, then
execute notify() to inform Quattro Pro that the field changed.

When notify() is called, the onPeek method is called implicitly to get the value of the item to pass to the client
applications.

Example See class DDETopic.

See Also advise(), onNewValue, onPeek, unadvise()

onAdvise
Event fired after an external application requests a DDE hot link to an item in a dBASE Plus server topic.

Parameters <item expC> The data item for which the external application wants to be advised when changes are made.

Property of DDETopic

Description Use onAdvise in a DDE server program to respond to a request for a hot link and to determine which dBASE
Plus data item the link applies to. To implement a hot link in a DDETopic object, use the notify() method to
advise all interested clients whenever the item changes.

dBASE Plus automatically maintains an internal list of all clients that asked to be notified on changes in a
particular item (when the client calls their equivalent of the DDELink object’s advise() method). This makes
onAdvise supplemental. For example, you can track those items for which there has been a notification request.
Whenenver an item changes, you can call notify() only if someone has requested notification.

Item names are often held in tables or arrays to handle multiple hot links. For example, a client application might
request a hot link to a field, passing the field name through the <item> parameter. Each time, the onAdvise event
handler places the field name in an array.

The onPoke event handler would search this array each time a field is changed; if the name of the changed field is
found in the array, the routine could call the notify() method.

Example See class DDETopic.

See Also advise(), notify(), onUnadvise, unadvise()

onExecute
Event fired when a client application sends a command string to a DDE server program.

Parameters <cmd expC> The command string sent by the client application.

Property of DDETopic

Description Use the onExecute property to perform an action when the client application sends a directive to dBASE Plus.
This directive can be any string of characters.

For example, a stock trading routine might receive either of two character strings, "BUY" or "SELL". The
routine could use an IF statement to perform one action or another accordingly. A web browser could take a
URL as a command, and display that URL.

Example See class DDETopic.

See Also execute(), onPeek, onPoke
707 dBL Language Reference

onNewValue
onNewValue
Event fired when a hot-linked item in a DDE server changes.

Parameters <item expC> Identifies the server item that was changed.

<value expC> The new value of the hot-linked server item.

Property of DDELink

Description Use onNewValue to perform an action when a hot-linked server item is changed. A hot link, which you create
with the advise() method, tells the server to notify dBASE Plus when the item changes.

Note that the value of the item is always converted to a string.

Example See class DDELink.

See Also advise(), unadvise()

onPeek
Event fired when a client application tries to read an item from a DDE server application.

Parameters <item expC> The data item the client application wants to read.

Property of DDETopic

Description Use the onPeek property to send a value to a client application when the client application makes a peek request.

The onPeek event handler must RETURN the value of the requested item. dBASE Plus automatically handles
the internal DDE mechanism to pass the value back to the client.

onPeek is also called implicitly by the DDETopic object’s notify() method so that the DDE server can send an
item’s name and value when it is changed.

Example See class DDETopic.

See Also onPoke, peek()

onPoke
Event fired when a client application attempts to send a value for a DDE server item.

Parameters <item expC> The name of the item that identifies the value.

<value expC> The desired value

Property of DDETopic

Description Use the onPoke event to receive a named value from a client application. For example, the <item expC> could
identify a cell in a spreadsheet, and the <value exp> is the value to store in that cell. Another example would be
for the <item expC> to contain a command, and the <value exp> to act as a parameter to that command.

Note If a client established a hot link before sending the data, you should execute the notify() method in the onPoke
event handler, thus informing the client application(s) that a change occurred.

Example See class DDETopic.

See Also advise(), notify(), onExecute, onPeek, poke()

onUnadvise
Event fired after dBASE Plus is requested to stop notifying the client application when a dBASE Plus data item
changes.
Extending dBASE Plus with DLLs, OLE and DDE 708

peek()
Parameters <item expC> The data item for which the external application no longer wants to be advised when changes
are made.

Property of DDETopic

Description Use onUnadvise in a DDE server program to respond to a request to cancel a hot link.

dBASE Plus automatically maintains an internal list of all clients that asked to be notified on changes in a
particular item, and will automatically remove a client when the client calls their equivalent of the DDELink
object’s unadvise() method. This makes onUnadvise supplemental. If you have been doing your own tracking
in an onAdvise event, you will want to undo that in the onUnadvise event handler.

Example See class DDETopic.

See Also advise(), onAdvise, unadvise()

peek()
Retrieves a data item from a DDE server.

Syntax <oRef>.peek(<item expC>)

<oRef> A reference to the DDELink object that has the link.

<item expC> The name of the desired item.

Property of DDELink

Description Use the peek() method to read data from a DDE server topic.

peek() takes a data item in the server topic. This item can be any single element, such as a field in a table or a
cell in a spreadsheet. For example, you can read cell C2 of Page A in a Quattro Pro spreadsheet file by passing
the <item> parameter "A:C2".

Example See class DDELink.

See Also poke()

PLAY SOUND
Plays a sound stored in a .WAV file or a binary field.

Syntax PLAY SOUND FILENAME <filename> | ? | <filename skeleton> |
or
PLAY SOUND BINARY <binary field>

FILENAME <filename> | ? | <filename skeleton> |
or BINARY <binary field> Specifies the sound file or binary field. PLAY SOUND FILENAME ? and
PLAY SOUND FILENAME <filename skeleton> display a search dialog to let you select a sound file (the
.WAV extension is assumed, but you can specify otherwise). PLAY SOUND BINARY <binary field> plays the
sound stored in a binary field.

Description Use PLAY SOUND in your programs to run .WAV files or audio data stored in binary fields.

Example This example includes a button that lets the user play stored audio data:
local f
f = new pictures ()
f.Open()

class pictures of form
 with (this)
 escExit = true
 view = "pictures.sql"
 this.colorNormal = "BG/B"
 this.text = "Pictures Form"
 this.width = 76.00
709 dBL Language Reference

poke()
 this.top = 0.00
 this.left = 0.00
 this.height = 30.00
 this.minimize = false
 this.maximize = false
 this.onOpen = {;create session}

 define pushbutton sound of this;
 property;
 onClick {;play sound binary pictures->sound},;
 text "Sound",;
 width 18.00,;
 top 5.00,;
 left 1.00,;
 height 3.00,;
 fontSize 16.00,;
 fontName "Courier"
 // Additional object definitions
endclass

See Also SET PATH TO

poke()
Sends data to a DDE server.

Syntax <oRef>.poke(<item expC>, <value expC>)

<oRef> A reference to the DDELink object that has the link.

<item expC> The name of the desired item.

<value expC> The value you want to send (as a string).

Property of DDELink

Description Use the poke() method to write data to a DDE server application.

For example, a data-exchange program could start a session in Quattro Pro, open one of its spreadsheet files,
and use poke() to write a value into one of its cells.

Example See class DDELink.

See Also execute(), peek()

reconnect()
Attempts to restart a terminated conversation with a DDE server application.

Syntax <oRef>.reconnect()

<oRef> A reference to the DDELink object that had the link.

Property of DDELink

Description Use reconnect() to restore a DDE link that was terminated with the terminate() method. It returns true if
successful; false if not.

When you terminate a DDE link with terminate(), you can restore it with reconnect(). When you terminate a
link with the release() method, however, the link can't be restored and must be recreated with another DDELink
object.

Example // Create DDELink as property of _app object so that it persists
_app.stockDdeLink = new DdeLink()
if _app.stockDdeLink.initiate("STOCKSERVER","StockHolder")
 // Subsequent program operations completed; link
 // no longer required
Extending dBASE Plus with DLLs, OLE and DDE 710

RELEASE DLL
 _app.stockDdeLink.terminate()
else
 // Link failed; display error
 msgbox("Cannot link to STOCKSERVER", "DDE Connection failed", 16)
endif

// Later in program, DDE link object needed again
if _app.stockDdeLink.reconnect()
 // Link OK
else
 // Link failed; display error
 msgbox("Cannot link to STOCKSERVER", "DDE Connection failed", 16)
endif

See Also initiate(), release(), terminate()

RELEASE DLL
Deactivates DLL files.

Syntax RELEASE DLL <DLL filename list>

Description Use RELEASE DLL when you debug a DLL file or a dBASE Plus application. For example, you must
deactivate a DLL file and activate it again each time you change one of its routines.

A DLL file is a precompiled library of external routines written in non-dBL languages such as C and Pascal. A
DLL file can have any extension, although most have extensions of .DLL. You activate a DLL file with the
EXTERN or LOAD DLL commands.

Example The following example demonstrates the command sequence for using RELEASE DLL as a trouble shooting
tool:

load dll mydll.dll
// ... test DLL operation
release dll mydll.dll
// ... change .DLL or C program
load dll mydll.dll
// ... test again
release dll mydll.dll

See Also EXTERN, LOAD DLL

RESOURCE()
Returns a character string from a DLL file.

Syntax RESOURCE(<resource id>, <DLL filename expC>)

<resource id> A numeric value that identifies the character string resource.

<DLL filename expC> The name of the DLL file.

Description Use RESOURCE() to generate a character string from a resource in a DLL file. The character string must be
less than 32K; a character string longer than this is truncated.

RESOURCE() is often useful for internationalizing applications without changing program code. For example,
you can store in a DLL file all character strings that might need translation from one language to another, and
your application can retrieve them at run time with the RESOURCE() function. To modify the application for
another language, translate the strings and store them in a new DLL file, in the same order and with the same
resource IDs as their counterparts in the original DLL file. Then substitute the new DLL for the original one.

Example This example shows how RESOURCE() can be used to change languages for international development:
#define ENGLISH 1
#define SPANISH 2
apLanguage = SPANISH
711 dBL Language Reference

RESTORE IMAGE
myGreeting = resource(SPANISH,"greeting.dll")
clear
? myGreeting

See Also EXTERN, LOAD DLL, RELEASE DLL

RESTORE IMAGE
Displays an image stored in a file or a binary field.

Syntax RESTORE IMAGE FROM
<filename> | ? | <filename skeleton> | BINARY <binary field>

[TIMEOUT <expN>]
[TO PRINTER]
[[TYPE] <file type>]

FROM <filename> | ? | <filename skeleton> | BINARY <binary field> Identifies the file or
binary field to restore the image from. RESTORE IMAGE FROM ? and RESTORE IMAGE FROM <filename
skeleton> display the Open Source File dialog box, which lets the user select a file. <filename> is the name of an
image file; RESTORE IMAGE assumes a .BMP extension and file type unless you specify otherwise. If you
specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the path
you specify with SET PATH. RESTORE IMAGE FROM BINARY <binary field> displays the image stored in
a binary field. You store an image in a binary field with the REPLACE BINARY command.

TIMEOUT <expN> Specifies the number of seconds the image is displayed onscreen.

TO PRINTER Sends the image to the printer as well as to the screen.

[TYPE] <file type> Specifies a bitmap image format, and assumes a .BMP format and filename extension
if none is given. The word TYPE is optional. See class Image for a list of image formats supported by dBASE
Plus.

Description Use RESTORE IMAGE to display a bitmap image that was generated and saved in any of the supported image
file formats. The image is displayed in a window.

Example The following example defines a form and list box for selection of an aircraft model and uses RESTORE
IMAGE to display a graphic from the memo field Image of the selected record:

use AIRCRDB order AIRCRAFT
select AIRCRDB
define form AC ;
 property ;
 top 5, ;
 left 2, ;
 height 13, ;
 width 30, ;
 text "Aircraft", ;
 sizeable true
define listbox Model OF AC ;
 property ;
 top 1, ;
 left 2, ;
 height 11, ;
 width 26, ;
 dataSource "field Aircrdb->Aircraft" , ;
 onSelChange {; restore image from binary image timeout 10 }
AC.open()

See Also DEFINE, REPLACE BINARY

server
Holds the name of a DDE server application.

Property of DDELink
Extending dBASE Plus with DLLs, OLE and DDE 712

terminate()
Description The read-only server property contains the DDE service name of server application that you established a DDE
link to.

See Also initiate(), topic

terminate()
Terminates a conversation with a DDE server application.

Syntax <oRef>.terminate()

<oRef> A reference to the DDELink object whose connection to terminate.

Property of DDELink

Description Use terminate() to close a DDE link between dBASE Plus and a server application.

terminate() stops communication between dBASE Plus and the server application, but doesn't close the server
application itself.

When you terminate a DDE link with terminate(), you can restore it with reconnect. When you terminate the
link with the release() method, the link can't be restored and you need to create another DDELink object again.

Example See class DDELink.

See Also initiate(), reconnect()

timeout
Specifies the amount of time in milliseconds that dBASE Plus waits on a transaction before returning an error.

Property of DDELink

Description Use timeout to set a limit on the length of time dBASE Plus waits for a DDE transaction to complete
successfully.

Errors sometimes occur when dBASE Plus tries to exchange data with a server application or send instructions
to it. Each time an attempt is made, dBASE Plus waits for the amount of time you specify (in milliseconds) with
timeout. When the transaction fails to complete in the allotted time, dBASE Plus generates an error.

When using DDE over a network, you may need to set timeout to a larger value.

Example See class DDELink.

See Also advise(), execute(), initiate(), peek(), poke(), unadvise()

topic
Holds the name of the topic of a DDELink or DDETopic object.

Property of DDELink, DDETopic

Description The topic property of a DDELink object contains the name of the topic for which you established a DDE link.

The topic property of a DDETopic object distinguishes the object from other DDETopic objects. For example, a
dBASE Plus server application might create two DDETopic objects, one with a topic of NASDAQ and the other
with a topic of AMEX:

xServer1 = new DdeTopic("NASDAQ")
xServer2 = new DdeTopic("AMEX")

The topic property is read-only.

See Also initiate(), server
713 dBL Language Reference

unadvise()
unadvise()
Asks the server to stop notifying the client when an item in the server document changes.

Syntax <oRef>.unadvise(<item expC>)

<oRef> A reference to the DDELink object that no longer wants notification.

<item expC> The name of a topic item previously hot-linked using advise().

Property of DDELink

Description Use the unadvise() method to disconnect a hot link to a DDE server item. A hot link, which you create with the
advise() method, provides a way for the server to inform the client when a specified item, such as a field or a
spreadsheet cell, has changed.

Example See class DDELink.

See Also advise()
Extending dBASE Plus with DLLs, OLE and DDE 714

C h a p t e r

Chapter 20IDE
This section of the Language Reference describes language elements that you use within the dBASE Plus
integrated development environment (IDE) to programmatically create, modify, compile and build applications.

BUILD
Creates a Windows executable file (.EXE) from your dBASE Plus object files and resources.

Syntax BUILD FROM <project or reponse file name>
or
BUILD <filename list> [ICON <icon filename>] [SPLASH <bitmap filename>] [TO <executable filename>]
[WEB]

FROM <project or response file name> Name of a dBASE Plus project or response file that
contains the names of all object files and resources that are to be linked into your executable. If no extension is
provided, .PRJ is assumed.

<filename list> List of compiled program elements, separated by commas. If you provide a filename
without an extension, .PRO (compiled program) is assumed.

ICON <icon filename> Optional icon (.ICO) file used to identify your program in the Windows
environment (e.g., when minimized or listed in the Windows Explorer or a program group).

SPLASH <bmp format filename> Optional bitmap (.BMP) file that displays while your program
loads.

TO <executable filename> The name of the Windows executable file (.EXE) to create. If not specified,
the base file name of the named project or response file (or the first file name in <filename list>) is used.

WEB Specifies that an application will be used as a web application, rather than a desktop application.

When run, an application built using the WEB keyword will take advantage of optimizations built into
PLUSrun.exe which allow it to load faster and use fewer resources than a non-WEB application. Please note
that these optimizations restrict a web application from containing code to create, or use, visual components
such as forms, buttons, toolbars, status bars, and other form components. Only non-visual objects such as
sessions, data modules, queries, rowsets, non-visual objects and custom classes should be used.

In addition, when a web application .exe is run directly, rather than as a parameter to PLUSrun.exe, using the
WEB parameter allows it to detect when it’s been prematurely terminated by a Web server (as happens when an
application takes too long to respond). If a premature termination occurs, PLUSrun.exe also terminates to
prevent it from becoming stranded in memory.

To determine if an application was built using the WEB parameter, see the _app object's web property.

Description Use the BUILD command to link compiled dBASE Plus program elements and supporting resources (such as
bitmaps and icons) into a Windows executable (.EXE) file.
IDE 715

CLEAR ALL
Though the new project file format is the default for build specifications, support for response (.RSP) files is
offered for backward compatibility.

For Web based applications, it's important to use the WEB parameter. When a server terminates an application,
the WEB parameter enables dBASE Plus to simultaneously terminate it's runtime.

Code
Signing

dBASE has been upgraded so it can build .exe's that can be code signed.

New executables built with dBASE Plus will contain some additional information that will allow them to be
loaded successfully with the newruntime engine whether or not they are signed with a digital signature.

The new dBASE runtime will check a dBASE built .exe for the new data. If found, it will be loaded using the
digital signature safe way. If not found, it will be loaded the old way which will not support digital signatures.

The new runtime is therefore, backward compatible with executables built with prior versions of dBASE Plus.

In addition, executables built with the new version of dBASE Plus will work with older dBASE Plus runtime
engines unless it requires features available only in the newer runtime engine.

See Also _app, COMPILE, MODIFY PROJECT

CLEAR ALL
Releases all user-defined memory variables and closes all open files.

Syntax CLEAR ALL

Description CLEAR ALL combines the CLEAR MEMORY and CLOSE ALL commands, releasing all user-defined memory
variables, closing all open tables in the current workset, and all other files. For more information, see CLEAR
MEMORY and CLOSE ALL.

Note CLEAR ALL does not explicitly release objects. However, if the only reference to an object is in a variable,
releasing the variable with CLEAR ALL in turn releases the object.

Use CLEAR ALL during development to clear all variables (and any objects that rely on those references) and
close all files to reset your working environment. Because of the event-driven nature of dBASE Plus, CLEAR
ALL is generally not used in programs.

See also CLEAR MEMORY (page 5-39), CLOSE ALL

CLOSE ALL
Closes (almost) all open files.

Syntax CLOSE ALL [PERSISTENT]

PERSISTENT In addition to files closed by CLOSE ALL, the PERSISTENT designation closes files
tagged PERSISTENT. Without the PERSISTENT designation, these files would not be affected.

Description CLOSE ALL closes almost all open files, including:

• All databases opened by the Navigator and with OPEN DATABASE
• All tables opened (with USE) in all work areas in the current workset
• All files opened with low-level file functions, or a File object
• All procedure and library files opened with SET PROCEDURE and SET LIBRARY
• Any text streaming file opened by SET ALTERNATE

It does not close:

• The printer file specified by the SET PRINTER TO command

• Tables or databases opened through the data objects

Use CLOSE ALL during development to close all files, resetting your working environment, without affecting
any variables. To close all files and release all variables, use CLEAR ALL. Because of the event-driven nature
of dBASE Plus, CLOSE ALL is generally not used in programs.
IDE 716

CLOSE DATABASES
See Also CLEAR ALL, CLOSE ALTERNATE, CLOSE DATABASES, CLOSE PRINTER, CLOSE PROCEDURE,
CLOSE TABLES, CREATE SESSION

CLOSE DATABASES
Closes databases, including their tables and indexes.

Syntax CLOSE DATABASES [<database name list>]

<database name list> IThe list of database names, separated by commas. If no list is specified, all open
databases are closed.

Description Closing a database closes all the open tables in the database, including all the index, memo, and other associated
files. For the default database, which gives access to DBF and DB tables, this means all open tables in all work
areas.

CLOSE DATABASES only closes those tables opened in the current workset. For more information on
worksets, see CREATE SESSION.

OODML Set the active property of the Database object (or all its Query objects) to false.

See Also CLOSE ALTERNATE, CLOSE DATABASES, CLOSE TABLES, CLOSE PROCEDURE, CREATE
SESSION

CLOSE FORMS
Closes all open forms.

Syntax CLOSE FORMS [<form name list>]

<form name list> List of forms (wfm.) to close.

Description Closes the specified forms when using <form name list>. Closes all forms when no list is specified. Executes
the standard close routines for the forms and the objects that are contained in them.

See Also CLEAR ALL, CLOSE ALL

CLOSE INDEXES
Closes DBF index files in the current work area.

Syntax CLOSE INDEXES

Description Closes index (.MDX and .NDX) files open in the current work area. This option does not close the production
.MDX file.

OODML Clear the indexName property of the Rowset object.

See Also CLOSE TABLES, CLOSE ALL

CLOSE PRINTER
Close the print buffer, sending buffered output to the printer.

Syntax CLOSE FORMS [<form name list>]

Description CLOSE PRINTER is equivalent to issuing SET PRINTER TO with no options. See SET PRINTER for details.
717 dBL Language Reference

CLOSE PROCEDURE
CLOSE PROCEDURE
Closes one or more procedure files, preventing further access and execution of its functions, classes, and
methods.

Syntax CLOSE PROCEDURE [<filename list>] | [PERSISTENT]

<filename list> A list of procedure files you want to close, separated by commas. If you specify a file
without including its extension, dBASE Plus assumes PRG. If you omit <filename list>, all procedure files not
tagged PERSISTENT are closed, regardless of their load count.

PERSISTENT When <filename list> is omitted, CLOSE PROCEDURE PERSISTENT will close all files,
including those tagged PERSISTENT. Without the PERSISTENT designation, these files would not be
affected.

Description CLOSE PROCEDURE reduces the load count of each specified program file by one. If that reduces its load
count to zero, then that program file is closed, and its memory is marked as available for reuse.

When you specify more than one file in <filename list>, they are processed in reverse order, from right to left. If
a specified file is not open as a procedure file, an error occurs, and no more files in the list are processed.

Closing a program file does not automatically remove the file from memory. If a request is made to open that
program file, and the file is still in memory and its source code has not been updated, it will be reopened without
having to reread the file from disk. Use CLEAR MEMORY to release a closed program file from memory.

In a deployed application, it is not unusual to open program files as procedure files and never close them.
Because of the event-driven nature of dBASE Plus, program files must remain open to respond to events. The
memory used by a procedure file is small in comparison to the amount of system memory.

See SET PROCEDURE for a description of the reference count system used to manage procedure files. You
may issue SET PROCEDURE TO or CLOSE PROCEDURE with no <filename list> to close all open
procedure files, not tagged PERSISTENT, regardless of their load count..

See Also CLEAR ALL, CLOSE ALL

CLOSE TABLES
Closes all tables.

Syntax CLOSE TABLES

Description Closes all tables in all work areas or all tables in the current database, if one is selected.

CLOSE TABLES only closes those tables opened in the current workset. For more information on worksets, see
CREATE SESSION.

See Also CLEAR ALL, CLOSE ALL, CLOSE DATABASES

OODML Set the active property of all the Query objects to false.

COMPILE
Compiles program files (.PRG, .WFM), creating object code files (.PRO, .WFO).
IDE 718

CONVERT
Syntax COMPILE <filename 1> | <filename skeleton>
[AUTO]
[LOG <filename 2>]

<filename 1> | <filename skeleton> The file(s) to compile. If you specify a file without including its
path, dBASE Plus looks for the file in the current directory only. If you specify a file without including its
extension, dBASE Plus assumes .PRG.

AUTO The optional AUTO clause causes the compiler to detect automatically which files are called by your
program, and to recompile those files.

LOG <filename 2> Logs the files that were compiled, and any compiler errors or warning messages to
<filename 2>. The default extension for the log file is .TXT.

Description Use COMPILE to explicitly compile or recompile program files without loading or executing them. dBASE
Plus automatically compiles program source files into object (bytecode) files when they are loaded (with SET
PROCEDURE or SET LIBRARY) or executed (with DO or the call operator). The compiled object files are
created in the same directory as the source code files.

The file is compiled with coverage information if SET COVERAGE is ON or the file contains the
#pragma coverage(on)

directive.

When you compile a program, dBASE Plus detects any syntax errors in the source file and either logs the error
in the LOG file, or displays an error message corresponding to the error in a dialog box that contains three
buttons:

• Cancel cancels compilation (equivalent to pressing Esc).

• Ignore cancels compilation of the program containing the syntax error but continues compilation of the rest
of the files that match <filename skeleton> if you specified a skeleton.

• Fix lets you fix the error by opening the source code in an editing window, positioning the insertion point at
the point where the error occurred.

See the Help for information about compiling dBASE Plus programs into stand-alone executable files.

See Also CLEAR PROGRAM, DO, SET COVERAGE, SET DEVELOPMENT, SET PROCEDURE

CONVERT
Adds a _dbaselock field to a table for storing multiuser lock information.

Syntax CONVERT [TO <expN>]

TO <expN> Specifies the length of the multiuser information field to add to the current table. The <expN>
argument can be a number from 8 to 24, inclusive. The default is 16.

Description Use CONVERT to add a special _dbaselock field to the structure of the current table. In general, CONVERT is
a one-time operation required for each table that is shared in a multi-user environment.

Use the option TO <expN> to specify the length of the field. If you issue CONVERT without the TO <expN>
option, the width of the field is 16. If you want to change the length of the _dbaselock field after using
CONVERT, you can issue CONVERT again on the same table. To view the contents of the _dbaselock field,
use LKSYS().

Note You must use the table exclusively (USE...EXCLUSIVE) before issuing CONVERT. Any records marked as
deleted with be lost during the CONVERT.

The _dbaselock field contains the following values:

Count A 2-byte hexadecimal number used by CHANGE()
Time A 3-byte hexadecimal number that records the time a lock was placed
719 dBL Language Reference

CREATE
The count, time, and date portions of the _dbaselock field always make up its first 8 characters. If you accept the
default 16-character width of the _dbaselock field, the login name is truncated to 8 characters. If you set the
field width to fewer than 16 characters, the login name is truncated the necessary amount. If you set the width of
<expN> to 8 characters, the login name doesn't appear at all.

Every time a record is updated, dBASE Plus rewrites the count portion of _dbaselock. If you issue CHANGE(),
dBASE Plus reads the count portion from disk and compares it to the previous value it stored in memory when
the record was initially read. If the values are different, another user has changed the record, and CHANGE()
returns true. For more information, see CHANGE().

LKSYS() returns the login name, date, and time portions of the _dbaselock field. If you place a file lock on the
table containing the _dbaselock field, the value in the _dbaselock field of the first record contains the
information used by CHANGE() and LKSYS(). For more information, see LKSYS().

Note CONVERT doesn't affect SQL databases or Paradox tables.

Example After creating the DBF table Company, the CONVERT command is used in the Command window to add the
_dbaselock field:

use COMPANY exclusive
display structure // Note structure
convert to 24 // Include 16 bytes for user name
display structure // Note added _dbaselock field with 24 byte size

See Also CHANGE(), FLOCK(), LKSYS(), LOCK(), NETWORK(), REINDEX, RLOCK(), SET DELETED, SET
EXCLUSIVE, SET LOCK, SET REPROCESS, UNLOCK, USE

CREATE
Opens the Table designer to create or modify a table interactively.

Syntax CREATE
[<filename> | ? | <filename skeleton>
[[TYPE] FOXPRO | PARADOX | DBASE]
[WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The name of the table you want to create. CREATE ? and
CREATE <filename skeleton> display a dialog box, in which you can specify the name of a new table. The
<filename> follows the standard Xbase DML table naming conventions detailed on page 12-228.

If you don't specify a name, the table remains untitled until you save the file. If you specify an existing table
name, dBASE Plus asks whether you want to overwrite it. If you reply no, nothing further happens.

[TYPE] FOXPRO | PARADOX | DBASE Overrides the default table type set by SET DBTYPE. The
TYPE keyword is included for readability only; it has no effect on the operation of the command. Specifying
PARADOX creates a Paradox table with a .DB extension. Specifying DBASE creates a DBF table with a .DBF
extension.

• PARADOX creates a Paradox table with a .DB extension.

• FOXPRO creates a FoxPro table with a .DBF extension.

• DBASE creates a DBF table with a .DBF extension.
CREATE MYTABLE PARADOX // Opens the table designer for "Mytable.db"

WIZARD | EXPERT [PROMPT] If the PROMPT clause is used, a dialog appears asking if you want to
use the Table designer or the Table wizard. You can then invoke either the designer or the wizard. The
WIZARD clause without PROMPT causes the Table wizard to be invoked. You may use the keyword EXPERT
instead of WIZARD.

CREATE MYTABLE PARADOX WIZARD // Opens the Table Wizard

Date A 3-byte hexadecimal number that records the date a lock was placed
Name A 0- to 16-character representation of the login name of the user who

placed a lock, if a lock is active
IDE 720

CREATE COMMAND
CREATE MYTABLE PARADOX WIZARD PROMPT // Opens the New Table dialog
 allowing a choice of using the Table Designer or the Table Wizard.

Description CREATE opens the Table designer, an interactive environment in which you can create or modify the structure
of a table, or the Table wizard, a tool that guides you through the process of creating tables. The type of table
you create depends on the <filename> you specify, or the current database and the current setting of SET
DBTYPE.

Create a table by defining the name, type, and size of each field. For more information on using the Table
designer, see the Developer’s Guide.

To modify an existing table, use the MODIFY STRUCTURE command.

See Also COPY STRUCTURE, DISPLAY STRUCTURE, LIST STRUCTURE, MODIFY STRUCTURE

CREATE COMMAND
Displays a specified program file for editing, or displays an empty editing window.

Syntax CREATE COMMAND [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The file to display and edit. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without including its path,
dBASE Plus looks for the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including its extension, dBASE Plus assumes .PRG. If you issue CREATE COMMAND
without an option, dBASE Plus displays an untitled empty editing window.

Description Use CREATE COMMAND to create new or edit existing program files. Use DO to execute program files.

If you're creating a new program file, CREATE COMMAND displays an empty editing window. If you specify
an existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further happens. Use
the MODIFY COMMAND command to edit an existing file without being asked whether you want to modify
it.

By default, CREATE COMMAND launches the dBASE Plus Source Editor. You can specify an alternate editor
by using the SET EDITOR command or by changing the EDITOR setting in PLUS.ini. To do so, either use the
SET command to specify the setting interactively, or enter the EDITOR parameter directly in PLUS.ini.

Note dBASE Plus compiles programs before running them, and assigns the compiled files the same name as the
original, but with the letter "O" as the last letter in the filename extension. For example, the compiled version of
SALESRPT.PRG would be SALESRPT.PRO. If SALESPRT.PRO already exists, it is overwritten. For this
reason, avoid using filename extensions ending in "O" in directories containing compiled programs.

See Also DO, CREATE FILE, SET DEVELOPMENT, SET EDITOR

CREATE DATAMODULE
Opens the Data Module designer.

Syntax CREATE DATAMODULE
[<filename> | ? | <filename skeleton>]
[CUSTOM] | [WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The file to display and edit. The default extension is .DMD.
The ? and <filename skeleton> options display a dialog box from which you can select a file. If you specify a
file without including its path, dBASE Plus looks for the file in the current directory. If you issue CREATE
DATAMODULE without an option, dBASE Plus creates an untitled empty data module.

CUSTOM Invokes the Custom Data Module designer instead of the Data Module designer. The default
extension is .CDM instead of .DMD.

WIZARD | EXPERT [PROMPT] If the PROMPT clause is used, a dialog appears asking if you want to
use the Data Module designer or the Data Module wizard. You can then invoke either the designer or the
wizard. The WIZARD clause without PROMPT causes the Table wizard to be invoked. You may use the
keyword EXPERT instead of WIZARD.
721 dBL Language Reference

CREATE FILE
You cannot combine the CUSTOM and WIZARD options; there is no Custom Data Module wizard.

Description Use CREATE DATAMODULE to open the Data Module designer and create new or edit existing data
modules. The Data Module designer automatically generates dBL program code that defines the data in the data
module, and stores this code in an editable source code file with a .DMD extension. Use a DataModRef object
to use a data module.

If you're creating a new data module, CREATE DATAMODULE displays an empty design surface. If you
specify an existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further
happens. Use the MODIFY DATAMODULE command to edit an existing file without being asked whether you
want to modify it.

CREATE FILE
Displays a specified text file for editing, or displays an empty editing window.

Syntax CREATE FILE [<filename> | ? | <filename skeleton>]

Description CREATE FILE is identical to CREATE COMMAND, except that it defaults to displaying and editing text files,
which have a .TXT extension (instead of program files, which have a .PRG extension).

See Also CREATE COMMAND, SET EDITOR

CREATE FORM
Opens the Form designer to create or modify a form.

Syntax CREATE FORM
[<filename> | ? | <filename skeleton>]
[CUSTOM] | [WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The form to create or modify. The default extension is .WFM.
The ? and <filename skeleton> options display a dialog box from which you can select a file. If you specify a
file without including its path, dBASE Plus looks for the file in the current directory. If you issue CREATE
FORM without an option, dBASE Plus creates an untitled empty form.

CUSTOM Invokes the Custom Form designer instead of the Form designer. The default extension is .CFM
instead of .WFM.

WIZARD | EXPERT [PROMPT] If the PROMPT clause is used, a dialog appears asking if you want to
use the Form designer or the Form wizard. You can then invoke either the designer or the wizard. The WIZARD
clause without PROMPT causes the Form wizard to be invoked. You may use the keyword EXPERT instead of
WIZARD.

You cannot combine the CUSTOM and WIZARD options; there is no Custom Form wizard.

Description Use CREATE FORM to open the Form designer or Form wizard and create or modify a form interactively. The
Form designer automatically generates dBL program code that defines the contents and format of a form, and
stores this code in an editable source code file with a .WFM extension. DO the .WFM file to run the form.

If you're creating a new form, CREATE FORM displays an empty design surface. If you specify an existing file,
dBASE Plus asks whether you want to modify it. If you reply no, nothing further happens. Use the MODIFY
FORM command to edit an existing file without being asked whether you want to modify it.

You may invoke the Custom Form designer by specifying the CUSTOM keyword. A custom form is stored in a
.CFM file, and does not have the standard bootstrap code that instantiates and opens a form when the file is
executed. It is intended to be used as a base class for other forms. A single .CFM file may contain more than one
custom form class definition. If there is more than one form class in the .CFM file, dBASE Plus presents a list of
classes to modify.

By default, the Form designer creates a class made up of the name of the file plus the word “Form”. For
example, when creating STUDENT.WFM, the form class is named StudentForm. The Custom Form designer
uses the word “CForm” instead; for example, in SCHOOL.CFM, the form class is named SchoolCForm.

See the Developer’s Guide for instructions on using the Form designer.
IDE 722

CREATE LABEL
See Also CREATE COMMAND, DO

CREATE LABEL
Opens the Label designer to create or modify a label file.

Syntax CREATE LABEL
[<filename> | ? | <filename skeleton>]
[WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The label file to create or modify. The default extension is
.LAB. The ? and <filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE Plus looks for the file in the current directory. If you issue
CREATE LABEL without an option, dBASE Plus creates an untitled label file.

WIZARD | EXPERT [PROMPT] If the PROMPT clause is used, a dialog appears asking if you want to
use the Label designer or the Label wizard. You can then invoke either the designer or the wizard. The
WIZARD clause without PROMPT causes the Label wizard to be invoked. You may use the keyword EXPERT
instead of WIZARD.

Description Use CREATE LABEL to open the Label designer and create new or edit existing labels. The Label designer
automatically generates dBL program code that defines the contents and format of the labels, and stores this
code in an editable source code file with a .LAB extension. DO the .LAB file to print the labels.

If you're creating a new label file, CREATE LABEL displays an empty design surface. If you specify an
existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further happens. Use the
MODIFY LABEL command to edit an existing file without being asked whether you want to modify it.

See Also CREATE REPORT, DO

CREATE MENU
Opens the Menu designer to create or modify a menu file.

Syntax CREATE MENU [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The menu file to create or modify. The default extension is
.MNU. The ? and <filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE Plus looks for the file in the current directory. If you issue
CREATE MENU without an option, dBASE Plus creates an untitled menu file.

Description Use CREATE MENU to open the Menu designer and create new or edit existing menus. The Menu designer
automatically generates dBL program code that defines the contents of a menu, and stores this code in an
editable source code file with a .MNU extension. To use the menu, assign the .MNU file name as the menuFile
property of a form, or

DO <.MNU file> WITH <form reference>

to assign the menu to the form. The Menu designer always creates a menu named “root”, so that when assigned
to a form, it is referenced as form.root.

If you're creating a new menu file, CREATE MENU displays an empty design surface. If you specify an
existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further happens. Use the
MODIFY MENU command to edit an existing file without being asked whether you want to modify it.

See Also CREATE POPUP, menuFile

CREATE POPUP
Opens the Popup Menu designer to create or modify a popup menu file.

Syntax CREATE POPUP [<filename> | ? | <filename skeleton>]
723 dBL Language Reference

CREATE PROJECT
<filename> | ? | <filename skeleton> The popup menu file to create or modify. The default
extension is .POP. The ? and <filename skeleton> options display a dialog box from which you can select a file.
If you specify a file without including its path, dBASE Plus looks for the file in the current directory. If you
issue CREATE POPUP without an option, dBASE Plus creates an untitled popup menu file.

Description Use CREATE POPUP to open the Popup Menu designer and create new or edit existing popup menus. The
Popup Menu designer automatically generates dBL program code that defines the contents of a popup menu,
and stores this code in an editable source code file with a .POP extension. To assign the popup menu to a form,
create the popup as a property of the form with:

DO <.POP file> WITH <form reference>, <property name>

then assign the popup object to the form’s popupMenu property.

If you're creating a new popup menu file, CREATE POPUP displays an empty design surface. If you specify an
existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further happens. Use the
MODIFY POPUP command to edit an existing file without being asked whether you want to modify it.

See Also CREATE MENU, popupMenu

CREATE PROJECT
Syntax CREATE PROJECT

Description CREATE PROJECT opens the Project Explorer dialog box, where you can design a new project.

Use MODIFY PROJECT to open existing project.

See Also MODIFY PROJECT

CREATE QUERY
Opens a new or existing query in the SQL designer.

Syntax CREATE QUERY [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The SQL query file to create or modify. The default extension
is .SQL. The ? and <filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE Plus looks for the file in the current directory. If you issue
CREATE QUERY without an option, dBASE Plus creates an untitled SQL query file.

Description Use CREATE QUERY to open the SQL designer and create new or edit existing SQL queries. The SQL
designer automatically generates an SQL statement that defines the query, and stores this statement in an editable
source code file with a .SQL extension. The .SQL file can be run directly from the Navigator or used as the sql
property of a Query object.

If you're creating a new SQL query file, CREATE QUERY displays an empty design surface. If you specify an
existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further happens. Use the
MODIFY QUERY command to edit an existing file without being asked whether you want to modify it.

See Also sql

CREATE REPORT
Opens the Report designer to create or modify a report.

Syntax CREATE REPORT
[<filename> | ? | <filename skeleton>]
[CUSTOM] | [WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton> The report to create or modify. The default extension is .REP.
The ? and <filename skeleton> options display a dialog box from which you can select a file. If you specify a
IDE 724

DEBUG
file without including its path, dBASE Plus looks for the file in the current directory. If you issue CREATE
REPORT without an option, dBASE Plus creates an untitled empty report.

CUSTOM Invokes the Custom Report designer instead of the Report designer. The default extension is
.CRP instead of .REP.

WIZARD | EXPERT [PROMPT] If the PROMPT clause is used, a dialog appears asking if you want to
use the Report designer or the Report wizard. You can then invoke either the designer or the wizard. The
WIZARD clause without PROMPT causes the Report wizard to be invoked. You may use the keyword
EXPERT instead of WIZARD.

You cannot combine the CUSTOM and WIZARD options; there is no Custom Report wizard.

Description Use CREATE Report to open the Report designer or Report wizard and create or modify a report interactively.
The Report designer automatically generates dBL program code that defines the contents and format of a report,
and stores this code in an editable source code file with a .REP extension. DO the .REP file to run the report.

If you're creating a new report, CREATE REPORT displays an empty design surface. If you specify an existing
file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further happens. Use the
MODIFY REPORT command to edit an existing file without being asked whether you want to modify it.

You may invoke the Custom Report designer by specifying the CUSTOM keyword. A custom report is stored in
a .CRP file, and does not have the standard bootstrap code that instantiates and renders a report when the file is
executed. It is intended to be used as a base class for other reports. A single .CRP file may contain more than
one custom report class definition. If there is more than one report class in the .CRP file, dBASE Plus presents a
list of classes to modify.

See the Developer’s Guide for instructions on using the Report designer.

See Also CREATE COMMAND, DO

DEBUG
Opens the dBASE Plus Debugger.

Syntax DEBUG
[<filename> | ? | <filename skeleton> [WITH <parameter list>]]

<filename> | ? | <filename skeleton> The program file to debug. DEBUG ? and DEBUG <filename
skeleton> display the Open Source File dialog box, from which you can select a file. If you specify a file
without including its path, dBASE Plus looks for the file in the current directory, then in the path you specify
with SET PATH. If you specify a file without including its extension, dBASE Plus assumes .PRG.

WITH <parameter list> Specifies expressions to pass as parameters to a program. For information about
parameter passing, see the description of PARAMETERS.

Description Use DEBUG to open the Debugger and view or control program execution interactively. You must issue
DEBUG in the Command window; the command has no effect in a program. If you issue DEBUG without any
options, dBASE Plus opens the Debugger without loading a program file. (You can load a file to debug from the
Debugger.)

To debug a function, open the program file that contains the function, and set a breakpoint at the FUNCTION or
PROCEDURE line. When the function is called, the debugger will appear, at the breakpoint that you set.

If an unhandled exception or error occurs during program execution, the standard error dialog gives you the
option of opening the Debugger at the line where the error occurred.

For more information, see the Developer’s Guide, which describes the Debugger in detail.

See Also DISPLAY COVERAGE, ON ERROR, RESUME, SET COVERAGE, SUSPEND

DISPLAY COVERAGE
Displays the contents of a coverage file in the results pane of the Command window.
725 dBL Language Reference

DISPLAY MEMORY
Syntax DISPLAY COVERAGE <filename1> | ? | <filename skeleton 1>
[ALL]
[SUMMARY]
[TO FILE <filename2> | ? | <filename skeleton 2>]
[TO PRINTER]

<filename1> | ? | <filename skeleton 1> The coverage file for the desired program. The ? and
<filename skeleton 1> options display a dialog box from which you can select a coverage file. If you specify a
file without including its path, dBASE Plus looks for the file in the current directory, then in the path you
specify with SET PATH. If you specify a file without including its extension, dBASE Plus assumes .COV.

ALL Includes the coverage files, if any, for all other program files that could be called by the main program
file, adding to the display:

• The total number of logical blocks exercised in all the program files combined
• The percentage of logical blocks exercised in all the program files combined

SUMMARY Excludes the logical blocks that were exercised. Without SUMMARY, both the logical blocks
that were exercised, and the logical blocks not exercised are displayed. Use the SUMMARY option to find code
that still needs to be exercised.

TO FILE <filename2> | ? | <filename skeleton 2> Directs output to <filename2> in addition to the
results pane of the Command window. By default, dBASE Plus assigns a .TXT extension to <filename2> and
saves the file in the current directory. The ? and <filename skeleton 2> options display a dialog box in which
you specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer in addition to the results pane of the Command window.

Description A coverage file contains the results of the coverage analysis of a program file. You cause dBASE Plus to
analyze the execution of any code in a program file by compiling the program file with coverage, either by
having SET COVERAGE ON when the program is compiled, or with the #pragma coverage(on) directive in the
program file. A coverage file is created whenever any code in the program file is executed.

The coverage file has the same name as the program file, and changes the last letter of the extension to the letter
“V”; unless the file is a .PRG, in which case the coverage file has an extension of .COV. For example, the
coverage file for GRADES.PRG is GRADES.COV, and the coverage file for STUDENTS.WFM is
STUDENTS.WFV.

The coverage file accumulates statistics whenever any code in the program file is executed. You will usually
want to make sure that all logical blocks in your code have been exercised. You may erase the coverage file to
restart the coverage analysis totals.

DISPLAY COVERAGE displays the results of the coverage analysis:

• Each logical block, and how many times it was exercised
• The total number of blocks, and the number of blocks that were tested
• The percentage of blocks tested

DISPLAY COVERAGE pauses when the results pane is full and displays a dialog box prompting you to display
another screenful of information. Use the TO FILE clause to send the information to a file. Use the TO
PRINTER clause to send the information to the printer. In either case, you can use SET CONSOLE OFF to
suppress the display of the information in the results pane.

DISPLAY COVERAGE is the same as LIST COVERAGE, except that LIST COVERAGE does not pause with
the first window of information but rather continuously lists the information until complete. This makes LIST
COVERAGE more appropriate for outputting to a file or printer.

See Also #pragma, SET COVERAGE

DISPLAY MEMORY
Displays information about memory variables in the results pane of the Command window.

Syntax DISPLAY MEMORY
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]
IDE 726

DISPLAY STATUS
TO FILE <filename> | ? | <filename skeleton> Directs output to the text file <filename>, in
addition to the results pane of the Command window. By default, dBASE Plus assigns a .TXT extension to
<filename> and saves the file in the current directory. The ? and <filename skeleton> options display a dialog
box in which you specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer in addition to the results pane of the Command window.

Description Use DISPLAY MEMORY to display the contents and size of a memory variable list. If you haven't used ON
KEY or to reassign the F7 key, pressing F7 when the Command window has focus is a quick way to execute
DISPLAY MEMORY.

DISPLAY MEMORY displays information about both user-defined and system memory variables. The
following information on user-defined memory variables is displayed.

• Name
• Scope (public, private, local, static or hidden)
• Data type
• Value
• Number of active memory variables
• Number of memory variables still available for use
• Number of bytes of memory used by character variables
• Number of bytes of memory still available for user character variables
• Name of the program that initialized private memory variables

The following information on system memory variables is displayed.

• Name
• Scope (public, private, or hidden)
• Data type
• Current value

DISPLAY MEMORY pauses when the results pane is full and displays a dialog box prompting you to display
another screenful of information. Use the TO FILE clause to send the information to a file. Use the TO
PRINTER clause to send the information to the printer. In either case, you can use SET CONSOLE OFF to
suppress the display of the information in the results pane.

DISPLAY MEMORY is the same as LIST MEMORY, except that LIST MEMORY does not pause with the
first window of information but rather continuously lists the information until complete. This makes LIST
MEMORY more appropriate for outputting to a file or printer.

See Also CLEAR MEMORY, RESTORE, SAVE, STORE, RELEASE

DISPLAY STATUS
Displays information about the current dBASE Plus environment in the results pane of the Command window.

Syntax DISPLAY STATUS
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

TO FILE <filename> | ? | <filename skeleton> Directs output to the text file <filename>, in
addition to the results pane of the Command window. By default, dBASE Plus assigns a .TXT extension to
<filename> and saves the file in the current directory. The ? and <filename skeleton> options display a dialog
box in which you specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer in addition to the results pane of the Command window.

Description Use DISPLAY STATUS to identify open tables and index files and to check the status of the SET commands.
DISPLAY STATUS shows information related to the current session only.

If you haven't used ON KEY, SET, or SET FUNCTION to reassign the F6 key, pressing F6 when the
Command window has focus is a quick way to execute DISPLAY STATUS.

DISPLAY STATUS displays the following information:

• Name and alias of open tables in each work area, and for each table:
• Whether that table is the table in the currently selected work area
727 dBL Language Reference

DISPLAY STRUCTURE
• The language driver and character set of each open table
• Names of all open indexes and their index key expressions in each work area
• Master index, if any, in each work area
• Locked records in each work area
• Database relations in each work area
• Filter conditions in each work area

• The name of the SET LIBRARY file, if any
• The name of all open SET PROCEDURE files
• SET PATH file search path
• SET DEFAULT drive setting
• Current work area
• SET PRINTER setting
• Current language driver and character set
• DBTYPE setting
• Numeric settings for SET MARGIN, SET DECIMALS, SET MEMOWIDTH, SET TYPEAHEAD, SET

ODOMETER, SET REFRESH, and SET REPROCESS
• The current directory
• ON KEY, ON ESCAPE, and ON ERROR settings
• SET ON/OFF command settings
• Programmable function key and SET FUNCTION settings

DISPLAY STATUS pauses when the results pane is full and displays a dialog box prompting you to display
another screenful of information. Use the TO FILE clause to send the information to a file. Use the TO
PRINTER clause to send the information to the printer. In either case, you can use SET CONSOLE OFF to
suppress the display of the information in the results pane.

DISPLAY STATUS is the same as LIST STATUS, except that LIST STATUS does not pause with the first
window of information but rather continuously lists the information until complete. This makes LIST STATUS
more appropriate for outputting to a file or printer.

See Also SET(), SETTO()

DISPLAY STRUCTURE
Displays the field definitions of the specified table.

Syntax DISPLAY STRUCTURE
[IN <alias>]
[TO FILE <filename> | ? <filename skeleton>]
[TO PRINTER]

IN <alias> Identifies the work area of the open table whose structure you want to display rather than that of
the current table. For more information, see “Aliases” on page 12-229.

TO FILE <filename> | ? | <filename skeleton> Directs output to the text file <filename>, in
addition to the results pane of the Command window. By default, dBASE Plus assigns a .TXT extension to
<filename> and saves the file in the current directory. The ? and <filename skeleton> options display a dialog
box in which you specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer in addition to the results pane of the Command window.

Description Use DISPLAY STRUCTURE to view the structure of the current or a specified table in the results pane of the
Command window. DISPLAY STRUCTURE displays the following information about the current or specified
table:

• Name of the table
• Type of table (Paradox, dBASE, or SQL)
• Table type version number
• Number of records
• Date of last update (DBF only)
• Fields

• Field number
IDE 728

HELP
• Field name (if SET FIELDS is ON, the greater-than symbol (>) appears next to each field specified with
the SET FIELDS TO command)

• Type
• Length
• Dec: The number of decimal places in a numeric or float field
• Index: Whether there is an index on that field

• Number of bytes per record (the sum of field lengths; for DBF includes one additional byte reserved for
storing the asterisk that marks a record as deleted)

Multiply the total number of bytes per record by the number of records in the table to estimate the size of a DBF
table (excluding the size of the table header).

DISPLAY STRUCTURE pauses when the results pane is full and displays a dialog box prompting you to
display another screenful of information. Use the TO FILE clause to send the information to a file. Use the TO
PRINTER clause to send the information to the printer. In either case, you can use SET CONSOLE OFF to
suppress the display of the information in the results pane.

DISPLAY STRUCTURE is the same as LIST STRUCTURE, except that LIST STRUCTURE does not pause
with the first window of information but rather continuously lists the information until complete. This makes
LIST STRUCTURE more appropriate for outputting to a file or printer.

Neither DISPLAY STRUCTURE nor LIST STRUCTURE permit modification of an existing table structure.
To alter the structure, use MODIFY STRUCTURE.

Example To display the structure of the Fish table in the \Samples directory:
use FISH
display structure

The following is displayed in the results pane of the Command window:
Structure for table C:\Program Files\dBASE\SE\Samples\fish.dbf
Table type DBASE
Version 7
Number of rows 10
Last update 10/18/97

Field Field Name Type Length Dec Index
1 ID AUTOINCREMENT 4 Y
2 Name CHARACTER 30 Y
3 Species CHARACTER 40 Y
4 Length CM NUMERIC 20 4 N
5 Description MEMO 10 N
6 OLE Graphic OLE 10 N

** Total ** 115

See Also MODIFY STRUCTURE

HELP
Activates the dBASE Plus Help system.

Syntax HELP [<help topic>]

<help topic> The Help topic you access with HELP.

Description Use the HELP command in the Command window to get information on dBASE Plus.

dBASE Plus locates the first Help topic in the index beginning with <help topic>. If only one topic with the
index entry is found, that topic is displayed. If there are multiple matches, Help displays a dialog box to let you
choose the topic. If there is no match, the Help index is opened with <help topic> as the current search value.
729 dBL Language Reference

INSPECT()
Pressing F1 gives you context-sensitive help based on the control or window that currently has focus, or text
that is highlighted in the Command window or Source Editor.

Example Here are some examples of using HELP in the command window.
help extern
help lockretryinterval

Note that the topic is not case-sensitive.

INSPECT()
Opens the Inspector, a window that lists object properties and lets you change their settings.

Syntax INSPECT(<oRef>)

<oRef> A reference to the object that you want to inspect.

Description Use INSPECT() to examine and change object properties directly. For example, during program development
you can use INSPECT() to evaluate objects and experiment with different property settings.

The Inspector is modeless, and doesn't affect program execution.
Note You can access the Inspector from the Form designer by pressing F11.

You can get help on any property in the Inspector by selecting the property and pressing F1.

See Also DISPLAY MEMORY, DISPLAY STATUS

LIST...
Lists information in the results pane of the Command window without pausing.

Syntax LIST COVERAGE <filename1> | ? | <filename skeleton 1>
[ALL]
[SUMMARY]
[TO FILE <filename2> | ? | <filename skeleton 2>]
[TO PRINTER]

LIST MEMORY
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

LIST STATUS
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

LIST STRUCTURE
[IN <alias>]
[TO FILE <filename> | ? <filename skeleton>]
[TO PRINTER]

Description The LIST commands listed above are the same as their DISPLAY command counterparts, except that LIST
commands do not pause with the first window of information but rather continuously list the information until
complete. This makes the LIST versions more appropriate for outputting to a file or printer.

See Also DISPLAY COVERAGE, DISPLAY MEMORY, DISPLAY STATUS, DISPLAY STRUCTURE

MODIFY...
Modifies the corresponding file.

Syntax MODIFY COMMAND [<filename> | ? | <filename skeleton>]

MODIFY DATAMODULE [<filename> | ? | <filename skeleton>]
IDE 730

MODIFY PROJECT
MODIFY FILE [<filename> | ? | <filename skeleton>]

MODIFY FORM [<filename> | ? | <filename skeleton>]

MODIFY LABEL [<filename> | ? | <filename skeleton>]

MODIFY MENU [<filename> | ? | <filename skeleton>]

MODIFY POPUP [<filename> | ? | <filename skeleton>]

MODIFY QUERY [<filename> | ? | <filename skeleton>]

MODIFY REPORT [<filename> | ? | <filename skeleton>]

Description The MODIFY commands listed above operate the same as their CREATE command counterparts, except that if
the specified file exists it is modified without prompting. For more information, see the corresponding CREATE
commands.

See also CREATE COMMAND, CREATE DATAMODULE, CREATE FILE, CREATE FORM, CREATE LABEL,
CREATE MENU, CREATE POPUP, CREATE QUERY, CREATE REPORT

MODIFY PROJECT
Opens an existing project in the Project Explorer.

Syntax MODIFY PROJECT [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The project file to open. The default extension is .PRJ. The ?
and <filename skeleton> options display a dialog box from which you can select a file. If you specify a file
without including its path, dBASE Plus looks for the file in the current directory.

If you issue MODIFY PROJECT without an option, the Project Explorer is displayed, as if you issued CREATE
PROJECT. Selecting File | New from the Main menu opens the Open Project dialog box from which you can
navigate to your project (.prj) file

Description MODIFY PROJECT opens the specified .PRJ file in the Project Explorer, making it the current project.

See Also CREATE PROJECT

MODIFY STRUCTURE
Allows you to modify the structure of the current table.

Syntax MODIFY STRUCTURE

Description Use MODIFY STRUCTURE to change the structure of the current table by adding or deleting fields, or
changing a field name, width, or data type. Issuing the MODIFY STRUCTURE command opens the Table
designer, an interactive environment in which you can create or modify the structure of a table. dBASE Plus will
reopen a table in EXCLUSIVE mode if it wasn't already exclusive when you issued the MODIFY STRUCTURE command.

Before allowing changes to the structure of a dBASE table, dBASE Plus makes a backup of the original table
assigning the file a .DBK extension. dBASE Plus then creates a new table file with the .DBF extension and
copies the modified table structure to that file. When you've finished modifying a table structure, dBASE Plus
copies the content of the backup file into the new structure. If data is accidentally truncated or lost, you can
recover the original data from the .DBK file. Before modifying the structure of a table, make sure that you have
sufficient disk space to create the backup file plus any temporary storage required to copy records between the
two tables (approximately twice the size of the original table).

If a table contains a memo field, MODIFY STRUCTURE also creates a backup memo file to store the original
memo field data. This file has the same name as the table, but is given a .TBK extension.

You shouldn't change a field name and its width or type at the same time. If you do, dBASE Plus won't be able
to append data from the old field, and your new field will be blank. Change the name of a field, save the file, and
then use MODIFY STRUCTURE again to change the field width or data type.

Also, don't insert or delete fields from a table and change field names at the same time. If you change field
names, MODIFY STRUCTURE appends data from the old file by using the field position in the file. If you
731 dBL Language Reference

SET
insert or delete fields as well as change field names, you change field positions and could lose data. You can,
however, change field widths or data types at the same time as you insert or delete fields. In those cases, since
MODIFY STRUCTURE appends data by field name, the data will be appended correctly.

dBASE Plus successfully converts data between a number of field types. If you change field types, however,
keep a backup copy of your original file, and check your new files to make sure the data has been converted
correctly.

If you convert numeric fields to character fields, dBASE Plus converts numbers from the numeric fields to right-
aligned character strings. If you convert a character field to a numeric field, dBASE Plus converts numeric
characters in each record to digits until it encounters a non-numeric character. If the first character in a character
field is a letter, the converted numeric field will contain zero.

You can convert logical fields to character fields, and vice versa. You can also convert character strings that are
formatted as a date (for example, mm/dd/yy or mm-dd-yy) to a date field, or convert date fields to character
fields. You can't convert logical fields to numeric fields.

In general, dBASE Plus attempts to make a conversion you request, but the conversion must be a sensible one or
data may be lost. Numeric data can easily be handled as characters, but logical data, for example, cannot
become numeric. To convert incompatible data types (such as logical to numeric), first add a new field to the
file, use REPLACE to convert the data, then delete the old field.

If you modify the field name, length, or type of any fields that have an associated tag in the production (.MDX)
file, the tag is rebuilt. If any indexes are open when you modify a table structure, dBASE Plus automatically
closes those indexes when saving the modified table. You should re-index the table after you modify its
structure.

Example The following example uses MODIFY STRUCTURE in the Command window to change the structure of a
table:

use clients in select() exclusive
modify structure
close databases

The structure of a table can also be displayed but not changed by using the following commands in the
Command window:

use clients in select() noupdate
display structure
close databases

See Also APPEND, APPEND MEMO, COPY STRUCTURE, CREATE, DISPLAY STRUCTURE, LIST
STRUCTURE, REPLACE

SET
Displays a dialog box for viewing and changing the values of many SET commands. The changed values are stored
in the PLUS.ini file.

Syntax SET

Description Use SET to view and change settings interactively, instead of typing individual SET commands such as SET
TALK ON in the Command window.

Note Any changes you make to settings by using SET are automatically saved to PLUS.ini. This means that the
settings will be in effect each time you start dBASE Plus. If you want to change the value of SET commands
only temporarily, issue individual SET commands in the Command window or in a program.

Issuing SET is the same as choosing the Properties|Desktop menu option.

See Also DISPLAY STATUS, SET(), SETTO(), individual SET commands

SET AUTONULLFIELDS
Global setting used to affect the status of fields in blank records when APPENDing to a Level 7 database.
IDE 732

SET BELL
Syntax SET AUTONULLFIELDS ON | off

Description Use SET AUTONULLFIELDS to determine whether empty fields are assigned a NULL value, or when
applicable, filled with SPACES or ZERO.

When AUTONULLFIELDS is ON (the default setting), dBASE Plus allows an empty field to assume a “null
value”. Null values are those which are nonexistent or undefined. Null is the absence of a value and, therefore,
different from a blank or zero value.

When AUTONULLFIELDS is OFF, character fields are filled with spaces, and numeric fields (long, float, etc.)
are assigned a value of zero.

OODML Use the rowset object’s autonullFields() property. This property will override the global setting.

SET BELL
Turns the computer bell on or off and sets the bell frequency and duration.

Syntax SET BELL ON | off

SET BELL TO
[<frequency expN>, <duration expN>]

<frequency expN> The frequency of the bell tone in cycles per second, which must be an integer from 37
to 32,767, inclusive.

<duration expN> The duration of the bell tone in milliseconds, which must be an integer from 1 to 2000
(two seconds), inclusive.

Description When SET BELL is ON, dBASE Plus produces a tone when you fill a data entry field or enter invalid data. SET
BELL TO determines the frequency and duration of this tone, unless the computer is running Windows 95 and
has a sound card. In that case, the Windows Default sound is played (through the sound card) instead of the
tone.

Displaying CHR(7) in the results pane of the Command window sounds the “bell” whether SET BELL is ON or
OFF.

SET BELL TO with no arguments sets the frequency and duration to the default values of 512 Hertz (cycles per
second) for 50 milliseconds.

Example The following examples typed in the Command window set the bell to high and low pitch and short and long
durations:

set bell to 50,1500 // A long, very low bell
? chr(7) // Ring the bell (or Windows Default sound)
set bell to 10000,30 // Short, very high pitched
? chr(7) // Ring the bell (or Windows Default sound)

See Also CHR(), SET CONFIRM

SET BLOCKSIZE
Changes the default block size of memo field and .MDX index files.

Syntax SET BLOCKSIZE TO <expN>

<expN> A number from 1 to 63 that sets the size of blocks used in memo and .MDX index files. (The actual
size in bytes is the number you specify multiplied by 512.)

Default The default for SET BLOCKSIZE is 1 (for compatibility with dBASE III PLUS). To change the default, update
the BLOCKSIZE setting in PLUS.ini.

Description Use SET BLOCKSIZE to change the size of blocks in which dBASE Plus stores memo field files and .MDX
index files on disk. The actual number of bytes used in blocks is <expN> multiplied by 512. Instead of using
SET BLOCKSIZE, you can set the block size used for memo and .MDX index files individually, by using SET
MBLOCK and SET IBLOCK commands.
733 dBL Language Reference

SET COVERAGE
After the block size is changed, memo fields created with the COPY, CREATE, and MODIFY STRUCTURE
commands have the new block size. To change the block size of an existing memo field file, use the SET
BLOCKSIZE command to change the block size and then copy the table containing the associated memo field
to a new file. The new file then has the new block size.

Example The following example uses SET BLOCKSIZE to create another table that is a copy of Clients but has a memo
blocksize of 1024 bytes embedded in its structure instead of the default of 512 bytes:

use Clients
? set("blocksize") // Returns 1, each memo block = 512 bytes
set blocksize to 2
copy to Clients2
use Clients2
? set("blocksize") // Returns 2
list files like *.DBT // Note file size larger than Clients.DBT
close databases

See Also COPY, COPY INDEXES, CREATE, MODIFY STRUCTURE, INDEX, REINDEX, REPLACE, SET(), SET
IBLOCK, SET MBLOCK

SET COVERAGE
Determines whether program files are compiled with coverage.

Syntax SET COVERAGE on | OFF

Description A coverage file is a binary file containing cumulative information on how many times, if any, dBASE Plus
enters and exits (and thus fully executes) each logical block of a program. Use SET COVERAGE as a program
development tool to determine which program lines dBASE Plus executes and doesn't execute each time you
run a program.

A program file is either compiled with coverage or not. To disable coverage analysis, the file must be
recompiled with coverage off.

There are two ways to control compilation with coverage. The first way is with SET COVERAGE, which can
be either ON or OFF. The second way is with the coverage #pragma in the program file. The #pragma directive
overrides the SET COVERAGE setting.

If a file is compiled with coverage enabled, dBASE Plus creates a new coverage file or updates an existing one.
When dBASE Plus creates a coverage file, it uses the name of the program file, and changes the last letter of the
extension to the letter “V”; unless the file is a .PRG, in which case the coverage file has an extension of .COV.
For example, the coverage file for GRADES.PRG is GRADES.COV, and the coverage file for
STUDENTS.WFM is STUDENT.WFV.

To view the contents of a coverage file, use DISPLAY COVERAGE or LIST COVERAGE. If the coverage file
reveals that some lines aren't executing, you can respond by changing the program or the input to the program to
make the lines execute. In this way, you can make sure that you test all lines of code in the program.

Coverage analysis divides a program into logical blocks. A logical block doesn't include commented lines or
programming construct command lines such as IF and ENDIF. It does, however, include command lines within
programming construct command lines. If your program doesn't contain any programming constructs (like IF,
DO WHILE, FOR...ENDFOR, SCAN...ENDSCAN, LOOP, DO CASE, DO...UNTIL), the program has only
one logical block consisting of all uncommented command lines.

The coverage file identifies a logical block by its corresponding program line number(s):
Line 1 * UPDATES.PRG
Line 2 SET TALK OFF Block 1 (Lines 2-3)
Line 3 USE Customer INDEX Salespers
Line 4 SCAN
Line 5 DO CASE
Line 6 CASE Salesper = "S-12"
Line 7 SELECT 2 Block 2 (Lines 7-8)
Line 8 USE S12
Line 9 CASE Salesper = "L-5"
Line 10 SELECT 2 Block 3 (Lines 10-11)
Line 11 USE L5
IDE 734

SET DESIGN
Line 12 CASE Salesper = "J-25"
Line 13 SELECT 2 Block 4 (Lines 13-14)
Line 14 USE J25
Line 15 ENDCASE
Line 16 DO Changes Block 5 (Lines 16-17)
Line 17 SELECT 1
Line 18 ENDSCAN
Line 19 CLOSE ALL Block 6 (Lines 19-20)
Line 20 SET TALK ON

dBASE Plus writes the coverage file to disk when the program is unloaded from memory or when you issue a
LIST COVERAGE or DISPLAY COVERAGE. To unload a program from memory, use CLEAR PROGRAM.

See Also #pragma, CLEAR PROGRAM, COMPILE, DEBUG, DISPLAY COVERAGE, SET DEVELOPMENT

SET DESIGN
Determines whether CREATE and MODIFY commands can be executed.

Syntax SET DESIGN ON | off

Default The default for SET DESIGN is ON. To change the default, set the DESIGN parameter in PLUS.ini. To do so,
either use the SET command to specify the setting interactively, or enter the DESIGN parameter directly in
PLUS.ini.

Description When SET DESIGN is ON, dBASE Plus lets you use CREATE and MODIFY commands to create and modify
tables, forms, labels, reports, text, and queries. To prevent users of your applications from creating and
modifying these types of files, issue SET DESIGN OFF in your programs.

If you issue SET DESIGN ON or OFF in a subroutine, the setting is effective only during execution of that
subroutine.

Example The default setting of SET DESIGN is usually ON. In this example the default setting in PLUS.ini is OFF so
that a user cannot use CREATE and MODIFY:

// In PLUS.ini
[OnOffCommandSettings]
design=OFF

See Also CREATE, CREATE FORM, CREATE LABEL, CREATE REPORT, MODIFY COMMAND, MODIFY FILE,
MODIFY STRUCTURE

SET DEVELOPMENT
Determines whether dBASE Plus automatically compiles a program, procedure, or format file when you change the
file and then execute it or open it for execution.

Syntax SET DEVELOPMENT ON | off

Default The default for SET DEVELOPMENT is ON. To change the default, set the DEVELOPMENT parameter in
PLUS.ini. To do so, either use the SET command to specify the "Ensure Compilation" setting interactively, or
enter the DEVELOPMENT parameter directly in PLUS.ini.

Description When SET DEVELOPMENT is ON and you execute a program file with DO, or open a procedure or format
file, dBASE Plus compares the time and date stamp of the source file and the compiled file. If the source file has
a later time and date stamp than the compiled file, dBASE Plus recompiles the file.

When SET DEVELOPMENT is ON and you change a source program, procedure, or format file with MODIFY
COMMAND, dBASE Plus erases the corresponding compiled file. When you then execute the program or open
the procedure or format file, dBASE Plus recompiles it.

When SET DEVELOPMENT is OFF, dBASE Plus doesn't compare time and date stamps, and executes or
opens existing compiled program, procedure, or format files. When you modify a source file and then open or
execute it, dBASE Plus first looks for a compiled file in memory and executes it if found. If no compiled file is
735 dBL Language Reference

SET ECHO
in memory, dBASE Plus looks for a compiled disk file and executes it if found. If no compiled file is found,
dBASE Plus compiles the file.

When you DO a program, open a procedure file with SET PROCEDURE, or open a format file with SET
FORMAT, dBASE Plus always looks for, opens, and executes a compiled file. Therefore, if dBASE Plus can't
find a compiled version of a source file when you execute or open the source, dBASE Plus compiles the file
regardless of the SET DEVELOPMENT setting.

During program development, when you're editing files often, you should turn SET DEVELOPMENT ON. This
ensures that you're always executing an up-to-date compiled file.

Turn SET DEVELOPMENT OFF when you no longer plan to change any source code. Turning SET
DEVELOPMENT OFF speeds up program execution because dBASE Plus doesn't have to check time and date
stamps. You might want to set the DEVELOPMENT parameter to OFF in the PLUS.ini file you distribute with
your compiled code.

See Also CLEAR PROGRAM, COMPILE, DO, SET PROCEDURE

SET ECHO
Opens the dBASE Plus Debugger. This command is supported primarily for compatibility with dBASE IV. In
dBASE Plus, use DEBUG to open the debugger.

Syntax SET ECHO on | OFF

Description The default for SET ECHO is OFF.

Use SET ECHO to turn on the Debugger and view or control program execution interactively. SET ECHO is
identical to DEBUG. For more information, see DEBUG.

SET EDITOR
Specifies the text editor to use when creating and editing programs and text files.

Syntax SET EDITOR TO
[<expC>]

<expC> The expression you would enter at the DOS prompt or as the Windows command line to start the
editor, usually the name of the editor's executable file (.EXE) or a Windows .PIF file. If <expC> doesn't include
the file's full path name, dBASE Plus looks for the file in the current directory, then in the DOS path.

Default The default for SET EDITOR is the dBASE Plus internal Source editor. To specify a different default editor, set
the EDITOR parameter in PLUS.ini. To do so, either use the SET command to specify the setting interactively,
or enter the EDITOR parameter directly in PLUS.ini.

Description Use SET EDITOR to specify an editor other than the default dBASE Plus Source editor to use when creating or
editing text files. The file name you specify can be any text editor that produces standard ASCII text files. The
specified editor opens when you issue CREATE/MODIFY FILE or CREATE/MODIFY COMMAND. If you
issue SET EDITOR TO without a file name for <expC>, dBASE Plus returns to the default editor.

You can use SET EDITOR to specify a .PIF file, which is a Windows file that controls the Windows
environment for a DOS application, or a Windows .EXE file. Start the DOS editor by running the .PIF file rather
than the .EXE. For more information about .PIF files, see your Windows documentation. If there is not enough
memory available to access an external editor, dBASE Plus returns an "Unable to execute DOS" error message.

If the text editor you specify is already in use when you open a memo or file for editing, a second instance of the
editor starts.

Example The following example changes the default editor to Brief, to Write, the Windows editor and back to the dBASE
Plus editor:

set editor to "c:\brief\b"
// now c:\brief does not need to be in the path statements
// modify command now accesses Brief.
modify command temp.prg
IDE 736

SET HELP
set editor to
modify command temp
// Reverts to dBASE Plus editor

You might not have sufficient RAM to access an external editor in which case dBASE Plus gives an "Unable to
execute DOS" error message.

See Also _dbwinhome, MEMORY(), MODIFY COMMAND, MODIFY FILE

SET HELP
Determines which Help file (.HLP) the dBASE Plus Help system uses.

Syntax SET HELP TO
[<help filename> | ? | <help filename skeleton>]

<help filename> | ? | <help filename skeleton> Identifies the Help file to activate. ? and
<filename skeleton> display a dialog box, from which you can select a file. If you specify a file without
including its extension, dBASE Plus assumes .HLP.

Description Use SET HELP TO to specify which Help file to use when the dBASE Plus Help system is activated.

The Help file is opened automatically when you start dBASE Plus if you place the file in the dBASE Plus home
directory.

SET HELP TO closes any open Help file before it opens a new file.

Example To display a dialogue box to select from available Help files, issue the following command:
SET HELP TO ? && or optionally
SET HELP TO *.HLP

To set Help to your own tailored help file:
SET HELP TO "C:\PROGRAM FILES\MyApplication\HELP\MyHlp.HLP"

Note: It's advisable to store custom help files in your application's directory, or a "HELP" sub-directory, as illustrated in
the preceding command. We used the full path in this example for the sake of simplicity, since each users path will vary
according to their current location. When in doubt, the full path always works. As in the above example, quotes are
necessary when the path includes spaces.

To set the Help file back to the dBASE Plus default:
SET HELP TO

See Also HELP, HelpFile, HelpID

SET IBLOCK
Changes the default block size used for new .MDX files.

Syntax SET IBLOCK TO <expN>

<expN> A number from 1 to 63 that sets the size of index blocks allocated to new .MDX files. The default
value is 1. (The actual size in bytes is the number you specify multiplied by 512 bytes; however, the minimum
size of a block is 1024 bytes.) To change the default, update the IBLOCK setting in PLUS.ini. To do so, either
use the SET command to specify the setting interactively, or enter the IBLOCK parameter directly in PLUS.ini.

Description Use SET IBLOCK to change the size of blocks in which dBASE Plus stores .MDX files on disk to improve the
performance and efficiency of indexes. You can specify a block size from 1024 bytes to approximately 32K.
The IBLOCK setting overrides any previous block size defined by the SET BLOCKSIZE command or specified
in the PLUS.ini file. After the block size has been changed, new .MDX index files are created with the new
block size.

Multiple index (.MDX) files are composed of individual index blocks (or nodes). Nodes contain the value of
keys corresponding to individual records and provide the information to locate the appropriate record for each
key value. Since the IBLOCK setting determines the size of nodes, the setting also determines the number of
key values that can fit into each node. When a single node can't contain all the key values in an index, dBASE
737 dBL Language Reference

SET MBLOCK
Plus creates one or more parent nodes. These intermediate nodes also contain key values. Instead of pointing to
record numbers, however, intermediate nodes point to leaf nodes or other lower-level intermediate nodes. If you
increase the size of index blocks and create a new .MDX file, the new and larger leaf nodes contain more key
values.

Whether you can improve performance by storing key values in larger or smaller nodes depends on several
factors: the distribution of data, if tables are linked together, the length of key values, and the type of operation
requested. Typically, every .MDX file contains more than one index tag. Finding the best setting for a given
.MDX file requires experimentation because the best size for one index tag might not be the best size for
another.

The following is a list of basic principles governing index performance.

• Since nodes might not be sequential, dBASE Plus reads only one node at a time from the disk. Reading more
than one node is usually inefficient, because typically the second node is not the next node in the sequential
list.

• Once a node is read into memory, dBASE Plus attempts to store it there for later use.

• When users link several tables together, for example, with SET RELATION, performance is better if all the
relevant nodes for the tables are in memory simultaneously. For example, if a large node for table B pushes
out the previously read node for table A, dBASE Plus must find and read the table A node again from disk
when the node for table A needs to be used again. If both nodes remain in memory, performance can be
improved.

• When tables have many identical key values, dBASE Plus might have to store them in many nodes. In this
situation, performance might be improved by increasing the node size so that dBASE Plus reads fewer nodes
from disk to load the same number of key values into memory.

• Small node sizes can cause performance degradation. This occurs because as nodes are read in and out,
dBASE Plus attempts to cache them all. When the small nodes are removed from memory by more recently
read nodes, they leave unused spaces in memory that are too small to contain larger nodes. Over time,
memory can become fragmented, resulting in slower performance.

Example This example creates two .MDXs containing identical data but with different IBLOCK settings and
consequently, different file sizes:

CLOSE DATA
DELETE FILE Co1.mdx
DELETE FILE Co2.mdx
* remove any previous .mdx
* CREATE THE MDXs
USE Company EXCLUSIVE
SET IBLOCK TO 2
INDEX ON CompCode TAG CompCode OF Co1
INDEX ON Company TAG Company OF Co1
INDEX ON City TAG City OF Co1
SET IBLOCK TO 20
INDEX ON CompCode TAG CompCode OF Co2
INDEX ON Company TAG Company OF Co2
INDEX ON City TAG City OF Co2
DIR CO?.MDX

Two .MDXs, Co1.MDX and Co2.MDX are created with different IBLOCK settings. CO1 and CO2 will have
different file sizes because their block lengths are different.

See Also COPY, CREATE, MODIFY STRUCTURE, INDEX, REINDEX, REPLACE, SET(), SET BLOCKSIZE, SET
MBLOCK

SET MBLOCK
Changes the default block size of new memo field (.DBT) files.

Syntax SET MBLOCK TO <expN>

<expN> A number from 1 to 512 that sets the size of blocks used to store new memo (.DBT) files. (The
actual size in bytes is the number you specify multiplied by 64.)
IDE 738

Default The default value for SET MBLOCK is 8 (or 512 bytes). To change the default, update the MBLOCK setting in
PLUS.ini. To do so, either use the SET command to specify the setting interactively, or enter the MBLOCK
parameter directly in PLUS.ini.

Description Use SET MBLOCK to change the size of blocks in which dBASE Plus stores new memo field (.DBT) files on
disk. You can specify a block size from 64 bytes to approximately 32K. The MBLOCK setting overrides any
previous block size defined by the SET BLOCKSIZE command or specified in the PLUS.ini file. After the
block size has been changed, new memo .DBT files are created with the new block size. dBASE Plus stores data
in each memo field in a group made up of as many blocks as needed.

After the block size is changed, memo fields created with the COPY, CREATE, and MODIFY STRUCTURE
commands have the new block size. To change the block size of an existing memo field file, use the SET
BLOCKSIZE command to change the block size and then copy the table containing the associated memo field
to a new file. The new file then has the new block size.

When the block sizes are large and the memo contents are small, memo (.DBT) files contain unused space and
become larger than necessary. If you expect the contents of the memo fields to occupy less than 512 bytes (the
default size allocated), set the block size to a smaller size to reduce wasted space. If you expect to store larger
pieces of information in memo fields, increase the size of the block.

SET MBLOCK is similar to the older SET BLOCKSIZE command except for two advantages:

• You can allocate different block sizes for memo field and index data, whereas SET BLOCKSIZE requires
the same block size for both. To allocate block sizes for index data, use SET IBLOCK.

• You can specify smaller blocks with SET MBLOCK than with SET BLOCKSIZE. SET BLOCKSIZE
creates blocks in increments of 512 bytes, compared to 64 bytes with SET MBLOCK.

Example The following example uses SET MBLOCK to create another table that is a copy of Clients but has a memo
blocksize of 256 bytes embedded in its structure versus the default of 512 bytes. This technique applies if memo
entries are normally less than 256 bytes and you want to minimize wasted space in the .DBT file:

use Clients
? set("mblock")
// Returns default of 8;each memo block = 512 bytes
set mblock to 4
copy to Clients2
use Clients2
? set("mblock")
// Returns 4
list files like Clients*.dbt
// Note that Clients2.dbt is smaller than Clients.dbt
close databases

See Also CREATE, MODIFY STRUCTURE, REPLACE, SET(), SET BLOCKSIZE, SET IBLOCK

SET STEP
SET STEP ON opens the dBASE Plus Debugger. This command is supported primarily for compatibility with
dBASE IV. In dBASE Plus, use DEBUG to open the debugger.

Syntax SET STEP on | OFF

Description The default for SET STEP is OFF.

Use SET STEP to turn on the Debugger and view or control program execution interactively. SET STEP is
identical to DEBUG. For more information, see DEBUG.

SET TALK
Determines whether dBASE Plus displays messages in the status bar, or displays memory variable assignments in
the results pane of the Command window.

Syntax SET TALK ON | off
IDE 739

Default The default for SET TALK is ON. To change the default, set the TALK parameter in PLUS.ini. To do so, either
use the SET command to specify the setting interactively, or enter the TALK parameter directly in PLUS.ini.

Description When SET TALK is ON, dBASE Plus uses the current SET ODOMETER setting to indicate when operations
such as COUNT and SORT are in progress in the status bar. It also displays the results of memory variable
assignments (using STORE or =) in the results pane of the Command window.

Depending on the amount of memory your system has and the amount of memory particular operations require,
issuing SET TALK OFF might improve the performance of some operations.

Use SET TALK with SET ALTERNATE to send SET TALK output to a file or printer rather than to the results
pane of the Command window.

When SET TALK is ON, dBASE Plus reports the results of the BUILD command in a dialog box. If SET
TALK is OFF, nothing happens when BUILD is successful.

Example This example shows the effect of SET TALK ON and SET TALK OFF while creating a memory variable:
Oldtalk=SET("TALK")
set talk on
First="Susan" // Susan
Last="O'Shenko" // O'Shenko
Name=Last+", "+First
set talk off
First="Tom"
Last="Frost"
Name=Last+", "+First
? Name
// Name will be set to "Frost, Tom" but this will not
// be displayed in the status bar
set talk &Oldtalk

When TALK is OFF, the assignment of "Tom" to First and "Frost" to Last and "Frost, Tom" to Name are not
displayed.

In the following example Count displays to the status bar when TALK is ON:
close all
use company
set talk on // Talk on
count to Recs // Count displays in status bar
set talk off // Talk off
count to Recs // No display

See Also SET ALTERNATE, SET CONSOLE, SET ODOMETER, STORE
740 dBL Language Reference

C h a p t e r

Chapter 21Everything Else
(Except Preprocessor)

This section includes dBL language elements that pertain to errors, security, and locale.

ACCESS()
Returns the access level of the current user for DBF table security.

Syntax ACCESS()

Description In DBF table security, an access level is assigned to each user. The access level is a number from 1 to 8, with 1
being the highest level of access. Use ACCESS() to build security into an application. The access level returned
can be used to test privileges assigned with PROTECT. If a user is not logged in to the application, ACCESS()
returns 0 (zero).

If you write programs that use encrypted files, check the user's access level early in the program. If ACCESS()
returns zero, your program might prompt the user to log in, or to contact the system administrator for assistance.

For more information, see PROTECT.

See Also LOGOUT, PROTECT, SET ENCRYPTION, USER()

ANSI()
Returns a character string that is the ANSI equivalent of a character expression using the current global character set.

Syntax ANSI(<expC>)

<expC> The character expression to convert to ANSI characters.

Description Each character in a string is represented by a byte value from 0 to 255. (Because dBASE Plus is a Unicode
application it is actually more complicated than this internally, but this is how things appear to the programmer.)
The character that each number represents is determined by the current character set. The same series of bytes
may represent different characters with different character sets. Conversely, the same character may be
represented by a different byte value in different character sets.

Windows uses the ANSI (American National Standards Institute) character set. dBASE Plus supports that
character set, and multiple OEM (Original Equipment Manufacturer) character sets, which are identified by a
code page number. Each character set, along with other country-specific information, is represented in dBASE
Plus by a language driver. The classic IBM extended character set—the one with box drawing characters used
in text screens and the MS-DOS Command Prompt—is an OEM character set, represented by the DB437US0
language driver, the default language driver for the United States.
Everything Else (Except Preprocessor) 741

CANCEL
There are more characters in use than will fit in a 256-character character set; therefore some characters are
present in some character sets but not in others. While the lower 128 characters of these character sets are
always identical (they match the standard 7-bit ASCII characters), the upper 128 characters (sometimes referred
to as high-ASCII characters) may differ. Sometimes the same characters have different byte values. For
example, the lowercase a-umlaut (ä) is character 132 in the DB437US0 OEM character set, and character 228 in
the ANSI character set.

Use the ANSI() and OEM() functions to convert characters between the ANSI character set and an OEM
character set, represented by the current global language driver.

Note If the current language driver is an ANSI language driver, like DBWINUS0, then DB437US0 is used as the
OEM character set.

ANSI() treats the byte values of the characters in <expC> as OEM characters, and attempts to convert them to
the equivalent characters in the ANSI character set. OEM() does the reverse. If no direct conversion is possible,
then the characters are converted to similar-looking characters.

Example Suppose you are calling an EXTERNed function SomeFunc() from a DLL that expects a string parameter to be
an ANSI string. You are using DB437US0 as your global language driver, so you use the ANSI() function to do
the conversion:

extern CVOID SomeFunc(CSTRING) SomeDLL.DLL
SomeFunc(ansi(cParameter))

See Also ASC(), CHR(), LDRIVER(), OEM()

CANCEL
Halts program execution.

Syntax CANCEL

Description Use CANCEL to cancel program execution in the midst of a process. You can also issue CANCEL in the
Command window when a program is suspended (with SUSPEND) to cancel execution of the suspended
program.

While procedural applications are characterized by deeply nested subroutines that wait for user actions,
applications in dBASE Plus are event-driven; objects sit on-screen, waiting for something to happen. While
waiting for an event, no programs are being executed. When an event occurs, the event handler is fired, and
when that’s done, dBASE Plus goes back to waiting for events. Issuing CANCEL will halt the current event
handler thread, but does cause dBASE Plus to stop responding to events. To do that the object itself must be
removed from the screen or destroyed.

A process that is halted simply stops; no message or exception is generated. In the main routine of a process,
issuing CANCEL has the same effect as issuing RETURN: the process is terminated. A program or thread
halted by CANCEL performs the standard cleanup for a completed process. All local and private memory
variables are cleared. Control returns to the object that started the process, if it’s still available; usually a form,
menu, or the Command window.

See Also DO, QUIT, RESUME, RETRY, RETURN, SUSPEND

CERROR()
Returns the number of the last compiler error.

Syntax CERROR()

Description Use CERROR() before executing a new program to test whether the source code compiles successfully. If no
compiler error occurs, CERROR() returns 0. CERROR() is updated each time you or dBASE Plus compile a
program or format file. CERROR() isn't affected by warning messages generated by compiling.

Use CERROR() in a program file. If you issue ? CERROR() in the Command window, it returns 0. (This is
because dBASE Plus is compiling the "? CERROR()" command itself, which does not cause a compiler error.)
Everything Else (Except Preprocessor) 742

CHARSET()
See the table in the description of ERROR() that compares ERROR(), MESSAGE(), DBERROR(),
DBMESSAGE(), SQLERROR(), SQLMESSAGE(), and CERROR().

Example The following program segment uses CERROR() in a DO WHILE loop to make the user edit the program until
it compiles successfully:

DO WHILE .T.
 Clear
 MODIFY COMMAND USER.PRG
 ON ERROR ? ERROR(), MESSAGE(), CERROR()
 COMPILE USER.PRG
 IF CERROR()>0
 ?
 WAIT "Your program didn't compile. Press a key to edit your .PRG."
 LOOP
 ELSE
 EXIT
 ENDIF
ENDDO

See Also COMPILE, DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), ON ERROR

CHARSET()
Returns the name of the character set the current table or a specified table is using. If no table is open and you issue
CHARSET() without an argument, it returns the global character set in use.

Syntax CHARSET([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The work area letter or
alias name must be enclosed in quotes.

Description Use CHARSET() to learn which character set the current table or a specified table is using. If you don't pass
CHARSET() an argument, it returns the name of the character set of the current table or, if no tables are open,
the global character set in use. CHARSET() also returns information on Paradox and SQL databases.

The character set a table's data is stored in depends on the language driver setting that was in effect when the
table was created. With dBASE Plus, you can choose the language driver that applies to your dBASE Plus data
in the [CommandSettings] section in the PLUS.ini file.

The value CHRSET() returns is a subset of the value LDRIVER() returns. For more information, see
LDRIVER().

Example This example shows the CHARSET() function and a sample response:
? CHARSET() && Returns DOS:437

See Also ANSI(), LDRIVER(), OEM(), SET LDCHECK

DBASE_SUPPRESS_STARTUP_DIALOGS
An operating system environment variable which allows suppression of runtime engine initialization error
dialogs.

 Syntax DBASE_SUPPRESS_STARTUP_DIALOGS=1 will turn on suppression of the startup dialogs
DBASE_SUPPRESS_STARTUP_DIALOGS= will turn off suppression of the startup dialogs

Description The purpose of the DBASE_SUPPRESS_STARTUP_DIALOGS variable is to prevent the display of any error
dialogs during the startup of the dBASE Plus runtime engine (PLUSrun.exe). The suppressed error dialogs are
those which can occur before any application code is executed by the runtime and as a result, cannot be trapped
via a try...catch command.

The potential problem arises due to the fact that once an application is launched, users will not see these dialogs
and, therefore, will not be aware of being prompted for a response. When suppression of an error dialog occurs,
dBASE Plus will shut itself down, thereby preventing instances of the runtime engine from becoming stranded
in memory.
743 dBL Language Reference

DBERROR()
Setting dBASE Plus dialog suppression
• Windows 95/98 - Set DBASE_SUPPRESS_STARTUP_DIALOGS in the autoexec.bat file OR the .bat

file used to launch the dBASE Plus web application .exe.

• Windows 2000 or NT - Set DBASE_SUPPRESS_STARTUP_DIALOGS from the Environment tab of
the System Properties dialog - which can be found in the Control Panel window.

DBERROR()
Returns the number of the last BDE error.

Syntax DBERROR()

Description DBERROR() returns the BDE error number of the last BDE error generated by the current table. To learn the
BDE error message itself, use DBMESSAGE().

See the table in the description of ERROR() that compares ERROR(), MESSAGE(), DBERROR(),
DBMESSAGE(), SQLERROR(), SQLMESSAGE(), and CERROR().

See Appendix C for a listing of all error messages.

Example The following example uses ON ERROR to branch to an error procedure that uses DBERROR() to return what
BDE error has occurred during the BROWSE and DBMESSAGE() to return what it means:

USE Clients
ON ERROR DO Recovery
COPY TO TEMP
USE TEMP
BROWSE

PROCEDURE Recovery
CLOSE DATABASES
CLEAR
IF ERROR()=239
 ? "The BDE error was error number: " + STR(DBERROR())
 ? "Which means: " + DBMESSAGE()
ELSE
 ? "No BDE error encountered"
ENDIF
RETURN

See Also CERROR(), DBMESSAGE(), ERROR(), MESSAGE(), SQLERROR(), SQLMESSAGE()

DBMESSAGE()
Returns the error message of the last BDE error.

Syntax DBMESSAGE()

Description DBMESSAGE() returns the error message of the most recent BDE error.

See the table in the description of ERROR() that compares ERROR(), MESSAGE(), DBERROR(),
DBMESSAGE(), CERROR(), SQLERROR(), and SQLMESSAGE().

See online Help for a listing of all error messages.

Example See DBERROR()

See Also CERROR(), DBERROR(), ERROR(), MESSAGE(), SQLERROR(), SQLMESSAGE()

ERROR()
Returns the number of the most recent dBASE Plus error.
Everything Else (Except Preprocessor) 744

fileName
Syntax ERROR()

Description Use ERROR() to determine the error number when an error occurs. ERROR() is initially set to 0. ERROR()
returns an error number when an error occurs, and remains set to that number until one of the following
happens:

• Another error occurs

• RETRY is issued

• The subroutine in which the error occurs completes execution

The following table compares the functionality of CERROR(), DBERROR(), DBMESSAGE(), ERROR(),
MESSAGE(), SQLERROR(), and SQLMESSAGE().

Function Returns
CERROR() Compiler error number
DBERROR() BDE error number
DBMESSAGE() BDE error message
ERROR() dBASE Plus error number
MESSAGE() dBASE Plus error message
SQLERROR() Server error number
SQLMESSAGE() Server error message

See online Help for a listing of all error codes.

Example See ON ERROR

See Also CERROR(), DBERROR(), DBMESSAGE(), MESSAGE(), ON ERROR, RETRY, SQLERROR(),
SQLMESSAGE()

fileName
The name of a file containing an existing class definition, or the name of a file to which a newly created class
definition will be saved.

Property of Designer

Description To design a new custom class, or modify a stock class, set the filename property to the name of the file under
which the class definition will be saved. While designating a filename when initially creating a custom class is
not required, a filename must be assigned before the class definition can be saved. Calling the save() method,
without first setting the filename property, will open a Save As dialog.
When modifying an existing custom class, the filename property will be set by the loadObjectFromFile() method.

ID()
Returns the name of the current user on a local area network (LAN) or other multiuser system.

Syntax ID()

Description ID() accepts no arguments and returns the name of the current user as a character string. ID() returns an empty
string when you call it on a single-user system or when a user name isn't registered on a multiuser system.

Example The following example keeps track of the last network user to update a record. It updates a network database
and puts ID(), the current user, into a field called USER:

PROCEDURE OkToChange && Updates a network database and logs user name
IF ID() <> ""
 REPLACE NAME WITH cName, USER with ID()
ELSE
 CLEAR
 ? "You have lost your network connection. Data not saved."
 WAIT
745 dBL Language Reference

LDRIVER()
ENDIF
RETURN

See Also CONVERT, LKSYS(), NETWORK()

LDRIVER()
Returns the name of the language driver the current table or a specified table is using. If no table is open and you
issue LDRIVER() without an argument, it returns the global language driver in use.

Syntax LDRIVER([<alias>])

<alias> A work area number (1 through 225), letter (A through J), or alias name. The work area letter or
alias name must be enclosed in quotes.

Description Use LDRIVER() to learn which language driver the current table or a specified table is using. If you don't pass
LDRIVER() an argument, it returns the name of the language driver of the current table or, if no tables are
open, the global language driver in use. LDRIVER() also returns information on Paradox and SQL databases.

The language driver associated with a table depends on the DOS code page or the BDE language driver setting
that was in effect when the table was created. With dBASE Plus, you can choose the language driver that applies
to your dBASE data in the [CommandSettings] section in the PLUS.ini file. For example, you can load a
German language driver to work with a table created while that driver was active.

Example This example shows the LDRIVER() function and a sample response:
? LDRIVER() && DB437US0

This example first closes all tables and obtains the global language driver. Then it opens a table and checks
whether the table was created with the global language driver. If not, a warning is displayed:

CLOSE ALL
SET LDCHECK OFF
* this program replaces the LDCHECK alert message
GlobalDriver=LDRIVER()
USE Customer
TableLangDriver=LDRIVER()
SET EXACT ON
IF GlobalDriver<>TableLangDriver
 ? "Warning: this table was created"+ "with a different language driver"
 ? "Global Language Driver: "+GlobalDriver
 ? DBF()+" Language Driver: "+TableLangDriver
 WAIT
ENDIF
SET EXACT OFF

See Also ANSI(), CHARSET(), OEM(), SET LDCHECK

LINENO()
Returns the number of the current program line in the current program, procedure, or user-defined function (UDF).

Syntax LINENO()

Description Use LINENO() to track program flow. Use it in conjunction with PROGRAM() to learn when a program
executes a given line of code. You can also use LINENO() with ON ERROR to find out which line produces an
error.

LINENO() is meaningful only when issued from within a program, procedure, or UDF. When issued in the
Command window, LINENO() returns 0.

LINENO() always returns the actual program line number; the number doesn't reflect the order in which the
line executes within the program.

Example See ON ERROR

See Also ERROR(), MESSAGE(), PROGRAM(), RESUME, SUSPEND
Everything Else (Except Preprocessor) 746

LOGOUT
LOGOUT
LOGOUT logs out the current user and sets up a new log-in dialog.

Syntax LOGOUT

Description LOGOUT logs out the current user from the current session and sets up a new log-in dialog when used with
PROTECT. The LOGOUT command enables you to control user sign-in and sign-out procedures. The
command forces a logout and prompts for a login.

When the command is processed, a log-in dialog appears. The user can enter a group name, log-in name, and
password. The PROTECT command establishes log-in verification functions and sets the user access level.

LOGOUT closes all open tables, their associated files, and program files.

If PROTECT has not been used, and no DBSYSTEM.DB file exists, the LOGOUT command is ignored.

See also PROTECT, QUIT

MEMORY()
Returns the amount of currently available memory.

Syntax MEMORY([<expN>])

<expN> Any number, which causes MEMORY() to return the amount of available physical memory.

Description Use MEMORY() to determine how much memory is available in the system. It returns the amount in kilobytes
(1024 bytes).

In Windows, available memory is a combination of physical memory (RAM installed in the computer) and
virtual memory (disk space used to simulate memory).

When called with no parameters, MEMORY() returns the total amount of available memory: the amount of
unused physical memory plus the amount of disk space available for virtual memory. By default, Windows 95
sets no maximum for virtual memory, so MEMORY() will return free physical memory plus free disk space on
the hard drive used for virtual memory. On Windows NT, the size of the paging file used for virtual memory is
set to a reasonable size.

When called with any numeric parameter, MEMORY() returns the amount of free physical memory. The
amount of free physical memory can vary greatly, depending on what the system is doing or has just finished
doing. For example, you may have more free physical memory right after viewing and dismissing a dialog box,
since the memory that was used to display the dialog box is momentarily unallocated.

dBASE Plus’s About dialog box displays the amount of free physical memory in bytes.

Example The following example warns if the user has less than a megabyte of RAM available:
IF MEMORY()>=1024
 ? "You have at least a megabyte of RAM"
ELSE
 ?? "Warning: You have less than a megabyte of RAM:"
 ? MEMORY(),"Kb"
ENDIF

See Also none

MESSAGE()
Returns the error message of the most recent dBASE Plus error.

Syntax MESSAGE()

Description Use MESSAGE() with other error-trapping commands and functions, such as ON ERROR, RETRY, and
ERROR(), to substitute specific responses and actions for dBASE Plus default responses to errors.
747 dBL Language Reference

NETWORK()
MESSAGE() is initially set to an empty string. MESSAGE() returns an error message when an error occurs,
and remains set to that error message until one of the following happens:

• Another error occurs
• RETRY is issued
• The subroutine in which the error occurs completes execution

To learn the BDE error message of the last BDE error generated by the current table, use DBMESSAGE().

See the table in the description of ERROR() that compares CERROR(), ERROR(), MESSAGE(),
DBERROR(), DBMESSAGE(), SQLERROR(), and SQLMESSAGE().

See Appendix D for a listing of all dBASE Plus error messages.

Example See ON ERROR

See Also CERROR(), DBERROR(), DBMESSAGE(), ERROR(), ON ERROR, RETRY, SQLERROR(),
SQLMESSAGE()

NETWORK()
Returns .T. if dBASE Plus is running on a system in which a local area network (LAN) card or other multiuser
system card has been installed.

Syntax NETWORK()

Description Use NETWORK() to determine if a program might be running in a network environment. For example, your
program might need to do something in a network environment that it doesn't need to do in a single-user
environment, such as issue USE with the EXCLUSIVE option.

NETWORK() returns .T. if a network card is installed; it doesn't determine whether a user is currently running
dBASE Plus in a network environment. To determine whether a user is actually working in a network
environment, use ID().

Example This example uses NETWORK() to test if the user has a network card installed. The user will SET
EXCLUSIVE ON only when it might be needed. Without a network card, SET EXCLUSIVE can be ON
permanently:

IF NETWORK()
 SET EXCLUSIVE OFF && set ON as needed
ELSE
 SET EXCLUSIVE ON && No network
ENDIF

See Also GETENV(), OS(), USE

OEM()
Returns a character string using the current global language driver that is the equivalent of an ANSI character
expression.

Syntax OEM(<expC>)

<expC> The ANSI character expression to convert into characters in the global language driver.

Description OEM() is the inverse of ANSI(). For more information, see ANSI().

Example Suppose you have a Windows text file that you want to convert to OEM text that is readable by someone using
MS-DOS. You convert each line using the OEM() function:

function convertToOEM(cSourceFile, cDestFile)
 local fSource, fDest
 fSource = new File()
 fDest = new File()
 fSource.open(cSourceFile)
 fDest.create(cDestFile)
 do while not fSource.eof()
Everything Else (Except Preprocessor) 748

ON ERROR
 fDest.puts(oem(fSource.gets()))
 enddo
 fDest.close()
 fSource.close()

See Also ASC(), ANSI(), CHR(), LDRIVER()

ON ERROR
Executes a specified statement when an error occurs.

Syntax ON ERROR [<statement>]

<statement> The statement to execute when an error occurs. ON ERROR without a <statement> option
disables any previous ON ERROR <statement>.

Description Use ON ERROR as a global error handler for unexpected conditions. For localized error handling—that is, for
situations where you expect something might fail, like trying to open a file—use TRY...ENDTRY instead. ON
ERROR also acts as a global CATCH; if there is no CATCH for a particular class of exception, an error occurs,
which can be handled by ON ERROR.

When ON ERROR is active, dBASE Plus doesn't display its default error dialog; it executes the specified
<statement>. To execute more than one statement when an error occurs, make the <statement> DO a program
file, or call a function or method. In either case, the code that is executed in response to the error is known as the
ON ERROR handler.

The ON ERROR handler usually uses the ERROR(), MESSAGE(), PROGRAM(), and LINE() functions to
determine what the error is and where it occurred. In most applications, the only safe response to an unexpected
condition is to log the error and quit the application. In some cases, you may be able to fix the problem and use
the RETRY command to retry the statement that caused the error; or RETURN from the ON ERROR handler,
which skips the statement that caused the error and executes the next statement.

While dBASE Plus is executing an ON ERROR statement, that particular ON ERROR <statement> statement is
disabled. Thus, if another error occurs during the execution of <statement>, dBASE Plus responds with its
default error dialog. You can, however, set another ON ERROR handler inside a routine called with ON
ERROR.

SET("ON ERROR") returns the current ON ERROR <statement>.

Avoid using a dBL command recursively with ON ERROR.

Example Suppose you have an application management object assigned as the core property of the global _app object.
The following ON ERROR command specifies a particular method of that object to act as a global error
handler; a method call is a valid statement. It passes all relevant error information to the method as parameters:

on error _app.core.globalErrorTrap(program(), lineno(), error(), message())

The ON ERROR handler can then display an error message and terminate the application, like this:
function globalErrorTrap(cProg, nLineno, nError, cMsg)
 local c
 #define CHAR_CR chr(13)
 c = cMsg + CHAR_CR + CHAR_CR + ;
 "In: " + cProg + CHAR_CR + ;
 "Line: " + nLineno + CHAR_CR + CHAR_CR + ;
 "If this error persists, contact program vendor."
 msgbox(c, "Unexpected Application Error [" + nError +"]", 16)
 quit

See Also ERROR(), LINENO(), MESSAGE(), PROGRAM(), RETRY, RETURN, SET ERROR, TRY

ON NETERROR
Executes a specified command when a multiuser-specific error occurs.

Syntax ON NETERROR [<command>]
749 dBL Language Reference

PROGRAM()
<command> The command to execute when a multiuser-specific error occurs. To execute more than one
command when such an error occurs, issue ON NETERROR DO <filename>, where <filename> is a program or
procedure file containing the sequence of commands to execute. ON NETERROR without a <command> option
disables any previous ON NETERROR <command> statement.

Description Use ON NETERROR to control a program's response to multiuser-specific errors. For example, in a multiuser
environment on a local area network (LAN), an error can occur when two users attempt to alter the same record
in a shared table at the same time, or when one user attempts to open a shared table that another user already has
open for exclusive use.

ON NETERROR is similar to ON ERROR, except that ON ERROR responds to all run-time errors regardless
of whether they're multiuser-specific. You can use ON ERROR to handle both single-user and multiuser errors,
or you can use ON NETERROR to handle just multiuser errors. If you issue both ON ERROR and
ON NETERROR, then ON ERROR responds to just single-user errors, leaving ON NETERROR to respond to
multiuser errors.

While dBASE Plus is executing an ON NETERROR command, that particular ON NETERROR <command>
statement is disabled. Thus, if another multiuser-specific error occurs during the execution of <command>,
dBASE Plus responds with its default error messages. You can, however, set another ON NETERROR
condition inside a subroutine called with ON NETERROR.

You should avoid using a dBASE Plus command recursively with ON NETERROR.

Example The following example uses ON NETERROR in case the Clients table cannot be opened exclusively:
SET PROCEDURE TO PROGRAM(1) ADDITIVE
ON NETERROR Do NetErr
USE Clients EXCLUSIVE
* If Clients cannot be opened exclusively then
* the subroutine NetErr will be called.

PROCEDURE NETERR
WAIT "Multi-user problem"

See Also DO, ERROR(), MESSAGE(), ON ERROR, RETRY, RETURN, SET EXCLUSIVE, SET REPROCESS,
SQLERROR(), SQLMESSAGE()

PROGRAM()
Returns the name of the currently executing program, procedure, or user-defined function (UDF).

Syntax PROGRAM([<expN>])

<expN> Any number.

Description PROGRAM() returns the name of the lowest level executing subroutine—program, procedure, or UDF.
PROGRAM() returns an empty string ("") when no program or subroutine is executing.

PROGRAM(expN) returns the full path name of the program that is currently running, which may be different
from the name of the lowest level executing subroutine. This is shown in the following example.

SET PROCEDURE TO program1
** Inside PROGRAM1.PRG is PROCEDURE procedure1
** If procedure1 is running, note the following:
? PROGRAM() returns PROCEDURE1
? PROGRAM(expN) returns C:\VISUALDB\PROGRAM1.PRG.

You can issue PROGRAM() in the Command window if a program is suspended with SUSPEND. For
example, if Program A calls Procedure B, and Procedure B is suspended, issuing PROGRAM() in the
Command window returns the name of Procedure B; issuing PROGRAM(expN) in the Command window
returns the full path name of the file containing Procedure B.

You can also use PROGRAM() with ON ERROR and LINENO() to identify the subroutine that was executing
and the exact program line number at which the error occurred.
Everything Else (Except Preprocessor) 750

PROTECT
PROGRAM() returns the name of the subroutine in uppercase letters. PROGRAM() doesn't include a file-
name extension even if the subroutine is a separate file, while PROGRAM(expN) always includes a file-name
extension.

Example See ON ERROR

See Also DEBUG, LINENO(), ON ERROR, PROCEDURE, RESUME, SET PROCEDURE, SUSPEND

PROTECT
Creates and maintains DBF table security.

Syntax PROTECT

Description This command is issued within dBASE Plus by the database administrator, who is responsible for data security.
PROTECT works in a single user or multiuser environment.

PROTECT is optional. Once you create table security, you may force all users to login when dBASE Plus or
your PLUS.exe is started, or require login only when attempting to open an encrypted table.

This command displays a multi-page dialog. This dialog is the same dialog that is displayed when choosing
dBASE table security in the File | Database Administration dialog box. The first time you use PROTECT, the
system prompts you to enter and confirm an administrator password.

Warning Remembering the administrator password is essential. You can access the security system only if you can
supply the password. Once established, the security system can be changed only if you enter the administrator
password when you call PROTECT. Keep a hard copy of the database administrator password in a secured area.
There is no way to retrieve a password from the system.

Once you enter the administrator password, you may setup and modify DBF table security.

The DBSYSTEM.DB file PROTECT builds and maintains a password system file called
DBSYSTEM.DB, which contains a record for each user who accesses a PROTECTed system. Each record,
called a user profile, contains the user's log-in name, account name, password, group name, and access level.
When a user attempts to start dBASE Plus (if dBASE Plus is configured to require a log-in to start the program),
or attempts to access an encrypted table (if dBASE Plus is configured to require a log-in when an encrypted
table is accessed), dBASE Plus looks for a DBSYSTEM.DB file. You can specify a location for this file in the
[CommandSettings] section of PLUS.ini:

DBSYSTEM=C:\VISUALDB\BIN

If there is no DBSYSTEM entry in PLUS.ini, dBASE Plus looks for the file in the same directory in which
PLUS.exe is located. If it finds the file, it initiates the log-in process. If it does not find the file, there is no log-in
process.

DBSYSTEM.DB is maintained as an encrypted file. Keep a record of the information contained in
DBSYSTEM.DB, as well as a current backup copy of the file. If the DBSYSTEM.DB file is deleted or damaged
and no backup is available, the database administrator will need to reinitialize PROTECT using the same
administrator password and group names as before, or the data will be unrecoverable.

See Also ACCESS(), LOGOUT, SET ENCRYPTION, USER()

RESUME
Restarts program execution at the command line following the one at which program execution was suspended.

Syntax RESUME

Description RESUME causes dBASE Plus to resume execution of a program that is suspended. You can suspend program
execution by issuing SUSPEND. If you have not assigned a value to ON ERROR, you can also choose to
suspend a program when an error occurs.

To restart program execution, enter RESUME in the Command window. The program file resumes execution at
the line immediately following the line that caused it to become suspended. If you want to re-execute the line
751 dBL Language Reference

RETRY
that caused an error, perhaps because you fixed the condition that caused the error, retype the program line at the
command line before issuing RESUME.

Example See SUSPEND

See Also CANCEL, ON ERROR, RETRY, RUN, SUSPEND

RETRY
Returns control from a subroutine to the command line of the calling routine or Command window that called the
subroutine.

Syntax RETRY

Description Use RETRY to re-execute a command—for example, one that resulted in an error. RETRY returns program
control to the calling command. RETRY clears the memory variables created by the subroutine.

RETRY is valid only in program files.

You can use RETRY with ON ERROR to give the user more chances to resolve an error condition. Using
RETRY with ON ERROR resets ERROR() to zero.

Example The following example uses the Recover procedure when an error is detected with ON ERROR. If the Clients
table is already open in another work area when the USE command is executed, an error is returned. The
Recover procedure uses CLOSE DATABASES to insure that all tables are closed and RETRY returns program
flow to the USE command:

ON ERROR DO Recover
USE Clients EXCLUSIVE
BROWSE
ON ERROR
CLOSE DATABASES

PROCEDURE Recover
WAIT "An error has occurred.;
 Press any key to retry.."
CLOSE DATABASES
RETRY

See Also ERROR(), MESSAGE(), ON ERROR, RESUME, RETURN

SET ENCRYPTION
Establishes whether a newly created dBASE table is encrypted if PROTECT is used.

Syntax SET ENCRYPTION ON | off

Default The default for SET ENCRYPTION is ON.

Description This command determines whether copied dBASE tables (that is, tables created through the COPY, JOIN, and
TOTAL commands) are created as encrypted tables. An encrypted table contains data encrypted into another
form to hide the contents of the original table. An encrypted table can only be read after the encryption has been
deciphered or copied to another table in decrypted form.

To access an encrypted table, you must enter a valid user name, group name, and password after the login screen
prompts. Your authorization and access level determine whether you can or cannot copy an encrypted table.
After you access the table, SET ENCRYPTION OFF to copy the table to a decrypted form. You need to do this
if you wish to use EXPORT, COPY STRUCTURE EXTENDED, MODIFY STRUCTURE, or options of the
COPY TO command.

Note Encryption works only with dBASE (.DBF) tables. Encryption works only with PROTECT. If you do not enter
dBASE Plus or access the table through the log-in screen, you will not be able to use encrypted tables.

All encrypted tables used concurrently in an application must have the same group name.
Everything Else (Except Preprocessor) 752

SET ERROR
Encrypted tables cannot be JOINed with unencrypted tables. Make both tables either encrypted or unencrypted
before JOINing them.

You can encrypt any newly created table by assigning the table an access level through PROTECT.

See also COPY TO, PROTECT, SET()

SET ERROR
Specifies one character expression to precede error messages and another one to follow them.

Syntax SET ERROR TO
[<preceding expC> [, <following expC>]]

<preceding expC> An expression of up to 33 characters to precede error messages. dBASE Plus ignores
any characters after 33.

<following expC> An expression of up to 33 characters to follow error messages. dBASE Plus ignores
any characters after 33. If you want to specify a value for <following expC>, you must also specify a value or
empty string ("") for <preceding expC>.

Default The default for the message that precedes error messages is "Error: ". The default for the message that follows
error messages is an empty string. To change the default, set the ERROR parameter in PLUS.ini, using the
following format:

ERROR = <preceding expC> [, <following expC>]

Description Use SET ERROR to customize the beginnings and endings of run-time error messages. SET ERROR TO
without an argument resets the beginnings and endings to the default values.

SET ERROR is similar to ON ERROR; both can be used to customize error messages. SET ERROR, however,
can only specify expressions to precede and follow a standard dBASE Plus error message, while ON ERROR
can specify the message itself. Also unlike ON ERROR, SET ERROR can't call a procedure that carries out a
series of commands.

Example Use SET ERROR to customize error messages.
SET ERROR TO "Oops! - ", " - Please fix this."
? "a" = 1 && generate a runtime error
SET ERROR TO

See Also ERROR(), MESSAGE(), ON ERROR

SET LDCHECK
Enables or disables language driver ID checking.

Syntax SET LDCHECK ON | off

Default The default for SET LDCHECK is ON. To change the default, set the LDCHECK parameter in PLUS.ini.

Description Use SET LDCHECK to disable or enable dBASE Plus's capability to check for language driver compatibility.
This capability is important if you work with dBASE tables created with different dBASE Plus configurations
or different international versions of dBASE Plus because it warns you of conflicting language drivers.

Language drivers determine the character set and sorting rules that dBASE Plus uses, so if you create a dBASE
table with one language driver and then use that file with a different language driver, some of the characters will
appear incorrectly and you may get incorrect results when querying data.

Example See LDRIVER()

See Also CHARSET(), LDRIVER()
753 dBL Language Reference

SET LDCONVERT
SET LDCONVERT
Determines whether data read from and written to character and memo fields is transliterated when the table
character set does not match the global language driver.

Syntax SET LDCONVERT ON | off

Default The default for SET LDCONVERT is ON. To change the default, set the LDCONVERT parameter in PLUS.ini.

Description Use SET LDCONVERT to determine whether the contents of character and memo fields in tables created with
a given language driver in effect, are converted to match the language driver in effect at the time the fields are
read or written to.

Language drivers determine the character set and sorting rules that dBASE Plus uses, so if you create a dBASE
table with one language driver and then use that file with a different language driver, some of the characters will
appear incorrectly and you may get incorrect results when querying data.

In general, SET LDCONVERT should be ON to insure that dBASE Plus behaves as expected when using data
created under disparate language drivers.

See Also CHARSET(), LDRIVER(), SET LDCHECK

SQLERROR()
Returns the number of the last server error.

Syntax SQLERROR()

Description Use SQLERROR() to determine the error number of the last server error. To learn the text of the error message
itself, use SQLMESSAGE().

See the table in the description of ERROR() that compares ERROR(), MESSAGE(), DBERROR(),
DBMESSAGE(), SQLERROR(), SQLMESSAGE(), and CERROR().

See online Help for a listing of all error messages.

Example The following example uses SQLERROR() and SQLMESSAGE() to return an SQL error number and SQL
error message to an ON ERROR routine that displays a MDI form with an error report:

ON ERROR DO ErrHndlr WITH ERROR(), MESSAGE(), ;
 SQLERROR(), SQLMESSAGE(), PROGRAM(), LINENO()
SET DBTYPE TO DBASE
OPEN DATABASE CAClients
SET DATABASE TO CAClients
errorCode = SQLEXEC("SELECT Company, City ;
 FROM Company WHERE State_Prov='CA'", "StateCA.DBF")
IF errorCode = 0
 SET DATABASE TO
 USE StateCa
 LIST
ENDIF
RETURN

PROCEDURE ErrHndlr
PARAMETERS nErrorNo, cErrMess, nSQLErrorNo, cSQLErrMess, cProgram, nLineNo
DEFINE FORM HeadsUp FROM 10,20 TO 20,55;
 PROPERTY Text "Heads Up"
DEFINE TEXT Line1 OF HeadsUp AT 2,10 ;
 PROPERTY Text "An Error has occurred", Width 24, ColorNormal "R+/W"
DEFINE TEXT Line2 OF HeadsUp AT 4,2;
 PROPERTY Text ;
 IIF(ERROR()=240,cSqlErrMess,cErrMess), Width 33
DEFINE TEXT Line3 OF HeadsUp AT 5,2;
 PROPERTY Text "Number: " + ;
 IIF(ERROR()=240,STR(nSQLErrorNo),STR(nErrorno)), Width 24
DEFINE TEXT Line4 OF HeadsUp AT 6,2;
Everything Else (Except Preprocessor) 754

SQLEXEC()
 PROPERTY Text "Program: "+ cProgram, Width 22
DEFINE TEXT Line5 OF HeadsUp AT 7,2;
 PROPERTY Text "Line #: " + STR(nLineno), Width 22
OPEN FORM HeadsUp

See Also CERROR(), DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), ON ERROR, RETRY,
SQLMESSAGE()

SQLEXEC()
Executes an SQL statement in the current database or on specified dBASE or Paradox tables.

Syntax SQLEXEC(<SQL statement expC> [,<Answer table expC>])

<SQL statement expC> A character string that contains an SQL statement. The SQL statement must
follow server-specific dialect rules for the current database and must be enclosed in quotes. For Paradox and
dBASE Plus tables, the dialect is the same as that used by the Borland InterBase database server, which is
ANSI-compliant. Character strings and SQL or BDE reserved words contained within the SQL statement must
also be enclosed in either single or double quotation marks. (Single quotation marks are normally used.).

<Answer table expC> Paradox or DBF table that stores the data returned by an SQL SELECT statement;
must also be in quotes. If you specify a file without including its path, dBASE Plus creates the file in the current
directory, then in the path you specify with SET PATH. If you specify a file without including its extension,
dBASE Plus assumes the default table type specified with the SET DBTYPE command. If you don't specify a
table name, dBASE Plus creates a table named Answer with the extension defined by the current DBTYPE
setting.

You can also specify the name of an already open database (defined for a file directory location only) as a prefix
(enclosed in colons) to the name of the answer table, that is, :database name:table name. You cannot specify the
location of an answer table on a database server.

Description SQLEXEC() executes a SQL statement in the current database set by SET DATABASE, or if a database is not
set, on tables in the current or a specified directory. (You can preface the name of a table with its directory
location or specify an already open database by enclosing the database name in colons, for example, :database
name:table name. If you're using Borland SQL Link to connect to a database server, dBASE Plus passes the
SQL statement you specify directly to the database server where the database selected by SET DATABASE
resides.

When an SQL statement contains SQL or BDE reserved words and you are executing the statement on DBF or
Paradox tables, you need to enclose the reserved words in single(‘) or double (“) quotation marks and use SQL
table aliases (different than the aliases associated with dBASE tables) to identify fields, for example:

SELECT * FROM company.dbf b WHERE b."CHAR" = 'element'

You can use table aliases to qualify fields specified in the SELECT, WHERE, GROUP BY, or ORDER BY clauses
of SELECT statements. This is particularly useful when querying data from more than one table.

SQLEXEC() returns error codes with the same values as those returned by ERROR() and MESSAGE(); a
value of zero indicates that no error occurred as a result of the statement's execution. If an error occurs, you can
use DBERROR() and DBMESSAGE() functions to return BDE errors or use the SQLERROR() and
SQLMESSAGE() functions to obtain information directly from the database server about the cause of an error.
(Also, the ERROR() function returns an error code of 240 if a server error occurs.)

Example The following example executes an SQL SELECT statement on the server table Company:
SET DBTYPE TO DBASE
OPEN DATABASE CAClients
SET DATABASE TO CAClients
errorCode = SQLEXEC("SELECT Company, City ;
 FROM Company WHERE State_Prov='CA'", "StateCA.DBF")
IF errorCode = 0
 SET DATABASE TO
 USE StateCa
 LIST
ENDIF
RETURN
755 dBL Language Reference

SQLMESSAGE()
See Also DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), OPEN DATABASE, SET DATABASE, SET
DBTYPE, SET PATH, SQLERROR(), SQLMESSAGE()

SQLMESSAGE()
Returns the most recent server error message.

Syntax SQLMESSAGE()

Description Use SQLMESSAGE() to determine the error message of the last server error. To learn the error code, use
SQLERROR().

See online Help for a listing of all error messages.

Example See SQLERROR()

See Also CERROR(), DBERROR(), DBMESSAGE(), ERROR(), MESSAGE(), ON ERROR, RETRY,
SQLERROR()

SUSPEND
Suspends program execution, temporarily returning control to the Command window.

Syntax SUSPEND

Description SUSPEND lets you interrupt program execution at a specific point, a break point. The program remains
suspended until you issue RESUME or CANCEL, or until you exit dBASE Plus. If you issue RESUME, the
program resumes from the break point. If you issue CANCEL, dBASE Plus cancels program execution.

While a program is suspended, you can enter commands in the Command window. For example, you can check
and change the status of files, memory variables, SET commands, and so on; however, dBASE Plus ignores any
changes you make to the program while it is suspended. If you want to correct a suspended program, issue
CANCEL, edit the program, and then run it again.

If you initialize memory variables in the Command window while a program is suspended, dBASE Plus makes
them private at the program level that suspension occurred.

You should not return to a suspended program by issuing DO <filename> in the Command window. If you do
so, you will end up with "nested" SUSPEND statements, and may not know that a program is still suspended. If
you want to run a suspended program from the beginning, issue CANCEL and then DO <filename>.

The dBASE Plus Debugger allows for more complex break points than using SUSPEND.

Example The following program prompts the entry of a 2-letter state abbreviation and lists the clients within that state. If
the program fails to return a list of clients, the programmer might insert the SUSPEND command just after the
second CLEAR to halt the program so that trouble shooting commands could be issued at the Command
window such as: ? mState to determine the value in the variable mState, LIST FOR STATE_PROV = "CA",
DISPLAY MEMORY, DISPLAY STATUS. Issue the command RESUME when ready to proceed with the
remainder of the program:

CLEAR
SET TALK OFF
USE CLIENTS
ACCEPT "Enter 2 letter State abbreviation: " TO mState
CLEAR
SUSPEND && To be removed after troubleshooting
? CENTER("Clients in "+UPPER(mState))
?
SCAN FOR State_Prov = UPPER(mState)
 ? Company, Contact, Startbal
ENDSCAN
RETURN

See Also CANCEL, DEBUG, DO, RESUME, QUIT
Everything Else (Except Preprocessor) 756

USER()
USER()
Returns the login name of the user currently logged in to a protected system.

Syntax USER()

Description The USER() function returns the log-in name used by an operator currently logged in to a system that uses
PROTECT to encrypt files. On a system that does not use PROTECT, USER() returns an empty string.

See Also ACCESS(), PROTECT

VERSION()
Returns the name and version number of the currently running copy of dBASE Plus.

Syntax VERSION([<expN>])

<expN> Any number, which causes VERSION() to return extended version information.

Description Although you may be able to use VERSION() in programs to take advantage of version-specific features, the
most common use of VERSION() is to get the exact build number of your copy of dBASE Plus to see if you
have the latest build. When called with no parameters, VERSION() returns a string like:

dBASE Plus 2.0

with the product name and the version number. If you pass a number, for example VERSION(1), you will get
extended build information, like:

dBASE Plus 2.0 b1672 (04/03/2002-EN020403)

which adds the build number after the “b” and the identifier and date of the language resource for that copy of
dBASE Plus. If you pass the number .89, you will get the build information for the Borland Database Engine
used, for example,

BDE version: 05/02/02

If you are running a dBASE Plus executable, the word "Runtime" appears in the string; for example:
dBASE Plus 2.0 Runtime
dBASE Plus 2.0 Runtime b1672 (04/03/2002-EN020403)

Example Suppose you have a class that represents your application. It has a method that checks if the string returned by
VERSION() contains the word "Runtime" to determine whether the application is being run in the IDE
workbench or as a compiled application:

function isRuntime()
 return ("RUNTIME" $ upper(version()))

In the method that terminates the application, you either quit or restore the IDE workbench (by calling other
methods in the class not shown here):

function shutdown()
 if this.isRuntime()
 quit
 else
 this.unloadProcFiles()
 this.restoreWorkbench()
 this.unhookGlobalErrorHandler()
 endif

See Also OS()
757 dBL Language Reference

C h a p t e r

Chapter 22Preprocessor
When dBASE Plus compiles a program file, that file is run through the preprocessor before it is actually compiled.
The preprocessor is a separate built-in utility that processes the text of the program file to prepare it for compilation.
Its duties include

• Stripping out comments from the program file

• Joins lines separated by the line continuation character

• Substituting macro-identifiers and macro-functions with the corresponding replacement text

• Including the text of other files in the program file

• Conditionally excluding parts of the program file so they are not compiled

The preprocessor generates an intermediate file; this is the file that is compiled by dBASE Plus’s compiler.

While those are the mechanics of the preprocessor, the usage of the preprocessor allows you to

• Replace constants and “magic numbers” in your code with easy-to-read and easy-to-change identifiers

• Create macro-functions to replace complex expressions with parameters

• Use collections of constant identifiers and macro-functions in multiple program files

• Maintain separate versions of your programs, for example debug and production versions, in the same
program files through conditional compilation

dBASE Plus’s preprocessor is similar to the preprocessor used in the C language. It uses a handful of
preprocessor directives to control its activities. All preprocessor directives start with the # character and each
one must be on its own, single line in the script file.

#define
Defines an identifier (name) for use in controlling program compilation, defining constants, or creating macro-
functions.

Syntax #define <identifier> [<replacement text>]

#define <identifier>(<parameter list>) <replacement text with parameters>

<identifier> A name. It identifies the text to replace if <replacement text> is supplied. The name must start
with an alphabetic character and can contain any combination of alphabetic or numeric characters, uppercase or
lowercase letters. The identifier is not case-sensitive.

(<parameter list>) Parameter names that correspond to arguments passed to a macro-function that you
create with #define <identifier>(<parameter list>) <replacement text>. If you specify multiple parameters,
separate each with a comma. There cannot be any spaces between the <identifier> and the opening parenthesis
of (<parameter list>), or after any of the parameter names in the <parameter list>.
758 dBL Language Reference

#define
<replacement text> The text you want to use to replace all occurrences of <identifier>. If you specify
<replacement text>, the preprocessor scans each source code line for identifiers and replaces each one it
encounters with the specified replacement text. <replacement text> can be any text that is part of a dBL
program, such as a string, numeric expression, or series of commands.

Description The #define directive defines an identifier and optionally lets you replace text in a program before compilation.
Each #define definition must begin on a new line and is limited to 4096 characters.

Identifiers are available only to the program in which they are defined. To define identifiers for use in multiple
programs, place them in a separate file and use #include to include that file as needed.

You must define an identifier in a file with the #define directive before you can use it. Once it has been defined,
you cannot #define it again; you must undefine it first with the #undef preprocessor directive.

Use the #define directive for the following purposes:

• To declare an identifier and assign replacement text to represent a constant value or a complex expression.

• To create a macro-function.

• To declare an identifier with no replacement text, so you can use it with the #ifdef or #ifndef directive.

• To declare an identifier with replacement text, so you can use it with the #if directive.

The effect of #define is similar to a word processor’s search-and-replace feature. When the preprocessor
encounters a #define identifier in the text of a script, it replaces that identifier with the <replacement text>. If
there is no <replacement text> for that identifier, the identifier is simply removed. For example:

#define test 4 // Create identifier with value
? test - 3 // (4 - 3) = 1
#undef test // #undef to change definition
#define test // Create identifier with no value
? test - 3 // (- 3) = -3

Because the preprocessor runs before a program is compiled and performs simple text substitution, the use of
#define statements can in effect override memory variables, built-in commands and functions, and any other
element having the same name as <identifier>. This is shown in the following examples.

// Overiding a variable
somevar = 25; // Creates variable
#define somevar 10; // Until further notice, "somevar" will be replaced
? somevar // Compiles argument as "10". Displays 10
#undef somevar // "somevar" no longer replaced
? somevar // Displays 25

// Overriding a function
#define cos(x) (42 + x) // Function adds 42
? cos(3) // Compiles argument as "(42 + 3)". Displays 45

To use #define directives in WFM and REP files generated by the Form and Report designers, place the
directives in the Header section of the file so that the definitions will not be erased by the designer.

Declaring identifiers to represent constants Assign an identifier to represent a constant value or
expression when you want the preprocessor to search for and replace all instances of the identifier with the
specified value or expression before compilation. When used in this manner, the identifier is known as a
manifest constant. It’s common practice to make the name of the manifest constant all uppercase, with
underscores between words so that it stands out in code. For example:

#define SECS_PER_HOUR 3600 // Number of seconds per hour
#define MSECS_PER_DAY (1000*24*SECS_PER_HOUR) // Number of milliseconds per day

Note that when using a manifest constant to represent a numeric expression, you should place the entire
expression inside parentheses. This prevents possible errors due to the precedence of operators used to evaluate
expressions. For example, consider the following calculation:

nDays = nTimeElapsed / MSECS_PER_DAY

Without parentheses, this statement would compile as:
nDays = nTimeElapsed / 1000*24*3600
759 dBL Language Reference

#define
That’s incorrect—it divides by 1000 then multiplies by 24 and 3600. (The multiplication and division operators
are at the same level of precedence, so the expression is evaluated from left to right.). By placing parentheses
around the manifest constant definition as shown, the statement would compile as:

nDays = nTimeElapsed / (1000*24*3600)

Because of the parentheses, the expression is evaluated correctly: the value of the constant is evaluated first,
then used as the divisor.

Manifest constants streamline your code and improve its readability because you can use a single identifier to
represent a frequently used constant or a complex expression. In addition, if you need to change the value of a
constant in your program, you need to change only the constant definition and not every occurrence of the
constant.

To replace an identifier only in parts of a program, insert #undef <identifier> into your program where you want
the search-and-replace process to stop.

Creating macro-functions When the preprocessor encounters a function call that matches a defined
macro-function, it replaces the function call with the replacement text, inserting the arguments of the function
call into the replacement text. This is shown in the following example.

#define avg(num1,num2) (((num1)+(num2))/2) // Average two numbers
// User developed code

n1=20
n2=40
? avg(n1, n2) // Displays 30

The arguments in the macro-function call are substituted exactly as they are shown in the macro-function
definition. In this example, the last statement compiles as:

? (((n1)+(n2))/2)

When using a macro-function to perform calculations, always use parentheses to enclose each parameter and the
entire expression in the macro-function definition as shown. If you leave them out, errors may result due to the
precedence of operators, as shown in these (somewhat contrived) examples:

#define avg(num1,num2) (((num1)+(num2))/2)
#define badAvg(num1,num2) (num1+num2)/2
? 12 / avg(2, 4) // 12/(6/2) --> displays 4
? 12 / badavg(2, 4) // 12/6/2 --> displays 1

Unlike functions in dBL, the number of arguments passed from a macro-function call must match the number of
parameters defined in your #define statement.

Declaring identifiers for conditional compilation In addition to using identifiers for constants
and macro-functions in dBL code, they are used for conditional compilation with the #if, #ifdef, and #ifndef
directives.

Defining an identifier without replacement text lets you use it with the #ifdef or #ifndef directive to test if the
identifier exists. When used in this manner, the existence of the identifier acts as a logical flag to either include
or exclude code for compilation.

When an identifier is defined with replacement text, you can use comparison operators to check the value of the
identifier in an #if directive, and conditionally compile code based on the result. You can also use #ifdef and
#ifndef to test for the existence of the identifier.

Nesting preprocessor identifiers You can nest preprocessor identifiers; that is, the replacement text
for one identifier may contain other identifiers, as long as those identifiers are already defined, as shown in the
following example:

#define SECS_PER_HOUR 3600 // Number of seconds per hour
#define MSECS_PER_DAY (1000*24*SECS_PER_HOUR) // Number of milliseconds per day

You cannot use the identifier being defined in its replacement text, however.

Example The first example uses a manifest constant to represent a “magic number.” Suppose your application is doing
metric conversions. Instead of sprinkling the conversion factor around in your code, which would just be a
cryptic number, you can #define it as a manifest constant, which eliminates the possibility that you might get the
number wrong in some places and makes your code self-documenting:

#define LB_PER_KG 2.2046 // Number of pounds per kilogram
// User developed code
Preprocessor 760

#else
nPounds = form.kg.value * LB_PER_KG

The second example uses a manifest constant to represent a simple constant in your application. Suppose you’re
testing several different techniques to see which one accomplishes the same task the fastest. You need to repeat
the task many times to get measurable results, so you use a manifest constant to represent the number of times
you want each test to be run. By using a single manifest constant, you can easily change the number of times
each test is run and calculate the average time:

#define NUM_REPS 10000// Number of times to repeat each test
 // User developed code

for n = 1 to NUM_REPS
 // Test 1
endfor
for n = 1 to NUM_REPS
 // Test 2
endfor

// User developed code
? "Average time for test 1", time[1] / NUM_REPS

The following example uses a manifest constant for a file name that is used in different parts of an application:
#define QWK_FILE "IMF.QWK"
#define MESSAGE_FILE "MESSAGES.DAT"

// User developed code
fMsg = new File()
fMsg.create(MESSAGE_FILE)

// User developed code
z = new ZipFile(QWK_FILE) // Create compressed file
z.store(MESSAGE_FILE) // Store the message file

 // User developed code
class ZipFile(cFileName) of File

 // Code to implement ZipFile class
endclass

This example demonstrates conditional compilation. Two preprocessor identifiers are used: a DEBUG flag, and
a BUILD number:

#define DEBUG // Comment out if not debug version
#define BUILD 35 // Current build number

 // User developed code
#if BUILD < 20
 // Older code
#else
 // Current code
 #ifdef DEBUG
 // Include DEBUG code
 #endif
#endif

See also #if, #ifdef, #ifndef, #include, #undef

#else
Designates an alternate block of code to conditionally compile if the condition specified by an #if, #ifdef, or #ifndef
directive is false.

Description See #if, #ifdef, and #ifndef for details.

#endif
Designates the end of an #if, #ifdef, or #ifndef directive.

Description See #if, #ifdef, and #ifndef for details.
761 dBL Language Reference

#if
#if
Controls conditional compilation of code based on the value of an identifier assigned with #define.

Syntax #if <condition>
<statements 1>
[#else
<statements 2>]
#endif

<condition> A logical expression, using an identifier you’ve defined, that evaluates to true or false.

<statements 1> Any number of statements and preprocessor directives. These lines are compiled if
<condition> evaluates to true.

#else <statements 2> Specifies the lines you want to compile if <condition> evaluates to false.

Description Use the #if directive to conditionally compile sections of source code based on the value of an identifier. Two
other directives, #ifdef and #ifndef, are also used to conditionally include or exclude code for compilation.
Unlike the #if directive, however, they test only for the existence of an identifier, not for its value.

The <condition> must be a simple logical condition; that is, a single test using one basic comparison operator (=,
==, <, >, <=, >=, <>). You may nest conditional compilation directives.

If the identifier is not defined, the <condition> always evaluates to false.

Conditional compilation is useful when maintaining different versions of the same program , for debugging, and
for managing the use of #include files. Using #if for conditional compilation is different than conditionally
executing code with an IF statement. With IF, the code still gets compiled into the resulting byte code file, even
if it is never executed. By using #if to exclude code you don’t want for a particular version of your program, the
code is never compiled into byte code.

When dBASE Plus’s preprocessor processes a file, it internally defines the preprocessor identifier
__version__(two underscores on both ends) with the current version number. Earlier versions of dBASE used
__dbasewin__ and __vdb__. Use these three built-in identifiers to manage code that’s intended to run on
different versions of dBASE.

The numeric values returned by these identifiers are as follows:

__dbasewin__ : 5.0 for dBASE 5.0, and 5.5, 5.6 or 5.7 for the versions of Visual dBASE 5.x

__vdb__ : 7.0, 7.01, 7.5 for Visual dBASE 7.x and 2000 for dBASE versions after Visual dBASE 7.5

__version__ : 1.0, 2.0, etc. depending on the release of a dBASE version after Visual dBASE 7.5

Note The display of the above values will be affected by the number of decimal places specified by SET DECIMALS, and the
separator specified by SET POINT.

Example The following example demonstrates how you would create code that runs on different versions of dBASE,
using the built-in identifiers __dbasewin__, __vdb__ and __version__:

#ifdef __dbasewin__
 && dBASE/Win or Visual dBASE 5.x
 #define version str(__dbasewin__,4,2)
#else
 #if __vdb__ < 2000
 // Visual dBASE 7.x
 #define version __vdb__
 #else
 // dBASE versions after Visual dBASE 7.5
 #define version __vdb__+" release "+__version__
 #endif
#endif
? "Version: " + version

Because code that is excluded by #if is never compiled, you can safely use new syntax that might be introduced
in a new version. When compiled with an older version of dBASE, the new code is ignored. This is different
than testing the version returned by the VERSION() function at run time. New syntax would not compile under
an older version.
Preprocessor 762

#ifdef
Note that for the pre-version 7 code, the older comment style is used.

See also #define, #ifdef, #ifndef

#ifdef
Controls conditional compilation of code based on the existence of an identifier created with #define.

Syntax #ifdef <identifier>
<statements 1>
[#else
<statements 2>]
#endif

<identifier> The identifier you want to test for. <identifier> is defined with the #define directive.

<statements 1> Any number of statements and preprocessor directives. These lines are compiled if
<identifier> has been defined.

#else <statements 2> Specifies the lines to compile if <identifier> has not been defined.

Description Use the #ifdef directive to conditionally compile sections of source code. If you’ve defined <identifier> with
#define, the code you specify with <statements 1> is compiled; otherwise, the code following #else, if any, is
compiled.

You may nest conditional compilation directives.

Conditional compilation is useful when maintaining different versions of the same program, for debugging
purposes, and for managing the use of #include files. Using #ifdef for conditional compilation is different than
not executing code with an IF statement. With IF, the code still gets compiled into the resulting byte code file,
even if it is never executed. By using #ifdef to exclude code you don’t want for a particular version of your
program, the code is never compiled into byte code.

Example The following example uses #ifdef to check for a identifier named DEBUG to determine if extra code should be
included to display trace information in the results pane of the Command window:

#define DEBUG // Comment out if not debug version
#ifdef DEBUG
 #define TRACE(m) ? m
#else
 #define TRACE(m)
#endif

// User developed code
// Process names in list

if form.rowset.first()
 do
 TRACE(form.rowset.fields["Last name"].value) // Display name as we go
 // Do whatever
 until not form.rowset.next()
endif

The macro-function TRACE() is defined so that if the DEBUG identifier is not defined, all calls to TRACE()
are replaced with nothing—they are removed from the code and not compiled. This allows you to use TRACE()
as much as you want, and with a simple change in the DEBUG identifier, remove all the code from the compiled
byte code, resulting in better performance.

See also #define, #if, #ifndef

#ifndef
Controls conditional compilation of code based on the existence of an identifier assigned with #define.

Syntax #ifndef <identifier>
<statements 1>
763 dBL Language Reference

#include
[#else
<statements 2>]
#endif

<identifier> The identifier you want to test for. <identifier> is defined with the #define directive.

<statements 1> Any number of statements and preprocessor directives. These lines are compiled if
<identifier> has not been defined.

#else <statements 2> Specifies the lines to compile if <identifier> has been defined.

Description Use the #ifndef directive to conditionally compile sections of source code. If you haven’t defined <identifier>
with #define, the code you specify with <statements 1> is compiled; otherwise, the code following #else, if any,
is compiled.

Use #ifndef if you want to include code only if the identifier is not defined. Otherwise, you can use #ifdef to
include code only if the identifier is defined, and #ifdef with its #else option to include different sets of code
depending on the existence of the identifier.

You may nest conditional compilation directives.

Conditional compilation is useful when maintaining different versions of the same program, for debugging
purposes, and for managing the use of #include files. Using #ifndef for conditional compilation is different than
not executing code with an IF statement. With IF, the code still gets compiled into the resulting byte code file,
even if it is never executed. By using #ifndef to exclude code you don’t want for a particular version of your
program, the code is never compiled into byte code.

Example When creating a set of #define directives in an #include file, enclose the entire set inside an #ifndef block and
#define a special identifier for that block. For example, here are some lines from the VDBASE.H file that
includes #define directives for many of the enumerated values used in dBASE Plus:

#ifndef VDBASE_H
#define VDBASE_H

// Constants for MSGBOX()
#define OK_BUTTON 0
#define OK_CANCEL_BUTTONS 1
#define ABORT_RETRY_IGNORE_BUTTONS 2
#define YES_NO_CANCEL_BUTTONS 3
#define YES_NO_BUTTONS 4
#define RETRY_CANCEL_BUTTONS 5

#endif

If you #include the same file twice in the same program file (which often happens because some #include files
#include other files), the #ifndef directive will make sure that #define directives are processed only once.
Attempting to #define the same identifier twice causes an error.

See also #define, #if, #ifdef

#include
Inserts the contents of the specified source file (known as an include or header file) into the current program file at
the location of the #include statement.

Syntax #include <filename> | "<filename>"

<filename> | “<filename>” The name of the file, optionally including a full or partial path, whose
contents are to be inserted into the current program file. You can specify the file name within or without quotes.
An include file typically has an .h file-name extension.

If you specify <filename> without a path, the preprocessor uses the following search order:

1 It searches the current directory for the file exactly as you’ve specified it.

2 If you omitted the .h file-name extension, it adds the extension and searches the current directory.

3 If it can’t find the file in the current directory, it looks in <home directory>\ INCLUDE. (The home directory
is the one in the _DBWINHOME system memory variable.)
Preprocessor 764

#pragma
4 If it can’t find the file in the current directory or <home directory>\INCLUDE, it looks in the directory you
specify with the DOS environment variable INCLUDE.

Description The effect of #include is as if the contents of the specified file were typed into the current program file at the
location of the #include statement. The specified file is called an include file. #include is used primarily for files
which have #define directives.

Identifiers are available only to the program in which they are defined. To use a single set of identifiers in
multiple programs, save the #define statements in a file, then use the #include directive to define the identifiers
in additional programs.

An advantage of having all the #define statements in one file is the ease of maintenance. If you need to modify
any of the #define statements, you need only change the include file; the program files that use the #define
statements remain unchanged. After you modify the include file, recompile your program file for the changes to
take effect.

To use #include directives in WFM and REP files generated by the Form and Report designers, place the
directives in the Header section of the file so that the definitions will not be erased by the designer.

Example You may want to set up a standard include file that you use in all your script files that contains manifest
constants and macro-functions that you use through your application. For example:

// Std.h
#include "VDBASE.H" // Contains #defines for enums
#define CONFIRM(m,t) (msgbox(m,t,4+32)==BUTTON_YES)

Place the STD.H file in dBASE Plus’s INCLUDE subdirectory so that it’s easily accessible. Then at the top of
every program, #include that file:

#include "STD.H"
// User developed code

if CONFIRM("This record will be lost forever! You sure?", "Delete")

See also #define

#pragma
Sets compiler options.

Syntax #pragma <compiler option>

<compiler option> The compiler option to set.

Description Use the #pragma to set compiler options. The only option supported in this version of dBASE Plus is:

coverage(ON | OFF) Enables or disables the inclusion of coverage analysis information in the resulting
byte code file.

Coverage analysis provides information about which program lines are executed. To provide coverage analysis,
a program file must be compiled to include the extra coverage analysis information.

SET COVERAGE controls whether programs are compiled with coverage information. Use #pragma
coverage() in your program file to override the SET COVERAGE setting for that particular file.

Note Do not specify both #pragma coverage(ON) and #pragma coverage(OFF) in the same program file. The last
#pragma takes effect; all others are ignored.

For more information about coverage files, see SET COVERAGE.

Example The following example uses #pragma to enable coverage analysis if the DEBUG constant has been #defined:
#ifdef DEBUG
 #pragma coverage(on)
#else
 #pragma coverage(off)
#endif

See Also #define, SET COVERAGE
765 dBL Language Reference

#undef
#undef
Removes the current definition of the specified identifier previously defined with #define.

Syntax #undef <identifier>

<identifier> The identifier whose definition you want to remove.

Description The #undef directive removes the definition of an identifier previously defined with the #define directive. If you
use #define with <replacement text>, the preprocessor replaces all instances of the identifier with the
replacement text from the point it encounters that #define until it encounters an #undef specifying the same
identifier. Therefore, to replace an identifier only in parts
of a program, insert #undef <identifier> into your program where you want the search-and-replace process to
stop.

#undef is also required if you want to change the <replacement text> for an identifier. You cannot use #define
for an identifier that is already defined. You must #undef the identifier first, then specify a new #define
directive.

Attempting to #undef an identifier that is not defined has no effect; no error is generated.

Example In this example, the script file has numerous #ifdef DEBUG statements to conditionally compile debug code.
You want to use the debug code for only one section in the file, so you #define DEBUG at the beginning of the
section, and #undef DEBUG at the end:

// User developed code
#define DEBUG
// Some code
#ifdef DEBUG
 // Debug code
#endif
// More code
#undef DEBUG

// User developed code
// Some more code
#ifdef DEBUG
 // More debug code
#endif

See also #define

Preprocessor Identifiers
Identifies the current dBASE or dBASE Plus version number.

Description When dBASE Plus’s preprocessor processes a file, it internally defines the preprocessor identifier __version__
(two underscores on both ends) with the current version number. Earlier versions of dBASE used __dbasewin__
and __vdb__. Use these three built-in identifiers to manage code that’s intended to run on different versions of
dBASE.

The numeric values returned by these preprocessor identifiers are as follows:

__dbasewin__ : 5.0 for dBASE 5.0, and 5.5, 5.6 or 5.7 for the versions of Visual dBASE 5.x

__vdb__ : 7.0, 7.01, 7.5 for Visual dBASE 7.x and 2000 for dBASE Plus

__version__ : 0.1, 0.2, 0.3, 0.4, etc. depending on the release of dBASE Plus

Note The display of the above values will be affected by the number of decimal places specified by SET DECIMALS, and the
separator specified by SET POINT.

Identifies the current dBASE version number.

Example The following example demonstrates how you would create code that runs on different versions of dBASE,
using the built-in identifiers __dbasewin__, __vdb__ and __version__:

#ifdef __dbasewin__
 && dBASE/Win or Visual dBASE 5.x
Preprocessor 766

Preprocessor Identifiers
 #define version str(__dbasewin__,4,2)
#else
 #if __vdb__ < 2000
 // Visual dBASE 7.x
 #define version __vdb__
 #else
 // dBASE versions after Visual dBASE 7.5
 #define version __vdb__+" release "+__version__
 #endif
#endif
? "Version: " + version

Because code that is excluded by #if is never compiled, you can safely use new syntax that might be introduced
in a new version. When compiled with an older version of dBASE, the new code is ignored. This is different
than testing the version returned by the VERSION() function at run time. New syntax would not compile under
an older version.
Note that for the pre-version 7 code, the older comment style is used.

See also #if, VERSION()
767 dBL Language Reference

A p p e n d i x

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
 0 00 <null> 42 2A * 84 54 T 126 7E ~
 1 01 A 43 2B + 85 55 U 127 7F
 2 02 B 44 2C , 86 56 V 128 80 Ç
 3 03 C 45 2D - 87 57 W 129 81 ü
 4 04 D 46 2E . 88 58 X 130 82 é
 5 05 E 47 2F / 89 59 Y 131 83 â
 6 06 F 48 30 0 90 5A Z 132 84 ä
 7 07 G 49 31 1 91 5B [133 85 à
 8 08 H 50 32 2 92 5C \ 134 86 å
 9 09 I 51 33 3 93 5D] 135 87 ç
10 0A J 52 34 4 94 5E ^ 136 88 ê
11 0B K 53 35 5 95 5F _ 137 89 ë
12 0C L 54 36 6 96 60 ` 138 8A è
13 0D M 55 37 7 97 61 a 139 8B ï
14 0E N 56 38 8 98 62 b 140 8C î
15 0F O 57 39 9 99 63 c 141 8D ì
16 10 P 58 3A : 100 64 d 142 8E Ä
17 11 Q 59 3B ; 101 65 e 143 8F Å
18 12 R 60 3C < 102 66 f 144 90 É
19 13 S 61 3D = 103 67 g 145 91 æ
20 14 T 62 3E > 104 68 h 146 92 Æ
21 15 U 63 3F ? 105 69 i 147 93 ô
22 16 V 64 40 @ 106 6A j 148 94 ö
23 17 W 65 41 A 107 6B k 149 95 ò
24 18 X 66 42 B 108 6C l 150 96 û
25 19 Y 67 43 C 109 6D m 151 97 ù
26 1A Z 68 44 D 110 6E n 152 98 ÿ
27 1B [69 45 E 111 6F o 153 99 Ö
28 1C \ 70 46 F 112 70 p 154 9A Ü
29 1D] 71 47 G 113 71 q 155 9B ›
30 1E ^ 72 48 H 114 72 r 156 9C £
31 1F _ 73 49 I 115 73 s 157 9D ¥
32 20 <space 74 4A J 116 74 t 158 9E Pt
33 21 ! 75 4B K 117 75 u 159 9F ƒ
34 22 " 76 4C L 118 76 v 160 A0 á
35 23 # 77 4D M 119 77 w 161 A1 í
36 24 $ 78 4E N 120 78 x 162 A2 ó
37 25 % 79 4F O 121 79 y 163 A3 ú
38 26 & 80 50 P 122 7A z 164 A4 ñ
39 27 ' 81 51 Q 123 7B { 165 A5 Ñ
40 28 (82 52 R 124 7C ¦ 166 A6 ¦
41 29) 83 53 S 125 7D } 167 A7 §

Appendix AASCII character chart
(code page 437)
768 dBL Language Reference

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
168 A8 ¿ 190 BE ¾ 212 D4 Ô 234 EA ê

169 A9 © 191 BF ¿ 213 D5 Õ 235 EB ë

170 AA ª 192 C0 À 214 D6 Ö 236 EC ∞

171 AB « 193 C1 Á 215 D7 × 237 ED í

172 AC ¬ 194 C2 Â 216 D8 Ø 238 EE î

173 AD ¡ 195 C3 Ã 217 D9 Ù 239 EF ï

174 AE ® 196 C4 Ä 218 DA Ú 240 F0 ≡
175 AF ¯ 197 C5 Å 219 DB Û 241 F1 ±
176 B0 ° 198 C6 Æ 220 DC Ü 242 F2 ≥
177 B1 ± 199 C7 Ç 221 DD Ý 243 F3 ≤

178 B2 ² 200 C8 È 222 DE Þ 244 F4 ⌠
179 B3 ³ 201 C9 É 223 DF ß 245 F5 ⌡

180 B4 ´ 202 CA Ê 224 E0 à 246 F6 ÷

181 B5 µ 203 CB Ë 225 E1 á 247 F7 ≈

182 B6 ¶ 204 CC Ì 226 E2 â 248 F8 °

183 B7 · 205 CD Í 227 E3 ã 249 F9 •
184 B8 ¸ 206 CE Î 228 E4 ä 250 FA •

185 B9 ¹ 207 CF Ï 229 E5 å 251 FB √

186 BA º 208 D0 Ð 230 E6 æ 252 FC n

187 BB » 209 D1 Ñ 231 E7 ç 253 FD ²
188 BC ¼ 210 D2 Ò 232 E8 è 254 FE Ý

189 BD ½ 211 D3 Ó 233 E9 é 255 FF
769 dBL Language Reference

A p p e n d i x

Appendix BFile structures
This appendix provides information on the structure of the dBASE table (.DBF) and the memo (.DBT) files.

Note Table specifications for dBASE Plus apply to level 5 tables only.

Table header and records
A dBASE table file (.DBF) is composed of a header, data records, deletion flags, and an end-of-file marker. The
header contains information about the file structure, and the records contain the actual data. One byte of each
record is reserved for the deletion flag.

Table header structure
The header structure, detailed in Table 22.1 and Table 22.2, provides information that dBASE Plus uses to
maintain the table file.

Table 22.1 dBASE table file header

Byte Contents Description
0 1 byte Valid dBASE Plus table file; bits 0–2 indicate version number; bit 3 indicates presence of

a dBASE IV or dBASE Plus memo file; bits 4–6 indicate the presence of a dBASE IV
SQL table; bit 7 indicates the presence of any .DBT memo file (either a dBASE III PLUS
type or a dBASE IV or dBASE Plus memo file)

1–3 3 bytes Date of last update; in YYMMDD format

1. Each byte contains the number as a binary. YY is added to a base of 1900 decimal to determine the actual year. Therefore YY has
possible values from 00-FF, which allows for a range from 1900 to 2155.

.1

4–7 32-bit number Number of records in the table
8–9 16-bit number Number of bytes in the header
10–11 16-bit number Number of bytes in the record
12–13 2 bytes Reserved; filled with zeros
14 1 byte Flag indicating incomplete dBASE IV transaction2

2. Flag not used by dBASE Plus; in dBASE IV, BEGIN TRANSACTION sets this flag to 01H, END TRANSACTION and
ROLLBACK resets it to 00H.

15 1 byte dBASE IV encryption flag3

16–27 12 bytes Reserved for multi-user processing
28 1 byte Production .MDX flag; 01H stored in this byte if a production .MDX file exists for this

table; 00H stored if no .MDX file exists
29 1 byte Language driver ID
30–31 2 bytes Reserved; filled with zeros
32 – n4 32 bytes each Field descriptor array (the structure of this array is shown in Table B-2).
n + 1 1 byte 0DH stored as the field terminator
770 dBL Language Reference

Table 22.2 Table field descriptor bytes

Byte Contents Description
0–10 11 bytes Field name in ASCII (zero-filled)
11 1 byte Field type in ASCII (B, C, D, F, G, L, M, or N)
12–15 4 bytes Reserved
16 1 byte Field length in binary
17 1 byte Field decimal count in binary
18–19 2 bytes Reserved
20 1 byte Work area ID
21–30 10 bytes Reserved
31 1 byte Production .MDX field flag; 01H if field has an index tag in the production .MDX file; 00H if

field is not indexed

Table records
The records follow the header in the table file. Data records are preceded by one byte, that is, a space (20H) if
the record is not deleted, an asterisk (2AH) if the record is deleted. Fields are packed into records without field
separators or record terminators. The end of the file is marked by a single byte, with the end-of-file marker, an
OEM Code Page character value of 26 (1AH). You can input OEM code page data as indicated in Table 22.3.

Table 22.3 Allowable input for dBASE data types

Data type Data input
B (Binary) All OEM code page characters (stored internally as 10 digits representing a .DBT block

number)
C (Character) All OEM code page characters
D (Date) Numbers and a character to separate month, day, and year (stored internally as 8 digits

in YYYYMMDD format)
G (General or OLE) All OEM code page characters (stored internally as 10 digits representing a .DBT block

number)
N (Numeric) and F (Floating Point) – . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized)
M (Memo) All OEM code page characters (stored internally as 10 digits representing a .DBT block

number)

Binary, memo, and OLE fields and .DBT files
Binary, memo, and OLE fields store data in .DBT files consisting of blocks numbered sequentially (0, 1, 2, and
so on). SET BLOCKSIZE determines the size of each block. The first block in the .DBT file, block 0, is the
.DBT file header.

Each binary, memo, or OLE field of each record in the .DBF file contains the number of the block (in OEM
code page values) where the field's data actually begins. If a field contains no data, the .DBF file contains blanks
(20H) rather than a number.

When data is changed in a field, the block numbers may also change and the number in the .DBF may be
changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field (or binary and OLE fields), dBASE Plus (like
dBASE IV) may reuse the space from the deleted text when you input new text. dBASE III PLUS always
appends new text to the end of the .DBT file. In dBASE III PLUS, the .DBT file size grows whenever new text
is added, even if other text in the file is deleted.

3. Encryption not supported in dBASE Plus; in dBASE IV, if flag is set to 01H, the table is encrypted.
4. n is the last byte in the field descriptor array. The size of the array depends on the number of fields in the table file.
771 dBL Language Reference

A p p e n d i x

Appendix CError codes
Table 22.4 Error codes and associated messages

Code Message
1 Error creating file
2 Error opening file
3 Error closing file
4 End of table encountered
5 Record out of range
6 Error positioning in file
7 File does not exist
8 File already exists
9 File already open

10 Unable to rename file
11 Structure invalid
12 Invalid COV file
13 dBASE IV binary report file not supported - use component builder to convert it
14 Invalid label file
15 dBASE IV binary label file not supported - use component builder to convert it
16 Invalid memory variable file
17 Invalid PRO / FMO file
18 Invalid query file
19 Invalid report file
20 Invalid driver name or insufficient system resources
21 Invalid view file
22 Invalid window file
23 Operation not allowed for calculated fields
24 Operation not allowed on read-only files
25 Bad field name
26 Bad field type
28 Duplicate field name
29 Error writing file
30 Not a valid dBASE Plus table
31 No such record in index
32 Illegal key
33 WindowMenu must be on child of MenuBar
34 No table in use in area
35 Table is not indexed
772 dBL Language Reference

36 Maximum number of fields reached
40 Field not found
41 Cyclic RELATION not allowed
42 Work area already used in relation
44 Too many RELATIONs in this chain
47 Too many index files
48 Invalid order number
49 No fields were found to process
50 Field must be a memo field
51 Field must be a binary field
53 Tag not found
54 Unrecognized command verb
55 Command too large
56 Expression expected
57 Expression too large
58 Too few arguments. Expecting at least
59 Too many arguments. Expecting at most
61 Unterminated string
62 Unbalanced parentheses
63 Syntax error
67 Something is missing. Expecting
68 Unknown keyword
70 PARAMETERS command must be at top of function or procedure
71 Invalid name character
74 ENDIF encountered without preceding IF
75 Missing ENDIF
76 ENDDO encountered without preceding WHILE
77 Missing ENDDO
78 NEXT encountered without preceding FOR
79 Missing NEXT
80 ENDSCAN encountered without preceding SCAN
81 Missing ENDSCAN
82 UNTIL encountered without preceding DO
83 Missing UNTIL
84 ENDCASE encountered without preceding CASE
85 Missing ENDCASE
86 ENDPRINTJOB command encountered without previous PRINTJOB command
87 Missing ENDPRINTJOB
88 ENDCLASS/PROTECT command encountered without previous CLASS command
89 Missing ENDCLASS
90 ENDTEXT command encountered without previous TEXT command
91 Missing ENDTEXT
94 Loop stack overflow.
95 Too many nested FOR loops.
96 Too many nested SCAN loops.
97 Unallowed phrase/keyword in command
98 Keyword Repeated
100 UDF must return a value
101 Too many dimensions
102 Too many UDF/PROCEDUREs defined in program

Table 22.4 Error codes and associated messages (continued)

Code Message
773 dBL Language Reference

103 Invalid FUNCTION or PROCEDURE name
104 Invalid CLASS name
105 Invalid MEMBER name
106 Program too big to compile
107 Not enough memory for this operation
108 In use by another
109 Record is in use by another
110 Command requires exclusive use of table
111 Memory variable space exhausted
112 Not enough memory for DOS
114 Filename space exhausted
115 Only valid in program files
116 No PARAMETERS statement found
117 Unmatched parameters
118 Program not SUSPENDed
119 No such bar
120 No such menu
121 No such pad
122 No such popup
124 No such window
125 No such window
126 No such form object
127 Menu already active
128 Popup already active
129 Unable to add data while constraints active
130 Windows print file name longer than 31 characters
131 Printer is either not connected or turned off
132 Window out of range
133 Unauthorized access level
134 No bars defined for popup/pulldown
135 Bars already defined for popup.
136 Bars must have a positive value.
139 Cannot release active
140 Datasource/Prompt cannot be MEMO/OLE/BINARY
142 Cannot change property while form is open
143 Expecting reference to MENU object
144 First class in menu file is not derived from MENU
145 Cannot have more than one form object with the same name
146 Internal stack overflow
147 Internal stack underflow
148 Stack overflow
149 Runtime buffer overflow
150 String buffer overflow
151 Attempt to free a bad memory block
152 Attempt to load a bad icode block
153 Macros cannot expand flow of control commands
154 Expanded macro variable does not return a valid identifier
155 Cannot assign to reserved word NULL
156 Numbers are not allowed in the CURRENCY symbol
157 Illegal work area number or alias

Table 22.4 Error codes and associated messages (continued)

Code Message
Error codes 774

158 Illegal value
159 UDF or procedure already exists
160 Unable to execute DOS
161 Too many nested expressions
162 Nested views not allowed
163 Data type mismatch. Expecting
164 Out of range
167 Variable undefined
168 Not an array
169 Illegal Opcode
172 Maximum number of nested FOR NEXT loops exceeded
175 Maximum number of DO or UDF parameters exceeded
178 Alias not found
179 MEMO field not allowed here
180 ALIAS already in use
181 Processing would exceed maximum allowed string length
182 Procedure not found
185 Illegal file name
186 Beginning of table encountered
187 Error reading file
188 Unexpected type
189 Printer error
190 Memory variable already defined - cannot make PUBLIC
191 CONTINUE without previous LOCATE
192 Value out of range
193 Invalid subscript reference
196 Invalid printer redirection
197 Cannot execute this command when DESIGN is off
198 Command not functional in this release of dBASE for Windows
199 Restricted command: not allowed in this context
200 Command will never be reached
201 Command not functional in dBASE for Windows
202 Extra characters ignored at end of command
203 Program was previously compiled with SET COVERAGE OFF
206 Drive not ready
207 UDF or PROCEDURE not found
209 Too many files open
210 Invalid directory
211 Invalid disk drive
212 Cannot redefine active menu
214 No such listbox
215 Window not active
217 Symbol table space exhausted. Increase to
218 SET FIELDS space exhausted
219 No previous DO WHILE/SCAN/PRINTJOB/FOR to match this command
221 Too many nested DO/UDF
222 Maximum number of locked records exceeded
223 Sharing buffers are full
224 Error unlocking file
225 Unmatched #else

Table 22.4 Error codes and associated messages (continued)

Code Message
775 dBL Language Reference

226 Unmatched #endif
227 Maximum #ifdef nesting exceeded
228 Expecting #endif
229 Preprocessor expansion too large
230 Include file not found
231 Table already open
232 Database already open
234 Operation not allowed in transaction
236 Operation not allowed on this table
237 Index is not open
239 IDAPI Error
240 Server Error
241 Database not opened
242 Invalid value for convert size (8-24)
243 Invalid file Handle
244 IDAPI Not Initialized
245 Cannot UPDATE a table with itself
246 Invalid Catalog
247 Invalid password
248 Access denied
249 Can only change draft mode on page boundaries
250 Can only change page orientation on page boundaries
251 Already in printjob
252 Wrong version of IDAPI01.DLL
253 No print driver selected
254 No pads defined for
255 AUTOEXTERN not supported for this database
256 Output parameter required
257 Attempting to call a method as a function
258 Method is not available on object
259 No Records Selected
260 Internal Exception Error
261 Stored procedures not supported
262 Form cannot be MDI
265 Resource not found
266 Cannot load print driver
267 Cannot paste more than one file
268 Cannot recognize dropped file
269 Cannot Paste selection
270 Cannot Copy selection
271 Cannot Package file
272 Cannot activate object. OLE server is busy
273 Cannot update linked object
274 Unknown error saving window contents
275 Cannot perform operation on static object
276 Error connecting to OLE server. May be bad object path if a link.
277 Invalid command verb for OLE object
278 OLE object error
279 OLE BLOB field is corrupted
280 OLE BLOB field data is from an incompatible version

Table 22.4 Error codes and associated messages (continued)

Code Message
Error codes 776

281 Attempt to access released object
282 Property is read only
283 only 1 or 2 dimensional array is allowed in this operation
284 Report Engine Error
285 Property not found
286 Operation not allowed on read-only fields
287 Operation not allowed on read-only tables
288 An Editor or Viewer of a memo field is still open
289 Not member of Class or Base class
290 SUPER not allowed when THIS is undefined
291 Unable to open form
292 Unable to create control
293 No such form
294 The system registry does not contain an OLE server for a file with extension
295 OLE: cannot create link
298 Constant is already #defined
299 Field must be an OLE field
301 Position not in window
302 Invalid Color
303 Parameter type '...' can only be used with CDECL calling convention
304 DLL does not support Multiple Instances
305 Error loading DLL
306 Extern
307 Parent is not a REPORT
308 Parent is not a PAGETEMPLATE or BANDBODY
309 Error Saving VBX
310 BINARY field not allowed here
311 OLE field not allowed here
312 Popup too small
313 Error creating palette
314 OLE Error
315 only 1 dimensional array is allowed in this operation
316 Incomplete link specification
317 Selected tables cannot be related
318 Too many symbols in this module
319 Cannot create directory
320 Invalid table name
321 Invalid preprocessor identifier
322 DLL not Loaded
323 Invalid key label
324 Only allowed in function or procedure scope
325 Not a valid table
326 Port not configured for a printer
327 #includes nested too deeply
328 Index expressions not allowed for INTEGRITY rules
329 Related records still exist in alias
330 SET KEY active in alias
331 Relation using CONSTRAIN
332 No matching parent record
333 Operation not allowed across different databases or table types

Table 22.4 Error codes and associated messages (continued)

Code Message
777 dBL Language Reference

334 Key already exists in parent
335 First class in .WFM file is not derived from FORM
336 Relation expression and active index expression must be the same
337 Memo file does not exist
338 Production index file does not exist
339 Invalid file privileges
340 Form already open
341 Error reading from binary field
342 Must convert report before modifying
343 Class does not exist
344 Fix or remove errors before running query
345 PRIMARY must start with first field
346 Fields must be in consecutive order
347 Report writer has not been installed
348 VBX dlls cannot be RELEASED
349 VBStream file Missing or Corrupt
350 Cannot JOIN table with itself
351 Cannot assign to reserved word THIS
352 OLE Unknown interface
353 OLE Member Not found
354 OLE Parameter Not found
355 OLE Data Type Mismatch
356 OLE Unknown name
357 OLE No Named arguments
358 OLE Bad Variable Type
359 OLE Dispatch Exception
360 OLE Overflow
361 OLE Invalid Subscript
362 OLE Unknown Class
363 OLE Array is locked
364 OLE Bad parameter count
365 OLE Parameter not optional
366 OLE Bad call
367 OLE Not a collection
368 OLE Unknown error
369 OLE Object does not support automation
370 OLE Unable to create object
371 OLE Class name not in registry
372 In use by another
373 Record is in use by another
374 Property is not accessible

Table 22.5 Error codes in alphabetical order

Message Code
#includes nested too deeply 327
Access denied 248
ALIAS already in use 180
Alias not found 178
Already in printjob 251
An Editor or Viewer of a memo field is still open 288

Table 22.4 Error codes and associated messages (continued)

Code Message
Error codes 778

Attempt to access released object 281
Attempt to free a bad memory block 151
Attempt to load a bad icode block 152
Attempting to call a method as a function 257
AUTOEXTERN not supported for this database 255
Bad field name 25
Bad field type 26
Bars already defined for popup. 135
Bars must have a positive value. 136
Beginning of table encountered 186
BINARY field not allowed here 310
Can only change draft mode on page boundaries 249
Can only change page orientation on page boundaries 250
Cannot activate object. OLE server is busy 272
Cannot assign to reserved word NULL 155
Cannot assign to reserved word THIS 351
Cannot change property while form is open 142
Cannot Copy selection 270
Cannot create directory 319
Cannot execute this command when DESIGN is off 197
Cannot have more than one form object with the same name 145
Cannot JOIN table with itself 350
Cannot load print driver 266
Cannot Package file 271
Cannot paste more than one file 267
Cannot Paste selection 269
Cannot perform operation on static object 275
Cannot recognize dropped file 268
Cannot redefine active menu 212
Cannot release active 139
Cannot UPDATE a table with itself 245
Cannot update linked object 273
Class does not exist 343
Command not functional in dBASE for Windows 201
Command not functional in this release of dBASE for Windows 198
Command requires exclusive use of table 110
Command too large 55
Command will never be reached 200
Constant is already #defined 298
CONTINUE without previous LOCATE 191
Cyclic RELATION not allowed 41
Data type mismatch. Expecting 163
Database already open 232
Database not opened 241
Datasource/Prompt cannot be MEMO/OLE/BINARY 140
dBASE IV binary label file not supported - use component builder to convert it 15
dBASE IV binary report file not supported - use component builder to convert it 13
DLL does not support Multiple Instances 304
DLL not Loaded 322
Drive not ready 206

Table 22.5 Error codes in alphabetical order (continued)

Message Code
779 dBL Language Reference

Duplicate field name 28
End of table encountered 4
ENDCASE encountered without preceding CASE 84
ENDCLASS/PROTECT command encountered without previous CLASS command 88
ENDDO encountered without preceding WHILE 76
ENDIF encountered without preceding IF 74
ENDPRINTJOB command encountered without previous PRINTJOB command 86
ENDSCAN encountered without preceding SCAN 80
ENDTEXT command encountered without previous TEXT command 90
Error closing file 3
Error connecting to OLE server. May be bad object path if a link. 276
Error creating file 1
Error creating palette 313
Error loading DLL 305
Error opening file 2
Error positioning in file 6
Error reading file 187
Error reading from binary field 341
Error Saving VBX 309
Error unlocking file 224
Error writing file 29
Expanded macro variable does not return a valid identifier 154
Expecting #endif 228
Expecting reference to MENU object 143
Expression expected 56
Expression too large 57
Extern 306
Extra characters ignored at end of command 202
Field must be a binary field 51
Field must be a memo field 50
Field must be an OLE field 299
Field not found 40
Fields must be in consecutive order 346
File already exists 8
File already open 9
File does not exist 7
Filename space exhausted 114
First class in .WFM file is not derived from FORM 335
First class in menu file is not derived from MENU 144
Fix or remove errors before running query 344
Form already open 340
Form cannot be MDI 262
IDAPI Error 239
IDAPI Not Initialized 244
Illegal file name 185
Illegal key 32
Illegal Opcode 169
Illegal value 158
Illegal work area number or alias 157
In use by another 108

Table 22.5 Error codes in alphabetical order (continued)

Message Code
Error codes 780

In use by another 372
Include file not found 230
Incomplete link specification 316
Index expressions not allowed for INTEGRITY rules 328
Index is not open 237
Internal Exception Error 260
Internal stack overflow 146
Internal stack underflow 147
Invalid Catalog 246
Invalid CLASS name 104
Invalid Color 302
Invalid command verb for OLE object 277
Invalid COV file 12
Invalid directory 210
Invalid disk drive 211
Invalid driver name or insufficient system resources 20
Invalid file Handle 243
Invalid file privileges 339
Invalid FUNCTION or PROCEDURE name 103
Invalid key label 323
Invalid label file 14
Invalid MEMBER name 105
Invalid memory variable file 16
Invalid name character 71
Invalid order number 48
Invalid password 247
Invalid preprocessor identifier 321
Invalid printer redirection 196
Invalid PRO / FMO file 17
Invalid query file 18
Invalid report file 19
Invalid subscript reference 193
Invalid table name 320
Invalid value for convert size (8-24) 242
Invalid view file 21
Invalid window file 22
Key already exists in parent 334
Keyword Repeated 98
Loop stack overflow. 94
Macros cannot expand flow of control commands 153
Maximum #ifdef nesting exceeded 227
Maximum number of DO or UDF parameters exceeded 175
Maximum number of fields reached 36
Maximum number of locked records exceeded 222
Maximum number of nested FOR NEXT loops exceeded 172
MEMO field not allowed here 179
Memo file does not exist 337
Memory variable already defined - cannot make PUBLIC 190
Memory variable space exhausted 111
Menu already active 127

Table 22.5 Error codes in alphabetical order (continued)

Message Code
781 dBL Language Reference

Method is not available on object 258
Missing ENDCASE 85
Missing ENDCLASS 89
Missing ENDDO 77
Missing ENDIF 75
Missing ENDPRINTJOB 87
Missing ENDSCAN 81
Missing ENDTEXT 91
Missing NEXT 79
Missing UNTIL 83
Must convert report before modifying 342
Nested views not allowed 162
NEXT encountered without preceding FOR 78
No bars defined for popup/pulldown 134
No fields were found to process 49
No matching parent record 332
No pads defined for 254
No PARAMETERS statement found 116
No previous DO WHILE/SCAN/PRINTJOB/FOR to match this command 219
No print driver selected 253
No Records Selected 259
No such bar 119
No such form 293
No such form object 126
No such listbox 214
No such menu 120
No such pad 121
No such popup 122
No such record in index 31
No such window 124
No such window 125
No table in use in area 34
Not a valid dBASE Plus table 30
Not a valid table 325
Not an array 168
Not enough memory for DOS 112
Not enough memory for this operation 107
Not member of Class or Base class 289
Numbers are not allowed in the CURRENCY symbol 156
OLE Array is locked 363
OLE Bad call 366
OLE Bad parameter count 364
OLE Bad Variable Type 358
OLE BLOB field data is from an incompatible version 280
OLE BLOB field is corrupted 279
OLE Class name not in registry 371
OLE Data Type Mismatch 355
OLE Dispatch Exception 359
OLE Error 314
OLE field not allowed here 311

Table 22.5 Error codes in alphabetical order (continued)

Message Code
Error codes 782

OLE Invalid Subscript 361
OLE Member Not found 353
OLE No Named arguments 357
OLE Not a collection 367
OLE Object does not support automation 369
OLE object error 278
OLE Overflow 360
OLE Parameter Not found 354
OLE Parameter not optional 365
OLE Unable to create object 370
OLE Unknown Class 362
OLE Unknown error 368
OLE Unknown interface 352
OLE Unknown name 356
OLE: cannot create link 295
only 1 dimensional array is allowed in this operation 315
only 1 or 2 dimensional array is allowed in this operation 283
Only allowed in function or procedure scope 324
Only valid in program files 115
Operation not allowed across different databases or table types 333
Operation not allowed for calculated fields 23
Operation not allowed in transaction 234
Operation not allowed on read-only fields 286
Operation not allowed on read-only files 24
Operation not allowed on read-only tables 287
Operation not allowed on this table 236
Out of range 164
Output parameter required 256
Parameter type '...' can only be used with CDECL calling convention 303
PARAMETERS command must be at top of function or procedure 70
Parent is not a PAGETEMPLATE or BANDBODY 308
Parent is not a REPORT 307
Popup already active 128
Popup too small 312
Port not configured for a printer 326
Position not in window 301
Preprocessor expansion too large 229
PRIMARY must start with first field 345
Printer error 189
Printer is either not connected or turned off 131
Procedure not found 182
Processing would exceed maximum allowed string length 181
Production index file does not exist 338
Program not SUSPENDed 118
Program too big to compile 106
Program was previously compiled with SET COVERAGE OFF 203
Property is not accessible 374
Property is read only 282
Property not found 285
Record is in use by another 109

Table 22.5 Error codes in alphabetical order (continued)

Message Code
783 dBL Language Reference

Record is in use by another 373
Record out of range 5
Related records still exist in alias 329
Relation expression and active index expression must be the same 336
Relation using CONSTRAIN 331
Report Engine Error 284
Report writer has not been installed 347
Resource not found 265
Restricted command: not allowed in this context 199
Runtime buffer overflow 149
Selected tables cannot be related 317
Server Error 240
SET FIELDS space exhausted 218
SET KEY active in alias 330
Sharing buffers are full 223
Something is missing. Expecting 67
Stack overflow 148
Stored procedures not supported 261
String buffer overflow 150
Structure invalid 11
SUPER not allowed when THIS is undefined 290
Symbol table space exhausted. Increase to 217
Syntax error 63
Table already open 231
Table is not indexed 35
Tag not found 53
The system registry does not contain an OLE server for a file with extension 294
Too few arguments. Expecting at least 58
Too many arguments. Expecting at most 59
Too many dimensions 101
Too many files open 209
Too many index files 47
Too many nested DO/UDF 221
Too many nested expressions 161
Too many nested FOR loops. 95
Too many nested SCAN loops. 96
Too many RELATIONs in this chain 44
Too many symbols in this module 318
Too many UDF/PROCEDUREs defined in program 102
UDF must return a value 100
UDF or procedure already exists 159
UDF or PROCEDURE not found 207
Unable to add data while constraints active 129
Unable to create control 292
Unable to execute DOS 160
Unable to open form 291
Unable to rename file 10
Unallowed phrase/keyword in command 97
Unauthorized access level 133
Unbalanced parentheses 62

Table 22.5 Error codes in alphabetical order (continued)

Message Code
Error codes 784

Default US English Error.HTM

Content-type: text/html
<html>

<head>

 <title>Alert</title>

</head>

<body>

<p>Program Alert</p>

<hr align=\"center\" size=\"3\">

%d

<p>An error occurred in: %e</p>

<p>Error Code: %c</p>

<p>%m</p>

<p>Source File: %s</p>

<p>Routine: %p</p>

<p>Line: %l</p>

<hr align=\"center\" size=\"3\">

</body>

</html>

Unexpected type 188
Unknown error saving window contents 274
Unknown keyword 68
Unmatched #else 225
Unmatched #endif 226
Unmatched parameters 117
Unrecognized command verb 54
Unterminated string 61
UNTIL encountered without preceding DO 82
Value out of range 192
Variable undefined 167
VBStream file Missing or Corrupt 349
VBX dlls cannot be RELEASED 348
Window not active 215
Window out of range 132
WindowMenu must be on child of MenuBar 33
Windows print file name longer than 31 characters 130
Work area already used in relation 42
Wrong version of IDAPI01.DLL 252

Table 22.5 Error codes in alphabetical order (continued)

Message Code
785 dBL Language Reference

A p p e n d i x

Appendix DBDE Limits
The following tables list the Borland Database Engine and Native dBASE /Paradox File Maximum Limits for
both 16 and 32 bit Versions of BDE. If you find you cannot reach these limits, or are getting an out of memory
error, increasing your SHAREDMEMSIZE in BDE Config to 4096 or more should allow you to reach these
limits.

GENERAL LIMITS
Table 22.6

Description Limit
Clients in system 48
Sessions per client (3.5 and earlier, 16 Bit, 32 Bit) 32
Session per client (4.0, 32 Bit) 256
Open databases per session (3.5 and earlier, 16 Bit, 32 Bit) 32
Open databases per session (4.0, 32 Bit) 2048
Loaded drivers 32
Sessions in system (3.5 and earlier, 16 Bit, 32 Bit) 64
Sessions in system (4.0, 32 Bit) 12288
Cursors per session 4000
Entries in error stack 16
Table types per driver 8
Field types per driver 16
Index types per driver 8
Size of configuration (IDAPI.CFG) file 48K
Size of SQL statement
(RequestLive=False)

64K

Size of SQL statement (RequestLive=True) 4K
Size of SQL statement4K
(RequestLive=True) (4.01, 32 Bit)

6K

Record buffer size (SQL or ODBC) 16K
Table and field name size in characters 31
Stored procedure name size in characters 64
Fields in a key 16
File extension size in characters 3
Table name length in characters
(some servers might have other limits)

260

Path and file name length in characters 260
786 dBL Language Reference

DBASE Limits
DBASE Limits
Table 22.7

Description Limit
Open dBASE tables per system (16 Bit) 256
Open dBASE tables per system (BDE 3.0 - 4.0, 32 Bit) 350
Open dBASE tables per system (BDE 4.01, 32 Bit) 512
Record locks on one dBASE table (16 and 32 Bit) 100
Records in transactions on a dBASE table (32 Bit) 100
Records in a table 1 Billion
Bytes in .DBF (Table) file 2 Billion
Size in bytes per record (dBASE 4) 4000
Size in bytes per record (dBASE for Windows) 32767
Number of fields per table (dBASE 4) 255
Number of fields per table (dBASE for Windows) 1024
Number of index tags per .MDX file 47
Size of character fields 254
Open master indexes (.MDX) per table 10
Key expression length in characters 220

Paradox Limits
Table 22.8

Description Limit
Tables open per system (4.0 and earlier, 16 Bit, 32 Bit) 127
Tables open per system (4.01, 32 Bit) 254
Record locks on one table (16Bit) per session 64
Record locks on one table (32Bit) per session 255
Records in transactions on a table (32 Bit) 255
Open physical files (4.0 and earlier, 16 Bit, 32 Bit)
(DB, PX, MB, X??, Y??, VAL, TV)

512

1024 Open physical files (4.01, 32 Bit)
(DB, PX, MB, X??, Y??, VAL, TV)

1024

Users in one PDOXUSRS.NET file 300
Number of fields per table 255
Size of character fields 255
Records in a table 2 Billion
Bytes in .DB (Table) file 2 Billion
Bytes per record for indexed tables 10800
Bytes per record for non-indexed tables 32750
Number of secondary indexes per table 127
Number of fields in an index 16
Concurrent users per table 255
Megabytes of data per BLOb field 256
Passwords per session 100
Password length 15
Passwords per table 63
Fields with validity checks (32 Bit) 159
Fields with validity checks (16 Bit) 63
787 dBL Language Reference

788 dBL Language Reference

Index

Symbols
^ operator 22
__dbasewin__ 766
__vdb__ 766
__version__ 766
; symbol 31, 627
:: operator 26
:= operator 21
! command 198

RUN vs. 221
? (question mark)

pattern matching 85
temporary files 209

? command 666
ON PAGE and 672
SET PRINTER and 678
SET SPACE and 679

?? command 669
? command vs. 667
ON PAGE and 672
SET ALTERNATE and 675
SET PRINTER and 678
SET SPACE and 679

??? command 669
. (dot) operator 26
’’ symbol 30
" "symbol 30
() operator 27
[] operator 26
{ } symbols 31
* (asterisk)

in fields 280
pattern matching 85

* operator 22
** operator 22
/ operator 22
/* */ symbol 30
// symbol 30
& operator 28
&& symbol 30
operator 24
symbol 32
% operator 22
+ operator 21, 22
++ operator 23
< operator 24
<= operator 24
<> operator 24
= operator 21, 24
== operator 24
> operator 24
>= operator 24
– – operator 23
– operator 22
$ operator 24

A
abandon() method 350
abandoned rowsets 400
abandoning data changes 350, 351
abandonRecord() method 475
abandonUpdates() method 351
abbreviating keywords 64

ABS() 97
absolute values

defined 97
returning 97

accelerators 630
access rights, assigning 215
ACCESS() 741
access() method 352
accessDate() method 198
accessing

alternate text editors 736
client/server applications 713

OLE 508, 574
data 242, 325–326

error handling 332
multiuser environments 748

file-sharing modes 291
setting locks 260, 270, 284

read-only restrictions 293, 296
specific fields 291

tables 476
ACOPY() 147
ACOS() 97

RTOD() and 106
actions

executing 458
recurring, setting 120

activating online Help 729, 737
activating the Debugger 725, 739
active indexes, returning 305
active property 352
activeControl property 476
ActiveX class 427

properties (table) 427
ActiveX controls

setting use properties 493
ActiveX objects (defined) 427
add() method 148
adding bitmaps to backgrounds 482
adding fields 731
adding passwords 353
adding records 231, 486

arrays and 233
event handling 540
local SQL 320
restricting 481
temporary 570
to rowsets 353, 354, 359

addition 240, 304, 307
addition operators 21, 22
addPassword() method 353
addToMRU() method 602
ADEL() 148
ADIR() 150
advise() method 702

unadvise() and 714
AELEMENT() 152

AFILL() and 154
ASUBSCRIPT() vs. 165

AFIELDS() 153
AFILL() 153
agAverage() method 644
agCount() method 645
aggregate calculations

highest value 645

lowest value 646
mean average 644
number of items 645
standard deviation 646
total 647
variance 648

aggregate functions, local SQL 315
aggregation 240, 304, 307

values, calculating 640
agMax() method 645
agMin() method 646
AGROW() 154
agStdDeviation() method 646
agSum() method 647
agVariance() method 648
AINS() 156

AGROW() vs. 155
ALEN() 158
alerts 732, 733
alias operator 27, 299
alias property 476
ALIAS() 230
aliases

field names 280
tables 476

linking 299
work areas 229, 230, 289

alignHorizontal property 476
_alignment 680

_wrap and 693
alignment

text 476, 477, 478
alignment property 477
alignVertical property 478
allowAddRows property 478
allowColumnMoving property 478
allowColumnSizing property 479
allowDEOExeOverride property 603
allowDrop Property 479
allowEditing property 479
allowRowSizing property 480
allowYieldOnMsg property 603
ALTER TABLE statement (SQL) 317

ADD clause and 317
DROP clause and 317

alternate text editors 721
accessing 736

alternate text files 675
alwaysDrawCheckBox property 480
anchor property 480
anchoring objects 480
AND operator 23

bitwise 111
angles

arccosecant 98
arccosine 97
arccotangent 98
arcsecant 97
arcsine 97
arctangent 98
converting

degrees to radians 99
radians to degrees 106

cosecant 109
cosine 99
 Index I-1

cotangent 110
measuring 99
secant 99
sine 109
tangent 110

annotating code 30
ANSI conversions 742
ANSI date format 135
ANSI() 741

OEM() and 748
Answer tables 755
_app 593
_app.frameWin 594
APPEND 230

KEYMATCH() and 267
APPEND AUTOMEM 231
APPEND BLANK 230

BLANK vs. 237
APPEND FROM 232
APPEND FROM ARRAY 233
APPEND MEMO 234

REPLACE MEMO vs. 283
Append mode

attempted, handling event 364
entered 400

append property 481
append() method 353
appending data 353, 354, 359

key violations, handling 384
to BLOB fields 411

appendUpdate() method 354
application classes

Menu 595
MenuBar 597
Popup 599
ToolBar 600
ToolButton 601

applications
closing 59
external 508, 705, 710
MDI 534
sound 508
stand-alone 445
standalone (using SHELL) 629

applyFilter() method 354
applyLocate() method 355
applyUpdates() method 356
appSpeedBar property 481
arccosecant, returning 98
arccosine, returning 97
arccotangent, returning 98
arcsecant, returning 97
arcsine, returning 97
arctangent, returning 98
ARESIZE() 158
ARGCOUNT() method 36
arguments

automem variables 281
color 606
expressions, described 16

ARGVECTOR() method 36
arithmetic operations 23

mean, returning 235, 240
remainders, returning 103
type conversions 96

arithmetic operators
assignment 20
local SQL 313

Array class 144
methods (table) 144
properties (table) 144

array classes
Array 144
AssocArray 146

array elements 166
adding to arrays 148, 154, 177, 179
addressing 512
copying 147
counting 152
deleting 148, 167

all 182
specified 182

finding next 181
inserting 179
literal 31
number of

changing 187
determining 187

numbers 145, 166
returning 172

referencing 26, 164, 190
returning 158
searching for key 181
sorting 162, 188
storing specified values 174
subscripts 145, 166

finding 164, 190
array functions

ACOPY() 147
array index operator 26
array methods

count() 165
delete() 167
dir() 169
dirExt() 171
element() 172
fields() 173
fill() 174
getFile() 175
grow() 177
insert() 179
isKey() 181
nextKey() 181
removeAll() 182
removeKey() 182
resize() 183
scan() 186
sort() 188
subscript() 190

Array objects
defined 145
dimensions

finding number of 169
overview 143–147

arrays 233
adding elements 154
adding rows and columns 179
assigning values 153, 156, 166
associative

looping through 175
overview 147
returning number of elements 165

columns
adding 177
finding how many 158

copying data 248, 282

declaring 166
defined 8
dimensions

changing 183
finding how many 183

expressions
finding 161, 186
storing 66

Field objects, in rowset 377
file information 150, 169, 171
initializing 154
initializing values 174
multi-dimensional, creating 155
nested

accessing values 146
defined 145

object references 512
one-dimensional 148
ragged, defined 145
rows

adding 177
finding how many 158
sorting 188

size, changing 154, 158, 178, 183
storing values 235, 240, 304
table structures 153, 173
two-dimensional

creating 178
number of columns 158
number of rows 158

two-dimensional, creating 155
updating 159

arrow keys
command execution 623
input focus 522

asc() method 76
ASC() 76

CHR() vs. 78
ASCAN() 161
ascending sort order 263, 303
ASCII chart 768
ASCII values, returning 76, 78, 79
ASIN() 97

RTOD() and 106
ASORT() 162
assigning keystrokes

command execution 621, 622, 627
interrupts 626

assigning values 26
to properties 41

assignment operators 20
assignment-only operator 21
AssocArray class 146

methods (table) 146
properties (table) 146

asterisk (*)
in fields 280
pattern matching 85

ASUBSCRIPT() 164
AELEMENT() vs. 152

AT() 77
RAT() and 87

ATAN() 98
ATN2() vs. 98
RTOD() and 106

atFirst() method 356
atLast() method 357
ATN2() 98
I-2 dBASE dBL Language Reference

ATAN() vs. 98
RTOD() and 106

attach method 604
attributes

file (DOS) 151
autoCenter property 481
autoDrop property 481
autoEdit property 357
autoLockChildRows property 357
automatic compiling 735
automatic file locks 260, 269, 285, 337

disabling 296
automatic record locks 337
automatically saving data 289
automatically updating indexes 265
automem variables

arguments 281
clearing 278
creating 241, 304
defined 231
storing data 304

autoNullFields property 358
autoSize property 482
autosizing forms 482
autoSort property 648
autoTrim property 482
AVERAGE 235
average, returning mean 644
averages, returning 235, 240, 315
AVG() function (SQL) 315

B
background property 482
backgrounds

adding bitmaps 482
blended (hatched) 561
colors 495
image, setting 482

backup files 731
Band class 638
Band objects

automatic creation 639
constant size 651
detail 639
expanding 651
footer 639
header 639
rendering data in 649

baseClassName property 36
Basic Caching

behavior 421
pros and cons 422

BDE (defined) 325
BDE aliases

assigning 372
not required 325
required 325
Standard tables and portability 328

BDE errors 332
BDE functions, calling 382
BDE Limits table 786
beeps 732, 733
before property 482
beforeCellPaint event 483
beforeCloseUp event 484
beforeDropDown event 484
beforeEditPaint event 484
beforeGetValue event 358

beforeRelease 484
beforeRelease property 37
beginAppend() method 359, 486
beginEdit() method 360
beginFilter() method 361
beginLocate() method 361
beginNewFrame property 649
beginning-of-file indicator 237
begins with operator 24
beginTrans() method 362
BEGINTRANS() 235
bgColor property 486
binary data types

combining 245
returning 236
user-defined 245

binary data, defined 6
binary fields

changing 281
copying 245
determining type 236
sound effects 709

binary files
coverage analysis 734
creating 245
reading from 281

binary operators
numeric 22
unary 6

BINTYPE() 236
BITAND() 111
BITLSHIFT() 112
bitmapAlignment property 486
bitmaps 245, 449

adding to backgrounds 482
icons

forms 528
in Image objects 506
on PushButtons 507, 508, 517, 585
supported formats 450

BITOR() 113
BITRSHIFT() 113
BITSET() 114
bitwise functions 111
bitwise operators 114

AND 111
OR 113
shift bits 112
XOR 114

BITXOR() 114
BLANK 236
blank fields 236
blank lines, suppressing 664
blank records 230

averaging numeric fields 235, 305
blank values 240
blended (hatched) backgrounds 561
BLOB fields

appending to 411
copying into 411
copying to new files 371

block comment symbol 30
BOF() 237

SKIP and 302
bold property 487
boldface attributes 517
bookmark data types 238
bookmark() method 362, 363

BOOKMARK() 238
bookmarks

adding 362
moving to 381
returning 238

boolean values, defined 5
border property 487
borders

adding to objects 487
form areas 460
setting 487
shape objects 562

borderStyle property 487
bottom property 488
braces ({ }) 31
breakpoints

defined 756
British date format 135
BROWSE 238

SET REFRESH and 298
Browse class 427

events (table) 428
methods (table) 428
properties (table) 428

browse objects
adding records 481
changing data 536
controlling cursors 502
designating tables 476
displaying data 514
restricting data entry 481
scrolling 526, 572, 589

browsing 238, 344
buffers

data
updating 277
writing to disk 260

file, flushing 208
typeahead

clearing 605
information, getting 614, 620
inserting keystrokes 617
size, setting 628

BUILD 715
buttons property 488

C
cacheUpdates property 363
caching 421
caching updates 328, 363

attempt to apply 356
logging transactions vs. 362

CALCULATE 240
calculated fields

accessing 293
displaying 239, 514
indexing 264
read-only 514
setting values 336, 358

calculations in reports 644–648
call chain 42

preprocessor 764
call operator 27
canAbandon event 364
canAppend event 364
CANCEL 742

SUSPEND vs. 756
canceling
 Index I-3

changes to data 350–352
transactions 412

canceling program execution 742
canChange event 365
canClose event 366, 489, 491
canDelete event 366
canEdit event 366
canEditLabel property 489
canExpand event 490
canGetRow event 367
canNavigate event 367
canOpen event 368
canRender event 649
canSave event 368

canChange and 365
canSelChange event 491
capital gains 100

present value 104
capitalization, specifying 86
carriage returns

character, counting 83, 84, 88
substrings 77, 93

files 212, 219
CASE 37
case

converting 85, 94, 95, 265
first letter 86, 94

testing for lowercase 81, 82
testing for uppercase 82

case sensitivity
pattern matching 85
program code 17
searches 162
searches using scan() 186
sorting data 303

case statements 42
CATCH 37
CD 199
CDOW() 121
CEILING() 99

compared (table) 101
cellHeight property 492
CENTER() 77
centering forms 481
centering graphics 477
centering text 77
century 134
CERROR() 742
CHANGE() 241

CONVERT and 720
changedTableName property 368
changes

undoing 585
changes to data

canceling
current row 350
multiple rows 351
transactions 412

committing 370
undoing 369, 609

changing
binary fields 281
data 55, 278, 279, 308, 504

attempts 365
browse objects 536
DDE applications 706, 707, 714
DDE servers 702

multiuser environments 241, 260,
270, 284

data types 731
drive and directory 199

current working 222
field names 731
field widths 731
file names 220
forms 722
key fields 280
memo fields 279
mouse pointers 536, 553
property settings 730
records 530
SET command values 732
statements at runtime 28
table structures (local SQL) 317
tables 720

names 279
structures 721, 731

text, spin boxes 579
character codes (data types) 153, 173
character data

case, testing 81, 82
converting dates 125, 126
converting numbers 92, 732
deleting specific characters 92, 93
finding in DLLs 711
key expressions 264
returning logical 732
returning numbers 732
writing to file 226

character expressions
deleting spaces 95
phonetic values 79, 90
picture templates 666
repeating 87
replacing strings 92

character set conversions 741, 748
character sets 753, 754

current, returning 743
characters

adjusting spacing 665
ASCII values, returning 76, 78, 79
carriage return 212, 219
converting to dates 732
currency symbol 106
date separators 137, 631

changing 135
decimal separator 107
function templates 520, 666
linefeeds 212, 219
literal 85
position, specifying 78
returning number written 226
returning specified number 219
spaces, returning 91
testing for alphabetic 81
thousands separator 108
time separators 631
wildcard

pattern matching 85
temporary files 209

charAt() method 78
charSet property 604
CHARSET() 743
check boxes 429
CheckBox class 429

events (table) 430
properties (table) 429

checkBoxes property 492
Checked property 604, 605, 633
checked property 492
checkmarks, adding to menus 604
child tables 299

moving through 301
CHOOSEPRINTER() 670

_pdriver and 685
_porientation and 689
_ppitch and 690

choosePrinter() method 650
chr() method 79
CHR() 78

ASC() vs. 76
SET BELL and 733

class DDETopic 699
class keyword 26
CLASS...ENDCLASS 37
classes

ActiveX 427
Band 638
Browse 427
CheckBox 429
ColumnCheckBox 430
ColumnComboBox 431
ColumnEditor 432
ColumnEntryfield 434
ColumnHeadingControl 435
ColumnSpinBox 436
ComboBox 437
Container 438
creating new instances 25
Database 326
DataModRef 331
DataModule 329
Date 117
DbError 332
DbException 332
DBFIndex 333
DBFIndex class 333
DDELink 695
declaring 37
defined 12
Designer 33
dynamic subclassing 12, 35
Editor 439
Entryfield 441
Field 334
finding 48
Form 442
Grid 445
GridColumn 448
Group 639
identifying 36, 37
Image 449
Index 336
Line 450
ListBox 451
LockField 337
NoteBook 453
Object 35
OLE 454
OleAutoClient 700
PageTemplate 640
PaintBox 455
Parameter 337
I-4 dBASE dBL Language Reference

PdxField 338
Progress 457
PushButton 457
Query 339
RadioButton 458
Rectangle 459
Report 641
ReportViewer 460
Rowset 341
ScrollBar 461
Session 345
Shape 462
Slider 463
SpinBox 464
SqlField 346
StoredProc 346
StreamFrame 642
StreamSource 643
SubForm 466
TabBox 468
TableDef 348
Text 469
TextLabel 471
Timer 120
TreeItem 472
TreeView 473
UpdateSet 349

classId property 493
className property 38
CLEAR 670
CLEAR ALL 716
CLEAR AUTOMEM 241

RELEASE AUTOMEM and 278
STORE AUTOMEM vs. 304

CLEAR FIELDS 242
CLEAR MEMORY 39
CLEAR PROGRAM 39
CLEAR TYPEAHEAD 605
clearFilter() method 369
clearing memory variables 39, 60, 61
clearing typeahead buffers 605
clearTics() method 493
client/server applications

MDI forms 534
clientEdge property 493
clock 123

setting 136, 137
time elapsed 127

CLOSE ALL 716, 717, 718
described 716

CLOSE ALTERNATE
SET ALTERNATE and 675

CLOSE DATABASES
described 242, 717

CLOSE FORMS
described 717

CLOSE INDEXES
described 242, 717

CLOSE PRINTER
described 717

CLOSE PROCEDURE
described 39, 718

CLOSE TABLES
described 242, 718

close() 199
close() method 494

connections 369
files 199

closing
applications 59
databases 352
files 199, 716
forms 489, 491, 494, 513
indexes 242
procedures 39
program files 63
queries 401
reports 494
sessions 346
stored procedures 401
tables 716

work areas 242
closing events 544
CMONTH() 121
code

case sensitivity 17
commenting 14, 30
coverage analysis 765
editing 719, 736
optimizing 760
reserved symbols 30
testing 734, 742

code execution
after try block 48
conditionally 42, 50, 51
managing with exceptions 35
redirecting calls 61
skipping statements 53
stopping 59

code modules 50
code pages 771
codeblocks 11, 37, 53

assigning to variables 31
creating 31
defined 11
executing 27

codePage property 369
color arguments 606
color palettes 612
color property 660
colorColumnLines property 494
colorHighlight property 494
colorNormal property

colorHighlight vs. 495
colorRowHeader 499
colorRowLines property 499
colorRowSelect property 500
colors

defining 606
custom 612
objects 494, 495

selecting 612
colors commands

DEFINE COLOR 606
GETCOLOR() 612

ColumnCheckBox class 430
properties (table) 430

ColumnComboBox class 431
properties (table) 431

columnCount property 500
ColumnEditor class 432

events (table) 430, 432, 433, 434, 435
properties (table) 432

ColumnEntryfield class 434
properties (table) 434

ColumnHeadingControl class 435

properties (table) 435
columnNo property 500
columns property 500
ColumnSpinBox class 436

events (table) 436
properties (table) 436

combo boxes
displaying lists 511
selecting options 504
setting styles 580
sorting 578

ComboBox class 437
events (table) 437
methods (table) 438
properties (table) 437

Command window
clearing results pane 670
displaying files 205, 214, 225
displaying messages 726, 739

current environment 727
pausing program execution 631
restoring memory variables 61
resuming program execution 751
returning table structures 728
saving output 675
shelling to DOS 630
suspending program execution 756
writing to 255, 268, 678

commands 675
executing

page formatting 672
shortcuts 621

scope 229
comments 30
commit() method 370
COMMIT() 243
committing changes 370
committing transactions 243

DDE applications 713
common logarithms 102
comparing

dates 24
expressions 102
mismatched data types 24
record counters 241

comparison operators 24
local SQL 313

COMPILE 718
compiler errors 742
compiling 32, 765

automatically 42, 735
canceling 719
conditional (#else) 761
conditional (#if) 762
conditional (#ifdef) 763
conditional (#ifndef) 763
controlling (#define) 758
format files 735
multiple programs 765
options, setting 765

components
controlled update 400
current value 587
custom 455
displaying conditionally (in reports)

664
generic 456
height
 Index I-5

varying 665
hiding 588
hints 577, 578
left edge position 532
loading 544
locating 519
losing focus 541, 542, 553
multi-line text 441
opened events 556
properties, altering conditionally 650
referencing 538
refreshing data 409
rendered in reports

handling event 658
resetting default (in reports) 658
right edge position 569
setting focus 575
title, setting 664
top edge position 584
visual

common events (table) 426
common methods (table) 426
common properties (table) 425

width 590
compound expressions 20
concatenation operators 21, 22
conditional execution 42, 51

OS() 216
conditional statements 53
conditions

evaluating 50
exceptions 43
search operations 269
testing 49, 51

alternate 45
multiple 51

Conditions for Dynamic Caching 421
cones, measuring volume 104
confirmation messages 300
constants

changing 760
defining 759
identifiers 759
pi 104

constrained property 370
constraining updates 370
constructor code 38
contained in operator 24
Container class 438

properties (table) 438
container objects 40

testing for parent 56
containers

creating 329, 438
getting object position 532, 569
multi-page 453

contextHelp property 501
context-sensitive help 525
CONTINUE 243

FOUND() and 261
LOCATE and 269

continuing search operations 243
control codes (printer) 677
Control menu 581
control statements 67, 71
control structures

linear 42, 50, 51
loops 43, 44, 48, 286

controlling table access 751
conventions, typographical 2
CONVERT 719

COPY and 244
COPY STRUCTURE and 246

converting
ASCII to characters 78, 79
case 85, 94, 95, 265

first letter 86, 94
characters to ASCII 76
characters to dates 122
characters to numbers 732
dates to characters 125, 126
dates to strings 124, 132
decimal to hexadecimal 115
degrees to radians 99
external functions 704
hexadecimal to decimal 115
incompatible data types 732
logical fields to characters 732
numbers to characters 92, 732
numbers to logical values 732
radians to degrees 106

copies property 660
COPY 243
COPY BINARY 245
COPY FILE 201
COPY MEMO 245
COPY STRUCTURE 246
COPY TABLE 247
COPY TO ARRAY 248
COPY TO...STRUCTURE EXTENDED

246
AFIELDS() vs. 153
CREATE...FROM and 251
CREATE...STRUCTURE EXTENDED

vs. 252
copy() method 200, 370, 502
copying

See also Drag&Drop
array elements 147
binary fields 245
BLOB fields 371
data 232, 350, 370

arrays and 248, 282
automatically 243
multiple fields 245, 246

files 200, 201, 225
to BLOB fields 411

index files 244
memo fields 234, 245

to text files 245
memory variables 61
objects, See Drag&Drop
parameters 55
tables 247, 371

structures 246
text 502, 608
text files 234, 283

copyTable() method 371
copyToFile() method 371
core language elements 33
COS() 99

ACOS() and 97
DTOR() and 99

cosecant 109
inverse 98

cosine 99

inverse, returning 97
reciprocal 99

cotangent 110
inverse 98

COUNT 249
RECCOUNT() vs. 276

COUNT() function (SQL) 315
count() method 165, 371, 502
counting array elements 152
counting fields 258
counting items in group 645
counting records 204, 240, 276, 371, 413
counting rows in rowset 371
counting specified values 315
coverage files 725

creating 734
updating 734

CREATE 720
CREATE...FROM vs. 252

CREATE... commands
SET DESIGN and 735

CREATE COMMAND 721
CREATE DATAMODULE 721
CREATE FILE 722
CREATE FORM 722
CREATE INDEX statement (SQL) 317
CREATE LABEL 723
CREATE MENU 723
CREATE POPUP 723
CREATE PROJECT 724
CREATE QUERY 724
CREATE REPORT 724
CREATE SESSION 250
CREATE TABLE statement (SQL) 318

data type mappings 318
CREATE...FROM 251

COPY TO...STRUCTURE
EXTENDED and 247

CREATE...STRUCTURE EXTENDED
and 252

CREATE...STRUCTURE EXTENDED
252

CREATE...FROM and 251
createDate() method 202
createIndex() method 372
createTime() method 202
creating

containers 438
custom components 455
files 201
forms 445
member properties 37
methods 37
objects 25, 35, 40
pop-up menus 564
tables (local SQL) 318

CTOD() 122
CTODT() 122
CTOT 123
Ctrl keys, command execution 627
CUATab property 502
currency symbols 106
current database 289

name, returning 252
current date

returning 123
setting 136

current object
I-6 dBASE dBL Language Reference

colors, setting 494
finding 476

current record 326
number, returning 277
updating 281

current settings 64, 65
character set 743
environment 727
language driver 746

current work areas 311
currentColumn property 503
curSel property 503
cursor, row

determining position 356, 357, 375
moving forward or backward 399
moving to first row 380
moving to last row 384
moving to specified row 381

cursors
controlling 502, 625

custom classes 38
custom components 455
cut() method 503
cutting text 503
cylinders, measuring volume 104

D
data

accessing 242, 325–326
error handling 332
multiuser environments 748

file-sharing modes 291
setting locks 260, 270, 284

read-only restrictions 293, 296
specific fields 291

appending 344, 353, 359
and updating 354
handling key violations 384
to BLOB fields 411

attempting to change 365
bookmarking 362
browsing 344
caching updates locally 363
canceling changes

current row 350
multiple rows 351
transactions 412

change indicator 396
changing 55, 278, 279, 308, 368, 504

attempts 365
browse objects 536
DDE applications 702, 706, 707,

714
multiuser environments 241, 260,

270, 284
committing changes 370
constraining updates 370
converting formats 350
copying 232, 350, 370

arrays and 248, 282
automatically 243
BLOB fields 371
multiple fields 245, 246

determining if editable 385
displaying

browse objects and 514
memo fields 297
multiple lines 439

one line 441
specific records 255, 268
with BROWSE 238

Edit mode, setting 357
editing 256, 344, 360, 385

with BROWSE 238
filtering 344, 354, 361, 367
formatting 563
grouping 640

calculating aggregate values 640
report-level 642

linking fields to report 643
locating 344, 355, 361

controlling criteria 385
next match 385
similar spellings 90

losing 275, 280, 731
minimizing loss 289

manipulating 302
multi-line input fields 439
organizing 264, 303
overwriting 280

binary fields 245
confirmation messages 300
memo fields 234, 246, 283

processing
optimizing 289
specific records 295

protecting 735, 751
refreshing 409, 504
rendering in reports 642
sample 262
saving 261, 397

automatically 289
searching 355, 361

locate options 385
next match 385

shared resources 415
similar spellings, finding 90
single-line input fields 441
source, identifying 663
time stamps 400
updating 271, 308, 354, 504

automatic 400
cached 356
constraints 370
from another table 348, 349
multiuser environments 260, 284
problems with 407
SQL (local) 324

validating 587
data access methods

abandon() 350
abandonUpdates() 351
access() 352
addPassword() 353
append() 353
appendUpdate() 354
applyFilter() 354
applyLocate() 355
applyUpdates() 356
atFirst() 356
atLast() 357
beginAppend() 359
beginEdit() 360
beginFilter() 361
beginLocate() 361
beginTrans() 362

bookmark() 362, 363
clearFilter() 369
commit() 370
copy() 370
copyTable() 371
copyToFile() 371
count() 371
delete() (Rowset) 373
delete() (UpdateSet object) 374
dropTable() 375
emptyTable() 375
executeSQL() 376
first() 380
goto() 381
last() 384
locateNext() 385
lockRow() 387, 388
lockSet() 388
login() 390
next() 399
packTable() 405
prepare() 407
refresh() 409
refreshControls() 409
refreshRow() 409
reindex() 410
renameTable() 410
replaceFromFile() 411
requery() 411
rollback() 412
save() 414
tableExists() 418
unlock() 419
unprepare() 420
update() 420
user() 422

data buffers 260
flushing to disk 380
updating 277

data definition statements 314
data entry

controlling 586
cursors, moving 625
DDE applications 710
invalid 586, 733
multiple lines 439
restricting 481, 735
single line 441
templates 520, 563

data integrity 260
data manipulation statements 315

parameter substitutions 315
data modules 329

getting class name 373
referencing 331, 409

filename property 377
data source, identifying 663
data types 771

binary fields 236, 245
bookmark 238
changing 731
character codes 153, 173
comparing mismatched 24
DLLs 703
external functions 704
incompatible 732
kinds of 4–6
returning 70, 419
 Index I-7

SQL mappings 318
user-defined 245

Database class 326
methods (table) 327
properties (table) 327

database driver, identifying 374
Database objects

creating 326
default, defined 326
setting up 328
testing for active 352

database property 372
database servers

connecting to 274, 508, 705, 710
disconnecting 369, 713

DATABASE() 252
databaseName property 372
databases

cached updates 328
closing 352
connecting to 405
current, specifying 289
default 328
information, getting 380
logging into 390, 391, 422
names, returning 252
opening 274, 352
parent, determining 56
referencing tables 30
sessions, assigning to 414
transaction logging 328
transaction processing 328

databases property 606
dataLink property 504
dataLinked, defined 326
dataModClass property 373
DataModRef class 331

properties (table) 331
DataModule class 329

properties (table) 329
dataSource property 504, 506
date and time commands

SET CENTURY 134
SET DATE 135
SET DATE TO 136
SET EPOCH 136
SET MARK 136
SET TIME 137

date and time functions
CDOW() 121
CMONTH() 121
CTOD() 122
CTODT() 122
DATE() 123
DATETIME() 123
DAY() 124
DMY() 124
DOW() 124
DTOC() 125
DTOS() 126
DTTOC() 126
ELAPSED() 127
MDY() 132
MONTH() 132
TIME() 139
TTIME() 140
TTOC() 141
UTC() 141

YEAR() 141
date and time methods

getDate() 128
getDay() 128
getHours() 129
getMinutes() 129
getMonth() 130
getSeconds() 130
getTime() 130
getTimezoneOffset() 131
getYear() 131
parse() 134
setDate() 137
setHours() 137
setMinutes() 138
setMonth() 138
setSeconds() 138
setTime() 138
setYear() 139
toGMTString() 139
toLocaleString() 140
toString() 140

date and time stamps, returning 203
Date class 117

methods (table) 118
properties (table) 118

date fields
converting characters 732

date formats 134
returning 124, 126, 132
specifying 135

Date objects 117–120
DATE parameter 135
DATE() 123
date() method 203
date/time classes

Date 117
Timer 120

dates 135, 580
comparing 24
converting

using GMT conventions 139
using locale conventions 140

converting to characters 125, 126
converting to strings 124, 132
default settings 135
key expressions 265
literal 31
manipulating 122
resetting 136
returning 121, 124, 271

character expressions as 122
day of month 137
system 123
weekdays 121, 124
year 134

separators 136
changing 135

setting base year 136
sorting 126
valid range 136

DATETIME() 123
DAY() 124
dBASE III PLUS files 244
dBASE IV commands (backward

compatible)
CLEAR TYPEAHEAD 605
SET ODOMETER 297

SET STEP 739
dBASE IV printing commands

_alignment 680
_indent 680
_lmargin 681
_padvance 681
_pageno 682
_pbpage 683
_pcolno 683
_pcopies 684
_pdriver 684
_peject 685
_pepage 686
_pform 686
_plength 687
_plineno 688
_ploffset 689
_porientation 689
_ppitch 690
_pquality 691
_pspacing 691
_rmargin 692
_tabs 693
_wrap 693

dBASE Plus
exiting 59

DBASE_SUPPRESS_STARTUP_DIALO
GS 743

_dbaselock fields 241, 244, 719
accessing 268
copying 246, 247

_DBASELOCK field 337
DbError class 332

properties (table) 332
DBERROR() 744
DbException class 332

properties (table) 332
DBF() 253
DbfField class

classes
DbfField 333

properties (table) 333
DBFIndex 333
DBMESSAGE() 744
_dbwinhome 226
DDE 695
DDE links

disabling 713
information, getting 713
setting 705

DDE server applications 695
accessing 713
changing data 706, 707, 714
events, trapping 707, 708
name, returning 712, 713
reading from 709
transactions, committing 713
writing to 702, 710

DDELink class 695
ddeServiceName property 606
DDETopic class 699
DEBUG 725
Debugger 739

opening 725
debugging

conditional compilation 762
coverage analysis 734
procedures 750
I-8 dBASE dBL Language Reference

program flow, tracking 746
records, stepping through 286
suspending program execution 756
UDFs 750

debugging commands
DEBUG 725
DISPLAY COVERAGE 725
GENERATE 262
RESUME 751
SET COVERAGE 734
SET STEP 739
SUSPEND 756

decimal digits 91
decimal separator 107
deleting 101
equality 99, 100

decimal places 107
returning 105, 257, 373

decimal values
converting to hexadecimal 115
keystrokes, returning 614, 620
returning 115

decimalLength property 373
declarations

arrays 166
classes 37
functions 49
procedures 57
variables 27, 56, 57, 58

local 52
static 65

DECLARE 166
decreasing spin box values 580
decrement operator 23
default property 373, 506
Default US English Error.HTM 785
defaults

date and time 135
separators 631

decimal places 107
file names 244
function keys 627
sort order 303
system bell 733
tables 290

DEFINE 40
DEFINE COLOR 606
#define directive 758
defining fields lists 291
degrees

converting from radians 106
converting to radians 99
returning 106

delaying program execution 631
DELETE 253

PACK vs. 275
RECALL and 276
ZAP vs. 311

DELETE FILE 204
DELETE statement (SQL) 319
DELETE TABLE 254
DELETE TAG 254
delete() method

arrays 167
files 203

delete() method (Rowset object) 373
delete() method (UpdateSet object) 374
DELETED() 255

deleting
array elements 167, 182

all 182
arrays

elements 148
current row 373
decimal digits 101
fields 317, 731
files 203, 204, 206
index files 254, 320
indexes (local SQL) 320
leading spaces 84, 86
memo files (local SQL) 320
memory variables 60
records 255, 275, 311, 319, 475

all in table 375
attempted 366
confirming 300
controlling 290
event handling 402
from destination tables 374
in rowsets 373

specified characters 92, 93
tables 254, 320, 375
text 503, 608
trailing spaces 89, 95
trailing zeros 105

delimiters
command execution 627
date 136

changing 135
decimal digits 107
directory paths 223
thousands 108
time 631

DEO - Dynamic External Objects 193
derived classes 38
descending sort order 263, 303
DESCENDING() 255
description property 507
Designer class 33
designing forms 507, 735
designing table structures 252
designView property 507
destination property 374
detach() method 607
detail band 639
detailBand property 650
detailNavigationOverride property 607
development tools 734
dialog boxes 567

message 618
DIFFERENCE() 79

LIKE() vs. 85
SOUNDEX() and 90

dimensions property 169
dir() method 169
DIR/DIRECTORY 204

SET SEPARATOR and 108
directives 32
directories

changing 199
current working 222

creating 214
searching 223

directory lists 204
directory paths

returning 223, 750

DBASEWIN.EXE 213
separators 223

dirExt() method 171
disabledBitmap property 507
disk drives

changing 199
current working 222

disk space, returning 204, 205
valid, returning 225

DISKSPACE() 205
DISPLAY 255

SET HEADINGS and 294
DISPLAY COVERAGE 725
DISPLAY FILES 205

SET SEPARATOR and 108
DISPLAY MEMORY 726
display options 239

browse objects 514
DISPLAY STATUS 727
DISPLAY STRUCTURE 728

RECSIZE() and 277
displaying

data
browse objects and 514
field names 294
in reports 650
in StreamFrames 649
memo fields 297
specific records 255, 268
with BROWSE 238

editing windows 721
field definitions 728
forms

display states 591
specifying topmost 584

graphics 712
messages 631, 739

current environment 727
in status bars 579, 628
memory variables 726

multi-line text 441
property settings 730
summary information (reports) 653
text files 224
windows 631

division 23, 103
division operator 22
DLLs 695, 703

calling external 703
character strings, getting 711
defined 706
initializing 706
releasing 711
search paths 704

DMY() 124
DO 41

SET DEVELOPMENT and 735
SUSPEND and 756

DO CASE 42
IF vs. 51

DO WHILE 43
DO...UNTIL vs. 44
SCAN vs. 286
SLEEP vs. 631

DO...UNTIL 44
documentation organization 1
documentation, typographical conventions

2

 Index I-9

doesn’t begin with operator 24
DOS

commands, executing 205
environment variables 210
file attributes 151, 170
return codes 59

DOS command 205
RUN vs. 221

dot operator 26
double-quotation mark symbol 30
doVerb() method 508
DOW() 124
downBitmap property 508
drag() method 508
Drag&Drop

allowDrop property 479
Control key, effect on 509, 510
drag() method 508, 509
dragEffect property 509
mouse button Up events and 547
onDragBegin event 545
onDragEnter event 545
onDragLeave event 546
onDragOver event 546
onDrop and Move 509
onDrop event 546
using parameters 509, 546
Windows Explorer and 547

dragEffect property 509
dragScrollRate property 510
drawing lines 450, 561
drawing shapes 562, 575
drawMode property 510
driverName property 374
DROP INDEX statement (SQL) 320
DROP TABLE statement (SQL) 320
drop-down lists 580
dropDownHeight property 511
dropDownWidth property 511
dropIndex() method 375
dropTable() method 375
DTOC() 125
DTODT() 125
DTOR() 99

COS() and 99
SIN() and 109

DTOS() 126
DTTOC() 126
DTTOD() 126
DTTOT() 127
duplex property 660
duplicate data, suppressing (in reports) 664
duplicate values 267, 321

keys 301
duplicating

character strings 87, 88
tables 371

duration (bell) 733
Dynamic Caching

behavior 421
conditions 421
pros and cons 422

Dynamic External Objects 193
dynamic subclassing 12, 35

E
EDIT 256

SET REFRESH and 298

Edit mode
attempted 366
automatic 357
controlling 360
entered event 402
setting 357

editCopyMenu property 608
editCutMenu property 608
editing 239

code 719, 736
data 256, 344, 360, 385

with BROWSE 238
multi-line text 441
programs 721
restricting 239
text files 722

editing windows 721
displaying 722

Editor class 439
events (table) 440
methods (table) 440
properties (table) 440

Editor objects
controlling cursors 502
current line 533
memo fields 297
scrolling 526, 572, 589
wordwrapping text 591

editorControl property 511
editors, text, alternate 721, 736
editorType property 511
editPasteMenu property 609
editUndoMenu property 609
EJECT 671

_peject and 686
EJECT PAGE 671

EJECT vs. 671
ON PAGE and 672

ELAPSED() 127
element() method 172
elements property 512
ELSE 45
#else directive 761
ELSEIF 45
empty expressions 46
empty memo fields 84
EMPTY() 46

BLANK and 237
emptying tables 375
emptyTable() method 375
enabled property 128, 512
enableSelection property 513
encrypting tables 752
#endif directive 761
end-of-file indicator 257
end-of-line characters 212, 219, 226

writing 218, 226
end-of-line comments 30
endOfSet property 375
endPage property 651
endSelection property 513
ensureVisible() property 513
Enter key, simulating Tab 625
entry fields

backgrounds 561
keystrokes, evaluating 531, 549
scrolling width 534

Entryfield class 441

events (table) 442
methods (table) 442
properties (table) 441

ENUMERATE() 46
environment commands

CHARSET() 743
CLEAR 670
CREATE SESSION 250
DISPLAY MEMORY 726
DISPLAY STATUS 727
LDRIVER() 746
MEMORY() 747
SET 732
SET BELL 732, 733
SET DESIGN 735
SET EDITOR 736
SET FULLPATH 223
SET LDCHECK 753
SET LDCONVERT 754
SET MESSAGE 628
SET ODOMETER 297
SET SAFETY 300
SET TALK 739
SET() 64
SETTO() 65
SHELL() 629

environment variables (DOS) 210
environments, getting information 727
eof() method 206
EOF() 257

RECNO() and 277
SEEK and 287
SET RELATION and 299
SKIP and 302

epoch, setting 136
equal to operator 24
equality

comparing character strings 290
finding 99, 100

ERASE 206
erasing memo fields 234, 246, 283
Error dialog box 719
error handling

CERROR() 742
DBERROR() 744
DBMESSAGE() 744
ERROR() 744
LINENO() 746
MESSAGE() 747
ON ERROR 749
ON NETERROR 749
PROGRAM() 750
RETRY 752
SET ERROR 753
SQLERROR() 754
SQLMESSAGE() 756

error messages 772–785
customizing 753
returning 744, 747

error objects 332
error() method 207
ERROR() 744

resetting 752
errorAction property 609
errorHTMFile property 610
errorLogFile property 610
errorLogMaxSize property 611
errors
I-10 dBASE dBL Language Reference

BDE 332
compiler, returning 742
data entry 586
DDE applications 713
error number, returning 207
exceptions and 35
file (causes and numbers) 207
finding information 35
fixing 719
multiuser environments 749
resolving 752
run-time 750, 753

IDAPI 744
line numbers, returning 746
server 754, 756

server 332
syntax 719

errorTrapFilter property 611
Esc key 626

disabling 513, 621
escape sequences 677
escExit property 513
evalTags property 513
event handling, server

Append mode attempted 364
button clicked 544
component ready to render 649
component rendered (in report) 658
Edit mode attempted 366
Edit mode entered 402
field value change attempted 365
field’s value property read 358
navigation attempted 367
query deactivation attempted 366
query open attempted 368
report page rendered 658, 660
row buffer addition attempted 367
row buffer save attempted 368
row buffer saved 404
row deleted 402
row deletion attempted 366
rowset abandon attempted 364
rowset abandoned 400
rowset closed 401
rowset navigated 402
rowset opened 403
value property changed (field) 400, 401
value property read (field) 402

events
adding records 540
defined 12
dragging objects 546
dropping objects 547
firing order for Form object events 590
firing order when opening a form 590
moving forms 537, 555
moving record pointers 556
null values 46
resizing forms 558
selecting objects 512
trapping

DDE applications 707, 708
visual components, common (table) 426

exact matches (searches) 287
failing 297

exactly equal to operator 24
Exception class 34

properties (table) 34

Exception objects 34, 332
exceptions

conditional 43
describing 34
generating 66
handling 35, 67

catch block and 37
managing execution with 35

exclusive mode 291
execute() method

DDE commands 702
queries or stored procedures 376

executeMessages() method 611
executeSQL() method 376
executing

actions 458
code

after try block 48
conditionally 42, 50, 51
managing with exceptions 35
redirecting calls 61
skipping statements 53
stopping execution 59

codeblocks 27
dBASE commands

page formatting 672
shortcuts 621

DOS commands 205
functions 41
macros, DDE applications 702
queries 376
SQL statements 340, 376, 755
stored procedures 376

exeName property 612
exists() method 207

create() and 201
EXIT 47
exiting dBASE Plus 59
exiting loops 44, 47
EXP() 100
expandable property 651
expanded property 514
exponentiation

base e 100
exponents, returning 101, 102
square roots and 110

exporting tables with COPY 245
expression commands

EMPTY 46
TYPE() 70

expressions
arithmetic operators and 21
changing 759
character strings 162
comparing 102
complex, how evaluated 9
defined 7
empty 266

testing for 46, 266
evaluating 51, 666
fields list 259
finding 161, 270

in arrays 186
grouping 27
identifiers 759
operator precedence 20
replacing data 279
results, viewing 666, 667, 669, 679

storing 66
EXTERN

LOAD DLL and 706
extern 703
external applications 508, 705, 710
external functions 703
external programming elements 695
EXTRACT() function (SQL) 316

F
FCREATE() 201
FDECIMAL() 257
Field class 334

events (table) 335
methods (table) 335
properties (table) 333, 334

field commands
APPEND MEMO 234
BINTYPE() 236
CLEAR FIELDS 242
COPY BINARY 245
COPY MEMO 245
FDECIMAL() 257
FIELD() 258
FLDCOUNT() 258
FLDLIST() 259
FLENGTH() 259
ISBLANK() 266
MEMLINES() 273
MLINE() 273
REPLACE BINARY 281
REPLACE MEMO...FROM 283
REPLACE OLE 284
SET BLOCKSIZE 733
SET FIELDS 291
SET MBLOCK 738
SET MEMOWIDTH 297

field descriptor bytes 771
field morphing 358, 365, 563
field names

aliases 280
automem variables and 279
changing 731
designating 27
display, suppressing 256
displaying 294
getting 258
SQL naming conventions 313

Field objects
creating 333, 334

SQL tables 346
data type, determining 419
getting 377
refreshing 409

field templates (Paradox) 406
FIELD() 258
fieldName property 377
fields 333

adding 317, 731
assigning values 335
asterisks in 280
automatic lookup values 391, 392
browse objects 514
changing data 55, 280
copying multiple 245, 246
counting 258
default values 373, 400
definitions, displaying 728
 Index I-11

deleting 317, 731
determining values 422
empty 266
filling with blanks 236
freezing 239
identifying 377
length 259

maximum 384
locking 337
maximum value 396
minimum value 396
multi-line input 439
passing as parameters 55
read-only 408, 514
required 412
single-line input 441
sorting on multiple 303
structure-extended tables 252
updating 281
widths, changing 731

fields array 30
fields list 256

browse objects 514
clearing 242
defining 291
new tables 307
returning 259

fields property 377, 514
fields() method 173
file attributes

(DOS) 151
File class 196
file extensions

DB 325
DBF 325
script vs. byte code 14

file indicators
beginning 237
end 257

file information methods
accessDate() 198
createDate() 202
createTime() 202
date() 203
eof() 206
error() 207
exists() 207
shortName() 223
size() 224
time() 224

file locks
automatic 260, 269, 285, 337
disabling 296

file names 228
changing 220
creating 209
default 244
getting 377
returning 212, 218

full paths 223
returning (DOS) 223

file pointers 213
determining position 216
moving 213, 222
returning location 206

file utilities and information
COPY FILE 201
CREATE FILE 722

DELETE FILE 204
DISPLAY FILES 205, 214
ERASE 206
FILE() 208
GETDIRECTORY() 209
RENAME 220

file utility methods
close() 199
copy() 200
delete() 203
flush() 208
gets() 212
open() 214
puts() 218
read() 219
readln() 220
rename() 220
seek() 222
write() 226
writeln() 226

FILE() 208
fileName property 745
filename variable 228
files

attributes
DOS 170
extended 171

backing up 731
binary 245

coverage analysis 734
reading from 281

buffers, flushing 208
closing 199, 716, 747
copying 200, 201, 225

See also Drag&Drop
coverage 725, 734
creating and opening 201
date and time stamps, returning 203
date created, returning 202
deleting 203, 204, 206
directory listings 204
finding 223

checking existence 208
handles, operating system 213
header 764
header structures 770, 771
include 764
information, getting 150, 169, 171, 204

date created 202
date last modified 203
existence of file 207
file pointer location 206
last error number 207
locks 268, 719
name (DOS) of file 223
size 224
time created 202
time last modified 224

linking 715
locking automatically 260, 269, 285,

337
disabling locks 296

low-level 716
memory 61, 62
menu definition 535
object 718
opening 214
overwriting 300

path, determining 216
position, returning 237, 257
protecting 751
query 302
renaming 220
saving 208
selecting 210
streaming output 678
temporary 209, 311

SORT and 303
text, reading from 220
types, supported 232
unlocking 298
writing characters to 226

file-sharing modes 291
fill() method 174
Filter mode

canceling 361
entering 361

filter property 377
filtering 354, 361, 367

clearing 369, 378
criteria

controlling 378
determining if specified 397

defined 377
filterOptions property 378
filters, queries, and views

CREATE QUERY 724
DISPLAY 255
MODIFY QUERY 731
MODIFY VIEW 731
SET FILTER 293
SET VIEW 302

FINALLY 48
financial transactions 240

future value 100
payments 103
present value 104

FINDINSTANCE() 48
findKey() method 379
findKeyNearest() method 379
first property 515
first() method 380
firstChild property 515
firstColumn property 516
firstKey property 175
firstPageTemplate property 652
firstRow() method 516
firstVisibleChild property 516
fixed property 652
FLDCOUNT() 258
FLDLIST() 259
FLENGTH() 259
float values

adding 304
returning

future value 100
present value 104

FLOCK() 260
RLOCK() vs. 285
SET REPROCESS and 300

FLOOR() 100
compared (table) 101

FLUSH 260
flush() method

data buffers 380
files 208
I-12 dBASE dBL Language Reference

FNAMEMAX() 209
focus 515

color options 494
gained 549
getting 476
losing 541, 542, 553
moving 581, 625

arrow keys and 522
restricting 586

setting 575
FocusBitmap property 517
fontBold property 517
fontItalic property 517
fontName property 518
fonts 666

scaling 571
selecting 571, 613
setting font name 518
setting point size 518
text attributes 517, 518, 519

fonts commands
DEFINE COLOR 606
GETFONT() 613

Fonts dialog box, calling 613
fontSize property 518
fontStrikeout property 518
fontUnderline property 519
footer band 639
footerBand property 652
footers, printing 672
for loops

SLEEP vs. 631
FOR...ENDFOR 48
FOR...NEXT 48
FOR() 261
name 538
Form class 442

events (table) 444, 467
methods (table) 444, 468
properties (table) 443, 466

form commands
CREATE FORM 722
CREATE MENU 723
CREATE POPUP 723
MODIFY APPLICATION 731
MODIFY FORM 731
MODIFY MENU 731
MODIFY SCREEN 731
MSGBOX() 618
SET CUAENTER 625

Form designer 722
form files 722
Form objects

creating 445
grouping 522
tabbing order 482

form property 519
Form wizard 722
formats

date 134
returning 124, 126, 132
specifying 135

function templates 520, 666
international 135
numeric data

currency symbols 106
decimal separator 107
thousands separator 108

picture templates 108, 563, 666
text 520

size 571
time 135, 137

formatting text 563
formfeeds 671
forms

active page, setting 559
ActiveX controls, including 427
adding Edit and Windows menus 597
adding menus 595, 599

top-level 597
adding pop-up menus 564
anchoring objects 480
area borders 460
associated views 588
background image, setting 482
centering 481
changing 722
closing 489, 491, 494, 513

event handling 544
color options 495
Control menu 581
control tips 577, 578
creating 722
designing 507, 735
display states 591
displaying text in HTML 471
elements array 512
listing components 512
loading 544
MDI 445, 534
menu definition files 535
menus 595
modal 566
moving 537, 555
moving through 526, 572, 589
multi-page 445, 469

counting pages 559
getting page number 559

object references array 512
opening 559, 566

event handling 556
overview 425
printing 565
referencing 519
refreshing 568
scrolling 526, 572, 589
SDI 445
sizing 534, 536, 591

automatically 482
event 558
preventing 577

specifying topmost 584
submitting 506, 558
toolbars 600
toolbuttons 601

forward slash symbol 30
FOUND() 261

CONTINUE and 243, 270
SEEK and 287
SELECT and 288
SET NEAR and 297

freeing memory 39
indexes and 254

French date format 135
frequency (bell) 733
frozenColumn property 519

FUNCTION 49
CLASS and 38
PROCEDURE vs. 57

function calls 27
BDE 382
external 703
internal to program file 63
program to program 63
retrying 752

function keys
command execution 627
current setting 64, 65
default assignments 627

function pointers 11, 27
function property 520
function symbols 95
function templates 520, 666
functions 38

accessing values 53
declaring 49
defined 10
external

accessing 703
inline 760
key expressions and 264
maximum per program 50
naming 49
prototypes for external 703
return values 61
running 41

FUNIQUE() 209
future value, returning 100
FV() method 100

G
GENERATE 262
generating random numbers 105
generic controls 456
German date format 135
GETCOLOR() 612

DEFINE COLOR and 606
getColumnObject() method 520
getColumnOrder() method 521
getDate() method 128
getDay() method 128
GETDIRECTORY() 209
GETENV() 210
GETFILE() 210
getFile() method 175
GETFONT() 613
getHours() method 129
getItemByPos() method 521
getMinutes() method 129
getMonth() method 130
gets() method 212
getSchema() property 380
getSeconds() method 130
getTextExtent() method 521
getTime() method 130
getTimezoneOffset() method 131
getYear() method 131
global values 58
GO 262

BOOKMARK() and 238
goto() method 381
graphics 245

centering 477
displaying 712
 Index I-13

printing 712
pushbuttons 507, 508, 517

nonselected 585
storing

binary fields 245
memo fields 246

greater-than operator 24
greater-than or equal to operator 24
Grid class 445

events (table) 447
methods (table) 447
properties (table) 446

GridColumn class 448
properties (table) 448

gridLineWidth property 522
grids 445
Group class 639

methods (table) 640
properties (table) 639

group property 522
groupBy property 653
grouping

data 640, 653
objects 522
operator 27

groups
footers in 652
headers in 654
identifying 654
rendering in 649
report-level 642, 662
returning calculations 644–648

grow() method 177

H
handle property 213, 382, 522
handles, file 213
handling exceptions 35, 67

catch block and 37
hasButtons property 522
hasColumnHeadings property 523
hasColumnLines property 523
hasHScrollBar() method 613
hasIndicator property 523
hasLines property 523
hasRowLines property 523
hasVScrollBar() method 613
hatched (blended) backgrounds 561
header band 639
header files 764

changing 765
header structures (file) 770, 771
headerBand property 654
headerEveryFrame property 654
headers

printing 672
repeating over StreamFrames 654

headingColorNormal property 524
headingControl property 524
headingFontBold property 524
headingFontItalic property 524
headingFontName property 524
headingFontSize property 525
headingFontStrikeout property 525
headingFontUnderline property 525
height property 525
HELP 729
Help system

activating 729, 737
keywords, specifying 526
topics, specifying 525

Help, online 1, 2
HelpFile property

OnHelp and 549
helpFile property 525

helpID and 526
HelpID property

helpFile and 526
onHelp and 549

helpID property 526
heterogeneous joins 323
hexadecimal numbers

decimal equivalents 115
returning 115

hiding components 588
in reports 650, 664

hints 577, 578
HOME() 213
horizontal scroll bars 588
hours

returning 129
setting 137

hScrollBar property 526
HTML text 469, 471
HTOI() 115
hWnd property 527
hWndClient property 527
hWndParent property 527

I
I/O

display widths, memo fields 297
environment messages 740
printing 671

page formatting 672
I/O commands

? command 666, 667
?? command 669
CREATE LABEL 723
CREATE REPORT 724
MODIFY LABEL 731
MODIFY REPORT 731
SET ALTERNATE 675
SET HEADINGS 294
SET SPACE 679

Icon property 528
icons 528
ID checking, language drivers 753, 754
ID property 528

NETWORK() and 748
ID() 745
IDAPI errors 744
identifiers

defining 758
without replacement text 759, 760

multiple programs 765
objects 528
replacing with specified values 759
undefining 760, 766

IF 50
DO CASE vs. 43
ELSE and 45
ELSEIF and 45
IIF() vs. 51
multiple ELSEIFs 51

#if directive 762

#ifdef directive 763
#ifndef directive 763
IIF() method 51
Image class 449

properties (table) 449
Image objects 450
image property 528
images

displaying 450
enlarging 477
linking bitmap to form component 506
setting background 482
shrinking 477
sizing and positioning 477, 537

imageScaleToFont property 529
imageSize property 529
imgPixelHeight property 529
imgPixelWidth property 529
#include directive 764
INCLUDE directory 764
include files 764

changing 765
incompatible data types 732
increment operators 23
incrementing spin box values 579
_indent 680

_rmargin and 692
_wrap and 693

indent property 530
inDesign property 530
INDEX 263

SEEK and 287
SET EXCLUSIVE and 291
SET INDEX and 295
SORT vs. 303

Index class 336
properties (table) 336

index files
allocating memory 733, 737
closing 242
copying 244
creating 246, 252
deleting 254, 320
information, getting 727
multiple 305
names, returning 271, 274
opening 294, 310
temporary 303

index operator 26
indexes

copying tables 244
creating 263, 266, 317
deleting 320
master 266

returning
names 275

specifying 295, 298, 310
number of active 305
numeric fields 92
order, reversing 265
processing speed 737
rebuilding 279, 283

Standard tables 410
replacing data 280
SCAN and 286
sort order, setting 263
tags 265

number, returning 306
I-14 dBASE dBL Language Reference

updating 732
automatically 265

indexing and sorting
CLOSE INDEXES 242
DELETE TAG 254
FOR() 261
INDEX 263
KEY() 266
MDX() 271
NDX() 274
ORDER() 275
REINDEX 278
SET IBLOCK 737
SET INDEX 294
SET KEY TO 295
SET ORDER 298
SET UNIQUE 301
SORT 302
TAG() 305
TAGCOUNT() 305
TAGNO() 306
UNIQUE() 307

indexName property
Rowset 382
UpdateSet 382

indirection operator 27
infinity, returning 110
information resources 1, 2
initializing

arrays 154
DLLs 706
memory variables 53, 57, 58, 241

during program suspension 756
values in arrays 174

initiate() method 705
initiation handlers 624
INKEY() 614

NEXTKEY() and 620
inline functions 760
input fields

multi-line 439
single-line 441

INSERT statement (SQL) 320
insert() method 179
INSPECT() 730
Inspector

opening 730
instantiating classes 38
instantiation 25
INT() 101

compared (table) 101
integers

decimal separator 107
returning 101, 109

equality 99, 100
integralHeight property 530
interest rates

future value 101
payments 103
present value 104

international date/time formats 135
interrupting SLEEP 631
interrupts, Esc key 626
interval property 132
invalid data entry 586, 733
involution, returning exponents 102
isAlpha() method 81
ISALPHA() 81

ISBLANK()
EMPTY and 46

ISBLANK() 266
AVERAGE and 235, 305
BLANK and 237

isInherited() method 52
isKey() method 181
isLastPage() method 655
isLower() method 82
ISLOWER() 81
isolation levels 383
isolationLevel property 383
isRecordChanged() method 530
ISTABLE() 266
isUpper() method 82
ISUPPER() 82
Italian date format 135
italic attributes 517
ITOH() 115

J
Japanese date format 135
joins

heterogeneous 323
live, restrictions 317

K
kerning, adjusting 665
key codes 622
Key event 531
key expressions

linking tables 299
matching 287, 297
returning 266

key fields
changing 280
key values

duplicate 301
restricting 295, 301

searching on 288
key violations, handling 384
KEY() 266
KEYBOARD 617
keyboard

accelerators 630
default assignments 627

keyboard event commands
INKEY() 614
NEXTKEY() 620
ON ESCAPE 621
SET ESCAPE 626
SET FUNCTION 627

keyboard() method 531
KEYMATCH() 267
keys (associative arrays)

finding next 181
strings, searching for 181

keystrokes
assigning

command execution 621, 622, 627
interrupts 626

clearing buffer 605
evaluating 531, 543, 549, 550, 551
getting 614
simulating 531, 625
values, returning 614, 620

keyViolationTableName property 384

keywords
abbreviating 64
Help systems 526
local SQL 313
naming restrictions and 50

L
labels

creating 638, 649
designing 735

language drivers 743, 746
current, returning 746
ID checking 753, 754
ISALPHA() and 81
ISLOWER() and 81
ISUPPER() and 82
LOWER() and 86
primary/secondary weights 291
PROPER() and 86
SOUNDEX() and 90
UPPER() and 95

language elements 33
language property 618
languageDriver property 384
last() method 384
lastIndexOf() method 82
lastRow() method 532
layouts, report page 640
lDriver property 618
LDRIVER() 746
leading property 655
leading spaces

deleting 84, 86
left property 532

bottom and 488
left() method 83
LEFT() 83
leftTrim() method 84
LEN() 84

LEFT() and 83
SUBSTR() and 93

length property 384
String objects 84

LENNUM() 84
less-than operator 24
less-than or equal to operator 24
level property 532
libraries 62
LIKE() 85

DIFFERENCE() vs. 79
SOUNDEX() and 90

Line class 450
properties (table) 451, 457

line comment symbol 30
line lengths, memo fields 273
line spacing, setting 655
linear control structures 42, 50, 51
linefeeds 671

automatic 671
character, counting 83, 84, 88

substrings 77, 93
files 212, 219

lineNo property 533
LINENO() 746

PROGRAM() and 750
lines

creating 450
setting row position 488
 Index I-15

specifying patterns 561
linesAtRoot property 533
link expressions 278
linkFileName property 533
linking

files 715
form component to bitmap 506
form component to Field object

(bitmap) 506
form components 504
report components 643
tables 299

linking and relating
RELATION() 278
SET RELATION 298
SET SKIP 301, 308
TARGET() 306
UPDATE() 308

links 326
DDE 705, 713

disabling 713
OLE 284, 533

LIST 268
DISPLAY vs. 256
EOF() and 257
SET HEADINGS and 294
SET PRINTER and 678

list boxes 469
counting prompts 502
current prompt 503
multiple selection, setting 538
selecting options 504
selecting prompts 557
sorting 578

LIST FILES 214
DISPLAY FILES vs. 205
SET SEPARATOR and 108

LIST/DISPLAY commands 730
ListBox class 451

events (table) 452
methods (table) 452
properties (table) 451

ListBox objects 452
See also list boxes

lists
combo box styles 580
programming

multiple selection 538
single selection 437

scrollable 452
literal

array elements 31
characters 85
dates 31
strings 30

live joins, restrictions (local SQL) 317
live property 385
live queries

restrictions (local SQL) 316
specifying 412

LKSYS() 268
CONVERT and 720

_lmargin 681
_alignment and 680
_ploffset and 689
_rmargin and 692
_wrap and 693

LOAD DLL 706

RELEASE DLL and 711
loadChildren() method 533
loading

components 544
forms 544

LOCAL 52
local variables

declaring 52
as static 65

initializing 53, 57
LOCATE 269

CONTINUE and 243
FOUND() and 261
SEEK vs. 287

Locate mode
canceling 362
entering 361

locateNext() method 385
locateOptions property 385
locating data 344, 355, 361

controlling criteria 385
next match 385
similar spellings 90

lock property 386
LOCK() 270

RLOCK() vs. 285
LockField class 337

properties (table) 337
lockRetryCount property 386
lockRetryInterval property 387
lockRow() method 387
locks

field 337
file 260, 269, 285, 337

disabling 296
getting user information 422
record 270, 284, 386, 387

automatic 337
information, getting 268, 719
releasing 298
retry attempts 386
retry intervals, setting 387

releasing 419
retry messages 300
rowsets 344, 388
table 296

information, getting 268, 719
releasing 298

lockSet() method 388
lockType property 388
LOG() 101

EXP() vs 101
EXP() vs. 100

LOG10() 102
logarithms 101, 102

base e 100
logical expressions 51
logical fields

converting to character 732
converting to numeric 732

logical operators 23
logical values, defined 5
logicalSubType property 389
logicalType property 389
login dialog box, preventing appearance

391
login name, returning 422
login() method 390

loginDBAlias property 391
loginString property 391
LOGOUT 747
lookup tables 393
lookup values 391, 392
LOOKUP() 270

FOUND() and 261
INDEX and 265

lookupRowset property 391
lookupSQL vs. 392

lookupSQL property 392
lookupRowset vs. 392

lookupTable property 393
lookupType property 393
LOOP 53
loop counter 49
looping, in associative arrays 175, 182
loops 43, 44, 48, 286

conditional statements and 53
exiting 44, 47

losing data 275, 280, 731
minimizing loss 289

LOWER()
scan() and 186

LOWER() function (SQL) 315
LOWER() 85

ASCAN() and 162
AT() and 77, 87
LIKE() and 85

lowercase letters
converting to uppercase 94, 95, 265

first letter 86, 94
sorting data 303
testing for 81, 82

low-level files 716
LTRIM() 86

TRIM() vs. 95
LUPDATE() 271

M
macro operator 28
macro substitution 27, 28
macros (DDE) 702
magnitude (defined) 97
magnitudes 463
main menus 597
manifest file 581
manipulating data 302
manipulating dates 122
marginBottom property 655
marginHorizontal property 656
marginLeft property 656
marginRight property 656
margins, setting 676

both sides 656
both top and bottom 657
bottom (in reports) 655
changing from page to page 658, 660
left (in reports) 656
right (in reports) 656
top (in reports) 657

marginTop property 657
marginVertical property 657
marking records for deletion 255

removing marks 276
master index 266

returning names 275
specifying 295, 298, 310
I-16 dBASE dBL Language Reference

masterChild property 394
masterFields property 394
masterRowset property 395
masterSource property 395
MAX() 102
MAX() function (SQL) 315
Maximize buttons, enabling 534
maximize property 534
maximum property 396
maximum values, returning 240
maxLength property 534
MD 214
MDI forms 445, 629

testing 534
MDI property 534

Maximize and 534
Minimize and 536
moveable and 538

.MDX files
allocating memory 737
copying 244
creating 246, 252
name, returning 271

MDX() 271
MDY() 132
mean average, returning in reports 644
MEMLINES() 273
memo data, defined 5
memo fields 731

allocating memory 733, 738
case

converting 86, 95
changing 279
copying 234, 245

text files to 234, 283
to text files 245

creating 734, 739
display width, setting 297
empty 84
line lengths 273
number of lines 273
overwriting 234, 246, 283
text

returning 273
memo files, deleting (local SQL) 320
memoEditor property 535
memory

allocating
indexes 733, 737
memo fields 733, 738

checking available 747
freeing 39

indexes and 254
managing 39, 569
releasing objects from 60, 568
variables, overriding 759

memory blocks 739
size, changing 737

memory files, creating 61, 62
memory variables 281

arrays 166
clearing 39, 60, 61
copying 61
current settings, program 64, 65
decrementing/incrementing 49
deleting 60
information, getting 726
initializing 53, 57, 58, 241

during program suspension 756
objects 40
passing as parameters 54
preserving 61
public 57, 58, 61
saving 61, 62
scope 52, 58
static 65
storing data 304
storing expressions 66
storing values 235, 240, 304
testing 49

memory variables commands
ADEL() 148
ADIR() 150
AELEMENT() 152
AFIELDS() 153
AFILL() 153
AGROW() 154
AINS() 156
ARESIZE() 158
ASCAN() 161
ASORT() 162
ASUBSCRIPT() 164
CLEAR MEMORY 39
DECLARE 166
LOCAL 52
PUBLIC 57, 58
RELEASE 60
RESTORE 61
SAVE 62
STATIC 65
STORE 66

memory() method 747
MEMORY() 747
Menu class 595
menu commands

choosing 630
menu definition files 535
Menu designer 535, 723
menu objects 596
MenuBar class 597

events (table) 597
methods (table) 598
properties (table) 597

menuFile property 535
menus

adding checkmarks 604
checkmarks 604
Copy item 608
creating 564, 595
Cut menu item 608
generating 595, 597
initializing 624
Paste menu item 609
popup 599
separators 625
Undo menu item 609
Window 634

MESSAGE() 747
messages

confirmation 300
displaying 631, 739

current environment 727
memory variables 726

environment information 727, 728, 740
file locking 300
status bar 579, 628

methods 38
accessing

by name 26
by value 26

calling 27
creating 37
defined 12
maximum per program 50
referencing 26
visual components, common (table) 426

metric property 535
MIN() 102
MIN() function (SQL) 315
Minimize buttons, enabling 536
minimize property 536
minimum

property 396
values, returning 240

minutes
returning 129
setting 138

mismatched data types 24
MKDIR 214

MD vs. 214
MLINE() 273
MOD() method 103
modal forms 566, 584
mode, determining current 417
modified property 396
MODIFY... commands

SET DESIGN and 735
MODIFY APPLICATION 731
MODIFY COMMAND

SET DEVELOPMENT and 735
MODIFY FORM 731
MODIFY LABEL 731
MODIFY MENU 731
modify property 536
MODIFY QUERY 731
MODIFY REPORT 731
MODIFY SCREEN 731
MODIFY STRUCTURE 731

CREATE...FROM vs. 252
MODIFY VIEW 731
MODIFY/CREATE commands 730
modules 50
modulus, returning 103
modulus operator 22
monetary values 106
MONTH() 132
months

returning 130, 132
setting 138

morphing 358, 365, 563
mouse buttons

clicking 552
middle button 553, 557
twice 551, 553, 557

releasing 552, 553, 557
mouse event commands

INKEY() 614
mouse events

assigning 552, 553, 557
double-clicks 552, 553, 557

caution with Drag&Drop 547
moving forms 537

mouse pointer
changing 536, 553
 Index I-17

moving 536, 553
mousePointer property 536
move() method 537
moveable property 537
moving

See also Drag&Drop
file pointers 213, 222
forms 537, 555
record pointers 262, 286, 289, 302

linked tables 301
moving through forms 526, 572, 589
moving through tables 262, 301
MSGBOX() 618
multi-line comment blocks 30
multi-line input fields 439
multi-line statements 31
multi-page containers 453
multi-page forms 445, 469

counting pages 559
getting page number 559

multiple conditions, testing 51
multiple documents, opening 445, 534
multiple ELSEIF statements 51
multiple fields

copying 245, 246
sorting data 303

multiple index files, returning 305
multiple programs

compiling 765
identifiers 765

multiple property 538
multiple selection, allowing 452
multiplication operator 22
multiSelect property 538
multiuser environments

changing data 241, 260, 270, 284
deleting records 311
errors 749
file-sharing modes 291
releasing locks 298
screens, refreshing 298
setting locks 260, 270, 284, 296

retry messages 300
testing for 748
transactions 235

committing 243
rolling back 285

updating data 260, 284
user names, returning 745

N
name property

Data objects 397
Form objects 538

names
columns, in local SQL 313
databases 252
DDE applications, returning 712, 713
file, returning DOS 223
functions 49
index files, returning 271, 274
resolving conflicts 27
table

changing 279
in local SQL 312
returning 253, 306

work areas 30
nativeObject property 539

natural logarithms 101
base e 100

navigateByMaster 397
navigateMaster 399
Navigator Window, dragging files from

547
.NDX files

name, returning 274
specifying as master 310

NDX() 274
negating an operand 22
negative values

absolute 97
finding 109

net present values 240
network drives 225
NETWORK() 748
NEW operator 25, 38

DEFINE and 40
new tables, creating 252
next() method 399
NEXTKEY() 620

INKEY() and 616
nextKey() method 181
nextObj property 539
nextPageTemplate property 657
nextSibling property 540
non-editable text 581
non-operational symbols 30
noOfChildren property 540
not equal to operator 24
NOT operator 23
focus property 517
NoteBook class 453

events (table) 453
properties (table) 453

notify() method 706
notifyControls property 400
null values 46

defined 5
number sign symbol 32
numbers

See also float values, integers
adding 240, 304, 307
averaging 235
constants 759
dividing 103
hexadecimal

decimal equivalents 115
returning 115

incrementing 580
negative 109

absolute values 97
random 105
rounding 92, 105
sign, determining 109

numeric constants
pi 104

numeric data
bitwise operations

return values, getting 114
shift bits 112

comparing 102
converting characters 732
converting to character 92
converting to strings 91
formatting

currency symbols 106

decimal separator 107
thousands separator 108

key expressions 265
precision, setting 107
replacing 280
returning

characters as 732
logical 732

truncating 101
numeric data commands

SET CURRENCY 106
SET DECIMALS 107
SET POINT 107
SET PRECISION 107
SET SEPARATOR 108

numeric data functions
ABS() 97
ACOS() 97
ASIN() 97
ATAN() 98
ATN2() 98
CEILING() 99
COS() 99
DTOR() 99
EXP() 100
FLOOR() 100
INT() 101
LOG() 101
LOG10() 102
MAX() 102
MIN() 102
PI() 104
RANDOM() 105
ROUND() 105
RTOD() 106
SIN() 109
SQRT() 109
TAN() 110

numeric data methods
FV() 100
MOD() 103
PAYMENT() 103
PV() 104
SIGN() 109

numeric fields
blank values 240
indexing 92
precision, setting 406

numeric operators 22

O
Object class 35
object classes

creating 38
identifying members 36, 37

object files 718
object operators 25–27
object pointers 515
object references 54
objects

See also Drag&Drop
adding borders 487
anchoring 480
clearing from memory 39, 60
closing 352
colors, setting 494, 495
creating 25, 35, 40, 455
default 506
I-18 dBASE dBL Language Reference

defined 12
displaying data 514
finding current 476
focus 515

getting 476
moving 479, 581, 626

arrow keys and 522
restricting 586

grouping 522
height

varying 652, 665
left edge position 532
passing as parameters 54
redefining properties 59
referencing

data modules 331, 409
rowsets 413
with numeric values 528

releasing from memory 60, 568
returning 48
right edge position 569
selecting 512, 590
setting size 41
streaming 533, 580
tabbing order 482
testing for active 352

objects commands
DEFINE 40
INSPECT() 730
PLAY SOUND 709
RESTORE IMAGE 712

OEM conversions 742
OEM() 748

ANSI() and 742
OLE 695
OLE automation example 701
OLE class 454

events (table) 455
methods (table) 455
properties (table) 454

OLE data, defined 6
OLE documents

adding 284
OLE fields

adding OLE documents 284
information, getting 540
writing to 284

OLE files 533
OLE links 284, 533
OLE objects 455
OLE server applications 454

accessing 508, 574
OleAutoClient class 700
OleType property 540
ON ERROR 749

LINENO() and 746
ON NETERROR vs. 750
PROGRAM() and 750
RETRY and 752
SET ERROR vs. 753

ON ESCAPE 621
ON KEY 622
ON NETERROR 749
ON PAGE 672

EJECT PAGE and 671
onAbandon event 400
onAdvise event 707
onAppend event 400, 540

onCellPaint event 541
onChange event 401, 541
onChangeCancel event 542
onChangeCommitted event 542
onChar event 543
onCheckBoxClick event 543
onClick event 544
onClick property

ShortCut and 630
onClose event 401, 544
onDelete event 402
onDesignOpen event 544
onDragBegin event 545
onDragEnter event 545
onDragLeave event 546
onDragOver event 546
onDrop event 546
onEdit event 402
onEditLabel event 548
onEditPaint event 548
one-to-many relationships 301
onExecute event 707
onExpand event 548
onFormSize event 549
onGotFocus event 549
onGotValue event 402
onHelp event 549
OnHelp property

HelpID and 526
onHelp property

HelpID and 526
onInitiate event 624
onInitMenu event 624
onKey event 549
onKeyDown event 550
onKeyUp event 551
onLastPage event 551
onLeftDblClick event 551
onLeftMouseDown event 552
onLeftMouseUp event 552
online Help 1, 2
onLostFocus event 553
onMiddleDblClick event 553
onMiddleMouseDown event 553
onMiddleMouseUp event 553
onMouseMove event 553
onMouseOut event 554
onMouseOver event 555
onMove event 555
onNavigate event 402, 556
onNewValue event 708
onOpen event 403, 556
onPage event 658
onPaint event 557
onPeek event 708
onPoke event 708
onProgress event 404
onRender event 658
onRightDblClick event 557
onRightMouseDown event 557
onRightMouseUp event 557
onSave event 404
onSelChange event 557
onSelection event 558

ID property and 528
onSize event 558
onTimer event 133
onUnadvise event 708

onUpdate event 624
OODML sections 228
OPEN DATABASE 274

SET DATABASE and 289
open() method 214, 405, 559
opening

databases 274, 352
Debugger 725, 739
files 214
Form designer 722
forms 559, 566
index files 294, 310
Inspector 730
Menu designer 723
query files 302
Report designer 723, 724
Table designer 721, 731
tables 289, 309

default, setting 290
file-sharing modes 291

operands 19
defined 6
negating 22

operator symbols (table) 6, 19
operators 19

addition 21, 22
alias 27, 299
assignment 20
binary 6
bitwise 114

AND 111
OR 113
shift bits 112
XOR 114

call 27
comparison 24
concatenation 21, 22
defined 6
grouping 27
indirection 27
logical 23
macro 28
non-operational symbols 30
numeric 22, 23
object 25–27
precedence 20

overriding 27
relational 24
SQL (table) 313
string 21, 22
table of 6, 19
unary 6

optimizing
data processing 289
memory allocation 739
program execution 736
search operations 271, 287
source code 760

options
compiler, setting 765

OR operator 23
bitwise 113

ORDER() 275
organization of documentation 1
organizing data 264, 303
orientation property 660
OS() 215
OTHERWISE 53
 Index I-19

output (reports) 642
output devices 674
output property 659
outputFilename property 659
overstriking text 668
Overview, chapters 1
overwriting data 280

binary fields 245
confirmation messages 300
memo fields 234, 246, 283

P
PACK 275

DELETE vs. 253
RECALL and 276

packing tables 405
packTable() method 405
padding strings 92
_padvance 681
pageCount() method 559
page-handling routines 671
_pageno 682
pageno property 559
pages

alternating left and right 658
cover page, specifying 657
current page (in reports) 662
rendered in report, handling event 658,

660
specifying first (in reports) 663
specifying first template 652
specifying last (in reports) 651
specifying next (in reports) 657

PageTemplate class 640
methods (table) 641, 660
properties (table) 641

PageTemplate objects, creating multiple
641

paging through text 526, 572, 589
PaintBox class 455
Paintbox objects 456
paintbox objects

redrawing 549, 557
papersize property 660
papersource property 661
Paradox tables

adding fields 338
constraining updates 370
creating 720
field templates 406
indexing

primary indexes 254
secondary indexes 254

linking 299
lookup values 393
querying 755

Parameter class 337
properties (table) 337

Parameter objects 337
types described 338

PARAMETERS 53
parameters 27

copying 55
finding number of 36, 56
finding specified 36
passing 50, 54, 55, 560, 725

by reference 54
by value 54

returning information on 36, 56
SQL statements 406
stored procedures 406

creating 337
substitutions, local SQL 315
type, getting 419

params array
Query object and 326
StoredProc object and 326

params property 406
Java applet, ActiveX 560

parent, determining 56
parent property 56

form property and 519
parent tables 299

moving through 301
parenthesis in code 27
parse() method 134
passing fields as parameters 55
passing memory variables as parameters 54
passing properties as parameters 54
passwords 391

adding 353
paste() method 561
pasting text 561, 609
path property 216
pattern matching 85
patternStyle property 561
PAYMENT() 103
payments

future value 100
present value 104
principal balance 103

_pbpage 683
_pepage and 686

PCOL() 673
_pcolno and 684
SET PCOL and 677

_pcolno 683
_pcopies 684
PCOUNT() method 56
_pdriver 684
PdxField class 338

properties (table) 339
_pecode 685
peek() method 709
_peject 685
pen property 561
penStyle property 562
penWidth property 562
_pepage 686

_pbpage and 683
performance, increasing 419
persistent property 562
_pform 686
phonetic matches 79, 90
phoneticLink property 563
PI() 104

ACOS() and 97
picture property 406, 563
picture templates 108, 563, 666
PLAY SOUND 709
_plength 687

_padvance and 682
_porientation and 690

_plineno 688
_plength and 682
_porientation and 690

_ploffset 689
PLUS.exe

path, returning 213
Plus.exe.manifest file 581
PLUS.ini, changing settings 732
PlusRun.exe.manifest file 581
point size

setting 518
pointers

automatic load 63
file 213

determining position 216
moving 213, 222
returning location 206

function 11, 27
object 515
record

linked tables 301
moving 262, 286, 289, 302

events and 556
position, returning 237, 257
work areas 288

poke() method 710
polymorphism 38
population statistics 240
Popup class 599

events (table) 599
methods (table) 599
properties (table) 599

pop-up menus 599
creating 564
initializing 624
right mouse click 632

popupEnable property 564
popupMenu property 564
_porientation 689
position property 216
positive values, finding 109
posting transactions 370
_ppitch 690

_pcolno and 683
_rmargin and 692
_tabs and 693

_pquality 691
#pragma 765
precedence 20

overriding 27
precision property 406
prefixEnable property 565
prepare() method 407
preprocessor

call chain 764
directives 758–766

symbol 32
search-and-replace operations 766

Preprocessor Identifiers
__dbasewin__ 766
__vdb__ 766
__version__ 766

preRender event 660
present value, returning 104
preserving memory variables 61
prevSibling property 565
principal 103

future value 100
present value 104

print() method 565
printable property 565
I-20 dBASE dBL Language Reference

printer control codes 677
printer property 660
Printer Setup dialog box 670
printerName property 661
printers

escape sequences 677
horizontal printing position 673, 677
specifying 678
vertical printing position 675, 679

printerSource property 661
printing

data 256, 673
advancing paper 671
page formatting 672
setting margins 676

environment information 727, 728, 740
files list 205, 214
forms 565
graphics 712
headers and footers 672
reports 671
reports, specifying options 660
text files 225

printing commands
CHOOSEPRINTER() 670
EJECT 671
EJECT PAGE 671
ON PAGE 672
PCOL() 673
PRINTJOB 673
PROW() 675
SET MARGIN 676
SET PCOL 677
SET PRINTER 678
SET PROW 679

PRINTJOB...ENDPRINTJOB 673
_pcopies and 684
_peject and 685

PRINTSTATUS() 674
PRIVATE 56

LOCAL vs. 52
private variables 27, 53

clearing 60, 61
declaring 56
macro substitution and 28

problem tables 407
problemTableName property 407
PROCEDURE 57
procedure calls 50, 57

call chain 42
retrying 752
stored procedures 346, 407

procedureName property 407
procedures 38

closing 39
compiling automatically 735
debugging 750
declaring 57

processing data
optimizing 289
specific records 295

processing speed 736, 740
FLUSH and 261
indexes 737

PROCREFCOUNT 57
program calls 42

recursive 749, 750
program commands

ARGCOUNT() 36
ARGVECTOR() 36
BUILD 715
CLEAR PROGRAM 39
COMPILE 718
CREATE COMMAND 721
DO 41
DO CASE 42
DO WHILE 43
DO...UNTIL 44
FOR...ENDFOR 48
IF 50
IIF() 51
PARAMETERS 53
PCOUNT() 56
PROCEDURE 57
RETURN 61
SCAN 286
SET DEVELOPMENT 735
SET LIBRARY 62, 63
SLEEP 631

program execution 41
canceling 742
conditional 42, 50, 51

OS() 216
coverage analysis 765
delaying 631
interrupting 626
optimizing 736
problems with 734
repeating 43
resuming 751, 756
retrying 752
stopping 59, 61, 742, 756
suspending 742, 756

for specified duration 631
until key pressed 633

viewing 725
program files 718

closing 63
creating 721
memory management 63
recompiling 735
removing from memory 63
search paths 42

PROGRAM() 750
LINENO() and 746

programming
Windows 695

programs
accessing values 53
changing suspended 756
clearing from memory 39
coverage analysis 734
creating 736
current settings 64, 65
developing 734, 736
editing 721
flow, tracking 746
interrupting SLEEP 631
multiple, identifiers 765
names, returning 750
recompiling 765
testing 734, 742
version control 762, 765

Progress class 457
progress indicators 457
progress information 404

Project Explorer 724, 731
prompts

currently selected 503
list boxes 502

selecting 557
PROPER()

scan() and 186
PROPER() 86

ASCAN() and 162
properties

accessing
by name 26
by value 26

assigning values 41
changing 730
creating member 37
defined 12
passing as parameters 54
preventing creation 21
redefining 59
specifying default object 71
viewing 730
visual components, common (table) 425

property 538
property names 16
PROTECT 37, 752
protecting data 735, 751
protecting files 751
prototypes (DLL functions) 703
PROW() 675

_plineno and 688
SET PROW and 679

_pscode 691
_pspacing 691
PUBLIC 58
public variables 27

clearing 61
declaring 57, 58
macro substitution and 28

PushButton class 457
properties (table) 458

pushbuttons 578
adding graphics 507, 508, 517

to nonselected 585
creating 457
default 506
disabling 507

PUTFILE() 216
puts() method 218
PV() method 104

Q
.QBE files

names, setting 588
opening 302

queries
assigning to database 372, 414
closing 352, 401
creating 340
deactivation attempted 366
designing 735
eliminating duplicate values 321
live, specifying 412
opening 352

attempted 368
parent, determining 56
referencing rowsets 413
rerunning 411
 Index I-21

results 343
accessing 340
appending data 344
browsing 344
editable, specifying 412
editing 344
filtering data 344
locating data 344
locking rows and sets 344

running 340, 376
tables, accessing 476
updating restrictions (local SQL) 316

Query class 339
events (table) 340
methods (table) 340
properties (table) 339

Query objects 326
creating 339
StoredProc object vs. 326

question mark (?)
temporary files 209
wildcard character 85

QUIT 59
CANCEL vs. 59

quitting dBASE Plus 59
quitting loops 44, 47
quotation mark symbol 30

R
radians

arccosine 97
arcsine 98
arctangent 98
converting from degrees 99
converting to degrees 106
cosine 99
returning 99
sine 109
tangent 110

radio buttons
creating 458

RadioButton class 458
events (table) 459
properties (table) 459

random access memory (RAM) 747
random numbers 105
random records 262
RANDOM() 105
rangeMax property 566

rangeMin and 566
rangeRequired and 566

rangeMin property 566
rangeMax and 566
rangeRequired and 566

rangeRequired property 566
ranges

key fields 295
spin boxes 566

RAT() 86
AT() and 77

read() method 219
reading from text files 220
readln() method 220
readModal() method 566

MDI property and 535
read-only access 293, 296
read-only fields 408, 514
readOnly property 408

RECALL 276
RECCOUNT() 276

COUNT vs. 249
RECNO() 277
recompiling programs 735, 765
reconnect() method 710
record commands

APPEND 230
APPEND AUTOMEM 231
APPEND BLANK 230
APPEND FROM ARRAY 233
BLANK 236
BOF() 237
BOOKMARK() 238
BROWSE 238
CLEAR AUTOMEM 241
COPY TO ARRAY 248
COUNT 249
DELETE 253
DELETED() 255
EDIT 256
EOF() 257
FLUSH 260
GO 262
LUPDATE() 271
RECCOUNT() 276
RECNO() 277
RECSIZE() 277
RELEASE AUTOMEM 278
REPLACE 279
REPLACE AUTOMEM 281
REPLACE FROM ARRAY 282
SET AUTOSAVE 289
SET DELETED 290
SKIP 302
STORE AUTOMEM 304
ZAP 311

record counters 297
comparing 241

record numbers
display, suppressing 256
returning 277

record pointers
moving 262, 286, 289, 302

events and 556
linked tables 301

position, returning 237, 257
work areas 288

records 771
adding 231, 320, 486

arrays and 233
event handling 540
restrictions 481
temporary 570
to rowsets 353, 354, 359

blank 230
return values 235, 305

change indicator 396
changing 530

browse objects 536
copying 232, 248

automatically 243
counting 204, 240, 276, 371, 413
deleting 255, 275, 311, 319, 475

all in table 375
attempted 366
confirming 300
controlling 290

event handling 402
from destination tables 374
in rowsets 373

displaying 255, 268
editing 238, 239
filling with blanks 236
locking 270, 284, 386, 387

automatically 337
information, getting 268, 719
retry attempts 386
retry intervals, setting 387
retry messages 300

manipulating 302
moving through 263
processing 295
random 262
saving

temporary 570
size, returning 277
stepping through 286
unlocking 298, 419
updating 281

RECSIZE()
LIST STRUCTURE and 277

RECSIZE() 277
RECCOUNT() and 276

Rectangle class 459
properties (table) 460

Rectangle objects 460
recurring actions, setting 120
recursive calls

ON ERROR and 749
ON NETERROR and 750

REDEFINE 59
redefining object properties 59
reExecute() method 567
ref property 409, 568
REFCOUNT() 59
reference, passing by 54
referencing array elements 26, 164, 190
referencing components 538
referencing forms 519
referencing methods 26
referencing objects

data modules 331, 409
in elements array 512
rowsets 413
with numeric values 528

referencing reports 519
referencing tables 30
REFRESH 277
refresh() method 409, 568
refreshAlways property 568
refreshControls() method 409
refreshing data 409
refreshing screens 298, 504, 568
refreshing work areas 277
refreshRow() method 409
REINDEX 278

SET UNIQUE and 302
reindex() method 410
RELATION() 278
relational operators 24
relationships (tables) 301

defining 299
restoring 278, 306

RELEASE 60
CLEAR MEMORY vs. 39
I-22 dBASE dBL Language Reference

RELEASE AUTOMEM 278
RELEASE DLL 711
RELEASE OBJECT 60
release() method 568

reconnect() and 710, 713
releaseAllChildren() method 569
releasing

locks 419
memory variables 39, 60, 61
objects from memory 60, 568

remainders (division) 103
remarks, adding to code 30
removeAll() method 182
removeKey() method 182
RENAME 220
RENAME TABLE 279
rename() method 220
renameTable() method 410
renaming

files 220
tables 279, 410

render() method 661
rendering reports 661
repeating character strings 87, 88
repeating program execution 43
REPLACE 279

REPLACE AUTOMEM vs. 281
REPLACE AUTOMEM 281
REPLACE BINARY 281
REPLACE FROM ARRAY 282
REPLACE MEMO 283
REPLACE OLE 284
replaceFromFile () method 411
replacing character strings 92
replicate() method 88
REPLICATE() 87

SPACE() vs. 91
Report class 641

events (table) 642
methods (table) 642
properties (table) 641

Report designer 723, 724
report files 725
report methods

agAverage() 644
agCount() 645
agMax () 645
agMin() 646
agSum() 647
agVariance() 648
isLastPage() 655
render() 661

Report objects
defined 642

Report wizard 725
reportGroup property 662
reportPage property 662
reports

closing 494, 544
designing 735
displaying data 642
displaying text in HTML 471
example report 637
groups, returning calculations 644–648
last page, determining 655
linking to data source 643
opening 556
output

objects 638
specifying file name 659
specifying medium 659
specifying printer options 660

overview 636–638
printing 671
referencing 519
rendering 638, 661
rendering data 642

in StreamFrames 649
sorting and groups 648
specifying page layout 640
summary-only, detail band and 639
titles, setting 664

ReportViewer class 460
methods (table) 461
properties (table) 461

requery() method 411
requestLive property 412
required fields 412
required property 412
reserved symbols 30

comments 30
reserved words

naming restrictions and 50
SQL (list) 313

resize() method 183
resolution property 661
RESOURCE() 711
resources, information 1, 2
RESTORE 61

SAVE and 62
RESTORE IMAGE 712
restoring memory variables 61
restoring table relationships 278, 306
restricting data entry 481, 735
RESUME 751

SUSPEND vs. 756
resuming program execution 751, 756
RETRY 752
RETURN 61

QUIT vs. 59
return codes (DOS) 59
return values 51, 61

absolute 97
angles 97, 99, 109

tangents 98, 110
averages 235, 240
blank records 235, 305
characters as dates 122
data types 70
decimal places 105
hexadecimals 115
infinity 110
integers 101, 109

expressing equality 99, 100
maximum 240
minimum 240
modulus 103
square roots 109
standard deviation 240
variance 240

RGB color values 496
right property 569

bottom and 488
right() method 88
RIGHT() 88
rightTrim() method 89

RLOCK() 284
FLOCK() vs. 260
LOCK() vs. 270
SET REPROCESS and 300

_rmargin 692
_alignment and 680
_wrap and 693

rollback() method 412
ROLLBACK() 285
rolling back transactions 285
rotate property 663
rotating text 663
ROUND() 105
ROUND() compared (table) 101
rounding 92
rounding numbers 105
row buffer

addition attempted 367
saved event 404
saving 414

attempted 368
validation code 368

row cursor
determining position 356, 357, 375
moving forward or backward 399
moving to first row 380
moving to last row 384
moving to specified row 381

rowCount() property 413
rowHeight 569
rowHeight property 569
rowNo() property 413
rowSelect property 569
Rowset 341
Rowset class 341

events (table) 342
methods (table) 342
properties (table) 341

Rowset objects 341
rowset property

data objects 413
form objects 570

rowsets
abandoning 400
abandoning attempted 364
adding rows 353, 354, 359
appending data 344
browsing 344
constrained 394
controlling multiple detail 394
copying 370
counting rows 371, 413
creating 341
current mode, determining 417
current position

bookmarking 362
returning 362

defined 326
deleting rows 373
detail

constraining 395
controlling 344
link to master 394, 395

determining if editable 385
editing 344, 360
filtering 344, 354
forward navigation only 419
getting 416
 Index I-23

getting fields 377
getting row number 413
index tag 382
indexed searches 379
locating data 344
locking 344, 388

retry attempts 386
retry intervals, setting 387

master-detail link
calculated fields 394
canceling 394

navigating 367, 402
opened 403
referencing 413
refreshing data 409
unlocking 419
updating 354, 420

RTOD() 106
ACOS() and 97
ASIN() and 98
ATAN() and 98
ATN2() and 98

RTRIM()
LTRIM() vs. 86

rules
creating 450

RUN 221
RUN() 221

DOS vs. 206
run-time errors

IDAPI 744
line numbers, returning 746
messages, customizing 753
multiuser environments 750
server 754, 756

S
sample data 262
SAVE 62

RESTORE and 61
save() method 414
saveRecord() method 570
saving

current row buffer 414
data 261, 397

automatically 289
files 208
memory variables 62
output 675
records 570

scale property 414
scaleFontBold property 570
scaleFontName property 571
ScaleFontSize property 571
scaling fonts 571
SCAN 286

EOF() and 257
scan() method 186
scientific notation 100, 101, 102
scope 229

memory variables 52, 58
scope resolution operator 26
screens

refreshing 298, 504, 568
scripts

comments, including 14
defined 13

scroll bars

creating 526, 572, 589
setting position 588

scroll() method 571
scrollable lists 452
ScrollBar class 461

events (table) 462
properties (table) 462

scrollBar property 572
scrollHOffset property 572
scrolling forms 526, 572, 589
scrollVOffset property 572
SDI forms 445
search operations

arrays and 162
case-sensitive 162
conditions 269
continuing 243
exact matches 287

failing 297
expressions, finding 270
files 223

checking existence 208
key values and 264, 288, 301
matches, finding 261
optimizing 271, 287
pattern matching 85
phonetic matches 79, 90
sequential 269, 287
substrings 77

search order (preprocessor) 764
search path 42, 223

DLL files 704
preprocessor 764

search-and-replace operations 92, 93
preprocessor 766

searching
case-sensitivity, turning off 83
data 355, 361

locate options 385
next match 385

files, existence of 207
keys in array elements 181
values in arrays 186

searching and summarizing
AVERAGE 235
CALCULATE 240
CONTINUE 243
DESCENDING() 255
FOUND() 261
KEYMATCH() 267
LOCATE 269
LOOKUP() 270
SEEK 287
SEEK() 288
SET NEAR 297
SUM 304
TOTAL 307

secant 99
inverse 97

seconds
returning 130
setting 138

security 345, 353
access levels 352
ACCESS() 741
login attempts 390, 422
LOGOUT 747
PROTECT 751

SET ENCRYPTION 752
USER() 757

SEEK 287
EOF() and 257
FOUND() and 261
INDEX and 265
LOCATE vs. 270
SET NEAR and 297

seek() method 222
SEEK() 288

EOF() and 257
FOUND() and 261
INDEX and 265
SEEK vs. 287
SET NEAR and 297

SELECT 288
SELECT statement (SQL) 321–324
select() method 572
SELECT() 289
selectAll property 573
selected property 573
selected() method 573
selectedImage property 574
selecting

colors 612
files 210
fonts 571, 613
magnitudes 463
menu commands 630
multiple 452
objects 512, 590
prompts 557
work areas 288, 289

semicolons (;)
command separator 627

separator property 625
separators

command execution 627
date 136

changing 135
decimal digits 107
directory paths 223
menus 625
thousands 108
time 631

sequential searches 269, 287
server errors 754, 756
server errors, getting descriptions 332
server property 712
serverName property 574
servers

connecting to 274, 508, 705, 710
disconnecting 713

Session class 345
methods (table) 345
properties (table) 345

session property 414
sessions

closing 346
default 326
defined 325
getting assigned 414
number supported 345
opening 345
parent, determining 56

SET 732
SET... commands

changing interactively 732
I-24 dBASE dBL Language Reference

current setting 64
information, getting 727

SET ALTERNATE 675
SET TALK and 740

SET AUTONULLFIELDS 732
SET AUTOSAVE 289
SET BELL 732, 733
SET BLOCKSIZE 733

overriding 739
SET IBLOCK and 737
SET MBLOCK vs. 739

SET CENTURY
YEAR() and 131, 141

SET CENTURY command 134
SET CONFIRM 625
SET COVERAGE 734

#pragma vs. 765
SET CUAENTER 625
SET CURRENCY command 106
SET CURSOR 676
SET DATABASE 289

BEGINTRANS() and 235
COMMIT() and 243, 285
DATABASE() and 253
DIR and 204

SET DATE command 135
SET DATE TO command 136
SET DBTYPE 290

CREATE and 721
DIR and 204

SET DECIMALS 107
ACOS() and 97
ASIN() and 98
ATAN() and 98
ATN2() and 98
AVERAGE and 235, 305
CALCULATE and 240
COS() and 99
DTOR() and 99
EXP() and 100
FLOOR() and 99, 100
FV() and 101
LOG() and 101
LOG10() and 102
PAYMENT() and 104
PI() and 104
PV() and 105
RANDOM() and 105
ROUND() and 105
RTOD() and 106
SET PRECISION vs. 107
SIGN() and 109
SIN() and 109
SQRT() and 110
TAN() and 110

SET DELETED 290
KEYMATCH() and 267
PACK vs. 275
RECALL and 276

SET DESIGN 735
SET DEVELOPMENT 735

DO and 42
SET DEVICE

PCOL() and 673
PROW() and 675

SET DIRECTORY 222
CD vs. 199

SET ECHO 736

SET EDITOR 736
SET ENCRYPTION 752
SET EPOCH command 136
SET ERROR 753
SET ESCAPE 626

WAIT and 633
SET EXACT 290

ASCAN() and 162
LOCATE and 270
scan() and 186
SEEK and 287
SET KEY and 296

SET EXCLUSIVE 291
FLOCK() vs. 260

SET FIELDS 291
CLEAR FIELDS and 242
COPY and 245
COPY STRUCTURE and 246
FLDLIST() and 259

SET FILTER 293
KEYMATCH() and 267
SET KEY and 296

SET FULLPATH 223
DBF() and 253
HOME() and 213, 227
MDX() and 272, 274

SET FUNCTION 627
SET HEADINGS 294

DISPLAY and 256
SET HELP 737
SET HOURS 136
SET IBLOCK 737

SET BLOCKSIZE vs. 733
SET INDEX 294

SET EXCLUSIVE and 291
SET KEY TO 295

KEYMATCH() and 267
SET LDCHECK 753
SET LDCONVERT 754
SET LIBRARY 62

CLEAR PROGRAM and 39
SET LOCK 296
SET MARGIN 676

_ploffset and 689
SET MARK 136

SET DATE and 135
SET MBLOCK 738

SET BLOCKSIZE vs. 733
SET MEMOWIDTH 297

MLINE() and 273
SET MESSAGE 628
SET NEAR 297

FOUND() 261
SEEK and 287
SET RELATION and 299

SET ODOMETER 297
SET ORDER 298

ORDER() and 275
SET PATH 223

CD vs. 199
SET PCOL 677
SET POINT 107
SET PRECISION 107
SET PRINTER 678

CHOOSEPRINTER() and 670
PCOL() and 673
_pcolno and 684
PRINTJOB and 674

PROW() and 675
SET PROCEDURE 63

CLEAR PROGRAM and 39
CLOSE PROCEDURE vs. 40
FUNCTION and 50
SET LIBRARY vs. 62

SET PROW 679
SET REFRESH 298
SET RELATION 298

CALCULATE and 240
FLOCK() and 260
FOUND() and 261
RELATION() and 278
RLOCK() and 285
SET DELETED and 290
SET SKIP and 301
TARGET() and 306
UNLOCK and 308

SET REPROCESS 300
FLOCK() and 260, 285

SET SAFETY 300
COPY BINARY and 245
COPY MEMO and 246
COPY STRUCTURE and 246
copy() and 200
create() and 201
rename() and 221
SAVE and 62
SET ALTERNATE and 676
TYPE and 225
ZAP and 311

SET SEPARATOR 108
DIR/DIRECTORY and 108

SET SKIP 301
SET RELATION and 299

SET SPACE 679
? command and 668

SET STEP 739
SET TALK 739

AVERAGE and 235, 305
CALCULATE and 240
SET SAFETY and 301

SET TIME 137
SET TYPEAHEAD 628
SET UNIQUE 301

INDEX and 265
SET VIEW 302
SET...TO commands, current setting 65
SET() 64
SET()

SETTO() vs. 64
setAsFirstVisible() method 574
setDate() method 137
setFocus() method 575
setHours() method 137
setMinutes() method 138
setMonth() method 138
setRange() method 415
setSeconds() method 138
setTic() method 575
setTicFrequency() method 575
setTime() method 138
setting DDE links 705, 710
SETTO() 65
setYear() method 139
Shape class 462

properties (table) 463
Shape objects 462, 463
 Index I-25

shape objects
borders 562
specifying shape 575

shapeStyle property 575
share property 415
shared data commands

BEGINTRANS() 235
CHANGE() 241
COMMIT() 243
CONVERT 719
FLOCK() 260
ID() 745
LKSYS() 268
LOCK() 270
NETWORK() 748
ON NETERROR 749
RLOCK() 284
ROLLBACK() 285
SET EXCLUSIVE 291
SET LOCK 296
SET REFRESH 298
SET REPROCESS 300
UNLOCK 308

shared mode 291
shared resources 415
SHELL() 629
shift bits operators 112
Shift-key combinations

command execution 627
shortCut property 630
shortName() method 223
showFormatBar() method 576
showMemoEditor() method 576
showSelAlways property 576
showSpeedTip property 577
showTaskBarButton property 577
SIGN() 109
similar spellings, finding 90
SIN() 109

ASIN() and 98
DTOR() and 99

sine 109
inverse 97
reciprocal 109

single-line input fields 441
single-quotation mark symbol 30
size property 187
size() method 224
sizeable property 577
SKIP 302

EOF() and 257
SCAN and 286
SEEK and 287

SLEEP 631
interrupting 631

Slider class 463
events (table) 464
methods (table) 464
properties (table) 463

sliders 463
smallTitle property 577
SORT 302

ASORT() vs. 163
INDEX vs. 265
sort() vs. 189

sort order 163
arrays 188
default 303

indexes 263
sort() method 188
sortChildren() method 578
sorted property 578
sorting

array elements 188
array rows 188
in reports 648

sorting array elements 162
sorting data 163, 302, 753

combo boxes 578
list boxes 578
multiple fields 303

sorting dates 126
sound applications 508
sound effects 245
SOUNDEX() 90

DIFFERENCE() and 79
Source Aliasing 195
Source editor, activating 721
source property 416
sourceAliases property 632
space characters, returning 91
space() method 91
SPACE() 91

REPLICATE() vs. 87
spaces

leading
deleting 84, 86

trailing, deleting 89, 95
speakers 245, 733
SpeedBar buttons 578
speedBar property 578, 632
speedTip property 578
spin boxes

ranges, setting 566
scroll bars vs. 464
values, changing 579

SpinBox class 464
events (table) 465
methods (table) 465
properties (table) 465

spinOnly property 579
SQL (local) 312–324

aggregate functions 315
column naming conventions 313
data definition statements 314
data manipulation statements 315
date functions 316
defined 312
live joins, restrictions 317
live queries, restrictions 316
string functions 315
table naming conventions 312
updatable queries, constraints 316, 317

SQL clauses
ADD 317
DISTINCT 321
DROP 317
FROM 322
GROUP BY 322
HAVING 322
ORDER BY 322
SELECT 321
SET 324
UNION 323
VALUES 320
WHERE 421

with DELETE 319
with SELECT 322
with UPDATE 324

SQL databases
linking tables 299
statements, executing 755

SQL designer 724
SQL fields, scale 414
SQL functions

AVG() 315
COUNT() 315
EXTRACT() 316
LOWER() 315
MAX() 315
MIN() 315
SUBSTRING() 316
SUM() 315
TRIM() 316
UPPER() 315

SQL operators (table) 313
sql property 416
SQL reserved words (list) 313
SQL servers, increasing performance 419
SQL statements 326

ALTER TABLE 317
CREATE INDEX 317
CREATE TABLE 318
DELETE 319
DROP INDEX 320
DROP TABLE 320
executing 340, 376
external files 416
generated rowset 416
INSERT 320
preparing 407
SELECT 321
UPDATE 324

SQLERROR() 754
SQLEXEC() 755
SqlField class 346

properties (table) 346
SqlField object

precision, setting 406
SqlField objects 346
SQLMESSAGE() 756
SQRT() 109
square root, returning 109
stand-alone applications 445
standalone applications

using SHELL 629
standard deviation, returning 240
standard deviation, returning in reports 646
Standard tables

constraining updates 370
defined 325
local SQL and 312
queries and 326
rebuilding indexes 410

startPage property 663
startSelection property 579
state property 417
statement, defined 9
statements 31, 50

changing at runtime 28
comments and 31
executing conditionally 50
skipping 53

STATIC 65
I-26 dBASE dBL Language Reference

static variables 65
statistical operations 240
status bars

displaying messages 579, 628
messages 739
record counter information 297

statusMessage property 579
step property 579
stepping through records 286
stopping program execution 59, 61, 742,

756
STORE 66

CLEAR AUTOMEM and 241
STORE AUTOMEM 304

RELEASE AUTOMEM and 278
stored procedures 326

calling 346
closing 401
creating parameters 337
getting parameter type 419
preparing 407
rerunning 411
running 376
specifying 407
values 423

StoredProc class 346
events (table) 347
methods (table) 347
properties (table) 346

StoredProc objects 326, 347
storing graphics

binary fields 245
memo fields 246

storing text 245
STR() 91
streamChildren() method 580
StreamFrame class 642

properties (table) 643
StreamFrame objects

creating multiple 643
defined 643
rendering in (bands) 649

streaming
objects 533, 580

streaming output, writing to files 678
StreamSource class 643

properties (table) 644
StreamSource objects, multiple

assignments 644
streamSource property 663
strikeout attributes 518
string comparisons

expressing equality 290
pattern matching 85
phonetic matching 79, 90

string conversions
characters to dates 122, 732
dates to characters 124, 125, 126, 132,

732
lowercase to uppercase 94, 95, 265

first letter 86, 94
numbers to strings 91
OEM characters to ANSI 742
uppercase to lowercase 85, 94

string data commands
ANSI() 741, 748
AT() 77
CENTER() 77

DIFFERENCE() 79
ISALPHA() 81
ISLOWER() 81
ISUPPER() 82
LEFT() 83
LEN() 84
LIKE() 85
LOWER() 85
LTRIM() 86
PROPER() 86
RAT() 86
REPLICATE() 87
RIGHT() 88
SOUNDEX() 90
SPACE() 91
STUFF() 92
SUBSTR() 93
TRIM() 89, 95
UPPER() 95

string data methods
indexOf() 80
isAlpha() 81
isLower() 82
isUpper() 82
lastIndexOf() 82
left() 83
leftTrim() 84
replicate() 88
right() 88
rightTrim() 89
space() 91
stuff() 93
substring() 93
toLowerCase() 94
toProperCase() 94
toUpperCase() 94

string delimiters 30
string manipulation functions (local SQL)

315
string operators 21, 22
strings

alphabetic characters, testing for 81
characters

specified position 78
creating substrings 316
defined 4
duplicating 87, 88
equality comparisons 24
expressions and 162
finding substrings 77, 80, 82, 86
leading spaces, deleting 84, 86
literal 30
padding 92
replacing specific characters 92
returning 70

case (lower) 81, 82
case (upper) 82
centered 77
dates 121

current 123
DLLs 711
number of characters 83, 84, 88
repeated strings 87, 88
spaces 91
substrings 77, 80, 93

searching and replacing in 92, 93
trailing spaces, deleting 89, 95
trimming 316

structure-extended tables 247
creating 252

stuff() method 93
STUFF() 92
style property 580
subclassing, dynamic 12, 35
SubForm class 466
submitting forms 506
subscript() method 190

element() vs. 191
subscripts

See also array elements
SUBSTR() 93
SUBSTRING() function (SQL) 316
substring() method 93
substrings

creating 316
finding 77, 80, 82, 86
replacing characters 92
returning 93

subtraction operator 22
SUM 304

SET HEADINGS and 294
TOTAL vs. 307

SUM() function (SQL) 315
summaries, calculating 640
summary information

displaying (in reports) 653, 654
summary-only report

detail band and 639
super keyword 26
superclasses 38
supported file types 232
supported table types 325
suppressIfBlank property 664
suppressIfDuplicate property 664
SUSPEND

PROGRAM() and 750
suspending program execution 742, 756

for specified duration 631
switch blocks

designating codeblocks 37, 53
executing default 53

symbols
comments 30
non-operational 30
preprocessor directive 32
string literals 30
used in syntax (table) 16

syntax
annotated example 17
conventions, described 16
errors 719
symbols used (table) 16

sysMenu property 581
system

bell, setting 732, 733
clock 123

setting 136, 137
time elapsed 127

date
changing 135
returning 123

system information
env.memory() 747

system memory variables 674
_alignment 680
_dbwinhome 226
 Index I-27

_indent 680
_lmargin 681
_padvance 681
_pageno 682
_pbpage 683
_pcolno 683
_pcopies 684
_pdriver 684
_peject 685
_pepage 686
_pform 686
_plength 687
_plineno 688
_ploffset 689
_porientation 689
_ppitch 690
_pquality 691
_pspacing 691
_rmargin 692
_tabs 693
_wrap 693

System menu 581
system utilities and information

CD 199
DIR/DIRECTORY 204
DISKSPACE() 205
GETENV() 210
MD 214

systemTheme property 581

T
tab boxes

current prompt 503
maintaining size and location 480

Tab key 626
tabbing order 482

SpeedBar buttons 578
TabBox class 468

anchor property 480
events (table) 469
properties (table) 469

table basics commands
ALIAS() 230
APPEND FROM 232
CLOSE TABLES 242
COPY 243
COPY STRUCTURE 246
COPY TABLE 247
COPY TO...STRUCTURE

EXTENDED 246
CREATE 720
CREATE...FROM 251
CREATE...STRUCTURE EXTENDED

252
DATABASE() 252
DBF() 253
DELETE TABLE 254
DISPLAY STRUCTURE 728
ISTABLE() 266
OPEN DATABASE 274
REFRESH 277
RENAME TABLE 279
SELECT 288
SELECT() 289
SET DATABASE 289
SET DBTYPE 290
SQLEXEC() 755
USE 309

WORKAREA() 311
Table designer 721, 731
table maintenance methods 328
table names

changing 279
returning 253, 306
setting 588
SQL naming conventions 312

table structures 770
changing 317, 721, 731
copying 246
designing 252
storing 153, 173

Table wizard 721
TableDef class 348

Methods (table) 349
Properties (table) 348

tableDriver property 418
tableExists() method 418
tableLevel property 418
tableName property 418
tables

accessing 476
adding fields 731
adding records 230, 231, 486, 570

event handling 540
restricting 481

aliases 476
changing 720
checking for 418
closing 716, 747

work areas 242
controlling access 751
copying 247

one to another 370
creating 246, 251, 303, 318

temporary 307
default type 290
deleting 254, 320, 375
deleting indexes (local SQL) 320
designing 735
determining existing 266
directory listings 204
duplicating 371
emptying 375
encrypting 752
exporting with COPY 245
information, getting 153, 173, 727
key violation 384
linking 298
locking 296

information, getting 268, 719
retry messages 300

moving through 262
linked 301

opening 289, 309
file-sharing modes 291

packing 405
problem, specifying 407
referencing 30
relations 301

defining 299
restoring 278, 306

renaming 410
required fields 412
security levels 352, 353
size, returning 276
structure-extended 247, 252

temporary 307
types supported 325
undoing changes 369
unlocking 298
updating data (local SQL) 324

_tabs 693
tabs 469
tabStop property 581
TAG() 305
TAGCOUNT() 305
TAGNO() 306
TAN() 110

DTOR() and 99
tangent 110

inverse 98
reciprocal 110

target rowset/table, specifying 374
TARGET() 306
TEDIT setting 721
template characters 108, 520, 563
temporary files 209, 311

SORT and 303
temporary tables 307
tempTable property 418
terminate() method 713

initiate() and 705
reconnect() and 710

terminateTimerInterval property 632
terminating program execution 59, 61
testing conditions 49, 51

multiple 51
testing memory variables 49
testing programs 734, 742
text

adjusting character spacing 665
aligning 477

horizontally 476
vertically 478

centering 77
copying 502, 608
cutting 608
deleting 503, 608
files, reading from 220
formatting 520, 563

size 571
with spaces 91

fully justified, setting word spacing 665
getting length 521
multi-line input fields 439
offset margins 677
overstriking 668
paging through 526, 572, 589
pasting 561, 609
rotating 663
SET DESIGN and 735
setting non-editable 581
single-line input fields 441
storing 245
vertically justified, setting spacing 665
wordwrapping 591

text attributes
colors 495
setting font name 518
setting typestyle 517
size 518, 571
strikeout 518
underlined 519

Text class 469
I-28 dBASE dBL Language Reference

methods (table) 470
properties (table) 470

text editors, alternate 721
specifying 736

text files
copying to memo fields 234, 283
creating 736
displaying 224
editing 722
printing 225
writing to

alternate 675
environment information 740
files list 205, 214
from memo fields 246
streaming output 678

Text objects 469
text property 581

downBitmap and 508
TextLabel class 471

methods (table) 471
properties (table) 471

textLeft property 582
bitmapAlignment property 486

this (using) 13
thousands separator 108
THROW 66
tics property 582
ticsPos property 583
time 136

default settings 135
elapsed 127
intervals, setting 120
resetting 137
returning

in milliseconds 130, 134
using GMT 141

separators 631
setting 138

time formats 137
military 136
specifying 135

time stamp, returning 224
time stamping 400
time zone, returning offset 131
TIME() 139

ELAPSED() and 127
time() method 224
timeOut property 713
Timer class 120

events (table) 120
properties (table) 120

Timer object
activating 128
idle time, specifying 132
interval elapsed, handling event 133

title property 664
toggle property 583
toGMTString() method 139
toLocaleString() method 140
toLowerCase() method 94
ToolBar class 600

events (table) 600
methods (table) 600
properties (table) 600

toolbars 600
creating buttons 601

ToolButton class 601

toolbuttons 601
toolTips property 583
top property 584

bottom and 488
topic property 713
topMost property 584
toProperCase() method 94
toString() method 140
TOTAL 307

SUM vs. 305
totals 307

returning in reports 647
toUpperCase() method 94
tracking property 665
trackJustifyThreshold property 665
TrackRight property 632
trackSelect property 584
trailing spaces, deleting 89, 95
trailing zeros, deleting 105
transactions 235, 328

canceling 412
committing 243

DDE applications 713
defined 362
isolation levels 383
logging 328, 362

caching updates vs. 362
posting 370
rolling back 285

TRANSFORM() 94
SET CURRENCY and 106

transparent property 584
TreeItem class 472

methods (table) 473
properties (table) 473

trees 473
adding items 472

TreeView class 473
events (table) 474
methods (table) 475
properties (table) 474

trigonometric functions
ACOS() 97
ASIN() 97
ATAN() 98
ATN2() 98
COS() 99
DTOR() 99
RTOD() 106
SIN() 109
TAN() 110

TRIM() 89, 95
LTRIM() vs. 86

TRIM() function (SQL) 316
true/false values 430
trueTypeFonts property 661
truncating numeric data 101
TRY 67

CATCH and 37
FINALLY and 48
RETURN and 61

TRY...ENDTRY 48
TTIME() 140
TTOC() 141
twips measurement, defined 636
TYPE 224
type conversion

explicit 8

type conversions
ASC() 76
CTOD() 122
DTOC() 125
DTOS() 126
HTOI() 115
ITOH() 115
STR() 91

type property
Field 419
Parameter 419

TYPE() method 70
typeahead buffer

clearing 605
information, getting 614, 620
inserting keystrokes 617
size, setting 628

typographical conventions 2

U
UDFs

debugging 750
unadvise() method 714
unary operators 6, 21, 23

negation 22
uncheckedImage property 584
#undef directive 766
undefining identifiers 760, 766
underlined attributes 519
undo() method 585
undoing table changes 369
unidirectional property 419
UNIQUE() 307
UNLOCK 308
unlock() method 419
unlocking files 298
unlocking records 419
upBitmap property 585

downBitmap and 508
UPDATE 308
UPDATE statement (SQL) 324

SET clause and 324
WHERE clause and 324

update() method 420
UpdateSet class 349

index tags 382
methods (table) 349, 350
properties (table) 348, 349

UpdateSet operations
specifying destination 374
specifying source 416

updateWhere property 421
updating arrays 159
updating data 271, 308, 354, 504

across databases 350
automatically 400
cached 356
caching locally 363
constraints 370
local SQL and 324
multiuser environments 260, 284
problems with 407
rowset to rowset 420
table to table 348, 349

updating data buffers 277
updating indexes 732

automatically 265
UPPER() 95
 Index I-29

ASCAN() and 162
AT() and 77, 87
INDEX and 265
LIKE() and 85
scan() and 186

UPPER() function (SQL) 315
uppercase letters 265

converting to 94, 95
converting to lowercase 85, 94
initial capitals 86, 94
sorting data 303
testing for 82

USA date format 135
USE 309

SET INDEX and 295
USE...AUTOMEM

APPEND AUTOMEM and 231
RELEASE AUTOMEM and 278
STORE AUTOMEM vs. 304

USE...EXCLUSIVE
CONVERT and 719
FLOCK() vs. 260
NETWORK() and 748
SET EXCLUSIVE and 291

usePassThrough property 421
user names 391
user names, getting 745
user property 422
USER() 757
user() method 422
user-defined memory variables 39
user-defined types, binary 245
useTablePopup property 585
UTC() 141

V
VAL() 96
valid property 586

onLostFocus vs. 553
validErrorMsg and 586
validRequired and 587

validating data 587
VALIDDRIVE() 225

CD and 199
validErrorMsg property 586
validRequired property 587
value property 587

Field 422
Parameter 423
reading 358, 402

values 335, 504
absolute 97
accessing program 53
arrays 235, 240, 304
assigning 26

to properties 41
assigning to arrays 153, 156, 166
attempting to change 365
automatic updates 400
averaging 235, 240
blank 240
calculated fields and 335
calculating aggregate 640
change indicator 396
changed 401
changing appearance 358
component’s current 587
counting specified 315

decimal 115
converting to hexadecimal 115
keystrokes, returning 614, 620

default 373
filling in 400

determining 422
duplicate

checking 267
keys 301

duplicate, eliminating 321
finding 288
global 58
group

count of items 645
highest value 645
lowest value 646
mean average 644
standard deviation 646
total 647
variance 648

linking Field object (bitmap) to form
506

lookup 391, 392
maximum (fields) 396
memory variables 235, 240, 304
minimum (fields) 396
monetary 106
net present 240
passing by 54
returning 61, 70

logical expressions and 51
stored procedures 347

saving original 368, 402
specifying 759
spin boxes 566, 579

changing 579
setting 566

true/false 430
updating 504

variableHeight property 665
variables

assigning 7
assigning codeblocks to 31
declaring 27, 56, 57, 58
defined 7
macro substitution and 28
preventing creation 21
private 53, 56
restrictions 27, 30
specifying default object 71

variance 240
returning in reports 648

version control
programs 762, 765
scripts 765

version numbers
OS, returning 215

version property 424
VERSION() 757
vertical property 588
vertical scroll bars 588
verticalJustifyLimit property 665
view property 588
viewing

programs
executing 725

views 507
returing name 588

visible property 588
visibleCount() method 589
visualStyle property 589
volume, measuring 104
vScrollBar property 589

W
WAIT 633

SLEEP vs. 631
warning beeps 732, 733
web property 634
when property 590
whole numbers 101, 105

thousands separator 108
width property 590
wildcard characters

pattern matching 85
temporary files 209

Window menu, adding to forms 634
WindowMenu property 634
Windows Explorer, dragging files from

547
Windows Multiple Document Interface

standard 534
Windows programming 695
Windows programming commands

BITLSHIFT() 112
BITRSHIFT() 113, 114
BITSET() 114
EXTERN 703
HELP 729
LOAD DLL 706
RELEASE DLL 711
RESOURCE() 711

Windows XP styles 581
windows, displaying 631
windowState property 591
WITH 71
Word

and OLE automation 701
wordwrapping text 591
work areas

active indexes 305
aliases 229

returning 230, 289
closing files 242
closing tables 242
current, returning 311
data buffers 277
designating field names 27
opening files 295
opening tables 310
record pointers 288
referencing names 30
refreshing 277
returning tables 253
search operations 261
selecting 288, 289

WORKAREA() 311
_wrap 693

_alignment and 680
_indent and 680
_tabs and 693

wrap property 591
write() method 226
writeln() method 226
I-30 dBASE dBL Language Reference

X
Xbase commands and functions 228
XOR bitwise operator 114

Y
YEAR() 141
years

returning 131, 141
setting 139

Z
ZAP 311

PACK vs. 276
RECALL and 276
SET SAFETY and 300

zero values
blank vs. 237
equality comparisons 100
finding 109
random numbers 105
trailing, deleting 105
31

	Language reference
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - Language Definition
	Chapter 3 - Syntax conventions
	Chapter 4 - Operators and symbols
	Chapter 5 - Core language
	Chapter 6 - String Objects
	Chapter 7 - Math / Money
	Chapter 8 - Bitwise
	Chapter 9 - Date and time objects
	Chapter 10 - Array objects
	Chapter 11 - File/OS
	Chapter 12 - Xbase
	Chapter 13 - Local SQL
	Chapter 14 - Date objects
	Chapter 15 - Form objects
	Chapter 16 - Application shell
	Chapter 17 - Report objects
	Chapter 18 - Text streaming
	Chapter 19 - Extending dBASE Plus with DLLS, OLE and DDE
	Chapter 20 - IDE
	Chapter 21 - Everything Else (Except Preprocessor)
	Chapter 22 - Preprocessor
	Appendix
	Index

