dBL Language Reference

dBASE

release 2.0 for Windows® 95, 98, 2000,
NT, ME and XP

dBASE, Inc. [1 Vestal, NY [Santa Cruz, CA
http://www.dbase.com [news://news.dbase.com

dBASE Inc. or Borland International may have patents and/or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1996 Borland International, 2000 dBASE Inc. All rights reserved. All dBASE product names are
trademarks or registered trademarks of dBASE Inc. All Borland product names are trademarks or registered
trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks
of their respective holders.

Printed in the U.S.A.

Contents

Chapter 1
Introduction 1-1
How this book is organized 1-1
Typographical conventions 1-2
Using the online version. 1-2

Chapter 2
Language definition 2-1
Basicattributes. 2-1
Datatypes 2-2
Simple datatypes. 2-2
Stringdata 2-2
Numericdata 2-2
Logicaldata. 2-3
Datedata 2-3
Nullvalues 2-3
Database-specific datatypes 2-3
Memodata 2-3
Binaryand OLEdata. 2-4
Programming datatypes 2-4
Operators and symbols. 2-4
Names 2-4
Expressions 2-5
Basic expressions. 2-5
Variables 2-5
Assigning variables. 2-5
Using variables and field names in expressions2-5
Type conversion 2-6
Automatic type conversion. 2-6
Explicit type conversion 2-6
Arrays oo 2-6
Literalarrays 2-6
Complex expressions. 2-7
Statements oo 2-7
Basic statements 2-7
Control statements 2-8
Functions and codeblocks 2-8
Functionpointers. 2-9
Codeblocks. L. 2-9
Codeblocks vs. functions 2-10
Objectsand classes 2-10
Dynamic subclassing. 2-10
Methods 2-11
Asimpleclass 2-11
Programs. oL 2-11
Programfiles. 2-11
Program execution 2-12
Functionsand classes. 2-12
Comments 2-12
Preprocessor directives. 2-13
A simple program 2-13

Chapter 3
Syntax conventions 3-1
Syntax notation 3-1
Syntax example 3-2
Capitalization guidelines. 3-2

SET command defaults 3-3

Chapter 4
Operators and symbols 4-1
Operator precedence 4-2
Assignment operators. 4-2
+ (“plus”)operator 4-3
- (“minus”) operator 4-4
Numeric operators 4-4
Logical operators 4-5
Comparison operators. 4-6
Object operators 4-7
NEWoperator. 4-7
Index operator. 4-8
Dotoperator. 4-8
Scope resolution operator 4-8
Call, indirection, grouping operator 4-9
Aliasoperator. 4-9
Macrooperator 4-10
Non-operational symbols. 4-12
String delimiters. 4-12
Name/database delimiters. 4-12
Comment symbols. 4-12
Statement separator, line continuation 4-13
Codeblock, literal date, literal array symbol . . 4-13
Preprocessor directive symbol 4-14
Chapter 5
Core language 5-1
class Designer. 5-1
class Exception 5-2
classObject. 5-3
ARGCOUNT(). . . v v oo et 5-4
ARGVECTOR() . « + o eoee i 5-4
baseClassName. 5-4
CASE. 5-5
CATCH. 5-5
CLASS 5-5
className. L 5-6
CLEARMEMORY 5-6
CLEARPROGRAM 5-7
CLOSEPROCEDURE. 5-7
DEFINE. 5-7
DO 5-8
DOCASE 5-10
DOWHILE. 5-11
DO.UNTIL 5-12
ELSE 5-13
ELSEIF., 5-13
EMPTY(). o o oo e 5-13
ENUMERATE() . . . o voee e 5-14
EXIT 5-15
FINALLY. o . 5-15
FINDINSTANCE(). . « o o o oot 5-15
FOR.ENDFOR 5-16
FUNCTION. 5-17
IF . o 5-18
OF() . . oo 5-19
LOCAL. o 5-19
LOOP. 5-20

OTHERWISE 5-20

PARAMETERS 5-20
parent 5-23
PCOUNT() . o o oo 5-23
PRIVATE. 5-24
PROCEDURE. 5-24
PUBLIC 5-25
QUIT . . oo e 5-25
REDEFINE 5-26
REFCOUNT(). . . o v oo 5-26
RELEASE 5-26
RELEASEOBJECT 5-27
RESTORE 5-27
RETURN 5-28
SAVE . . . 5-28
SETLIBRARY 5-29
SETPROCEDURE 5-29
SET() « o v e e 5-31
SETTO() « o v oot 531
STATIC 5-32
STORE 5-33
THROW o 5-33
TRY . . . 5-34
TYPE() © o oo oo e e e 5-36
WITH o 5-38
Chapter 6

String objects 6-1
classString. 6-1
ASC() o o 6-3
asC(). « v v 6-3
AT() . oo 6-4
CENTER() . . v oot 6-4
charAt(). 6-5
CHR() oo oo 6-5
chr(). 6-6
DIFFERENCE() 6-6
getBYte() . . .o 6-6
indexOf() 6-7
ISALPHA() . « o o oo 6-8
isAlpha() 6-8
ISLOWER() 6-8
isLower() 6-9
ISUPPER() . . o o ovooe e 6-9
isUpper() 6-9
lastindexOf() 6-9
LEFT() « o oo 6-10
left(). . o e 6-10
leftTrim() 6-11
LEN() « o oo e e 6-11
length 6-11
LENNUM() . o o oo 6-11
LIKE() « oo 6-12
LOWER() 6-12
LTRIM() © .o oot e 6-13
PROPER() . . o oo 6-13
RAT() . o oo 6-13
REPLICATE() . .\ o oo 6-14
replicate(). 6-15
RIGHT() . . oo oo 6-15
right(). 6-15
rightTrim() 6-16

i

RTRIM(). oo 6-16
setByte() 6-16
SOUNDEX() 6-17
SPACE() o oo 6-18
SPACE() . v v 6-18
STR() . o v oo 6-18
STUFF() . . . o oo o 6-19
stuff().o 6-20
SUBSTR(). . . . o oot 6-20
substring() 6-20
toLowerCase(). 6-21
toProperCase().« .o L. 6-21
toUpperCase().« ..o o ... 6-21
TRANSFORM() o .. 6-21
TRIM() 6-22
UPPER(). i 6-22
VAL() « . oo 6-23
Chapter 7

Math / Money 7-1
abs() 7-1
ACOS(). v v v e e e e 7-1
asin(). 7-1
atan(). 7-2
atan2() 7-2
ceil() 7-3
COS() v v v e e e 7-3
dtor(). 7-3
XP() « v e e 7-4
floor() 7-4
FV() . o 7-4
mt() 7-5
log() 7-5
loglO() . . . oo 7-6
max() 7-6
min(). 7-6
MOD() . o v oo 7-7
PAYMENT() . « o oo 7-7
PI(). o oo 7-8
PV() . . 7-8
random(). 7-9
round(). 7-9
rtod(). 7-10
SETCURRENCY 7-10
SETDECIMALS. 7-11
SETPOINT. 7-11
SETPRECISION. 7-11
SET SEPARATOR 7-12
SIGN() . . o e e 7-13
SIN() 7-13
sqrt() 7-13
tan() e 7-14
Chapter 8

Date and time objects 8-1
classDate. 8-1
classTimer 8-4
CDOW() . . o oo e 8-5
CMONTH() i 8-5
CTOD() . . . oot 8-6
CTODT(). « o v oo 8-6
CTOT(). . v v o o e e 8-7

DATE() « o o ooeee e 8-7 ITOH() .« oo e e e e 9-5

DATETIME() . . o o oo 8-7
DAY() . o o v 8-8 Chapter 10
DMY() oo 8-8 Array objects 10-1
DOW()o 8-8 Array functions L. 10-1
DTOC() 8-9 classArray Lo 10-2
DTODT() 8-9 class AssocArray 10-4
DTOS()o 8-10 ACOPY(). . o o oo 10-5
DTTOC() o 8-10 add() 10-6
DTTOD()o 8-10 ADEL(). . . o oo 10-6
DTTOT() 8-11 ADIR(). . . o oo 10-9
ELAPSED() 8-11 AELEMENT(). 10-10
enabled. 8-12 AFIELDS(). .« o oo 10-11
getDate() 8-12 AFILL() . . o oo 10-12
getDay(). 8-12 AGROW() . . o oo oo 10-13
getHours() 8-13 AINS() . . oo 10-14
getMinutes() 8-13 ALEN(). . o oo 10-17
getMonth() 8-14 ARESIZE().o it 10-17
getSeconds() 8-14 ASCAN(). © o oo 10-20
getTime() 8-14 ASORT(). . o oo 10-21
getTimezoneOffset() 8-15 ASUBSCRIPT() . . . o o oo 10-23
getYear() 8-15 COUNE() © v v o e 10-24
interval. L 8-16 DECLARE 10-25
MDY() 8-16 delete(). 10-26
MONTH() 8-16 dimensions 10-28
onTimer 8-17 dir() ... 10-28
parse() 8-18 dirEXt(). . . o o 10-30
SECONDS().o 8-18 element(). 10-31
SETCENTURY 8-18 fields() 10-32
SETDATE 8-19 fill(). ... 10-33
SETDATETO 8-20 firstey 10-34
SETEPOCH. 8-20 getFile(), 10-34
SETHOURS. 8-20 GrOW() . . oo 10-35
SETMARK 8-20 insert() 10-37
SETTIME. 8-21 SKEY() . . 10-39
setDate() 8-21 nextkey(). 10-39
setHours() 8-21 removeAll(). 10-40
setMinutes() 8-22 removeKey() . . . o oo 10-40
setMonth() 8-22 FESIZE() . o o e e 10-41
setSeconds() 8-22 SCAN(). « v e e e e e 10-44
setTime() 8-22 SIZE . . 10-45
setYear() 8-23 SOME() . v v v e e e 10-46
TIME()o 8-23 subscript() 10-48
toGMTString() 8-23
toLocaleString() 8-24 Chapter 11
toString() 8-24 File/OS 11-1
TTIMEC). ..o 8-24 File commands and functions. 11-1
TTOCCO) . ..o 8-25 File utility commands 11-1
UTCO) . oo 8-25 File information functions. 11-1
YEAR() ..o 8-25 Low-level file functions. 11-2
Chap ter 9]S)ynamic I‘Ext.ernal Objects-DEO 11-2
. B ource Aliasing. 11-4
Bitwise 9-1 classFile 11-5
BITAND() 9-1 L 11-7
BITLSHIFT()o 9-2 accessDate() 11-7
BITNOT(). 9-3 CD .o 11-8
BITOR() 9-3 close() 11-8
BITRSHIFT() 9-3 Copy() 11-9
BITSET() 9-4 COPYFILE 11-10
BITXOR() 9-4 Create() . .o vv 11-10
BITZRSHIFT() 9-4 createDate() 11-11
HTOI()o 9-5 createTime() 11-11

iii

Qate() o o v e 11-12

delete() 11-12
DELETEFILE 11-13
DIR 11-13
DISKSPACE() v v v v v i 11-14
DISPLAY FILES 11-14
DOS 11-14
eof(). . . . 11-15
ERASE 11-15
error(). 11-16
eXiStS(). 11-16
FILE().o oo 11-17
flush() 11-17
FNAMEMAX(). oo v oo 11-18
FUNIQUE().« oo i i 11-18
GETDIRECTORY() . . . o oo 11-18
GETENV() 11-19
GETFILE() oo 11-19
gets() 11-20
handle 11-21
HOME().o i 11-21
LISTFILES 11-21
MD 11-22
MKDIR 11-22
OPEN()« v o v e e 11-22
OS() e v e e e e 11-23
C:\Program Files\dBASE\Plus\ 11-23
position. 11-24
PUTFILE() . . o oo oo 11-24
PUES() - o o e e 11-25
read() 11-26
readin() 11-26
RENAME 11-26
rename(). 11-27
RUN 11-27
RUN() o 11-28
seek() 11-28
SET DIRECTORY. 11-29
SET FULLPATH 11-29
SETPATH. 11-29
shortName(). 11-30
SIZe() . .o 11-30
time() 11-30
TYPE 11-31
VALIDDRIVE(). 11-31
WHite(). . . o o 11-32
writeln(). o 11-33
_dbwinhome 11-33
Chapter 12
Xbase 12-1
Common command elements 12-1
Filenames. 12-1
Aliases 12-2
Commandscope 12-2
ALTAS() .« o o o 12-3
APPEND, 12-3
APPEND AUTOMEM 12-4
APPENDFROM 12-5
APPEND FROM ARRAY 12-6
APPENDMEMO 12-7
AVERAGE 12-8

BEGINTRANS(). .« © o oooee 12-8
BINTYPE() © o oot et 129
BLANK . . . oo 129
BOF(). oo oo 12-10
BOOKMARK() . . o voee 12-11
BROWSEo 12-11
CALCULATEo, 12-13
CHANGE() . oo oo 12-14
CLEARAUTOMEM 12-14
CLEARFIELDS oo 12-15
CLOSEDATABASES 12-15
CLOSEINDEXES oo 12-15
CLOSETABLES., 12-15
COMMIT(). © o o e 12-16
CONTINUE 12-16
COPY . . oo 12-16
COPYBINARY 12-18
COPYMEMO . . . oo 12-18
COPY STRUCTURE 12-19
COPY STRUCTURE EXTENDED 12-19
COPYTABLEo 12-20
COPY TO ARRAY 12-21
COUNT . .o, 12-22
CREATESESSION. 12-23
CREATE.FROM 12-24
CREATE...STRUCTURE EXTENDED 12-25
DATABASE() . . o ooo oo 12-25
DBF() © oo 12-26
DELETE oo 12-26
DELETETABLE 12-27
DELETETAG . . o o oooee e 1227
DELETED() . .« o o ooeee et 12-28
DESCENDING()o .. 12-28
DISPLAY . . .o 12-28
EDIT . . oo 12-29
BOF() « oo 12-30
FDECIMAL() © .« o oo e 12-30
FIELD() © o ooeeee e 12-31
FLDCOUNT() . . o oot 12-31
FLDLIST() . . oo oooee . 12-32
FLENGTH() . . o oo 12-32
FLOCK() © o oot 12-33
FLUSH . . . o oo 12-33
FOR() © v oooe e 12-34
FOUND() . . oo 12-34
GENERATEo, 12-35
GO« o 12-35
INDEX . . oooee e 12-36
ISBLANK() © o o eveeee 12-39
ISTABLE(). . o o oo 12-39
KEY() ©oooe e 12-39
KEYMATCH() . . .o ooo . 12-40
LIST. . o oo e 12-41
LKSYS() . o oee e 12-41
LOCATE . . . oo 12-42
LOCK() © v ooeeei e 12-43
LOOKUP() . . oo 12-43
LUPDATE() . .« o oo 12-44
MDX() . o oooeee 12-44
MEMLINES() . .« « o v oee e 12-46
MLINE() . oo e 12-46
NDX() « ooooeeee e 12-47

OPEN DATABASE 12-47

ORDER() . .« e oo 12-48
PACK . . . oo 12-48
RECALL . . oo, 12-49
RECCOUNT() © .o oo 12-49
RECNO() . o o oo 12-50
RECSIZE() .« o oo e 12-50
REFRESH oo 12-50
REINDEX . . o o oo 12-51
RELATION() .+« o oot 12-51
RELEASE AUTOMEM 12-51
RENAMETABLE 12-52
REPLACE o oo 12-52
REPLACE AUTOMEM 12-54
REPLACEBINARY 12-54
REPLACEFROM ARRAY 12-55
REPLACEMEMO 12-56
REPLACEOLE 12-57
RLOCK() © o o oo e e 12-57
ROLLBACK() .« v voooeeee et 12-58
SCAN . . oo 12-59
SEEK . .\ oo 12-60
SEEK() « v vooe e 12-61
SELECT .« oo ot 12-61
SELECT(). « o e e 12-62
SETAUTOSAVE oo 12-62
SETDATABASEo 12-62
SETDBTYPEo ooooee et 12-63
SETDELETEDo 12-63
SETEXACT . . oo 12-63
SETEXCLUSIVE 12-64
SETFIELDS . . . oo oo 12-64
SETFILTER.o ooooee e 12-66
SETHEADINGSo, 12-67
SETINDEX . . . oo oo 12-67
SETKEYTO . . . oo 12-68
SETLOCK . . o oot 12-69
SETMEMOWIDTH. 12-70
SETNEAR, 12-70
SETODOMETER 12-70
SETORDER.o 12-71
SETREFRESHo, 12-71
SETRELATION.o 12-71
SETREPROCESS 12-73
SETSAFETY . . . o oo 12-73
SETSKIP . . . oo 12-74
SETUNIQUE oo 12-74
SETVIEW. . . o oo 12-75
SKIP . o\ oo e 12-75
SORT . .\ 12-75
STORE AUTOMEM 12-77
SUM .« oo 12-77
TAG() . o oo 12-78
TAGCOUNT() « o o oo e 12-78
TAGNO() . o o oo 12-79
TARGET() © o o oo 12-79
TOTAL . . o oo 12-79
UNIQUE() © o oot 12-80
UNLOCK . . . oo 12-81
UPDATE . . . oo 12-81
USE . oo 12-82
WORKAREA() . .« v oooe oot 12-84

ZAP .. 12-84
Chapter 13
Local SQL 13-1
Naming conventions 13-1
Tables 13-1
Columns. 13-2
Operators o 13-2
Reservedwords. 13-2
Datadefinition 13-3
Data manipulation 13-4
Parameter substitutions in DML statements . . 13-4
Aggregate functions. 13-4
String functions 13-4
Date function 13-5
Updatable queries 13-5
Restrictions on live queries 13-5
Restrictions on live joins 13-6
Constraints. 13-6
Statements supported 13-6
Chapter 14
Data objects 14-1
Understanding the data object hierarchy 14-1
Accessing tables. 14-2
Putting the data objects together. 14-2
Using stored procedures. 14-2
class Database. 14-2
class DataModule. 14-5
class DataModRef 14-7
classDbError 14-8
class DbException 14-8
class DbfField. 14-9
classDBFIndex. 14-9
classField. 14-10
classIndex 14-12
class LockField. 14-12
class Parameter 14-13
class PdxField. 14-14
classQuery 14-15
classRowset, 14-17
classSession 14-21
class SqlField. 14-22
class StoredProc 14-22
class TableDef 14-24
class UpdateSet. 14-25
abandon() 14-26
abandonUpdates(). 14-27
ACCESS(). -« v v e 14-27
active 14-28
addPassword(). 14-29
append() 14-29
appendUpdate() 14-30
applyFilter() 14-30
applyLocate() 14-31
applyUpdates(). 14-31
atFirst() o 14-32
atLast(). 14-33
autoEdit.o 14-33
autoNullFields 14-33
beforeGetValue 14-34

beginAppend() 14-34

beginEdit() 14-35

beginFilter() 14-36
beginLocate(). 14-37
beginTrans(), 14-37
bookmark() oL 14-37
bookmarksEqual() 14-38
cacheUpdates 14-38
canAbandon L 14-39
canAppend. 14-40
canChange. 14-40
canClose 14-41
canDelete 14-41
canEdit. 14-42
canGetRow. 14-42
canNavigate 14-42
canOpen 14-43
CanNSave 14-43
changedTableName 14-44
clearFilter(). 14-44
clearRange() 14-44
close(). 14-44
codePage. 14-45
commit(). 14-45
constrained. 14-45
COPY() - v o e e 14-45
copyTable() 14-46
copyToFile(). 14-46
count(). 14-47
createlndex() 14-47
database 14-47
databaseName 14-48
dataModClass 14-48
decimalLength 14-48
default 14-48
delete()[Rowset] 14-48
delete() [UpdateSet]. 14-49
destination. 14-49
driverName 14-49
dropindex() L 14-50
dropTable() 14-50
emptyTable() 14-50
endOfSet 14-51
exactMatch. L L 14-51
execute().o 14-51
executeSQL()o oo 14-51
fieldName, 14-52
fields. 14-52
filename 14-52
filter 14-52
filterOptions 14-53
findKey() 14-54
findkeyNearest() 14-54
first() 14-55
flush() 14-55
getSchema(). 14-55
goto() - . . . 14-56
handle 14-57
indexName [Rowset]. 14-57
indexName [UpdateSet] 14-57
isolationLevel 14-58
isRowLocked. 14-58
isSetLocked 14-58

vi

keyViolationTableName. 14-59
languageDriver. 14-59
last() 14-59
length 14-59
live 14-60
locateNext() 14-60
locateOptions. 14-60
lock 14-61
lockRetryCount 14-61
lockRetryInterval 14-62
lockRow() 14-62
lockSet() 14-63
login() 14-63
loginString 14-64
lookupRowset. 14-64
lookupSQL 14-65
lookupTable. 14-65
lookupType 14-66
masterChild. 14-66
masterFields 14-67
masterRowset. 14-67
masterSource 14-68
maximum 14-68
minimum 14-69
modified. L 14-69
Name 14-70
navigateByMaster. 14-70
navigateMaster L. 14-71
next(). . . o v v v v 14-71
notifyfControls. 14-72
onAbandon 14-72
onAppend 14-73
onChange. 14-73
onClose 14-74
onDelete., 14-74
onEdit. 14-74
onGotValue 14-75
onNavigate 14-75
onOpen 14-76
onProgress L. 14-76
ONSAVE 14-77
OPEN(). « v v v e 14-77
packTable(). 14-77
params 14-78
picture. 14-78
precision 14-79
prepare().o 14-79
problemTableName 14-80
procedureName. 14-80
readOnly 14-81
ref. . 14-81
refresh() 14-81
refreshControls(). 14-82
refreshRow(). 14-82
reindex() 14-82
renameTable() 14-82
replaceFromFile() 14-83
requery() . . . o o o ot 14-83
requestLive Lo oL 14-84
required. 14-84
rollback()., .. 14-84
rowCount(). 14-85

FOWNO() . . v o o e e e e e 14-85
rowset 14-86
save() 14-86
scale 14-86
SESSION 14-87
setRange(). 14-87
share. 14-88
SOUICe e e e e e e e 14-88
sl ... 14-88
state 14-89
tableDriver. 14-90
tableExists()., 14-90
tableLevel 14-90
tableName 14-91
tempTable 14-91
type[Field]. 14-91
type [Parameter] 14-91
unidirectional 14-91
unlock() 14-92
unprepare() 14-92
update 14-92
update(). 14-93
updateWhere. L oL 14-93
USEr. . . . e 14-93
USer() . . v v v e e e 14-93
value [Field] 14-94
value [Parameter] 14-94
Version. 14-95
Chapter 15

Form objects 15-1
Common visual component properties 15-1
class ActiveX 15-3
classBrowse 15-3
class CheckBox 15-5
class ColumnCheckBox 15-6
class ColumnComboBox 15-7
class ColumnEntryfield 15-7
class ColumnHeadingControl 15-8
class ColumnSpinBox 15-9
class ComboBox. 15-10
class Container. 15-11
classEditor. 15-13
class Entryfield 15-14
classForm 15-15
classGrid 15-18
class GridColumn 15-21
classImage. 15-21
classLine 15-23
classListBox. 15-24
class NoteBook 15-25
classOLE 15-27
classPaintBox 15-28
class Progress, 15-29
class PushButton. 15-30
class RadioButton 15-31
classRectangle. 15-32
class ReportViewer 15-33
classScrollBar. 15-34
classShape. 15-35
classSlider. 15-36
classSpinBox 15-37

vii

class SubForm 15-39

classTabBox 15-41
classText 15-42
class TextLabel 15-44
class Treeltem. 15-45
class TreeView 15-46
abandonRecord(). 15-48
activeControl 15-48
alias 15-48
alignHorizontal 15-49
alignment [Image] 15-49
alignment [Text] 15-49
alignvertical 15-50
allowAddRows 15-50
allowColumnMoving 15-51
allowColumnSizing. 15-51
allowDrop. L. 15-51
allowEditing 15-51
allowEditLabels. 15-51
allowEditTree. 15-52
allowRowsSizing. 15-52
anchor. 15-52
append 15-53
appSpeedBar 15-53
autoCenter 15-53
autoDrop 15-53
autoSize. o 15-54
backgroundo 15-54
before. 15-54
beginAppend() 15-55
bgColor. 15-55
bold. 15-55
border. 15-56
borderStyle 15-56
bottom. 15-56
buttons 15-57
canChange 15-57
canClose 15-57
canEditLabel L. 15-58
canExpand, 15-58
canNavigate. 15-59
canSelChange. 15-60
cellHeight. 15-60
checkBoxes 15-61
checked 15-61
checkedlmage. 15-61
classld. 15-61
clearTics() 15-61
clientEdge. 15-62
close() 15-62
colorHighlight 15-62
colorNormal 15-63
colorRowSelect 15-67
columnCount 15-68
columnNo. 15-68
columns. 15-68
COPY(). « v v e e 15-68
count() 15-69
CUATab. 15-69
currentColumn 15-69
curSel 15-69
CUt() .« . v o 15-70

dataLink 15-70

dataSource [options]. 15-71
dataSource [Image] 15-72
default 15-73
description. L L 15-73
designView. 15-73
disabledBitmap 15-74
disablePopup 15-74
doVerb(). 15-74
downBitmap L 15-75
drag() 15-75
dragEffect, 15-76
dragScrollRate. 15-76
drawMode 15-77
dropDownHeight. 15-77
dropDownWidth 15-77
editorControl. 15-78
editorType, 15-78
elements L 15-78
enabled. L. 15-79
enableSelection 15-79
endSelection 15-79
ensureVisible() L. 15-80
eSCEXit. 15-80
evalTags 15-80
expanded. 15-80
fields. 15-80
filename 15-81
first. 15-82
firstChild. 15-82
firstVisibleChild 15-82
focus 15-82
focusBitmap 15-83
fontBold 15-83
fontltalic. 15-83
fontName. 15-84
fontSize. L 15-84
fontStrikeout 15-84
fontUnderline 15-85
form 15-85
frozenColumn 15-85
function L. 15-86
getColumnObject() 15-86
getColumnOrder(). 15-87
getltemByPos() L. 15-87
getTextExtent() 15-87
gridLineWidth 15-87
QroUP. « « o e e 15-88
handle 15-88
hasButtons, 15-88
hasColumnHeadings. 15-88
hasColumnLines. 15-89
hasindicator 15-89
hasLines 15-89
hasRowLines. 15-89
hasVScrollHintText 15-89
headingColorNormal 15-90
headingControl 15-90
headingFontBold 15-90
headingFontltalic 15-90
headingFontName 15-90
headingFontSize. 15-90

viii

headingFontStrikeout. 15-91
headingFontUnderline 15-91
height, 15-91
helpFile. 15-91
helpld 15-92
hScrollBar. 15-92
hWnd 15-93
hwWndClient 15-93
hWndParent. 15-93
icon. 15-94
ID. ... 15-94
image 15-94
imageScaleToFont 15-94
imageSize 15-95
indent. 15-95
inDesign. 15-95
integralHeight 15-95
isRecordChanged(). 15-95
Key. . . . 15-96
keyboard() 15-96
left. 15-97
level 15-97
lineNo. 15-97
linesAtRoot 15-98
linkFileName 15-98
loadChildren() 15-98
lockedColumns 15-98
maximize 15-98
maxLength 15-99
MDI. . .. 15-99
memoEditor. L. 15-100
menuFile 15-100
metric. 15-100
minimize. 15-101
modify. 15-101
mousePointer L. 15-101
MOVE() . . v v o e 15-102
moveable 15-102
multiple. L L 15-103
multiSelect 15-103
NAMe 15-103
nativeObject. 15-104
nextobj 15-104
nextSibling 15-104
noOfChildren 15-105
OLEType 15-105
onAppend Lo 15-105
onChange. 15-105
onChar 15-106
onCheckBoxClick. 15-107
onClick 15-107
onClose 15-107
onDesignOpen 15-108
onDragBegin 15-108
onDragEnter 15-108
onDraglLeave 15-109
onDragOver. 15-109
onDrop 15-110
onEditLabel. 15-111
onExpand 15-111
onFormSize. 15-112
onGotFocus. L. 15-112

onKey 15-112
onKeyDown 15-113
onKeyUp., 15-114
onLeftDbIClick. 15-114
onLeftMouseDown. 15-115
onLeftMouseUp 15-115
onLostFocus 15-115
onMiddleDbIClick 15-115
onMiddleMouseDown 15-116
onMiddleMouseUp. 15-116
onMouseMove L. 15-116
onMove. 15-117
onNavigate. 15-117
onOpen. 15-117
onPaint. 15-118
onRightDbIClick. 15-118
onRightMouseDown 15-118
onRightMouseUp 15-119
onSelChange. 15-119
onSelection., 15-119
onSize 15-119
(0] 1< 0 1 () 1 15-120
pageCount(). 15-120
pageNo. 15-121
params. 15-121
paste(). 15-122
patternStyle 15-122
PeN . . . 15-123
penStyle 15-123
penWidth. L. 15-124
persistent., 15-124
phoneticLink 15-124
picture 15-124
popupEnable. L. 15-125
popupMenu 15-125
prefixEnable 15-126
prevSibling. L. 15-126
print() 15-126
printable L oL 15-127
rangeMax 15-127
rangeMin. 15-127
rangeRequired 15-127
readModal(). 15-128
reExecute() 15-128
ref . 15-129
refresh() L. 15-129
refreshAlways 15-129
release(). 15-130
releaseAllChildren() 15-130
right 15-130
rowSelect. L. 15-130
rowset 15-131
saveRecord() 15-131
scaleFontBold 15-131
scaleFontName 15-132
scaleFontSize 15-132
scroll().o 15-132
scrollBar 15-133
scrollHOffset. 15-133
scrollVOffset 15-133
select(). 15-133

ix

selectAll. 15-134
selected 15-134
selected(). 15-134
selectedlmage. 15-135
serverName 15-135
setAsFirstVisible() 15-135
setFocus() 15-136
setTic() o 15-136
setTicFrequency() 15-136
shapeStyle. 15-136
showFormatBar() 15-137
showMemoEditor(). 15-137
showSelAlways 15-137
showSpeedTip. 15-138
showTaskBarButton. 15-138
sizeable 15-138
smallTitle 15-138
sortChildren() 15-139
sorted 15-139
speedBar 15-139
speedTip. 15-139
spinOnly. 15-140
startSelection 15-140
statusMessage. 15-140
Step . .. 15-140
streamChildren(). 15-141
style. 15-141
sysMenu. 15-141
tabStop 15-142
text ... 15-142
textLeft 15-143
tics 15-143
ticsPos 15-143
toggle 15-143
toolTips 15-144
op. . . . 15-144
topMost 15-144
trackSelect 15-144
transparent Lo 15-145
uncheckedlmage 15-145
undo() 15-145
upBitmap 15-145
useTablePopup 15-146
valid. 15-146
validErrorMsg 15-147
validRequired. 15-147
valueo 15-147
vertical 15-148
VIBW. . oo 15-148
visible. 15-149
visibleCount() 15-149
visualStyle. oL 15-149
vScrollBar. 15-150
when. 15-150
width 15-151
windowState. 15-151
WEAP. oo 15-152
Chapter 16

Application shell 16-1
CAPP. e 16-1
_appframeWin 16-2

classMenu. 16-3
classMenuBar. 16-5
classPopup 16-6
classToolBar. 16-7
class ToolButton. 16-8
allowDEOExeOverride 16-9
allowYieldOnMsg 16-10
attach() 16-10
charSet. 16-11
checked. 16-11
checkedBitmap. 16-12
CLEAR TYPEAHEAD 16-12
databases 16-12
ddeServiceName 16-13
DEFINECOLOR 16-13
detach() 16-14
detailNavigationOverride 16-14
editCopyMenu 16-15
editCutMenu. 16-15
editPasteMenu. 16-15
editUndoMenu. 16-16
errorAction. 16-16
errorHTMFile 16-17
errorLogFile., 16-17
errorLogMaxSize 16-17
exeName 16-18
GETCOLOR() 16-18
GETFONT() 16-19
INKEY()o oo 16-19
KEYBOARD 16-22
language L. 16-23
IDriver 16-23
MSGBOX(). . . v v v oo e e i 16-23
NEXTKEY() . . .o oo 16-25
ONESCAPE 16-26
ONKEY, 16-27
onlnitiate. 16-29
onlnitMenu. 16-29
onUpdate., 16-29
separator. Lo 16-30
SETCONFIRM 16-30
SETCUAENTER 16-30
SETESCAPE 16-31
SET FUNCTION 16-32
SETMESSAGE 16-33
SET TYPEAHEAD 16-33
SHELL()ot 16-34
shortCut 16-35
SLEEP. 16-36
sourceAliases 16-37
speedBar. 16-37
terminateTimerinterval 16-37
trackRight, 16-37
uncheckedBitmap 16-38
WAIT 16-38
web. . .. 16-39
WindowMenu 16-39
Chapter 17

Report objects 17-1
A simple reportexample. L. 17-2

How areportisrendered. 17-3

classBand. 17-3

classGroup 17-4
class PageTemplate 17-5
classReport. 17-6
class StreamFrame 17-7
class StreamSource 17-8
agAverage() 17-9
agCount(). 17-10
agMax() 17-10
agMin(). 17-11
agStdDeviation(). L. 17-11
agsum() 17-12
agVariance() 17-13
autoSort. 17-13
beginNewFrame 17-14
beginNewFrame() 17-14
context 17-14
canRender. 17-14
detailBand 17-15
drillDown. 17-15
endPage. 17-16
expandable 17-16
firstOnFrame 17-16
firstPageTemplate. 17-16
fixed. 17-17
footerBand 17-17
groupBy. 17-17
headerBand. 17-18
headerEveryFrame 17-19
isLastPage() 17-19
leading 17-20
marginBottom. 17-20
marginHorizontal 17-20
marginLeft L. 17-21
marginRight. 17-21
marginTop. 17-21
marginVertical 17-21
maxRows 17-22
nextPageTemplate. 17-22
onPage 17-22
onRender 17-23
output 17-23
outputFilename 17-24
preRender. 17-24
printer. 17-24
render(). 17-25
renderOffset. 17-25
reportGroup. 17-26
reportPage 17-26
reportViewer 17-26
rotate 17-27
startPage Lo 17-27
streamFrame, ... 17-27
streamSource 17-27
supressifBlank 17-28
supressifDuplicate 17-28
title 17-28
tracking. Lo 17-29
trackJustifyThreshold. 17-29
variableHeight 17-29
verticalJustifyLimit 17-29

Chapter 18
Text streaming

Y

7?

CLEAR

PCOL() o oo i
PRINTJOB..ENDPRINTJOB
PRINTSTATUS()
PROW()
SET ALTERNATE
SETCONSOLE
SETMARGIN
SETPCOL.
SETPRINTER
SETPROW
SETSPACE
calignment.
indent.
dmargin
_padvance

CPAGENO
pbpage

Cpeopies ...
_pdriver
Peject . . .

CPEPAZE . . e
pform.

“plength
“plineno
“ploffset
_porientation.
ppitch.
pquality.

opspacing
rmargin

tabs ..o

Chapter 19
Extending dBASE Plus
with DLLs, OLE and DDE

class DDELink.
class DDETopic
class OleAutoClient
advise()
execute().
extern
initiate().
LOADDLL

notify().
onAdvise

18-1

... 18-1

xi

onPeek 19-14

onPoke 19-14
onUnadvise 19-14
peek(). 19-15
PLAYSOUND 19-15
poke(). 19-16
reconnect(). 19-16
RELEASEDLL 19-17
RESOURCE() v v i i i 19-17
RESTOREIMAGE 19-18
SEBIVEN . . . o o o 19-18
terminate() 19-19
timeout 19-19
topic. 19-19
unadvise() 19-20
Chapter 20

IDE 20-1
BUILD, 20-1
CLEARALL 20-2
CLOSEALL 20-2
COMPILE 20-2
CONVERT it 20-3
CREATE 20-4
CREATECOMMAND 20-5
CREATE DATAMODULE 20-5
CREATEFILE 20-6
CREATEFORM 20-6
CREATELABEL 20-7
CREATEMENU 20-7
CREATEPOPUP. 20-7
CREATEPROJECT 20-8
CREATE QUERY 20-8
CREATEREPORT 20-8
DEBUG 20-9
DISPLAY COVERAGE 20-9
DISPLAY MEMORY 20-10
DISPLAY STATUS 20-11
DISPLAY STRUCTURE 20-12
HELP 20-13
INSPECT() . . o oo, 20-14
LIST... 20-14
MODIFY... it 20-14
MODIFY PROJECT 20-15
MODIFY STRUCTURE 20-15
SET . . . o oot e 20-16
SET AUTONULLFIELDS 20-16
SETBELL 20-17
SETBLOCKSIZE 20-17
SETCOVERAGE 20-18
SETDESIGN 20-19
SET DEVELOPMENT 20-19
SETECHO 20-20
SETEDITOR 20-20
SETHELP 20-21
SETIBLOCK. 20-21
SETMBLOCK 20-22
SETSTEP 20-23
SETTALK 20-23

Chapter 21
Everything Else

(Except Preprocessor) 21-1
ACCESS(). « o vooe e 21-1
ANSI() o oo 21-1
CANCEL 21-2
CERROR() . o oo 21-2
CHARSET() . . v oo 213
DBASE_SUPPRESS_STARTUP DIALOGS . . .21-3
DBERROR() 21-4
DBMESSAGE(). . . . o oo 21-4
ERROR() .« o oooeeee e 21-4
fileName, 21-5
ID() oo e 21-5
LDRIVER() . . v v oo 21-6
LINENO() . .o voo 21-6
LOGOUT 21-7
MEMORY() . . oo 21-7
MESSAGE() . . v o oo 21-7
NETWORK() .« « v oo 21-8
OEM() © v oo 21-8
ONERROR 21-9
ONNETERROR 21-9
PROGRAM() . « o oo 21-10
PROTECT 21-11
RESUME 21-11
RETRY 21-12
SET ENCRYPTION. 21-12
SETERROR 21-13
SETLDCHECK 21-13
SETLDCONVERT 21-14
SQLERROR(). « v v oo 21-14
SQLEXEC(). « « v v oo e 21-15
SQLMESSAGE() o o oo oo oo 21-16
SUSPEND 21-16
USER() .« o o ote e 21-17
VERSION() o oo 21-17
Chapter 22
Preprocessor 22-1
#define 22-1
felse 22-4
#endif 22-4
#f .. 22-5
#ifdef 22-6
#ifndef 22-6
#include 22-7
fpragmao 22-8
#undef 22-9
Preprocessor Identifiers 22-9
Appendix A
ASCII character chart

(code page 437) A-1
Appendix B
File structures B-1
Table header andrecords B-1

Table header structure B-1
Tablerecords. B-2

Binary, memo, and OLE fields and .DBT files . . . B-2

xii

Appendix C

Error codes
Default US English Error. HTM

Introduction

The dBASE dBL Language Reference describes the classes, objects, properties, events, methods, functions, and
preprocessor directives available in the dBL™ language.

How this book is organized

» Chapter 2, “Language definition,” covers the basic concepts and components of the dBL language.

» Chapter 3, “Syntax conventions,” describes the conventions used in presenting the syntax of language
elements, and provides guidelines for interpreting the syntax notation.

» Chapter 4, “Operators and symbols,” describes the operators and symbols used in the language.
» Chapter 5, “Core language,” is a topical reference to the individual core elements of the language.

» Chapter 6, “String objects,” describes the classes, methods and properties that relate to the use of strings in
dBL code.

e Chapter 7, “Math / Money,” lists the classes, methods and properties associated with mathematical
operations, including trigonometrical and logarithmic operations.

* Chapter 8, “Date and time objects,” guides you through the elements of date and time objects in dBL code.

» Chapter 9, “Bitwise,” covers the language elements that deal with bit manipulation and base conversion for
unsigned 32-bit values.

e Chapter 10, “Array objects,” details dABASE Plus’s support for a wide variety of array types.

« Chapter 11, “File/OS,” describes the File class, which provides byte-level access to files, as well as other file
and operating system-related functions.

* Chapter 12, “Xbase,” is a reference to legacy dBASE data manipulation and utility commands and functions.
Entries include an object-oriented DML equivalent, if one exists.

e Chapter 13, “Local SQL,” summarizes the SQL commands that can be used within dBASE Plus when
working with BDE Standard dBASE Plus and Paradox tables.

» Chapter 14, “Data objects,” specifies the various elements that provide access to database tables and are used
to link tables to the user interface.

* Chapter 15, “Form objects,” covers the classes, methods, events and properties related to dBASE Plus forms.

* Chapter 16, “Application shell,” describes the supporting application elements such as menus, popups, toolbars,
standard dialogs, keyboard behavior, and the _app object.

» Chapter 17, “Report objects,” helps you understand the elements of dBASE Plus’s new reporting
capabilities.

e Chapter 18, “Text streaming,” covers the dBL language elements that control text streaming to the Command
window, a file, or a printer.

Introduction 1-1

* Chapter 19, “Extending dBASE Plus with DLLs, OLE and DDE,” contains the information you need to
extend dBASE Plus with OLE Automation, Dynamic Data Exchange, Dynamic Linked Libraries, and other
Windows resources and mechanisms.

» Chapter 20, “IDE,” describes language elements that you use within the dBASE Plus integrated development
environment (IDE) to programatically create, modify, compile and build applications.

* Chapter 21, “Everything Else (Except Preprocessor),” covers dBL language elements that pertain to errors,
security, and locale.

» Chapter 22, “Preprocessor,” describes the separate built-in utility that processes the text of your dBASE Plus
programs and prepares them for compilation.

Typographical conventions

The dBASE dBL Language Reference uses specific typographical conventions to help you distinguish among
the various language and syntax elements. These conventions are used to make the manual more readable.

Convention Applies to Examples

Italic/Camel cap Property names, events, methods, length property, lockRow() method,
arguments <start expN> argument

ALL CAPS Legacy dBASE commands and APPEND BLANK,
other language elements from CUSTOMER.DBF

previous versions. Also used in file
and directory references.

Roman/Initial cap/ Class names (including legacy class File, class OleAutoClient,
Camel camp classes), table names, field names, Members table, Price field
menu commands

Monospaced font Code examples a=new Array(5, 6)

In addition to the typographical conventions listed in this table, Chapter 3, “Syntax conventions,” explains the
various symbols, conventions and syntactical options used in the language.

Using the online version

The complete Language Reference is also available as part of your online Help system. The online version also
includes updated entries, expanded examples and other language information not available when this printed
version went to press.

You can find language elements in the online Help system using any of the standard Help search mechanisms,
including the Help contents and index, Help buttons in dialogs, F1 on windows and controls, and through full
text searches.

In addition, you can get instant Help on any property, event or method by selecting it in the Inspector and
pressing F1. You can also highlight any language element (or any other word or phrase) in the Source editor,
Command window, and most other text entry windows, and press F1. If the highlighted word or phrase is part
of the documentation, Help appears.

For general usage information or an introduction to how the Windows Help system works , choose How to Use
Help from the dBASE Plus Help menu.

Additional dBASE Plus information, technical notes, white papers, resource lists, examples, Help updates and
corrections are posted regularly to the dBASE Inc. web site. For details and site addresses, see the README
file on your CD or in your main dBASE Plus directory.

1-2 dBASE dBL Language Reference

Language definition

dBL™ is a dynamic object-oriented programming language. It features dozens of built-in classes that represent
forms, visual components, reports, and databases in an advanced integrated development environment with Two-
Way Tool designers.

This chapter defines the language elements in dBL. After a brief overview of basic language attributes, which is
geared toward those with previous programming experience, the language is described from its most fundamental
elements, data types, to the most general.

Basic attributes

If you’re familiar with another programming language, knowing the following attributes will help orient you to
dBL. If dBL is your first programming language, you may not recognize some of the terminology below. Keep the
rules in mind; the terminology will be explained later in this chapter.

dBL is not case-sensitive.

Although language elements are capitalized using certain conventions in the Language Reference, you are
not required to follow these conventions.

Rules of thumb for how things are capitalized are listed in Chapter 3, “Syntax conventions.” You are
encouraged to follow these rules when you create your own names for variables and properties.

dBL is line-oriented.

By default, there is one line per statement, and one statement per line. You may use the semicolon (;) to
continue a statement on the next line, or to combine multiple statements on the same line.

Most structural language elements use keyword pairs.

Most structual language elements start with a specific keyword, and end with a paired keyword. The ending
keyword is usually the word starting keyword preceded by the word END; for example IF/ENDIF, CLASS/
ENDCLASS, and TRY/ENDTRY.

Literal strings are delimited by single quotes, double quotes, or square brackets.

dBL is weakly typed with automatic type conversion.

You don’t have to declare a variable before you use it. You can change the type of a variable at any time.
dBASE Plus’s object model supports dynamic subclassing.

Dynamic subclassing allows you to add new properties on-the-fly, properties that were not declared in the
class structure.

Language definition 2-1

Data types

Data types

Data is both the means and the end for both programming and databases. Because dBASE Plus is designed to
manipulate databases, there are three categories of data types:

» Simple data types common to both the language and databases
« Database-specific data types
» Data types used in programming

Simple data types

There are five simple data types common to both dBL and databases:

» String

* Numeric

* Logical or boolean
e Date

e Null

Keep in mind that different table formats support different data types to varying degrees.

For each of these data types, there is a way to designate a value of that type in dBL code. This is known as the literal
representation.

String data

A string is composed of zero or more characters: letters, digits, spaces, or special symbols. A string with no
characters is called an empty string or a null string (not to be confused with the null data type).

The maximum number of characters allowed in a string depends on where that string is stored. In dBL, the
maximum is approximately 1 billion characters, if you have enough virtual memory. For DBF ({BASE®) tables,
you may store 254 characters in a character field and an unlimited number in a memo field. For DB (Paradox) tables,
the limit is 255 characters in an alpha field, and no limit with memo fields. Different database servers on different
platforms each have their own limits.

Literal character strings must be enclosed in matching single or double quotation marks, or square brackets, as
shown in the following examples:

'text’
lltextll
[text]

A literal null string, or empty string, is indicated by two matching quotation marks or a set of square brackets with
nothing in between.

Numeric data

dBL supports a single numeric data type. It does not distinguish between integers and non-integers, which are
also referred to as floating-point numbers. Table formats vary in the types of numbers they store. Some support
short (16-bit) and long (32-bit) integers or currency in addition to a numeric format. When these numbers are
read into dBL, they are all treated as plain numbers. When numbers are stored into tables, they are automatically
truncated to fit the table format.

In dBL, a numeric literal may contain a fractional portion, or be multiplied by a power of 10. The following are all
valid numeric literals:

e 42

° 5e7

- 315

* 19et4

c 46

* 8.306E-2

As the examples show, the “E” to designate a power of 10 may be uppercase or lowercase, and you may include a
plus sign to indicate a positive power of 10 even though it is unnecessary.

2-2 dBASE dBL Language Reference

Data types

In addition to decimal literals, you may use octal (base 8) or hexadecimal (base 16) literal integers. If an integer
starts with a zero (0), it is assumed to be octal, with digits from 0 to 7. If it starts with 0x or 0X, it is hexadecimal,
with the digits from 0 to 9 and the letters A to F, uppercase or lowercase. For example,

Literal Base Decimal value
031 Octal 25
0x64 Hexadecimal 100

Logical data

A logical, or boolean, value can be only one of three things: true, false or null. These logical values are
expressed literally in dBL by the keywords true, false and null.

For compatibility with earlier versions of dBASE Plus, you may also express true as .T. or .Y, and false as .F. or .N.

Date data

dBASE Plus features native support for dates, including date arithmetic. To specify a literal date, enclose the
date in curly braces. The order of the day, month, and year depends on the current setting of SET DATE, which
derives its default setting from the Regional Settings in the Windows Control Panel. For example, if SET DATE
is MDY (month/day/year), then the literal date:

{10/02/97}

is October 2nd, 1997. The way dBASE Plus handles two-digit years depends on the setting of SET EPOCH. The
default is to interpret two-digit years between 50 and 99 as a year in the 1900s. Two-digit years between 00 and 49
will be interpreted as a year in the 2000s. Curly braces with nothing between them represent a special date value,
known as a blank date.

Null values

dBL supports a special value represented by the keyword null. It is its own data type, and is used to indicate a
nonexistent or undefined value. A null value is different from a blank or zero value; null is the absence of a
value.

The new DBF7 (dBASE) table type support nulls, as do most other tables, including DB (Paradox). Older DBF
formats do not. A null value in a field would indicate that no data has been entered into the field, like in a new row,
or that the field has been emptied on purpose. In certain summary operations, null fields are ignored. For example, if
you are averaging a numeric field, rows with a null value in the field are ignored. If instead a null value was
considered to be zero or some other value, it would affect the average.

null is also used in dBL to indicate an empty function pointer, a property or variable that is supposed to refer to a
function, but doesn’t contain anything.

Database-specific data types

There are a number of data types supported by different databases that do not have a direct equivalent in dBL. The
following list is not exhaustive; a new or upgraded table format may introduce new types. In any case, the type is
represented by the closest matching dBL data type, with the string type being the catchall, since all data can be
represented as a bunch of bytes.

The common database-specific types are:
* Memo
* Binary and OLE

Memo data

As far as dBASE Plus is concerned, a memo is just a character string; potentially a very long one. For tables, it
is important to distinguish between a character field, which is of fixed and usually small size, and a memo field,
which is unlimited in size. For example, a character field might contain the title of a court decision, and the
memo field contain the actual text of that court decision.

Language definition 2-3

Operators and symbols

Binary and OLE data

Binary and OLE data are similar to memos except they are usually meant to be modified by external programs,
not dBASE Plus. For example, a binary field might contain a graphic bitmap, which dBASE Plus can display,
but you cannot edit the bitmap with dBASE Plus.

Programming data types

There are three data types used specifically for programming:

* Object reference
* Function pointer
* Codeblock

These types are explained later, in the context in which they are used.

Operators and symbols

Names

An operator is a symbol, set of symbols, or keyword that performs an operation on data. dBL provides many types
of operators, used throughout the language, in the following categories:

Operator category Operator symbols
Assignment == 4= = *= [= Y=
Comparison == >#><>=<=§
String concatenation + -
Numeric + - %/ 9%
A sk g
Logical AND OR NOT
Object . [1 NEW ::
Call, Indirection 0
Alias >
Macro &

All operators require either one or two arguments, called operands. Those that require a single operand are called
unary operators; those requiring two operands are called binary operators. For example, the logical NOT operator
is a unary operator:

not endOfSet
The (*) is the binary operator for multiplication, for example,
59 * 436

If you see a symbol in dBL code, it’s probably an operator, but not all symbols are operators. For example, quote
marks are used to denote literal strings, but are not operators, since they do not act upon data—they are part of the
representation of a data type.

Another common symbol is the end-of-line comment symbol, a double slash. It and everything on the line after it are
ignored in dBL. For example,

calcAverages() // Call the function named calcAverages

All operators and symbols are described in full in this Chapter.

Names are given to variables, fields in work areas, properties, events, methods, functions, and classes. The following
rules are the naming conventions in dBL:

2-4 dBASE dBL Language Reference

Expressions
* A name begins with an underscore or letter, and contains any combination of underscores, letters, spaces, or
digits.
» Ifthe name contains spaces, it must be enclosed in colons.
e The letters may be uppercase or lowercase. dBL is not case-sensitive.

» With dBL, only the first 32 characters in a name are significant. There can be more than 32, but the extra
characters are ignored. For example, the following two names are considered to be the same:

theFirst 32 CharactersAreTheSameButTheRestArent
theFirst_32_CharactersAreTheSameAndTheRestDontMatter

The following are some examples of valid names:

X
:First name:
DbException

Form

messages] onOpen

Expressions

An expression is anything that results in a value. Expressions are built from literal data, names, and operators.

Basic expressions

The simplest expression is a single literal data value; for example,

6 // The number 6
"eloign" // The string "eloign"

You can use operators to join multiple literals; for example,

6+456*3 // The number 1374
"sep" +"a" + "rat" +"e" // The string "separate"

To see the value of an expression in the Command window, precede the expression with the ? symbol:
76+456*3 // Displays 1374

Variables

Variables are named locations in memory where you store data values: strings, numbers, logical values, dates, nulls,
object references, function pointers, and codeblocks. You assign each of these values a name so that you can later
retrieve them or change them.

You can use these values to store user input, perform calculations, do comparisons, define values that are used as
parameters for other statements, and much more.

Assigning variables

Before a variable can be used, a value must be assigned to it. Use a single equal sign to assign an expression to
a variable; for example,

alpha=6+456 *3 // alpha now contains 1374

If the variable does not exist, it is created. There are special assignment operators that will assign to existing
variables only, and others that combine an arithmetic operation and an assignment.

Using variables and field names in expressions

When a variable is not the target (on the left side) of an assignment operator, its value is retrieved. For example,
type the following lines in the Command window, without the comments:

alpha=16 /I Assigns 6 to alpha
beta = alpha * 4 // Assigns values of alpha (6) times 4 to beta

Language definition 2-5

Expressions

? beta // Displays 24

In the same way, when the name of a field in a work area is used in an expression, its value for the current record is
retrieved. (Note that assignment operators do not work on fields in work areas; you must use the REPLACE
command.) Continuing the previous example:

use FISH /I Open Fish table in current work area
? Name // Display value of Name field in first record
? :Length CM: // Display value of Length CM field in first record
// Colons required around field name because it contains spaces
? :Length CM: * beta // Display value of field multiplied by variable

For information on referencing fields in different work areas and resolving name conflicts between variables and
field names, see “Alias operator” on page 4 - 9.

Type conversion

When combining data of two different types with operators, they must be converted to a common type. If the type
conversion does not occur automatically, it must be done explicitly.

Automatic type conversion

dBL features automatic type conversion between its simple data types. When a particular type is expected,
either as part of an operation or because a property is of a particular type, automatic conversion may occur. In
particular, both numbers and logical values are converted into strings, as shown in the following examples:

"There are "+ 6 * 2+ " in a dozen" // The string "There are 12 in a dozen"
"+4 // The string "4"
"2+2equals S5is"+(2+2==5) // Thestring "2 + 2 equals 5 is false"

As shown above, to convert a number into a string, simply add the number to an empty string. Be careful, though;
the following expression doesn’t work as you might expect:

"The answeris "+ 12 + 1 // The string "The answer is 121"

The number 12 is converted to a string and concatenated, then the number 1 is converted and concatenated, yielding
“121”. To concatenate the sum of 12 plus 1, use parentheses to force the addition to be performed first:

"The answer is " + (12 + 1) // The string "The answer is 13"

Explicit type conversion
In addition to automatic type conversion, there are a number of functions to convert from one type to another:

» String to number: use the VAL() function

* Number to formatted string: use the STR() function
» Date to string: use the DTOC() function

» String to date: use the CTOD() function

Arrays

dBASE supports a rich set of array classes. An array is an N-dimensional list of values stored in memory. Each entry
in the array is called an element, and each element in an array can be treated like a variable.

To create an array, you can use the object syntax detailed in Chapter 10, “Array objects,” but for a one-dimensional
array, you can also use the literal array syntax.

Literal arrays
A literal array declares and populates an array in a single expression. For example,

aTest = { 4, "yclept", true }
creates an array with three elements:

* The number 4
* The string “yclept”

2-6 dBASE dBL Language Reference

Statements

* The logical value true

and assigns it to the variable aTest. The three elements are enclosed in curly braces (the same curly braces used for
dates) and separated by commas.

Array elements are referenced with the index operator, the square brackets ([]). Elements are numbered from one.
For example, the third element is element number 3:

? aTest[3] // Displays true
You can assign a new value directly to an element, just like a variable:

aTest[3] = false // Element now contains false

Complex expressions

The following is an example of a complex expression that uses multiple names, operators, and literal data. It is
preceded by a question mark so that when it’s typed into the Command window, it displays the resulting value:

? {"1st","2nd","3rd","4th"}[ceiling(month(date()) /3)]+ " quarter"

Except for the question mark, the entire line is a single complex expression, made up of many smaller basic
expressions. The expression is evaluated as follows:

» A literal array of literal strings is enclosed in braces, separated by commas. The strings are enclosed in
double quotation marks.

* The resulting array is referenced using the square brackets as the index operator. Inside the square brackets is
a numeric expression.

e The numeric expression uses nested functions, which are evaluated from the inside out. First, the DATE()
function returns the current date. The MONTH() function returns the month of the current date.

e The month is divided by the number 3, then the CEILING() function rounds the number up to the nearest
integer.

* The string containing the ordinal number for the calendar quarter that corresponds to the month of the current
date is extracted from the array, which is then added to the literal string “quarter”.

The value of this complex expression is a string like “4th quarter”.

Statements

A statement is an instruction that directs dBASE Plus to perfom a single action. This action may be simple or it may
be complex, causing other actions to occur. You may type and execute individual statements in the Command
window.

Basic statements

There are four types of basic statements:
* dBL commands
These commands make up a significant portion of the entries in the Language Reference. For example:

clear // Clears the Command window
erase TEMP.TXT // Erases a file on the disk
build from FISHBASE // Creates an executable
? time() // Displays the current time

* Assignment statements

A statement may include only one assignment operator, although the value assigned may be a very complex
expression. For example:

clear = 14 // Assign 14 to variable named clear
f=new Form() //NEW and call operator on class name Form, assigned to variable f

Language definition 2-7

Functions and codeblocks

Note that the first example uses the word “clear”, but because the syntax of the statement a variable is created
instead of executing the command. While creating variables with the same name as a command keyword is
allowed, it is strongly discouraged.

* dBL expressions

An expression is a valid statement. If the expression evaluates to a number, it is equivalent to a GO
command. For example:

6 /I Goto record 6

3+4 // Gotorecord 7

date() // Get today's date and throw it away
f.open() // Call object f's open() method

* Embedded SQL statements

dBASE Plus features native support for SQL statements. You may type an SQL statement in the Command
window, or include them in programs. If the command results in an answer table, that table is opened in the
current work area. For example:

select * from FISH // Open FISH table in current work area

Control statements

dBASE Plus supports a number of control statements that can affect the execution of other statements. Control
statements fall into the following categories:

¢ Conditional execution

* IF
* DO CASE

* Looping

+ FOR
DO WHILE
+ DO...UNTIL

* Object manipulation
* WITH

» Exception handling
+ TRY

These control statements are fully documented in Chapter 5, “Core language.”

Functions and codeblocks

In addition to the built-in functions, you may create your own. A function is a code module—a set of statements—to
which a name is assigned. The statements can be called by the function name as often as needed. Functions also
provide a mechanism whereby the function can take one or more parameters that are acted upon by the function.

A function is called by following the function name with a set of parentheses, which act as the call operator. When
discussing a function, the parentheses are included to help distinguish functions from other language elements like
variables.

For example, the function LDoM() takes a date parameter dArg and returns the last day of the month of that date.

function LDoM(dArg)
local dNextMonth
dNextMonth = dArg - date(dArg) +45 // Day in the middle of next month
return dNextMonth - day(dNextMonth)

Functions are identified by the keyword FUNCTION in a program file; they cannot be typed into the Command
window. While many functions use RETURN to return a value, they are not required to do so.

2-8 dBASE dBL Language Reference

Functions and codeblocks

Function pointers

The name of a function that you create is actually a pointer to that function. Applying the call operator () to a
function pointer calls that function. (Built-in functions work differently; there is no function pointer.)

Function pointers are a distinct data type, and can be assigned to other variables or passed as parameters. The
function can then be called through that function pointer variable.

Function pointers enable you to assign a particular function to a variable or property. The decision can be made up
front and changed as needed. Then that function can be called as needed, without having to decide which function to
call every time.

Codeblocks

While a function pointer points to a function defined in a program, a codeblock is compiled code that can be stored
in a variable or property. Codeblocks do not require a separate program; they actually contain code. Codeblocks are
another distinct data type that can be stored in variables or properties and passed as parameters, just like function
pointers.

Codeblocks are called with the same call operator that functions use, and may receive parameters.
There are two types of codeblocks:

» Expression codeblocks
¢ Statement codeblocks

Expression codeblocks return the value of a single expression. Statement codeblocks act like functions; they contain
one or more statements, and may return a value.

In terms of syntax, both kinds of codeblocks are enclosed in curly braces ({ }) and
* Cannot span multiple lines.
* Must start with either two pipe characters (||) or a semicolon (;)

« If ; it must be a statement codeblock with no parameters
+ If|| it may be either an expression or statement codeblock

* The || are used for parameters to the codeblock, which are placed between the two pipe characters. They may
also have nothing in-between, meaning no parameters for either an expression or statement codeblock.

» Parameters inside the ||, if any, are separated by commas.

» For an expression codeblock, the || must be followed by one and only one expression, with no ; These are
valid expression codeblocks:

{|| false}
{|[date()}
{x] x * x}
* Otherwise, it is a statement codeblock. A statement codeblock may begin with || (again, with or without
parameters in-between).

» Each statement in a statement codeblock must be preceded by a ; symbol. These are valid statement
codeblocks (the first two are functionally the same):

{; clear}

{l; clear}

Uxls 2 x}

{|x[; clear; ? x}

* Youmay use a RETURN inside a statement codeblock, just like with any other function. (A RETURN is
implied with an expression codeblock.) For example,

{In]; for i=2 to sqrt(n); if n % 1 == 0; return false; endif; endfor; return true}

Because codeblocks don’t rely on functions in programs, you can create them in the Command window. For
example,

square = {|x| x * x} // Expression codeblock
? square(4) // Displays 16

Language definition 2-9

Objects and classes

/I A statement codeblock that returns true if a number is prime

p = {In|; for i=2 to sqrt(n); if n % i == 0; return false; endif; endfor; return true}
?p(23) // Displays true

?p(25) // Displays false

As mentioned previously, curly braces are also used for literal dates and literal arrays. Compare the following:

{10} // A literal array containing one element with the value 10
{10/5} // A literal array containing one element with the value 2
{10/5/97} // A literal date

{||10/5} // An expression codeblock that returns 2

Codeblocks vs. functions

A codeblock is a convenient way to create a small anonymous function and assign it directly to a variable or
property. The code is physically close to its usage and easy to see. In contrast, a function pointer refers to a
function defined elsewhere, perhaps much later in the same program file, or in a different program file.

Functions are easier to maintain. Their syntax is not cramped like codeblocks, and it’s easier to include readable
comments in the code. In a class definition, all FUNCTION definitions are all together at the bottom. Codeblocks
are scattered throughout the constructor. If you want to run the same code from multiple locations, using function
pointers that point to the same function means that changing the code requires changing the function once; multiple
codeblocks would require changing each codeblock individually.

You can create a codeblock at runtime by constructing a string that looks like a codeblock and using the macro
operator to evaluate it.

Objects and classes

An object is a collection of properties. Each of these properties has a name. These properties may be simple data
values, such as numbers or strings, or references to code, such as function pointers and codeblocks. A property that
references code is called a method. A method that is called by dBASE Plus in response to a user action is called an
event.

Objects are used to represent abstract programming constructs, like arrays and files, and visual components, like
buttons and forms. All objects are initially based on a class, which acts as a template for the object. For example, the
PushButton class contains properties that describe the position of the button, the text that appears on the button, and
what the button should do when it is clicked. All these properties have default values. Individual button objects are
instances of the PushButton class that have different values for the properties of the button.

dBASE Plus contains many built-in, or stock, classes, which are documented throughout the Language Reference.
You can extend these stock classes or build your own from scratch with a new CLASS definition.

While the class acts as a formal definition of an object, you can always add properties as needed. This is called
dynamic subclassing.

Dynamic subclassing

To demonstrate dynamic subclassing, start with the simplest object: an instance of the Object class. The Object class
has no properties. To create an object, use the NEW operator, along with the class name and the call operator, which
would include any parameters for the class (none are used for the Object class).

obj = new Object()

This statement creates a new instance of the Object class and assigns an object reference to the variable obj. Unlike
variables that contain simple data types, which actually contain the value, an object reference variable contains only
a reference to the object, not the object itself. This also means that making a copy of the variable:

copy = obj
does not duplicate the object. Instead, you now have two variables that refer to the same object.
To assign values to properties, use the dot operator. For example,

obj.name = "triangle"
obj.sides =3
obj.length =4

2-10 dBASE dBL Language Reference

Programs
If the property does not exist, it is added; otherwise, the value of the property is simply reassigned. This behavior can
cause simple bugs in your programs. If you mistype a property name during an assignment, for example,
obj.wides =4 // should be s, not w

anew property is created instead of changing the value of the existing property you intended. To catch these kinds of
problems, use the assignment-only := operator when you know you are not initializing a property or variable. If you
attempt to assign a value to a property or variable that does not exist, an error occurs instead of creating the property
or variable. For example:

obj.wides := 4 // Error if wides property does not already exist

Methods

A method is a function or codeblock assigned to a property. The method is then called through the object via the dot
and call operators. Continuing the example above:

obj.perimeter = {|| this.sides * this.length}
? obj.perimeter() // Displays 12

As you may have deduced by now, the object referred to by the variable obj represents a regular polygon. The
perimeter of such a polygon is the product of the length of each side and the number of sides.

The reference this is used to access these values. In the method of an object, the reference this always refers to the
object that called the method. By using this, you can write code that can be shared by different objects, and even
different classes, as long as the property names are the same.

A simple class

Here is a class representing the polygon:

class RegPolygon
this.sides =3 // Default number of sides
this.length =1 // and default length

function perimeter()
return this.sides * this.length
endclass

The top of the CLASS definition, up to the first FUNCTION, is called the class constructor, which is executed when
an instance of the class is created. In the constructor, the reference this refers to the object being created. The sides
and length properties are added, just as they were before.

The function in the class definition is considered a method, and the object automatically has a property with the
same name as the method that points to the method. The code is the same, but now instead of a codeblock, the
method is a function in the class. Methods have the advantage of being easier to maintain and subclass.

Programs

A program contains any combination of the following items:

» Statements to be executed
» Functions and classes that may be called
¢ Comments

The dBASE Plus compiler also supports a standard language preprocessor, so a program that is run by dBASE Plus
may contain preprocessor directives. These directives are not part of the dBL language; instead they form a separate
simple language that can affect the code compilation process, and are explained later.

Program files

A program file may have any file-name extension, although there are a number of defaults:

* A program containing a form is .WFM
* A program containing a report is .REP

Language definition 2-11

Programs

* Any other program is .PRG
These file-name extensions are assumed by the Navigator and the Source Editor.

When dBASE Plus compiles a program into byte code, it stores the byte code in a file with the same name and
extension, but it changes the last character of the extension to the letter “O”: .PRG becomes .PRO, .WFM becomes
.WFO, and .REP becomes .REO.

Program execution

Use the DO command to run a program file, or double-click the file in the Navigator. If you run the program through
the Navigator, the equivalent DO command will be streamed out to the Command window and executed. You can
also call a .PRG program by name with the call operator, the parentheses, in the Command window; for example,

sales_report()

will attempt to execute the file SALES REPORTS.PRG. Since the operating system is not case-sensitive about file
names when searching for files, neither is dBASE Plus.

A basic program simply contains a number of dBL statements, which are executed once in the order that they appear
in the program file, from the top down. For example, the following four statements remember the current directory,
switch to another directory, execute a report, and switch back to the previous directory:

cDir = set("DIRECTORY")
cd C:\SALES

do DAILY.REP

cd &cDir

Control statements, discussed earlier, are acted upon as they occur; they may affect the execution of the code that
they contain. Some statements may be executed only when a certain condition is true and other statements may be
executed more than once in a loop. But even within these control statements, the execution is still basically the same,
from the top down.

When and if there are no more statement to execute, the program ends, and control returns to where the program was
called. For example, if the program was executed from the Command window, then control returns to the Command
window and you can do something else.

Functions and classes

Functions and classes affect execution in two ways. First, when a function or class definition is encountered in
the straight top-down execution of a program, execution in that program is terminated.

The second effect is that when a function, class constructor, or method is called, execution jumps into that function
or class, executes that code in the usual top-down fashion, then goes back to where the call was made and continues
where it left off.

Comments

Use comments to include notes to yourself or others. The contents of a comment do not follow any dBL rules;
include anything you want. Comments are stripped out at the beginning of the program compilation process.

A program will typically contain a group of comments at the beginning of the file, containing information like the
name of the program, who wrote it and when, version information, and instructions for using it. But the most
important use for comments is in the code itself, to explain the code—not obvious things like this:

n++ // Add one to the variable n

(unless you’re writing example code to explain a language) but rather things like what you’re doing in the overall
scheme of the program, or why you decided to do something in a particular way. Decisions that are obvious to you
when you write a statement will often completely bewilder you a few months later. Write comments so that they can
be read by others, and put them in as you code, since there’s rarely time to add them in after you’re done, and you
may have forgotten what you did by then anyway.

2-12 dBASE dBL Language Reference

Programs

Preprocessor directives

A preprocessor directive must be on its own line, and starts with the number sign (#).

Because preprocessor directives are not part of the dBL language, you cannot execute them in the Command
window.

For more information about using preprocessor directives, see Chapter 22, “Preprocessor.”

A simple program

Here is a simple program that creates an instance of the RegPolygon class, changes the length of a side, and displays
the perimeter:

// Polygon.prg

/I A simple program example

/I

local poly

poly = new RegPolygon()
poly.length = 4

? poly.perimeter() // Displays 12
class RegPolygon

this.sides =3 // Default number of sides
this.length =1 // and default length

function perimeter()
return this.sides * this.length
endclass

Language definition 2-13

2-14 dBASE dBL Language Reference

Syntax conventions

The Language Reference uses specific symbols and conventions in presenting the syntax of dBL language
elements. This chapter describes the symbols used in syntax and provides information on interpreting the syntax
conventions.

Syntax notation

Statements, methods, and functions are described with syntax diagrams. These syntax diagrams consist of a
least one fixed language element—the one being documented—and may include arguments, which are enclosed
in angle brackets (<>).

The dBL language is not case-sensitive.

The following table describes the symbols used in syntax:

Symbol Description
<> Indicates an argument that you must supply
[1] Indicates an optional item

| Indicates two or more mutually exclusive options

Indicates an item that may be repeated any number of times

Arguments are often expressions of a particular type. The description of an expression argument will indicate
the type of argument expected, as listed in the following table:

Descriptor Type

expC A character expression

expN A numeric expression

expL A logical or boolean expression,; that is, one that evaluates to true or false
expD A date expression

exp An expression of any type

oRef An object reference

All the arguments and optional elements are described in the syntax description.

Unlike legacy dBASE command and function keywords, which are shown in uppercase letters, property names
are capitalized differently. Property names are camel-capped, that is, they contain both uppercase and lowercase
letters if the name consists of more than one word. If the property is a method, the name is followed by
parentheses. Examples of properties include onAppend, onRightMouseDown, checked, and close().

These conventions help you differentiate the language elements; for example,

« DELETE is a command

Syntax conventions 3-1

Syntax example

Note

delete is a property
DELETED() is a function
delete() is a method

These typographical conventions are for readability only. When writing code, you can use any combination of
uppercase and lowercase letters.

In dBL, you must refer to classes and properties by their full names. However, you can still abbreviate some
keywords in the dBL language to the first four characters, though for reasons of readability and clarity such
abbreviation is not recommended.

Syntax example

The syntax entries for the extern statement illustrate all of the syntax symbols:

extern [CDECL | PASCAL | STDCALL] <return type> <function name>
([<parameter type> [, <parameter type> ...]])
<filename>

» The square brackets enclosing the calling convention, [CDECL | PASCAL | STDCALL], means the item is
optional. The pipe character between the three calling conventions is an "or" indicator. In other words, if you
want to use a calling convention, you must choose one of the three.

» <return type> and <function name> are both required arguments.

» The parentheses are fixed language elements, and thus also required. Inside the parentheses are optional
<parameter type> arguments, as indicated by the square brackets.

* The location of the comma inside the second square bracket indicates that the comma is needed only if
more than one <parameter type> is specified.

» The ellipsis (...) at the end means that any number of parameter type arguments may be specified (with a
comma delimiter, if more than one is used).

» <filename> is a required argument.

A simple extern statement with neither of the two optional elements would look like this:
extern CINT angelsOnAPin() ANSWER.DLL

The <return type> argument is CINT, and the <function name> is angelsOnAPin.

A more complicated extern statement with a calling convention and parameters would look like this:
extern PASCAL CLONG wordCount(CPTR, CLOGICAL) ANSWER.DLL

Capitalization guidelines

The following guidelines describe the standard capitalization of various language elements. Although dBL is
not a case-sensitive language, you are encouraged to follow these guidelines in your own scripts.

¢ Commands and built-in functions are shown in uppercase in descriptions so that they stand out, but are all
lowercase in code examples.

* Class names start with a capital letter. Multiple-word class names are joined together without any separators
between the words, and each word starts with a capital letter. For example,

Form
PageTemplate

* Property, event, and method names start with a lowercase letter. If they are multiple-word names, the words
are joined together without any separators between the words, and each word (except the first) starts with a
capital letter. They also appear italicized in the Language Reference. For example,

color
dataLink

3-2 dBASE dBL Language Reference

Syntax example

showMemoEditor()
» Variable and function names are capitalized like property names.

* Manifest constants created with the #define preprocessor directive are all uppercase, with underscores
between words. For example,

ARRAY DIR_NAME
NUM_REPS

* Field names and table names from DBF tables are in all uppercase in code so that they stand out.

SET command defaults

If a SET... command has a default setting, it is shown in uppercase in its syntax entry; the other options are
shown in lowercase. For example, with:

SET DELETED ON | off
SET DELETED may be either ON or OFF. It is ON by default.

In some cases, a setting may depend on the Regional Settings in the Windows Control Panel, so there is no
explicit default. For example:

SET CURRENCY left | right

Note that the SET command saves all settings to the PLUS.ini file. Those settings then become the default when
you start dBASE or issue CREATE SESSION.

Syntax conventions 3-3

dBASE dBL Language Reference

Operators and symbols

An operator is a symbol, set of symbols, or keyword that specifies an operation to be performed on data. Data is
supplied in the form of arguments, or operands.

For example, in the expression “total = 0”, the equal sign is the operator and “total” and “0” are the operands. In
this expression, the numeric operator “=" takes two operands, which makes it a binary operator. Operators that
require just one operand (such as the numeric increment operator “++) are known as unary operators.

Operators are categorized by type. dBL’s operators are classified as follows:

Operator symbols Operator category
== += = *= /= Y%= Assignment

== <>f#><><=3 Comparison

+ - String concatenation

+ - k)% N RF Numeric

AND OR NOT Logical

. [] NEW :: Object

0 Call, Indirection

> Alias

& Macro

Most symbols you see in dBL code are operators, but not all. Quotation marks, for example, are used to denote
literal strings and thus are part of the representation of a data type. Since they don’t act upon data, they’re a
“non-operational” symbol.

You can use the following non-operational symbols in dBL code:

Symbols Name/meaning

; Statement separator, line continuation

Il && End-of-line comment

* Full-line comment

/* */ Block comment

{306 A Literal date/literal array/codeblock markers
"l Literal strings

Name/database delimiters

Preprocessor directive

Operators and symbols 4-1

Operator precedence
Finally, the following symbols are used as dBL commands when they are used to begin a statement:
Symbols Name/meaning

77 Displays streaming output (page 18-1)
! Runs program or operating system command (page 11-7)

Operator precedence

dBL applies strict rules of precedence to compound expressions. In expressions that contain multiple operations,
parenthetical groupings are evaluated first, with nested groupings evaluated from the “innermost” grouping
outward. After all parenthetical groupings are evaluated, the rest of the expression is evaluated according to the
following operator precedence:

Order of precedence (highest to

lowest) Operator description or category

& Macro

(expression) Parenthetical grouping, all expressions

> Alias

O. NEW :: Object operators: call; member (square bracket or
dot); new; scope resolution

+ -+ — Unary plus/minus, increment/decrement

Nk Exponentiation

* % Multiply, divide, modulus

+ - Addition, subtraction

== <>H#<<=>>= 9 Comparison

NOT Logical Not

AND Logical And

OR Logical Or

== 4= = ¥= /= Y= Assignment

In compound expressions that contain operators from the same precedence level, evaluation is conducted on a
literal left-to-right basis. For example, no operator precedence is applied in the expressions 21/7*3 and 3*21/7
(both

return 9).

Here’s another example:
4+5%(6+2%(8-4)-9)%19>=11
This example is evaluated in the following order:

8§—4=4
2%4=8
6+8=14
14-9=5
5%5=25
25%19=6
4+6=10

The result is the logical value false.

Assignment operators

Assign/create operator: =
Assignment-only operator: :=
Arithmetic assignment operators: += —= *= /= %=

Syntax x=n

4-2 dBASE dBL Language Reference

Description

+ (“plus”) operator

y =X
X+=y

Assignment operators are binary operators that assign the value of the operand on the right to the operand on the
left.

The standard assignment operator is the equal sign. For example, X = 4 assigns the value 4 to the variable X, and
y = X assigns the value of the variable x (which must already have an assigned value) to the variable y. If the
variable or property on the left of the equal sign does not exist, it is created.

To prevent the creation of a variable or property if it does not exist, use the assignment-only := operator. This
operator is particularly useful when assigning values to properties. If you inadvertently misspell the name of the
property with the = operator, a new property is created; your code will run without error, but it will not behave
as you intended. By using the := operator, if the property (or variable) does not exist, an error occurs.

The arithmetic assignment operators are shortcuts to self-updating arithmetic operations. For example, the
expression X += Y means that X is assigned its own value plus that of y (X = X + y). Both operands must already
have assigned values, or an error results. Thus, if the operand X has already been assigned the value 4 and y has
been assigned the value 6, the expression X +=y returns 10.

+ (“plus”) operator Numeric, String

Syntax

Description

Note

Example

Addition, concatenation, unary positive operator.

n+m

date + n
"strl" + "str2"
"str' + x

X + "str"

+n

The “plus” operator performs a variety of additive operations:
It adds two numeric values together.

* Youmay add a number to a date (or vice-versa). The result is the day that many days in the future (or the past
if the number is negative). Adding any number to a blank date always results in a blank date.

» It concatenates two strings.

* You may concatenate any other data type to a string (or vice versa). The other data type is converted into its
display representation:

* Numbers become strings with no leading spaces. Integer values eight digits or less have no decimal point
or decimal portion. Integer values larger than eight digits and non-integer values have as many decimals
places as indicated by SET DECIMALS.

+ The logical values true and false become the strings “true” and “false”.

» Dates (primitive dates and Date objects) are converted using DTOC().

* Object references to arrays are converted to the word “Array”.

» References to objects of all other classes are converted to the word “Object”.

 Function pointers take on the form “Function: “ followed by the function name.
Adding the value null to anything (or anything to null) results in the value null.

The plus sign may also be used as a unary operator to indicate no change in sign, as opposed to the unary minus
operator, which changes sign. Of course, it is generally superfluous to indicate no change in sign; the unary plus
is rarely used.

These examples demonstrate addition and concatenation.

"this &" + " that" // = the string "this & that"
5+5 // = the number 10
"this & " + 5 + " more" // = the string "this & 5 more"

Operators and symbols 4-3

- (“minus”’) operator

See also

S5+n-5" // = the string "5-5"

date() + 7 // = same day next week

"" 4+ Form::open // = the string "Function: FORM::OPEN"
?3 44+ "abc" + false // = the string "7abcfalse"

? false + 3 + 4 + "abc" // Error: unexpected type

The last two examples demonstrate the standard left-to-right precedence of the + operator. In the first example,
4 is added to 3, which yields 7. The string “abc” is added, so the number is converted to its display
representation, resulting in the string “7abc”. Then the value false is added, which is also converted to string,
yielding “7abcfalse”. But in the second example, the first addition attempts to add 3 to the value false, which is
not allowed; an error occurs.

- (“minus”) operator

- (“minus”) operator

Syntax

Description

Example

See also

Subtraction, concatenation, unary negative operator.

n-m

date - n
date - date
"strl" - "str2"
"str - x

X - "str"

-n

The “minus” operator is similar to the “plus” operator. It subtracts two numbers, and subtracts days from a date.
You may also subtract one date from another date; the result is the number of days between the two dates. If you
subtract a blank date from another date, the result is always zero.

The minus symbol is also used as the unary negation operator, to change the sign of a numeric value.

You may concatenate two strings, or a string with any other data type, just like with the plus operator. The
difference is that with the minus operator, the trailing blanks from the first operand are removed before the
concatenation, and placed at the end of the result. This means that the concatenation with either the plus or
minus results in a string with the same length, but with the minus operator, the trailing blanks are combined at
the end of the result.

If you want to trim field values when creating an expression index for a DBF table, use the minus operator.

Suppose you have a DBF table with last name and first name fields, both 16 characters wide. Compare the result
of the plus and minus operators:

" "

"Bailey-Richter "+ "Gwendolyn " ==>"Bailey-Richter Gwendolyn

"

"Bailey-Richter " - "Gwendolyn " ==>"Bailey-RichterGwendolyn

It may be more useful to include a comma between the last name and first name:

"

"Bailey-Richter "-"," - "Gwendolyn = " ==>"Bailey-Richter,Gwendolyn

The last name and comma are concatenated, moving the trailing blanks after the comma, then that is
concatenated to the first name, moving the trailing blanks after the last name. By separating the last name and
first name, the comma ensures that the names are sorted correctly, and it makes searching—particularly
interactive incremental searching—easier. The command to create such an index tag would look like:

index on upper(LAST NAME - "," - FIRST NAME) tag FULL NAME

The minus operator results in index keys that are all the same length, something that you wouldn’t get by using
the TRIM() function.

+ (“plus”) operator

Numeric operators

Binary numeric operators: + — * / % ~ **

4-4 dBASE dBL Language Reference

Syntax

Description

Logical operators

Unary numeric operators: ++ ——

n+m
n++
n__
++n
n-m
n*m
n/m
n%m
n-m
n**m
--n

Perform standard arithmetic operations on two operands, or increment or decrement a single operand.

All of these operators take numeric values as operands. The + (plus) and - (minus) symbols can also be used to
concatenate strings.

As binary numeric operators, the +, —, *, and / symbols perform the standard arithmetic operations addition,
subtraction, multiplication and division.

The modulus operator returns the remainder of an integral division operation on its two operands. For example,
50%S8 returns 2, which is the remainder after dividing 50 by 8.

You may use either ~ or ** for exponentiation. For example, 2”5 is 32.

The increment/decrement operators ++ and — take a variable or property and increase or decrease its value by
one. The operator may be used before the variable or property as a prefix operator, or afterward as postfix
operator. For example,

n=5 // Start with 5

?nt++ // Get value (5), then increment

?7n //Now 6

?++n // Increment first, then get value (7)
?n //Stll7

If the value is not used immediately, it doesn’t matter whether the ++/—— operator is prefix or postfix, but the
convention is postfix.

Logical operators

Syntax

Description

Binary logical operators: AND OR
Unary logical operator: NOT

aAND b
aORDb
NOT b

The AND and OR logical operators return a logical value (true or false) based on the result of a comparison of
two operands. In a logical AND, both expressions must be true for the result to be true. In a logical OR, if either
expression is true, or both are true, the result is true; if both expressions are false, the result is false.

When dBASE Plus evaluates an expression involving AND or OR, it uses short-circuit evaluation:

 false AND <any expL> is always false
* true OR <any expL> is always true

Because the result of the comparison is already known, there is no need to evaluate <any expL>. If <any expL>
contains a function or method call, it is not called; therefore any side effects of calling that function or method
do not occur.

The unary NOT operator returns the opposite of its operand expression. If the expression evaluates to true, then
NOT exp returns false. If the expression evaluates to false, NOT exp returns true.

You may enclose the logical operators in dots, that is: . AND., .OR., and .NOT. The dots are required in earlier
versions of dBASE.

Operators and symbols 4-5

Comparison operators

Comparison operators

Comparison operators compare two expressions. The comparison returns a logical true or false value.
Comparing logical expressions is allowed, but redundant; use logical operators instead.

dBASE Plus automatically converts data types in a comparison, using the following rules:
1 If the two operands are the same type, they are compared as-is.
2 If either operand is a numeric expression, the other operand is converted to a number:

» Ifa string contains a number only (leading spaces are OK), that number is used, otherwise it is interpreted
as an invalid number.

* The logical value true becomes one; false becomes zero.
+ All other data types are invalid numbers.
All comparisons between a number and an invalid number result in false.
3 Ifeither operand is a string, the other operand is converted to its display representation:

* Numbers become strings with no leading spaces. Integer values eight digits or less have no decimal point
or decimal portion. Integer values larger than eight digits and non-integer values have as many decimals
places as indicated by SET DECIMALS.

+ The logical values true and false become the strings “true” and “false”.

» Dates (primitive dates and Date objects) are converted using DTOC().

* Object references to arrays are converted to the word “Array”.

» References to objects of all other classes are converted to the word “Object”.

 Function pointers take on the form “Function: “ followed by the function name.
4 All other comparisons between mismatched data types return false.

These are the comparison operators:

Operator Description

== Exactly equal to
= Equal to or Begins with

<>or# Not equal to or Doesn’t begin with
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
$ Contained in

When comparing dates, a blank date comes after (is greater than) a non-blank date.

When comparing Date objects, the date/time they represent are compared; they may be earlier, later, or exactly
the same. For all other objects, only the equality tests makes sense. It tests whether two object references refer to
the same object.

String equality comparisons are case-sensitive and follow the rules of SET EXACT. The == operator always
compares two strings as if SET EXACT is ON. The other equality operators (=, <>, #) use the current setting of
SET EXACT. When SET EXACT is ON, trailing blanks in either string are ignored in the comparison. When
SET EXACT is OFF (the default), the = operator act like a “begins with” operator: the string on the left must
begin with the string on the right. The <> and # operators act like “does not begin with” operators. Note that
there is no single genuinely exactly equal comparison for strings in dBL.

It is recommended that you leave SET EXACT OFF so that you have the flexibility of doing an “exact”
comparison or a “begins with” comparison as needed. By definition, all strings “begin with” an empty string, so
when checking if a string is empty, always put the empty string on the left of the equality operator.

4-6 dBASE dBL Language Reference

Object operators

Warning For compatibility with earlier versions of dBASE, if the string on the right of the = operator is (or begins with)
CHR(0) and SET EXACT is OFF, then the comparison always returns true. When checking for CHR(0), always
use the == operator.

The $ operator determines if one string is contained in, or is a substring of, another string. By definition, an
empty string is not contained in another string.
Example To see these examples in action, type them into the Command window.

// The usual numeric and string comparisons
?73<4 // true
? "cat" > "dog" // false

// String comparisons demonstrate SET EXACT rules
set exact off

? "abc" == "abc" /I Obviously true

? "abc" == "abc " // Trailing space in second operand is ignored: true
? "abc" = "ab" // 1st operand begins with the characters in the 2nd: true
? "abc" ="" // true by definition

7" ="abc" // false

? "abc" # " // false

?"" # "abc" // true

/I Logical comparisons are redundant

valid = true

? valid == true // true, but so is

? valid /I this

? valid == false // false, but it's simpler to

? not valid /I use the logical NOT operator

// Date objects compare the date/time they represent

x = new Date()

y = new Date() // Should be a few seconds later

?7x<y /[true, date/time in x is before y

x =new Date("25 Sep 1996")

y =new Date("25 Sep 1996")

?7x=y // true: objects are different, but date/time is the same

// Other objects test for equality only
a=new Form()
b =new Form()

c=b
?2a== // false, different objects
?7b==c // true, references to same object

Object operators

Object operators are used to create and reference objects, properties, and methods. Here are the Object

operators:
Operator Description
NEW Creates a new instance of an object
[1] Index operator, which accesses the contents of an object through a numeric or
string value
. (period) Dot operator, which accesses the contents of an object through an identifier

name

Scope resolution operator, to reference a method in a class or call a method from
a class.

NEW operator

The NEW operator creates an object or instance of a specified class.

The following is the syntax for the NEW operator:

Operators and symbols 4-7

Object operators

[<object reference> =] new <class hame>([<parameters>])

The <object reference> is a variable or property in which you want to store a reference to the newly created
object.

Note that the reference is optional syntactically; you may create an object without storing a reference to it. For
most classes, this results in the object being destroyed after the statement that created it is finished, since there
are no references to it.

The following example shows how to use the NEW operator to create a Form object from the Form class. A
reference to the object is assigned to the variable customerForm:

customerForm = new Form()

This example creates and immediately uses a Date object. The object is discarded after the statement is
complete:

? new Date().toGMTString()

Index operator

The index operator, [], accesses an object’s properties or methods through a value, which is either a number or
a character string. The following shows the syntax for using the index operator (often called the array index
operator):

<object reference>[<exp>]
You typically use the index operator to reference elements of array objects, as shown in the following example:

aScores = new Array(20) // Create a new array object with 20 elements
aScores[1]=10 // Change the value of the 1st element to 10
? aScores|[1] // Displays 10 in results pane of Command window

Dot operator

The dot operator, (““.””), accesses an object’s properties, events, or methods through a name. The following shows
the syntax for using the dot operator:
<object reference>[.<object reference> ...].<property name>

Objects may be nested: the property of an object may contain a reference to another object, and so on.
Therefore, a single property reference may include many dots.

The following statements demonstrate how you use the dot operator to assign values:

custForm = new Form() // Create a new form object
custForm.title = "Customers" // Set the title property of custForm
custForm.height = 14 /I Set the height property of custForm

If an object contains another object, you can access the child object’s properties by building a path of object
references leading to the property, as the following statements illustrate:

custForm.addButton = new Button(custForm) // Create a button in the custForm form
custForm.addButton.text = "Add" // Set the text property of addButton

Scope resolution operator

The scope resolution operator (::, two colons, no space between them) lets you reference methods directly from
a class or call a method from a class.

The scope resolution operator uses the following syntax:
<class name>|class|super::<method name>

The operator must be preceded by either an explicit class name, the keyword CLASS or the keyword SUPER.
CLASS and SUPER may be used only inside a class definition. CLASS refers to the class being defined and
SUPER refers to the base class of the current class, if any.

<method name> is the method to be referenced or called.

4-8 dBASE dBL Language Reference

Call, indirection, grouping operator

Scope resolution searches for the named method, starting at the specified class and back through the class’s
ancestry. Because SUPER starts searching in a class’s base class, it is used primarily when overriding methods.

Call, indirection, grouping operator

See also

Parentheses are used to call functions and methods, and to execute codeblocks. For example:
MyClass::MyMethod

is a function pointer to a method in the class, while
MyClass::MyMethod()

actually calls that method. Any parameters to include in the call are placed inside the parentheses. Multiple
parameters are separated by commas. Here is an example using a codeblock:

rootn = {[x,n| x(1/n)} // Create expression codeblock with two parameters
? rootn(27, 3) // Displays cube root of 27: 3

Some commands expect the names of files, indexes, aliases, and so forth to specified directly in command—
”bare”—not in a character expression. Therefore, you cannot use a variable directly. For example, the ERASE
command erases a file from disk. The following code will not work:

cFile = getfile("*.*", "Erase file") // Store filename to variable
erase cFile // Tries to erase file named "cFile"

because the ERASE command tries to erase the file with the name of the variable, not the contents of the
variable. To use the variable name in the file, enclose the variable in parentheses. In these commands, the
parentheses evaluate the indirect file reference, and when used in this way, they are referred to as indirection
operators:

erase (cFile) // Spaces inside parentheses optional

Macro substitution also works in these cases, but macro substitution can be ambiguous. Indirection operators are
recommended in commands where they are allowed.

Finally, parentheses are also used for grouping in expressions to override or emphasize operator precedence.
Emphasizing precedence simply means making the code more readable by explicitly grouping expressions in
the normal order they are evaluated, so that you don’t need to remember all the precedence rules to understand
an expression. Overriding precedence uses the parentheses to change the order of evaluation. For example:

?73+4*5 //Multiplication first, result is 23
?(3+4)*5 // Do addition first, result is 35

Macro operator

Alias operator

Syntax

Description

Example

Designates a field name in a specific work area, or a private or public variable.
alias->name

When using a name that may be a variable or the name of a field in the current work area, the name is matched in the
following order:

1 Local or static variable
2 Field name
3 Private or public variable

To resolve the ambiguity, or to refer to a field in another work area, use the alias operator. Aliases are not case-
sensitive.

Private and public variables are referenced by the alias M. Use the alias of the specific work area to identify a
particular field. Local and static variables cannot use the alias operator; you must use the variable alone.

The following program opens two tables that both have a field named City and creates both private and local
variables named City:

use CUSTOMER // Open in current work area

Operators and symbols 4-9

Macro operator

use CUSTOMER // Open in current work area

use VENDOR?2 in select() alias VENDOR // Open in another work area with alias
private city // Names are not case-sensitive

city = "Peoria" // Alias not required because assignment does not assign to fields
? "No alias:", city // Field from current table

exerciseAliasOp()

use in VENDOR // Close tables

use

function exerciseAliasOp()
local city
city = "Louisville"
? "Local defined, no alias:", city // Local variable

? "M alias:", m->city // Private variable hidden by local
? "Customer:", customer->city ~ // Field from table
? "Vendor:", vendor->city // Field from other table

Macro operator

Substitutes the contents of a private or public string variable during the evaluation of a statement.
Syntax &<character variable>[.]

Description Macro substitution with the & operator allows you to change the actual text of a program statement at runtime.
This capabilities allows you to overcome certain syntactic and architectural limitations in dBASE Plus.

The mechanics of macro substitution are as follows. When compiling a statement, in a program or for
immediate execution in the Command window, dBASE Plus looks for any single & symbols in the statement.
(Double ampersands [&&] denote end-of-line comments.) If something that looks like it could be a variable
name—that is, a word made up of letters, numbers, and underscores—immediately follows the & symbol, its
location is noted during compilation. If a period (.) happens to immediately follow the word, that period is
considered to be a macro terminator.

When the statement is executed, dBASE Plus searches for a private or public variable with that name. If that
variable exists, and that variable is a character variable, the contents of that variable are substituted in the
statement in the place of the & symbol, the variable name, and the terminating period, if any. This is referred to
as macro substitution. If no private or public variable with that name can be found, or if the variable is not a
character variable, nothing happens; the statement is executed as-is.

Note The & character is also used as the pick character in the text property of some form and menu components. For
example, if you use the string “&Close” to designate the letter C as the pick character, if you happen to have a
private or public variable named close, it will be substituted.

If macro substitution occurs, one of two things can happen:

* Some commands expect certain kinds macro substitution. If the substitution is one of those cases, the
command can immediately use the substituted value. For example, SET commands which expect either ON
or OFF as the final word in the statement are optimized in this way.

« If the substituted value is not an expected case, or if the command or statement does not expect macro
substitution, the entire statement in its new form is recompiled on-the-fly and executed.

Recompiling the statement takes a small amount of time that is negligible unless you are constantly recompiling
in a loop. Also, local and static variables may be out-of-scope when a recompiled statement is executed.

You cannot use the & operator immediately after a dot operator. You also cannot have the & and dot operators
on the left side of an assignment operator; that is, you cannot assign to a property that is partially resolved with
macro substitution. If you do either of these, a compile-time error occurs. You can assign to a property that is
completely resolved with macro substitution, or use the STORE command instead of an assignment operator.

The macro terminator (a period, the same character as the dot operator) is required if you want to abut the macro
variable name with a letter, number, underscore or dot operator. Compare the following examples:

&ftext // The macro variable ftext
&f.text // The macro variable f followed by the word text
&f..text // The macro variable f followed by the dot operator and the word text

Example The first example stores the value of a setting at the beginning of a function, and restores it at the end.

4-10 dBASE dBL Language Reference

Macro operator

function findMatch(xArg)
local 1Ret
private cExact // Can't be local for macro substitution
cExact = set("EXACT") // Store "ON" or "OFF" to character variable
set exact on

IRet = seek(xArg) // Does exact match exist?
set exact &cExact // Either "set exact ON" or "set exact OFF"
return IRet

The second example converts the value of a control in a form into a literal value to be used in a filter. The filter
cannot refer to the control directly, because the value of the form reference varies depending on what form has
focus at any given moment.

function setFilter_onClick()
private cFltr
cFltr = form.cityCombobox.value // Store string in private variable
set filter to CITY == "&cFltr"

Note the use of macro substitution inside a quoted string. For example, if the value of the combobox is “Dover”,
then the variable is assigned the value “Dover”. The result of the macro substitution would then be the
statement:

set filter to CITY == "Dover"
The third example uses macro substitution to refer to a control by name through a variable.

local f

private ¢, g

f=new Form()

g=f // g and f both point to same form
f.button1 = new PushButton(f)

c =" 1 "

? g.button&c..className // Displays "PUSHBUTTON"
? fbutton&ec..className // Error: Variable undefined: F

This creates a form with a single button. Two variables refer to this form, one private variable, and one local
variable. In the first macro substitution statement, the value of the variable C is substituted. There are two
periods following the variable. The first is to terminate the macro, and the second is the actual dot operator. This
results in:

? g.button].className

The second macro substitution works the same, but the statement fails because the local variable f is not in scope
when the statement is executed. However, this approach is actually unnecessary because you can refer to
controls by name with a variable through the form’s elements array:

? f.elements["button" + ¢].className
Without macro substitution, you avoid potential problems with local variables.

Finally, continuing the previous example, compare these statements that attempt to assign to a property using
macro substitution:

local cText

cText="OK"

g.button&c..text ;= cText // Has both & and . to left of assignment; won't compile
private cVar

cVar = "g.button" + ¢ + ".text"

&cVar :=cText // Compiles, but fails at runtime; local variable out-of-scope
private cStmt

cStmt = cVar +" = cText" // Try macro substituting entire statement
&cStmt // Fails; local variable out-of-scope
cStmt=cVar+ [:="]+cText+["] // Build entire statement with no locals
&cStmt // This works

g.elements| "button" + ¢ J.text = cText // But this is still easier to use

Operators and symbols 4-11

Non-operational symbols

Non-operational symbols

Though they don’t act upon data or hold values in themselves, non-operational symbols have their own purpose
in dBL code and in the interpretation of programs. The following is a summary of these symbols and their
usage.

String delimiters

Enclose literal strings in either:

* A set of single quote marks,
* A set of double quote marks, or
* A set of square brackets

The following example simply assigns the string “literal text” to the variable xString:
xString = "literal text"

To use a string delimiter in a literal string, use a different set of delimiters to delimit the string. For example:
? [There are three string delimiters: the ', the ",] + " and the []"

Note that the literal string had to be broken up into two separate strings, because all three kinds of delimiters
were used.

Name/database delimiters

If the name of a variable or a field in a work area contains a space, you may enclose the name in colons, for

example:
local :a var:
:avar: =4

?:avar: //Displays 4

Creating variables with spaces in them is strongly discouraged, but for some table types, it is not unlikely to get
field names with spaces. If you create automem variables for that table, those variables will also have spaces.

However, if you’re using the data objects instead of the Xbase DML, the fields are contained in a fields array
and are referenced by name. The field name is a character expression, so you don’t have to do anything different
if the field name contains a space. The colons are not used.

You may also use colons when designating a table in a database. The name of the database is enclosed in colons
before the name of the table, in the form:

:database:table
For example:
use :IBLOCAL:EMPLOYEE //IBLOCAL is sample Interbase database

Comment symbols

Two forward slashes (//, no space between them) indicate that all text following the slashes (until the next
carriage return) is a comment. Comments let you provide reference information and notes describing your code:

x=4%*y // multiply the value of y by four and assign the result to variable x
Two ampersands (&&) can also be used for an end-of-line comment, but they are usually seen in older code.
If an asterisk (*) is the first character in a statement, the entire line is considered a comment.

A pair of single forward slashes with “inside” asterisks (/* */) encloses a block comment that can be used for a
multi-line comment block:

/* this is the first line of a comment block
this is more of the comment
this is the last line of the comment block */

4-12 dBASE dBL Language Reference

Non-operational symbols

You can also use the pair for a comment in the middle of a statement:
x = 1000000 /* a million! */ * y
Comment blocks cannot be nested. This example shows improper usage:

/* this is the first line of a comment block
this is more of the the same /* this nested comment will cause problems*/
this is the last line of the comment block */

After the opening block marker, a dBL comment ends at the next closing block marker it finds, which means
that only the section of the comment from “this is the first line” to the word “problems” will be interpreted as a
comment. The unenclosed remainder of the block will generate an error.

Statement separator, line continuation

There is normally one statement per line in a program file. Use the semicolon to either:
* Combine multiple statements on a single line, or
* Create a multi-line statement

For example, a DO...UNTIL loop usually takes more than two lines: one for the DO, one for the UNTIL
condition, and one or more lines in the loop body. But suppose all you want to do is loop until the condition is
true; you can combine them using the semicolon as the statement separator:

do ; until rlock() // Wait for record lock

Long statements are easier to read if you break them up into multiple lines. Use the semicolon as the last non-
comment character on the line to indicate that the statement continues on the next line. When the program is
compiled, the comments are stripped; then any line that ends with a semicolon is tacked onto the beginning of
the next line. For example, the program:

? "abc" +; // A comment
"def" +;
ghi

is compiled as
? llabcll + lldef“ + ghi

on line 3 of the program file. Note that the spaces before the semicolons and the spaces used to indent the code
are not stripped. If an error occurs because there is no variable named ghi, the error will be reported on line 3.

Codeblock, literal date, literal array symbol

Braces ({ }) enclose codeblocks, literal dates, and literal array elements. They must always be paired. The
following examples show how braces may be used in dBL code.

Literal dates are interpreted according to the current settings of SET DATE and SET EPOCH:
dMoon = {07/20/69} // July 20, 1969 if SET DATE is MDY and SET EPOCH is 1950
To enclose arrays

a = {1)293}
7 a[2] // displays 2

To assign a statement codeblock to an object’s event handling property
form.onOpen = {;msgbox("Warning: You are about to enter a restricted area.")}

To assign an expression codeblock to a variable, and pass parameters to it

c = {|x| x*9}

?c(4) // returns 36

// or

q = {|n| {"15t”,"2nd”,"3rd"}[n]}

?7q(2) // displays "2nd"

To assign an expression codeblock to a variable, without passing parameters

Operators and symbols 4-13

Non-operational symbols
c={||4*9} // pipes (]|) must be included in an expression codeblock,

// even if a parameter is not being passed
?7¢c() // returns 36

Preprocessor directive symbol

The number sign (#) marks preprocessor directives, which provide instructions to the dBASE Plus compiler.
Preprocessor directives may be used in programs only.

Use directives in your dBL code to perform such compile-time actions as replacing text throughout your
program, perform conditional compilations, include other source files, or specify compiler options.

The symbol must be the non-blank first character on a line, followed by the directive (with no space), followed
by any conditions or parameters for the directive.
For example, you might use this statement:

#include "IDENT.H"
to include a source file named IDENT.H (the “H” extension us generally used to identify the file as a “header”
file) in the compilation. The included file might contain its own directives, such as constant definitions:

//file IDENT.H: constant definitions for MYPROG
#define COMPANY NAME "Nobody's Business"
#define NUM_EMPLOYEES 1

#define COUNTRY "Liechtenstein"

For a complete listing of all dBL preprocessor directives, along with syntax and examples for each, see Chapter
22, “Preprocessor.”

4-14 dBASE dBL Language Reference

Core language

This chapter describes the core features of the dBL programming language, primarily:

* Structural elements
* Function linking/loading

* Program flow

* Variable scoping

* Global properties and methods

Basic understanding of programming concepts such as loops and variables is assumed.

class Designer

An object that provides access to the Inspector, Source Editor and streaming engine.

Syntax [<oRef> =] new Designer([<object>] [,<filename expC>])

<0Ref> A variable or property in which to store a reference to the newly created Designer object.

<object> The object currently being designed

<filename expC> The name of the file to which the designed object will be saved.

Properties The following tables list the properties, events, and methods of the Session class

Property

baseClassName
className

custom
filename

inspector
object

selection
sourceChanged
unsaved

Default

DESIGNER
(DESIGNER)

false

Empty string

false
null
null
false

false

Description

Identifies the object as an instance of the Designer class

Identifies the object as an instance of a custom class. When no custom class exists,
defaults to baseClassName

Whether the designed object will have a custom keyword

The name of the file to which the object's class definition is saved. This should be set
before the SAVE method is called

Whether the Designer's inspector is displayed

The object currently being designed

The currently selected object displayed in the inspector

Whether a change has been made to the object class by the source editor

Whether changes have been saved

Core language 5-1

class Exception

Event Parameters Description

onMemberChange <expC> After a change has been made to a member- property, event or method-of the
currently selected object in the Inspector. The parameter, <expC>, is the name of
the property, event or method.
onNotify <source name expC>, When notification is received from another object. Currently, this event fires when
<filename expC> the Table Designer or SQL Designer closes and the first parameter is,
"TABLE DESIGNER_CLOSE", or "SQL_DESIGNER CLOSE". The second
parameter is the filename that was being designed.

onSelectChange After a different object has been selected in the inspector and the selection
property modified.

Method Parameters Description

editor() Opens a source editor to display the current object.

loadObjectFromFile() <filename expC> Loads the object property of an existing file. Resets the filename property to
<filename expC>

reloadFromEditor() Reloads the object from the current editor contents. Resets the sourceChanged
property.

save() Saves the current object to filename.

update() Causes the source editor to reflect changes made to an object or any of it's
components.

Description Use Designer objects to gain access to the Inspector, Source editor or streaming engine during RunMode. While
the Designer's parameters, OBJECT and FILENAME, are listed as optional, they must be used in certain
situations.

* When modifying a custom class, the filename parameter must be used to specify the file from which the
object was loaded. The filename parameter is not necessary when a new class is being derived from the
custom class.

* When creating a new custom class from a base class, the filename parameter is optional. However, if no
parameters are specified, the Designer must subsequently be intialized using it's properties and/or methods.

* When designing a new class, the OBJECT and FILENAME parameters must be set.

* When modifying an existing class, the loadObjectFromFile method must be called.

class Exception

An object that describes an exception condition.
Syntax [<oRef> =] new Exception()
<oRef> A variable or property in which to store a reference to the newly created Exception object.

Properties The following table lists the properties of the Exception class. (No events or methods are associated with this

class.)
Property Default Description
className EXCEPTION Identifies the object as an instance of the Exception class
code 0 A numeric code to identify the type of exception
filename The name of the file in which a system-generated exception occurs.
lineNo 0 The line number in the file in which a system-generated exception
occurs.
message Text to describe the exception
Description
Event Parameters Description
none

5-2 dBASE dBL Language Reference

class Object

An Exception object is automatically generated by dBASE Plus whenever an error occurs. The object’s
properties contain information about the error.

You can also create an Exception object manually, which you can fill with information and THROW to manage
execution or to jump out of deeply nested statements.

You may subclass the Exception class to create your own custom exception objects. A TRY block may be
followed by multiple CATCH blocks, each one looking for a different exception class.

Example Suppose you are using exceptions to manage execution in a deeply nested set of conditional statements and
loops. You create your own exception class:

class JumpException of Exception
endclass

Then in the code, you create the JumpException object and THROW it if needed:

try
local j
j =new JumpException()
/I User developed code
if litsNoGood
throw j // Deep in the code, you want out
endif
/I User developed code
catch (JumpException e)
// Do nothing; JumpException is OK
catch (Exception ¢)
// Normal error
logError(new Date(), e.message) // Record error message
// and continue
endtry

If there is a normal error, the second CATCH block saves it to a log file, using a function you wrote, and
execution continues.

See also THROW, TRY...ENDTRY

class Object

An empty object.
Syntax [<oRef> =] new Object()
<0Ref> A variable or property in which to store a reference to the newly created object.
Properties An object of the Object class has no initial properties, events, or methods.

Description Use the Object class to create your own simple objects. Once the new object is created, you may add properties
and methods through assignment. You cannot add events.

This technique of adding properties and methods on-the-fly is known as dynamic subclassing. In dBASE Plus,
dynamic subclassing supplements formal subclassing, which is achieved through CLASS definitions.

The Object class is the only class in dBL that does not have the read-only baseClassName or className
properties.

Example The following statements create a simple object with a few properties—some referenced by name and some
referenced by number—and a codeblock as a method.

o =new Object()

o.title = "Summer"

o[2000] = "Sydney"

o[1996] ="Atlanta"

o.cityInYear = {|y| this[y]}

? o.cityInYear(2000) // Displays "Sydney"

See also CLASS

Core language 5-3

ARGCOUNT()

ARGCOUNT()

Syntax

Description

Example

See Also

Returns the number of parameters passed to a routine.
ARGCOUNT()

Use ARGCOUNT() to determine how many parameters, or arguments, have been passed to a routine. You may
alter the behavior of the routine based on the number of parameters. If there are fewer parameters than expected,
you may provide default values.

ARGCOUNT() returns 0 if no parameters are passed.

The function PCOUNT() is identical to ARGCOUNT(). Neither function recognizes parameters passed to
codeblocks. If called within a codeblock, the function will return the parameter information for the currently
executing FUNCTION or PROCEDURE.

The following function returns someone’s age. The first required parameter is the birthdate. The second optional
parameter is the date to calculate the age. If the second parameter is not specified, the current date is used.

function age(dBirth, dCheck)
if argcount() <2
dCheck = date()
endif
return floor((val(dtos(dCheck)) - val(dtos(dBirth))) / 10000)

ARGVECTOR(), DO, FUNCTION, PARAMETERS

ARGVECTOR()

Syntax

Description

Example

See Also

Returns the specified parameter passed to a routine.
ARGVECTOR(<parameter expN>)

<parameter eXxpN> The number of the parameter to return. 1 returns the first parameter, 2 returns the
second parameter, etc.

Use ARGVECTOR() to get a copy of the value of a parameter passed to a routine. Because it is a copy, there is
no danger of modifying the parameter, even if it was a variable that was passed by reference. For more
information on parameter passing, see PARAMETERS.

ARGVECTOR() can be used in a routine that receives a variable number of parameters, where declaring the
parameters would be difficult. ARGVECTOR() cannot be used within a codeblock.

The following function returns the mean average of all the parameters passed to it, skipping any with a null
value:

function mean()
local nRet, nArg, nCnt
nTot=0
nCnt=0
for nArg = 1 to argcount()
if argvector(nArg) # null
nTot += argvector(nArg)
nCnt++
endif
endfor
return nTot / nCnt

ARGCOUNT(), DO, FUNCTION, PARAMETERS

baseClassName

Property of

Identifies towhich class the object belongs.

All classes except Object.

5-4 dBASE dBL Language Reference

CASE

Description The baseClassName property identifies the class constructor that originally created the object. Although you
may dynamically subclass the object by adding new properties, the baseClassName property does not change.

The baseClassName property is read-only.
See also CLASS, FINDINSTANCE()

CASE

Designates a block of code in a DO CASE block.
Description See DO CASE for details.

CATCH

Designates a block of code to execute if an exception occurs inside a TRY block.

Description See TRY..ENDTRY for details.

CLASS

A class declaration including constructor code, which typically creates member properties, and class methods.

Syntax CLASS <class name>[(<parameters>)]

[OF <superclass name>[(<parameters>)]
[CUSTOM]
[FROM <filename expC>]]

[PROTECT <propertyList>]

[<constructor code>]

[<methods>]

ENDCLASS

<class name> The name of the class.

OF <superclass name> Indicates that the class is a derived class that inherits the properties defined in
the superclass. The superclass constructor is called before the <constructor code> in the current CLASS is
called, which means that any properties created in the superclass are inherited by the class.

<parameters> Optional parameters to pass to the class, and through to the superclass.

CUSTOM Identifies the class as a custom component class, so that its predefined properties are not streamed
out by the visual design tools.

FROM <filename> <filename> specifies the file containing the definition code for the <superclass>, if the
<superclass> is not defined in the same file as the class.

PROTECT <propertyList> <propertyList> is a list of properties and/or methods of the class which are
to be accessible only by other members of the class, and by classes derived from the class.

<constructor code> The code that is called when a new instance of the class is created with the NEW
operator or a DEFINE statement. The constructor consists of all the code at the top of the class declaration up to
the first method.

<methods> Any number of functions designed for the class.
ENDCLASS A required keyword that marks the end of the CLASS structure.
Description Use CLASS to create a new class.

A class is a specification, or template, for a type of object. dBL provides many stock classes, such as Form and
Query; for example, when you create a form, you are creating a new Form object that has the standard properties

Core language 5-5

className

See also

and methods from the Form class. However, when you declare a class with CLASS, you specify the properties
and methods that objects derived from the new class will have.

A CLASS declaration formalizes the creation of an object and its methods. Although you can always add
properties to an object and assign methods dynamically, a CLASS simplifies the task and allows you to build a
clear class hierarchy.

Another benefit is polymorphism. Every FUNCTION (or PROCEDURE) defined in the CLASS becomes a
method of the class. An object of that class automatically has a property with the same name as each
FUNCTION that contains a reference to that FUNCTION. Because a method is part of the CLASS, different
functions may use the same name as long as they are methods of different classes. For example, you can have
multiple copy() functions in different classes, with each one applying to objects of that class. Without classes,
you would have to name the functions differently even if they performed the same task conceptually.

Before the first statement in the constructor is executed, if the CLASS extends another class, the constructor for
that superclass has already been executed, so the object contains all the superclass properties. Any properties
that refer to methods, as described in the previous paragraph, are assigned. This means that if the CLASS
contains a method with the same name as a method in a superclass, the method in the CLASS overrides the
method in the superclass. The CLASS constructor, if any, then executes.

In the constructor, the variable this refers to the object being created. Typically, the constructor creates
properties by assigning them to this with dot notation. However, the constructor may contain any code at all,
except another CLASS—you can’t nest classes—or a FUNCTION, since that FUNCTION would become a
method of the class and indicate the end of the constructor.

Properties and methods can be protected to prevent the user of the class from reading or changing the protected
property values, or calling the protected methods from outside of the class.

class Object, className, FUNCTION

className

Property of

Description

Identifies an object as an instance of a custom class. When no custom class exists, the className property
defaults to the baseClassName.

All classes except Object.

The className property identifies a custom object derived from a standard dBL class. The className property
is read-only.

CLEAR MEMORY

Syntax

Description

Note

See Also

Clears all user-defined memory variables.
CLEAR MEMORY

Use CLEAR MEMORY to release all memory variables (except system memory variables), including those
declared PUBLIC and STATIC and those initialized in higher-level routines. CLEAR MEMORY has no effect
on system memory variables.

CLEAR MEMORY does not explicitly release objects. However, if the only reference to an object is in a
memory variable, releasing the variable with CLEAR MEMORY will in turn release the object.

Issuing RELEASE ALL in the Command window has the same effect as CLEAR MEMORY. However, issuing
RELEASE ALL in a program clears only memory variables created at the same program level as the RELEASE
ALL statement, and has no effect on higher-level, public, or static variables. CLEAR MEMORY, whether issued
in a program or in the Command window, always has the same effect, releasing all variables.

To clear only selected memory variables, use RELEASE.
RELEASE

5-6 dBASE dBL Language Reference

CLEAR PROGRAM

CLEAR PROGRAM

Syntax

Description

See Also

Clears from memory all program files that aren't currently executing and aren't currently open with SET
PROCEDURE or SET LIBRARY.

CLEAR PROGRAM

Program files are loaded into memory when they are executed with DO, and when they are loaded as library or
procedure files with SET LIBRARY and SET PROCEDURE. When dBASE Plus is done with the program—
the execution is complete, or the file is unloaded—the program file is not automatically cleared from memory.
This allows these files to be quickly reloaded without having to reread them from disk. dBASE Plus's internal
dynamic memory management will clear these files if it needs more memory; for example, when you create a
very large array.

You may use CLEAR PROGRAM to force the clearing of all inactive program (object code) files from
memory. The command doesn't clear files that are currently executing or files that are currently open with SET
PROCEDURE or SET LIBRARY. However, if you close a file (for example, with CLOSE PROCEDURE), a
subsequent CLEAR PROGRAM clears the closed file from memory.

CLEAR PROGRAM is rarely used in a deployed application. Because of the event-driven nature of dBASE,
program files must remain open to handle events; these files are not affected by CLEAR PROGRAM anyway.
Also, the amount of memory used by dormant program files is small compared to the total amount of memory
available. You are more likely to use CLEAR PROGRAM during development, for example to ensure that you
are running the latest version of a program file, and not one that is stuck in memory.

DO, CLEAR MEMORY, CLOSE PROCEDURE, SET LIBRARY, SET PROCEDURE

CLOSE PROCEDURE

Syntax

Description

Closes one or more procedure files, preventing further access and execution of its functions, classes, and methods.
CLOSE PROCEDURE [<filename list>] | [PERSISTENT]

<filename list> A list of procedure files you want to close, separated by commas. If you specify a file
without including its extension, dBASE Plus assumes PRG. If you omit <filename list>, all procedure files are
closed, regardless of their load count.

PERSISTENT When <filename list> is omitted, CLOSE PROCEDURE PERSISTENT will close all files,
including those tagged PERSISTENT. Without the PERSISTENT designation, these files would not be
affected.

CLOSE PROCEDURE reduces the load count of each specified program file by one. If that reduces its load
count to zero, then that program file is closed, and its memory is marked as available for reuse.

When you specify more than one file in <filename list>, they are processed in reverse order, from right to left. If
a specified file is not open as a procedure file, an error occurs, and no more files in the list are processed.

Closing a program file does not automatically remove the file from memory. If a request is made to open that
program file, and the file is still in memory and its source code has not been updated, it will be reopened without
having to reread the file from disk. Use CLEAR MEMORY to release a closed program file from memory.

In a deployed application, it is not unusual to open program files as procedure files and never close them.
Because of the event-driven nature of dBASE, program files must remain open to respond to events. The
memory used by a procedure file is small in comparison to the amount of system memory.

See SET PROCEDURE for a description of the reference count system used to manage procedure files. You
may issue SET PROCEDURE TO or CLOSE PROCEDURE with no <filename list> to close all open
procedure files, not tagged PERSISTENT, regardless of their load count.

See Also CLEAR PROGRAM, SET LIBRARY, SET PROCEDURE

DEFINE

Creates an object from a class.

Core language 5-7

DO

Syntax

Description

See Also

DO

DEFINE <class hame> <object name>

[OF <container object>]

[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <stock property list>]

[CUSTOM <custom property list>]

<class name> The class of the object to create.

<object name> The identifier for the object you create. <object name> will become an object reference
variable, or a named property of the container if a <containter object> is specified.

OF <container object> Identifies the object that contains the object you define.

FROM <row>, <col> TO <row>, <col> | AT <row>, <col> Specifies the initial location and size
of the object within its container. FROM and TO specify the upper left and lower right coordinates of the object,
respectively. AT specifies the position of the upper left corner.

PROPERTY <stock property list> Specifies values you assign to the built-in properties of the object.

CUSTOM <custom property list> Specifies new properties you create for the object and the values
you assign to them.

Use DEFINE to create an object in memory. DEFINE provides an alternate, shorthand syntax for creating
objects that directly maps to using the NEW operator. The equivalence depends on whether the object created
with DEFINE is created inside a container object. With no container,

define <class name> <object name>
is equivalent to:

<object name> = new <class name>()
With a container,

define <class name> <object name> of <container object>
is equivalent to:

new <class name>(<container object>, "<object name>")

where <object name> becomes an all-uppercase string containing the specified name. These two parameters,
the container object reference and the object name, are the two properties expected by the class constructors for
all stock control classes such as PushButton and Entryfield. For example, these two sets of statements are
functionally identical (and you can use the first statement in one set with the second statement of the other set):

define Form myForm
define PushButton cancelButton of myForm

myForm = new Form()
new PushButton(myForm, "CANCELBUTTON")

The FROM or AT clause of the DEFINE command provide a way to specify the top and left properties of an
object, and the TO coordinates are used to calculate the object’s height and width.

The PROPERTY clause allows assignment to existing properties only. Attempting to assign a value to a non-
existent property generates an error at runtime. This will catch spelling errors in property names, when you want
to assign to an existing property; it prevents the creation of a new property with the misspelled name. Using the
assignment-only (:=) operator has the same effect when assigning directly to a property in a separate assignment
statement. In contrast, the CUSTOM clause will create the named property if it doesn’t already exist.

While the DEFINE syntax offers some amenities, it is not as flexible as using the NEW operator and a WITH
block. In particular, with DEFINE you cannot pass any parameters to the class constructor other than the two
properties used for control containership, and you cannot assign values to the elements of properties that are
arrays.

CLASS, REDEFINE, WITH

Runs a program or function.

5-8 dBASE dBL Language Reference

Syntax

Description

DO

DO <filename> | ? | <filename skeleton> |
<function name>
[WITH <parameter list>]

<filename> | ? | <filename skeleton> The program file to execute. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without including its path,
dBASE Plus looks for the file in the current directory, then in the search path in search order. See "Search path
and order" later in this section for more information.

If you specify a file without including its extension, dBASE Plus assumes a .PRO extension (a compiled object
file). If dBASE Plus can't find a .PRO file, it looks for a .PRG file (a source file), which, if found, it compiles.
By default, dBASE Plus creates the .PRO in the same directory as the .PRG, which might not be the current
directory.

<function name> The function name in an open program file to execute. The function must be in the
program file containing the DO command that calls it, or in a separate open file on the search path. The search
path is described later in this section.

WITH <parameter list> Specifies memory variable values, field values, or any other valid expressions to
pass as parameters to the program or function. See the description of PARAMETERS for information on
parameter passing.

Use DO to run program files from the Command window or to run other programs from a program. If you enter
DO in the Command window, control returns to the Command window when the program or function ends. If
you use DO in a program to execute another program, control returns to the program line following the DO
statement when the program ends.

Although you may use DO to execute functions, common style dictates the use of the call operator (the
parentheses) when calling functions, and the DO command when running a program file. The DO command
supports the use of a file path and extension, and the ? and <filename skeleton> options. The call operator
supports calling a function by name only. In the not-recommended situation where you have a program file that
has the same name as a function loaded into memory, the DO command will execute the program file, and the
call operator will executed the loaded function. Other than these differences, the two calling methods behave the
same, and follow the same search rules described later in this section.

You may nest routines; that is, one routine may call another routine, which may call another routine, and so on.
This series of routines, in the order in which they are called, is referred to as the call chain.

When dBASE Plus executes or loads a program file, it will automatically compile the program file into object
code when either:

» There is no object code file, or

» SET DEVELOPMENT is ON, and program file is newer than the object code file (the source code file’s last
update date and time is later than the object code file’s)

When dBASE Plus encounters a function call in a program file, it looks in that file for a FUNCTION or
PROCEDURE of the specified name. If the current program file contains a FUNCTION and a PROCEDURE
with the same name, dBASE Plus executes the first one declared. If dBASE Plus doesn't find a FUNCTION or
PROCEDURE definition of the specified name in the same program file, it looks for a program file,
FUNCTION, or PROCEDURE of the specified name on the search path in search order.

Search path and order Ifthe name you specify with DO doesn't include a path or a file-name extension,
it can be a file, FUNCTION, or PROCEDURE name. To resolve the ambiguity, dBASE Plus searches for the
name in specific places (the search path) in a specific order (the search order) and runs the first program or
function of the specified name that it finds. The search path and order dBASE Plus uses is as follows:

1 The executing program's object file ((PRO)

2 Other open object files (.PRO) in the call chain, in most recently opened order
3 The file specified by SYSPROC = <filename> in dB2K.INI
4

Any files opened with SET PROCEDURE, SET PROCEDURE...ADDITIVE, or SET LIBRARY statements,
in the order in which they were opened

5 The object file (.PRO) with the specified name in the search path

Core language 5-9

DO CASE

See Also

6 The program file (PRG) with the specified name in the search path, which dBASE Plus automatically
compiles

The search path is controlled with the SET PATH command. It is not used when you are running a compiled
EXE (a deployed application)—all program files must be linked into the executable. All path information is lost
during linking and ignored during execution, which means that you cannot have more than one file with the
same name, even if they originally came from different directories.

Because program files must be compiled into object code to be linked into a compiled EXE, the last search step,
#6, does not apply when running a compiled EXE.

CLEAR PROGRAM, COMPILE, RETURN, SET DEVELOPMENT, SET ESCAPE, SET LIBRARY, SET
PATH, SET PROCEDURE

DO CASE

Syntax

Description

Conditionally processes statements by evaluating one or more conditions and executing the statements following the
first condition that evaluates to true.

DO CASE

CASE <condition expL 1>
<statements>

[CASE <condition expL 2>
<statements>...]

[OTHERWISE
<statements>]

ENDCASE

CASE <condition expL> If the condition is true, executes the set of commands between CASE and the
next CASE, OTHERWISE, or ENDCASE command, and then transfers control to the line following
ENDCASE. If the condition is false, control transfers to the next CASE, OTHERWISE, or ENDCASE
command.

<statements> Zero or more statements to execute if the preceding CASE statement evaluates to true.
OTHERWISE Executes a set of statements if all the CASE statements evaluate to false.
ENDCASE A required keyword that marks the end of the DO CASE structure.

DO CASE is similar to IF...ELSE.. ENDIF. As with IF conditions, dBASE Plus evaluates DO CASE conditions
in the order they're listed in the structure. DO CASE acts on the first true condition in the structure, even if
several apply. In situations where you want only the first true instance to be processed, use DO CASE instead of
a series of IF commands.

Also, use DO CASE when you want to program a number of exceptions to a condition. The CASE <condition>
statements can represent the exceptions, and the OTHERWISE statement the remaining situation.

Starting with the first CASE condition, dBASE Plus does the following.

» Evaluates each CASE condition until it encounters one that's true

¢ Executes the statements between the first true CASE statement and the next CASE, OTHERWISE, or
ENDCASE (if any)

» Exits the DO CASE structure without evaluating subsequent CASE conditions

* Moves program control to the first line after the ENDCASE command

If none of the conditions are true, dBASE Plus executes the statements under OTHERWISE if it's included. If no
OTHERWISE statement exists, dBASE Plus exits the structure without executing any statements and transfers
program control to the first line after the ENDCASE command.

DO CASE is functionally identical to an IF...ELSEIF...ENDIF structure. Both specify a series of conditions and
an optional fallback (OTHERWISE and ELSE) if none of the conditions are true. Common style dictates the use
of DO CASE when the conditions are dependent on the same variable, for example what key was pressed, while
IF...ELSEIF...ENDIF is used when the conditions are not directly related. In addition, DO CASE usually
involves more indenting of code.

5-10 dBASE dBL Language Reference

DO WHILE

Example The following is a key event handler for a custom entryfield that handles dates. It recognizes special keystrokes
to move the date forward or backward one day, to the first and last day of the month, and so forth:

function key(nChar, nPosition)

local c1
c1 = upper(chr(nChar))
do case
case cl =="T" // Today
this.value := date()
casecl =="-"orcl =="" // Next day
this.value--
case cl =="+"orcl =="=" // Previous day
this.value++
case cl =="M" // First day of the month
this.value := FDoM(iif{ this.lastKey == "M", --this.value, this.value))
case cl =="H" // Last day of the month
this.value := LDoM(iif(this.lastKey == "H", ++this.value, this.value))
casecl =="Y" // First day of the year
this.value := FDoY(iif(this.lastKey =="Y", --this.value, this.value))
case cl =="R" // Last day of the year
this.value := LDoY (iif{ this.lastKey == "R", ++this.value, this.value))
otherwise
this.lastKey := null /I Clear stored keystroke
return true // Handle key normally
endcase
this.lastKey = cl // Store as property for comparison next time
return false // Ignore key

The functions FDoM(), LDoM(), FDoY(), and LDoY() are defined elsewhere.
See Also IF, IIF()

DO WHILE

Executes the statements between DO WHILE and ENDDO while a specified condition is true.

Syntax DO WHILE <condition explL>
[<statements>]
ENDDO

<condition expL> A logical expression that is evaluated before each iteration of the loop to determine
whether the iteration should occur. If it evaluates to true, the statements are executed. Once it evaluates to false,
the loop is terminated and execution continues with the statement following the ENDDO.

<statements> Zero or more statements executed in each iteration of the loop.
ENDDO A required keyword that marks the end of the DO WHILE loop.

Description Use a DO WHILE loop to repeat a statement or block of statements while a condition is true. If the condition is
initially false, the statements are never executed.

You may also exit the loop with EXIT, or restart the loop with LOOP.

Example The following loop deletes all the orders for a particular customer, using the customer ID number to find their
orders in the Order table:

function deleteAllOrders
do while form.orders1.rowset.findKey(form.custID.value)
form.orders1.rowset.delete()
enddo

Note that if there are no orders in the table initally, the DO WHILE condition will fail, and nothing will happen.
See also DO...UNTIL, EXIT, FOR...ENDFOR, LOOP

Core language 5-11

DO...UNTIL

DO...UNTIL

Syntax

Description

Example

Executes the statements between DO and UNTIL at least once while a specified condition is false.

DO
[<statements>]
UNTIL <condition expL>

<statements> Zero or more statements executed in each iteration of the loop.

UNTIL <condition expL> The statement that marks the end of the DO...UNTIL loop. <condition expL>
is a logical expression that is evaluated after each iteration of the loop to determine whether the iteration should
occur again. If it evaluates to false, the statements are executed. Once it evaluates to true, the loop is terminated
and execution continues with the statement following the UNTIL.

Use a DO...UNTIL loop to repeat a block of statements until a condition is true (in other words, while the
condition is false). Because the condition is evaluated at the end of the loop, a DO...UNTIL loop always
executes at least once, even when the condition is initially true.

You may also exit the loop with EXIT, or restart the loop with LOOP.

DO...UNTIL is rarely used. In most condition-based loops, you don’t want to execute the loop at all if the
condition is initially invalid. DO WHILE loops are much more common, because they check the condition
before they begin.

In a DO WHILE loop, the condition fails—that is, the loop should not be executed—when it evaluates to false;
in a DO...UNTIL loop, the condition fails when it evaluates to true. This is simply the result of the wording of
the looping commands. You can easily reverse any logical condition by using the logical NOT operator or the
opposite comparison operator (for example, less than instead of greater than or equal, or not equal instead of
equal).

The first example shows a loop that goes through all the checkboxes on a form and sets their value to false. An
object reference to the form’s first control is assigned to a variable, and the reference is updated at the end of the
loop to point to the next control in the tab order.

local oCitrl
oCtrl = form.first
do
if oCtrl.className == "CHECKBOX"
oCtrl.value := false
endif
oCtrl := oCtrl.before
until oCtrl == form.first

Because the DO...UNTIL checks the condition at the end of the loop, after the object reference has been
updated, you can simply test if the reference has looped back to the beginning. To use the same test with a DO
WHILE loop, you would have to maintain an extra flag to allow the loop to proceed the first time through.

The next example shows a basic loop that traverses all the rows in a rowset, referenced by the variable r:

if r.first()
do
// Something to do to each row
until not r.next()
endif

To traverse the rowset, you must start at the first row. The first() method attempts to reposition the row cursor
to the first row in the rowset, returning true to indicate success. It would return false if there are no rows in the
rowset—no rows at all, or no rows that match any active filter conditions—in which case the IF fails and the
DO...UNTIL loop is not executed at all. If it returns true, then there must be at least one row, and the
DO...UNTIL loop body is executed.

After the loop body is executed, the rowset’s next() method is called. It returns true unless it reaches the end-of-
set. As long as it returns true, the logical NOT operator reverses the logical condition so that the UNTIL
condition evaluates to false, and the loop continues. When it reaches the end-of-set, next() returns false, which
gets reversed to true, satisfying the UNTIL condition and terminating the loop.

Compare the DO...UNTIL loop with the equivalent structure using DO WHILE:

5-12 dBASE dBL Language Reference

See Also

ELSE

ELSE

r.first()

do while not r.endOfSet
// Something to do to each row
r.next

enddo

The rowset’s endOfSet property is true if the rowset is at the end-of-set. The return value from the first()
method is not checked, because the endOfSet property is checked at the beginning of the DO WHILE loop. If
first() fails, it leaves the rowset cursor at the end-of-set. The return value of next() is also not checked, for the
same reason. However, this loop is slightly less efficient because it goes through the extra step of checking the
endOfSet property instead of simply using the return value of next(), which must be called to move to the next
row.

This next example may look a bit odd:

do
until form.rowset.rlock()

but it simply retries the rlock() until it is successful. Note that the loop body is empty. You may want put a
comment in the loop so you won’t have to think about it in the future:

do
// Wait for lock
until form.rowset.rlock()

or you can use the semicolon to put two statements on the same line:

do; until form.rowset.rlock()

DO WHILE, EXIT, FOR...ENDFOR, LOOP

Description

Designates an alternate statement to execute if the condition in an IF statement is false.

See IF for details.

ELSEIF

Description

Designates an alternate condition to test if the condition in an IF statement is false.

See IF for details.

EMPTY()

Returns true if a specified expression is empty.

Syntax EMPTY (<exp>)

Description

<exp> An expression of any type.

Use EMPTY() to determine if an expression is empty. The definition of empty depends on the type of the
expression:

Expression

type Empty if value is

Numeric 0 (zero)

String empty string (““) or a string of just spaces (*“ “)
Date blank date ({ / / })

Logical false

Null null is always considered empty

Object reference Reference points to object that has been released

Core language 5-13

ENUMERATE()

See Also

Note that event properties that have not been assigned handlers have a value of null, and are therefore
considered empty. In contrast, an object reference pointing to an object that has been released is not null; you
must use EMPTY().

EMPTY() is similar to ISBLANK(). However, ISBLANK() is intended to test field values; it differentiates
between zero and blank values in numeric fields, while EMPTY() does not. EMPTY() understands null values
and object references, while ISBLANK() does not. For more information, see ISBLANK().

ISBLANK(), TYPE()

ENUMERATE()

Syntax

Description

Example

Returns a listing of the member names of an object.
ENUMERATE(<oRef>)
<oRef> Object reference to any valid object

Use ENUMERATE() to retrieve a listing of the member names of an object with each member name identified
as property, event, or method of the specified object.

ENUMERATE() returns an AssocArray object. Each index into the AssocArray is a member name for the
enumerated object. The value of the index is filled with one of the following values:

Value Description

P The type of member is a property.
E The type of member is an event.
M The type of member is a method.

The following code uses ENUMERATE() to obtain an AssocArray filled with member names and types for an
object reference. It then lists each member name, member type, member data type, and member value for each
member of the object.

// Filename..: QuikList.PRG
// Parameters: oRef - Object reference to list.
// Usage.....: Set Procedure To My. WFM Additive

/I ..ccee..: £=New MyForm()
/I et Do QuikList With £
/l

PARAMETERS oRef

PRIVATE cTemp, xTemp
LOCAL aa, cMember

Try
aa = Enumerate(oRef) // Enumerate the passed object
cMember = aa.FirstKey /I Get first member name
Do While Not Empty(cMember)
? cMember // Display the member name
7?7 aa[cMember] At 30 // Display the member type
cTemp = "oRef." + cMember
xTemp = &cTemp. /I Get the value of the member
?7? Type("xTemp") At 33 // Display the data type
If xTemp # Null
?? Transform(xTemp, "@T") At 37 // Display the member value
EndIf
cMember = aa.NextKey(cMember) // Get next member name
EndDo

Catch(exception e)

MsgBox(e.Message, "QuikList") // Show any error that occurred
EndTry
// EOF: QuikList.PRG

See Also class AssocArray

5-14 dBASE dBL Language Reference

EXIT

EXIT

Syntax

Description

Example

See also

Immediately terminates the current loop. Execution continues with the statement after the loop.

EXIT

Normally, all of the statements in the loop are executed in each iteration of the loop; in other words, the loop
always exits after the last statement in the loop. Use EXIT to exit a loop from the middle of a loop, due to some
extra or abnormal condition.

In most cases, you don’t have to resort to using EXIT; you can code the condition that controls the loop to
handle the extra condition. The condition is tested between loop iterations, after the last statement, but that
usually means that there are some statements that should not be executed because of this condition. Those
statements would have to be conditionalized out with an IF statement. Therefore, often it’s simpler to EXIT out
of a loop immediately once the condition occurs.

The following function counts the number of words in a string by counting spaces between words. Multiple
spaces between two words are counted as a single space and therefore a single word:

function wordCount(cArg)
local nRet, cRemain, nPos
nRet =0
cRemain = Itrim(trim(cArg))
do while "" # cRemain
nRet++
nPos =at(" ", cRemain)
if nPos ==
exit
else
cRemain := ltrim(substr(cRemain, nPos))
endif
enddo
return nRet

The condition in the DO WHILE loop is really needed only once, the first time the loop is entered. It makes sure
that there is some text to search through. If the argument is an empty string or all spaces, the loop is not
executed and the word count is zero. After the first loop, it is used simply to keep the loop going, since there
would always be text to check.

The loop is terminated when there are no more spaces in the string. This is determined by the return value of the
AT() function. Because the position returned is out of range for the SUBSTR() function, it should be called if
there are no more spaces in the string. By using EXIT, the loop is immediately terminated once no more spaces
are found. Execution continues with the RETURN statement following the DO WHILE loop.

DO WHILE, DO...UNTIL, LOOP, FOR... ENDFOR

FINALLY

Description

Designates a block of code that always executes after a TRY block, even if an exception occurs.

See TRY...ENDTRY for details.

FINDINSTANCE()

Syntax

Returns an object of the specified class from the object heap.
FINDINSTANCE(<classname expC> [, <previous oRef>])

<classname expC> The name of the class you want to find an instance of. <classname expC> is not
case-sensitive.

<previous oRef> When omitted, FINDINSTANCE() returns the first instance of the specified class.
Otherwise, it returns the instance following <previous oRef> in the object heap.

Core language 5-15

FOR...ENDFOR

Description Use FINDINSTANCE() to find any instance of a particular class, or to find all instances of a class in the object
heap.

Objects are stored in the object heap in no predefined order. Creating a new instance of a class or destroying an
instance may reorder all other instances of that class. A newly created object is not necessarily last in the heap.

Sometimes you will want to make sure there is only one instance of a class, and reuse that instance; a particular
toolbar is the prime example. To see if there is an instance of that class, call FINDINSTANCE() with the class
name only. If the return value is null, there is no instance of that class in memory.

Other times, you may want to iterate through all instances of a class to perform an action. For example, you may
want to close all data entry forms, which are all instances of the same class. Call FINDINSTANCE() with the
class name only to find the first instance of the class. Then call FINDINSTANCE() in a loop with the class
name and the object reference to get the next instance in the object heap. When FINDINSTANCE() returns
null, there are no more instances.

Example The first example checks if there is already an instance of the the EditToolbar class. If not, one is created.
function attachEditToolbar(formObj)

local t
t = findinstance("EditToolbar")
if empty(t) // If null, no instance exists, so
t=new EditToolbar() // Create one (defined in this file)
set procedure to program(1) additive // Load this file as procedure file
endif

t.attach(formObj)
The second example finds all instances of the OrderForm class and closes them.

function closeAllOrders()
local £
f = findinstance("OrderForm")
do while not empty()
f.close()
f := findinstance("OrderForm", {')
enddo

See also className, REFCOUNT()

FOR...ENDFOR

Executes the statements between FOR and ENDFOR the number of times indicated by the FOR statement.

Syntax FOR <memvar> = <start expN> TO <end expN> [STEP <step expN>]
[<statements>]
ENDFOR | NEXT

<memvar> The loop counter, a memory variable that's incremented or decremented and then tested each
time through the loop.

<start expN> The initial value of <memvar>.
<end expN> The final allowed value of <memvar>.

STEP <step expN> Defines a step size (<step expN>) by which dBASE Plus increments or decrements
<memvar> each time the loop executes. The default step size is 1.

When <step expN> is positive, dBASE Plus increments <memvar> until it is greater than <end expN>. When
<step expN> is negative, dBASE Plus decrements <memvar> until it is less than <end expN>.

<statements> Zero or more statements executed in each iteration of the loop.

ENDFOR | NEXT A required keyword that marks the end of the FOR loop. You may use either ENDFOR
(preferred) or NEXT.

Description Use FOR...ENDFOR to execute a block of statements a specified number of times. When dBASE Plus first
encounters a FOR loop, it sets <memvar> to <start expN>, and reads the values for <end expN> and
<step expN>. (If <end expN> or <step expN> are variables and are changed inside the loop, the loop will not
see the change and the original values will still be used to control the loop.)

5-16 dBASE dBL Language Reference

Example

See also

FUNCTION

The loop counter is checked at the beginning of each iteration of the loop, including the first iteration. If
<memvar> evaluates to a number greater than <end expN> (or less than <end expN> if <step expN> is
negative), dBASE Plus exits the FOR loop and executes the line following ENDFOR (or NEXT). Therefore, it’s
possible that the loop body is not executed at all.

If <memvar> is in the range from <start expN> through <end expN>, the loop body is executed. After executing
the statements in the loop, <step expN> is added to <memvar>, and the loop counter is checked again. The
process repeats until the loop counter goes out of range.

You may also exit the loop with EXIT, or restart the loop with LOOP.

The <memvar> is usually used inside the loop to refer to numbered items, and continues to exist after the loop is
done, just like a normal variable. If you do not want the variable to be the default private scope, you should
declare the scope of the variable before the FOR loop.

The following event handler creates a new row, carrying over the values in the current row. The values in the
current row are copied to a temporary array, a new row is created, and the values are copied from the array.

function newButton_onClick

local a, n

a =new Array()

for n =1 to form.rowset.fields.size
a.add(form.rowset.fields[n].value)

endfor

form.rowset.beginAppend()

for n =1 to form.rowset.fields.size
form.rowset.fields[n].value :=a[n]

endfor

DO WHILE, EXIT, LOOP

FUNCTION

Syntax

Description

Defines a function in a program file including variables to represent parameters passed to the function.

FUNCTION <function name>[([<parameter list>])]
[<statements>]

<function name> The name of the function. Although dBASE Plus imposes no limit to the length of
fucnction names, it recognizes only the first 32 characters.

(<parameter list>) Variable names to assign to data items (or parameters) passed to the function by the
statement that called it. The variables in <parameter list> are local in scope, protecting them from modification
in lower-level subroutines. For more information about the local scope, see LOCAL.

The number of variables assigned can be different from the number of parameters passed. You can use
PCOUNTY() to identify the number of parameters a procedure has received. You can include up to 255 variable
names in <parameter list>.

<statements> Any statements that you want the function to execute. You can call functions recursively.

Use functions to create code modules. By putting commonly used code in a function, you can easily call it
whenever needed, pass parameters to the function, and optionally return a value. You also create more modular
code, which is easier to debug and maintain.

When a FUNCTION is defined inside a CLASS definition, the FUNCTION is considered a method of that
CLASS. You cannot nest functions.

The keywords FUNCTION and PROCEDURE are interchangable in dBL.

A single program file can contain a total of 184 functions and methods. Each class also counts as one function
(for the class constructor). To access more functions simultaneously, use SET PROCEDURE...ADDITIVE. The
maximum size of a function is limited to the maximum size of a program file.

When a function is called via an object, usually as a method or event handler, the variable this refers to the
object that called the function.

Core language 5-17

IF

See also

IF

Function naming restrictions Do not give a function the same name as the file in which it’s contained.
Statements at the beginning of the file, before any FUNCTION, PROCEDURE, or CLASS statement, are
considered to be a function (not counted against the total limit) with the same name as the file. (This function is
sometimes referred to as the “main” procedure in the program file.) Multiple functions with the same name do
not cause an error, but the first function with that name is the only one that is ever called.

Don't give the function the same name as a built-in dBL function. You cannot call such a function with the DO
command, and if you call the function with the call operator (parentheses), dBASE Plus always executes its
built-in function instead.

Also do not give the function a name that matches a dBL command keyword. For example, you should not name
a function OTHER() because that matches the beginning of the keyword OTHERWISE. When you call the
OTHER() function, the compiler will think it’s the OTHERWISE keyword and will generate an error, unless
you happen to be in a DO CASE block, in which case it will be treated like the OTHERWISE keyword, instead
of calling the function.

These function naming restrictions do not apply to methods, because calling a method through the dot or scope
resolution operator clearly indicates what is being called. However, you may run into problems calling methods
inside a WITH block. See WITH for details.

Making procedures available You can include a procedure in the program file that uses it, or place it
in a separate program file you access with SET PROCEDURE or SET LIBRARY. If you include a procedure in
the program file that uses it, you should place it at the end of the file and group it with other procedures.

When you call a procedure, dBASE Plus searches for it in the search path in search order. If there is more than
one procedure available with the same name, dBASE Plus runs the first one it finds. For this reason, avoid using
the same name for more than one procedure. See the description of DO for an explanation of the search path and
order dBASE Plus uses.

PARAMETERS, RETURN

Syntax

Conditionally executes statements by evaluating one or more conditions and executing the statements following the
first condition that evaluates to true.

IF <condition expL 1>
[<statements>]

[ELSEIF <condition expL 2>
<statements>

[ELSEIF <condition expL 3>
<statements>...]|

[ELSE
[<statements>]]

ENDIF

<condition expL> A logical expression that determines if the set of statements between IF and the next
ELSE, ELSEIF, or ENDIF command execute. If the condition is true, the statements execute. If the condition is
false, control passes to the next ELSE, ELSEIF, or ENDIF.

<statements> One or more statements that execute depending on the value of <condition expL>.

ELSEIF <condition expL> <statements> Specifies that when the previous IF or ELSEIF condition
is false, control passes to this ELSEIF <condition expL>. As with IF, if the condition is true, only the set of
statements between this ELSEIF and the next ELSEIF, ELSE, or ENDIF execute. If the condition is false,
control passes to the next ELSEIF, ELSE, or ENDIF.

You can enter this option as either ELSEIF or ELSE IF. The ellipsis (...) in the syntax statement indicates that
you can have multiple ELSEIF statements.

ELSE <statements> Specifies statements to execute if all previous conditions are false.

ENDIF A required keyword that marks the end of the IF structure.

5-18 dBASE dBL Language Reference

Description

See also

IF()

TIF()

Use IF to evaluate one or more conditions and execute only the set of statements following the first condition
that evaluates to true. For the first true condition, dBASE Plus executes the statements between that program
line and the next ELSEIF, ELSE, or ENDIF, then skips everything else in the IF structure and executes the
program line following ENDIF. If no condition is true and an associated ELSE command exists, dBASE Plus
executes the set of statements after ELSE and then executes the program line following ENDIF.

Use IF...ENDIF to test one condition and IF...ELSEIF...ENDIF to test two or more conditions. If you have more
than three conditions to test, consider using DO CASE instead of IF. Compare the example in this section with
the example for DO CASE.

If you’re evaluating a condition to decide which value you want to assign to a variable or property, you may be
able to use the IIF() function, which involves less duplication (you don’t have to type the target of the
assignment twice).

You can nest IF statements to test multiple conditions; however, the ELSEIF option is an efficient alternative.
When you use ELSEIF, you don't need to keep track of which ELSE applies to which IF, nor do you have to put
in an ending ENDIF.

You can put many statements for each condition. If the number of statements in a set makes the code hard to
read, consider putting them in a function and calling the function from the IF statement instead.

DO CASE, IIF()

Syntax

Description

See Also

LOCAL

Returns one of two values depending on the result of a specified logical expression.

lIF(<expL>, <expl>, <exp2>)

<expL> The logical expression to evaluate to determine whether to return <expl> or <exp2>.
<expl> The expression to return if <expL> evaluates to true.

<exp2> The expression to return if <expL> evaluates to false. The data type of <exp2> doesn't have to be the
same as that of <exp 1>.

IIF() stands for "immediate IF" and is a shortcut to the IF...ELSE...ENDIF programming construct. Use IIF()
as an expression or part of an expression where using IF would be cumbersome or not allowed. In particular, if
you’re evaluating a condition to decide which value you want to assign to a variable or property, using IIF()
involves less duplication (you don’t have to type the target of the assignment twice).

If <expl> and <exp2> are true and false, in either order, using IIF() is redundant because <expL> must evaluate
to either true or false anyway.

IF

Syntax

Description

Declares memory variables that are visible only in the routine where they're declared.
LOCAL <memvar list>
<memvar list> The list of memory variables to declare local.

Use LOCAL to declare a list of memory variables available only to the routine in which the command is issued.
Local variables differ from those declared PRIVATE in the following ways:

« Private variables are available to lower-level subroutines, while local variables are not. Local variables are
accessible only to the routine—the program or function—in which they are declared.

* TYPE() does not “see” local variables. If you want to determine the TYPE() of a local variable, you must
copy it to a private (or public) variable and call TYPE() with that variable name in a string.

Core language 5-19

LOOP

Note

See Also

LOOP

* You cannot use a local variable for macro substitution with the & operator. Again, you must copy it to a
private (or public) variable first.

Despite these limitations, local variables are generally preferred over private variables because of their limited
visibilty. You cannot accidentally overwrite them in a lower-level routine, which would happen if you forget to
hide a public variable; nor can you inadvertently use a variable created in a higher-level routine, thinking that
it’s one declared in the current routine, which would happen if you misspell the variable name in the current
routine.

The special variables this and form are local.

You must declare a variable LOCAL before initializing it to a particular value. Declaring a variable LOCAL
doesn't create it, but it does hide any higher-level variable with the same name. After declaring a variable
LOCAL, you can create and initialize it to a value with STORE or =. (The := operator will not work at this point
because the variable hasn’t been created yet.) Local variables are erased from memory when the routine that
creates them finishes executing.

For more information, see PUBLIC for a table that compares the scope of public, private, local, and static
variables.

CLEAR MEMORY, PARAMETERS, PRIVATE, PUBLIC, RELEASE, STATIC, STORE

Syntax

Description

See also

Skips the remaining statements in the current loop, causing another loop iteration to be attempted.
LOOP

Conditional statements are often used inside a loop to control which statements are executed in each loop
iteration. For example, in a loop that processes the rows in an employee table, you might want to increase the
monthly salary of non-managers and the annual bonus for managers, all in the same loop.

There can be many different sets of statements in the loop, each with a different combination of conditions
dictating whether they should be executed. Sometimes you can be in the middle of a loop, and none of the
remaining statements apply. The condition that determines this may be nested a few levels deep. While it would
be possible to code the rest of the loop with conditional statements to take this condition into account, often it’s
simpler to use a LOOP statement when this condition is encountered. This causes the remaining statements in
the loop to be skipped, and the next iteration of the loop to be attempted.

DO WHILE, DO...UNTIL, EXIT, FOR...ENDFOR

OTHERWISE

Description

Designates a block of code in a DO CASE block to execute if there are no matching CASE blocks.
See DO CASE for details.

PARAMETERS

Syntax

Description

Assigns data passed from a calling routine to private variables.
PARAMETERS <parameter list>
<parameter list> The memory variable names to assign, separated by commas.

There are three ways to access values passed to program or function:

* Variable names may be declared on the FUNCTION (or PROCEDURE) line in parentheses. These variables
are local to that routine.

* Variable names may be declared in a PARAMETERS statement. These variables are private in scope.
* The values may be retrieved through the ARGVECTOR() function.

5-20 dBASE dBL Language Reference

PARAMETERS

Passed values may be assigned to variables only once in a routine. You may either create local variables on the
FUNCTION line or use the PARAMETERS statement, and you may only use the PARAMETERS statement
once.

The ARGVECTOR() function returns copies of the passed values, and has no effect nor is affected by the other
two techniques.

Parameters passed to the main procedure of a dB2K application .exe, such as from a DOS command line, will be
received as character strings.

For example:
someApp abed efgh

In someApp.prg,
PARAMETERS varl, var2

varl will be received as, "abcd", and var2 as, "efgh".

To pass a string containing an embedded space, use quotes around the string. Such as:
someApp "abcd efgh" ijk

varl will be received as, "abcd efgh", and var2 as, "ijk".

In general, local variables are preferred because they cannot be accidentally overwritten by a lower-level
routine. Reasons to use PARAMETERS instead include:

» Using values passed to a program file: a program file may contain statements that are not part of a function or
class, like the statements in the Header of a WFM file. Because there is no FUNCTION or PROCEDURE
line, there is no place to declare local parameters. A PARAMETERS statement must be used instead.

* You specifically want the parameters to be private, so they can for example be modified by a lower-level
routine, or be used in a macro substitution.

For more information on the difference between local and private variable scope, see LOCAL.

If you specify more variables in the <parameter list> than values passed to the routine, the extra variables
assume a value of false. If you specify fewer variables, the extra values do not get assigned.

The PARAMETERS statement should be at or near the top of the routine. This is good programming style; there
is no rule requiring this.

Passing mechanisms There are two ways to pass parameters, by reference or by value. This section
uses the term "variable" to refer to both memory variables and properties.

» Ifyou pass variables by reference, the called function has direct access to the variable. Its actions can change
(overwrite) the value in that variable. Pass variables by reference if you want the called function to
manipulate the values stored in the variables it receives as parameters.

» Ifyou pass variables by value, the called function gets a copy of the value contained in the variable. Its
actions can't change the contents of the variable itself. Pass variables by value if you want the called function
to use the values in the variables without changing their values—on purpose or by accident—in the calling
subroutine.

The following rules apply to parameter passing mechanisms:

» Literal values (like 7) and calculated expression values (like xVar + 3) must be passed by value—there is no
reference for the called function to manipulate, nor is there any way to tell that the parameter has been
changed.

* Memory variables and properties may be passed by reference or by value. The default is pass-by-reference.

» The scope declaration of a variable (local, private, etc.) does not have any effect on whether the variable is
passed by reference or by value. The scope declaration protects the name of the variable. That name is used
inside the calling routine; the called function assigns its own name (which is often different but sometimes
happens to be the same) to the parameter, making the scope declaration irrelevant.

* To pass a variable or property by value, enclose it in parentheses when you pass it.

Passing objects Because an object reference is itself a reference, passing one as a parameter is a bit more
complicated:

Core language 5-21

PARAMETERS

Example

» Passing a variable (or property) that contains an object reference by reference means that you can change the
contents of that variable, so that it points to another object, or contains any other value.

» Even if you pass an object reference by value, you can access that object, and change any of its properties.
This is because the value of a object reference is still a reference to that object.

Passing this and form When passing the special object references this and form as parameters to the
method of another object, they must be enclosed in parentheses to be passed by value. If not, the value of the
this and form parameters take on the corresponding values for the target object, and no longer refer to the calling
objects.

Passing fields in XBase DML With the XBase DML, fields are accessed directly by name (instead of a
Field object’s value property). When used as parameters, they are always passed by value, so the called function
can't change their contents.

There are two ways to alter the contents of an XBase field with a function:

« Store its contents to a memory variable and call the function with that variable. When control returns to the
calling routine, REPLACE the field contents with the memory variable contents.

» Design the function to accept a field name. Pass the name of the field, and have the function REPLACE the
contents of the named field, using macro substitution to convert the field name to a field reference.

Protecting parameters from change Because the decision whether to pass by reference or by value
is made by the caller, the called function doesn’t know whether it’s safe to modify the parameter. It’s a good
idea to copy parameters to work variables and to use those variables instead if their values are going to be
changed, unless the intent of the function is specifically to modify the parameters.

The following contrived examples demonstrate the various aspects of the parameter passing mechanism. With
the following program file, DOUBLE.PRG:

parameters arg
arg *=2 // Double passed parameter

from the Command window, typing the following statements results in the values shown in the comments:

x=7

double(x) // Call as variable

?7x // Displays 14, pass by reference

double(x +0) //Call as an expression

?7x // Displays 14, pass by value

double((x)) // Call with parentheses around variable name
?7x // Displays 14, pass by value

o =new Object()

0X=5

double(0.x) // Call as property

?0.x // Displays 10, pass by reference

double((0.x)) // Call with parentheses around property name
?0x // Displays 10, pass by value

With the following program DOUBLEX.PRG, designed specifically to modify the property x of the passed
object:

parameters 0Arg
OArg.x *=2

typing the following statements in the Command window results in the values shown in the comments:

doublex(o0) //Pass by reference

?0.x // Displays 10, property modified
doublex((o)) // Pass by value
?0.x // Displays 20, property still modified

With the following program ILIKEAPP.PRG:

parameter oArg
0Arg := app

passing by value will prevent the object reference itself from being changed:

f=new Form()

5-22 dBASE dBL Language Reference

parent

ilikeapp((f)) // Pass by value

? f.className // Displays FORM

ilikeapp(f) // Pass by reference

? f.className // Displays APPLICATION, object reference changed

g = "test" /I Another variable, this one with a string

ilikeapp(g) // Pass by reference

? g.className // Displays APPLICATION, variable changed to an object reference

Note that you when assigning to a variable that was passed by reference, you are free to change the type of the
variable.

This example demonstrates what happens if you don’t enclose the special object reference this in parentheses
when it is passed to the method of another object. (Codeblocks are used for the methods; codeblocks declare
their parameters in-between pipe characters instead of using a PARAMETERS statement.)

f=new Form("F") // text property is "F"

g=new Form("G") // text property is "G"

fitest]l = {; g.meth(this)} // Pass-by-reference

f.test2 = {; g.meth((this))} // Pass-by-value

g.meth = {|o[; ? o.text} // Display text property of passed object
f.test1() // Pass-by-reference displays "G"

f.test2() // Pass-by-value displays "F"

Whenever an object’s method is called, the value of this is automatically updated to point to that object. If the
parameter this is passed by reference from the caller, the value of this changes to the called object before it is
assigned to the parameter variable. By enclosing the parameter this in parentheses to make it pass-by-value, this
does not change, and the parameter value is passed as expected.

See Also ARGVECTOR(), FUNCTION, LOCAL, PRIVATE

parent

The immediate container of an object.
Property of Most data access, form, and report objects

Description Many objects are related in a containership hierarchy. If the container object— referred to as the parent—is
destroyed, all the objects it contains—referred to as child objects—are also destroyed. Child objects may be
parents themselves and contain other objects. Destroying the highest-level parent destroys all the descendant
child objects.

An object’s parent property refers to its parent object.

For example, a form contains both data objects and visual components. A Query object in a form has the form as
its parent. The Query object contains a rowset, which contains an array of fields, which in turn contains Field
objects. Each object in the hierarchy has a parent property that refers back up the chain, up to the form, which
has no parent. A button on the form also has a parent property that refers to the form. If the form is destroyed,
all of the objects it contains are destroyed.

The parent property is often used to refer to sibling objects—other objects that are contained by the parent. For
example, one Field object can refer to another by using the parent reference to go one level up in the hierarchy,
then use the name of the other field to go back down one level to the sibling object.

The parent property is read-only.

PCOUNT()

Returns the number of parameters passed to a routine.
Syntax PCOUNT()
Description PCOUNTY() is identical to ARGCOUNT().

Core language 5-23

PRIVATE

PRIVATE

Syntax

Description

See also

Declares variables that you can use in the routine where they're declared and in all lower-level subroutines.

PRIVATE <memvar list> |

ALL
[LIKE <memvar skeleton 1>]
[EXCEPT <memvar skeleton 2>]

<memvar list> The list of memory variables you want to declare private, separated by commas.
ALL Makes private all memory variables declared in the subroutine.

LIKE <memvar skeleton 1> Makes private the memory variables whose names are like the memory
variable skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the wildcards
* and ? to create <memvar skeleton 1>

EXCEPT <memvar skeleton 2> Makes private all memory variables except those whose names are
like the memory variable skeleton you specify for <memvar skeleton 2>. Use characters of the variable names
and the wildcards * and ? to create <memvar skeleton 2>. You can use LIKE and EXCEPT in the same
statement, for example, PRIVATE ALL LIKE ? * EXCEPT c_*.

Use PRIVATE in a function to avoid accidentally overwriting a variable with the same name that was declared
in a higher-level routine. Normally, variables are visible and changeable in lower-level routines. In effect,
PRIVATE hides any existing variable with the same name that was not created in the current routine.It’s a good
practice to always use LOCAL or PRIVATE. For example, if you write a function that someone else might use,
you probably won’t know what variables they’re using. If you don’t use LOCAL or PRIVATE, you might
accidentally change the value of one of their variables when they call your function.

Although they have some limitations, local variables are generally preferred over private variables because of
their more limited visibilty. You cannot accidentally overwrite them in a lower-level routine, which would
happen if you forget to hide a public variable; nor can you inadvertently use a variable created in a higher-level
routine, thinking that it’s one declared in the current routine, which would happen if you misspell the variable
name in the current routine. Also, private variables may be macro-substituted inadvertently with the & operator.
For example, if you specify the text of a menu item as “&Close” to designate the letter C as the pick character
and you happen to have a private variable named close, the variable with be macro-substituted when the menu is
created. If the variable was declared local, this wouldn’t happen.

You must declare a variable PRIVATE before initializing it to a particular value. Declaring a variable
PRIVATE doesn't create it, but it does hide any higher-level variable with the same name. After declaring a
variable PRIVATE, you can create and initialize it to a value with STORE or =. (The := operator will not work
at this point because the variable hasn’t been created yet.) Private variables are erased from memory when the
routine that creates them finishes executing.

Unless declared otherwise, variables you initialize in programs are private. If you initialize a variable that has
the same name as a variable created in the Command window or declared PUBLIC or PRIVATE in an earlier
routine—in other words, a variable that is visible to the current routine—and don't declare the variable
PRIVATE first, it is not created as a private variable. Instead, the routine uses and alters the value of the existing
variable. Therefore, you should always declare your private variables, even though that is the default.

For more information, see PUBLIC for a table that compares the scope of public, private, local, and static
variables.

LOCAL, PUBLIC, STATIC

PROCEDURE

Description

Defines a function in a program file including variables to represent parameters passed to the function.

PROCEDURE is identical to FUNCTION. While earlier versions of dBASE differentiated between the two,
these differences have been removed. The descriptive terms “function” and “procedure” are used interchangably
in dBL. (The term “procedure file” refers to a program file opened with the SET PROCEDURE command,
which is not restricted to a file that contains PROCEDURE:s only.)

See FUNCTION for details.

5-24 dBASE dBL Language Reference

PUBLIC

PUBLIC

Syntax

Description

See Also

QUIT

Declares global memory variables.
PUBLIC <memvar list>
<memvar list> The memory variables to make public.

A variable’s scope is determined by two factors: its duration and its visibility. A variable’s duration determines
when the variable will be destroyed, and its visibility determines in which routines the variable can be seen.

Use PUBLIC to declare a memory variable that has an indefinite duration and is available to all routines and to
the Command window.

You must declare a variable PUBLIC before initializing it to a particular value. Declaring a variable PUBLIC
creates it and initializes it to false. Once declared, a public variable will remain in memory until it is explicitly
released.

By default, variables you initialize in the Command window are public, and those you initialize in programs
without a scope declaration are private. (Variables initialized in the Command window when a program is
suspended are private to that program.) The following table compares the characteristics of variables declared
PUBLIC, PRIVATE, LOCAL and STATIC in a routine called CreateVar.

PUBLIC PRIVATE LOCAL STATIC

Created when it is declared and initialized Y N N Y
to a value of false

Can be used and changed in CreateVar Y Y Y Y
Can be used and changed in lower-level Y Y N N
routines called by CreateVar

Can be used and changed in higher-level Y N N N
routines that call CreateVar

Automatically released when CreateVar N Y Y N
ends

Public variables are rarely used in programs. To maintain global values, it’s better to create properties of the
_app object. As properties, they will not conflict with variables that you might have with the same name, and
they can communicate with each other more easily.

CLEAR MEMORY, LOCAL, PRIVATE, RELEASE, RESTORE, SAVE, STATIC, STORE

Syntax

Description

Example

Closes all open files and terminates dBASE Plus.

QUIT [WITH <expN>]

WITH <expN> Passes a return code, <expN>, to the operating system when you exit dBASE Plus.
Use QUIT to end your dBASE Plus work. It has the same effect as closing the dBASE Plus application.

If you include QUIT in a program file, dBASE Plus halts the program's execution and exits dBASE Plus. To end
a program's execution without leaving dBASE Plus, use CANCEL or RETURN.

Use QUIT WITH <expN> to pass a return code to Windows or to another application.

At the end of a long day, suppose you want to exit dBASE Plus and run the latest 3-D video game, which
requires 128 MB of RAM. Your hands are already on the home keys of the keyboard, so instead of reaching to
press Alt-F4 or using the mouse to click the close button, you type the following in the Command window.

quit

Core language 5-25

REDEFINE

REDEFINE

Syntax

Description

See Also

Assigns new values to an object’s properties.

REDEFINE <class name> <object name>

[OF <container object>]

[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <changed property list>]

[CUSTOM <new property list>]

<class name> The class of the object you want to redefine.

<object name> The identifier for the object you want to modify. <object name> is either an object
reference variable, or a named property of the container if a <containter object> is specified.

OF <container object> Identifies the object that contains the object you want to redefine.

FROM <row>, <col> TO <row>, <col> | AT <row>, <col> Specifies the new location and size of
the object within its container. FROM and TO specify the upper left and lower right coordinates of the object,
respectively. AT specifies the position of the upper left corner.

PROPERTY <changed property list> Specifies new values you assign to the existing properties of
the object.

CUSTOM <new property list> Specifies new properties you create for the object and the values you
assign to them.

Use REDEFINE to assign new values to the properties of an existing object.

While the REDEFINE syntax offers some amenities (like DEFINE), it is not as flexible as assigning values in a
WITH block. In particular, with REDEFINE you cannot assign values to the elements of properties that are
arrays.

CLASS, DEFINE, WITH

REFCOUNT()

Syntax

Description

Example

See Also

Returns the number of references to an object.
REFCOUNT(<oRef>)
<oRef> Object reference to any valid object

Use REFCOUNTY() to find the number of references to an object. REFCOUNT() accepts a single parameter
which is the object reference for which you want the count returned. The returned value is numeric.

f=New Form()

? REFCOUNT(f) //Returns 1
g=f

? REFCOUNT(f) // Returns 2
? REFCOUNT(g) //Returns 2
f=Null

? REFCOUNT(g) //Returns 1

FINDINSTANCE()

RELEASE

Syntax

Deletes specified memory variables.

RELEASE <memvar list> |

ALL
[LIKE <memvar skeleton 1>]
[EXCEPT <memvar skeleton 2>]

5-26 dBASE dBL Language Reference

Description

Note

See Also

RELEASE OBJECT

<memvar list> The specific memory variables to release from memory, separated by commas.
ALL Removes all variables in memory (except system memory variables).

LIKE <memvar skeleton 1> Removes from memory all memory variables whose names are like the
memory variable skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the
wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2> Removes from memory all memory variables except those whose
names are like the memory variable skeleton you specify for <memvar skeleton 2>. Use characters of the
variable names and the wildcards * and ? to create <memvar skeleton 2>. You can use LIKE and EXCEPT in
the same statement, for example, RELEASE ALL LIKE ?_* EXCEPT c_*.

Use RELEASE to clear memory variables. To remove large groups of variables, use the option ALL [LIKE
<memvar skeleton 1>] [EXCEPT <memvar skeleton 2>].

If you issue RELEASE ALL [LIKE <memvar skeleton 1>] [EXCEPT <memvar skeleton 2>] in a program or
function, dBASE Plus releases only the local and private variables declared in that routine. It doesn't release
public or static variables, or variables declared in higher-level routines.

To release a variable by name, that variable must be in scope. For example, you may release a private variable
declared in a higher-level routine by name, because the private variable is still visible; but you cannot release a
local variable the same way because the local variable is not visible outside its routine.

RELEASE does not explicitly release objects. However, if the only reference to an object is in a memory
variable, releasing the variable with RELEASE will in turn release the object. In contrast, RELEASE OBJECT
will explicitly release an object, but it does not release any variables that used to point to that object.

When control returns from a subroutine to its calling routine, dBASE Plus clears from memory all variables
initialized in the subroutine that weren't declared PUBLIC or STATIC. Thus, you don't have to release a
routine's local or private variables explicitly with RELEASE before the routine terminates.

CLEAR MEMORY, LOCAL, PRIVATE, PUBLIC, QUIT, RELEASE OBJECT, RESTORE, RETURN,
SAVE, STATIC

RELEASE OBJECT

Syntax

Description

See Also

Explicitly releases an object from memory.
RELEASE OBJECT <oRef>
<oRef> An object reference to the object you want to release.

RELEASE OBJECT functions identically to the release() method. See page 15-130 for details.

Because release() is a method, its use is preferred, especially when called from a method. But release() is not a
method in all classes. Use RELEASE OBJECT when the object does not have a release() method, or to release
an object regardless of its class.

If <oRef> is a variable, RELEASE OBJECT does not release that variable, or any other variables that point to
the just-released object. Testing these variables with EMPTY () will return true once the object has been
released.

release()

RESTORE

Syntax

Copies the memory variables stored in the specified disk file to active memory.

RESTORE FROM <filename> | ? | <filename skeleton>
[ADDITIVE]

<filename> | ? | <filename skeleton> The file of memory variables to restore. RESTORE FROM ?
and RESTORE FROM <filename skeleton> display a dialog box, from which you can select a file. If you
specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the path
you specify with SET PATH. If you specify a file without including its extension, dBASE Plus assumes MEM.

Core language 5-27

RETURN

Description

Note

See Also

ADDITIVE Preserves existing memory variables when RESTORE is executed.

Use RESTORE with SAVE to retrieve and store important memory variables. All local and private variables are
cleared at the end of execution of the routine that created them, while all public and static variables are cleared
when you exit dBASE Plus. To preserve these values for future use, store them in a memory file by using SAVE.
You can then retrieve these values later by using RESTORE.

SAVE saves simple variables only—those containing numeric, string, logical, or null values—and objects of
class Array. It ignores all other object reference variables. Therefore you can neither SAVE nor RESTORE
objects (other than arrays).

Without the ADDITIVE option, RESTORE clears all existing user memory variables before returning to active
memory the variables stored in a memory file. Use ADDITIVE when you want to restore a set of variables
while retaining those already in memory.

If you use ADDITIVE and a restored variable has the same name as an existing variable, the restored variable
will replace the existing one.

If you issue RESTORE in the Command window, dBASE Plus makes all restored variables public. When
dBASE Plus encounters RESTORE in a program file, it makes all restored variables private to the currently
executing function.

CLEAR MEMORY, RELEASE, SAVE, STORE

RETURN

Syntax

Description

See also

SAVE

Ends execution of a program or function, returning control to the calling routine—program or function—or to the
Command window.

RETURN [<return exp>]
<return exp> The value a function returns to the calling routine or the Command window.

Programs and functions return to their callers when there are no more statements to execute. When ended this
way, they do not return a value.

Use RETURN in a program or function to return a value, or to return before the end of the program or function.

If the RETURN is inside a TRY block, the corresponding FINALLY block, if any, is executed before returning.
If there is a RETURN inside that FINALLY block, whatever it returns is returned instead.

CANCEL, FUNCTION

Syntax

Stores memory variables to a file on disk.

SAVE TO <filename> | ? | <filename skeleton>
[ALL]

[LIKE <memvar skeleton 1>]

[EXCEPT <memvar skeleton 2>]

TO <filename> | ? | <filename skeleton> Directs the memory variable output to be saved to the
target file <filename>. By default, dBASE Plus assigns a MEM extension to <filename> and saves the file in the
current directory. The ? and <filename skeleton> options display a dialog box in which you specify the name of
the target file and the directory to save it in.

ALL Stores all memory variables to the memory file. If you issue SAVE TO <filename> with no options,
dBASE Plus also saves all memory variables to the memory file.

LIKE <memvar skeleton 1> Stores in the target file the memory variables whose names are like the
memory variable skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the
wildcards * and ? to create <memvar skeleton 1>.

5-28 dBASE dBL Language Reference

Description

Note

See Also

SET LIBRARY

EXCEPT <memvar skeleton 2>] Stores in the target file all memory variables except those whose
names are like the memory variable skeleton you specify for <memvar skeleton 2>. Use characters of the
variable names and the wildcards * and ? to create <memvar skeleton 2>.

Use SAVE with RESTORE to store and retrieve important memory variables. Local and private variables are
cleared at the end of the routine that created them, while public and static variables are cleared when you exit
dBASE Plus. To preserve these values for future use, store them in a memory file with SAVE. Use RESTORE to
retrieve them.

If SET SAFETY is ON and a file exists with the same name as the target file, IBASE Plus displays a dialog box
asking if you want to overwrite the file. If SET SAFETY is OFF, any existing file with the same name is
overwritten without warning.

SAVE saves simple variables only—those containing numeric, string, logical, or null values—and objects of
class Array. It ignores all other object reference variables. Therefore you can neither SAVE nor RESTORE
objects (other than arrays). SAVE also does not save function pointer, bookmark, or system memory variables.

RELEASE, RESTORE, STORE

SET LIBRARY

Syntax

Description

See Also

Opens a dBASE Plus program file as the library file, making its functions, classes, and methods available for
execution.

SET LIBRARY TO [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton> The program file to open. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without including its path,
dBASE Plus looks for the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including its extension, dBASE Plus assumes .PRO (a compiled object file). If dBASE
Plus can't find a .PRO file, it looks for a .PRG file (a source file). If dBASE Plus finds a .PRG file, it compiles it.

SET LIBRARY is similar to SET PROCEDURE. Both commands open a program file, allowing access to the
functions, classes, and methods the file contains. The difference is that while SET PROCEDURE can add a
program file to a list of procedure files, there can be only one library file open at any time. The library file
cannot be closed with the SET PROCEDURE command.

Otherwise, the library file is treated like a procedure file. The library and procedure files are searched in the
order they were opened. You may want to designate a stable program file with core functionality as the library
file, and all other program files as procedure files.

Issue SET LIBRARY TO without a file name to close the open library file.
DO, FUNCTION, PROCEDURE, SET(), SET PROCEDURE

SET PROCEDURE

Syntax

Opens a dBASE Plus program file as a procedure file, making its functions, classes, and methods available for
execution.

SET PROCEDURE TO[<filename> | ? |<filenameskeleton>][ADDITIVE][PERSISTENT]

<filename> | ? | <filename skeleton> The procedure file to open. The ? and <filename skeleton>
options display a dialog box, from which you can select a file. If you specify a file without including its path,
dBASE Plus looks for the file in the current directory, then in the path you specify with SET PATH. If you
specify a file without including its extension, dBASE Plus assumes .PRO (a compiled object file). If iBASE
Plus can't find a .PRO file, it looks for a .PRG file (a source file). If dBASE Plus finds a .PRG file, it compiles it.

ADDITIVE Opens the procedure file(s) without closing any you've opened with previous SET
PROCEDURE statements. SET PROCEDURE TO < filename> (without the ADDITIVE option) closes all
procedure files you've opened with previous SET PROCEDURE statements.

Core language 5-29

SET PROCEDURE

Description

Note

See Also

PERSISTENT Opens the procedure file with the PERSISTENT designation and, unless it is specifically
referenced in the CLOSE PROCEDURE<filename list>, prevents it from being closed by any means other than
CLOSE PROCEDURE PERSISTENT or CLOSE ALL PERSISTENT.

All SET PROCEDURE TO statements, streamed in the form class definition, will have a PERSISTENT
designation when the form's persistent property is set to true in The Form Designer.

To execute a function or method, that function must be loaded in memory. To be more precise, a simple pointer
to that function must be in memory. The contents of the function itself are not necessarily in memory at any
given time; if not, the contents get loaded into memory automatically when the function is executed. But if that
function’s pointer is in memory, it is considered to be loaded.

Whenever you execute a program file with DO (or with the call operator), it is loaded implicitly; pointers to all
of the functions, classes, and methods in that file are loaded into memory. Therefore, code in a program file may
always call any other functions or methods in the same file.

To access functions, classes, and methods in other program files, load the program file with SET PROCEDURE
first. Its function pointers stay in memory until the program file is unloaded with CLOSE PROCEDURE or SET
PROCEDURE TO (with no options).

dBASE Plus uses a reference count system to manage program files in memory. Each loaded program file has a
counter for the number of times it has been loaded, either explicitly with SET PROCEDURE or implicitly. As
long as the count is greater than zero, the file stays loaded. Calling CLOSE PROCEDURE reduces the count by
one. Therefore, if you issue SET PROCEDURE twice, you need to issue CLOSE PROCEDURE twice to close
the program file.

A program file’s load count has no impact on memory; it is simply a counter. Loading a program file 10 times
uses the same amount of memory as loading it once.

Whenever a function is called, dBASE Plus looks for the routine in specific places in a specific order. After
searching the program files in the call chain, dBASE Plus looks in files opened with SET PROCEDURE. See
the DO command for an explanation of the search path and order.

To make the file containing the currently executing routine a procedure file—for example, after creating an
object, to make the object’s methods which are defined in the same file available to it—execute the following
statement:

set procedure to program(1) additive

Some operations, such as assigning a menuFile to a form or opening a form defined in a WFM file,
automatically open the associated file as a procedure file, and that statement is not necessary.

If you issue SET PROCEDURE TO with no options, dBASE Plus closes all procedure files you've opened with
SET PROCEDURE other than those tagged PERSISTENT. If you want to close only specific procedure files, use
CLOSE PROCEDURE. The maximum number of open procedure files depends on available memory.

A common mistake is to forget the ADDITIVE clause when opening a procedure file. This will close all other
open procedure files not tagged PERSISTENT.

When dBASE Plus executes or loads a program file, it will automatically compile the program file into object
code when either:

» There is no object code file, or

* SET DEVELOPMENT is ON, and program file is newer than the object code file (the source code file’s last
update date and time is later than the object code file’s)

If a file is opened as a procedure file and the file is changed in the Source editor, the file is automatically
recompiled so that the changed code takes effect immediately.

Use TYPE() to detect whether a function, class, or method is loaded into memory. If so, TYPE() will return
“FP” (for function pointer), as shown in the following IF statements:

if type("myfunc") # "FP" // Function name
if type("myclass::myclass") # "FP" // Class constructor name
if type("myclass::mymethod") # "FP" // Method name

CLOSE PROCEDURE, COMPILE, DO, FUNCTION, SET(), SET LIBRARY

5-30 dBASE dBL Language Reference

SET()

SET()

Syntax

Description

Returns the current setting of a SET command or function key.

SET(<expC> [,<expN>])

<expC> A character expression that is the SET command or function key whose setting value to return.
<eXpN> The nth such setting to return.

Use SET() to get a SET or function key setting so that you can change it or save it. For example, you can issue
SET() at the beginning of a routine to get current settings. You can then save these settings in memory
variables, change the settings, and restore the original settings from the memory variables at the end of the
routine.

When dBASE Plus supports a SET and a SET...TO command that use the same keyword, SET() returns the
ON|OFF setting and SETTO() returns the SET...TO setting. For example, you can issue SET FIELDS ON,
SET FIELDS OFF, or SET FIELDS TO <field list>. SET("FIELDS") returns "ON" or "OFF" and
SETTO("FEILDS") returns the field list as a character expression.

If dBASE Plus supports a SET...TO command but not a corresponding SET command, SET() and SETTO()
both return the SET...TO value. For example, SET("BLOCKSIZE") and SETTO("BLOCKSIZE") both return
the same value.

When <expC> is a function key name, such as "F4", SET() returns the function key setting. To return the value
of a Ctrl+function key setting, add 10 to the function key number; to return the value of a Shift+function key
setting, add 20 to the function key number. That is, to return the value of Ctrl+F4, use SET("F14"), and to
return the value of Shift+F4, use SET("F24").

If a procedure file is open, SET("PROCEDURE") returns the name of the procedure file. If more than one
procedure file is open, SET("PROCEDURE") returns the name of the first one loaded. To return the name of
another open procedure file, enter a number as the second argument; for example, SET("PROCEDURE",2)
returns the name of the second procedure file that was loaded. If no procedure files are open,
SET("PROCEDURE") returns an empty string ("").

The command you specify for <expC> can be abbreviated to four letters in most cases, following the same rules
as those for abbreviating keywords. For example, SET("DECI") and SET("DECIMALS") have the same
meaning. The <expC> argument is not case-sensitive.

Example The following example stores the value of a setting at the beginning of a function, and restores it at the end.

See Also

function findMatch(xArg)
local 1Ret
private cExact // Can't be local for macro substitution
cExact =set("EXACT") // Store "ON" or "OFF" to character variable
set exact on

IRet = seek(xArg) // Does exact match exist?
set exact &cExact // Either "set exact ON" or "set exact OFF"
return IRet

DISPLAY STATUS, SET, SET FUNCTION, SETTO()

SETTO()

Syntax

Description

Returns the current setting of a SET...TO command or function key.

SETTO(<expC> [,<expN>])

<expC> A character expression that is the SET...TO command whose setting value to return.
<eXpN> The nth such setting to return.

Use SETTO() to get a SET or function key setting so that you can change it or save it. For example, you can
issue SETTO() at the beginning of a routine to get current settings. You can then save these settings in memory
variables, change the settings, and restore the original settings from the memory variables at the end of the
routine.

Core language 5-31

STATIC

See Also

STATIC

When dBASE Plus supports a SET and a SET...TO command that use the same keyword, SET() returns the
SET setting and SETTO() returns the SET...TO setting. For example, you can issue SET FIELDS ON, SET
FIELDS OFF, or SET FIELDS TO <field list>. SET("FIELDS") returns the ON or OFF setting and
SETTO("FIELDS") returns the field list as a character expression.

SETTO() is almost identical to SET(). For more information, see SET().
DISPLAY STATUS, SET, SET(), SET FUNCTION

Syntax

Description

Example

Declares memory variables that are local in visibility but public in duration.
STATIC <variable 1> [= <value 1>] [,<variable 2> [= <value>] ...]
<variable> The variable to declare static.

<value> The value to assign to the variable.

Use STATIC to declare memory variables that are visible only to the routine where they’re declared but are not
automatically cleared when the routine ends. Static variables are different from other scopes of memory
variables in two important ways:

* You can declare and assign a value to a static variable in a single statement, referred to as an in-line
assignment.

 Static variables initialized in a single statement are assigned the initialization value whenever the variable is
undefined, including the first time the routine is executed and after the variable is cleared.

You must declare a variable STATIC before initializing it to a particular value. Declaring a variable STATIC
without an in-line assignment creates it and initializes it to false. Once declared, a static variable will remain in
memory until it is explicitly released (usually with CLEAR MEMORY).

Because static variables are not released when the routine in which they are created ends, you can use them to
retain values for subsequent times that routine runs. To do this, use an in-line assignment. The first time dBASE
Plus encounters the STATIC declaration, the variable is initialized to the in-line value. If the subroutine is run
again, the variable is not reinitialized; instead, it retains whatever value it had when the routine last ended.

Because dBL is a dynamic object-oriented language, you usually assign new properties to an object to retain
values between method calls. For example, if you’re calculating a running total in a report, you can create a
property of the Report or Group object to store that number.

Static variables are only useful for truly generic functions that are not associated with objects, functions that
might be called from different objects that need to share a persistent value, or for values that are maintained by
a class—not each object. In this last case, the variables are referred to as static class variables.

For more information, see PUBLIC for a table that compares the scope of public, private, local, and static
variables.

The following is a stopwatch function that returns the number of seconds since the last time it was called.

function stopwatch()
local thisTime, nSecs
thisTime = new Date().getTime()
static lastTime = thisTime
nSecs = (thisTime - lastTime) / 1000
lastTime := thisTime
return nSecs

The function uses a Date object’s getTime() method, which keeps time in milliseconds. Whenever the function
is called, the variable thisTime is set to the current time in milliseconds. The first time through the function, the
lastTime variable is set to that same time. The difference is calculated, and then the value of thisTime is saved in
the static variable lastTime for the next function call.

To reset the timer, call the function; you may ignore the return value. Then the next time you call the function,
you will get the elapsed time. If you’re measuring a series of intervals, call the function once between intervals.
For example:

stopwatch() // Reset timer

5-32 dBASE dBL Language Reference

See Also

STORE

STORE

// Process 1
timel = stopwatch() // Time for first process

/] Process 2
time2 = stopwatch() // Time for second process
// etc.

The static variable lastTime maintains its value between function calls. The in-line assignment makes sure it has
a value the first time the function is called (the function will return zero the first time), and is ignored from then
on, unless the variable is explicitly released. The static variable is hidden to all other functions, so you can’t
accidentally overwrite it.

CLEAR MEMORY, LOCAL, PRIVATE, PUBLIC, RELEASE

Syntax

Description

See Also

Stores an expression to specified memory variables or properties.

STORE <exp> TO <memvar list>

<exp> The expression to store.

TO <memvar list> The list of memory variables and/or properties to store <exp>, separated by commas.

Use STORE to store any valid expression to one or more variables or properties.

Common style dictates the use of STORE only when storing a single value to multiple locations. When storing
to a single variable or property, an assignment operator, either = or :=, is preferred.

To specify the scope of a variable, use LOCAL, PRIVATE, PUBLIC, or STATIC before assigning a value to the
variable.

LOCAL, PRIVATE, PUBLIC, RESTORE, SAVE, STATIC

THROW

Syntax

Description

Generates an exception.
THROW <exception oRef>
<exception oRef> A reference to the Exception object you want to pass to the CATCH handler.

Use THROW to manually generate an exception. THROW must pass a reference to an existing Exception
object that describes the exception.

Example Suppose you are using exceptions to manage execution in a deeply nested set of conditional statements and

loops. You create your own exception class:

class JumpException of Exception
endclass

Then in the code, you create the JumpException object and THROW it if needed:

try
local j
j =new JumpException()
// User developed code
if lItsNoGood
throw j // Deep in the code, you want out
endif
/I User developed code

catch (JumpException e)
// Do nothing; JumpException is OK
catch (Exception e)
// Normal error
logError(new Date(), e.message) // Record error message
// and continue
endtry

Core language 5-33

TRY

If there is a normal error, the second CATCH block saves it to a log file, using a function you wrote, and
execution continues.

See also class Exception, TRY...ENDTRY

TRY

A control statement used to handle exceptions and other deviations of program flow.

Syntax TRY

<statement block 1>

[CATCH(<exception typel> <exception oRefl>)
<statement block 2>]

[CATCH(<exception type2> <exception oRef2>)
<statement block 3>]

[CATCH ...]

[FINALLY
<statement block 4>]

ENDTRY

TRY <statement block 1> A statement block for which the following CATCH or FINALLY block—or
both—will be used if an exception occurs during execution. A TRY block must be followed by either a CATCH
block, a FINALLY block, or both.

CATCH <statement block 2> A statement block that is executed when an exception occurs.
<exception type> The class name of the exception to look for—usually, Exception.

<exception oRef> A formal parameter to receive the Exception object passed to the CATCH block.
CATCH... Catch blocks for other types of exceptions.

FINALLY <statement block 4> A statement block that is always executed after the TRY block, even if
an exception or other deviation of program flow occurs. If there is both a CATCH and a FINALLY, the
FINALLY block executes after the CATCH block.

ENDTRY A required keyword that marks the end of the TRY structure.

Description An exception is a condition that is either generated by dBASE Plus, usually in response to an error, or by the
programmer. By default, dBASE Plus handles an exception by displaying an error dialog and terminating the
currently executing program. You can use FINALLY to make sure some code gets executed even if there is an
exception, and CATCH to handle the exception yourself, in the following combinations:

» For a block of code that may generate an exception, place the code inside a TRY block. To prevent the
exception from generating a standard error dialog and terminating execution, place exception handling code
in a CATCH block after the TRY. If an exception occurs, execution immediately jumps to the CATCH
block; no more statements in the TRY block are executed. If no exception occurs, the CATCH block is not
executed.

e Ifthere’s some code that should always be executed at the end of a process, whether or not the process
completes successfully, place that code in a FINALLY block. With TRY and FINALLY but no CATCH, if
an exception occurs during the TRY block, execution immediately jumps to the FINALLY block; no more
statements in the TRY block are executed. Since there was no CATCH, you would still have an exception,
which if not handled by a higher-level CATCH as described later, dBASE Plus would handle as usual, after
executing the FINALLY block. If no exception occurs, the FINALLY block is executed after the TRY.

« Ifyou have all three—TRY, CATCH, and FINALLY—if an exception occurs, execution immediately jumps
to the CATCH block; after the CATCH block executes, the FINALLY block is executed. If there is no
exception during the TRY, then the CATCH block is skipped, and the FINALLY block is executed.

The code that is covered by TRY doesn’t have to be inside the statement block physically; the coverage exists
until that entire block of code is executed. For example, you may have a function call inside a TRY block, and if
an exception occurs while that function is executing—even if that function is defined in another programfile—
execution jumps back to the corresponding CATCH or FINALLY.

5-34 dBASE dBL Language Reference

Example

TRY

A TRY block may be followed by multiple CATCH blocks, each with its own <exception type>. When an
exception occurs, dBASE Plus compares the <exception type> with the className property of the Exception
object. If they match, that CATCH block is executed and all others are skipped. If the className does not
match, dBASE Plus searches the class hierarchy of that object to find a match. If no match is found, the next
CATCH block is tested. Class name matches are not case-sensitive. For example, the DbException class is a
subclass of the Exception class. If the blocks are arranged like this:

try
// Statements

catch (DbException ¢)
// Block 1

catch (Exception e)
// Block 2

endtry

and a DbException occurs, execution goes to Block 1, because that’s a match. If an Exception occurs, execution
goes to Block 2, because Block 1 doesn’t match, but Block 2 does. If the blocks are arranged the other way
around, like this:
try
// Statements
catch (Exception e)
// Block 1
catch (DbException e)
// Block 2
endtry

then all exceptions always go to Block 1, because all Exceptions are derived from the Exception class.
Therefore, when using multiple CATCH blocks, list the most specific exception classes first.

You can generate exceptions on purpose with the THROW statement to control program flow. For example, if
you enter deeply nested control structures or subroutines from a TRY block, you can THROW an exception
from anywhere in the nested code. This would cause execution to jump back to the corresponding CATCH or
FINALLY, instead of having to exit each control structure or subroutine one-by-one.

You may also nest TRY structures. An exception inside the TRY block causes execution to jump to the
corresponding CATCH or FINALLY, but an exception in a CATCH or FINALLY is simply treated as an
exception. Also, if you have a TRY and FINALLY but no CATCH, that leaves you with an unhandled
exception. If the TRY/CATCH/FINALLY is itself inside a TRY block, then that exception would be handled at
that next higher level, as illustrated in the following code skeleton:

try
// exception level 1
try
// exception level 2
catch (Exception e)
// handler for level 2
// but exception level 1
finally
/' level 2
endtry
catch (Exception e)
// handler for level 1
endtry

Note that if an exception occurs in the level 2 CATCH, the level 2 FINALLY is still executed before going to
the level 1 CATCH, because a FINALLY block is always executed after a TRY block.

In addition to exceptions, other program flow deviations—specifically EXIT, LOOP, and RETURN—are also
caught by TRY. If there is a corresponding FINALLY block, it’s executed before control is transferred to the
expected destination. (CATCH catches only exceptions.)

The following example illustrates how to code a transaction, which is an all-or-nothing attempt at multiple
database changes. If any of the changes should fail—for example, attempting to write a new record to disk,
which would fail if there was no more disk space—the entire transaction must be rolled back:

try

form.rowset.parent.database.beginTrans() / Begin the transaction
!

Core language 5-35

TYPE()

// make changes
!
form.rowset.parent.database.commit() // If you got this far, there were no
/I errors, so commit the changes
catch (Exception e) // The parameter receives the Exception object that describes
// the error (not used in this example, but required)
form.rowset.parent.database.rollback() // Undo any changes that did take
// display an error message
endtry

This example runs a process in a subdirectory, the name of which is passed as the parameter cDir. It uses two
TRY blocks to create the subdirectory if necessary, and return to the previous directory even if there is an error
in the process:

try
// Instead of bothering to see if the directory already exists
md &cDir // Go ahead and try to create the directory
catch (Exception e) // If there's an error creating the directory,
/I execution goes here.
// Do nothing -- this assumes the error is because the directory already exists.
// By using a CATCH, the error is ignored.
finally
cd &cDir // Now try and go to that directory
/I At this point, if you can't go to the directory, then that's a real error.
// ' That would be handled normally, since the error occurred in the FINALLY and
// is not nested inside another TRY.
endtry
try
!
// Run the process
!
// No CATCH, so if there's an error, there will be a dialog
finally
// But because of this FINALLY, the previous directory will be restored regardless.
// This makes the code easier to re-test, since you don’t have to switch back to
// your main directory manually after an error.
cd ..
endtry

Note that in the first TRY block, the statement to switch to the subdirectory doesn’t have to be in a FINALLY
block. Unlike the second TRY block, where the FINALLY will switch back to the parent directory even if there
is an error, the switch to the subdirectory would work just as well between the two TRY blocks. It’s shown in
the FINALLY as an example of what would happen if there is an exception in a FINALLY block.

See also EXIT, LOOP, RETURN, THROW

TYPE()

Returns a character string that indicates a specified expression's data type.

Syntax TYPE(<expC>)
<expC> A character string containing the expression whose type to evaluate and return.

Description Use TYPE() to determine the data type of an expression, including whether a variable is undefined.

TYPE() expects a character string containing the expression. This allows you to specify a variable name that
may not exist. (If you were to use an actual expression with an undefined variable instead of putting the
expression in a string, the expression would cause an error.) The <expC> may be any valid character expression,
including a variable or a literal string representing the expression to evaluate.

5-36 dBASE dBL Language Reference

Example

TYPE()

TYPE() returns a character string containing a one- or two- letter code indicating the data type. The following
table lists the values TYPE() returns.

Expression type TYPE() code
Array object A

DBEF or Paradox binary field (BLOB) B
Bookmark BM
Character field or string value, Paradox alphanumeric field C
Codeblock CB

Date field or value, Paradox date field D

Float field, Paradox numeric or currency field F
Function pointer FP

OLE (general) field

Logical field or value

DBEF or Paradox memo field
DBF numeric field or value

Object reference (other than Array)

c oz o

Undefined variable, field, invalid expression, or null

Note that an object of class Array is a special case. Unlike other objects, its code is “A” (this is for backward
compatibility with earlier versions of dBASE).

TYPE() cannot “see” variables declared as local or static. If there is a public or private variable hidden by a
local or static variable of the same name, then TYPE() will return the code for that hidden variable. Otherwise,
that variable and any expression using that variable is considered undefined.

Use TYPE() to detect whether a function, class, or method is loaded into memory. If so, TYPE() will return
“FP” (for function pointer), as shown in the following IF statements, which detect if the named function is not
loaded (this is done to determine if the specified function needs to be loaded):

if type("myfunc") # "FP" // Function name
if type("myclass::myclass") # "FP" // Class constructor name
if type("myclass::mymethod") # "FP" // Method name

The following statements demonstrate that TYPE() expects a character string containing an expression:

dVar = date() // Create a date variable
? type(dVar) // Error: Data type mismatch. Expecting: Character
? type("dVar") // Displays "D" for Date, as do the next two statements
? type("D" + "var") // Any expression containing the variable name works
// (and variable names are not case-sensitive)
? type("date()") // String can contain any expression, not just single variable

The following routine is used to read the data in a generated text file into the corresponding fields of a table.
Character fields in the text file are the same length as in the table. Dates are formatted in six characters as
MMDDYY (which matches the current SET DATE format). Numbers are always twelve characters and
represent currency stored in cents, so it needs to be divided by 100.

function decodeLine(cLine, aDest)
#define YEAR_LEN 2
#define NUM_LEN 12
local nPtr, nFld, cFld, nLen
nPtr=1 // Pointer into string
for nFld = 1 to fldcount()
cFld = field(nFld) // Store name of field in string variable for reuse
do case
case type(cFld) =="C"
aDest[nFld] = substr(cLine, nPtr, flength(nF1d))
nPtr += flength(nFld)
case type(cFld) =="D"
aDest[nFld] = ctod(substr(cLine, nPtr, 2) +"/" +;
substr(cLine, nPtr +2,2) +"/" +;
substr(cLine, nPtr + 4, YEAR LEN))
nPtr+=2 + 2+ YEAR LEN

Core language 5-37

WITH

See Also

WITH

case type(cFld) =="N"
aDest[nFld] = val(substr(cLine, nPtr, NUM_LEN)) / 100
nPtr += NUM_LEN
endcase
endfor

An array is passed to the routine along with the line to read. The field values are stored in the array, which is
appended to the table with APPEND FROM ARRAY in the calling routine (not shown here). The function
defines some manifest constants for the size of a numeric field and whether the year is two or four digits in case
this changes in the future. A FOR loop goes through each field in the table. The name of each field is stored in a
variable for convenience; it’s used repeatedly in the DO CASE structure. The variable is a string containing the
name of the field, which TYPE() expects. In contrast, TYPE("cFLD") would always return “C”.

The following function is a slight variation on the TYPE() function. It returns the type of a value, but it expects
the expression itself as a parameter instead of a string containing the expression. It therefore cannot handle
undefined or invalid expressions, but it can handle local and static variables. It also returns the character “0”
(zero) when the expression contains the value null, to differentiate it from expressions that have no value. For
example, if you have a function that does not RETURN a value, that function call has an undefined value.

function valType
parameter X
return iif(x == null, "0", type("x"))
The function works by taking the parameter as a private variable named X. Then if it’s not null, the TYPE()

[Tt}

function is used with the string “x” to return the type of the parameter.

EMPTY(), STORE,

Syntax

Description

A control statement that causes all the variable and property references within it to first assume that they are
properties of the specified object.

WITH <oRef>
<statement block>
ENDWITH

<oRef> A reference to the default object.
<statement block> A statement block that assumes that the specified object is the default.
ENDWITH A required keyword that marks the end of the WITH structure.

Use WITH when working with multiple properties of the same object. Instead of using the object reference and
the dot operator every time you refer to a property of that object, you specify the object reference once. Then
every time a variable or property name is used, it is first checked to see if that name is a property of the specified
object. If it is, then that property is used. If not, then the variable or property name is used as-is.

You cannot take advantage of the WITH syntax to create properties. For example:

with someObject
existingProperty = 2
newProperty = existingProperty
endwith

Suppose that existingProperty is an existing property of the object, and newProperty is not. In the first statement
in the WITH block, the value 2 is assigned to the existing property. Then in the second statement, newProperty

is treated like a variable, because it does not exist in the object. The statement creates a variable named
newProperty, assigning to it the value of the existingProperty property.

Method name conflicts You may encounter naming conflicts when calling methods inside a WITH
block in two ways:

The name of the method matches the name of a built-in function. The built-in function takes precedence.
For example, you create a class with a method center() and try to call it within a WITH block:

with x
center()

5-38 dBASE dBL Language Reference

Example

WITH

// other code
endwith

The CENTER() function would be called. It expects parameters, so you’ll get a runtime error. You might check
your center() method, which has no parameters, and wonder what’s going on.

It may be possible to call your method by using the explicit object reference, which is normally redundant in a
WITH block, and will not work if the object happens to have a property with the same name as the object
reference. For example, you could call your center() method like this:

with x
x.center()
// other code
endwith

If the object X happens to have a property named X, then you would have to create a temporary duplicate
reference that does not have the same name as the any other property of X outside the WITH block first:
y=X
with x
y.center()
// other code
endwith

The name of the method matches the first word of a command. For example, if the object f has a method
named open(), the method call with the dot operator would look like:

f.open()
Using WITH, it would be:

with f
open()

endwith
but that code will not work because the name of the method matches the first word in a dBL command; there are
some commands that start with the word OPEN. When the compiler sees the word OPEN, it considers that
statement to be a command starting with that keyword, and looks for the rest of the command; for example,
OPEN DATABASE. When it doesn’t find the rest of the command, it considers the statement to be incorrect
and generates a compile-time error.

To call such a method inside a WITH block, you may use an explicit object reference as shown above, or change
the statement from a direct method call to an indirect method call—an assignment or through the EMPTY/()
function. Many methods return values. By assigning the return value of the method call to variable, even a
dummy variable, you bypass the naming conflict. For example, with another object that has a copy() method
(there are several commands that begin with the word COPY):

with x
dummy = copy() // As long as x does not have property named dummy!
endwith

For methods that don’t return values, you may use the EMPTY/() function, which will safely “absorb” the
undefined value:

with x

empty(copy())
endwith

The following code from a WFM file assigns values to the properties of a newly created Query object inside a
WITH block. In this excerpted code, this refers to the form:

this.messages1 = new Query()
with this.messages1
left = 55.25
top =4.9
sql = "select * from MESSAGES.DB"
active = true
endwith

Without the WITH block, the code would have looked like this:

this.messages1 = new Query()
this.messages1.left = 55.25

Core language 5-39

WITH

this.messages1.top = 4.9
this.messages1.sql = "select * from MESSAGES.DB"
this.messages1.active = true

5-40 dBASE dBL Language Reference

String objects

dBASE Plus supports two types of strings:
» A primitive string compatible with earlier versions of dBASE
* A JavaScript-compatible String object.

dBASE Plus will convert one type of string to the other on-the-fly as needed. For example, you may use a String
class method on a primitive string value or a literal string:

? version().toUpperCase()
? "peter piper pickles".toProperCase()

This creates a temporary String object from which the method or property is called. You may also use a string
function on a String object.

Many string object methods have built-in string functions that are practically identical, while others are merely
similar with subtle differences.

Note JavaScript is zero-based; dBL is one-based. For example, to extract a substring starting with the third character,
you would use the parameter 2 with the substring() method, and the parameter 3 with the SUBSTR() function.

The maximum length of a string in dBL is approximately 1 billion characters, or the amount of virtual memory,
whichever is less.

class String

A string of characters.

Syntax [<oRef> =] new String([<expC>])
<ORef> A variable or property in which you want to store a reference to the newly created String object.
<expC> The string you want to create. If omitted or null, the resulting string is empty.

Properties The following tables list the properties and methods of the String class. (No events are associated with this

class.)
Property Default Description
baseClassName STRING Identifies the object as an instance of the String class
className STRING Identifies the object as an instance of a custom class.
When no custom class exists, defaults to baseClassName
length The number of characters in the string
string The value of the String object

String objects 6-1

class String

Method Parameters Description
anchor() <expC> Tags the string as an anchor <A NAME>
asc() <expC> Returns the ASCII value of the first character in the
designated string
big() Tags the string as big <BIG>
blink() Tags the string as blinking <BLINK>
bold() Tags the string as bold <BOLD>
charAt() <index expN> Returns the character in the string at the designated
position
chr() <expN> Returns the character equivalent of the specified
ASCII value
fixed() Tags the string as fixed font <TT>
fontcolor() <expC> Tags the string as the designated color
fontsize() <expN> Tags the string as the designated font size
getByte() <index expN> Returns the value of the byte at the specified index in
the string
indexOf() <expC> Returns the position of the search string inside the
[, <start index expN>] string
isAlpha() Returns true if the first character of the string is
alphabetic
isLower() Returns true if the first character of the string is
lowercase
isUpper() Returns true if the first character of the string is
uppercase
italics() Tags the string as in italics <I>
lastindexOf() <expC> Returns the position of the search string inside the
[, <start index expN>] string, searching backwards
left() <expN> Returns the specified number of characters from the
beginning of the string
leftTrim() Returns the string with all leading spaces removed
link() <expC> Tags the string as a link <A HREF>
replicate() <expC> Returns the specified string repeated a number of
[, <expN>] times
right() <expN> Returns the specified number of characters from the
end of the string
rightTrim() Returns the string with all trailing spaces removed
setByte() <index expN>, Assigns a new value to the byte at the specified index
<value expN> in the string
small() Tags the string as small <SMALL>
space() <expN> Returns a string comprising the specified number of
spaces
strike() Tags the string as strikethrough <STRIKE>
stuff() <start expN> Returns the string with specified characters removed
, <quantity expN> and others inserted in their place
[, <replacement expC>]
sub() Tags the string as subscript <SUB>
substring() <start index expN> Returns a substring derived from the string
, <end index expN>
sup() Tags the string as superscript <SUP>
toLowerCase() Returns the string in all lowercase
toProperCase() Returns the string in proper case
toUpperCase() Returns the string in all uppercase

Description A String object contains the actual string value, stored in the property string, and methods that act upon that
value. The methods do not modify the value of string; they use it as a base and return another string, number, or
true or false.

6-2 dBASE dBL Language Reference

Example

ASC()

ASC()

The methods are divided into three categories: those that simply wrap the string in HTML tags, those that act
upon the contents of the string, and static class methods that do not operate on the string at all.

Because the return values for most string methods are also strings, you can call more than one method for a
particular string by chaining the method calls together. For example,

cSomething.substring(4, 7).toUpperCase()

When you concatenate a null to a string, the result is null. By passing a value that may be null through the String
class constructor, you can safely concatenate two values without using cumbersome conditional constructs. For
example, suppose you are combining, first name, middle initial, and last name. The middle initial field may be
null. You can safely combine the three like this:

fullName = firstName + " " + new String(middlelnitial + " ") + lastName

If the middle initial is null, adding a space to it results in null, and the String object will be an empty string. If
the middle initial is not null, adding a space will result in a space between the middle initial and the last name.

Syntax

Description

Example

See also

asc()

Returns the numeric ASCII value of a specified character.
ASC(<expC>)

<expC> The character whose ASCII value you want to return. You can specify a string with more than one
character, but dBASE Plus uses only the first one.

ASC() is the inverse of CHR(). ASC() accepts a character and returns its ASCII value—a number from 0 to
255, inclusive. CHR() accepts an ASCII value and returns its character.

See the ASCII table in Appendix A for a listing of ASCII values and their corresponding characters.

Other than the syntactic difference of being a method instead of a function, the asc() method behaves
identically to the ASC() function.

Executing the following statements in the Command window demonstrates the relation between ASC() and
CHR():

?asc("A") /165
? chr(asc("A")+32) //"a"
? asc(chr(asc("A")+32)) /97

In the following example, if the variable cDrive contains a drive letter, ASC() is used to convert the drive letter
to a number suitable for the DISKSPACE() function.

nDiskSpace = diskspace(asc(cDrive) - asc("A")+ 1)
asc(), CHR()

Syntax

Property of

Description

See also

Returns the numeric ASCII value of a specified character.
<oRef>.asc(<expC>)
<ORef> A reference to a String object.

<expC> The character whose ASCII value you want to return. You can specify a string with more than one
character, but dBASE Plus uses only the first one.

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ASC() function.

ASC(), chr()

String objects 6-3

AT()

AT()

Syntax

Description

Example

See also

Returns a number that represents the position of a string within another string.
AT(<search expC>, <target expC> [, <nth occurrence expN>])

<search expC> The string you want to search for in <target expC>.
<target expC> The string in which to search for <search expC>.

<nth occurrence expN> Which occurrence of the string to find. By default, dBASE Plus searches for
the first occurrence. You can search for other occurrences by specifying the number, which must be greater than
Zero.

AT() returns the numeric position where a search string begins in a target string. AT() searches one character
at a time from left to right, beginning to end, from the first character to the last character. The search is case-
sensitive. Use UPPER() or LOWER() to make the search case-insensitive.

You can specify which occurrence of the search string to find by specifying a number for <nth
occurrence expN>. If you omit this argument, AT() returns the starting position of the first occurrence of the
search string.

AT() returns 0 when

* The search string isn’t found.

» The search string or target string is empty.

» The search string is longer than the target string.

The <nth occurrence expN> occurrence doesn't exist.

When AT() counts characters in a memo field, it counts two characters for each carriage-return and linefeed
combination (CR/LF) in the memo field.

Use RAT() to find the starting position of <search expC>, searching from right to left, end to beginning. Use
the substring operator ($) to learn if one string exists within another.

The indexOf() method is similar to the AT() function, but in addition to the syntactic difference of being a
method instead of a function and the fact that the position is zero-based, the method’s optional parameter
specifies where to start searching instead of the nth occurrence to find.

The following function removes characters from a string by looking for the search string with the $ operator and
replacing it with nothing.

non

? strip("banana", "an" // Displays "ba"

function strip(cArg, cStrip)
local cRet, nLen
cRet = cArg
nLen = len(cStrip)
do while cStrip $ cRet
cRet = stuff(cRet, at(cStrip, cRet), nLen, "")
enddo
return cRet

All the loop needs know is whether the substring is in the main string, not where it is, so the $ operator is
slightly more convenient that using the AT() function. If the substring is in the main string, then STUFF() is
used to remove it, using the position returned by AT(). The length of the substring is stored in a variable before
the loop; it never changes so there’s no need to get it repeatedly in the loop.

indexOf(), RAT(), STUFF(), SUBSTR()

CENTER()

Syntax

Returns a character string that contains a string centered in a line of specified length.
CENTER(<expC> [, <length expN> [, <pad expC>]])
<expC> The text to center.

6-4 dBASE dBL Language Reference

Description

See Also

charAt()

<length expN> The length of the resulting line of text. The default is 80 characters.

<pad expC> The single character to pad the string with if <length expN> is greater than the number of
characters in <expC>. If <length expN> is equal to or less than the number of characters in <expC>,
<pad expC=> is ignored.

If <pad expC> is more than one character, CENTER() uses only the first character. If <pad expC> isn't
specified, CENTER() pads with spaces.

CENTER() returns a character expression with the requisite number of leading and trailing spaces to center it in
a line that is a specified number of characters wide.

To create the resulting string, CENTER() performs the following steps.

* Subtracts the length of <expC> or <memo field> from <length expN>

* Divides the result in half and rounds up if necessary

» Pads <expC> on either side with that number of spaces or the first character in <pad expC>

If the length of <expC> or <memo field> is greater than <length expN>, CENTER() does the following:

+ Subtracts <length expN> from the length of <expC>
» Divides the result in half and rounds up if necessary
» Truncates both sides of <expC> by that many characters

When the result of subtracting the length of <expC> from <length expN> is an odd number, CENTER() pads
one less space on the left if the difference is positive, or truncates one less character on the left if the difference
is negative.

LEN(), REPLICATE(), TRANSFORM()

charAt()

Syntax

Property of

Description

See also

CHR()

Returns the character at the specified position in the string.
<expC>.charAt(<expN>)
<expC> A string.

<eXpN> Index into the string, which is indexed from left to right. The first character of the string is at index 0
and the last character is at index <expC=>.length — 1.

String

charAt() returns the character in a String object at the specified index position. If the index position is after the
last character in the string, charAt() returns an empty string.

indexOf(), SUBSTR(), substring()

Syntax

Description

Example

Returns the character equivalent of a specified ASCII value.
CHR(<expN>)
<eXpN> The numeric ASCII value, from 0 to 255, inclusive, whose character equivalent you want to return.

CHR() is the inverse of ASC(). CHR() accepts an ASCII value and returns its character, while ASC() accepts
a character and returns its ASCII value.

See the ASCII table in Appendix A for a listing of ASCII values and their corresponding characters.

Other than the syntactic difference of being a method instead of a function, the chr() method behaves
identically to the CHR() function.

Executing the following statements in the Command window demonstrates the relation between ASC() and
CHR():

String objects 6-5

chr()

See also

chr()

?asc("A") /165
? chr(asc("A")+32) //"a"
? asc(chr(asc("A")+32)) /97

ASC(), chr()

Syntax

Property of

Description

See also

Returns the character equivalent of a specified ASCII value.

<oRef>.chr(<expN>)

<ORef> A reference to a String object.

<eXpN> The numeric ASCII value, from 0 to 255, inclusive, whose character equivalent you want to return.
String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the CHR() function.

asc(), CHR()

DIFFERENCE()

Syntax

Description

Example

See Also

Returns a number that represents the phonetic difference between two strings.

DIFFERENCE(<expC1>, <expC2>)

<expC1l> The first character expression to evaluate the SOUNDEX() of and compare to the second value.
<expC2> The second character expression to evaluate the SOUNDEX() of and compare to the first value.

SOUNDEX() returns a four-character code that represents the phonetic value of a character expression.
DIFFERENCE() compares the SOUNDEX() codes of two character expressions, and returns an integer from 0
to 4 that expresses the difference between the codes.

A returned value of 0 indicates the greatest difference in SOUNDEX() codes—the two expressions have no
SOUNDEX() characters in common. A returned value of 4 indicates the least difference—the two expressions
have all four SOUNDEX() characters in common. However, using DIFFERENCE() on short strings can
produce unexpected results, as shown in the following example.

? soundex("Mom") // Displays M500
? soundex("Dad") // Displays D300
? difference("Mom", "Dad") // Displays 2

To compare the character-by-character similarity between two strings rather than the phonetic similarity, use
LIKE().

The following example sets a filter in the current work area to show those records whose Title field sounds like
the word typed in the entryfield soundsLike:

function showTitlesLike onClick()
private cArg
cArg = form.soundsLike.value
set filter to difference(TITLE, "&cArg") ==4 // Best matches only

Macro substitution is used to convert the value in the entryfield into a literal string for the filter expression.

LIKE(), SOUNDEX()

getByte()

Syntax

Returns the value of the byte at the specified index in the string.
<oRef>.getByte(<index expN>)

6-6 dBASE dBL Language Reference

Property of

Description

Example

See also

indexOf()

<0oRef> A reference to the String object that you’re using as a structure.
<index expN> The index number of the desired byte. The first byte is at index number zero.
String

Strings in dBL are Unicode strings, which use double-byte characters. Use getByte() when using a string as a
structure that is passed to a DLL function that you have prototyped with extern, to get the values of the bytes in
the structure.

The GetClientRect() API function returns the coordinates of a window’s client rectangle (the area inside the
window borders) in a structure made up of four long integers: left, top, right, and bottom. A long integer is 32
bits, or 4 bytes. Therefore the rectangle structure is 16 bytes long. In a dBL string, each character is two bytes,
so a string must be 8 characters long to store the rectangle structure.

The client rectangle coordinates are relative to the window’s client area, so the left and top are always zero; the
right and bottom coordinates contain the width and height of the client area. The following example displays the
width of the client area of a default form in pixels:

if type("GetClientRect") # "FP"
extern CLOGICAL GetClientRect(CHANDLE, CPTR) USER32
endif
¢ =space(8) // 16-byte structure
f=new Form()
f.open() // Form must be open to have valid hWnd
if GetClientRect(fhWnd, ¢)
n = c.getByte(8) +;
bitlshift(c.getByte(9), 8) + ;
bitlshift(c.getByte(10), 16) + ;
bitlshift(c.getByte(11), 24)
if bitset(n, 31)
n := - bitnot(n)
endif
7n
endif
f.close()

The SPACE() function is used to create a string of the desired length. The entire structure will be overwritten
by the function, so it doesn’t matter that the string initially contains spaces.

After the function call, getByte() is used to extract the coordinate, byte-by-byte. The right coordinate starts at
offset 8 (the left starts at offset 0, the top at offset 4, and the bottom at offset 12) with the low byte first. The
second byte is shifted 8 bits to the left and added to the first byte. Only the first two bytes are used, because the
width will always be well under 64 K pixels, the maximum number that can be represented by two bytes (16
bits).

setByte(), EXTERN

indexOf()

Syntax

Property of

Description

Returns a number that represents the position of a string within another string.
<target expC>.indexOf(<search expC> [, <from index expN>])

<target expC> The string in which you want to search for <search expC>.
<search expC> The string you want to search for in <target expC>.

<from index expN> Where you want to start searching for the string. By default, dBASE Plus starts
searching at the beginning of the string, index 0.

String

This method is similar to the AT() function, but in addition to the syntactic difference of being a method instead
of a function and the fact that the position is zero-based, the optional parameter specifies where to start
searching instead of the nth occurrence to find.

String objects 6-7

ISALPHA()

See also

indexOf() returns an index representing where a search string begins in a target string. The first character of the
string is at index 0 and the last character is at index <target expC>.length — 1. indexOf() searches one character
at a time from left to right, beginning to end, from the character at <from index expN> to the last character. The
search is case-sensitive. Use toUpperCase() or toLowerCase() to make the search case-insensitive.

indexOf() returns —1 when

* The search string isn’t found.
* The search string or target string is empty.
* The search string is longer than the target string.

Use lastIndexOf() to find the starting position of <search expC>, searching from right to left, end to beginning.
AT(), lastIndexOf(), stuff(), substring()

ISALPHA()

Syntax

Description

See also

Returns true if the first character of a string is alphabetic.
ISALPHA(<expC>)
<expC> The string you want to test.

ISALPHA() tests the first character of the string and returns true if it’s an alphabetic character. ISALPHA()
returns false if the character isn’t alphabetic or if that character expression is empty.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the isAlpha() method behaves
identically to the ISAPLHA() function.

isAlpha(), ISLOWER(), ISUPPER(), LOWER(), UPPER()

iISAlpha()

Syntax

Property of

Description

See also

Returns true if the first character of a string is alphabetic.
<expC>.isAlpha()

<expC> The string you want to test.

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ISAPLHA() function.

ISALPHA(), isLower(), isUpper(), toLowerCase(), toUpperCase()

ISLOWER()

Syntax

Description

Returns true if the first character of a string is alphabetic and lowercase.
ISLOWER(<expC>)
<expC> The string you want to test.

ISLOWERC() tests the first character of the string and returns true if it’s a lowercase alphabetic character.
ISLOWER() returns false if the character isn’t lowercase or if the character expression is empty.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

6-8 dBASE dBL Language Reference

See also

isLower()

Other than the syntactic difference of being a method instead of a function, the isLower() method behaves
identically to the ISLOWER() function.

ISALPHA(), isLower(), ISUPPER(), LDRIVER(), LOWER(), UPPER()

isLower()

Syntax

Property of

Description

See also

Returns true if the first character of a string is alphabetic and lowercase.
<oRef>.isLower()

<expC> The string you want to test.

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ISLOWER() function.

isAlpha(), ISLOWER(), isUpper(), toLowerCase(), toUpperCase()

ISUPPER()

Syntax

Description

See also

Returns true if the first character of a string is alphabetic and uppercase.
ISUPPER(<expC>)
<expC> The string you want to test.

ISUPPER() tests the first character of the string and returns true if it’s an uppercase alphabetic character.
ISUPPER() returns false if the character isn’t uppercase or if the character expression is empty.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the isUpper() method behaves
identically to the ISUPER() function.

ISALPHA(), ISLOWER(), isUpper(), LOWER(), UPPER()

isUpper()

Syntax

Property of

Description

See also

Returns true if the first character of a string is alphabetic and uppercase.

<expC>.isUpper()
expCrThe string you want to test.

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the ISUPPER() function.

isAlpha(), isLower(), ISUPPER(), toLowerCase(), toUpperCase()

lastindexOf ()

Syntax

Returns a number that represents the starting position of a string within another string. lastindexOf() searches
backward from the right end of the target string, and returns a value counting from the beginning of the target.

<target expC>.lastindexOf(<search expC> [, <from index expN>])

<target expC> The string in which you want to search for <search expC>.

String objects 6-9

LEFT()

Property of

Description

See also

LEFT()

<search expC> The string you want to search for in <target expC>.

<from index expN> Where you want to start searching for the string. By default, dBASE Plus starts
searching at the end of the string, index <target expC>.length — 1.

String

This method is similar to the RAT() function, but in addition to the syntactic difference of being a method
instead of a function and the fact that the position is zero-based, the optional parameter specifies where to start
searching instead of the nth occurrence to find.

Use lastindexOf() to search for the <search expC=> in a target string, searching right to left, end to beginning, from
the character at <from index expN> to the first character. The search is case-sensitive. Use toUpperCase() or
toLowerCase() to make the search case-insensitive.

Even though the search starts from the end of the target string, lastindexOf() returns an index representing where
a search string begins in a target string, counting from the beginning of the target. The first character of the string
is at index 0 and the last character is at index <target expC>.length — 1. If <search expC> occurs only once in the
target, lastindexOf() and indexOf() return the same value. For example, “abcdef”.lastindexOf(“abc™) and
“abcdef”.indexOf(“abe”) both return 0.

lastIndexOf() returns —1 when:

* The search string isn’t found
* The search string or target string is empty
* The search string is longer than the target string

To find the starting position of <search expC>, searching from left to right, beginning to end, use indexOf().
indexOf(), RAT(), stuff(), substring(), toLowerCase(), toUpperCase()

Syntax

Description

Example

See also

left()

Returns a specified number of characters from the beginning of a string.
LEFT(<expC>, <expN>)

<expC> The string from which you want to extract characters.

<eXpN> The number of characters to extract from the beginning of the string.

Starting with the first character of a character expression, LEFT() returns <expN> characters. If <expN> is
greater than the number of characters in the specified string, LEFT() returns the string as it is, without adding
spaces to achieve the specified length. You can use LEN() to determine the actual length of the returned string.

If <expN> is less than or equal to zero, LEFT() returns an empty string. If <expN> is greater than or equal to
zero, LEFT(<expC>, <expN>) achieves the same results as SUBSTR(<expC>, 1, <expN>).

When LEFT() returns characters from a memo field, it counts two characters for each carriage-return and
linefeed combination (CR/LF).

Other than the syntactic difference of being a method instead of a function, the left() method behaves
identically to the LEFT() function.

See REPLICATE()
AT(), LEN(), left(), RIGHT(), SUBSTR()

Syntax

Returns a specified number of characters from the beginning of a character string.
<expC>.left(<expN>)
<expC> The string from which you want to extract characters.

<eXpN> The number of characters to extract from the beginning of the string.

6-10 dBASE dBL Language Reference

Property of

Description

See also

leftTrim()

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the LEFT() function.

indexOf(), LEFT(), length, right(), substring()

leftTrim ()

Syntax

Property of

Description

See also

LEN()

Returns a string with no leading space characters.

<expC>.leftTrim()

<expC> The string from which you want to remove the leading space characters.
String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the LTRIM() function.

left(), LTRIM(), right(), rightTrim(), substring()

Syntax

Description

See also

length

Returns the number of characters in a specified character string.
LEN(<expC>)
<expC> The character string whose length you want to find.

LEN() returns the number of characters (the length) of a character string or memo field. The length of an empty
character string or empty memo field is zero. When LEN() calculates the length of a memo field, it counts two
characters for each carriage-return and linefeed combination (CR/LF).

Other than the syntactic difference of reading a property instead of calling a function, length contains the same
value that LEN() returns.

length, TRIM()

Syntax

Property of

Description

See also

The number of characters in a specified character string.
<expC>.length

<expC> The character string whose length you want to find.
String

A string’s length property reflects the number of characters (the length) of a character string. The length of an
empty character string is zero.

length is a read-only property.

Other than the syntactic difference of reading a property instead of calling a function, length contains the same
value that LEN() returns.

LEN(), rightTrim()

LENNUM()

Syntax

Returns the display length (in characters) of a numeric expression.

LENNUM(<expN>)

String objects 6-11

LIKE()

Description

See Also

LIKE()

<eXpN> The numeric or float number whose display length to return.
Use LENNUM() before formating a display involving numeric values of varying lengths.
If you pass LENNUM() the name of a numeric field, it returns the length of the field.

If a number has eight or fewer whole-number digits and no decimal point, it is by default a numeric-type
number; the default display length for numeric-type numbers is 11. For example:

7LENNUM(123)
returns 11.

If a number contains a decimal point, the value returned by LENNUM() will depend on the value of SET
DECIMALS TO. The minimum value returned will be comprised of the minimum default length (11), a
character for the decimal point (1) plus the value of SET DECIMALS TO (regardless of how many decimal
places are actually utilized). Therefore, where SET DECIMALS TO =2;

9LENNUM(122.1)
and
2LENNUM(122.11)
both return 14.

The maximum length returned by LENNUM() is 39.
If a number passed to LENNUMY() is null, LENNUM() returns a null “value”.

LEN(), SET DECIMALS, STR()

Syntax

Description

See Also

Returns true if a specified string matches a specified skeleton string.
LIKE(<skeleton expC>, <expC>)

<skeleton expC> A string containing a combination of characters and wildcards. The wildcards are ?
and *.

<expC> The string to compare to the skeleton string.

Use LIKE() to compare one string to another. The <skeleton expC> argument contains wildcard characters and
represents a pattern; the <expC> argument is compared to this pattern. LIKE() returns true if <expC> is a string
that matches <skeleton expC>. To compare the phonetic similarity between two strings rather than the
character-by-character similarity, use DIFFERENCE().

Use the wildcard characters ? and * to form the pattern for <skeleton expC>. An asterisk (*) stands for any
number of characters, including zero characters. The question mark (?) stands for any single character. Both
wildcards can appear anywhere and more than once in <skeleton expC>. Wildcard characters in

<skeleton expC> can stand for uppercase or lowercase letters.

If * or ? appears in <expC>, they are interpreted as literal, not wildcard, characters, as shown in the following
example.

? LIKE("a*d", "abcd") // Displays true

? LIKE("a*d", "aBCd") // Displays true

? LIKE("abed", "a*d") // Displays false

LIKE() is case-sensitive. Use UPPER() or LOWER() for case-insensitive comparisons with LIKE(). LIKE()
returns true if both arguments are empty strings. LIKE() returns false if one argument is empty and the other
isn't.

AT(), DIFFERENCE()

LOWER()

Converts all uppercase characters in a string to lowercase and returns the resulting string.

6-12 dBASE dBL Language Reference

LTRIM()

Syntax LOWER(<expC>)
<expC> The string you want to convert to lowercase.

Description LOWER() converts the uppercase alphabetic characters in a character expression or memo field to lowercase.
LOWER() ignores digits and other characters.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the toLowerCase() method behaves
identically to the LOWER() function.

See also ISLOWER(), PROPER(), toLowerCase(), UPPER()

LTRIM()

Returns a string with no leading space characters.
Syntax LTRIM(<expC>)
<expC> The string from which you want to remove the leading space characters.

Description LTRIM() returns <expC> with no leading space characters.
To remove trailing space characters from a string or memo field, use RTRIM() or TRIM().

Other than the syntactic difference of being a method instead of a function, the leftTrim() method behaves
identically to the LTRIM() function.

See also leftTrim(), RTRIM(), STR(), TRIM()

PROPER()

Converts a character string to proper-noun format and returns the resulting string.

Syntax PROPER(<expC>)
<expC> The character string to convert to proper-noun format.

Description PROPER() returns <expC> with the first character in each word capitalized and the remaining letters set to
lowercase. PROPER() changes the first character of a word only if it is a lowercase alphabetic character.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the toProperCase() method behaves
identically to the PROPER() function.

See also LOWER(), toProperCase(), UPPER()

RAT()

Returns a number that represents the starting position of a string within another string. RAT(') searches backward
from the right end of the target string, and returns a value counting from the beginning of the target.

Syntax RAT(<search expC>, <target expC> [, <nth occurrence expN>])
<search expC> The string you want to search for in <target expC>.
<target expC> The string in which to search for <search expC>.

String objects 6-13

REPLICATE()

Description

Example

See also

<nth occurrence expN> Which occurrence of the string to find. By default, dBASE Plus searches for
the first occurrence from the end. You can search for other occurrences by specifying the number (based on
starting from the end), which must be greater than zero.

Use RAT() to search for the first or <nth occurrence expN> occurrence of <search expC> in a target string,
searching right to left, end to beginning, from the last character to the first character. The search is case-
sensitive. Use UPPER() or LOWER() to make the search case-insensitive.

Even though the search starts from the end of the target string or memo field, RAT() returns the numeric
position where a search string begins in a target string, counting from the beginning of the target. If
<search expC> occurs only once in the target, RAT() and AT() return the same value. For example,
RAT("abc","abedef") and AT("abc","abedef") both return 1.

RAT() returns 0 when:

* The search string isn’t found

» The search string or target string is empty

» The search string is longer than the target string

» The nth occurrence you specify with <nth occurrence expN> doesn't exist

To find the starting position of <search expC>, searching from left to right, beginning to end, use AT(). To
learn if one string exists within another, use the substring operator ($).

The lastindexOf() method is similar to the RAT() function, but in addition to the syntactic difference of being
a method instead of a function and the fact that the position is zero-based, the optional parameter specifies
where to start searching instead of the nth occurrence to find.

Here is a simple file name extraction function that extracts a file name for a path by looking for the last
backslash character with RAT(). Everything that follows in the string is extracted with SUBSTR(). If there is
no backslash, the entire string is returned.

? getFileName("C:\\WINDOWS\SOL.EXE")

function getFileName(cArg)
local nPos
nPos =rat("\", cArg)
return iif(nPos>= 0, substr(cArg, ++nPos), cArg)

Note that the position returned by RAT() is incremented before it is passed to SUBSTR(). Otherwise, the last
backslash would be returned as well.

AT(), lastindexOf(), LOWER(), STUFF(), SUBSTR(), UPPER()

REPLICATE()

Syntax

Description

Example

Returns a string repeated a specified number of times.
REPLICATE(<expC>, <expN>)

<expC> The string you want to repeat.

<eXpN> The number of times to repeat the string.

REPLICATE() returns a character string composed of a character expression repeated a specified number of
times.

If the character expression is an empty string, REPLICATE() returns an empty string. If the number of repeats
you specify for <expN> is 0 or less, REPLICATE() returns an empty string.

To repeat space characters, use SPACE().

The replicate() method is almost identical to the REPLICATE() function, but in addition to the syntactic
difference of being a method instead of a function, the repeat count is optional and defaults to 1.

The following function pads the left side of a string with a specified character to make the result at least as long
as needed.

? padl("Test", 7, "*") // Displays ***Test
function padl(cArg, nLen, cPad)

6-14 dBASE dBL Language Reference

See also

replicate()

if argcount() <3
cPad=""
endif
return replicate(left(cPad +" ", 1), nLen - len(cArg)) + cArg

To make sure only one character is repeated, a space is added to the parameter (in case the parameter is an
empty string or was omitted), and the LEFT() function is used to extract the first character (in case the
parameter was more than one character).

replicate(), SPACE()

replicate()

Syntax

Property of

Description

See also

Returns a string repeated a specified number of times.
<oRef>.replicate(<expC> [, <expN>])

<ORef> A reference to a String object.

<expC> The string you want to repeat.

<eXpN> The number of times to repeat the string; by default, 1.
String

This method is almost identical to the REPLICATE() function, but in addition to the syntactic difference of
being a method instead of a function, the repeat count is optional and defaults to 1.

REPLICATE(), space()

RIGHT()

Syntax

Description

See also

right()

Returns characters from the end of a character string.
RIGHT(<expC>, <expN>)

<expC> The string from which you want to extract characters.
<eXpN> The number of characters to extract from the string.

Starting with the last character of a character expression, RIGHT() returns a specified number of characters. If
the number of characters you specify for <expN> is greater than the number of characters in the specified string
or memo field, RIGHT() returns the string as is, without adding spaces to achieve the specified length. If
<expN> is less than or equal to zero, RIGHT() returns an empty string.

Strings often have trailing blanks. You may want to remove them with TRIM() before using RIGHT().

When RIGHT() returns characters from a memo field, it counts two characters for each carriage-return and
linefeed combination (CR/LF).

Other than the syntactic difference of being a method instead of a function, the right() method behaves
identically to the RIGHT() function.

AT(), LEFT(), RAT(), right(), SUBSTR(), TRIM()

Syntax

Property of

Returns characters from the end of a character string.
<expC>.right(<expN>)

<expC> The string from which you want to extract characters.
<exXpN> The number of characters to extract from the string.

String

String objects 6-15

rightTrim()

Description

See also

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the RIGHT() function.

indexOf(), left(), lastindexOf(), RIGHT(), substring()

rightTrim()

Syntax

Property of

Description

See also

Returns a string with no trailing space characters.

<expC>.rightTrim()

<expC> The string from which you want to remove the trailing space characters.
String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the TRIM() function.

left(), leftTrim(), right(), substring(), TRIM()

RTRIM()

Syntax

Description

See also

Returns a string with no trailing space characters.

RTRIM(<expC>)

<expC> The string from which you want to remove the trailing space characters.
RTRIM() is identical to TRIM(). See TRIM() for details.

LTRIM(), rightTrim(), TRIM()

setByte()

Syntax

Property of

Description

Example

Assigns a new value to the byte at the specified index in the string.

<oRef>.setByte(<index expN>, <value expN>)

<0ORef> A reference to the String object that you’re using as a structure.

<index eXxpN> The index number of the byte to set. The first byte is at index number zero.
<value expN> The new byte value, from 0 to 255.

String

Strings in dBL are Unicode strings, which use double-byte characters. Use setByte() when using a string as a
structure that is passed to a DLL function that you have prototyped with extern, to set the values of the bytes in
the structure.

The length of the structure string should be one-half the number of bytes in the structure, rounded up. Setting the
individual bytes of a Unicode string will most likely cause the string to become unprintable.

Suppose you need to copy a string into a structure that is used by a function. The function expects the string to
be composed of single-byte characters. dBL strings are double-byte, so you will need to use setByte() to copy
each character of the string into the structure string, byte-by-byte.

The following function copies a string into a structure string at the specified offset, and pads the rest of the
length in the structure will null characters.

function setStructString(cStruct, nIndex, cValue, nChars)
if argcount() < 4
nChars = len(cValue) // Default length is length of string
endif
local n
for n = 0 to min(len(cValue), nChars) - 1

6-16 dBASE dBL Language Reference

See also

SOUNDEX()

cStruct.setByte(nIndex + n, asc(cValue.charAt(n)))
endfor
do while n <nChars // Pad length with null characters
cStruct.setByte(nIndex + n++, 0)
enddo

In the FOR loop, the MIN() function is used to copy all the characters in the string, or the specified number of
characters, whichever is less. This means that you can safely pass a string of any length to the function, and as
long as you specify the correct length, you don’t have to worry about the string being too long. Each character is
extracted with the charAt() method and converted to its ASCII value (a number from 0 to 255) with the ASC()
function.

getByte(), EXTERN

SOUNDEX()

Syntax

Description

Example

Returns a four-character string that represents the SOUNDEX (sound-alike) code of another string.
SOUNDEX(<expC>)
<expC> The string for which to calculate the soundex code.

SOUNDEX() returns a four-character code that represents the phonetic value of a character expression. The
code is in the form "letter digit digit digit," where "letter" is the first alphabetic character in the expression being
evaluated. The more phonetically similar two strings are, the more similar their SOUNDEX codes.

Use SOUNDEX() to find words that sound similar, or are spelled similarly, such as names like "Smith,"
"Smyth," and "Smythe." Using the U.S. language driver, these all evaluate to S531.

SOUNDEX() returns "0000" if the character expression is an empty string or if the first nonblank character isn't
a letter. SOUNDEX() returns 0's for the first digit encountered and for all following characters, regardless of
whether they're digits or alphabetic characters.

To compare the SOUNDEX values of two character expressions or memo fields, use DIFFERENCE(). If you
want to compare the character-by-character similarity between two strings rather than the phonetic similarity,
use LIKE().

SOUNDEX() is language driver-specific. If the current language driver is U.S., SOUNDEX() does the
following to calculate the phonetic value of a string:

» Ignores leading spaces.

» Ignores the letters A, E, [, O, U, Y, H, and W.

* Ignores case.

« Converts the first nonblank character to uppercase and makes it the first character in the SOUNDEX code.
* Converts B, F, P,and Vto 1.

e Converts C,G,J,K,Q, S, X, and Z to 2.

* Converts D and T to 3.

* Converts L to 4.

* Converts M and N to 5.

» Converts R to 6.

» Removes the second occurrence of any adjacent letters that receive the same digits as phonetic values.
» Pads the end of the resulting string with zeros if fewer than three digits remain.

* Truncates the resulting string to three digits if more than three digits remain.

» Concatenates the first character of the code to the remaining three digits to create the "letter digit digit digit"
soundex code.

To perform a sound-alike match for the Last name field of a table, first create an index using SOUNDEX():
index on soundex(LAST NAME) tag LAST SNDX

String objects 6-17

SPACE()

See Also

Then to perform the search, use SOUNDEX() on the search value entered, like this:

function searchButton_onClick()
set order to LAST SNDX
if not seek(soundex(form.soundsLike.value))
msgbox("No names similar", "Search failed")
endif

DIFFERENCE(), LIKE()

SPACE()

Syntax

Description

See also

Returns a specified number of space characters.
SPACE(<expN>)
<eXpN> The number of spaces you want to return.

SPACE() returns a character string composed of a specified number of space characters. The space character is
ASCII code 32.

If <expN> is 0 or less, SPACE() returns an empty string.
To create a string using a character other than the space character, use REPLICATE().

Other than the syntactic difference of being a method instead of a function, the space() method behaves
identically to the SPACE() function.

REPLICATE(), space()

space()

Syntax

Property of

Description

See also

STR()

Returns a specified number of space characters.
<oRef>.space(<expN>)

<ORef> A reference to a String object.

<eXpN> The number of spaces you want to return.
String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the SPACE() function.

replicate(), SPACE()

Syntax

Returns the character string equivalent of a specified numeric expression.
STR(<expN> [, <length expN> [, <decimals expN> [, <expC>]]])
<expN> The numeric expression to return as a character string.

<length expN> The length of the character string to return. The valid range is 1 to 20, inclusive, and
includes a decimal point, decimal digits, and minus sign characters. The default is 10. If <length expN> is
smaller than the number of integer digits in <expN>, STR() returns asterisks (*).

<decimals expN> The number of characters to reserve for decimal digits. The default and lowest
allowable value is 0. If you do not specify a value for <decimals expN>, STR() rounds <expN> to the nearest
whole number. If you want to specify a value for <decimals expN>, you must also specify a value for
<length expN>.

<expC> The character to pad the beginning of the returned character string with when the length of the
returned string is less than <length expN> digits long. The default pad character is a space. If you want to

6-18 dBASE dBL Language Reference

Description

See Also

STUFF()

specify a value for <expC>, you must also specify values for <length expN> and <decimals expN>. You can
specify more than one character for <expC>, but STR() uses only the first one.

Use STR() to convert a number to a string, so you can manipulate it as characters. For example, you can index
on a numeric field in combination with a character field by converting the numeric field to character with
STR().

dBASE Plus rounds and pads numbers to fit within parameters you set with <length expN> and
<decimals expN>, following these rules:

» If <decimals expN> is smaller than the number of decimals in <eXpN>, STR() rounds to the most accurate
number that will fit in <length expN>. For example, STR(10.765,5,1) returns " 10.8" (with a single leading
space), and STR(10.765,5,2) returns "10.77".

» If<length expN> isn't large enough for <decimals expN> number of decimal places, STR() rounds <expN>
to the most accurate number that will fit in <length expN>. For example, STR(10.765,4,3) returns "10.8".

» If <decimals expN> is larger than the number of decimals in <expN>, and <length expN> is larger than the
returned string, STR() adds zeros (0) to the end of the returned string. dBASE Plus only adds enough zeros
to bring the number of decimal digits to a maximum of <decimals expN>.

 If the returned string is still shorter than <length expN>, dBASE Plus pads the left to fill to the length of
<length expN>. For example, STR(10.765,8,6) returns "10.76500" for a returned length of &;
STR(10.765,7,6) returns "10.7650" for a returned length of 7; and STR(10.765,12,6) returns " 10.765000"
(with three leading spaces) for a returned length of 12.

To remove the leading spaces created by STR(), use LTRIM(). If you concatenate a number to a string with the
+ or - operators, dBASE Plus automatically converts the number to a string, using the number of decimal places
specified by SET DECIMALS, and removes the leading spaces.

LTRIM(), VAL()

STUFF()

Syntax

Description

See also

Returns a string with specified characters removed and others inserted in their place.

STUFF(<target expC>, <start expN>, <quantity expN>, <replacement expC>)

<target expC> The string you want to remove characters from and replace with new characters.
<start expN> The character position in the string at which you want to start removing characters.
<quantity expN> The number of characters you want to remove from the string.
<replacement expC> The characters you want to insert in the string.

STUFF() returns a target character expression with a replacement character string inserted at a specified
position. Starting at the position you specify, <start expN>, STUFF() removes a specified number,
<quantity expN>, of characters from the original string.

If the target character expression is an empty string, STUFF() returns the replacement string.

If <start expN> is less than or equal to 0, STUFF() treats <start expN> as 1. If <quantity expN> is less than or
equal to 0, STUFF() inserts the replacement string at position <start expN> without removing any characters
from the target.

If <start expN> is greater than the length of the target, STUFF() doesn’t remove any characters and appends the
replacement string to the end of the target.

If the replacement string is empty, STUFF() removes the characters specified by <quantity expN> from the
target, starting at <start expN>, without adding characters.

The stuff() method is almost identical to the STUFF() function, but in addition to the syntactic difference of
being a method instead of a function and the fact that the position is zero-based, the replacement string is
optional, and defaults to an empty string.

AT(), LEFT(), RAT(), REPLICATE(), RIGHT(), SPACE(), STUFF(), SUBSTR()

String objects 6-19

stuff()

stuff()

Returns a string with specified characters removed and others inserted in their place.
Syntax <expC>.stuff(<start expN>, <quantity expN> [, <replacement expC>])
<expC> The string in which you want to remove and replace characters.
<start expN> The character position in the string at which you want to start removing characters.
<quantity expN> The number of characters you want to remove from the string.
<replacement expC> The characters you want to insert in the string. By default, this is an empty string.
Property of String

Description This method is almost identical to the STUFF() function. However, the stuff() method is zero-based (the
function is one-based), a replacement string is optional, and the method defaults to an empty string.

See also indexOf(), left(), lastindexOf(), replicate(), right(), space(), STUFF(), substring()

SUBSTR()

Returns a substring derived from a specified character string.

Syntax SUBSTR(<expC>, <start expN> [, <length expN>])
<expC> The string you want to extract characters from.
<start expN> The character position in the string to start extracting characters.
<length expN> The number of characters to extract from the string.

Description Starting in a character expression at the position you specify for <start expN>, SUBSTR() returns the number
of characters you specify for <length expN>. If <start expN> is greater than the length of <expC>, or
<length expN> is zero or a negative number, SUBSTR() returns an empty string.

If you don't specify <length expN>, SUBSTR() returns all characters starting from position <start expN> to the
end of the string. If <length expN> is greater than the number of characters from <start expN> to the end of the
string, SUBSTR() returns only as many characters as are left in the string, without adding space characters to
achieve the specified length. You can use LEN() to determine the actual length of the returned string.

When SUBSTR() returns characters from a memo field, it counts two characters for each carriage-return and
linefeed combination (CR/LF) in the memo field.

The substring() method is similar to the SUBSTR() function, but in addition to the syntactic difference of
being a method instead of a function and the fact that the position is zero-based, the method takes a starting and
ending position, while the function takes a start position and the number of character to extract.

Example See RAT()
See also AT(), LEFT(), LEN(), RAT(), RIGHT(), STUFF(), substring().

substring ()

Returns a substring derived from a specified character string.
Syntax <expC>.substring(<indexl expN>, <index2 expN>)
<expC> The string you want to extract characters from.

<index1 expN>, <index2 expnN> Indexes into the string, which is indexed from left to right. The first
character of the string is at index 0 and the last character is at index <expC>.length — 1.

Property of String

6-20 dBASE dBL Language Reference

Description

See also

toLowerCase()

This method is similar to the SUBSTR() function, but in addition to the syntactic difference of being a method
instead of a function and the fact that the position is zero-based, the method takes a starting and ending position,
while the function takes a start position and the number of character to extract.

<index1 expN> and <index2 expN> determine the position of the substring to extract. substring() begins at the
lesser of the two indexes and extracts up to the character before the other index. If the two indexes are the same,
substring() returns an empty string.

If the starting index is after the last character in the string, substring() returns an empty string.
indexOf(), left(), length, toProperCase(), lastindexOf(), right(), stuff(), SUBSTR()

toLowerCase()

Syntax

Property of

Description

See also

Converts all uppercase characters in a string to lowercase and returns the resulting string.
<expC>.toLowerCase()

<expC> The string you want to convert to lowercase.

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the LOWER() function.

isLower(), isUpper(), LOWER(), toProperCase(), toUpperCase()

toProperCase()

Syntax

Property of

Description

See also

Converts a character string to proper-noun format and returns the resulting string.
<expC>.toProperCase()

<expC> The string you want to convert to proper-noun format.

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the PROPER() function.

PROPER(), toLowerCase(), toUpperCase()

toUpperCase()

Syntax

Property of

Description

See also

Converts all lowercase characters in a string to uppercase and returns the resulting string.
<expC>.toUpperCase()

<expC> The string you want to convert to uppercase.

String

Other than the syntactic difference of being a method instead of a function, this method behaves identically to
the UPPER() function.

isLower(), isUpper(), toLowerCase(), toProperCase(), UPPER()

TRANSFORM()

Syntax

Applies a formatting template to an expression, returning a formatted string.
TRANSFORM(<exp>, <picture expC>)

<exp> The expression to be formatted.

String objects 6-21

TRIM()

<picture expC> The string containing the template characters necessary to format <exp>. The template
characters are the same characters used in the picture property of an entryfield.

Description TRANSFORM() returns an expression in the template format you indicate with <picture expC>.

Example Suppose you store phone numbers as ten digits only to save storage space. You can display the number with the
usual characters using a formatting template:

? transform("8005551234", "@R (999) 999-9999") // Displays "(800) 555-1234"
Negative numbers can be displayed enclosed in parentheses:

? transform(-45, "@(9999") // Displays "(45)"
? transform(123, "@(9999") // Displays " 123 "

See Also picture, function, STR()

TRIM()

Returns a string with no trailing space characters.

Syntax TRIM(<expC>)
<expC> The string from which you want to remove the trailing space characters.

Description TRIM() returns a character expression with no trailing space characters. TRIM() is identical to RTRIM().

To remove trailing blanks before concatenating a string to another string, use the - operator instead of the +
operator.

Warning Do not create index expression with TRIM() that result in key values that vary in length from record to record.
This results in unbalanced indexes that may become corrupted. Use the - operator, which relocates trailing
blanks without changing the resulting length of the concatenated string.

To remove leading space characters from a string, use LTRIM().

Other than the syntactic difference of being a method instead of a function, the rightTrim() method behaves
identically to the TRIM() function.

See also LEFT(), LTRIM(), RIGHT(), rightTrim()

UPPER()

Converts all lowercase characters in a string to uppercase and returns the resulting string.

Syntax UPPER(<expC>)
<expC> The character string you want to convert to uppercase.

Description UPPER() converts the lowercase alphabetic characters in a character expressionor memo field to uppercase.
UPPER() ignores digits and other characters.

The current language driver defines the character values that are lowercase and uppercase alphabetic. In a U.S.
language driver, a lowercase alphabetic character is from a to z, and an uppercase alphabetic character is from A
to Z.

Other than the syntactic difference of being a method instead of a function, the toUpperCase() method behaves
identically to the UPPER() function.

Example UPPER() is frequently used to make searches case-insensitive. First you create an index using UPPER(), for
example:

index on upper(LAST NAME - "," - FIRST NAME) tag FULL NAME
Then when searching, convert the search value to uppercase to match:

seek upper(form.search.value)

See also ISLOWER(), ISUPPER(), LOWER(), PROPER(), toUpperCase()

6-22 dBASE dBL Language Reference

VAL()

VAL()

Returns the number at the beginning of a character string.
Syntax VAL(<expC>)
<expC> The character expression that contains the number.

Description Use VAL() to convert a string that contains a number into an actual number. Once you convert a string to a
number, you can perform arithmetic operations with it.

If the character string you specify contains both letters and numbers, VAL() returns the value of the entire
number to the left of the first nonnumeric character. If the string contains a nonnumeric character other than a
blank space in the first position, VAL() returns 0. For example, VAL("ABC123ABC456") returns 0,
VAL("123ABC456ABC") returns 123, and VAL(" 123") also returns 123.

See Also STR()

String objects 6-23

6-24 dBASE dBL Language Reference

Math / Money

dBASE Plus supports a wide range of mathematic, trigonometric, and financial functions.

abs()

Returns the absolute value of a specified number.
Syntax abs(<expN>)
<eXpN> The number whose absolute value you want to return.

Description abs() returns the absolute value of a number. The absolute value of a number represents its magnitude.
Magnitude is always expressed as a positive value, so the absolute value of a negative number is its positive
equivalent.

See also ceil(), floor(), int(), round()

acos()

Returns the inverse cosine (arccosine) of a number.
Syntax acos(<expN>)
<expN> The cosine of an angle, from —1 to +1.

Description acos() returns the radian value of the angle whose cosine is <eXpN>. acos() returns a number from 0 to pi
radians. acos() returns zero when <expN> is 1. For values of x from 0 to pi, acos(y) returns X if cos(x) returns y.

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, acos(.5) returns 1.05 radians while rtod(acos(.5)) returns 60.00 degrees.

Use SET DECIMALS to set the number of decimal places acos() displays.

To find the arcsecant of a value, use the arccosine of 1 divided by the value. For example, the arcsecant of 2 is
acos(1/2), or 1.05 radians.

See also asin(), atan(), atan2(), cos(), dtor(), rtod(), SET DECIMALS

asin()

Returns the inverse sine (arcsine) of a number.
Syntax asin(<expN>)

<eXpN> The sine of an angle, from —1 to +1.

Math / Money 7-1

atan()

Description asin() returns the radian value of the angle whose sine is <eXpN>. asin() returns a number from —pi/2 to pi/2
radians. asin() returns zero when <expN> is 0. For values of X from —pi/2 to pi/2, asin(y) returns X if sin(X)
returns .

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, asin(.5) returns .52 radians while rtod(asin(.5)) returns 30.00 degrees.

Use SET DECIMALS to set the number of decimal places asin() displays.

To find the arccosecant of a value, use the arcsine of 1 divided by the value. For example, the arccosecant of
1.54 is asin(1/1.54), or .71 radians.

See also acos(), atan(), atan2(), dtor(), rtod(),SET DECIMALS, sin()

atan()

Returns the inverse tangent (arctangent) of a number.
Syntax atan(<expN>)
<eXpN> Any positive or negative number representing the tangent of an angle.

Description atan() returns the radian value of the angle whose tangent is <eXpN>. atan() returns a number from —pi/2 to pi/
2 radians. atan() returns 0 when <expN> is 0. For values of X from —pi/2 to pi/2, atan(y) returns X if tan(X)
returns y.

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, atan(1) returns 0.79 radians, while rtod(atan(1)) returns 45.00 degrees.

Use SET DECIMALS to set the number of decimal places atan() displays.

atan() differs from atan2() in that atan() takes the tangent as the argument, but atan2() takes the sine and
cosine as the arguments.

To find the arccotangent of a value, subtract the arctangent of the value from pi/2. For example, the
arccotangent of 1.73 is PI/2 — atan(1.73), or .52.

See also acos(), asin(), atan2(), rtod(),SET DECIMALS, tan()

atan2()

Returns the inverse tangent (arctangent) of a given point.

Syntax atan2(<sine expN>, <cosine expN>)
<sine expN> The sine of an angle. If <sine expN=> is 0, <cosine expN=> can't also be 0.

<cosine expN> The cosine of an angle. If <cosine expN> is 0, <sine expN> can't also be 0. When
<cosine expN> is 0 and <sine expN> is a positive or negative (nonzero) number, atan2() returns +pi/2 or —pi/2,
respectively.

Description atan2() returns the angle size in radians when you specify the sine and cosine of the angle. atan2() returns a
number from —pi to +pi radians. atan2() returns 0 when <sine expN> is 0. When you specify 0 for both
arguments, dBASE Plus returns an error.

To convert the returned radian value to degrees, use rtod(). For example, if the default number of decimal
places is 2, atan2(1,0) returns 1.57 radians while rtod(atan2(1,0)) returns 90.00 degrees.

Use SET DECIMALS to set the number of decimal places atan2() displays.

atan2() differs from atan() in that atan2() takes the sine and cosine as the arguments, but atan() takes the
tangent as the argument. See atan() for instructions on finding the arccotangent.

See also acos(), asin(), atan(), cos(), rtod(), SET DECIMALS, sin(), tan()

7-2 dBASE dBL Language Reference

ceil()

ceil()

Returns the nearest integer that is greater than or equal to a specified number.
Syntax ceil(<expN>)

<eXpN> A number, from which to determine and return the integer that is greater than or equal to it.

Description ceil() returns the nearest integer that is greater than or equal to <expN>; in effect, rounding positive numbers up
and negative numbers down towards zero. If you pass a number with any digits other than 0 as decimal digits,
ceil() returns the nearest integer that is greater than the number. If you pass an integer to ceil(), or a number
with only Os for decimal digits, it returns that number.
For example, if the default number of decimal places is 2,
* ceil(2.10) returns 3.00
e ceil(-2.10) returns —2.00
e ceil(2.00) returns 2.00
e ceil(2) returns 2
* ceil(-2.00) returns —2.00
Use SET DECIMALS to set the number of decimal places ceil() displays.
See the table in the description of int() that compares int(), floor(), ceil(), and round().

See also floor(), int(), round(), SET DECIMALS

cos()

Returns the trigonometric cosine of an angle.
Syntax cos(<expN>)

<eXpN> The size of the angle in radians. To convert an angle's degree value to radians, use dtor(). For
example, to find the cosine of a 30-degree angle, use cos(dtor(30)).

Description cos() calculates the ratio between the side adjacent to an angle and the hypotenuse in a right triangle. cos()
returns a number from —1 to +1. cos() returns 0 when <expN> is pi/2 or 3*pi/2 radians.
Use SET DECIMALS to set the number of decimal places cos() displays.
The secant of an angle is the reciprocal of the cosine of the angle. To return the secant of an angle, use 1/cos().

See also acos(), dtor(), PI(), rtod(), SET DECIMALS, sin(), tan()

dtor()

Syntax

Description

Returns the radian value of an angle whose measurement is given in degrees.
dtor(<expN>)
<exXpN> A negative or positive number that is the size of the angle in degrees.

dtor() converts the measurement of an angle from degrees to radians. To convert degrees to radians, dBASE
Plus

* Multiplies the number of degrees by pi
* Divides the result by 180
* Returns the quotient

A 180-degree angle is equivalent to pi radians.

Use dtor() in the trigonometric functions sin(), cos(), and tan() because these functions require the angle value
in radians. For example, to find the sine of a 45-degree angle, use sin(dtor(45)), which returns .71 if the default
number of decimal places is 2.

Use SET DECIMALS to set the number of decimal places dtor() displays.

Math / Money 7-3

exp()

See also

exp()

acos(), asin(), atan(), atan2(), cos(), PI(), rtod(), SET DECIMALS, sin(), tan()

Syntax

Description

See also

floor()

Returns e raised to a specified power.
exp(<expN>)
<eXpN> The positive, negative, or zero power (exponent) to raise the number € to.

exp() returns a number equal to e (the base of the natural logarithm) raised to the <expN> power. For example,
exp(2) returns 7.39 because €2 = 7.39.

exp() is the inverse of log(). In other words, if y = exp(X), then log(y) = x.
Use SET DECIMALS to set the number of decimal places exp() displays.
log(), log10(), SET DECIMALS

Syntax

Description

See also

FV()

Returns the nearest integer that is less than or equal to a specified number.
floor(<expN>)
<eXpN> A number from which to determine and return the integer that is less than or equal to it.

floor() returns the nearest integer that is less than or equal to <expN>; in effect, rounding positive numbers
down and negative numbers up away from zero. If you pass a number with any digits other than zero (0) as
decimal digits, floor() returns the nearest integer that is less than the number. If you pass an integer to floor(),
or a number with only zeros for decimal digits, it returns that number.

For example, if the default number of decimal places is 2,

e floor(2.10) returns 2.00

* floor(-2.10) returns —3.00
* floor(2.00) returns 2.00

* floor(2) returns 2

e floor(-2.00) returns —2.00

Use SET DECIMALS to set the number of decimal places floor() displays.

When you pass a positive number to it, floor() operates exactly like int(). See the table in the description of
int() that compares int(), floor(), ceil(), and round().

ceil(), int(), round(), SET DECIMALS

Syntax

Description

Returns the future value of an investment.
FV(<payment expN>, <interest expN>, <term expN>)

<payment expN> The amount of the periodic payment. Specify the payment in the same time increment
as the interest and term. The payment can be negative or positive.

<interest expN> The interest rate per period expressed as a positive decimal number. Specify the interest
rate in the same time increment as the payment and term.

<term exXpN> The number of payments. Specify the term in the same time increment as the payment and
interest.

Use FV() to calculate the amount realized (future value) after equal periodic payments (deposits) at a fixed
interest rate. FV() returns a float representing the total of the payments plus the interest generated and
compounded.

7-4 dBASE dBL Language Reference

See Also

int()

int()

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%, <interest expN> is .095
(9.5/100) for payments made annually.

Express <payment expN>, <interest expN>, and <term expN> in the same time increment. For example, if the
payment is monthly, express the interest rate per month, and the number of payments in months. You would
express an annual interest rate of 9.5%, for example, as .095/12, which is 9.5/100 divided by 12 months.
The formula dBASE Plus uses to calculate FV() is as follows:
1+int*™— 1

int
where int = rate / 100

fv = pmt *

For the future value an investment of $350 made monthly for five years, earning 9% interest, the formula
expressed as a dBASE Plus expression looks like this:

? FV(350,.09/12,60) // Returns 26398.45
2 350%((1+.09/12)60-1)/(.09/12) // Returns 26398.45

In other words, if you invest $350/month for the next five years into an account that pays an annual interest rate
of 9%, at the end of five years you will have $26398.45.

Use SET DECIMALS to set the number of decimal places FV() displays.
PAYMENT(), PV(), SET DECIMALS

Syntax

Description

See also

log ()

Returns the integer portion of a specified number.

int(<expN>)

<eXpN> A number whose integer value you want to determine and return.

Use int() to remove the decimal digits of a number and retain only the integer portion, the whole number.

If you pass a number with decimal places to a function, command, or method that uses an integer as an
argument, such as SET EPOCH, dBASE Plus automatically truncates that number, in which case you don't need
to use int().

The following table compares int(), floor(), ceil(), and round(). (In these examples, the value of the second
round() argument is 0.)

<expN> int() floor() ceil() round()
2.56 2 2 3 3
-2.56 -2 -3 -2 -3
2.45 2 2 3 2
—2.45 -2 -3 -2 -2

abs(), ceil(), floor(), round()

Syntax

Description

Returns the logarithm to the base € (natural logarithm) of a specified number.
log(<expN>)

<exXpN> A positive nonzero number that equals € raised to the log. If you specify 0 or a negative number for
<expN>, dBASE Plus generates an error.

log() returns the natural logarithm of <expN>. The natural logarithm is the power (exponent) to which you raise
the mathematical constant e to get <expN>. For example, log(5) returns 1.61 because €*1.61= 5.

log() is the inverse of exp(). In other words, if log(y) = X, then y = exp(X).
Use SET DECIMALS to set the number of decimal places log() displays.

Math / Money 7-5

log10()

See also

exp(), log10(), SET DECIMALS

log10()

Syntax
Description

See also

max ()

Returns the logarithm to the base 10 of a specified number.
log10(<expN>)

<exXpN> A positive nonzero number which equals 10 raised to the log. If you specify 0 or a negative number
for <expN>, dBASE Plus returns an error.

log10() returns the common logarithm of <expN>. The common logarithm is the power (exponent) to which
you raise 10 to get <expN>. For example, log10(100) returns 2 because 10"2=100.

Use SET DECIMALS to set the number of decimal places log10() displays.
exp(), log(), SET DECIMALS

Syntax

Description

See also

min()

Compares two numbers (or two date, character, or logical expressions) and returns the greater value.
max(<expl>, <exp2>)

<expl> A numeric, date, character, or logical expression to compare to a second expression of the same
type.

<exp2> The second expression to compare to <expl>.

Use max() to compare two numbers to determine the greater of the two values. You can use max() to ensure
that a number is not less than a particular limit.

max() may also be used to compare two dates, character strings, or logical values, in which case max() returns:
¢ The later of the two dates. In dBASE Plus, a blank date is considered later than a non-blank date.

* The character string with the higher collation value. Collation values are determined by the language driver
in use, and are case-sensitive. For example, with the DB437US driver, the letter “B” is higher than the letter
“A”, but “a” is higher than “B” (all lowercase letters are collated higher than uppercase letters).

« true if one or both logical expressions evaluate to true. (The logical OR operator has the same effect.)
If <expl> and <exp2> are equal, max() returns their value.

CALCULATE, IIF(), min()

Syntax

Description

Compares two numbers (or two date, character, or logical expressions) and returns the lesser value.
min(<expl>, <exp2>)

<expl> A numeric, date, character, or logical expression to compare to a second expression of the same
type.

<exp2> The second expression to compare to <expl>.

Use min() to compare two numbers to determine the lesser of the two values. You can use min() to ensure that
a number is not greater than a particular limit.

min() may also be used to compare two dates, character strings, or logical values, in which case min() returns:
* The earlier of the two dates. In dBASE Plus, a non-blank date is considered earlier than a blank date.

 The character string with the lower collation value. Collation values are determined by the language driver in

use, and are case-sensitive. For example, with the DB437US driver, the letter “a” is lower than the letter “b”,
but “B” is lower than “a” (all uppercase letters are collated lower than lowercase letters).

7-6 dBASE dBL Language Reference

See also

MOD()

MOD()

« false if one or both logical expressions evaluate to false. (The logical AND operator has the same effect.)
If <exp1l> and <exp2> are equal, min() returns their value.

CALCULATE, IIF(), max()

Syntax

Description

Note

See Also

Returns the modulus (remainder) of one number divided by another.
MOD(<dividend expN>, <divisor expN>)

<dividend expN> The number to be divided.

<divisor expN> The number to divide by.

MOD() divides <dividend expN> by <divisor expN> and returns the remainder. In other words, MOD(X,Y)
returns the remainder of x/y.

The modulus formula is
<dividend>-INT(<dividend>/<divisor>)*<divisor>
where INT() truncates a number to its integer portion.

Earlier versions of dBASE used FLOOR() instead of INT() in the modulus calculation. This change only
affects the result if <dividend expN> and <divisor expN> are not the same sign, which in itself is an ambiguous
case.

The % symbol is also used as the modulus operator. It performs the same function as MOD(). For example, the
following two expressions are identical:

mod(x,2)
x %2

CEILING(), FLOOR(), INT()

PAYMENT()

Syntax

Description

Returns the periodic amount required to repay a debt.
PAYMENT (<principal expN>, <interest expN>, <term expN>)
<principal expN> The original amount to be repaid over time.

<interest expN> The interest rate per period expressed as a positive decimal number. Specify the interest
rate in the same time increment as the term.

<term eXpN> The number of payments. Specify the term in the same time increment as the interest.

Use PAYMENT() to calculate the periodic amount (payment) required to repay a loan or investment of
<principal expN> amount in <term expN> payments. PAYMENT() returns a number based on a fixed interest
rate compounding over a fixed length of time.

If <principal expN> is positive, PAYMENT() returns a positive number.
If <principal expN> is negative, PAYMENT() returns a negative number.

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%, <interest expN> is .095
(9.5/100) for payments made annually.

Express <interest expN> and <term expN> in the same time increment. For example, if the payments are
monthly, express the interest rate per month, and the number of payments in months. You would express an
annual interest rate of 9.5%, for example, as .095/12, which is 9.5/100 divided by 12 months.

The formula dBASE Plus uses to calculate PAYMENT() is as follows:

term

(1 +int)

_ g int ¥
pmt = princ)term

(1 +int -1

Math / Money 7-7

PI()

See Also

PI()

where int = rate/100

For the monthly payment required to repay a principal amount of $16860.68 in five years, at 9% interest, the
formula expressed as a dBASE Plus expression looks like this:

? PAYMENT(16860.68,.09/12,60) // Returns 350.00
nTemp = (1 +.09/12)"60
?16860.68*(.09/12*nTemp)/(nTemp-1) // Returns 350.00

Use SET DECIMALS to set the number of decimal places PAYMENT() displays.
FV(),PV(), SET DECIMALS

Syntax

Description

See also

PV()

Returns the approximate value of pi, the ratio of a circle’s circumference to its diameter.

PI()

PI() returns a number that is approximately 3.141592653589793. pi is a constant that can be used in
mathematical calculations. For example, use it to calculate the area and circumference of a circle or the volume
of a cone or cylinder.

Use SET DECIMALS to set the number of decimal places PI() displays.
cos(), dtor(), rtod(), SET DECIMALS, sin(), tan()

Syntax

Description

Returns the present value of an investment.
PV(<payment expN>, <interest expN>, <term expN>)

<payment expN> The amount of the periodic payment. Specify the payment in the same time increment
as the interest and term. The payment can be negative or positive.

<interest expN> The interest rate per period expressed as a positive decimal number. Specify the interest
rate in the same time increment as the payment and term.

<term exXpN> The number of payments. Specify the term in the same time increment as the payment and
interest.

PV() is a financial function that calculates the original principal balance (present value) of an investment. PV()
returns a float that is the amount to be repaid with equal periodic payments at a fixed interest rate compounding
over a fixed length of time. For example, use PV() if you want to know how much you need to invest now to
receive regular payments for a specified length of time.

Express the interest rate as a decimal. For example, if the annual interest rate is 9.5%, <interest expN> is .095
(9.5 /100) for payments made annually.

Express <payment expN>, <interest expN>, and <term expN> in the same time increment. For example, if the
payment is monthly, express the interest rate per month, and the number of payments in months. Express an
annual interest rate of 9.5%, for example, as .095/12, which is 9.5/100 divided by 12 months.

The formula dBASE Plus uses to calculate PV() is as follows:

term
—1

pv = pmt * (1 +int)
. . term
int * (1 +int)

where int = rate 100

For the present value of an investment earning 9% interest, to be paid at $350 monthly for five years, the
formula expressed as a dBASE Plus expression looks like this:

7-8 dBASE dBL Language Reference

random()

? PV(350,.09/12,60) // Returns 16860.68
nTemp = (1 +.09/12)"60
?350*(nTemp-1)/(.09/12*nTemp) // Returns 16860.68

In other words, you have to invest $16,860.68 now into an account paying an interest rate of 9% annually to
receive $350/month for the next five years.

Use SET DECIMALS to set the number of decimal places PV() displays.

See Also FV(), PAYMENT(), SET DECIMALS

random()

Returns a pseudo-random number between 0 and 1 exclusive (never 0 and
never 1).

Syntax random([<expN>])
<exXpN> The number with which you want to seed random().

Description Computers cannot generate truly random numbers, but you can use random() to generate a series of numbers
that appear to have a random distribution. A series of pseudo-random numbers relies on a seed value, which
determines the exact numbers that appear in the series. If you use the same seed value, you get the same series of
numbers.

Pseudo-random numbers, when considered as a whole series, appear to be random; that is, you cannot tell from
one number what the next will be. But the first number in the series is related to the seed value. Therefore, you
should seed random() only once at the beginning of each series, like before simulating a card shuffle or
randomly assigning work shifts. Seeding during a series defeats the design of the random number generator.
If you specify a positive <expN> value, random() uses that <expN> as the seed value, so a positive value should
be used for testing, since the numbers will be the same each time. If <expN> is negative, random() uses a seed
value based on the number of seconds past midnight on your computer system clock. As a result, a negative <expN>
value most likely will give you a different series of random numbers each time.
If you don't specify <expN>, or use zero, random() returns the next number in the series.
When dBASE Plus first starts up, the random number generator is seeded with a fixed internal seed value of
179757.
Use SET DECIMALS to set the number of decimal places random() displays.
See also GENERATE, SET DECIMALS
round()
Returns a specified number rounded to the nearest integer or a specified number of decimal places.
Syntax round(<expN 1>, <expN 2>)
<expN 1> The number you want to round.
<expN 2> If <expN 2> is positive, the number of decimal places to round <expN 1> to. If <expN 2> is
negative, whether to round <expN 1> to the nearest tens, hundreds, thousands, and so on.
Description Use round() to round a number to a specified number of decimal places or to a specified tens, hundreds,

thousands value, and so forth. Use round() with SET DECIMALS to round a number and remove trailing zeros.

If the digit in position <expN 2>+ 1 is between 0 and 4 inclusive, <eXpN 1> (with <expN 2> decimal places)
remains the same; if the digit in position <expN 2>+ 1 is between 5 and 9 inclusive, the digit in position <expN
2> is increased by 1.

Use 0 as <expN 2> to round a number to the nearest whole number. Using —1 rounds a number to the nearest
multiple of ten; rounding to a —2 rounds a number to the nearest multiple of one hundred; and so on. For
example, round(14932,-2) returns 14900 and round(14932,-3) returns 15000.

For example, if the default number of decimal places is 2,

Math / Money 7-9

rtod()

See also

rtod()

* round(2.50,0) returns 3.00
* round(-2.50,0) returns —2.00
* round(2.00,0) returns 2.00

See the table in the description of int() that compares int(), floor(), ceil(), and round().

abs(), ceil(), floor(), int()

Syntax

Description

See also

Returns the degree value of an angle measured in radians.

rtod(<expN>)

<eXpN> A negative or positive number that is the size of the angle in radians.
rtod() converts the measurement of an angle from radians to degrees.

To convert radians to degrees, dBASE Plus

* Multiplies the number of radians by 180
* Divides the result by pi
* Returns the quotient

An angle of pi radians is equivalent to 180 degrees.

Use rtod() with the trigonometric functions acos(), asin(), atan(), and atan2() to convert the radian return
values of these functions to degrees. For example, if the default number of decimal places is 2, atan(1) returns
the value of the angle in radians, 0.79, while rtod(atan(1)) returns the value of the angle in degrees, 45.00.

Use SET DECIMALS to set the number of decimal places rtod() displays.
acos(), asin(), atan(), atan2(), cos(), dtor(), PI(), SET DECIMALS, sin(), tan()

SET CURRENCY

Syntax

Description

See Also

SET CURRENCY determines the character(s) used as the currency symbol, and the position of that symbol
when displaying monetary values

SET CURRENCY left | right

SET CURRENCY TO [<expC>]

LEFT Places currency symbol(s) to the left of currency numbers.
RIGHT Places currency symbol(s) to the right of currency numbers.

<expC> The characters that appear as a currency symbol. Although dBASE Plus imposes no limit to the
length of <expC>, it recognizes only the first nine characters. You can't include numbers in <expC>.

Currency symbols are displayed for numbers when you use the "$" template symbol in a formatting template or
the TRANSFORM() function. The defaults for SET CURRENCY are set by the Regional settings of the
Windows Control Panel.

Use SET CURRENCY left | right to specify the position of currency symbol(s) in monetary numeric values.
Use SET CURRENCY TO to establish a currency symbol other than the default.

When SET CURRENCY is LEFT, dBASE Plus displays only as many currency symbols as fit, together with
the digits to the left of any decimal point, within ten character spaces.

SET CURRENCY TO without the <expC> option resets the currency symbol to the default set with the
Regional settings of the Windows Control Panel.

SET POINT, SET SEPARATOR, TRANSFORM()

7-10 dBASE dBL Language Reference

SET DECIMALS

SET DECIMALS

Syntax

Description

See Also

Determines the number of decimal places of numbers to display.
SET DECIMALS TO [<expN>]
<expN> The number of decimals places, from 0 to 18. The default is 2.

Use SET DECIMALS to specify the number of decimal places of numbers you want dBASE Plus to display.
SET DECIMALS affects the display of most mathematical calculations, but not the way numbers are stored on
disk or maintained internally.

Excess digits are rounded when a number is displayed. For example, with the default setting of two decimal
places, the number 1.995 is displayed as 2.00.

Use SET PRECISION to set the number of decimal places used in comparisons. SET DECIMALS and SET
PRECISION are independent settings.

SET DECIMALS TO without <expN> resets the number of decimal places back to the default of 2.
INT(), RANDOM(), ROUND(), SET PRECISION, VAL()

SET POINT

Syntax

Description

See Also

Specifies the character that separates decimal digits from integer digits in numeric display.
SET POINT TO [<expC>]

<exXpC> The character representing the decimal point. You can specify more than one character, but dBASE
Plus uses only the first one. If you specify a number as a character for <expC> (for example, "3"), dBASE Plus
returns an error.

The default is set by theRegional Settings of the Windows Control Panel.

SET POINT affects both numeric input and display with commands such as EDIT. SET POINT also affects
numeric display with commands such as DISPLAY MEMORY, STORE, =, and the PICTURE "." template
character. You must use the period in the PICTURE option, regardless of the setting of SET POINT.

SET POINT has no effect on the representation of numbers in dBASE Plus expressions and statements. Only a
period is valid as a decimal point. For example, if you SET POINT TO "," (comma) and issue the following
command:

2 MAX(123,4, 123.5)
dBASE Plus returns an error. The correct syntax is:
2 MAX(123.4, 123.5)

SET POINT TO without the <expC> option resets the decimal character to the default set with theRegional
settings of the Windows Control Panel.

SET DECIMALS, SET SEPARATOR, STORE

SET PRECISION

Syntax

Description

Determines the number of digits used when comparing numbers.
SET PRECISION TO [<expN>]
<eXpN> The number of digits, from 10 to 16. The default is 10.

Use SET PRECISION to change the accuracy, or precision, of numeric comparisons. You can set precision
from 10 to 16 digits.

SET PRECISION affects data comparisons, but not mathematical computations or data display. Math
computations always use full precision internally. To change the number of decimal places dBASE Plus
displays, use SET DECIMALS.

Math/Money 7-11

SET SEPARATOR

In general, you should use as little precision as possible for comparisons. Like many programs, dBASE Plus
handles numbers as base-2 floating point numbers. This format precisely represents fractional values such as 0.5
(1/2) or 0.375 (3/8), but only approximates other values such as 0.1 and 1/9. In addition, precision is also used to
represent the integer portion of a number; the larger the integer portion, the less precision is available for the
fractional portion. Therefore, comparing values with too much precision results in erroneous mismatches.

Example The following examples demonstrate how numbers are represented and how the precision setting affects data

comparisons:
set decimals to 18 // to see as many digits as possible
set precision to 16 // maximum
?0.5 / 0.500000000000000000 exact
?0.375 /l 0.375000000000000000 exact
204 / 0.400000000000000022 16 digits precision
?1/9 // O.111111111111111105 16 digits precision
7123454 // 12345.399999999999640000 11 digits precision
?123456789.4 /1 123456789.400000006000000000 7 digits precision

?12345.4 - 12345 // 0.399999999999636202 11 digits precision
?12345.4 - 12345 == 0.4 // False, too much precision attempted
set precision to 10

?12345.4 - 12345=0.4 // True

set decimals to 0 // Has no effect on comparisons

?12345.4 - 12345 ==0.4 // Still True

set precision to 16

? 12345.4 - 12345 == 0.4 // Still False

set precision to 11

?12345.4 - 12345=0.4 // True

set precision to 12

?12345.4 - 12345=0.4 // True

Note that the final comparion to 12 digits returns true because the first 12 digits just happen to be the same for
both the calculated and literal value of 0.4. In fact, there are only 11 digits of precision in the calculated value.
The 12th digit is the first rounding digit.

See Also SET DECIMALS

SET SEPARATOR

Specifies the character that separates each group of three digits (whole numbers) to the left of the decimal point in
the display of numbers greater than or equal to 1000.

Syntax SET SEPARATOR TO [<expC>]

<expC> The whole-number separator, which is the character that separates each group of three digits to the
left of the decimal point in the display of numbers greater than or equal to 1000. You can specify more than one
character, but dBASE Plus uses only the first one. If you specify a number as a character for <expC> (for
example, "3"), dBASE Plus returns an error.

The default is set by the Regional Settings of the Windows Control Panel.

Description SET SEPARATOR affects only the PICTURE "," template character and the numeric display of byte totals for
the commands such as DIR, DISPLAY FILES, and LIST FILES. For example, if you SET SEPARATOR TO
"."(period) and issue the following, dBASE Plus returns 123456 displayed as 123.456:

? 123456 PICTURE "999,999"
You must use the comma in the PICTURE function, regardless of the setting of SET SEPARATOR.

SET SEPARATOR TO without the <expC> option resets the separator to the default set with theRegional
Settings of the Windows Control Panel.

Setting a whole-number separator with SET SEPARATOR doesn't affect the values of numbers, only their
display.

See Also SET POINT

7-12 dBASE dBL Language Reference

SIGN()

SIGN()

Syntax

Description

Example

See Also

sin()

Returns an integer that indicates if a specified number is positive, negative, or zero (0).
SIGN(<expN>)
<exXpN> The number whose sign (positive, negative, or zero) to determine.

Use SIGN() to reduce an arbitrary numeric value into one three numbers: 1, -1, or zero. SIGN() returns 1 if a
specified number is positive, -1 if that number is negative, and 0 if that number is 0.

SIGN() is used when the numbers 1, -1, and/or 0 are appropriate for an action, based on the sign—but not the
magnitude—of another number. When interested in the sign alone, it’s more straightforward to compare the
number with zero using a comparison operator.

SIGN() always returns an integer, regardless of the value of SET DECIMALS.

The following example is a custom next() method for a detail rowset that automatically navigates in the master
rowset:

function next(nArg)
if not rowset::next(nArg) // Navigate as far as specified, but
// if end of detail rowset
this.masterRowset.next(sign(nArg)) // Move forward or backward in master
ifnArg <0 /' If navigating backwards
this.last() /I Go to last matching detail row
endif
endif

No matter how many records are skipped in the detail rowset, the master rowset is navigated forward one or
backward one row only, by using the SIGN() function to convert the row count to 1 or -1 (or zero). Without the
SIGN() function, you would have to use a more cumbersome IIF() function or IF block.

When checking to see if the navigation was backwards, it would be redundant to use the SIGN() function again,
since you would have to compare the result to zero or -1 anyway. Simply using the less than logical operator is
all that is needed.

ABS(), MAX(), MIN(), SET DECIMALS

Syntax

Description

See also

sqrt()

Returns the trigonometric sine of an angle.
sin(<expN>)

<eXpN> The size of the angle in radians. To convert an angle’s degree value to radians, use dtor(). For
example, to find the sine of a 30-degree angle, use sin(dtor(30)).

sin() calculates the ratio between the side opposite an angle and the hypotenuse in a right triangle. sin() returns
a number from —1 to +1. sin() returns zero when <expN> is zero, pi, or 2pi radians.

Use SET DECIMALS to set the number of decimal places sin() displays.

The cosecant of an angle is the reciprocal of the sine of the angle. To return the cosecant of an angle, use 1/
sin().

asin(), cos(), dtor(), PI(), rtod(), SET DECIMALS, tan()

Syntax

Returns the square root of a number.
sqrt(<expN>)

<exXpN> A positive number whose square root you want to return. If <expN> is a negative number, dBASE
Plus generates an error.

Math / Money 7-13

tan()

Description

See also

tan()

sqrt() returns the positive square root of a non-negative number. For example sqrt(36) returns 6 because 6”2 =
36. The square root of 0 is 0.

An alternate way to find the square root is to raise the value to the power of 0.5. For example, the following two
statements display the same value:

?sqrt(36)) // displays 6.00
73675 // displays 6.00

Use SET DECIMALS to set the number of decimal places sqrt() displays.
exp(), log(), logl0(), SET DECIMALS

Syntax

Description

See also

Returns the trigonometric tangent of an angle.
tan(<expN>)

<eXpN> The size of the angle in radians. To convert an angle's degree value to radians, use dtor(). For
example, to find the tangent of a 30-degree angle, use tan(dtor(30)).

tan() calculates the ratio between the side opposite an angle and the side adjacent to the angle in a right triangle.
tan() returns a number that increases from zero to plus or minus infinity. tan() returns zero when <expN> is 0,
pi, or 2*pi radians. tan() is undefined (returns infinity) when <expN> is pi/2 or 3*pi/2 radians.

Use SET DECIMALS to set the number of decimal places tan() displays.

The cotangent of an angle is the reciprocal of the tangent of the angle. To return the cotangent of an angle, use 1/
tan().

atan(), atan2(), cos(), dtor(), PI(), rtod(), SET DECIMALS, sin()

7-14 dBASE dBL Language Reference

Date and time objects

dBASE Plus supports two types of dates:
» A primitive date that is compatible with earlier versions of dBASE
* A JavaScript-compatible Date object.

A Date object represents a moment in time. It is stored as the number of milliseconds since January 1, 1970
00:00:00 GMT (Greenwich Mean Time). Although GMT and UTC (a compromise between the English and
French acronyms for Universal Coordinated Time) are derived differently, they are considered to represent the
same time.

Modern operating systems have their own current time zone setting, which is used when handling Date objects.
For example, two computers with different time zone settings—whether or not they are physically in different
time zones—will display the same time differently.

Primitive dates represent the date only, not the time. (They are considered to be the first millisecond—
midnight—of that date.) Literal dates are delimited by curly braces and are evaluated according to the rules used
by the CTOD() function. An invalid literal date is always converted to the next valid one; for example, if the
current date format is month/day/year, {02/29/1997} is considered March 1, 1997. An empty date is valid and is
represented by empty braces: { }.

dBASE Plus will convert one type of date to the other on-the-fly as needed. For example, you may use a Date
class method on a primitive date variable or a literal date:

? date().toGMTString()
? {8/21/97} .toString()

This creates a temporary Date object from which the method or property is called. Because the object is a
temporary copy, calling the set methods or assigning to the properties is allowed, but has no apparent effect.
You may also use a date function on a Date object, in which case the time portion of the Date object will be
truncated.

Note While the JavaScript-compatible methods are zero-based, dBL functions are one-based. For example, the
getMonth() method returns 0 for January, while MONTH() returns 1.

dBL also features a Timer object that can cause actions to occur at timed intervals.

class Date

An object that represents a moment in time.
Syntax [<oRef> =] new Date()

or

[<oRef> =] new Date(<date expC>)

or

Date and time objects 8-1

class Date

[<oRef> =] new Date(<msec expN>)
or

[<oRef> =] new Date(<year expN>, <month expN>, <day expN>
[, <hours expN> , <minutes expN> , <seconds expN>])

or

[<oRef> =] new Date(<year expN>, <month expN>, <day expN>
[, <hours expN> , <minutes expN> , <seconds expN>, <timez expC>])

<oRef> A variable or property in which you want to store a reference to the newly created Date object.
<date expC> A string representing a date and time.

<msec eXxpN> The number of milliseconds since January 1, 1970 00:00:00 GMT. Negative values can be
used for dates before 1970.

<year expN> The year.

<month eXxpN> A number representing the month, between 0 and 11: zero for January, one for February, and
so on, up to 11 for December.

<day expN> The day of the month, from 1 to 31.

<hours expN> The hours portion of the time, from 1 to 24.
<minutes eXxpN> The minutes portion of the time, from 1 to 60.
<seconds expN> The seconds portion of the time, from 1 to 60.
<timez EXpC> Time Zone (GMT, EST, CST, MST or PST).

Properties The following tables list the properties and methods of the Date class. (No events are associated with this class.)

Property Default Description

baseClassName DATE Identifies the object as an instance of the Date class (Property
discussed in Chapter 5, “Core language.”)

className (DATE) Identifies the object as an instance of a custom class. When no custom
class exists, defaults to baseClassName

date The day of the month

day The day of the week, from 0 to 6: 0 is Sunday, 1 is Monday,
and so on

hour The hour of the time

minute The minute of the time

month The month of the year, from 0 to 11: 0 is January, 1 is February,
and so on

second The second of the time

year The year of the date

Method Parameters Description

getDate() Returns day of month

getDay() Returns day of week

getHours() Returns hours portion of time

getMinutes() Returns minutes portion of time

getMonth() Returns month of year

getSeconds() Returns seconds portion of time

getTime() Returns date/time equivalent

getTimezoneOffset() Returns time zone offset for current locale

getYear() Returns year of date

parse() <date expC> Calculates time equivalent for date string

setDate() <expN> Sets day of month

setHours() <expN> Sets hours portion of time

8-2 dBASE dBL Language Reference

Description

Note

class Date

Method Parameters Description
setMinutes() <expN> Sets minutes portion of time
setMonth() <expN> Sets month of year
setSeconds() <expN> Sets seconds portion of time
setTime() <expN> Sets date/time
setYear() <expN> Sets year of date
toGMTString() Converts date to string, using Internet (GMT)
conventions
toLocaleString() Converts date to string, using locale conventions
toString() Converts date to string, using standard JavaScript
conventions
UTC() <year expN> Calculates time equivalent of date parameters
, <month expN>
, <day expN>

[, <hours expN>
, <minutes expN>
, <seconds expN>]

A Date object represents both a date and time.
There are four ways to create a new Date object:
* When called with no parameters, the Date object contains the current system date and time.

* You can pass a string containing a date and optionally a time. Once a time parameter has been specified, the time
zone parameter may also be included. Lacking a time zone parameter, ABASE defaults to the current locale.

* You can pass a number representing the number of milliseconds since January 1, 1970, 00:00:00 GMT. Use
a negative number for dates before 1970.

* You can pass numeric parameters for each component of the date, and optionally each component of the
time.

If you specify a date but don’t specify hours, minutes, or seconds, they are set to zero. When passing a string,
the <date expC> can be in a variety of formats, with or without the time, as shown in the following examples:

d1 =new Date("Jan 5 1996") // month, day, year

d2 =new Date("18 Dec 1994 15:34")// day, month, year, and time

d3 =new Date("1987 Nov 4 9:18:34")// year, month, day, and time with seconds

d4 = new Date("1987 Nov 4 9:18:34 PST")// year, month, day, time with seconds, and time
zone

You may spell out the month or abbreviate it, down to the first three letters; for example, “April”, “Apri”, or
“Apr”. For consistency and because of the three-letter month of May, you should either always spell it out
completely or use the first three letters.

Date objects have an inherent value. The format of the date is platform-dependent; in dBL, the format is same as
using the toLocaleString() method. Use the toGMTString(), toLocaleString(), and toString() methods to
format the Date objects, or create your own. Date objects will automatically type-convert into strings, using the
inherent format.

In dBL, every Date object has a separate property for each date and time component. You may read or write to
these properties directly (except for the day property, which is read-only), or use the equivalent method. For
example, assigning a value to the minute property has the same effect as calling the setMinutes() method with
the value as the parameter.

While using values outside a date component's specified range does not produce an error message, they may
produce unintended results. In the following example, an inadvertant minus sign before the hours component
actually rolls the clock back:

d=new date(01,05,13,23,20,30)
?2dtodt(d)

06/13/2001 11:20:30 PM
d=new date(01,05,13,-23,20,30)
2dtodt(d)

Date and time objects 8-3

class Timer

See also

06/12/2001 01:20:30 AM
Change the month to 12 and watch the result jump to:
01/12/2002 01:20:30 AM
To avoid such scenarios, it is recommended that date component values fall withing their stated range.

You should also aquaint yourself with the affect "rollover" will have on your date components. With the
exception of the month component, "rollover" occurs whenever you use the highest number in a range. For
example, using 60 for the seconds value will cause the minutes value to increase by 1, 60 minutes rollsovers to
the next hour, and so on.

DATE()

class Timer

Syntax

Properties

Description

8-4

Example

An object that initiates a recurring action at preset intervals.
[<oRef> =] new Timer()
<0ORef> A variable or property in which you want to store a reference to the newly created Timer object.

The following tables list the properties and events of the Timer class. (No methods are associated with this
class.)

Property Default Description

baseClassName TIMER Identifies the object as an instance of the Timer class (Property
discussed in Chapter 5, “Core language.”)

className (TIMER) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

enabled false Whether the Timer is active

interval 10 The interval between actions, in seconds

Event Parameters Description

onTimer Action to take when interval expires

To use a Timer object:

1 Assign an event handler to the onTimer event.
2 Set the interval property to the desired number of seconds.
3 Set the enabled property to true when you want to activate the timer.

The Timer object will start counting down time whenever dBASE Plus is idle. When the number of seconds
assigned to interval has passed, the Timer object’s onTimer event fires. After the event fires, the Timer object’s
internal timer is reset back to the interval, and the countdown repeats.

To disable the timer, set the enabled property to false.

A Timer object counts idle time; that is when dBASE Plus is not doing anything. This includes waiting for input
in the Command window or Navigator. If a process, such as an event handler or program, is running, the counter
in all active Timer objects is suspended. When the process is complete and dBASE Plus is idle again, the count
resumes.

Suppose you want to display the date and time in a form. The following is an onOpen event handler that creates
a Timer object and attaches it to the form. A reference to the form is added to the Timer object so that the
timer’s onTimer event handler can update the form. Another method in the form is assigned as the Timer
object’s onTimer event handler. The time is updated every two seconds instead of every second, so that dBASE
Plus is not too bogged down constantly updating the time.

function Form_onOpen()

this.timer = new Timer() // Make timer a property of the form
this.timer.parent = this /I Assign form as timer's parent
this.timer.onTimer = this.updateClock // Assign method in form to timer
this.timer.interval = 2 // Fire timer every 2 seconds

dBASE dBL Language Reference

CDOW()

this.timer.enabled = true // Activate timer

The following is the updateClock() method of the form, assigned as the onTimer event handler. Because the
Timer object calls this method, the this reference refers to the Timer object, not the form, even though the
method is a method of the form. A reference to the form has been stored in the parent property of the timer; an
Text component of the form named clock is updated through that reference.

function updateClock()
this.parent.clock.text = new Date()

The timer should be deactivated when the form is closed. Use the form’s onClose event:

function Form_onClose()
this.timer.enabled = false

CDOW()

Returns the name of the day of the week of a specified date.

Syntax CDOW(<expD>)
<expD> The date whose corresponding weekday name to return.

Description CDOW() returns a character string containing the name of the day of the week on which a date falls. To return
the day of the week as a number from 1 to 7, use DOW().

If you pass an blank or invalid date to CDOW(), it returns "Unknown".

Example The following is a beforeGetValue event handler for a date field. It displays recent posting dates as days of the
week. Anything older than a week it displays as the date.

function postdate beforeGetValue
local nDays
nDays = date() - this.value
do case
case this.value == {} // Blank date
return "Not posted"

case nDays < 0 // Date should never be after current date
return "Error"

case nDays == 0 // Same date as today
return "Today"

case nDays <7 // Date within the past week
return cdow(this.value)

otherwise // Older date
return dtoc(this.value)

endcase

See Also CMONTHY(), DATE(), DAY(), DOW(), YEAR()

CMONTH()

Returns the name of the month of a specified date.

Syntax CMONTH(<expD>)
<expD> The date whose corresponding month name to return.

Description CMONTHY() returns a character string containing the name of the month in which a date falls. To return the
month as a number from 1 to 12, use MONTH().

If you pass an blank or invalid date to CMONTH(), it returns "Unknown".

Example The following funtion uses CMONTH(), DAY(), and YEAR() to return the month, day, and year in a
character string—Ilike the MDY () function, but with no leading zero in the day and always with the full year.

function mdcy(dArg)
return cmonth(dArg) +" " + day(dArg) + ", " + year(dArg)

Date and time objects 8-5

CTOD()

See Also

CDOW(), DAY(), MDY(), MONTH(), YEAR()

CTOD()

Syntax

Description

Example

See Also

Interprets a specified character expression as a literal date.
CTOD(<expC>)
<expC> The character expression, in the current date format, to return as a date.

Use CTOD() to convert a character expression containing a literal date to a date value. Once you convert the
string to a date, you can manipulate it with date functions and date arithmetic.

A literal date must be in format:
<number><separator><number><separator><number>[BC]

where <separator> should be a slash (/), hyphen (-), or period (.). The two <separator> characters should
match. You may specify a BC date by including the letters “BC” (not case-sensitve) at the end of the literal date.

To specify a literal date in code, use curly braces ({ }) as literal date delimiters; there is no need to use CTOD().
For example, there two are equivalent:

{04/05/06}
ctod("04/05/06")

The interpretation of the literal date—that is, which numbers are the day, month, and year, and how two-digit
years are handled—is controlled by the current settings for SET DATE and SET EPOCH. For example, if SET
DATE is MDY and SET EPOCH is 1930, the literal date above is April 5, 2006.

SET DATE also controls the display of dates, while SET EPOCH does not. SET CENTURY controls the
display of dates, but has no effect on how dates are interpreted. Two-digit years are always treated as years in
the current epoch.

If you pass an invalid date to CTOD(), it attempts to convert the date to a valid one. For example, it interprets
June 31 (June only has 30 days) as July 1. If you pass an empty or non-literal-date string to CTOD(), it returns
an blank date, which is a valid date value.

Suppose a form allows the input of the month and year only. You want to store this as the first day of that
month. First create a literal date string from the month and year numbers, then use CTOD() to convert that
string into a date, as follows:

function saveButton_onClick
local cDate
cDate ="" + form.month.value + "/01/" + form.year.value // Create string
form.rowset.fields["Start date"].value = ctod(cDate) // Store in date field
form.rowset.save()

This function assumes that the current SET DATE format is MDY, or something similar, like AMERICAN.
DTOC(), DTOS(), SET DATE, SET CENTURY, SET EPOCH

CTODT()

Syntax

Description

"Character to dateTime" converts a literal dateTime string to a dateTime (DT) value type.
CTODT(<expC>)

<expC> The character expression, in the current dateTime format, to return as a dateTime value.

Use CTODT() to convert a dateTime string to a dateTime value. dateTime values are their own type (DT).
e SET DATE determines the order of the day, month, and year.

e SET CENTURY determines whether the year is expressed as two or four digits.

* SET MARK assigns the separator character.

* SET HOURS determines whether times are displayed in military format, or with an AM/PM indicator.

8-6 dBASE dBL Language Reference

Example

Note

CTOT()

"Character to dateTime" can be used to convert date and time values to a dateTime value. The following
statements convert and combine date() and TTIME() values to dateTime.

datevalue=date() //Assigns todays date
datevalue=dtoc(datevalue) //Converts date to character string
timevalue=TTIME() //Assigns the current time
timevalue=ttoc(timevalue) //Converts time to character string

datetime=CTODT(datevalue+" "+timevalue) //Combines date and time, separated
by "space". Converts to dateTime.

Omitting the "space" in the above code will cause the timevalue component to revert to 12:00:00 AM.

CTOT()

Syntax

Description

"Character to Time"() converts a literal Time string to a Time value.
CTOT(<expC>)
<expC> The character expression, in the current Time format, to return as a Time value.

Use CTOT() to convert a Time string to a Time value. Time strings returned by the Time() function result in
an HH:MM:SS, military time format. When these strings are converted to values, through the CTOT()
function, the result can be displayed with an attached AM/PM indicator when SET HOURS is set to 12.

One use of Time values is determining the duration between two events. Subtracting the earlier from the later produces the
lapsed time displayed in seconds.

DATE()

Syntax

Description

Example

See Also

Returns the system date.

DATE()

DATE() returns your computer system's current date.
To change the system date, use SET DATE TO.

The following statement counts how many records in a table of payments are more than 30 days overdue.
count for date() - LAST PAY > 30 to nOver30

SET DATE TO, TIME()

DATETIME()

Syntax

Description

Returns a value representing the current date and time.
DATETIME()

Use the DATETIME() function to determine the lapsed time between two or more events. The actual value of
DATETIME() appears internally in scientific notation as fractions of days, and provides little in the way of
visually relevant information. Subtracting the current DATETIME() from another a short while later could
produce something resembling -.92245370370436E-4.

To use DATETIME() values in a more practical format, convert the value to a character string and extract the
date and/or time elements. DATETIME() values can be converted to character strings using the DTtoC()
function (DateTime to Character), and back to values using the CtoDT() function (Character to DateTime).

Once the date and time character strings have been extracted, you can convert the resulting strings to values
using the CTOD() or CTOT() functions, and back again using DTOC() or TTOC() respectively.

If you are utilizing the TimeStamp field you could store the current date and time to a field defined as a
TimeStamp type:

queryName.rowset.fields["timestampfield"].value = DATETIME()

Date and time objects 8-7

DAY()

Example

DAY()

The following code converts a dateTime value to a string using DTTOC (dateTime to Character) and extracts
the date and time strings.

d=DATETIME() // Yields 08/17/00 04:25:45 PM

d1=DTTOC(d) //Yields 08/17/00 04:25:45 PM as a Character string
d2=left(d1,8) //Yields 08/17/00 as a Character string
d3=right(d1,11) //Yields 04:25:45 PM as a Character string

Syntax
Description

Example

See also

DMY/()

Returns the numeric value of the day of the month for a specified date.

DAY (<expD>)

<expD> The date whose corresponding day-of-the-month number you want to return.
DAY() returns a date's day of the month number—a value from 1 to 31.

DAY() returns zero for a blank date.

The following is an onOpen event handler for a form that makes the “Ship” button invisible on the first day of
the month, when inventory is being reconciled:

function Form_onOpen()

if day(date()) ==1 /I Get today's day of month, if first of month
this.shipButton.visible = false // Prevent shipping
endif

DOW(), getDate(), MONTH(), YEAR()

Syntax

Description

See Also

DOW()

Returns a specified date as a character string in DD MONTH YY or DD MONTH YYYY format.
DMY (<expD>)
<expD> The date to format.

DMY() returns a date in DD MONTH YY or DD MONTH YYYY format, where DD is the day number,
MONTH is the full month name, and Y is the year number. If SET CENTURY is OFF (the default), DMY()
returns the year as 2 digits. If SET CENTURY is ON, DMY() returns the year as 4 digits. If the day is only one
digit, it is preceded by a space.

If you pass an blank date to DMY(), it returns "0 Unknown 00" or "0 Unknown 0000".
MDY(), SET CENTURY

Syntax

Description

Returns the day of the week corresponding to a specified date as a number from 1 to 7.
DOW(<expD>)
<expD> The date whose corresponding weekday number you want to return.

DOW() returns the number of the day of the week on which a date falls:

Day Number
Sunday 1
Monday 2
Tuesday 3
Wednesday 4
Thursday 5

8-8 dBASE dBL Language Reference

DTOC()

Day Number
Friday 6
Saturday 7

To return the name of the day of the week instead of the number, use CDOW().
DOW() returns zero for a blank date.

Example The following function calculates the date for the Monday that follows the specified date:
function nextMonday(dArg)

if dow(dArg) == /I If it's Sunday

return dArg + 1 // Monday is the next day
else // Otherwise, subtract DOW()

return dArg - dow(dArg) +9 // to get last week Saturday
endif // then add 9 for next week Monday

See also CDOW(), DAY(), MONTH(), YEAR()

DTOC()

Converts a date into a literal date string.

Syntax DTOC(<expD>)
<expD> The date to return as a string.

Description There are many different ways to represent a date as a string. Use DTOC() to convert a date into a literal date
string, one that is suitable for conversion back into a date by CTOD().

The order of the day, month, and year is controlled by the current SET DATE setting. Whether the year is
expressed as two or four digits is controlled by SET CENTURY. The separator character is controlled by SET
MARK.

Note To convert a date expression to a character string suitable for indexing or sorting, always use DTOS(), which
converts the date into a consistent and sortable format.

If you pass a blank date to DTOC(), it returns a string with spaces instead of digits. For example, if the SET
DATE format is AMERICAN and SET CENTURY is OFF, DTOC({ }) returns " / / ".

When concatenating a date to a string, dBASE Plus automatically converts the date using DTOC() for you.

Example The following statement writes the current date to the text file opened in the File object fLog:
fLog.puts(dtoc(date()))
The puts() method expects a string.

See Also CTOD(), DTOS(), SET CENTURY, SET DATE, SET MARK

DTODT()

"Date to DateTime" converts a date to a DateTime value (DT).

Syntax DTODT(<expD>)
<expD> The date to return as a DateTime value.

Description Use DTODT() to convert a date into DateTime value. DateTime values are their own type (DT). DTODT()
only affects the date component of the DateTime value. The time component is displayed as 12:00:00 AM when
SET HOURS is set to 12, and 00:00:00 when SET HOURS is set to 24. Where the current date is 12/25/2001;

d1=date()
d2=DTODT(D1) //Yields 12/25/2001 12:00:00 AM (SET HOURS=12)
OR 12/25/2001 00:00:00 (SET HOURS=24)

* SET DATE determines the order of the day, month, and year.

Date and time objects 8-9

DTOS()

e SET CENTURY determines whether the year is expressed as two or four digits.
* SET MARK assigns the separator character.
See Also CTODT(), DATETIME(), DTODT(), SET CENTURY, SET DATE, SET MARK

DTOS()

Returns a specified date as a character string in YYYYMMDD format.

Syntax DTOS(<expD>)
<expD> The date expression to return as a character string in YYYYMMDD format.

Description Use DTOS() to convert a date expression to a character string suitable for indexing or sorting. For example, you
can use DTOS() when indexing on a date field in combination with another field of a different type. DTOS()
always returns a character string in YYYYMMDD format, even if SET CENTURY is OFF.

If you pass a blank date to DTOS(), it returns a string with eight spaces, which matches the length of the normal
result.

Example The following statement indexes a table of orders by customer ID and order date. The customer ID field is a
character field.

index on CUST _ID + dtos(ORDER_DATE) tag CUST DATE
See Also DTOC(), INDEX

DTTOC()

"DateTime to Character" converts a DateTime value to a literal DateTime string.

Syntax DTTOC(<dtVar>)
<dtVar> DateTime variable or value

Description Use DTTOC() to convert a DateTime value into a literal DateTime string.

The order of the day, month, and year is controlled by the current SET DATE setting. Whether the year is
expressed as two or four digits is controlled by SET CENTURY. The separator character is controlled by SET
MARK.

Once the DateTime value has been converted to a character string, it's integral parts, date and time, can be
extracted using the left() or right() functions. When SET CENTURY is OFF, the date and time strings can be
extracted using left("value",8) and right("value”,11) respectively.

Note To recombine extracted date and time values into a DateTime format, see CTODT (Character to DateTime).

See Also CTODT(), DATETIME(), DTODT(), SET CENTURY, SET DATE, SET MARK

DTTOD()

"DateTime to Date" converts the date component of a DateTime value to a literal Date .

Syntax DTTOD(<dtVar>)
<dtVar> A DateTime variable or value

Description Use DTTOD() to convert the date component of a DateTime value into a literal Date. DTTOC() has no affect
on the DateTime's time component. Where the current value of DATETIME() = 02/13/01 03:39:14 PM:

d1=DATETIME()
d2=DTTOD(d1)
2d2 /[Yields 02/13/01

* SET DATE determines the order of the day, month, and year.

8-10 dBASE dBL Language Reference

See Also

DTTOT()

e SET CENTURY determines whether the year is expressed as two or four digits.
* SET MARK assigns the separator character.
CTODT(), DATETIME(), DTODT(), SET CENTURY, SET DATE, SET MARK

DTTOT()

Syntax

Description

See Also

"DateTime to Time" converts the time component of a DateTime value to a Time value .
DTTOT(<dtVar>)
<dtVar> A DateTime variable or value

Use DTTOT() to convert the time component of a DateTime value to a Time value. DTTOT() has no affect on
the DateTime's date component. Where the current value of DATETIME() = 02/13/01 03:39:14 PM:

t1=DATETIME()
t2=DTTOT(t1)
2712 /[Yields 03:39:14 PM

» SET HOURS determines whether times are displayed in military format, or with an AM/PM indicator.
CTODT(), CTOT(), DATETIME(), DTODT(), SET HOURS, TTIME()

ELAPSED()

Syntax

Description

Example

Returns the number of seconds elapsed between two specified times.
ELAPSED(<stop time expC>, <start time expC> [, <exp>])

<stop time expC> The time expression, in the format HH:MM:SS, at which to stop timing seconds
elapsed. The <stop time expC> argument should be a later time than <start time expC>; if it is not, dBASE Plus
returns a negative value.

<start time expC> The time expression, in the format HH:MM:SS, at which to start timing seconds
elapsed. The <start time expC> argument should be an earlier time than <stop time expC>; if it is not, dBASE
Plus returns a negative value.

<exp> Any expression, which causes ELAPSED() to calculate hundredths of a second. The format of both
<start time expC> and <stop time expC> can be HH:MM:SS.hh.

Use ELAPSED() with TIME() to time a process. Call TIME() at the start of the process and store the resulting
time string to a variable. Then call TIME() again at the end of the process. Call ELAPSED() with the start and
stop times to calculate the number of seconds between.

ELAPSED() subtracts the value of <start time expC> from <stop time expC>. If <start time expC> is the later
time, ELAPSED() returns a negative value. Both <stop time expC> and <start time expC> must be in
HH:MM:SS or HH:MM:SS.hh format, where HH is the hour, MM the minutes, SS the seconds, and hh is
hundredths of a second.

Without <exp>, any hundredths of a second are truncated and ignored; ELAPSED() does not round hundredths
of a second when <exp> is omitted.

The following example shows a top-level routine that calls processes records. A subroutine does the processing,
and returns the number of records processed. The elapsed time is used to calculate the throughput of a process.

local cTimeStart, nRecs, nRecSec, cMsg

cTimeStart = time(1)

nRecs = processRecords()

nRecSec = nRecs / elapsed(time(1), cTimeStart, 1)

cMsg = ltrim(str(nRecs)) + " records processed, " + ;
Itrim(str(nRecSec)) + " records/sec"”

msgbox(cMsg, "Process complete")

Note that both the TIME() and ELAPSED() functions use the optional dummy parameter to return and
calculate the time to the hundredth of a second.

Date and time objects 8-11

enabled
See Also SECONDS(), TIME()

enabled

Specifies whether a Timer object is active and counting down time.
Property of Timer

Description Set the enabled property to true to activate the Timer object. When the number of seconds of idle time specified
in the interval property has passed, the timer’s onTimer event fires.

When the enabled property is set to false, the Timer stops counting time and the internal counter is reset. For
example, suppose that

1 The interval is 10, and enabled is set to true.
2 Then 9 seconds of idle time go by, and
3 enabled is set to false.

If enabled is set to true again, the onTimer will fire after another 10 seconds has gone by, even though there was
only 1 second left before the timer was disabled.

If a Timer is intended to go off only once instead of repeatedly, set the enabled property to false in the onTimer
event handler.

Example Running the following statements in the Command window will cause a message to be displayed once, 5
seconds after timer the is enabled:

t =new Timer()

t.onTimer = {; ? "Ding!"; this.enabled = false}
t.interval = 5

t.enabled = true

See also interval, onTimer

enabled is also a property of many form components (page 15-79)

getDate()

Returns the numeric value of the day of the month.

Syntax <oRef>.getDate()
<0Ref> The Date object whose corresponding day-of-the-month number you want to return.
Property of Date
Description getDate() returns a date's day of the month number—a value from 1 to 31.
If the Date object contains a blank date, getDate() returns 0.

Example The following is an onOpen event handler for a form that makes the “Ship” button invisible on the first day of
the month, when inventory is being reconciled:

function Form_onOpen()

if new Daate().getDate() == /I Get today's day of month, if first of month
this.shipButton.visible = false // Prevent shipping
endif

See also getDay(), getMonth(), getYear(), setDate()

getDay()

Returns the day of the week corresponding to a specified date as a number from 0 to 6.

Syntax <oRef>.getDay()

<ORef> The Date object whose corresponding weekday number you want to return.

8-12 dBASE dBL Language Reference

getHours()

Property of Date

Description getDay() returns the number of the day of the week on which a date falls. The number is zero-based:

Day Number
Sunday 0
Monday 1
Tuesday 2
Wednesday 3
Thursday 4
Friday 5
Saturday 6

Note The equivalent date function DOW() is one-based, not zero-based.

The day of the week is the only date/time component you cannot set directly; there is no corresponding set-
method. It is always based on the date itself.

Example The following is an onOpen event handler for a form that makes the “Game center” button visible on the
weekends:

function Form_onOpen()
if new Date().getDay() % 6 ==0 // If today is a weekend day
this.gameCenterButton.visible = true // Enable access to game center page
endif

The day number modulo 6 is zero for both day numbers 0 and 6, the days on the weekend.

See also DAY(), getDate(), getMonth(), getYear()

getHours()

Returns the hours portion of a date object.
Syntax <oRef>.getHours()
<ORef> The date object whose hours you want to return.
Property of Date

Description getHours() returns the hours portion of the time (using a 24-hour clock) in a Date object: an integer from 0 to
23.

Example The following function returns true if the date/time passed to it is during the graveyard shift, between 10 p.m.
and 6 a.m.:

function isGraveyard(dArg)
return (dArg.getHours() >= 22 or dArg.getHours() < 6)

See also getMinutes(), getSeconds(), getYear(), setHours()

getMinutes()

Returns the minutes portion of a date object.
Syntax <oRef>.getMinutes()
<0ORef> The date object whose minutes you want to return.
Property of Date
Description getMinutes() returns the minutes portion of the time in a Date object: an integer from 0 to 59.

See also getHours(), getSeconds(), getYear(), setMinutes()

Date and time objects 8-13

getMonth()
getMonth ()

Returns the number of the month for a specified date.

Syntax <oRef>.getMonth()
<0Ref> The Date object whose corresponding month number you want to return.
Property of Date

Description getMonth() returns a date’s month number. The number is zero-based:

Month Number
January 0
February 1
March 2
April 3
May 4
June 5
July 6
August 7
September 8
October 9
November 10
December 11

Note The equivalent date function MONTHY() is one-based, not zero-based.
See also getDate(), getDay(), getYear(), MONTHY(), setMonth()

getSeconds()

Returns the seconds portion of a date object.
Syntax <oRef>.getSeconds()
<ORef> The date object whose seconds you want to return.
Property of Date
Description getSeconds() returns the seconds portion of the time in a Date object: an integer from 0 to 59.

See also getHours(), getMinutes(), setSeconds()

getTime()

Returns time equivalent of date/time, in milliseconds.
Syntax <oRef>.getTime()
<0Ref> The Date object whose time equivalent you want to return.
Property of Date

Description getTime() returns the number of milliseconds since January 1, 1970 00:00:00 GMT for the date/time stored in
the Date object. All date/times are represented internally by this millisecond number.

Example The following is a stopwatch function that returns the number of seconds since the last time it was called.

function stopwatch()
local thisTime, nSecs
thisTime = new Date().getTime()

8-14 dBASE dBL Language Reference

See also

getTimezoneOffset()

static lastTime = thisTime

nSecs = (thisTime - lastTime) / 1000
lastTime := thisTime

return nSecs

The function uses a Date object’s getTime() method, which keeps time in milliseconds. Whenever the function
is called, the variable firstTime is set to the current time in milliseconds. The first time through the function, the
lastTime variable is set to that same time. The difference is calculated, and then the value of thisTime is saved in
the static variable lastTime for the next function call.

To reset the timer, call the function; you may ignore the return value. Then the next time you call the function,
you will get the elapsed time. If you’re measuring a series of intervals, call the function once between intervals.
For example:

stopwatch() // Reset timer

// Process 1

timel = stopwatch() // Time for first process

// Process 2

time2 = stopwatch() // Time for second process
// etc.

parse(), setTime(), UTC()

getTimezoneOffset()

Syntax

Property of

Description

See also

Returns the time zone offset for a date object in the current locale, in minutes.
<oRef>.getTimezoneOffset()

<ORef> A date object created in the locale in question.

Date

All time zones have an offset from GMT (Greenwich Mean Time), from twelve hours behind to twelve hours
ahead. getTimezoneOffset() returns this offset, in minutes, for the locale in which the Date object was created,
taking Daylight Savings Time into account.

For example, the United States and Canada Pacific time zone is eight hours behind GMT. A date in January,
when Daylight Savings Time is not in effect, created in the Pacific time zone would have a time zone offset of —
480. A date in July, when Daylight Savings Time is in effect, would have a time zone offset of

—420, or seven hours, since Daylight Savings Time moves clocks one hour forward, closer to GMT.

In Windows, the locale is determined by the Time Zone setting in each system’s Date/Time properties, which is
found in the Control Panel, or by double-clicking the clock in the Taskbar.

All Date objects default to the time zone setting of the current locale.

toGMTString(), UTC()

getYear()

Syntax

Property of

Description

See also

Returns the year of a specified date.

<oRef>.getYear()

<oRef><exXpD> The Date object whose corresponding year number you want to return.
Date

getYear() returns a date’s year number. A 4-digit year is always returned. The SET CENTURY setting has no
effect on getYear().

getDate(), getDay(), getMonth(), YEAR()

Date and time objects 8-15

interval

interval

The amount of idle time, in seconds, between the firings of the timer.
Property of Timer

Description Set the enabled property to true to activate the Timer object. When the number of seconds of idle time specified
in the interval property has passed, the timer’s onTimer event fires.

When the enabled property is set to false, the Timer stops counting time and the internal counter is reset. For
example, suppose that

1 The interval is 10, and enabled is set to true.
2 Then 9 seconds of idle time go by, and
3 enabled is set to false.

If enabled is set to true again, the onTimer will fire after another 10 seconds has gone by, even though there was
only 1 second left before the timer was disabled.

interval must be zero or greater. The interval may be a fraction of a second; the resolution of the timer is one
system clock tick, approximately 0.055 seconds. When interval is zero, the timer fires once per clock tick.

Setting the interval always resets the internal counter to the newly specified time.

Example Running the following statements in the Command window will cause a message to be displayed once, 5
seconds after timer is enabled:

t =new Timer()

t.onTimer = {; ? "Ding!"; this.enabled = false}
tinterval =5

t.enabled = true

See also enabled, onTimer

MDY /()

Returns a specified date as a character string in MONTH DD, YY format.
Syntax MDY(<expD>)
<expD> The date to return as a character string in MONTH DD, YY format.

Description MDY/) returns a date in MONTH DD, YY or MONTH DD, YYYY format, where MONTH is the full month
name, DD is the day number, and Y'Y is the year number. If SET CENTURY is OFF (the default), MDY()
returns the year as 2 digits. [f SET CENTURY is ON, MDY) returns the year as 4 digits. MDY/() always
returns the day portion as 2 digits, with a leading zero for the first nine days of the month.

If you pass an invalid date to MDY(), it returns "Unknown 00, 00" or "Unknown 00, 0000".
See Also DMY(), SET CENTURY

MONTH()

Returns the number of the month for a specified date.

Syntax MONTH(<expD>)
<expD> The date whose corresponding month number you want to return.

Description MONTH() returns a date’s month number:

Month Number
January

February 2
March 3

8-16 dBASE dBL Language Reference

Example

See also

onTimer

Month Number
April 4
May 5
June 6
July 7
August 8
September 9
October 10
November 11
December 12

To return the name of the month instead of the number, use CMONTH().
MONTH() returns zero for a blank date.

The following function returns the date of the last day of the year of the specified date, using date math only.
This makes the calculation independent of the current SET DATE setting. The function relies on another
function that returns the last day of the month of a specified date.

function LDoY(dArg)

local dDec

dDec = dArg - day(dArg) + 28 * (13 - month(dArg))
return LDoM(dDec)

function LDoM(dArg)

local dNxtMonth

dNxtMonth = dArg - day(dArg) + 45
return dNxtMonth - day(dNxtMonth)

DAY(), DOW(), getMonth(), YEAR()

onTimer

Parameters
Property of

Description

Example

See also

When the timer’s interval has elapsed.
none
Timer

A Timer object’s onTimer event is fired every time the amount of idle time specified by the timer’s interval
property has elapsed.

Like all event handlers, inside the onTimer event handler, the reference this refers to the Timer object itself. To
refer to other objects, add references to those objects as properties to the Timer object before activating the
timer.

While processing the onTimer event, all active timers are suspended, since dBASE Plus is busy processing
code. Once the onTimer event handler has completed, its internal counter is reset to the interval, and all active
timers resume counting.

If a Timer is intended to go off only once instead of repeatedly, set the enabled property to false in the onTimer
event handler.

Running the following statements in the Command window will cause a message to be displayed once, 5
seconds after timer is enabled:

t =new Timer()

t.onTimer = {; ? "Ding!"; this.enabled = false}
tinterval =5

t.enabled = true

enabled, interval

Date and time objects 8-17

parse()

parse()

Syntax

Property of

Description

Example

See also

Returns time equivalent of a date/time string, in milliseconds.
Date.parse(<date expC>)

<date expC> The date/time string you want to convert.
Date

parse() returns the number of milliseconds since January 1, 1970 00:00:00 GMT for the specified date/time
string, defaulting to the operating system’s current time zone setting. For example, if the time zone is currently
set to United States Eastern Standard Time, which is five hours behind GMT, then Date.parse(“Sep 14 1995
11:20”) yields a time which is equivalent to 16:20 GMT.

The string may be in any of the forms acceptable to the Date class constructor, as described under class Date at
the beginning of this chapter. In contrast, the UTC() method uses numeric parameters for each of the date and
time components and assumes GMT as the time zone.

Because parse() is a static class method, you call it via the Date class, not a Date object.

The following code fragment resets an existing date object d1 to a date typed into a text control:
d1.setTime(Date.parse(this.form.dateText.value))

getTime(), setTime(), UTC()

SECONDS()

Syntax

Description

See also

Returns the number of seconds that have elapsed on your computer's system clock since midnight.
SECONDS()

SECONDS() returns the number of seconds to the hundredth of a second that have elapsed on your system
clock since midnight (12 am). There are 86,400 seconds in a day, so the maximum value SECONDS() can
return is 86,399.99, just before midnight.

Use SECONDS() to calculate the amount of time that portions of your program take to run. SECONDS() is
more convenient for this purpose than TIME() because SECONDS() returns a number rather than a character
string.

You can also use SECONDS() instead of ELAPSED() to determine elapsed time for the current day to within
hundredths of a second.

ELAPSED(), getTime(), TIME()

SET CENTURY

Syntax

Description

Controls the format in which dBASE Plus displays the year portion of dates.
SET CENTURY on | off

When SET CENTURY is ON, dBASE Plus displays dates in the current format with 4-digit years; when SET
CENTURY is OFF, dBASE Plus displays dates in the current format with 2-digit years.

You can enter a date with a 2-, 3-, or 4-digit year whether SET CENTURY is ON or OFF. dBASE Plus assumes
that 2-digit years are in the epoch designated by SET EPOCH, by default 1950. If SET CENTURY is OFF,
dBASE Plus truncates any digits to the left of the last two when displaying the date. However, dBASE Plus
stores the correct value of the date internally.

8-18 dBASE dBL Language Reference

See Also

SET DATE

The following table shows the how dBASE Plus displays and stores dates depending on the setting of SET
CENTURY. (The table assumes SET DATE is AMERICAN and SET EPOCH is 1950.)

With

dBASE Plus With SET CENTURY

stores date SET CENTURY ON, OFF,
You enter date as dBASE Plus dBASE Plus
as YYYYMMDD displays displays
{10/13/94} 19941013 10/13/1994 10/13/94
{10/13/994} 09941013 10/13/0994 10/13/94
{10/13/1994} 19941013 10/13/1994 10/13/94
{10/13/2094} 20941013 10/13/2094 10/13/94

As the table shows, SET CENTURY doesn't affect the relationship between how you enter a date and how
dBASE Plus evaluates and stores it. SET CENTURY affects only how dBASE Plus displays the year portion of
the date.

SET DATE, SET EPOCH

SET DATE

Syntax

Description

See Also

Specifies the format dBASE Plus uses for the display and entry of dates.

SET DATE [TO]
AMERICAN | ANSI | BRITISH | FRENCH | GERMAN | ITALIAN | JAPAN | USA | MDY | DMY | YMD

TO Include for readability only; TO has no affect on the operation of the command.

AMERICAN | ANSI | BRITISH | FRENCH | GERMAN | ITALIAN | JAPAN | USA | MDY | DMY
| YMD The options correspond to the following formats:

Option Format

AMERICAN MM/DD/YY
ANSI YY.MM.DD
BRITISH DD/MM/YY
FRENCH DD/MM/YY
GERMAN DD.MM.YY
ITALIAN DD-MM-YY
JAPAN YY/MM/DD
USA MM-DD-YY
MDY MM/DD/YY
DMY DD/MM/YY
YMD YY/MM/DD

SET DATE determines how dBASE Plus displays dates; and how literal date strings, like those in curly braces
({ }), are interpreted. If SET CENTURY is ON, dBASE Plus displays all formats with a 4-digit year.

The default for SET DATE is set by the Regional Settings in the Windows Control Panel. To change the default,
set the DATE parameter in PLUS.ini. To do so, either use the SET command to specify the setting interactively,
or enter the DATE parameter directly in PLUS.ini.

SET DATE overrides any prior SET MARK setting. However, you can use SET MARK after SET DATE to
change the date separator character.

CTOD(), SET CENTURY, SET EPOCH, SET MARK

Date and time objects 8-19

SET DATE TO
SET DATE TO

Sets the system date.

Syntax SET DATE TO <expC>
<expC> The character expression, in the current date format, to set as the current system date.

Description Use SET DATE TO to reset the date on your system clock. The date string in <expC> must match the current
setting of SET DATE.

The date must be in the range from January 1, 1980, to December 31, 2099.
See Also DATE(), SET DATE, SET TIME

SET EPOCH

Sets the base year for interpreting two-digit years in dates.

Syntax SET EPOCH TO <expN>
Default The default base year is 1950, yielding years from 1950 to 2049.

Description Use SET EPOCH to change how two-digit years are interpreted. This allows you to keep SET CENTURY OFF,
while enabling entry of dates that cross a century boundary. The following table shows how dates are
interpreted using three different SET EPOCH settings:

Date 1900 1930 2000
{5/5/00}% 05/05/1900 05/05/2000 05/05/2000
{5/5/30} 05/05/1930 05/05/1930 05/05/2030
{5/5/99) 05/05/1999 05/05/1999 05/05/2099

For example, if you SET EPOCH TO 1930, you can continue to use most applications with two-digit years
unchanged well into the 21st century, (although you would no longer be able to enter dates before 1930, which
would not be a problem with many applications). If your applications use dates that span more than one hundred
years, then SET EPOCH alone will not help; you must SET CENTURY ON.

The base year setting takes effect whenever dates are interpreted. In programs, two-digit years in literal dates are
evaluated at compile-time. If you use SET EPOCH, be sure it is set correctly when you compile code or run new
or changed programs.

SET EPOCH is session-based. You may get the value of SET EPOCH with the SET() and SETTO() functions.
See Also SET CENTURY, SET DATE

SET HOURS

Determines whether times are displayed in military format, or with an attached AM/PM indicator.

Syntax SET HOURS TO [<expN>]
<exXpN> The number 12 or 24.

Description Setting SET HOURS to 12 will display times with an attached AM/PM indicator. Setting SET HOURS to 24 displays time in
military format. SET HOURS TO (without an argument) restores the default setting.

SET MARK

Determines the character dBASE Plus uses to separate the month, day, and year when it displays dates.

Syntax SET MARK TO [<expC>]

8-20 dBASE dBL Language Reference

SET TIME
<expC> The single date separator character. You can specify more than one character for <expC>, but
dBASE Plus uses only the first one.

Description Use SET MARK to change the date separator from the default character. For example, if you issue SET DATE
AMERICAN, the date separator character is a forward slash (/), and dBASE Plus displays dates in MM/DD/YY
format. However, if you specify SET MARK TO "." after issuing SET DATE AMERICAN, dBASE Plus
displays dates in the format MM.DD.YY. If you issue SET DATE AMERICAN again, the format returns to
MM/DD/YY.

Issuing SET MARK TO without <expC> resets the date separator character to that of the current date format.

SET MARK controls the separator used for display only. You may use any valid separator character when
designating a literal date.

See Also SET CENTURY, SET DATE

SET TIME

Sets the system time.

Syntax SET TIME TO <expC>

<expC> The time, which you must specify in one of the following formats:

« HH
e HH:MM or HHMM
¢ HH:MM:SS or HH.MM.SS

Description Use SET TIME to reset your system's clock.
See Also SET DATE TO, TIME()

setDate()

Sets day of month.

Syntax <oRef>.setDate(<expN>)
<oRef> The Date object whose day you want to change.
<eXpN> The day of month number, normally between 1 and 31.

Property of Date
Description setDate() sets the day of month for the Date object.
See also getDate(), setMonth(), setYear()

setHours ()

Sets hours portion of time.
Syntax <oRef>.setHours(<expN>)
<0oRef> The Date object whose hours you want to change.
<eXpN> The hour number, normally between 0 and 23.
Property of Date
Description setHours() sets the hours portion of the time for the Date object.

See also getHours(), setMinutes(), setSeconds()

Date and time objects 8-21

setMinutes()

setMinutes()

Syntax

Property of
Description

See also

Sets minutes portion of time.

<oRef>.setMinutes(<expN>)

<0oRef> The Date object whose minutes you want to change.
<eXpN> The minute number, normally between 0 and 59.

Date

setMinutes() sets the minutes portion of the time for the Date object.

getMinutes(), setHours(), setSeconds()

setMonth()

Syntax

Property of
Description

See also

Sets month of year.
<oRef>.setMonth(<expN>)
<oRef> The Date object whose month you want to change.

<eXpN> The month number, normally between 0 and 11: 0 for January, 1 for February, and so on, up to 11
for December.

Date
setMonth() sets the month of year for the Date object.
getMonth(), setDate(), setYear()

setSeconds()

Syntax

Property of
Description

See also

Sets seconds portion of time.

<oRef>.setSeconds(<expN>)

<ORef> The Date object whose seconds you want to change.
<expN> The number of seconds, normally between 0 and 59.
Date

setSeconds() sets the seconds portion of the time for the Date object.

getSeconds(), setHours(), setMinutes()

setTime()

Syntax

Property of

Description

Sets date/time of Date object.

<oRef>.setTime(<expN>)

<ORef> The Date object whose time you want to set.

<expN> The number of milliseconds since January 1, 1970 00:00:00 GMT for the desired date/time.

Date

While you may use standard date/time nomenclature when creating a new Date object, setTime() requires a
number of milliseconds. Therefore setTime() is used primarily to copy the date/time from one Date object to
another. If you tried copying dates like this:

d1 = new Date("Aug 24 1996")

8-22 dBASE dBL Language Reference

See also

setYear()
d2 = new Date()
d2=dl // Copy date

what you’re actually doing is copying an object reference for the first Date object into another variable. Both
variables now point to the same object, so changing the date/time in one would appear to change the date/time in
the other.

To actually copy the date/time, use setTime() and getTime():

d1 = new Date("Aug 24 1996")
d2 = new Date()
d2.setTime(d1.getTime()) // Copy date

If you’re copying the date/time when you’re creating the second Date object, you can use the millisecond value
in the Date class constructor:

d1 = new Date("Aug 24 1996")
d2 =new Date(d1.getTime()) // Create copy of date

You may also perform date math by adding or subtracting milliseconds from the value.

getTime()

setYear()

Syntax

Property of
Description

See also

TIME()

Sets year of date.
<oRef>.setYear(<expN>)
<ORef> The Date object whose year you want to change.

<eXpN> The year. For years in the range 1950 to 2049, you can specify the year as either a 2-digit or 4-digit
year.

Date
setYear() sets the year for the Date object.
getYear(), setDate(), setMonth()

Syntax

Description

See also

Returns the system time as a character string in HH:MM:SS or HH:MM:SS.hh format.
TIME([<exp>])
<exp> Any expression, which causes TIME() to return the current time to the hundredth of a second.

TIME() returns a character expression that is your computer system’s current time. If you do not pass TIME()
an expression, it returns the current system time in HH:MM:SS format, where HH is the hour, MM the minutes,
and SS the seconds.

If you pass TIME() an expression, it returns the current system time in HH:MM:SS.hh format, where .hh is
hundredths of a second. The type and value of the expression you pass to TIME() has no effect other than to
make it include hundredths of a second.

To change the system time, use SET TIME.
DATE(), ELAPSED(), SET TIME

toGMTString ()

Syntax

Converts the date into a string, using Internet (GMT) conventions.
<oRef>.toGMTString()

<ORef> The Date object you want to convert.

Date and time objects 8-23

toLocaleString()

Property of

Description

Example

See also

Date

toGMTString() converts the date, which was created using the operating system’s time zone setting, to GMT
and returns a string in a format like, “Tue, 07 May 1996 02:55:27 GMT”.

When the following statement is executed in the Command window, the current date and time is displayed in
the results pane in GMT format:

? new Date().toGMTString()

toLocaleString(), toString()

toLocaleString()

Syntax

Property of

Description

Example

See also

Converts the date into a string, using locale conventions.
<oRef>.toLocaleString()

<0Ref> The Date object you want to convert.

Date

toLocaleString() converts the date to a string, using the standards for the current locale, like “05/06/96
19:55:27”.

dBASE Plus uses Windows’ Regional settings from the Control Panel.

When the following statement is executed in the Command window, the current date and time is displayed in
the results pane in locale format:

? new Date().toLocaleString()
toGMTString(), toString()

toString()

Syntax

Property of

Description

Example

See also

Converts the date into a string, using standard JavaScript conventions.
<oRef>.toString()

<0Ref> The Date object you want to convert.

Date

toString() converts the date to a string, in standard JavaScript format, which includes the complete time zone
description, for example,

“Mon May 06 19:55:27 Pacific Daylight Time 1996”

When the following statement is executed in the Command window, the current date and time is displayed in
the results pane in standard format:

? new Date().toString()
toGMTString(), toLocaleString()

TTIME()

Syntax

Description

Returns a value representing the current system time in the HH:MM:SS format.
TTIME()

TTIME() returns a time value that is your computer systems current time. TTIME() is quite similar to the
TIME() function. However, while the TIME() function always results in a military time character string,
TTIME() results in a time value with an attached AM/PM indicator when SET HOURS is set to 12.

Since the actual value of TTIME() is in seconds, adding 60 to TTIME() is equilvalent to adding 1 minute.

8-24 dBASE dBL Language Reference

See Also

TTOC()

TTIME() values can be converted to character strings using the TTOC() function, and back to values using
CTOT().

DAY(), getYear(), MONTH(), TTOC()

TTOC()

Syntax

Description

See Also

UTC()

"Time to Character" converts a TTIME() value to a literal string.
TTOC(<tVar>)
<tVar> A TTIME() variable or value

Use TTOC() to convert a Time value into a literal Time string. "Time to Character" results in an HH:MM:SS
format. When "SET HOURS" is set to 12, the TTOC string is displayed with an attached AM/PM indicator.

CTOT(), TIME(), TTIME

Syntax

Property of

Description

Example

See also

Returns time equivalent of the specified date/time parameters using GMT, in milliseconds.

Date.UTC(<year expN>, <month expN>, <day expN>
[, <hours expN> [, <minutes expN> [, <seconds expN>]]])

<year expN> The year.

<month eXxpN> A number representing the month, between 0 and 11: zero for January, one for February, and
so on, up to 11 for December.

<day expN> The day of the month, from 1 to 31.

<hours expN> The hours portion of the time, from 0 to 23.
<minutes expN> The minutes portion of the time, from 0 to 59.
<seconds expN> The seconds portion of the time, from 0 to 59.
Date

UTC() returns the number of milliseconds since January 1, 1970 00:00:00 GMT for the date/time parameters
specified, using GMT as the time zone. In contrast, the parse() method takes a string as a parameter, and uses
the operating system’s current time zone setting as the default.

Because UTC() is a static class method, you call it via the Date class, not a Date object.

You cannot specify a time zone when creating a Date object with separate date and time components, but you
can use UTC() for GMT:

dLocale = new Date(nYear, nMonth, nDay) // Time zone of locale
dGMT =new Date().UTC(nYear, nMonth, nDay) / GMT

getTime(), setTime(), parse()

YEAR()

Syntax

Property of

Description

Returns the year of a specified date.

YEAR(<expD>)

<expD> The date whose corresponding year number you want to return.

Date

YEAR() returns a date’s 4-digit year number. The SET CENTURY setting has no effect on YEAR().
YEAR() returns zero for a blank date.

Date and time objects 8-25

See also DAY(), MONTH(), getYear()

8-26 dBASE dBL Language Reference

Bitwise

The functions in this chapter are used for bit manipulation and base conversion for unsigned 32-bit values.
These values are often passed to and returned by Windows API and other DLL functions. Interpreting such
values often requires analysis and manipulation of individual bits.

For all parameters designated as 32-bit integers, non-integers will be truncated to integers. For integers larger
than 32 bits, only the least significant (right-most) 32 bits are used.

BITAND()

Syntax

Description

Example

Performs a bitwise AND.
BITAND(<expN1>, <expN2>)

<expN1>
<expN2> Two 32-bit integers

BITAND() compares bits in the numeric value <expN1> with corresponding bits in the numeric value <expN2>.
When both bits in the same position are on (set to 1), the corresponding bit in the returned value is on. In any
other case, the bit is off (set to 0).

AND 0 1
0 0
1 0 1

Use BITAND() to force individual bits to zero. Create a bit mask: a 32-bit integer with zeroes in the bits you
want to force to zero and ones in the bits you want to leave alone. Use this bit mask as either one of the
parameters to BITAND(), and the other parameter as the number that is modified.

The following program displays Windows version information extracted from the return value of the Windows API
function GetVersion(), which returns a 32-bit integer. The major version number is in the low byte of the low word,
and the minor version number is in the high byte of the low word. For example, if the version is 4.10, the major
version number is 4 and the minor version number is 10.

As is common practice, macro-functions are created with the #define preprocessor directive to simplify
common bit manipulations. There are functions to extract the high word and low word of 32-bit value, and the
high byte and low byte of a 16-bit value. The HIBYTE() macro-function has some defensive programming in
case the parameter is larger than 16 bits. The functions BITAND() and BITZRSHIFT() are used to extract the
values.

#define HIWORD(n) (bitzrshift((n),16))

#define LOWORD(n) (bitand((n),0xFFFF))
#define HIBYTE(n) (bitand(bitzrshift((n),8),0xFF))
#define LOBYTE(n) (bitand((n),0xFF))

Bitwise 9-1

BITLSHIFT()

See Also

if type("GetVersion") # "FP"
extern clong GetVersion() kernel32
endif

local v, vMajor, vMinor, vBuild, isNT
v = GetVersion()
vMajor = LOBYTE(LOWORD(v))
vMinor = HIBYTE(LOWORD(v))
isSNT = not bitset(v, 31) // High bit clear ift NT
vBuild = iif(isNT, HIWORD(v), 0) // Ignores Win32s
7 1if(isNT, "Windows NT", "Windows 9x"), ;

"version " + ltrim(str(vMajor)) + "." + str(vMinor, 2, 0, "0")
if isNT

7?2 " build", ltrim(str(vBuild))
endif

To get the low word of a 32-bit integer, a bit mask is created with ones in all 16 low bits. The hexadecimal value
of this number is FFFF, as shown in the LOWORD() macro-function. Similarly, to get the low byte of a 16-bit
integer, the bit mask has ones in the low 8 bits: FF. All the other bits are set to zero when the bitwise AND is
performed.

The major version number uses both LOBYTE() and LOWORD(). While this is redundant—LOBYTE()
alone would work—it’s left in to make the code more symmetical and self-documenting.

BITOR(), BITSET(), BITXOR()

BITLSHIFT()

Syntax

Description

Example

See Also

Shifts a number's bits to the left.

BITLSHIFT(<int expN>, <shift expN>)

<int expN> A 32-bit integer.

<shift expN> The number of places to shift, from 0 to 32.

BITLSHIFT() moves each bit in the numeric value <int expN> to the left the number of times you specify in
<shift expN>. Each time the bits are shifted, the least significant bit (bit 0, the bit farthest to the right) is set to 0,
and the most significant bit (bit 31, the bit farthest to the left) is lost.

Shifting a number’s bits to the left once has the effect of multiplying the number by two, except that if the
number gets too large—equal to or greater than 232 (roughly 4 billion)—the high bit is lost.

The following macro-function takes three separate values for red, green, and blue and combines them into a single
24-bit value.

#define RGB(r,g,b) ;
(bitlshift(bitand((r),0xff),16)+bitlshift(bitand((g),0xff),8)+bitand((b),0xff))

Each value is 8 bits—BITAND() makes sure of that. The red value is shifted 16 bits to the left to make room for
the green and blue values. The green value is shifted 8 bits to the left to make room for the blue value. All three
numbers are added together to form a single 24-bit number. For example, suppose you pass the following
values, shown here in binary to the macro-function:

Red 11000011
Green 10101010
Blue 11111111

Shifting the red and green results in the following values:

Red 11000011 00000000 00000000
Green 00000000 10101010 00000000
Blue 00000000 00000000 11111111

The 8-bit values are shifted so their bits do not overlap. Now, adding the values together combines them into a
single 24-bit value:

RGB 11000011 10101010 11111111
BITRSHIFT(), BITZRSHIFT()

9-2 dBASE dBL Language Reference

BITNOT()

BITNOT()

Syntax

Description

See also

Inverts the bits in a number

BITNOT(<expN>)

<expN> A 32-bit integer.

BITNOT() inverts all 32 bits in <expN>. All zeroes become ones, and all ones become zeroes.
To invert specific bits, use BITXOR().

BITXOR()

BITOR()

Syntax

Description

See Also

Performs a bitwise OR.
BITOR(<expN1>, <expN2>)

<expN1>
<expN2> Two 32-bit integers

BITOR() compares bits in the numeric value <expN1> with corresponding bits in the numeric value <expN2>.
When either or both bits in the same position are on (set to 1), the corresponding bit in the returned value is on.
When neither element is on, the bit is off (set to 0).

OR 0 1
0 0 1
1 1

Use BITOR() to force individual bits to one. Create a bit mask: a 32-bit integer with ones in the bits you want to
force to one and zeroes in the bits you want to leave alone. Use this bit mask as either one of the parameters to
BITOR(), and the other parameter as the number that is modified.

BITAND(), BITSET(), BITXOR()

BITRSHIFT()

Syntax

Description

Shifts a number's bits to the right, maintaining sign.
BITRSHIFT(<int expN>, <shift expN>)

<int expN> A signed 32-bit integer.

<shift expN> The number of places to shift, from 0 to 32.

Unlike the other bitwise functions, BITRSHIFT() treats its 32-bit integer as a signed 32-bit integer. The sign of
a 32-bit integer is stored in the most significant bit (bit 31), which is also referred to as the high bit. If the high
bit is 1, the number is negative if it is treated as a signed integer. Otherwise, it is simply a very large unsigned
integer.

BITRSHIFT() moves each bit in the numeric value <int expN> to the right the number of times you specify in
<shift expN>. Each time the bits are shifted, the previous value of the high bit is restored, and the least
significant bit (bit 0, the bit farthest to the right) is lost. This is called a sign-extended shift, because the sign is
maintained.

A similar function, BITZRSHIFT(), performs a zero-fill right shift, which always sets the high bit to zero. If
<int expN> is a positive integer less than 231, BITZRSHIFT() and BITRSHIFT() have the same effect,
because the high bit for such an integer is zero.

Use BITRSHIFT() when you’re treating the integer as a signed integer. Use BITZRSHIFT() when the integer is
unsigned.

Bitwise 9-3

BITSET()

See Also

Shifting a number’s bits to the right once has the effect of dividing the number by two, dropping any fractions.
BITLSHIFT(), BITZRSHIFT()

BITSET()

Syntax

Description

Example

See Also

Checks if a specified bit in a numeric value is on.

BITSET(<int expN>, <bit expN>)

<int expN> A 32-bit integer.

<bit expN> The bit number, from 0 (the least significant bit) to 31 (the most significant bit).

BITSET() evaluates the number <int expN> and returns true if the bit in position <bit expN> is on (set to 1), or
false if it is off (set to 0). For example, the binary representation of 3 is

00000000 00000000 00000000 00000011

bit number 0 is on, bit number 2 is off.

The following statement from the example for BITAND()
isNT = not bitset(v, 31) // High bit clear if NT

uses BITSET() to check the high bit of the value returned by the GetVersion() Windows API function. If the bit
is not set, the operating system is Windows NT.

BITAND(), BITLSHIFT(), BITOR(),BITRSHIFT(), BITXOR(), BITZRSHIFT()

BITXOR()

Syntax

Description

See Also

Performs a bitwise exclusive OR.
BITXOR(<expN1>, <expN2>)

<expN1>
<exXpN2> Two 32-bit integers

BITXOR() compares bits in a numeric value <eXpN1> with corresponding bits in the numeric value <expN2>.
When one (and only one) of two bits in the same position are on (set to 1), the corresponding bit in the returned
value is on. In any other case, the bit is off (set to 0).

XOR 0 1
0 0 1
1 1 0

This operation is known as exclusive OR, since one bit (and only one bit) must be set on for the corresponding
bit in the returned value to be set on.

Use BITXOR() to flip individual bits. Create a bit mask: a 32-bit integer with ones in the bits you want to flip
and zeroes in the bits you want to leave alone. Use this bit mask as either one of the parameters to BITXOR(),
and the other parameter as the number that is modified.

BITAND(), BITNOT(), BITOR(), BITSET(),

BITZRSHIFT()

Syntax

Shifts a number's bits to the right.
BITZRSHIFT(<int expN>, <shift expN>)
<int expN> A 32-bit integer.

9-4 dBASE dBL Language Reference

Description

Example

See also

HTOI()

HTOI()

<shift expN> The number of places to shift, from 0 to 32.

BITZRSHIFT() moves each bit in the numeric value <int expN> to the right the number of times you specify in
<shift expN>. Each time the bits are shifted, the most significant bit (bit 31, the bit farthest to the left) is set to 0,
and the least significant bit (bit 0, the bit farthest to the right) is lost.

Shifting a number’s bits to the right once has the effect of dividing the number by two, dropping any fractions.

Like most other bitwise functions, BITZRSHIFT() treats <int expN> as an unsigned integer. To shift a signed
integer, use BITRSHIFT() instead.

The following macro-function, defined with the #define preprocessor directive:
#define HIWORD(n) (bitzrshift((n),16))

extracts the high word (16 bits) of a 32-bit integer. Shifting the bits 16 places to the right with BITZRSHIFT()
moves the high word into the low word, filling the now-vacated high bits with zeros, resulting in a 32-bit integer
with the same value as the original high word.

BITLSHIFT(), BITRSHIFT()

Syntax

Description

Example

See Also

ITOH()

Returns the numeric value of a specified hexadecimal number.
HTOIl(<expC>)
<expC> The hexadecimal number whose numeric value to return.

Use HTOI() to convert a string containing a hexadecimal number to its numeric value (in decimal). For
example, you might allow the input of a hexadecimal number. This input would have to go into a string because
the hexadecimal digits A through F are considered characters. To use the hexadecimal number, you would have
to convert the hexadecimal string into its numeric value.

HTOI() will attempt to convert a hexadecimal number of any magnitude; it is not limited to 32 bits (8
hexadecimal digits).

You may specify literal hexadecimal numbers by preceding them with 0x; HTOI() is not necessary. For
example, 0x64 and HTOI("64") result in the same number: 100 decimal.

The following example converts a hexadecimal string typed into an Entryfield into the corresponding numeric
value and stores it in a custom property called numValue.

function address_onChange
this.numValue = htoi(this.value)

ITOH()

Syntax

Description

Returns the hexadecimal equivalent of a specified number, as a character string.
ITOH(<int expN> [, <chars expN>])
<int expN> The 32-bit integer whose hexadecimal equivalent to return.

<chars expN> The minimum number of characters to include in the returned hexadecimal character string.

Use ITOH() to convert a number to a character string representing its hexadecimal equivalent. The hexadecimal
number may be used for display and editing/input purposes. To use the hexadecimal number as a number, it
must be converted back into a numeric value with HTOI().

By default, ITOH() uses only as many characters as necessary to represent <int expN> in hexadecimal. If
<chars expN> is greater than the number of characters required, ITOH() pads the returned string with leading
0's to make it <chars expN> characters long. If <chars expN> is less than the number of characters required, it is
ignored. For example, ITOH(21) returns the string "15", while ITOH(21,4) returns "0015".

Bitwise 9-5

ITOH()

Because ITOH() treats the integer as a 32-bit integer, negative integers are always converted into 8
hexadecimal digits. For example, ITOH(-1) returns "FFFFFFFF".

See Also HTOI()

9-6 dBASE dBL Language Reference

Array objects

dBASE Plus supports a wide variety of array types:

* Arrays of contiguously numbered elements, in one or more dimensions. Elements are numbered from one.
There are methods specifically for one- and two-dimensional arrays, which mimic a row of fields and a table
of rows.

* Associative arrays, in which the elements are addressed by a key string instead of a number.
» Sparse arrays, which use non-contiguous numbers to refer to elements.
All arrays are objects, and use square brackets ([]) as indexing operators.

Array elements may contain any data type, including object references to other arrays. Therefore you can create
nested arrays (multi-dimensional arrays of arrays with fixed length in each dimension), ragged arrays (nested
arrays with variable lengths), arrays of associative arrays, and so on.

There are two array classes: Array and AssocArray. Sparse arrays can be created with any other object. In
addition to creating properties by name, you can create numeric properties using the indexing operators. For
example,

o =new Object()

o.title = "Summer"

o[2000] = "Sydney"

o[1996 1= "Atlanta"

?0[1996 + 4] // Displays "Sydney"

Array functions

dBASE Plus supports a number of array functions, most of which have equivalent methods in the Array class.
These functions are:

Function Array class method
ACOPY() No equivalent

ADEL() delete()

ADIR() dir()

ADIREXT() dirExt()

AELEMENT() element()

AFIELDS() fields()

AFILL() fill()

AGROW() grow()

AINS() insert()

ALEN() For number of elements, check array’s size property
ARESIZE() resize()

Array objects 10-1

class Array

Function

ASCAN()
ASORTY()

Array class method

scan()
sort()

ASUBSCRIPT() subscript()

Like the equivalent methods, these functions operate on one- and two-dimensional arrays only. ACOPY() and

ALEN() are the only functions which have no direct equivalents.

The use of those functions is similar to the equivalent method. For a given method like:

aExample.fill(0) // Fill array with zeros

the equivalent function uses the reference to the array as its first parameter and all other parameters (if any)

following it:
afill(aExample, 0)

The parameters following the array name in the function are identical to the parameters to the equivalent
method, and the functions return the same values as the methods.

class Array

An array of elements, in one or more dimensions.

Syntax [<oRef> =] new Array([<diml expN> [,<dim2 expN>...]])

<0Ref> A variable or property in which to store a reference to the newly created Array object.

<diml1 expN>[,<dim2 expN> ...]

are specified, the array is a one-dimensional array with zero elements.

The size of the array in each specified dimension. If no dimensions

Properties The following tables list the properties and methods of the Array class. (No events are associated with this

class.)

Property

Default

baseClassName ARRAY

Description

Identifies the object as an instance of the Array class (Property
discussed in Chapter 5, “Core language.”)

className (ARRAY) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

dimensions The number of dimensions in the array

size 0 The number of elements in the array

Method Parameters Description

add() <exp> Increases the size of a one-dimensional array by one and
assigns the passed value to the new element.

delete() <position expN> Deletes an element from a one-dimensional array, or deletes a

[L1]2] row (1) or column (2) of elements from a two-dimensional

array, without changing the size of the array.

dir() [<filespec expC>] Stores in the array five characteristics of specified files: name,
size, modified date, modified time, and file attribute(s).
Returns the number of files whose characteristics are stored.

dirExt() [<filespec expC>] Same as dir() method, but adds short (8.3) file name, create
date, create time, and access date.

element() <row expN> Returns the element number for the element at the specified

[,<col expN>] row and column.

fields() Stores table structure information for the current table in the
array

fill() <exp> Stores a specified value into one or more elements of the array.

10-2 dBASE dBL Language Reference

, <start expN>
[, <count expN>]

class Array

Method Parameters Description
getFile() [<filename skeleton expC> Displays a dialog box from which a user can select multiple
[, <title expC> [, <suppress files.
database expL>]]]
grow() 1]2 When passed 1, adds a single element to a one-dimensional
array or a row to a two-dimensional array; when passed 2, adds
a column to the array.
insert() <element expN> Inserts an element, row (1), or column (2) into an array
[L1]2] without changing the size of the array (the last element, row,
or column is lost).
resize() <rows expN> Increases or decreases the size of an array. First passed
[, <cols expN> parameter indicates the new number of rows, the second
[, <retain values>]] parameter indicates the new number of columns. If the third
parameter is zero, current values are relocated; if nonzero, they
are retained in their old positions.
scan() <exp> Searches an array for the specified expression; returns the
, <start expN> element number of the first element that matches the
[, <count expN>] expression, or zero if the search is unsuccessful.
sort() <start expN> Sorts the elements in a one-dimensional array or the rows in a

[, <count expN>

two-dimensional array in ascending (0) or descending (1)

[Lo|1]] order.

<element expN> Returns the row (1) or column (2) subscript for the specified
112 element number.

subscript()

Description An Array object is a standard array of elements, addressed by a contiguous range of numbers in one or more

dimensions. The array can hold as many elements as memory allows. You can create arrays that contain more
than two dimensions, but most dBL Array methods work only on one- or two-dimensional arrays. For a two-
dimensional array, the first dimension is considered the row and the second dimension is the column. For
example, the following statement creates an array with 3 rows and 4 columns:

a=new Array(3,4)

There are two ways to refer to individual elements in an array; you can use either element subscripts or the
element number. Element subscripts, one for each dimension, are values that represent the element’s position in
that dimension. For a two-dimensional array, they indicate the row and column in which an element is located.
Element numbers indicate the sequential position of the element in the array, starting with the first element in
the array and increasing in each dimension, with the last dimension first. For a two-dimensional array, the first
element is in the first column of the first row, the second element is in the second column of the first row, and so
on.

To determine the number of dimensions in an array, check its dimensions property (it’s read-only). The array’s
size property reflects the number of elements in the array. To determine the number of rows or columns in a
two-dimensional array, use the ALEN() function. There is no built-in way to determine the size of dimensions
above two.

In an Array object, element numbering starts with one. You cannot create elements outside the defined range of
elements or subscripts (although you could change the dimensions of the array if desired). For example, a 3-
row,

4-column array has 12 elements, numbered 1 to 12. The first element’s subscripts are [1,1] and the last element
is [3,4].

Certain dBL methods require the element number, and others require the subscripts. If you are using one- or
two-dimensional arrays, you can use element() to determine the element number if you know the subscripts,
and subscript() to determine the subscripts if you know the element number.

Array elements may contain any data type, including object references to other arrays. Therefore you can create
nested arrays (multi-dimensional arrays of arrays with fixed length in each dimension), ragged arrays (nested
arrays with variable lengths), arrays of associative arrays, and so on.

With both nested and multi-dimensional arrays, you end up with multiple dimensions or levels of elements, but
when you nest arrays, you create separate array objects, and the methods that are designed to work on the
multiple dimensions of a single Array object will not work on the separate dimensions of the nested arrays.

In addition to creating an array with the NEW operator, you can create a populated one-dimensional array using
the literal array syntax. For example, this statement

Array objects 10-3

class AssocArray

Example

See also

al = {"A","B","C"}
creates an Array object with three elements: “A”, “B”, and “C”. You can nest literal arrays. For example, if this
statement:

a2=1{1{1,2,3},al}
followed the first, you would then have a nested array.

To access a value in a nested array, use the index operators in series. Continuing the example, the third element
in the first array would be accessed with:

x=a2[1][3] /3
One-dimensional arrays are the only Array objects that are allowed to have zero elements. This is particularly
useful for building arrays dynamically. To create a zero-element array, create a NEW Array with no parameters:
a0 = new Array()
Then use the add() method to add elements to the array.

The following statements create a 3 row, 4 column array with the letters “A” through “L” with two different
techniques and use a function to display each array.

aAlpha = new Array(3, 4)

aAlpha[1,1]="A"; aAlpha[1,2] = "B"; aAlpha[1,3] = "C"; aAlpha[1,4] = "D"

aAlpha[2,1]="E"; aAlpha[2,2] = "F"; aAlpha[2,3] = "G"; aAlpha[2,4] = "H"

aAlpha[3,1] ="I"; aAlpha[3,2] ="J"; aAlpha[3,3] = "K"; aAlpha[3,4] ="L"

displayArray(aAlpha)

aAlpha _ {llAll’ IIB"’ ||C||’ ||D"’ "E"’ "F"’ HG"’ HHH’ HIN’ NJ"’ HK"’ "L" }

aAlpha.resize(3,4)

displayArray(aAlpha)
The second array takes advantage of the literal array syntax, but resize() only creates a one- or two-dimensional
array.

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions on page 10-28.

class AssocArray

class AssocArray

Syntax

Properties

A one-dimensional associative array, in which the elements can be referenced by string.
[<oRef> =] new AssocArray()
<oRef> A variable or property in which to store a reference to the newly created AssocArray object.

The following tables list the properties and methods of the AssocArray class. (No events are associated with this
class.)

Property Default Description

baseClassName ASSOCARRAY Identifies the object as an instance of the AssocArray class
(Property discussed in Chapter 5, “Core language.”)

className (ASSOCARRAY) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

firstkey Character string assigned as the subscript of the first element of
an associative array

Method Parameters Description
count() Returns the number of elements in the associative array
isKey() <key expC> Returns true or false to indicate whether the character string is a

key of the associative array
nextKey() <key expC> Returns the associative array key following the passed key

10-4 dBASE dBL Language Reference

ACOPY()

Method Parameters Description
removeAll() Deletes all elements from the associative array
removeKey() <key expC> Deletes the specified element from the associative array

Description In an associative array, elements are associated with arbitrary character strings, which act as key values. The
keys may be of any length, and are case-sensitive. An AssocArray is a one-dimensional array.

New elements are created simply by assigning a value to a key. If the key does not exist, a new element is
created. If the key already exists, then the old value is replaced. For example,

aTest = new AssocArray()

aTest["alpha"] =1 // Create element with key "alpha" value 1
aTest["beta"]=2 // Create element with key "beta" value 2
aTest["alpha"] =3 // Change value of element "alpha" to 3
aTest["Beta"]=4 // Create element with key "Beta" value 4

The isKey() method will check if a given string is a key value in the associative array, and removeKey() will
remove the element for a given key value from the array. removeAll() removes all the elements from the array.

The order of elements in an associative array is undefined. They are not necessarily sorted in the order they were
added or sorted by their key values. You can think of an associative array as a bag of elements, and depending
on what’s in the bag, the order is different. But no matter what’s in the associative array, you can use its firstkey
property to get a key value, and use the nextKey() method to get all the other key values. The count() method
will return the number of elements in the array so that you can call nextKey() as many times as needed.

Example Suppose you want to create an associative array that associates country codes with the name of the country. You
could use a table for the lookup, but because the lookups don’t change, reading the table into an array once at the
beginning of the application makes the application run faster.

use COUNTRY order CODE
aCountry = new AssocArray()
scan

aCountry[CODE] = NAME
endscan

If you had to create the array manually, the code would look like this:

aCountry = new AssocArray()
aCountry["AFG"] = "Afghanistan"
aCountry["ALB"] ="Albania"
aCountry["ALG"] = "Algeria"
aCountry["ASA"] ="American Samoa"
/I User developed code
aCountry["ZAM"] = "Zambia"
aCountry["ZIM" | = "Zimbabwe"

See also class Array

ACOPY()

Copies elements from one array to another. Returns the number of elements copied.

Syntax ACOPY(<source array>, <target array>
[, <starting element expN> [, <elements expN> [, <target element expN>]]])

<source array> A reference to the array from which to copy elements.
<target array> A reference to the array that elements are copied to.

<starting element expN> The position of the element in <source array> from which ACOPY/() starts
copying. Without <starting element expN>, ACOPY() copies all the elements in <source array> to <target
array>.

<elements expN> The number of elements in <source array> to copy. Without <elements expN=>,
ACOPY() copies all the elements in <source array> from <starting element expN> to the end of the array. If
you want to specify a value for <elements expN>, you must also specify a value for <starting element expN>.

Array objects 10-5

add()

<target element expN> The position in <target array> to which ACOPY() starts copying. Without
<target element expN>, ACOPY() copies elements to <target array> starting at the first position. If you want
to specify a value for <target element expN>, you must also specify values for <starting element expN> and
<elements expN>.

Description ACOPY() copies elements from one array to another. The dimensions of the two array do not have to match;
the elements are handled according to element number.

The target array must be big enough to contain all the elements being copied from the source array; otherwise no
elements are copied and an error occurs.

See Also element()

add ()

Adds an element to a one-dimensional array.
Syntax <oRef>.add(<exp>)

<oRef> A reference to the one-dimensional array to which you want to add the element.
<exp> An expression of any type you want to assign to the new element.

Property of Array

Description Use add() to dynamically build a one-dimensional array.
add() adds a new element to a one-dimensional array and assigns <exp> to the new element.
You can create an empty one-dimensional array in a statement like:

a=new Array() // No parameters to Array class creates empty 1-D array

and add elements as needed.

Example The following function is an onOpen event handler for a ComboBox component. It creates a one-dimensional
array from values in a field in a table and assigns that array as the dataSource property of the Select component.
The table is already opened in the query sectionsl.

function sectionCombo_onOpen()
this.aSections = new Array()
if form.sections1.rowset.first()
do
this.aSections.add(form.sections1.rowset.fields["Name"].value)
until not form.sections1.rowset.next()
endif
this.dataSource = "array this.aSections"

See also grow()

ADEL()

Deletes an element from a one-dimensional array, or deletes a row or column of elements from a two-dimensional
array. Returns 1 if successful, an error if unsuccessful.

Syntax ADEL(<array name>, <position expN> [, <row/column expN>])
<array name> The name of the declared one- or two-dimensional array from which to delete data.

<position expN> When <array name> is a one-dimensional array, <position expN> specifies the number
of the element to delete.

When <array name> is a two-dimensional array, <position expN> specifies the number of the row or column
whose elements you want to delete. The third argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.

10-6 dBASE dBL Language Reference

ADEL()

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is deleted from a two-
dimensional array. If you specify 2, a column is deleted. dBASE Plus returns an error if you use <row/
column expN> with a one-dimensional array.

Description Use ADEL() to delete selected elements from an array without changing the size of the array. ADEL() does the
following:
* Deletes an element from a one-dimensional array, or deletes a row or column from a two-dimensional array

* Moves all remaining elements toward the beginning of the array (up if a row is deleted, to the left if an
element or column is deleted)

» Inserts .F. values in the last position(s)

For information about deleting elements by inserting .F. values and moving remaining elements toward the end
of the array, see AINS(). For information about replacing elements without moving remaining elements at all,
see AFILL(). To change the size of an array, use AGROW() or ARESIZE().

One-dimensional arrays When you issue ADEL() for a one-dimensional array, the element in the
specified position is deleted, and the remaining elements move one position toward the beginning of the array.
The logical value .F. is stored to the element in the last position.

For example, if you define a one-dimensional array with DECLARE aArray[3] and STORE "A," "B," and "C"
to the array, the array has one row and can be illustrated as follows:

A B C

Issuing ADEL(aArray, 2) deletes element number 2, whose value is "B," moves the value in aArray[3] to
aArray[2], and stores .F. to aArray[3] so that the array now contains these values:

A C F

Two-dimensional arrays When you issue ADEL() for a two-dimensional array, the elements in the
specified row or column are deleted, and the elements in the remaining rows or columns move one position
toward the beginning of the array. The logical value .F. is stored to the elements in the last row or column.

For example, suppose you define a two-dimensional array with DECLARE aArray[3,4] and store letters to the
array. The following illustration shows how the array is changed by ADEL(aArray, 2, 2).

Array objects 10-7

ADEL()

Figure 10.1Using ADEL() with a two-dimensional array
ADEL (aARRAY,2,2)

Original array created as:
g y @ ADEL(aAIray,2,2)

DECLARE aArray(3,4] deletes the elements in the
STORE “A” TO aArray[1,1] second column...

STORE “B” TO aArray[1,2]
/I User developed code

STORE “L” TO aArray[3,4]
1 2 3 4 1 2 3 4
A B C D A C D
1,1 1,2 1,3 1,4 1,1 12 1,3 1,4
5 6 7 8 5 6 7 8
E F G H E G H
2,1 2,2 2,3 2,4 2,1 22 2,3 2,4
9 10 11 12 9 10 11 12
| J K L [VI K L
3,1 3,2 3,3 3,4 3,1 3,2 3,3 3,4

Initial contents of the array aArray

e Shifts the elements in the e And inserts logical .F. values
remaining columns towards as elements in the last
the beginning of the array... column, resulting in this
- array:

1 2 3 4 1 2 3 4
A C D A C D .F
1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4
5 6 7 8 5 6 7 8
E G H E G H .F
2,1 2,2 2,3 2,4 21 2,2 2,3 2,4
9 10 1 12 9 10 11 12
| K L | K L .F
3,1 3,2 33 3,4 3,1 3,2 33 34

Contents of the array after
issuing ADEL (aArray,2,2)

Example The following example uses ADEL() and AGROW() to dynamically add and delete to an array which is being
edited with @ GET commands:

DECLARE aTest[3]
AFILL(aTest, space(10))
@0,10 SAY " ALT+A = Add Element ;
ALT+D = Delete Element"
ON KEY LABEL ALT+A GrowArray()
ON KEY LABEL ALT+D DelArray()
DO WHILE READKEY() <> 12 .and. aTest.size > 0
@1,1 CLEAR TO aTest.size, 30
FOR i=1 to aTest.size
@i, 1 SAY i GET aTest[i]
NEXT
READ
ENDDO
ON KEY LABEL ALT+A
ON KEY LABEL ALT+D
RETURN

FUNCTION DelArray
ADEL(aTest, aTest.size)
KEYBOARD CHR(3)
RETURN .T.

10-8 dBASE dBL Language Reference

See Also

ADIR()

ADIR()

FUNCTION GrowArray
AGROW(aTest, 1)
aTest[aTest.size] = SPACE(10)
KEYBOARD CHR(3)
RETURN .T.

delete(), AFILL(), AGROW(), AINS(), ARESIZE(), DECLARE

Syntax

Description

Stores to a declared array five characteristics of specified files: name, size, date stamp, time stamp, and DOS
attribute(s). Returns the number of files whose characteristics are stored.

ADIR(<array name>
[, <filename skeleton expC> [, <DOS file attribute list expC>]])

<array name> The name of the declared array of one or more dimensions to which to store the file
information. ADIR() dynamically sizes <array name> so the number of rows in the array is equal to the
number of files that match <DOS file attribute expC>, and the number of columns is five.

<filename skeleton expC> The file-name pattern (using wildcards) describing the files whose
information to store to <array name>.

<DOS file attribute list expC> The letter or letters D, H, S, and/or V representing one or more DOS
file attributes.

If you want to specify a value for <DOS file attribute expC>, you must also specify a value or "*.*" for
<filename skeleton expC>.

The meaning of each attribute is as follows:

Character Meaning

D Directories

H Hidden files
S System files
\'% Volume label

If you supply more than one letter for <DOS file attribute expC>, include all the letters between one set of
quotation marks, for example, ADIR(aArray, "*.PRG", "HS").

Use ADIR() to store information about files to a declared array, which is dynamically resized so all returned
information fits in the array.

Without <filename skeleton expC>, ADIR() stores information about all files in the current directory that are
neither hidden nor system files. For example, if you want to return information only on tables, use "*.DBF" as
<filename skeleton expC>.

If you want to include directories, hidden files, or system files in the array, use <DOS file attribute expC>.
When D, H, or S is included in <DOS file attribute expC>,

all directories, hidden files, and/or system files (respectively) that match <filename skeleton expC> are added to
the array.

When V is included in <DOS file attribute expC>, ADIR() ignores <filename skeleton expC> as well as other
characters in the attribute list, and stores the volume label to a one-element array.

ADIR() stores the following information for each file into one row of the array. The data type for each is shown
in parentheses:

Column 1 Column 2 Column 3 Column 4 Column 5
File name Size (numeric) Date Time (character) DOS attribute(s)
(character) (date) (character)

Array objects 10-9

AELEMENT()

Example

See Also

The last column (DOS attribute) can contain one or more of the following DOS attributes:

Attribute Meaning

R Read-only file

A Archive file (modified since it was last backed up)
S System file

H Hidden file

D Directory

For example, a file with none of the attributes would have the following string in column 5:

A read-only, hidden file would have the following string in column 5:
R..H.

The following example uses ADIR() to store the file name, file size, date of update and time of update for all
.DBEF files on the current directory to the array Dir_Arr. The counting DO WHILE loop displays the results to
the Command window results pane:

DECLARE Dir_Arr[1]

Num_Files=ADIR(Dir_Arr,"*.DBF")

Cnt=1

DO WHILE Cnt<=Num_Files

? Dir_Arr[Cnt,1], Dir_Arr[Cnt,2] AT 20,;

Dir_Arr[Cnt,3] AT 35, Dir_Arr[Cnt,4] AT 45,;
Dir_Arr[Cnt,5] AT 55
Cnt=Cnt+1

ENDDO

RETURN

dir(), ACOPY(), AFIELDS(), ASORT(), CD, DIR, DECLARE, FDATE(), FSIZE(), FTIME()

AELEMENT()

Syntax

Description

Returns the number of a specified element in a one- or two-dimensional array.

AELEMENT(<array name>, <subscriptl expN>
[, <subscript2 expN>])

<array name> A declared one- or two-dimensional array.

<subscriptl expN> The first subscript of the element. In a one-dimensional array, this is the same as the
element number. In a two-dimensional array, this is the row.

<subscript2 expN> When <array name> is a two-dimensional array, <subscript2 expN> specifies the
second subscript, or column, of the element.

If <array name> is a two-dimensional array and you do not specify a value for <subscript2 expN>, dBASE Plus
assumes the value 1. dBASE Plus returns an error if you use <subscript2 expN> with a one-dimensional array.

Use AELEMENT() when you know the subscripts of an element in a two-dimensional array and need the
element number for use with another function, such as ACOPY() or ASCAN().

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
AELEMENT(). That is, AELEMENT(aOneArray,3) returns 3, AELEMENT(aOneArray,5) returns 5, and so
on.

AELEMENT() is the inverse of ASUBSCRIPT(), which returns an element's row or column subscript number
when you specify the element number.

Example The first section of this example initializes a one-dimensional array and a two-dimensional array:

DECLARE aTeacher[4]
DECLARE aStudent[3,4]
DISPLAY MEMORY

10-10 dBASE dBL Language Reference

See Also

AFIELDS()

Values held in memory are initialized to logical type and contain the value .F. Note the ordering sequence of the
subscripts for the two-dimensional array ASTUDENT:

*ATEACHER

* [1] L.F
* [2] L.F
* [3] L.F
* [4] L.F.
*ASTUDENT

* [1, 1] LF
* [1,2] LF
* [1, 3] LF
* [1,4 LF
* [2 1] LF
* [2 2] LF
* [2 3 LF
* [2, 4 LF
* [3,1] LF
* [3,2] LF
* [3,3 LF
* [3,4 LF

The following statements use AELEMENT() to return the number of the element specified by subscripts:

? AELEMENT(aTeacher, 3) && Returns 3
? AELEMENT(aStudent, 1, 2) && Returns 2
? AELEMENT(aStudent, 2, 2) && Returns 6
? AELEMENT (aStudent, 3, 4) && Returns 12
? AELEMENT (aStudent, 3) && Returns 9

element(), ACOPY(), ADEL(), AFIELDS(), AINS(), ALEN(), ASCAN(), ASORT(), ASUBSCRIPT(),
DECLARE

AFIELDS()

Syntax

Description

Stores the current table's structural information to a declared array and returns the number of fields whose
characteristics are stored.

AFIELDS(<array name>)
<array name> The name of a declared array of one or more dimensions.

Use AFIELDS() to store information about the current table structure in a declared array. You can then
reference the elements in the array to return information such as a field name and type for use with other
functions or for producing reports. Each row in the array contains information on a single field in the current
table.

AFIELDS() dynamically sizes <array name> so the number of rows in the array is at least equal to the number
of fields in the current table, and the number of columns is at least four. If you declared an array of greater size
than required, the rows may not equal the number of fields and the number of columns do not necessarily equal
four.

The following table shows which field characteristics AFIELDS() stores, and in which column the information
is placed:

Column 1 Column 2 Column 3 Column 4
Field name Field type Field length (numeric ~ Decimal places
(character data type) ~ (character data type) data type) (numeric data type)

dBL uses the following codes for field types: B-dBASE or Paradox binary field (BLOB), C-character, D-date,
G-OLE (general), L-logical, M-memo, N-numeric, F-float.

AFIELDS() stores the same information into an array that COPY TO...STRUCTURE EXTENDED stores into
a table, except AFIELDS() doesn't create a row containing FIELD IDX information.

Array objects 10-11

AFILL()

Example

See Also

The following example uses AFIELDS() to initialize the array Stru_Arr to the structure of the Company table.
The resulting two-dimensional array has four columns containing field name, field type, field length and
decimal places and as many rows as the table has fields. The subsequent DO WHILE loop displays the first
column only, thus listing the field names of the current table:

USE COMPANY
DECLARE Stru_Arr[1]
Num_Fields=AFIELDS(Stru_Arr)
Cntl=1
DO WHILE Cntl<=Num_Fields
? Stru_Arr[Cntl,1]
Cnt1=Cnt1+1
ENDDO
RETURN

fields(), COPY TO ARRAY, COPY TO...STRUCTURE EXTENDED, DECLARE, FDATE(), FSIZE(),
FTIME()

AFILL()

Syntax

Description

Example

Inserts a specified value into one or more locations in a declared array, and returns the number of elements inserted.

AFILL(<array name>, <exp>
[, <start expN>[, <count expN>]])

<array name> The name of a declared one- or two-dimensional array to fill with the specified value
<exp>.

<exp> An expression of character, date, logical, numeric, or float data type to insert in the specified array.

<start expN> The element number at which to begin inserting <exp>. If you do not specify <start expN>,
dBASE Plus begins at the first element in the array.

<count expN> The number of elements in which to insert <exp>, starting at element <start expN>. If you
do not specify <count expN>, dBASE Plus inserts <exp> from <start expN> to the last element in the array. If
you want to specify a value for <count expN>, you must also specify a value for <start expN>.

If you do not specify <start expN> or <count expN>, dBASE Plus fills all elements in the array with <exp>.

Use AFILL() to insert a value into all or some elements of a declared array. For example, if you are going to use
elements of an array to calculate totals, you can use AFILL() to initialize all values in the array to 0.

AFILL() inserts values into the array sequentially. Starting at the first element in the array or at <start expN>,
AFILL() inserts values in each element in a row, then moves to the first element in the next row, continuing to
insert values until the array is filled or until it has inserted <count expN> elements. AFILL() overwrites any
existing data in the array.

If you know an elements subscripts, you can use AELEMENT() to determine its element number for use as
<start expN>.

The following example uses AFILL() to replace the current YTD Sales value held in the 10th column of array
Com_Arr. ASCAN() returns the element number for the desired Company name which is used by AFILL() as
a reference point:

SET TALK OFF

CLEAR

USE Company

Lookup="InterSafe"

Sales=143325552.20

Cnt=RECCOUNT()

Flds=FLDCOUNT()

DECLARE Com_Arr[Cnt,Flds]

COPY TO ARRAY Com_Arr

Element=ASCAN(Com_Arr,Lookup)

IF Element>0
Rple=AFILL(Com_Arr,Sales,Element+9,1)

ENDIF

10-12 dBASE dBL Language Reference

See Also

AGROW()

Count=1

DO WHILE Count<=Cnt
? Com_Arr[Count,1], Com_Arr[Count,10]
Count=Count+1

ENDDO

fill(), ADEL(), AELEMENT(), AINS(), DECLARE

AGROW()

Syntax

Description

Adds an element, row, or column to an array and returns a numeric value representing the number of added
elements.

AGROW (<array name>, <expN>)
<array name> The name of a declared one- or two-dimensional array you want to add elements to.

<expN> Either 1 or 2. When you specify 1, AGROW() adds a single element to a one-dimensional array or
a row to a two-dimensional array. When you specify 2, AGROW() adds a column to the array.

Use AGROW() to insert an element, row, or column into an array and change the size of the array to reflect the
added elements. AGROW() can make a one-dimensional array two-dimensional. All added elements are
initialized to .F. values.

To insert .F. values without changing the size of the array, use AINS().

One-dimensional arrays When you specify 1 for <expN>, AGROW() adds a single element to the
array. When you specify 2, AGROW() makes the array two-dimensional, and existing elements are moved into
the first column. This is shown in the following figure:

Figure 10.2Adding a column to a one-dimensional array using AGROW(bARRAY,2)

AGROW(bARRAY,2) AGROW!(bARRAY,2) adds a new column to the

array, makes it a two dimensional array with
Original array created as: dimensions [4,2], and copies the old values into

DECLARE bArray[4] the first column.

STORE “A” TO bArray[1]
STORE “B” TO bArray|[2]

STORE “C” TO bArray[3] 1 5
STORE “D” TO bArray[4] A F
1 2 3 4 > 11| 12
A B C D 3 4
1 2 3 4 B =
" 2,1 2,2
Initial contents of the array s 5
bArray.
C .F.
3,1 3,2
7 8
D .F
41 42

Contents of the array after issuing
AGROW(bArray,2)

Two-dimensional arrays When you specify 1 for <expN>, AGROW() adds a row to the array and adds
the row at the end of the array. This is shown in the following figure:

Array objects 10-13

AINS()

Example

See Also

AINS()

Figure 10.3Adding a row to a two-dimensional array using AGROW(aARRAY,1)

AGROW (aARRAY, 1)
@ Original array created as: @) AGROW(aARRAY1) adds a new row to

DECLARE aArray|[3,4] the array.
STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]
/I User developed code ! 2 8 4
STORE “L” TO aArray[3,4] AL B | C | D
' 1,1 1,2 1,3 1,4
1 2 3 4 > 15 6 7 8
A B C D E F G H
1,1 1,2 1,3 1,4 2,1 2,2 23 2,4
5 6 7 8 9 10 11 12
E F G H | J K L
2,1 2,2 23 2,4 31 32 33 3,4
9 10 1 12 13 14 15 16
| J K L .F. .F. .F. .F.
31 32 33 34 41 42 43 4,4
Initial contents of the array Contents of the array after
aArray. issuing AGROW(aArray,1)

When you specify 2 for <expN>, AGROW() adds a column to the array and places .F. into each element in the
column.

The following example initially declares an array of three elements, and then uses AGROW() to add a fourth
element, a second column and finally, to add a row to the two dimensional array. DISPLAY MEMORY is used
to show the values in the array after each AGROW() operation:

RELEASE ALL

DECLARE A[3]

A[1]="x"

ARI="y"

A[3]="Z"

DISPLAY MEMORY

N=AGROW(A,1) && adds an element to A
DISPLAY MEMORY

N=AGROW(A,2) && adds a columnto A
DISPLAY MEMORY

N=AGROW(A,1) && adds a new row to A
DISPLAY MEMORY

grow(), AINS(), ALEN(), DECLARE

Syntax

Inserts an element with the value .F. into a one-dimensional array, or inserts a row or column of elements with the
value .F. into a two-dimensional array. Returns 1 if successful, an error if unsuccessful.

AINS(<array name>, <position expN> [, <row/column expN>])
<array name> The name of a declared one- or two-dimensional array in which to insert data.

<position expN> When <array name> is a one-dimensional array, <position expN> specifies the number
of the element in which to insert an .F. value.

When <array name> is a two-dimensional array, <position expN> specifies the number of a row or column in
which to insert .F. values. The third argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is inserted into a two-
dimensional array. If you specify 2, a column is inserted. dBASE Plus returns an error if you use <row/
column expN> with a one-dimensional array.

10-14 dBASE dBL Language Reference

AINS()

Description Use AINS() to insert .F. values into selected elements in an array without changing the size of the array.
AINS() does the following:

« Inserts an element in a one-dimensional array, or inserts a row or column in a two-dimensional array

* Moves all remaining elements toward the end of the array (down if a row is inserted, to the right if an
element or column is inserted)

 Inserts .F. values in the newly created position(s)

For information about inserting elements by moving remaining elements toward the beginning of the array and
inserting .F. values at the end of the array, see ADEL(). For information about replacing elements without
moving remaining elements at all, see AFILL(). To change a one-dimensional array to two-dimensional, use
AGROW(') or ARESIZE().

One-dimensional arrays When you issue AINS() for a one-dimensional array, the logical value .F. is
inserted into the position of the specified element. The remaining element(s) are moved one place toward the
end of the array. The element that had been in the last position is deleted.

For example, if you define a one-dimensional array with DECLARE aArray[3] and STORE "A," "B," and "C"
to the array, the array has one row and can be illustrated as follows:

A B C

Issuing AINS(aArray, 2) inserts aArray[2] with the value .F., moves aArray[2], whose value is "B," to
aArray[3], and deletes "C" in aArray[3] so that the array now contains these values:

A F B

Two-dimensional arrays When you issue AINS() for a two-dimensional array, a logical value .F. is
inserted into the position of each element in the specified row or column. The elements in the remaining
columns or rows are moved one place toward the end of the array. The elements that had been in the last row or
column are deleted.

For example, suppose you define a two-dimensional array with DECLARE aArr[3,4] and store letters to the
array. The following figure shows how the array is changed by issuing AINS(aArray, 2,2):

Array objects 10-15

AINS()

Figure 10.4Using AINS() with a two-dimensional array

AINS (aARRAY, 2,2)
OOriginaI array created as:
DECLARE aArray|[3,4]

STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]

© ANs(aArray,2,2)
inserts logical .F. values as

elements in the second column...

/I User developed code

STORE “L” TO aArray[3,4]
1 2 3 4
1 2 3 4 A B C D
A B C D 1,1 1,2 1,3 1,4
11 1,2 1,3 1,4 5 5 7 8
° 6 ! 8 E F G H
E F G H 2,1 2,2 2,3 2.4
2,1 2,2 2,3 2,4 9 10y |1 12
9 10 11 12 | J K L
| J K L 3,1 3,2 3,3 34
3,1 3,2 33 34

Initial contents of the array aArray

Shifts the elements in the
remaining columns towards the
end of the array, and deletes the
elements from the last column.

eResulting in this array:

> 1 2 3 4
1 2 3 4
A .F. B C
A .F. B C 11 1,2 1,3 1,4
11 12 13 14 s 5 = s
5 6 7 8
E .F. F G
E .F. F G 2,1 2,2 2,3 2,4
2,1 2,2 2,3 2,4 5 m m o
9 10 11 12
| .F. J K
| .F. J K 3,1 3,2 3,3 34
31 3,2 33 3.4

Contents of the array after issuing
AINS(aArray,2,2)

Example The following example uses a two-dimensional array created as follows:

PUBLIC aAlpha

DECLARE aAlpha[2,3]
STORE "one" TO aAlpha[1,1]
STORE "two" TO aAlpha[1,2]
STORE "three" TO aAlpha[1,3]
STORE "four" TO aAlpha[2,1]
STORE "five" TO aAlpha[2,2]
STORE "six" TO aAlpha[2,3]

The array aAlpha now contains the following:

aAlpha

[1,LI] C "one"
*[1,2] C "two"
*[1,3] C "three"
*[2,11 C "four"
*[2,2] C "five"
*12,3] C "six"

AINS() is now used to change the first column to .F. and move the remaining elements toward the end of the
array:

? AINS(aAlpha,1,2) && Returns 1 if successful
aAlpha now contains the following:
*aAlpha

10-16 dBASE dBL Language Reference

See Also

ALEN()

.F.
"one"
"two"
.F.
ufouru

uﬁven

insert(), ADEL(), AFILL(), AGROW(), ARESIZE(), DECLARE

® % * X % %
[oNoNoRoRON®!

ALEN()

Syntax

Description

Example

See Also

Returns the number of elements, rows, or columns of an array.
ALEN(<array> [, <expN>])
<array> A reference to a one- or two-dimensional array.

<eXpN> The number 0, 1, or 2, indicating which array information to return: elements, rows, or columns.
The following table describes what ALEN() returns for different <expN> values:

If <expN>is... ALEN() returns...

not supplied Number of elements in the array

0 Number of elements in the array

1 For a one-dimensional array, the number of elements

For a two-dimensional array, the number of rows (the first subscript of the array)
2 For a one-dimensional array, 0 (zero)
For a two-dimensional array, the number of columns (the second subscript of the array)

any other value 0 (zero)

Use ALEN() to determine the dimensions of an array—either the number of elements it contains, or the number
of rows or columns it contains.

The number of elements in an array (with any number of dimensions) is also reflected in the array’s size
property.

If you need to determine both the number of rows and the number of columns a two-dimensional array contains,
call ALEN() twice, once with a value of 1 for <expN> and once with a value of 2 for <expN>. For example, the
following determines the number of rows and columns contained in aExample:

nRows = alen(aExample, 1)
nCols = alen(aExample, 2)

ALEN() is used in the displayArray() function, shown in the example for dimensions, to determine the number
of rows and columns in a two-dimensional array.

size[Array], size[File], subscript()

ARESIZE()

Syntax

Increases or decreases the size of an array according to the specified dimensions and returns a numeric value
representing the number of elements in the modified array.

ARESIZE(<array name>, <new rows expN>
[.<new cols expN> [, <retain values expN>]])

<array name> The name of a declared one- or two-dimensional array whose size you want to increase or
decrease.

<new rows expN> The number of rows the resized array should have. <new rows expN> must always be
a positive, nonzero value.

Array objects 10-17

ARESIZE()

<new cols expN> The number of columns the resized array should have. <new cols expN> must always
be 0 or a positive value. If you omit this option, ARESIZE() changes the number of rows in the array and leaves
the number of columns the same.

<retain values expN> Determines what happens to the values of the array when rows are added or
removed. If you want to specify a value for <retain values expN>, you must also specify a value for
<new cols expN>.

Description Use ARESIZE() to change the size of a declared array, making it larger or smaller. To determine the number of
rows or columns in an existing array, use ALEN().

If you add or remove columns from the array, you can use <retain values expN> to specify how you want
existing elements to be placed in the new array. If <retain values expN> is zero or isn’t specified, ARESIZE()
rearranges the elements, filling in the new rows or columns or adjusting for deleted elements, and adding or
removing elements at the end of the array, as needed. This is shown in the following two figures. You are most
likely to want to do this if you don't need to refer to existing items in the array; that is, you plan to update the
array with new values.

Figure 10.5Adding a row and a column to a 3x4 array, rearranging elements
ARESIZE (aARRAY ,4,5)

Original array created as: ARESIZE(aARRAY,4,5) adds a new row
DECLARE aArray[3,4] and column to the array and rearranges the

STORE “A” TO aArray[L,1] values of the elements.

STORE “B” TO aArray[1,2] I > 3 1 s
/I User developed code A B C D E
STORE “L” TO aArray[3,4] 1,1 1,2 1,3 1,4 15
6 7 8 9 10
1 2 3 4 F G H I J
A B C D 2,1 2,2 2,3 2,4 2,5
1,1 1,2 1,3 1,4 1 12 13 14 15
5 6 7 8 K L .F .F .F
E E G H 31 32 33 3,4 3,5
2,1 2,2 23 2,4 16 17 18 19 20
9 10 1 12 .F .F F F F
| J K L 4,1 4,2 43 4,4 45
31 3,2 33 34
Contents of the array after issuing
Initial contents of the array aArray ARESIZE(aArray,4,5)

10-18 dBASE dBL Language Reference

Figure 10.6Adding a column to a one-dimensional array, rearranging elements

ARESIZE (hARRAY ,4,2)

Original array created as:

DECLARE bArray[4]

STORE “A” TO bArray[1]
STORE “B” TO bArray[2]
STORE “C” TO bArray/[3]
STORE “D” TO bArray[4]

A B C D

1 2 3 4

Initial contents of the array bArray.

ARESIZE()

ARESIZE(bARRAY,4,2) adds a new
e column to the array, makes it a two

dimensional array with dimensions

[4,2], and reassigns the values of

the elements.

1 2
A B
11 12
’ 3 4
C D
2,1 2,2
5 6
.F .F
31 3.2
7 8
.F .F
41 4,2

Contents of the array after

issuing ARESIZE(bArray,4,2)

When you use ARESIZE() on a one-dimensional array, you might want the original row to become the first
column of the new array. Similarly, when you use ARESIZE() on a two-dimensional array, you might want
existing two-dimensional array elements to remain in their original positions. You are most likely to want to do
this if you need to refer to existing items in the array by their subscripts; that is, you plan to add new values to
the array while continuing to work with existing values.

If <retain values expN> is a nonzero value, ARESIZE() ensures that elements retain their original values. The
following two figures repeat the statements shown in the previous two figures, with the addition of a value of 1

for <retain values expN >.

Figure 10.7Adding a row and a column to a 3x4 array, “preserving elements”

ARESIZE (aARRAY 4,5,1)

o Original array created as:

DECLARE aArray[3,4]
STORE “A” TO aArray[1,1]
STORE “B” TO aArray[1,2]

/I User developed code
STORE “L" TO aArray([3,4]

1 2 3 4
A B C D

1,1 1,2 1,3 1,4

E F G H
2,1 22 23 24

9 10 11 12

I J K L
31 3.2 33 34

Initial contents of the array
aArray.

@ ARESIZE(aARRAY,4,5,1) adds a new row and

column to the array and maintains the values of

the elements.

1 2 3
A B C

11 1,2 1,3

1,4

15

E F G

2,1 2,2 2,3

2,4

10

2,5

u 12 13
I J K

31 3,2 33

14

L
34

15

35

16 17 18

F. F. F.

4,1 4,2 43

19
.F

4,4

20

4,5

Contents of the array after issuing
ARESIZE(aArray,4,5,1)

Array objects

10-19

ASCAN()

Figure 10.8Adding a column to a one-dimensional array, “preserving elements”

ARESIZE (bARRAY,4,2,1) e ARESIZE(bARRAY,4,2,1) adds a new column to the
0 Original array created as: array, and makes it a two-dimensional array with
dimensions [4,2]. Each existing element is now the
DECLARE bArray[4] first element in a row.
STORE “A" TO bArray[1]
STORE “B” TO bArray|[2] 1 2
STORE “C” TO bArray[3] A F
STORE “D” TO bArray [4] 11l 12
1 2 3 4 - 3 4
A B C D B .F.
1 2 3 4 2,1 2,2
n 5 6
Initial contents of the array C E
bArray. 31| a2
7 8
D .F.
41 4,2

Contents of the array after
issuing ARESIZE(bArray,4,2,1)

Example The following example initially declares an array of three elements, and then uses ARESIZE() to resize the
array to A[5], A[5,2] and finally back to A[3]. DISPLAY MEMORY is used to show the values in the array
after each ARESIZE() operation:

RELEASE ALL

DECLARE A[3]

All1]="x"

A[z]:Yly”

A[3]:"ZY|

DISPLAY MEMORY
N=ARESIZE(A,5) && A now has 5 elements
Al4]1="new1"

A[5]="new2"

DISPLAY MEMORY
N=ARESIZE(A,5,2,1)

* A now has 5 rows and 2 columns.

* The new cols are all set to .t.

* Old values are retained

DISPLAY MEMORY
N=ARESIZE(A,3,1,1)

* A now is back to the original 3 elements
* use:

DISPLAY MEMORY

* N=ARESIZE(A,3,1,0)

* if you don't need the original values
DISPLAY MEMORY

WAIT

See Also resize(), ADEL(), AINS(), ALEN(), DECLARE

ASCAN()

Searches an array for an expression. Returns the number of the first element that matches the expression if the search
is successful, or 0 if the search is unsuccessful.

Syntax ASCAN(<array name>, <exp>
[, <starting element expN> [, <elements expN>]])

<array name> A declared one- or two-dimensional array.

<exp> The expression to search for in <array name>.

10-20 dBASE dBL Language Reference

Description

ASORT()

<starting element expN> The element number in <array name> at which to start searching. Without
<starting element expN>, ASCAN() starts searching at the first element.

<elements expN> The number of elements in <array name> that ASCAN() searches. Without
<elements expN>, ASCAN() searches <array name> from <starting element expN> to the end of the array. If
you want to specify a value for <elements expN>, you must also specify a value for <starting element expN>.

Use ASCAN() to search an array for the value contained in <exp>. For example, if an array contains customer
names, you can use ASCAN() to find the location in which a particular name appears.

ASCANY() returns the element number of the first element in the array that matches <exp>. If you want to
determine the subscripts of this element, use ASUBSCRIPT().

When <exp> contains string data, ASCAN() is case-sensitive; you may want to use UPPER(), LOWER(), or
PROPER() to match the case of <exp> with the case of the data stored in the array.

When <exp> contains string data, ASCAN() searches for an expression following the rules established by SET
EXACT. If SET EXACT is ON, dBASE Plus returns 0 if the value in <exp> is not identical to the data in an
element of the array. If SET EXACT is OFF, dBASE Plus returns 0 if the characters in <expN> do not match the
beginning characters in the data in an element of the array. The following code example illustrates this more
clearly. For more information, see SET EXACT.

DECLARE aArray[3,4] && 3 rows,4 columns
? AFILL(aArray,"abed",6,1) && place "abed" in the 6th element
SET EXACT OFF

? ASCAN(aArray,"abcd") && returns 6

? ASCAN(aArray,"abc") && returns 6

? ASCAN(aArray,'"bed") && returns 0

SET EXACT ON

? ASCAN(aArray,"abcd") && returns 6

? ASCAN(aArray,"abc") && returns 0

? ASCAN(aArray,"bed") && returns 0
Example

The following example uses ASCAN() to return an element number for a desired string within an array and
ASUBSCRIPT() to return the row and column coordinates within the array:

CLEAR

DECLARE A _Dir[1]
FileName="CLIENTS.DBF"

Files=ADIR(A_Dir,"*.*") && Initializes array to directory contents
Asort=ASORT(A_Dir) && Orders array
Element=ASCAN(A_Dir,FileName) && Returns filename location

IF Element > 0 && ASCAN() returns 1 if successful

Row=ASUBSCRIPT(A_Dir,Element,1)
Col=ASUBSCRIPT(A_Dir,Element,2)
? "Name" AT 15, "Bytes" AT 30, "Date" AT 39,;
"Time" AT 48
9
? "File Info: "+ A_Dir[Row,Col];
+" "+STR(A_Dir[Row,Col+1]);
+" "+DTOC(A_Dir[Row,Col+2])+" "+A_Dir[Row,Col+3]
ENDIF

See Also scan(), ACOPY(), AFIELDS(), AFILL(), ASORT(), ASUBSCRIPT(), DECLARE, LOWER(),

PROPER(), SET EXACT, UPPER()

ASORT()

Sorts the elements in a one-dimensional array or the rows in a two-dimensional array, returning 1 if successful or an
error if unsuccessful.

Syntax ASORT(<array name>

[, <starting element expN> [,<elements to sort expN> [, <sort order expN>]]])

<array name> A declared one- or two-dimensional array.

Array objects 10-21

ASORT()

Description

<starting element expN> In a one-dimensional array, the number of the element in <array name> at
which to start sorting. In a two-dimensional array, the number (subscript) of the column on which to sort.
Without <starting element expN>, ASORT() starts sorting at the first element or column in the array.

<elements to sort expN> In a one-dimensional array, the number of elements to sort. In a two-
dimensional array, the number of rows to sort. Without <elements to sort expN>, ASORT() sorts the rows
starting at the row containing element <starting element expN> to the last row. If you want to specify a value
for <elements to sort expN>, you must also specify a value for <starting element expN>.

<sort order expN> The sort order:
0 specifies ascending order (the default)
1 specifies descending order

If you want to specify a value for <sort order expN>, you must also specify values for <elements to sort expN>
and <starting element expN>.

ASORT() succeeds in sorting when all elements you specify to be sorted are of the same data type. The
elements to sort in a one-dimensional array must be of the same data type, and the elements of the column by
which rows are to be sorted in a two-dimensional array must be of the same data type.

ASORT() arranges elements in alphabetical, numerical, chronological, or logical order, depending on the data
type of <starting element expN>. (For character data, the current language driver determines the sort order.)

One-dimensional arrays Suppose you issue DECLARE aNums[8] and store numbers to the array so
that the array elements are in this order:

5 7 3 9 4 1 2 8

If you issue ASORT(aNums, 1, 5), dBASE Plus sorts the first five elements so that the array elements are in this
order:

3 4 5 7 9 1 2 8

If you then issue ASORT(aNums, 5, 2), dBASE Plus sorts two elements starting at the fifth element so that the
array elements are now in this order:

3 4 5 7 1 9 2 8

Two-dimensional arrays Using ASORT() with a two-dimensional array is similar to using the SORT

command with a table. In this comparison, array rows correspond to records, and array columns correspond to
fields.

When you sort a two-dimensional array, whole rows are sorted, not just the elements in the column where
<starting element expN>) is located.

For example, suppose you issue DECLARE alnfo[4, 3] and fill the array with the following data:

(09/15/65} 7 A
{12/31/651 4 D
01/19/45, 8 C
{05/02/72 2 B

If you issue ASORT(alnfo, 1), dBASE Plus sorts all rows in the array beginning with element number 1. The
rows are sorted by the dates in the first column because element 1 is a date. The following figure shows the
results.

10-22 dBASE dBL Language Reference

ASUBSCRIPT()

Figure 10.9ASORT (alnfo,1)
ASORT (alnfo,1)

o All the rows are to be 9 Element 1 is a date, so the
sorted... rows are sorted by the dates

starting with the row in the first column.
containing element 1.

1 2 3
1 2 3 {D1/19/45} 8 C
{09/15/65} 7 A
4y 5 6
4 5 6 {09/15/65} 7 A
{12/31/74} 4 D
7 8 9
7 8 9 {05/02/72} 2 B
{01/19/45} | 8 C
10 1 12
10 1 12 {12/31/74} 4 D
{05/02/72} 2 B
Contents of the array after issuing

e ASORT(alnfo,1)
Initial contents of the array alnfo.

If you then issue ASORT(alnfo, 5, 2), dBASE Plus sorts two rows in the array starting with element number 5,
whose value is 7. ASORT() sorts the second and the third rows based on the numbers in the second column.
The following figure shows the results.

Figure 10.10Using ASORT() with a two-dimensional array

ASORT (aINFO,5,2) Element 5 contains a
Two rows are to be sorted number, so the rows are
(ASORT (alnfo,5,2)) sorted by the numbers in
starting with the row the second column.

containing element 5
(ASORT (alnfo,5,2)).

1 2 3 1 2 3
{01/19/45} | 8 C {01/19/45} | 8 C

4 5 6 4 5 6
{09/15/65} 7 A {05/02/72} 2 B

7 8 9 7 8 9
{05/02/72} | 2 B {09/15/65} | §7 | A

10 1 12 10 11 12
{12/31/74} 4 D {12/31/74} 4 D

Initial contents of the array alnfo. Contents of the array after issuing

ASORT (alnfo,5, 2)
Example See ASCAN() for an example of ASORT().
See Also sort(), AELEMENT(), ALEN(), ASCAN(), ASUBSCRIPT(), DECLARE

ASUBSCRIPT()

Returns the row number or the column number of a specified element in an array.

Syntax ASUBSCRIPT(<array name>, <element expN>, <row/column expN>)

<array name> A declared one- or two-dimensional array.

Array objects 10-23

count()

Description

Example

See Also

<element expN> The element number.

<row/column expN> A number, either 1 or 2, that determines whether you want to return the row or
column subscript of an array. If <row/column expN>is 1, ASUBSCRIPT() returns the number of the row
subscript. If <row/column expN> is 2, ASUBSCRIPT() returns the number of the column subscript.

If <array name> is a one-dimensional array, dBASE Plus returns an error if <row/column expN> is a value
other than 1.

Use ASUBSCRIPT() when you know the number of an element in a two-dimensional array and want to
reference the element by using its subscripts.

If you need to determine both the row and column number of an element in a two-dimensional array, issue
ASUBSCRIPT() twice, once with a value of 1 for <row/column expN> and once with a value of 2 for <row/
column expN>. For example, if the element number is 13, issue the following to return its subscripts:

? ASUBSCRIPT(aArray,13,1) && returns row subscript
? ASUBSCRIPT(aArray,13,2) && returns column subscript

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
ASUBSCRIPT(). That is, ASUBSCRIPT(aOneArray,3,1) returns 3, ASUBSCRIPT(aOneArray,5,1) returns 5,
and so on.

ASUBSCRIPT() is the inverse of AELEMENT(), which returns an element number when you specify the
element subscripts.

The following example uses ASCAN() to return an element number for a desired string within an array and
ASUBSCRIPT() to return the row and column coordinates within the array:

CLEAR
DECLARE A_Dir[1]
FileName="CLIENTS.DBF"
Files=ADIR(A_Dir,"*.*") && Initializes array to;
directory contents
Asort=ASORT(A_Dir) && Orders array
Element=ASCAN(A_Dir,FileName)&& Returns filename;
location
IF Element > 0 && ASCAN() returns 1;
if successful
Row=ASUBSCRIPT(A_Dir,Element,1)
Col=ASUBSCRIPT(A_Dir,Element,2)
? "Name" AT 15, "Bytes" AT 30, "Date" AT 39,;
"Time" AT 48
0
? "File Info: "+ A_Dir[Row,Col];
+" "+STR(A_Dir[Row,Col+1]);
+" "+A_Dir[Row,Col+2]+" "+A_Dir[Row,Col+3]
ENDIF

subscript(), ACOPY(), ADEL(), AELEMENT(), AFIELDS(), AINS(), ALEN(), ASCAN(), ASORT(),
DECLARE

count()

Property of

Description

Example

Returns the number of elements in an associative array.
AssocArray
Use count() to determine the number of elements in an associative array.

Because associative arrays use arbitrary strings as keys and change size dynamically, you need to get the
number of elements in an associative array if you want to loop through its elements.

The following statements loop through an associative array and display all its elements:

aTest = new AssocArray()

aTest["USA"] = "United States of America"
aTest["RUS"] ="Russian Federation"
aTest["GER" | = "Germany"

10-24 dBASE dBL Language Reference

See also

DECLARE

aTest["CHN"] = "People's Republic of China"

cKey = aTest. firstKey // Get first key in AssocArray
// Get number of elements in AssocArray and loop through them
for nElements = 1 to aTest.count()

? cKey // Display key value

? aTest[cKey] // Display element value

cKey := aTest.nextKey(cKey) // Get next key value
endfor

firstkey, nextKey()

count() is also a method of the Rowset class.

DECLARE

Syntax

Description

Example

Defines one or more fixed arrays.

DECLARE <array name 1>"["<expN list 1>"]"
[,<array name 2>"["<expN list 2>"]"...]

Brackets ([]) in quotation marks are required syntax components.
<array name 1>[,<array name 2>...] The memory variable(s) that are the name(s) of the array(s).

"["<expN list 1>"]"[,..."["<expN list 2>"]"][,...] Numeric or float expressions (from 1 to 254
inclusive). The number of expressions you specify determines the number of dimensions of the array. Each one
of the expressions specifies how many values (data elements) that dimension has. For example, if

[<expN list 1>] is [3,4], dBASE Plus defines a two-dimensional array with three rows and four columns.

Use DECLARE to define an array of a specified size as a memory variable. Array elements can be of any data
type. (An array element can also specify the name of another array.) A single array can contain multiple data
types. When you use DECLARE, all array elements are initialized to a logical data type with a value of .F.

The array can hold as many elements as memory allows. You can create arrays that contain more than two
dimensions, but most dBL array functions work only on one- or two-dimensional arrays.

There are two ways to refer to individual elements in an array; you can use either the element subscripts or the
element number. Element subscripts indicate the row and column in which an element is located. Element
numbers indicate the sequential position of the element in the array, starting at the first row and first column of
the array. To determine the number of elements, rows, or columns in an array, use ALEN().

Certain dBL functions require the element number, and others require the subscripts. If you are using one- or
two-dimensional arrays, you can use AELEMENT() to determine the element number if you know the
subscripts, and ASUBSCRIPT() to determine the subscripts if you know the element number.

After you create an array, you can place values in cells of the array using STORE, or you can use =. You can
also use AFILL() to place the same value in a range of cells in the array. To add or delete elements from an
array, use ADEL() and AINS(). To resize an array, or make a one-dimensional array two-dimensional, use
AGROW() or ARESIZE().

You can pass array elements as parameters, and you can pass a complete array as a parameter to a program or
procedure by specifying the array name without a subscript.

The following example relates two tables to create a view consisting of two fields from each table, then uses
DECLARE to create an array Compsumm and copies the selected data to the array. The counting DO WHILE
loop displays the contents of the array to the results pane of the Command window:

CLOSE ALL

CLEAR

USE Contact IN SELECT() ORDER CompCode
USE Company IN SELECT()

SELECT Company

SET RELATION TO CompCode INTO Contact

DECLARE Compsumm([5,4] && Create an array of 5 rows and 4 columns

COPY TO ARRAY Compsumm NEXT 5;
FIELDS Company->Company, ;

Array objects 10-25

delete()

See Also

Company->City, Contact->CompCode, ;
Contact->Contact

Cnt=1

DO WHILE Cnt<=5
? Compsumm|[Cnt,1], Compsumm[Cnt,2]
?7? Compsumm|[Cnt,3], Compsumm[Cnt,4]
Cnt=Cnt+1

ENDDO

CLOSE ALL

class Array, class AssocArray, APPEND FROM ARRAY, COPY TO ARRAY, REPLACE FROM ARRAY,
STORE

delete()

Syntax

Property of

Description

Deletes an element from a one-dimensional array, or deletes a row or column of elements from a two-dimensional
array. Returns 1 if successful; generates an error if unsuccessful. The remaining elements move forward to replace
the deleted element(s); the dimensions of the array do not change.

<oRef>.delete(<position expN> [, <row/column expN>])
<0Ref> A reference to the one- or two-dimensional array from which you want to delete data.

<position expN> When the array is a one-dimensional array, <position expN> specifies the number of the
element to delete.

When the array is a two-dimensional array, <position expN> specifies the number of the row or column whose
elements you want to delete. The second argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is deleted from a two-
dimensional array. If you specify 2, a column is deleted. dBASE Plus generates an error if you use <row/
column expN> with a one-dimensional array.

Array

Use delete() to delete selected elements from an array without changing the size of the array. delete() does the
following:

* Deletes an element from a one-dimensional array, or deletes a row or column from a two-dimensional array

* Moves all remaining elements toward the beginning of the array (up if a row is deleted, to the left if an
element or column is deleted)

* Inserts false values in the last position(s)

Adjust the array’s Size property or use resize() to make the array smaller after you delete() if you want the net
effect of removing elements.

One-dimensional arrays When you issue delete() for a one-dimensional array, the element in the
specified position is deleted, and the remaining elements move one position toward the beginning of the array.
The logical value false is stored to the element in the last position.

For example, if you define a one-dimensional array with
aAlpha = {llAll’ IIB"’ "C"}

the resulting array has one row and can be illustrated as follows:
A B C

Issuing aAlpha.delete(2) deletes element number 2 whose value is “B,” moves the value in aAlpha[3] to
aAlpha[2], and stores false to aAlpha[3] so that the array now contains these values:

A C false
Two-dimensional arrays When you issue delete() for a two-dimensional array, the elements in the

specified row or column are deleted, and the elements in the remaining rows or columns move one position
toward the beginning of the array. The logical value false is stored to the elements in the last row or column.

10-26 dBASE dBL Language Reference

delete()

For example, suppose you define a two-dimensional array and store letters to the array. The following
illustration shows how the array is changed by aAlpha.delete(2,2).

Figure 10.11Using delete () with a two-dimensional array
aAlpha.delete(2,2)

0 Original array created as: 9 aAlpha.delete(2,2)

aAlpha = new Array(3,4)] deletes the elements in the
aAlpha[l,1] = “A second column...
aAlpha[1,2] = “B”

/I User developed code

aAlpha[3,4] = “L”
1 2 3 4
1 2 3 4 A C D
A B C D 1,1 1,2 1,3 1,4
1,1 1,2 1,3 1,4 5 6 7 8
5 6 7 8 E G H
E F G H 2,1 2,2 23 2,4
2,1 2,2 23 2,4 9 10 ’ 11 12
9 10 11 12 | K L
I J K L 3.1 3.2 33 34
31 32 33 3,4
Initial contents of the array aAlpha
e Shifts the elements in the e And inserts logical false
remaining columns towards values as elements in the
the beginning of the array... last column, resulting in this
< array:
1 2 3 4 1 2 3 4
A C D A C D |false
11 1,2 1,3 1,4 1,1 1,2 1,3 1,4
5 6 7 8 5 6 7 8
E G H E G H |false
2,1 2.2 2,3 2,4 2,1 2,2 2,3 2,4
9 10 11 12 9 10 11 12
I K L I K L |false
3,1 32 33 3,4 3,1 32 33 34

Contents of the array after
issuing aAlpha.delete(2,2)

Example The following code removes elements from the array aTest that have the letter “e” in them.

aTest = {"alpha", "beta", "gamma", "delta"}

nDeleted = 0 // Count deleted elements
// Loop through array backwards

for nElement = aTest.size to 1 step -1

if "e" § aTest[nElement] // If element contains "e"
aTest.delete(nElement) /I Delete element
nDeleted++ // Increment delete count

endif

endfor
if nDeleted > 0

aTest.size := aTest.size - nDeleted // Discard false elements

endif

// Display elements (looping forward)
for nElement = 1 to aTest.size

? aTest[nElement]
endfor

The loop to delete the elements runs through the array backwards because delete() moves all remaining
elements forward. You would then have to recheck the same element number and juggle the element counter.
It’s simpler to just loop through the array backwards.

Array objects 10-27

dimensions

See also fill(), grow(), insert(), resize(), size
delete() is also a method of the File, Rowset, and UpdateSet classes.

dimensions

The number of dimensions in an Array object.
Property of Array
Description dimensions indicates the number of dimensions in an Array object. It is a read-only property.

You can use the resize() method to change the number of dimensions to one or two, but for more than two you
would have to create a new array.

If the array has one or two dimensions, you can use the ALEN() function to determine the size of each
dimension. There is no built-in way to determine dimension sizes for arrays with more than two dimensions.

Example The following function displays the contents of an array, but only if the array has one or two dimensions:

function displayArray(aArg, nColWidth)
local nElement, nCols, nRows, nCol, nRow
#define DEFAULT WIDTH 2
if argcount() <2
nColWidth = DEFAULT WIDTH
endif
do case
case aArg.dimensions ==
? replicate("-", nColWidth * aArg.size)
9

for nElement = 1 to aArg.size // Display elements
7?7 aArg[nElement | at nColWidth * (nElement - 1)
endfor /I in a single line
case aArg.dimensions ==
nRows = alen(aArg, 1) // Determine # of rows
nCols = alen(aArg, 2) // Determine # of columns

? replicate("-", nColWidth * nCols)
for nRow = 1 to nRows

? // Each row on its own line
for nCol = 1 to nCols // Display each row as before
7? aArg[nRow, nCol] at nColWidth * (nCol - 1)
endfor
endfor
otherwise
msgbox("Error: only 1 or 2 dimensions allowed", "Alert")
endcase

See also resize(), size, subscript()

dir()

Fills the array with five characteristics of specified files: name, size, modified date, modified time, and file
attribute(s). Returns the number of files whose characteristics are stored.

Syntax <oRef>.dir([<filename skeleton expC> [, <DOS file attribute list expC>]])

<ORef> A reference to the array in which you want to store the file information. dir() will automatically
redimension or increase the size of the array to accommodate the file information, if necessary.

<filename skeleton expC> The file-name pattern (using wildcards) describing the files whose
information you want to store to <oRef>.

<file attribute list expC> The letter or letters D, H, S, and/or V representing one or more file file
attributes.

10-28 dBASE dBL Language Reference

Property of

Description

Example

dir()

If you want to specify a value for <file attribute expC>, you must also specify a value or “*.*” for <filename
skeleton expC>.

The meaning of each attribute is as follows:

Character Meaning
D Directories
H Hidden files
S System files
\% Volume label

If you supply more than one letter for <file attribute expC>, include all the letters between one set of quotation
marks, for example, aFiles.dir(“*.*”, “HS”).

Array

Use dir() to store information about files to an array, which is dynamically resized so all returned information
fits in the array. The resulting array is always a two-dimensional array, unless there are no files, in which case
the array is not modified.

Without <filename skeleton expC>, dir() stores information about all files in the current directory, unless they
are hidden or system files. For example, if you want to return information only on DBF tables, use “*.DBF” as
<filename skeleton expC>.

If you want to include directories, hidden files, or system files in
the array, use <file attribute expC>. When D, H, or S is included in <file attribute expC>, all directories, hidden
files, and/or system files (respectively) that match <filename skeleton expC> are added to the array.

When V is included in <file attribute expC>, dir() ignores <filename skeleton expC> as well as other
characters in the attribute list, and stores the volume label to the first element of the array.

dir() stores the following information for each file in each row of the array. The data type for each is shown in
parentheses:

Column1l Column 2 Column 3 Column 4 Column 5
File name Size Modified date Modified time File attribute(s)
(character) (numeric) (date) (character) (character)

The last column (file attribute) can contain one or more of the following file attributes, in the order shown:

Attribute Meaning
R Read-only file
A Archive file (modified since it was last backed up)
S System file
H Hidden file
D Directory

If the file has the attribute, the letter code is in the column. Otherwise, there is a period. For example, a file with
none of the attributes would have the following string in column 5:

A read-only, hidden file would have the following string in column 5:
R.H.

Use dirExt() to get extended Windows 95/NT/ME file information.

The following example uses dir() to store the file information for all the files in the root directory of the current
drive to the array aFiles. The file name and attributes string is displayed for all the files in the results pane of the
Command window. Manifest constants to represent the columns are created with the #define preprocessor
directive to make the code more readable.

#define ARRAY_DIR NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY_DIR SIZE 2

Array objects 10-29

dirExt()

See also

#define ARRAY DIR DATE 3
#define ARRAY DIR_TIME 4
#define ARRAY DIR_ATTR 5

aFiles = new Array() // Array will be resized as needed
nFiles = aFiles.dir("*.*", "HS") // Include Hidden and System files
for nFile = 1 to nFiles

? aFiles[nFile, ARRAY DIR NAME]

7? aFiles[nFile, ARRAY DIR ATTR]at 25
endfor

dirExt(), sort()

dirExt()

Syntax

Property of

Description

dirExt() is an extended version of the dir() method. It fills the array with nine characteristics of specified files:
name, size, modified date, modified time, file attribute(s), short (8.3) file name, create date, create time, and access
date. Returns the number of files whose characteristics are stored.

<oRef>.dirExt([<filename skeleton expC> [, <file attribute list expC>]])

<ORef> A reference to the array in which you want to store the file information. dirExt() will automatically
redimension or increase the size of the array to accommodate the file information, if necessary.

<filename skeleton expC> The file-name pattern (using wildcards) describing the files whose
information you want to store to <oRef>.

<file attribute list expC> The letter or letters D, H, S, and/or V representing one or more file attributes.

If you want to specify a value for <file attribute expC>, you must also specify a value or “*.*” for <filename
skeleton expC>.

The meaning of each attribute is as follows:

Character Meaning
D Directories
H Hidden files
S System files
\% Volume label

If you supply more than one letter for <file attribute expC>, include all the letters between one set of quotation
marks, for example, aFiles.dirExt(“*.*”, “HS”).

Array

Use dirExt() to store information about files to an array, which is dynamically resized so all returned
information fits in the array. The resulting array is always a two-dimensional array, unless there are no files, in
which case the array is not modified.

Without <filename skeleton expC>, dirExt() stores information about all files in the current directory, unless
they are hidden or system files. For example, if you want to return information only on DBF tables, use
“* DBF” as <filename skeleton expC>.

If you want to include directories, hidden files, or system files in
the array, use <file attribute expC>. When D, H, or S is included in <file attribute expC>, all directories, hidden
files, and/or system files (respectively) that match <filename skeleton expC> are added to the array.

When V is included in <file attribute expC>, dirExt() ignores <filename skeleton expC> as well as other
characters in the attribute list, and stores the volume label to the first element of the array.

10-30 dBASE dBL Language Reference

element()

dirExt() stores the following information for each file in each row of the array. The data type for each is shown
in parentheses:

Column1l Column 2 Column 3 Column 4 Column 5
File name Size Modified date Modified time File attribute(s)
(character) (numeric) (date) (character) (character)
Column 6 Column 7 Column 8 Column 9
Short (8.3) file name Create date Create time Access date
(character) (date) (character) (date)

Column 5 (file attribute) can contain one or more of the following file attributes, in the order shown:

Attribute Meaning
R Read-only file
A Archive file (modified since it was last backed up)
S System file
H Hidden file
D Directory

If the file has the attribute, the letter code is in the column. Otherwise, there is a period. For example, a file with
none of the attributes would have the following string in column 5:

A read-only, hidden file would have the following string in column 5:
R..H.

Use dir() to get basic file information only.

Example The following example uses dirExt() to store the file information for all the files in the root directory of the
current drive to the array aFiles. The file name and access date is displayed for all the files in the results pane of
the Command window. Manifest constants to represent the columns are created with the #define preprocessor
directive to make the code more readable.

#define ARRAY_DIR NAME 1 // Manifest constants for columns returned by dirExt()
#define ARRAY DIR SIZE 2

#define ARRAY_DIR DATE 3

#define ARRAY_ DIR TIME 4

#define ARRAY_DIR_ATTR 5

#define ARRAY DIR SHORT NAME 6

#define ARRAY DIR CREATE DATE7

#define ARRAY_DIR_CREATE_TIME 8

#define ARRAY_ DIR ACCESS DATE 9

aFiles = new Array() // Array will be resized as needed
nFiles = aFiles.dirExt("*.*", "HS") // Include Hidden and System files
for nFile = 1 to nFiles

? aFiles[nFile, ARRAY DIR NAME]

?? aFiles[nFile, ARRAY DIR ACCESS DATE] at 25
endfor

See also dir(), sort()

element()

Returns the number of a specified element in a one- or two-dimensional array.
Syntax <oRef>.element(<subscriptl expN> [, <subscript2 expN>])

<oRef> A reference to a one- or two-dimensional array.

Array objects 10-31

fields()

Property of

Description

Example

See also

fields()

<subscriptl expN> The first subscript of the element. In a one-dimensional array, this is the same as the
element number. In a two-dimensional array, this is the row.

<subscript2 expN> When <oRef> is a two-dimensional array, <subscript2 expN> specifies the second
subscript, or column, of the element.

If <oRef> is a two-dimensional array and you do not specify a value for <subscript2 expN>, dBASE Plus
assumes the value 1, the first column in the row. dBASE Plus generates an error if you use <subscript2 expN>
with a one-dimensional array.

Array

Use element() when you know the subscripts of an element in a two-dimensional array and need the element
number for use with another method, such as fill(') or scan().

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
element(). For example, if aOne is a one-dimensional array, aOne.element(3) returns 3, aOne.element(5)
returns 5, and so on.

element() is the inverse of subscript(), which returns an element's row or column subscript number when you
specify the element number.

The following statement returns the element number of the third column of the fourth row of the array aTwo.
The result depends on the number of columns in aTwo.

nElement = aTwo.element(3, 2) // Fourth row, third column

fill(), insert(), scan(), size, sort(), subscript()

Syntax

Property of

Description

Fills the array with the current table's structural information. Returns the number of fields whose characteristics are
stored.

<oRef> fields()

<oRef> A reference to the array in which you want to store the field information. fields() will automatically
redimension or increase the size of the array to accommodate the field information, if necessary.

Array

Use fields() to store information about the structure of the current table to an array, which is dynamically
resized so all returned information fits in the array. The resulting array is always a two-dimensional array,
unless there are is no table open in the current work area, in which case the array is not modified.

fields() stores the following information for each field in each row of the array. The data type for each is shown
in parentheses:

Column1l Column 2 Column 3 Column 4
Field name Field type Field length Decimal places
(character) (character) (numeric) (numeric)

dBL uses the following codes for field types (some codes are used for more than one field type):

Code Field type

Binary

Character, Alphanumeric
Date, Timestamp

Float, Double

General, OLE

Logical, Boolean

Memo

ZZ -0 QWU AQw

Numeric

10-32 dBASE dBL Language Reference

See Also

fill ()

fill()

fields() stores the same information into an array that COPY STRUCTURE EXTENDED stores into a table,
except fields() doesn't create a column containing FIELD IDX information.

COPY STRUCTURE EXTENDED

Syntax

Property of

Description

Example

Stores a specified value into one or more locations in an array, and returns the number of elements stored.
<oRef> fill(<exp> [, <start expN> [, <count expN>]])

<0ORef> A reference to a one- or two-dimensional array you want to fill with the specified value <exp>.
<exp> An expression you want to store in the specified array.

<start expN> The element number at which you want to begin storing <exp>.
If you do not specify <start expN>, dBASE Plus begins at the first element in the array.

<count expN> The number of elements in which you want to store <exp>, starting at element

<start expN>. If you do not specify <count expN>, dBASE Plus stores <exp> from <start expN> to the last
element in the array.

If you want to specify a value for <count expN>, you must also specify a value for <start expN>.

If you do not specify <start expN> or <count expN>, dBASE Plus fills all elements in the array with <exp>.
Array

Use fill() to store a value into all or some elements of an array. For example, if you are going to use elements of
an array to calculate totals, you can use fill() to initialize all values in the array to 0.

fill() stores values into the array sequentially. Starting at the first element in the array or at the element specified
by <start expN>, fill() stores the value in each element in a row, then moves to the first element in the next row,
continuing to store values until the array is filled or until it has inserted <count expN> elements. fill()
overwrites any existing data in the array.

If you know an element’s subscripts, you can use element() to determine its element number for use as
<start expN>.

Suppose you’re measuring the performance of a process, keeping track of six different variables, some of which
may not used for any given request. In addition to keeping an average, you want to always display the last three
measurements. You can use an array with 3 rows and 6 columns, and insert() a new row at the beginning of the
array for each request. You fill() the new row with zeros to initialize the variables in case they’re not used. The
code, with simulated input, would look like this:

#define SHOW_LAST 3 // Manifest constants for number of measurements
#define NUM_MEASUREMENTS 6 // to maintain

aMeasure = new Array(SHOW_LAST, NUM_MEASUREMENTS)
aMeasure.fill("") // Start with all blanks

// Simulated input
newRequest()

aMeasure[1,1] =34
aMeasure[1,4]=16
displayArray(aMeasure, 10)
newRequest()

aMeasure[1,3] =67
displayArray(aMeasure, 10)
newRequest()

aMeasure[1,1 =27
aMeasure[1,2 =29
displayArray(aMeasure, 10)
newRequest()

aMeasure[1,2] =31
aMeasure[1,6] =40
displayArray(aMeasure, 10)
// End simulated input

function newRequest()

Array objects 10-33

firstKey

See also

aMeasure.insert(1) // Insert row at top, losing last row
aMeasure.fill(0, 1, NUM_MEASUREMENTS) // Fill first row with zeros

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions.

element()

firstkey

Property of

Description

Note

Example

See also

Returns the character string key for the first element of an associative array.
AssocArray

Use firstKey when you want to loop through the elements in an associative array. Once you have gotten the key
value for the first element with firstKey, use nextKey() to get the key values for the rest of the elements.

The order of elements in an associative array is undefined. They are not necessarily stored in the order in which
you add them, or sorted by their key values. You can't assume that the value returned by firstKey will be
consistent, or that it will return the first item you added.

For an empty associative array, firstKey is the logical value false. Because false is a different data type than
valid key values (which are character strings), it requires extra code to look for false to see if the array is empty.
It’s easier to get the number of elements in the array with count() and see if it’s greater than zero.

The following statements loop through an associative array and display all its elements:

aTest = new AssocArray()

aTest["USA"] = "United States of America"
aTest["RUS"] = "Russian Federation"

aTest["GER" | = "Germany"

aTest["CHN"] = "People's Republic of China"

cKey = aTest firstKey // Get first key in AssocArray
/I Get number of elements in AssocArray and loop through them
for nElements = 1 to aTest.count()

? cKey // Display key value

? aTest[cKey] // Display element value

cKey := aTest.nextKey(cKey) // Get next key value
endfor

isKey(), nextKey()

getFile()

Syntax

Displays a dialog box from which a user can select multiple files.
<oRef>.getFile([<filename skeleton expC> [, <title expC> [, <suppress database expL>]]])
<oRef> A reference to the array in which the selected filenames, or database aliases, will be stored.

<filename skeleton expC> A character string that specifies which files are to be displayed in the
getFile() dialog. It may contain a valid path followed by a filename skeleton.

» [Ifapath was specified, it is used to set the initial path from which getFile() displays files.

+ If a path was not specified, the path from any previously run getFile() method, GETFILE() function, or
PUTFILE() function will be used as the new initial path. If no previous path exists, the getFile() method
uses the current dBASE directory - the path returned by the SET("DIRECTORY") function - as the initial
path.

If no filename skeleton is specified, "*.*" is assumed and the getFile() method displays all files in the initial
path described above.

<title expC> A title displayed in the top of the dialog box. Without <title expC>, the getFile() methods'
dialog box displays the default title. If you want to specify a value for <title expC>, you must also specify a
value, or empty string (""), for <filename skeleton expC>.

10-34 dBASE dBL Language Reference

Description

Example

grow()

grow()

<suppress database expL> Whether to suppress the combobox from which you can choose a
database. The default is true (the Database combobox is not displayed). If you want to specify a value for
<suppress database expL>, you must also specify a value, or empty string (""), for <filename skeleton expC>
and <title expC>.

Use the getFile() method to display a dialog box from which the user can choose, or enter, one or more existing
file names. Any elements already in the array will be released.

Pressing the dialog's "Open" button closes the dialog and adds the selected files to the array.

The resulting array will contain a single column. Each element of the array will contain a single file path and
name or, if selected from a database, the database alias followed by the table name.

The getFile() method returns the number of files selected, or zero if none are selected or the dialog is cancelled.

a =new array
if (a.getFile("*.*", "Choose Files", true) > 0)

// Do something with the chosen files
endif

File list size

During file selection, selected file names are stored in a buffer with quotes around each file name and a space
between them. The maximum number of files that can be selected is limited by the size of this buffer due to the
Windows common file dialog requirement that the buffer be preallocated before opening the dialog.

When the.getFile() method is executed, it attempts to allocate a buffer with the sizes shown below. However, if
the memory allocation is unsuccessful it cuts the requested size in half and tries again. It continues looping in
this fashion until a successful allocation occurs, or the requested size becomes equal to zero. Should the
requested file size become equal to zero, multifile selection is disabled and only a single file selection is
allowed.

The maximum buffer sizes are:

* Win 9x:

512*260 = 133120 filename characters

* Win NT, 2000, XP:

4030*260 characters (approximately 1 megabyte of filename characters).

Syntax

Property of

Description

Adds an element, row, or column to an array and returns the number of added elements.
<oRef>.grow(<expN>)
<0ORef> A reference to a one- or two-dimensional array you want to add elements to.

<exXpN> Either 1 or 2. When you specify 1, grow() adds a single element to a one-dimensional array or a
row to a two-dimensional array. When you specify 2, grow() adds a column to the array.

Array

Use grow() to insert an element, row, or column into an array and change the size of the array to reflect the
added elements. grow() can make a one-dimensional array two-dimensional. All added elements are initialized
to false values.

One-dimensional arrays When you specify 1 for <expN>, grow() adds a single element to the array.
When you specify 2, grow() makes the array two-dimensional, and existing elements are moved into the first
column. This is shown in the following figure:

Array objects 10-35

grow()
Figure 10.12Adding a column to a one-dimensional array using aAlpha.grow(2)

aAlpha.grow(2) adds a new
aAlpha.grow(2) 9 column to the array, makes it a

two dimensional array with
dimensions [4,2], and copies
9 Original array created as: the old values into the first

aAlpha = {“A”, “B", “C”, “D"} column.

1 2 3 4 1 2
A B c D —_— A false
1 2 3 4 11 12
- 3 4
Initial contents of the array B false
aAlpha. 21 2.2

5 6

C |false
3,1 3,2

7 8

D |false
4,1 4,2

Contents of the array after issuing
aAlpha.grow(2)

Use add() to add a new element to a one-dimensional array and assign its value in one step.
Note You may also assign a new value to the array’s Size property to make a one-dimensional array any arbitrary size.

Two-dimensional arrays When you specify 1 for <expN>, grow() adds a row to the array at the end of
the array. This is shown in the following figure:
Figure 10.13Adding a row to a two-dimensional array using aAlpha.grow(1)

aAlpha.grow (1)

0 Original array created as:

aAlpha = new Array(3,4)
aAlpha[1,1] = “A”
aAlpha[1,2] = “B”

e aAlpha.grow(1) adds a new row to
the array.

1 2 3 4
/I User developed code
Ope A | B | cCc | D
aAlpha[3,4] =“L 1,1 1,2 13 1,4
1 2 3 4 5 6 7 8
E F G H
A1,1 Bl,2 C1,3 D1,4 21 22 23 24
: 5 = s 9 10 11 12
E| F | G | H SO LS
21 2,2 23 2,4 31 32 3.3 34
5 T m o 13 14 15 16
| J K L false | false | false | false
31 32 33 34 41 42 43 44

” Contents of the array after issuing

Initial contents of the array aAlpha. aAlpha.grow(1)

When you specify 2 for <expN>, grow() adds a column to the array and places false into each element in the
column.

Example The following example initially declares a one-dimensional array with a single element, and then uses grow() to
add a second element, convert the array to two dimensions, add a third row, and finally add a third column. The
end result is the first nine letters in order:

a={"A"} //'1-D, 1 element
displayArray(a)

a.grow(1) /1 1-D, 2 elements
a[2] ="D"

displayArray(a)

10-36 dBASE dBL Language Reference

See also

insert()

a.grow(2) // 2-D, 2 rows, 2 columns
a[1,2]="B";a[2,2]="E"
displayArray(a)

a.grow(1) // 2-D, 3 rows, 2 columns
a[3,1]="G";a[3,2]="H"
displayArray(a)

a.grow(2) // 2-D, 3 rows, 3 columns
a[1,3]="C";a[2,3]="F";a[3,3]="1I"
displayArray(a)

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions on page 10-28.

add(), size

insert()

Syntax

Property of

Description

Inserts an element with the value false into a one-dimensional array, or inserts a row or column of elements with the
value false into a two-dimensional array. Returns 1 if successful; generates an error if unsuccessful. The dimensions
of the array do not change, so the element(s) at the end of the array will be lost.

<oRef>.insert(<position expN> [, <row/column expN>])
<oRef> A reference to a one- or two-dimensional array in which you want to insert data.

<position expN> When <oRef> is a one-dimensional array, <position expN> specifies the number of the
element in which you want to insert a false value.

When <oRef> is a two-dimensional array, <position expN> specifies the number of a row or column in which
you want to insert false values. The second argument (discussed in the next paragraph) specifies whether
<position expN> is a row or a column.

<row/column expN> Either 1 or 2. If you omit this argument or specify 1, a row is inserted into a two-
dimensional array. If you specify 2, a column is inserted. dBASE Plus generates an error if you use <row/
column expN> with a one-dimensional array.

Array

Use insert() to insert elements in an array. insert() does the following:
« Inserts an element in a one-dimensional array, or inserts a row or column in a two-dimensional array

* Moves all remaining elements toward the end of the array (down if a row is inserted, to the right if an
element or column is inserted)

» Stores false values in the newly created position(s)

Because the dimensions of the array are not changed, the element(s) at the end of the array—the last element for
a one-dimensional array or the last row or column for a two-dimensional array—are lost. If you don’t want to
lose the data, use grow() to increase the size of the array before using insert().

One-dimensional arrays When you call insert() for a one-dimensional array, the logical value false is
inserted into the position of the specified element. The remaining element(s) are moved one place toward the
end of the array. The element that had been in the last position is lost.

For example, if you define a one-dimensional array with:
a'Alpha = {HA", "Bll, "Cll}

the resulting array has one row and can be illustrated as follows:
A B C

Issuing aAlpha.insert(2) inserts false into element number 2, moves the “B” that was in aAlpha[2] to aAlpha[3],
and loses the “C” that was in aAlpha[3] so that the array now contains these values:

A false B

Two-dimensional arrays When you call insert() for a two-dimensional array, a logical value false is
inserted into the position of each element in the specified row or column. The elements in the remaining

Array objects 10-37

insert()
columns or rows are moved one place toward the end of the array. The elements that had been in the last row or
column are lost.

For example, suppose you define a two-dimensional array and store letters to the array. The following
illustration shows how the array is changed by aAlpha.insert(2,2).

Figure 10.14Using insert() with a two-dimensional array
aAlpha.insert(2,2)

a Original array created as: 9 aAlpha.insert(2,2)
aAlpha = new Array(3,4) inserts logical false values
aAlpha[l,1] = “A” ' as elements in the second
aAlphal[1,2] = “B” column...
/I User developed code
aAlpha[3,4] = “L”
1 2 3 4
! 2 s 4 A B C D
A B C D 1,1 1,2 1,3 1,4
1,1 1,2 13 1,4 5 6 7 8
5 6 7 8 E F G H
E F G H 2,1 2,2 23 24
2,1 2,2 23 24 9 1y 11 12
9 10 11 12 [J K L
| J K L 31 3,2 33 34
3,1 3,2 33 34

Initial contents of the array aAlpha

Shifts the elements in the
e remaining columns

towards the end of the e Resulting in this array:

array, and deletes the

elements from the last

column. 1 2 3 4
£ A |false| B C
1 > 3 7 1,1 1,2 13 1,4
A |false| B C ° ° ! 8
11 12 13 14 E |false| F G
5 5 7 3 2,1 2,2 23 24
E |false| F G o 10 n 12
21 2.2 2,3 2,4 | false| J K
9 0 T 2 31 32 33 3,4
I a1 fa|83e2 ‘]3 3 K3 4 Contents of the array after issuing
' ' ' ’ aAlpha.insert(2,2)

Example Suppose you’re measuring the performance of a process, keeping track of six different variables, some of which
may not used for any given request. In addition to keeping an average, you want to always display the last three
measurements. You can use an array with 3 rows and 6 columns, and insert() a new row at the beginning of the
array for each request. You fill() the new row with zeros to initialize the variables in case they’re not used. The
code, with simulated input, would look like:

#define SHOW_LAST 3 // Manifest constants for number of measurements
#define NUM_MEASUREMENTS 6 // to maintain

aMeasure = new Array(SHOW_LAST, NUM_MEASUREMENTS)
aMeasure.fill("") // Start with all blanks

// Simulated input
newRequest()

aMeasure[1,1] =34
aMeasure[1,4]=16
displayArray(aMeasure, 10)
newRequest()

aMeasure[1,3 =67
displayArray(aMeasure, 10)
newRequest()

aMeasure[1,1 =27

10-38 dBASE dBL Language Reference

isKey()

aMeasure[1,2]=29
displayArray(aMeasure, 10)
newRequest()

aMeasure[1,2] =31
aMeasure[1,6] =40
displayArray(aMeasure, 10)
// End simulated input

function newRequest()
aMeasure.insert(1) // Insert row at top, losing last row
aMeasure.fill(0, I, NUM_MEASUREMENTS) // Fill first row with zeros

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions on.

See also delete(), fill(), grow(), resize()

iskey/()

Returns a logical value that indicates if the specified character expression is the key of an element in an associative
array.

Syntax <oRef>.isKey(<expC>)
<ORef> A reference to the associative array you want to search.
<expC> The character string you want to find.
Property of AssocArray

Description Use isKey(<expC>) to determine if an associative array contains an element with a key value of <expC>. Key
values in associative arrays are case-sensitive.

Attempting to access a non-existent key value in an associative array generates an error.

Example The following example uses some test data for the associative array aCountry, which associates country codes
with their names. The function countryName() returns the corresponding country name for a particular code,
but if the code is not defined, it returns “Unknown country” instead.

aCountry = new AssocArray()

aCountry["USA"] ="United States of America" // Test data
aCountry["RUS"] = "Russian Federation"

aCountry["GER"] = "Germany"

aCountry["CHN"] = "People's Republic of China"

? countryName("GER") // "Germany"
? countryName("XYZ") // "Unknown country"

function countryName(cArg)
// Make sure code is defined before trying to reference it
return iif(aCountry.isKey(cArg), aCountry[cArg], "Unknown country")

See also firstKey, nextKey(), removeKey()

nextkey ()

Returns the key value of the element following the specified key in an associative array.
Syntax <oRef>.nextKey(<key expC>)
<oRef> A reference to the associative array that contains the key.
<key expC> An existing key value.
Property of AssocArray

Description Use nextKey() to loop through the elements in an associative array. Once you have gotten the key value for the
first element with firstkey, use nextKey() to get the key values for the rest of the elements.

Array objects 10-39

removeAll()

nextKey() returns the key value for the key following <key expC>. Key values in associative arrays are case-
sensitive. For the last key in the associative array and for a <key expC> that is not an existing key value,
nextKey() returns the logical value false. Because false is a different data type than valid key values (which are
character strings), it’s difficult to look for false to terminate a loop. It’s easier to get the number of elements in
the array first with count(); then loop through that many iterations.

Note The order of elements in an associative array is undefined. They are not necessarily stored in the order in which
you add them, or sorted by their key values. You can’t assume that the sequence of keys will be consistent.

To determine if a given character string is a key value in an associative array, use isSKey().

Example The following statements loop through an associative array and display all its elements:

aTest = new AssocArray()

aTest["USA"] = "United States of America"
aTest["RUS"] = "Russian Federation"

aTest["GER"] = "Germany"

aTest["CHN"] = "People's Republic of China"

cKey = aTest firstKey // Get first key in AssocArray
/I Get number of elements in AssocArray and loop through them
for nElements = 1 to aTest.count()

? cKey // Display key value

? aTest[cKey] // Display element value

cKey = aTest.nextKey(cKey) // Get next key value
endfor

See also firstKey, isKey()

removeAll()

Deletes all elements from an associative array.
Syntax <oRef>.removeAll()
<oRef> A reference to the associative array you want to empty.
Property of AssocArray
Description Use removeAll() to remove all the elements from an associative array.
To remove elements for particular key values, use removeKey().

Example The following example removes all elements from an associative array.

var aTest = new AssocArray()

aTest["USA"] = "United States of America"

aTest["RUS"] ="Russian Federation"

aTest["GER" | = "Germany"

aTest["CHN"] = "People's Republic of China"

/I Array contains four elements

aTest.removeAll() // Array now contains no elements

See also removeKey()

removeKey|()

Deletes an element from an associative array.

Syntax <oRef>.removeKey(<key expC>)
<oRef> A reference to the associative array that contains the key.
<key expC> The key value of the element you want to delete.

Property of AssocArray

10-40 dBASE dBL Language Reference

resize()

Description Use removeKey() to remove an element from an associative array. Key values in associative arrays are case-

sensitive.

If you specify a key value that does not exist in the array, nothing happens; no error occurs and no elements are
removed.

To remove all the elements from an associative array, use removeAll().

Example The following example loops through an associative array of country names and deletes those whose names are

See also

longer than 15 characters.

aTest = new AssocArray()

aTest["USA"] = "United States of America"
aTest["RUS"] ="Russian Federation"

aTest["GER"] = "Germany"

aTest["CHN"] = "People's Republic of China"

cKey = aTest.firstKey /I Get first key in AssocArray

// Get number of elements in AssocArray and loop through them

for nElements = 1 to aTest.count()
cNextKey = aTest.nextKey(cKey) // Get next key value before deleting element
if len(aTest[cKey) > 15

aTest.removeKey(cKey) // Remove element
endif

cKey := cNextKey /I Use next key value
endfor

Note that you must get the next key value before deleting the element, and you repeat the loop based on the
number of elements there were before you started deleting.

isKey(), removeAll()

resize()

Syntax

Property of

Description

Sets the size of an array to the specified dimensions and returns a numeric value representing the number of
elements in the modified array.

<oRef>.resize(<rows expN> [,<cols expN> [, <retain values expN>]])
<ORef> A reference to the array whose size you want to change.

<rows expN> The number of rows the resized array should have. <rows expN> must always be a positive,
nonzero value.

<cols expN> The number of columns the resized array should have. <cols expN> must always be 0 or a
positive value. If you omit this option, resize() changes the number of rows in the array and leaves the number
of columns the same.

<retain values expN> Determines what happens to the values of the array when rows are added or
removed. If it is nonzero, values are retained. If you want to specify a value for <retain values expN>, you must
also specify a value for <new cols expN>.

Array

Use resize() to change the dimensions of an array, making it larger or smaller, or change the number of
dimensions. To determine the number of dimensions, check the array’s dimensions property. The size property
of the array reflects the number of elements; for a one-dimensional array, that’s all you need to know. For a two-
dimensional array, you can’t determine the number of rows or columns from the size property alone (unless the
size is one—a one-by-one array). To determine the number of columns or rows in a two-dimensional array, use
the ALEN() function.

For a one-dimensional array, you can change the number of elements by calling resize() and specifying the
number of elements as <rows expN> parameter. You can also set the size property of the array directly, which is
a bit less typing.

You can also change a one-dimensional array into a two-dimensional array by specifying both a <rows expN>
and a nonzero <cols expN> parameter. This makes the array the designated size.

Array objects 10-41

resize()

For a two-dimensional array, you can specify a new number of rows or both row and column dimensions for the
array. If you omit <cols expN>, the <rows expN> parameter sets the number of rows only. With both a <rows
expN> and a nonzero <cols expN>, the array is changed to the designated size.

You can change a two-dimensional array to a one-dimensional array by specifying <cols expN> as zero and
<rows expN> as the number of elements.

To change the number of columns only for a two-dimensional array, you will need to specify both the <rows
expN> and <cols expN> parameters, which means that you have to determine the number of rows in the array, if
not known, and specify it unchanged as the <rows expN> parameter.

To add a single row or column to an array, use the grow() method.

If you add or remove columns from the array, you can use <retain values expN> to specify how you want
existing elements to be placed in the new array. If <retain values expN> is zero or isn’t specified, resize()
rearranges the elements, filling in the new rows or columns or adjusting for deleted elements, and adding or
removing elements at the end of the array, as needed. This is shown in the following two figures. You are most
likely to want to do this if you don't need to refer to existing items in the array; that is, you plan to update the
array with new values.

Figure 10.15Adding a row and a column to a 3x4 array, rearranging elements

aAlpha.resize (4,5) e aAlpha.resize(4,5) adds a new row and column
o to the array and rearranges the values of the
o Original array created as: elements.
aAlpha = new Array(3,4)
aAlpha[1,1] = “A” 1 2 3 4 5
aAlpha[l,2] = “B” A B c D E
/I User developed code 1,1 1,2 1,3 1,4 15
aAlpha[3,4] = “L" 6 7 8 9 10
1 > 3 7 — F G H | J
A B c D 2,1 2,2 2,3 2,4 25
11 12 13 14 1 12 13 14 15
s 5 ; 8 K L |false |false |false
E . G H 3,1 32 33 3,4 3,5
21 22 23 24 16 17 18 19 20
5 o m " false | false | false | false | false
41 42 43 44 45
| J K L
3.1 3.2 33 34 Contents of the array after issuing

. aAlpha.resize(4,5)
Initial contents of the array
aAlpha.

Figure 10.16Adding a column to a one-dimensional array, rearranging elements

aAlpha.resize(4,2) adds a new column to the
. 9 array, makes it a two dimensional array with
aAlpharesize (,4,2) dimensions [4,2], and reassigns the values of

. the elements.
0 Original array created as:

aAlpha = {*A”, *B", “C”, “D"} 1 5
A B
e 1,1 1,2
1 2 3 4 3 4
A B C D C D
1,1 1,2 1,3 14 2.1 22
" 5 6
Initial contents of the array
aAlpha. false | false
3,1 32
7 8
false | false
4,1 42

Contents of the array after issuing
aAlpha.resize(4,2)

10-42 dBASE dBL Language Reference

resize()

When you use resize() on a one-dimensional array, you might want the original row to become the first column
of the new array. Similarly, when you use resize() on a two-dimensional array, you might want existing two-
dimensional array elements to remain in their original positions. You are most likely to want to do this if you
need to refer to existing items in the array by their subscripts; that is, you plan to add new values to the array
while continuing to work with existing values.

If <retain values expN> is a nonzero value, resize() ensures that elements

retain their original values. The following two figures repeat the statements shown in the previous two figures,
with the addition of a value of 1 for

<retain values expN>.

Figure 10.17Adding a row and a column to a 3x4 array, “preserving elements”
aAlpha.resize(4,5,1)

0 Original array created as: e aAlpha.resize(4,5,1) adds a new row
aAlpha = new Array(3,4) and column to the array and maintains
aAlpha[l,1] = “A” the values of the elements.
aAlpha[1,2] = “B” 1 > 3 7 5

/I User developed code A B C D |false
aAlpha[3,4] =“L" 1,1 1,2 1,3 1,4 15
n 3 3 2 6 7 8 9 10
A B C D —> E F G H |false
2,1 2,2 23 24 25
11 1,2 13 1,4
11 12 13 14 15
S R L b I | 3 | K | L |false
E F G H 3,1 3,2 33 34 35
2,1 2,2 23 2,4
5 m m 5 16 17 18 19 20
| 3 K L false | false | false | false | false
4,1 42 43 44 45
3,1 32 33 3,4

Initial contents of the array ;:Xlr;)tﬁgtrseg;‘z?& asrrle;y after issuing

aAlpha. ' ”

Figure 10.18Adding a column to a one-dimensional array, “preserving elements”
aAlpharesize(4,2,1) e aAlpha.resize(4,2,1) adds a new column to
the array, and makes it a two-dimensional
o array with dimensions [4,2]. Each existing
o Original array created as: element is now the first element in a row.

aAlpha = {*A”, “B", “C”, “D"}

1 2

A |false
1 2 3 4 1,1 1,2
A B C D 8 4

11 1.2 13 1,4 B |false
2,1 2,2

Initial contents of the array 5 6
aAlpha. C |false

31 32
7 8

D |false
4,1 4,2

Contents of the array after issuing
aAlpha.resize(4,2,1)

Example The following example resizes a one-dimensional array with 12 elements into a two-dimensional array with 3
rows and four columns.
a,Alpha = {IIAII, IIBH, ||C||, ||D"’ "E"’ "FH’ HGH, HHII, IIIH, HJ", IIKH, ||L|| }
aAlpha.resize(3,4)
displayArray(aAlpha)

Array objects 10-43

scan()

See also

scan()

The displayArray() function is used to display the contents of the array in the results pane of the Command
window. It is shown in the example for dimensions.

ALEN(), grow(), size

Syntax

Property of

Description

Example

Searches an array for an expression. Returns the number of the first element that matches the expression if the search
is successful, or 0 if the search is unsuccessful.

<oRef>.scan(<exp> [, <starting element expN> [, <elements expN>]])
<ORef> A reference to the array you want to search.
<exp> The expression you want to search for in <oRef>.

<starting element expN> The element number in <oRef> at which you want to start searching. Without
<starting element expN>, scan() starts searching at the first element.

<elements expN> The number of elements in <oRef> that scan() searches. Without <elements expN>,
scan() searches <oRef> from <starting element expN> to the end of the array. If you want to specify a value for
<elements expN>, you must also specify a value for <starting element expN>.

Array

Use scan() to search an array for the value of <exp>. For example, if an array contains customer names, you can
use scan() to find the location in which a particular name appears.

scan() returns the element number of the first element in the array that matches <exp>. If you want to determine
the subscripts of this element, use subscript().

When <exp> is a string, scan() is case-sensitive; you may want to use UPPER(), LOWER(), or PROPER() to
match the case of <exp> with the case of the data stored in the array. scan() also follows the rules established by
SET EXACT to determine if <exp> and the array element are equal. For more information, see SET EXACT.

The following example uses dir() to store the file information for all the files and directories in the root
directory of the current drive to the array aFiles. Then the array is searched to display only the directories in the
array. Manifest constants to represent the columns are created with the #define preprocessor directive to make
the code more readable.

#define ARRAY_DIR NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY DIR_SIZE 2

#define ARRAY DIR DATE 3

#define ARRAY_DIR TIME 4

#define ARRAY_DIR_ATTR 5

aFiles =new Array()

nFiles = aFiles.dir("*.*","D") // Read all files and directories
nElement = 1 // Start looking at first element
do
nElement = aFiles.scan("....D", nElement) // Look for next directory
if nElement > 0 // Display a match
? aFiles[nElement - ARRAY_DIR_ATTR + ARRAY DIR_NAME]
if nElement++ >= aFiles.size /I Continue looking with next element
exit // Unless that was the last element
endif
endif
until nElement == // Until there's no match

To find all the matches in the array, you need to keep track of the last match. Here it’s kept in the variable
nElement. It starts at one, the first element, and is used in the scan() call as the starting element parameter. The
result of each search is stored back in nElement. If there’s a match, the directory name is displayed. Then
nElement is incremented—otherwise scan() would match the same element again—and the loop continues.

A few subtleties are present in the example code. First, when incrementing nElement, it is compared with the
size of the array. If the element number is equal to (or greater than, which it should never be, but it’s good
defensive programming to test for it anyway) the size of the array, that means the last match was in the last

10-44 dBASE dBL Language Reference

See also

size

size

element of the array. This is possible only because the file attribute is in the last column of the array. In this
case, you don’t want to call scan() again, since the starting element number is higher than the highest element
number and would cause an error. So you EXIT out of the loop instead.

The variable nElement is incremented after the comparison to the Size of the array by using the postfix ++
operator. If nElement was pre-incremented, the comparison would be off, although the rest of the loop would
work.

To display the directory name, the column number of the file attribute column is subtracted from the matching
element number, and the column number for the file name column is added. This yields the element number of
the file name in the same row as the matching file attribute. This would work for any combination of search or
display columns.

SET EXACT, sort(), subscript()

Property of

Description

Example

See also

The number of elements in an Array object.

Array

size indicates the number of elements in an Array object.

For a one-dimensional array, you can assign a value to Size to change its size.
For a array with more than one dimension, size is read-only.

You can use the ALEN() function to determine the size of each dimension for a two-dimensional array. There is
no built-in way to determine dimension sizes for arrays with more than two dimensions.

The following classes implement a simple stack based on the Array class. When items are pushed onto the stack,
the size of the array is checked to see if the item will fit. If not, the add method() is used. When items are
popped from the stack, the array does not shrink. If another item is pushed onto the stack, the item can be stored
in an existing array element.

class Stack of Array
this.ptr =0

function push(xArg)
if this.ptr == this.size
this.add(xArg)
this.ptr++
else
this[++this.ptr] = xArg
endif

function pop()
if this.ptr > 0
return this[this.ptr-- |
else
throw new StackException()
endif

function top()
if this.ptr > 0
return this[this.ptr]
else
throw new StackException()
endif

function empty()
return this.ptr ==

endclass

class StackException of Exception
this.message = "Stack fault"
endclass

ALEN(), dimensions, resize(), subscript()

Array objects 10-45

sort()

sort()

Syntax

Property of

Description

Sorts the elements in a one-dimensional array or the rows in a two-dimensional array. Returns 1 if successful;
generates an error if unsuccessful.

<oRef>.sort([<starting element expN> [,<elements to sort expN> [, <sort order expN>]]])
<oRef> A reference to the array you want to sort.

<starting element expN> In a one-dimensional array, the number of the element in <oRef> at which
you want to start sorting. In a two-dimensional array, the number (subscript) of the column on which you want
to sort. Without <starting element expN>, sort() starts sorting at the first element or column in the array.

<elements to sort expN> In a one-dimensional array, the number of elements you want to sort. In a
two-dimensional array, the number of rows to sort. Without <elements to sort expN>, sort() sorts the rows
starting at the row containing element <starting element expN> to the last row. If you want to specify a value
for <elements to sort expN>, you must also specify a value for <starting element expN=>.

<sort order expN> The sort order:

* 0 specifies ascending order (the default)
* 1 specifies descending order

If you want to specify a value for <sort order expN>, you must also specify values for <elements to sort expN>
and <starting element expN>.

Array

sort() requires that all the elements on which you’re sorting be of the same data type. The elements to sort in a
one-dimensional array must be of the same data type, and the elements of the column by which rows are to be
sorted in a two-dimensional array must be of the same data type.

sort() arranges elements in alphabetical, numerical, chronological, or logical order, depending on the data type
of <starting element expN>. (For strings, the current language driver determines the sort order.)

One-dimensional arrays Suppose you create an array with the following statement:
aNums = {5,7,3,9,4, 1,2, 8}

That creates an array with the elements in this order:
5 7 3 9 4 1 2 8

If you call aNums.sort(1, 5), dBASE Plus sorts the first five elements so that the array elements are in this order:
3 4 5 7 9 1 2 8

If you then call aNums.sort(5, 2), dBASE Plus sorts two elements starting at the fifth element so that the array
elements are now in this order:

3 4 5 7 1 9 2 8

Two-dimensional arrays Using sort() with a two-dimensional array is similar to using the SORT
command with a table. Array rows correspond to records, and array columns correspond to fields.

When you sort a two-dimensional array, whole rows are sorted, not just the elements in the column where
<starting element expN>) is located.

For example, suppose you create the array alnfo and fill it with the following data:

Sep 15 1965 7
Dec 31 1965 4
Jan 19 1945 8
May 2 1972 2

w O g >

If you call alnfo.sort(1), dBASE Plus sorts all rows in the array beginning with element number 1. The rows are
sorted by the dates in the first column because element 1 is a date. The following figure shows the results.

10-46 dBASE dBL Language Reference

Figure 10.19alnfo.sort (1)

1fo.sort (1)

' All the rows are to be

sorted...

starting with the row
containing element 1.

Sep 15
1965

e Element 1 is a date, so the
rows are sorted by the dates
in the first column.

Jan 19
1945

Dec 31
1974

\

Sep 15
1965

Jan 19
1945

7
May 2 1972

)
flay 2 1972

11

12

10

Dec 31
1974

11

12

ttial contents of the array alnfo.

If you then call alnfo.sort(5, 2), dBASE Plus sorts two rows in the array starting with
element number 5, whose value is 7. sort() sorts the second and the third rows based on
the numbers in the second column. The following figure shows the results.

Contents of the array after issuing

alnfo.sort(1)

sort()

Array objects

10-47

subscript()

Figure 10.20Using sort() with a two-dimensional array

alnfo.sort(5,2)

Two rows are to be sorted 9 Element 5 contains a
(aInfo.sort(5,2)) starting with number, so the rows are
the row containing element 5 sorted by the numbers in
(alnfo.sort(5,2)). the second column.
1 2 3 1 2 3
Jan 19 8 C Jan 19 8 C
1945 1945
4 5 6 4 5 6
Sep 15 7 A May 21972 | |2 B
1965
7 9
7 8 ° Sep 15 8v? A
May 2 1972 | 2 B 1965
10 1 12 10 1 12
Dec 31 4 D Dec 31 4 D
1974 1974
Initial contents of the array alnfo. Contents of the array after issuing alnfo.sort(5, 2)

Example The following example uses dir() to store the file information for all the files in the current directory to the

See also

array aFiles. Then the array is sorted on the file size. Manifest constants to represent the columns are created
with the #define preprocessor directive to make the code more readable.

#define ARRAY DIR NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY DIR_SIZE 2

#define ARRAY DIR_DATE 3

#define ARRAY DIR_TIME 4

#define ARRAY DIR_ATTR 5

aFiles = new Array()
nFiles = aFiles.dir()
aFiles.sort(ARRAY_DIR_SIZE) // Sort by size

for nFile = 1 to nFiles

? aFiles[nFile, ARRAY DIR NAME]

?? aFiles[nFile, ARRAY DIR SIZE] at 25
endfor

element(), scan(), subscript()

subscript()

Syntax

Returns the row number or the column number of a specified element in an array.
<oRef>.subscript(<element expN>, <row/column expN>)

<ORef> A reference to the array.

<element expN> The element number.

<row/column expN> A number, either 1 or 2, that determines whether you want to return the row or
column subscript of an array. If <row/column expN> is 1, subscript() returns the number of the row subscript.
If <row/column expN> is 2, subscript() returns the number of the column subscript.

If <oRef> is a one-dimensional array, dBASE Plus returns an error if <row/column expN> is a value other
than 1.

Property of Array

10-48 dBASE dBL Language Reference

Description

Example

See also

subscript()

Use subscript() when you know the number of an element in a two-dimensional array and want to reference the
element by using its subscripts.

If you need to determine both the row and column number of an element in a two-dimensional array, call
subscript() twice, once with a value of 1 for <row/column expN> and once with a value of 2 for <row/
column expN>. For example, if the element number is in the variable nElement, execute the following
statements to get its subscripts:

nRow = aExample.subscript(nElement, 1)
nCol = aExample.subscript(nElement, 2)

In one-dimensional arrays, the number of an element is the same as its subscript, so there is no need to use
subscript(). For example, if aOne is a one-dimensional array, aOne.subscript(3) returns 3, aOne.subscript(5)
returns 5, and so on.

subscript() is the inverse of element(), which returns an element number when you specify the element
subscripts.

The following example displays all the nonzero-size files in your Windows Temp directory. First it tries to find
the directory where your temporary files are stored by looking for the operating system environment variable
TMP. Then it uses dir() to store the file information for all the files in that directory (or the current directory if
the TMP directory is not found) to the array aFiles. All the rows that have a file size of zero are deleted using a
combination of scan(), subscript(), and delete().

scan() can simply search for zeros because there are no other numeric columns in the array created by dir(). If
it finds one, subscript() is called to return the corresponding row number for the matching element. Then the
row number is used in the delete() call.

Manifest constants to represent the columns are created with the #define preprocessor directive to make the
code more readable.

#define ARRAY_DIR NAME 1 // Manifest constants for columns returned by dir()
#define ARRAY DIR_SIZE 2

#define ARRAY DIR DATE 3

#define ARRAY_DIR TIME 4

#define ARRAY_DIR_ATTR 5

// Look for OS environment variable TMP
cTempDir = getenv("TMP")
/' If defined, make sure it has trailing backslash
if "" # cTempDir
if right(cTempDir, 1) #"\" // No trailing backslash
cTempDir +="\" /I so add one
endif
endif

aFiles =new Array()
nFiles = aFiles.dir(cTempDir + "*.*") // Read all files in TMP dir
nElement = aFiles.scan(0)
do while nElement > 0 // Find zero-byte files and
aFiles.delete(aFiles.subscript(nElement, 1), 1) // delete by row
nFiles-- // Decrement file count
nElement := aFiles.scan(0)
enddo

for nFile = 1 to nFiles // Display results
? aFiles[nFile, ARRAY DIR NAME]
?? aFiles[nFile, ARRAY DIR SIZE] at 25

endfor

element()

Array objects 10-49

10-50 dBASE dBL Language Reference

File/OS

File commands and functions

dBASE Plus supports equivalent file commands and functions for all the methods in the File class, which can be
organized into the following categories:

 File utility commands
» File information functions
» Functions that provide byte-level access to files, sometimes referred to as low-level file functions

The low-level file functions are maintained for compatibility. To read and write to files, you should use a File
object, which better encapsulates direct file access. In contrast, the file utility commands and file information
functions are easier to use, because they do not require the existence of a File object.

File utility commands

The following commands have equivalent methods in the File class:

Command File class method
COPY FILE copy()

DELETE FILE delete()

ERASE delete()

RENAME rename()

These commands are described separately to document their syntax. Otherwise, they perform identically to their
equivalent method.

File information functions

The following file information functions are usually used instead of their equivalent methods in the File class:

Function File class method
FACCESSDATE() accessDate()
FCREATEDATE() createDate()
FCREATETIME() createTime()

FDATE() date()
FILE() exists()
FSHORTNAME() shortName()
FSIZE() size()
FTIME() time()

File/OS 11-1

Dynamic External Objects - DEO

These functions are not described separately (except for FILE(), because its name is not based on the name of
its equivalent method). The syntax of a file information function is identical to the syntax of the equivalent
method, except that as a function, no reference to a File object is needed, which makes the function more
convenient to use. For example, these two statements are equivalent

nSize = fsize(cFile) // Get size of file named in variable cFile
nSize = new File().size(cFile) // Get size of file named in variable cFile

Low-level file functions

The following low-level file functions are equivalent to the following methods in the File class:

Function File class method
FCLOSE() close()
FCREATE() create()

FEOF() eof()

FERROR() error()

FFLUSH() flush()

FGETS() gets() and readin()
FOPEN() open()

FPUTS() puts() and writeln()
FREAD() read()

FSEEK() seek()

FWRITE() write()

These functions are not described separately. While a File object automatically maintains its file handle in its
handle property, low-level file functions must explicitly specify a file handle, with the exception of FERROR(),
which does not act on a specific file. The FCREATE() and FOPEN() functions take the same parameters as the
create() and open() methods, and return the file handle.

The other functions use the file handle as their first parameter and all other parameters (if any) following it The
parameters following the file handle in the function are identical to the parameters to the equivalent method, and
the functions return the same values as the methods.

Compare the examples for exists() and FILE() to see the difference between using a File object and low-level
file functions.

Dynamic External Objects - DEO

Dynamic External Objects is a unique technology that allows not just users, but applications, to share classes
across a network (and soon, across the Web). Instead of linking your forms, programs, classes and reports into a
single executable that has to be manually installed on each workstation, you deploy a shell - a simple dBASE
Plus executable that calls an initial form, or provides a starting menu from which you can access your forms and
other dBASE Plus objects. The shell executable can be as simple a program as:

do startup.prg

where "startup.prg" can be a different ".pro" object in each directory from which you launch the application, or
a program that builds a dynamic, context-sensitive menu on-the-fly.

Dynamic Objects can be visual, or they can be classes containing just "business rules", that process and post
transactions, or save and retrieve data. Each of these objects may be shared across your network by all users,
and all applications that call them.

For example, you may have a customer form that's used in your Customer Tracking application, but may also be
used by your Contact Management program as well as your Accounts Receivable module. Assume you want to
change a few fields on the form or add a verification or calculation routine. No problem, just compile the new
form and use the Windows Explorer to drag it to the appropriate folder on your server. Every user and
application is updated immediately.

The potential benefits of DEO are huge:

11-2 dBASE dBL Language Reference

Dynamic External Objects - DEO
» Updating objects requires only a simple drag-and-drop. No registration, no interface files, no Application
Server required. Updating has never before been this easy.

» Although the objects sit on your network server, they run on the workstation, reducing the load on the Server
dramatically and making efficient use of all that local processing power sitting out on your network.

» The same (non-visual) objects may be shared by both your LAN and your Web site. Dynamic External
Objects are very small and load incredibly fast. They rarely exceed 140K in size and usually run less than
100K.

And, most remarkable of all, this is one of the only Object Models that supports full inheritance. You can't
inherit from an ActiveX/OCX object. You can inherit Java objects in CORBA, but it's so difficult it's rarely
attempted. With dBASE Plus, inheriting External Objects is a piece of cake:

* Change the layout of a superclass form and every form in every application inherits those changes the next
time they're called.

* Renamed your company? Changed your logo? Drag and drop the new .cfo file to the Server and the update is
finished.

Implementing Dynamic Objects

1 Compile your source code as you would normally. DEO uses compiled code. In dBASE Plus, compiled code
can be recognized because its file extension ends in "o". .Rep, compiled, becomes .Reo, .Wfm becomes
.Wro, etc.

2 Build (create executable) only the main launching form, or use a pre-built generic launching form.
3 Copy your objects to the server.
Done !

Like Source Aliasing, DEO has a mechanism for finding libraries of objects, making it much easier to share
them across the network and across applications. This mechanism is based on an optional search list that's
created using easy text changes in your application's .ini file.

dBASE Plus searches objects as follows:

1 It looks in the "home" folder from which the application was launched.

2 Tt looks in the .ini file to see if there's a series of search paths specified. It checks all the paths in the list
looking for the object file requested by the application.

3 It looks inside the application's .exe file, the way Visual dBASE did in the past.

Let's assume you have a library in which you plan to store your shared objects. Let's also assume the application
is called "Myprog.exe" and runs from the c:\projectl folder.

In Myprog.ini, we might add the following statements:

[ObjectPath]
objPath0=f:\mainlib
objPath1=h:\project1\images
objPath2=f:\myWeb

Your code looks something like the following:
set procedure to postingLib.cc additive
dBASE Plus will first look in c:\projectl (the home directory).

If that fails, dBASE Plus will look in f:\mainlib. If it finds postingLib.co, it will load that version. If not, it looks
in each of the remaining paths on the list until it finds a copy of the object file.

If that fails, dBASE Plus will look inside MyProg.exe.
Tips

You'll have to experiment with DEO to discover the best approach for the way you write and deploy
applications. However, here are some interesting subtleties you might leverage to your benefit:

File/OS 11-3

Source Aliasing

Unanticipated updates: Assume you already shipped a dBASE Plus application as a full-blown executable.
Now you want to make a change to one module. No problem, just copy the object file to the home directory
of the application and it'll be used instead of the one built in to the executable. You don't need to redeploy the
full application the way you do in most other application development products. Just the changed object.

Reports: You can deploy reports or even let your users create reports (using dQuery/Web) and add them to
their applications by designing a report menu that checks the disk for files with an .reo extension. Let the
menu build itself from the file list. Here we have true dynamic objects - the application doesn't even know
they exist until runtime. DEO supports real-time dynamic applications.

Tech Support: Want to try out some code or deploy a fix to a customer site or a remote branch office? No
problem, just FTP the object file to the remote server and the update is complete.

Remote Applications: If you have VPN support (or any method of mapping an Internet connection to a
drive letter), you can run dBASE Plus DEO applications remotely over the Internet. A future version of
dBASE Plus will include resolution of URLs and IP addresses so you can access remote objects directly
through TCP/IP without middleware support.

Distributed Objects: Objects can be in a single folder on your server, in various folders around your
network, or duplicated in up to ten folders for fail-over. If one of your servers is down, and an object is
unavailable, dBASE Plus will search the next locations on the list until it finds one it can load. Objects can be
located anywhere they can be found by the workstation.

Source Aliasing

What is Source Aliasing?

Source Aliasing is a feature in dBASE Plus that provides true source-code portability by referencing files
indirectly - through an Alias. Just as the BDE allows you to define an Alias to represent a database or a
collection of tables, Source Aliases let you define locations for your various files without using explicit paths -
which often differ from machine to machine.

For example, if you're using seeker.cc in a dBASE Plus application, you're likely to have code similar to the
following:

set procedure to "c:\program files\dBASE\Plus\Samples;
\seeker.cc" additive

If you run this code on another machine, whose application drive is not "c:", it will crash.

You can avoid portability problems like the example above (as well as save a lot of typing) by using a Source
Alias in place of explicit paths:

set procedure to :MainLib:seeker.cc additive

Whenever dBASE Plus sees ":MainLib:", it automatically substitutes the path assigned to this Alias. To run the
same code on another computer or drive, simply set up the "MainLib" Alias to point to the appropriate folder at
the new location. No source code changes are required.

There are other major benefits to Source Aliasing.

* You can run applications from within dBASE Plus regardless of their location and current folder. Every
application always finds all of its parts. dQuery/Web is written using Source Aliases entirely, which is why
you can run it from any directory without fear of a "File Does Not Exist" error.

* You can build well-organized, reliable libraries of object source that can be accessed across many projects
without dealing with complicated and changing paths. You may, for example, want to:

* Build a MAIN alias that represents a folder in which you store globally shared classes.
* Use an IMAGES alias to point to a location containing all your reusable bitmaps, .gifs and .jpgs.
* Build a PROJECT!1 alias for classes and code associated only with one specific project.

If you're careful to always use Source Aliases, your libraries will be shared with ease, and portable enough to be
shared across a network by other developers and users.

11-4 dBASE dBL Language Reference

class File

Using Source Aliases

To create a new Source Alias, go to Properties|Desktop Properties menu option and click on the "Source
Aliases" tab. dBASE Plus can support an unlimited number of Source Aliases.

There are at least three ways to use Source Aliases in dBASE Plus and dQuery/Web.
1 When hand-coding, always use an alias preceded and followed by a colon:

set procedure to :dQuery:my.wfm additive

dataSource := "FILENAME :dQuery:NewButton.bmp"
upBitMap := ":dQuery:OKButton.bmp"

do :dQuery:Main.prg

2 When setting properties (such as Bitmaps) in the Inspector, always add the Source Alias to a filename.

3 dBASE Plus may add Source-Aliases automatically. In many cases, dBASE Plus will substitute the correct
Source Alias whenever you select a file from an Open File dialog, drag-and-drop a file from the Navigator,
or type in an explicit path.

Source Alias information is stored in the PLUS.ini file. As a result, you need to add the Source Alias to any
dBASE Plus installation that will run your code. You can add Aliases programmatically by modifying the
PLUS.ini file.

You can retrieve the paths associated with Source Aliases through the sourceAliases property of the main
application object. For example:

? _app.sourceAliases["dQuery"]
returns

c:\program files\dBASE\Plus\dQuery

Note _app.sourceAliases is an Associative Array and is, therefore, case-sensitive. Capitalization must match the
Alias name you set up in Desktop Properties.

Important Source Aliasing works only in the dBASE Plus design environment or when running programs from within the
dBASE Plus shell. It is not a runtime feature. To access files indirectly in deployed applications, use DEO
(Dynamic External Objects) instead of Source Aliasing.

class File

An object that provides byte-level access to files and contains various file directory methods.
Syntax [<oRef> =] new File()
<0oRef> A variable or property in which to store a reference to the newly created File object.

Properties The following tables list the properties and methods of the File class. (No events are associated with this class.)

Property Default Description

baseClassName FILE Identifies the object as an instance of the File class (Property
discussed in Chapter 5, “Core language.”)

className (FILE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

handle -1 Operating system file handle

path Full path and file name for open file

position 0 Current position of file pointer, relative to the start of the file

Method Parameters Description

accessDate() <filename expC> Returns the last date a file was opened

close() Closes the currently open file

File/OS 11-5

class File

Method Parameters Description
copy() <filename expC> Makes a copy of the specified file
, <new name expC>
create() <filename expC> Creates a new file with optional access attributes

createDate()
createTime()

[,<access rights>]
<filename expC>
<filename expC>

Returns the date when the file was created

Returns the time a file was created as a string

date() <filename expC> Returns the date the file was last modified
delete() <filename expC> Deletes the specified file
eof() Returns true or false indicating if the file pointer is
positioned past the end of the currently open file
error() Returns a number indicating the last error encountered
exists() <filename expC> Returns true or false to indicate whether the specified
disk file exists
flush() Writes current data in the file buffer to disk and keeps file
open
gets() [<chars read expN>] Reads and returns a line from a file, leaving the file
[, <eol expC>] pointer at the beginning of the next line. Same as
readin()
open() <filename expC> Opens an existing file with optional access attributes
[,<access rights>]
puts() <input string expC> Writes a character string and end-of-line character(s) to a
[, <max chars expN> file. Same as writeln()
[, <eol expC>]
read() <characters expN> Reads and returns the specified number of characters
from the file starting from the current file pointer
position; leaving the file pointer at the character after the
last one read
readin() [<chars read expN>] Reads and returns a line from a file, leaving the file
[, <eol expC>] pointer at the beginning of the next line. Same as gets().
rename() <filename expC> Changes the name of the specified file to a new name
, <new name expC>
seek() <offset expN> Moves the file pointer the specified number of bytes

shortName()

LO[1]2]

<filename expC>

within a file, optionally allowing the movement to be
from the beginning (0), end (2), or current file position
M

Returns the short (8.3) name for a file

size() <filename expC> Returns the number of bytes in the specified file
time() <filename expC> Returns the time the file was last modified as a string
write() <expC> Writes the specified string into the file at the current file
[, <max chars expN>] position, overwriting any existing data and leaving the
file pointer at the character after the last character written
writeln() <input string expC> Writes a character string and end-of-line character(s) to a

[, <max chars expN>
[, <eol expC>]

file. Same as puts().

Description Use a File object for direct byte-level access to files. Once you create a new File object, you can open() an
existing file or create() a new one. Be sure to close() the file when you are done. A File object may access only
one file at a time, but after closing a file, you may open or create another.

To communicate directly with a Web server, use the File object's open() method to access "StdIn" or "StdOut".

To open StdIn use:
fIn = new File()
fIn.open("StdIn", "RA")

To open StdOut use:
fOut = new File()
fOut.open("StdOut", "RA")

11-6 dBASE dBL Language Reference

Example

See also

When reading or writing to a binary file, be sure to specify the "B" binary access specifier. Without it, the file is
treated as a text file; if the current language driver is a multi-byte language, each character in the file may be one
or two bytes. Binary access ensures that each byte is read and written without translation.

File objects also contain information and utility methods for file directories, such as returning the size of a file
or changing a file name. If you intend to call multiple methods, you can create and reuse a File object. For
example,

ff = new File()
? ff.size("PLUS_EN.HLP")
? ff.accessDate("PLUS_EN.HLP")

Or you can create a File object for a WITH block. For example,

with new File()

2 size("PLUS_EN.HLP")

? accessDate("PLUS_EN.HLP")
endwith

For a single call, you can create and use the File object in the same statement:

? new File().size("PLUS_EN.HLP")
However, unless you happen to have a File object handy, it’s easier to use the equivalent built-in function or
command to get the file information or perform the file operation:

? fsize("PLUS_EN.HLP")

? faccessdate("PLUS_EN.HLP")

Suppose you have a data file generated by a mainframe computer that has fixed length records with no record
breaks. You want to convert this file so that you have one record on each line. Use two File objects to read and
write the file, adding line breaks as you write:

#define REC_LENGTH 80

#define IN_FILE "STUFF.REC"
#define OUT_FILE "STUFF.TXT"

fIn = new File()
fOut = new File()

fIn.open(IN_FILE);
fOut.create(OUT_FILE);

do while not fIn.eof{()
fOut.puts(fIn.read(REC_LENGTH)) // Read fixed length; write with line break
enddo

fln.close()
fOut.close()

none

Syntax

Description

See Also

Executes a program or operating system command from within dBASE Plus.
I <command>
<command> A command recognized by your operating system.

!'is identical to RUN, except that a space is not required after the ! symbol, while a space is required after the
word RUN. See RUN for details.

DOS, RUN, RUN()

accessDate()

Syntax

Returns the last date a file was opened.

<oRef>.accessDate(<filename expC>)

File/OS 11-7

CD

Property of

Description

Example

See also

CD

<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Pluslooks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

File

accessDate() checks the file specified by <filename expC> and returns the date that the file was last opened by
the operating system for reading or writing.

To get the date the file was last modified, use date(). For the date the file was created, use createDate().

The following example uses accessDate() to display the last date the autoexec.bat was accessed:

? new File().accessDate("C:\autoexec.bat")

createDate(), createTime(), date(), time()

Syntax

Description

See Also

Changes the current drive or directory.
CD [<path>]
<path> The new drive and/or path. Quotes (single or double) are required if the path contains spaces or other

special characters; optional otherwise.

Use CD to change the current working directory in dBASE Plus to any valid drive and path. If you're unsure
whether a drive is valid, use VALIDDRIVE() before issuing CD. The current directory appears in the
Navigator.

CD supports the Universal Naming Convention (UNC), which starts with double backslashes for the resource
name, for example:
\\MyServer\MyVolume\MyDir\MySubdir

CD without the option <path> displays the current drive and directory path in the result pane of the Command
window. To get the current directory, use SET("DIRECTORY™").

Another way to access files on different directories is with the command SET PATH. You can specify one or
more search paths, and dBASE Plus uses these paths to locate files not on the current directory. Use SET PATH
when an application's files are in several directories.

CD works like SET DIRECTORY, except SET DIRECTORY TO (with no argument) returns you to the
HOME() directory, instead of displaying the current directory.

HOME(), MKDIR, SET DIRECTORY, SET PATH, VALIDDRIVE()

close()

Syntax

Property of

Description

Closes a file previously opened with create() or open().
<oRef>.close()

<oRef> A reference to the File object that created or opened the file.
File

close() closes a file you’ve opened with create() or open(). close() returns true if it’s able to close the file. If
the file is no longer available (for example, the file was on a floppy disk that has been removed) and there is data
in the buffer that has not yet been written to disk, close() returns false.

Always close the file when you’re done with it.

To save the file to disk without closing it, use flush().

11-8 dBASE dBL Language Reference

Example

See also

copy()

copy()

The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS. TXT"

f=new File()
if f.exists(LOG_FILE)
f.open(LOG_FILE, "A")
else
f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

create(), flush(), open()

close() is also a method of the Database and Form classes.

Syntax

Property of

Description

Example

Duplicates a specified file.
<oRef>.copy(<filename expC>, <new name expC>)
<oRef> A reference to a File object.

<filename expC> Identifies the file to duplicate (also known as the source file). <filename expC> may be
a file name skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in which you
select the file to duplicate.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<new name expC> Identifies the target file that will be created or overwritten by copy(). <new name
expC> may be a filename skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in
which you specify the name of the target file and its directory.

File

copy() lets you duplicate an existing file at the operating system level. copy() duplicates a single file of any
type.

When running a dBASE Plus .EXE, copy() first looks for <filename expC> in the internal file system of the
.EXE file. Any path in <filename expC> is ignored. If the named file is found in the .EXE, that file is copied. If
the file is not found, then dBASE Plus searches for the file on disk. This lets you package static files, like empty

tables, inside the .EXE during the build process and extract them when needed. You cannot copy files into the
.EXE

If SET SAFETY is ON and a file exists with the same name as the target file, IBASE Plus displays a dialog box
asking if you want to overwrite the file. If SET SAFETY is OFF, any existing file with the same name is
overwritten without warning.

copy() does not automatically copy the auxiliary files associated with table files, such as indexes and memo
files. For example, it does not copy the MDX or DBT file associated with a DBF file. When copying tables, use
the Database object’s copyTable() method.

You cannot copy() a file that has been opened for writing with the open() or create() methods; it must be
closed first.

The following example makes a copy of a file in the current directory:
new File().copy("AFILE", "ACOPY")

dBL also offers the same functionality in the COPY FILE command. To perform the same operation as above,
you could enter

File/OS 11-9

COPY FILE

See also

copy file AFILE to ACOPY
copyTable(), rename()
copy() is also a method of the UpdateSet class (page 14-45).

COPY FILE

Duplicates a specified file.

Syntax COPY FILE <filename> TO <new name>
Description COPY FILE is identical to the File object’s copy() method, except that as a command, the file name arguments
are treated as names, not character expressions. They do not require quotes unless they contain spaces or other
special characters. If the name is in a variable, you must use the indirection or macro operators.
See copy() for details on the operation of the command.
Example See copy()
See Also copy(), DELETE FILE, RENAME
create()
Creates and opens a specified file.
Syntax <oRef>.create(<filename expC>[, <access expC>])

Property of

Description

<oRef> A reference to a File object.

<filename expC> The name of the file to create and open. By default, create() creates the file in the
current directory. To create the file in another directory, specify a full path name for <filename expC>.

<access expC> The access level of the file to create, as shown in the following table. The access level
string is not case-sensitive, and the characters in the string may be in any order. If omitted, the default is read
and write text file. Append is a more restrictive version of write; the data is always added to the end of the file.

<access expC> Access level

“R” Read-only text file
“W” Write-only text file
“A” Append-only text file
“RW” Read and write text file
“RA” Read and append text file
“RB” Read-only binary file
“WB” Write-only binary file
“AB” Append-only binary file
“RWB” Read and write binary file
“RAB” Read and append binary file
File

Use create() to create a file with a name you specify, assign the file the level of access you specify, and open
the file. If dBASE Plus can’t create the file (for example, if the file is already open), an exception occurs.

SET SAFETY has no effect on create(). If <filename expC> already exists, it is overwritten without warning.
To see if a file with the same name already exists, use exists() before issuing create().

To use other File methods, such as read() and write(), first open a file with create() or open().

When you open a file with create(), the file is empty, so the file pointer is positioned at the first character in the
file. Use seek() to position the file pointer before reading from or writing to a file.

11-10 dBASE dBL Language Reference

Example

See also

createDate()

The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS. TXT"

f=new File()
if f.exists(LOG_FILE)
f.open(LOG_FILE, "A")
else
f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

close(), error(), exists(), gets(), open(), puts(), read(), seek(), write()

createDate()

Syntax

Property of

Description

Example

See also

Returns the date a file was created.
<oRef>.createDate(<filename expC>)
<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

File
createDate() checks the file specified by <filename expC> and returns the date that the file was created.

To get the date the file was last modified, use date(). For the date the file was last accessed, use accessDate().
To get the time the file was created, use createTime().

The following example uses createDate() to display the date the autoexec.bat was created:

? new File().createDate("C:\autoexec.bat")

accessDate(), createTime(), date(), time()

createTime()

Syntax

Property of

Description

Returns the time a file was created.
<oRef>.createTime(<filename expC>)
<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

File

createTime() checks the file specified by <filename expC> and returns the time, as a character string, that the
file was created.

To get the date the file was created, use createDate().

File/OS 11-11

date()

Example

See also

date()

The following example uses createTime() to display the time the autoexec.bat was created:

? new File().createTime("C:\autoexec.bat")

createDate(), time()

Syntax

Property of

Description

Example

See also

Returns the date stamp for a file, the date the file was last modified.
<oRef>.date(<filename expC>)
<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

File
Use date() to determine the date on which the last change was made to a file on disk.

When you update a file, dABASE Plus changes the file’s date stamp to the current operating system date when the
file is written to disk. For example, when the user edits a DB table, dBASE Plus changes the date stamp on the
table file when the file is closed. date() reads the date stamp and returns its current value.

To get the date the file was created, use createDate(). For the date the file was last accessed, use accessDate().
To get the time the file was last changed, use time().

The following example uses date() to display the date the autoexec.bat was last modified:

? new File().date("C:\autoexec.bat")

accessDate(), createDate(), size(), time()

delete()

Syntax

Property of

Description

Removes a file from a disk, optionally sending it to the Recycle Bin.
<oRef>.delete(<filename expC> [, <recycle expL>])
<0ORef> A reference to a File object.

<filename expC> Identifies the file to remove. <filename expC> may be a filename skeleton with
wildcard characters. In that case, dBASE Plus displays a dialog box in which you select the file to duplicate.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<recycle expL> Whether to send the file to the Recycle Bin instead of deleting it. If omitted, the file is
deleted.

File

delete() deletes a file from a disk, or sends it to the Recycle Bin.

If <recycle expL> is true, then SET SAFETY determines whether a dialog appears to confirm sending the file to

the Recycle Bin. If <recycle expL> is false or omitted, SET SAFETY has no effect on delete(); the file is
deleted without warning.

delete() does not automatically remove the auxiliary files associated with table files, such as indexes and memo
files. For example, it does not delete the MDX or DBT files associated with a DBF file. When deleting tables,
use the Database object’s dropTable() method.

11-12 dBASE dBL Language Reference

Example

See also

DELETE FILE

You cannot delete() a file that is open, including one opened with the open() or create() methods; it must be
closed first.

The following examples deletes a file in the current directory:
new File().delete("AFILE")
dropTable(), rename()
delete() is also a method of the Array, Rowset, and UpdateSet classes.

DELETE FILE

Syntax

Description

Example

See Also

DIR

Removes a file from a disk.
DELETE FILE <filename>

DELETE FILE is similar to the File object’s delete() method, except that as a command, the file name
argument is treated as a name, not a character expression. It does not require quotes unless it contain spaces or
other special characters. If the name is in a variable, you must use the indirection or macro operators. Also,
DELETE FILE does not support sending a file to the Recycle Bin.

See delete() for details on the operation of the command.

The ERASE command is identical to DELETE FILE.

Compare this example with the equivalent example for delete():
delete file AFILE

COPY FILE, delete(), ERASE, RENAME

Syntax

Description

Example

Performs a directory or table listing.

DIR | DIRECTORY
[[LIKE] <drive/path/filename skeleton>]

[LIKE] <drive/path/filename skeleton> Specifies a path and/or file specification to be used by DIR.
The LIKE keyword is included for readability only; it has no effect on the command.

If omitted, the tables in the current directory or database are listed.

DIR (or DIRECTORY) is a utility command that lets you perform a directory listing. The information provided
on each file includes its short (8.3) name, its size in bytes, the date of its last update, and its long file name. DIR
also shows the total number of bytes used by the listed files, the number of bytes left on that drive, and the total
disk space.

DIR with no arguments displays information on the tables in the current directory or database. When accessing
tables in the current directory, SET DBTYPE controls the files that are displayed. If SET DBTYPE is dBASE,
files with .DBF extensions in the current directory are shown; if SET DBTYPE is PARADOX, .DB files are
shown instead. In addition to the information normally displayed, DIR displays the number of records in each
table.

The same DBF or DB tables are listed if the database chosen by SET DATABASE is a Standard table alias (one
that looks at DBF and DB tables in a specific directory). If the database chosen by SET DATABASE is any
other kind of alias, only the table names and the total number of tables are shown.

DIR pauses when the results pane is full and displays a dialog box prompting you to display another screenful of
information.

If you have not used ON KEY or SET FUNCTION to reassign the F4 key, pressing F4 is a quick way to
execute DIR.

The following examples use DIR:
set database to /I Access tables by directory, not database

File/OS 11-13

DISKSPACE()

See Also

set dbtype to dBASE

dir // Displays all DBF tables in current directory

set dbtype to paradox

dir // Displays all DB tables in current directory

open database iblocal // Open Interbase database

set database to iblocal // Set active database

dir // Displays all tables in database

dir *.DBF // Displays all DBF files, without # of records

dir c:\autoexec.* // Displays all AUTOEXEC files in root directory of C:

DISPLAY FILES, LIST FILES, ON KEY, SET DATABASE, SET DBTYPE, SET FUNCTION

DISKSPACE()

Syntax

Description

See Also

Returns the number of bytes available on the current or specified drive's disk.
DISKSPACE([<drive expN>])

<drive expN> A drive number from 1 to 26. For example, the numbers 1 and 2 correspond to drives A and
B, respectively.

Without <drive expN> or if <drive expN> is 0, DISKSPACE() returns the number of bytes available on the
current drive.

If <drive expN> is less than 0 or greater than 26, DISKSPACE() returns the number of bytes available on the
drive that contains the home directory.

Use DISKSPACE() to determine how much space is left on a disk.
HOME()

DISPLAY FILES

Syntax

Description

See Also

DOS

Displays information about files on disk in the results pane of the Command window.

DISPLAY FILES

[[LIKE] <drive/path/filename skeleton>]

[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

TO FILE <filename> | ? | <filename skeleton> Directs output to a text file as well as to the results
pane of the Command window. By default, dBASE Plus assigns a .TXT extension. The ? and <filename
skeleton> options display a dialog box in which you specify the name of the target file and the directory to save
it in.

TO PRINTER Directs output to the printer as well as to the results pane of the Command window.

DISPLAY FILES is identical to DIR, and adds the option of directing the output to a file or a printer (or both) in
addition to the Command window. See DIR for details.

DISPLAY FILES is the same as LIST FILES, except that LIST FILES doesn't pause for each screenful of
information but rather lists the information continuously. This makes LIST FILES more appropriate when
directing output to a file or printer.

DIR, LIST FILES

Syntax

Open an MS-DOS or Windows NT command prompt.
DOS

11-14 dBASE dBL Language Reference

Description

See Also

eof()

eof()

Use the DOS command to open an operating system command prompt. This has the same effect as choosing
MS-DOS Prompt or Command Prompt from the Windows Start menu. The command prompt runs as a separate
process.

To execute single operating system commands use RUN. To execute applications, use RUN().

RUN, RUN()

Syntax

Property of

Description

Example

See also

ERASE

Returns true if the file pointer is at the end of a file previously opened with create() or open()
<oRef>.eof()

<0ORef> A reference to the File object that created or opened the file.

File

eof() determines if the file pointer of the file you specify is at the end of the file (EOF), and returns true if it is
and false if it is not. The file pointer is considered to be at EOF if it is positioned at the byte after the last
character in the file.

You can move the file pointer to the end of the file with seek(). If a file is empty, as it is when you first create a
new file with create(), eof() returns true.

Suppose you have a data file generated by a mainframe computer that has fixed-length records with no record
breaks. You want to convert this file so that you have one record on each line. Use two File objects to read and
write the file, adding line breaks as you write:

#define REC_LENGTH 80
#define IN_FILE "STUFF.REC"
#define OUT FILE "STUFF.TXT"

fln = new File()
fOut = new File()

fIn.open(IN_FILE);
fOut.create(OUT FILE);

do while not fIn.eof()
fOut.puts(fIn.read(REC_LENGTH)) // Read fixed length; write with line break
enddo

fIn.close()
fOut.close()

position, seek()

Syntax

Description

Example

Removes a file from a disk.
ERASE <filename>

ERASE is similar to the File object’s delete() method, except that as a command, the file name argument is
treated as a name, not a character expression. It does not require quotes unless it contains spaces or other special
characters. If the name is in a variable, you must use the indirection or macro operators. Also, ERASE does not
support sending a file to the Recycle Bin.

See delete() for details on the operation of the command.

The DELETE FILE command is identical to ERASE.

Compare this example with the equivalent example for delete():
erase AFILE

This example lets the user pick a text file to delete:

cFile = getfile("*.txt", "Delete text file from current directory")

File/OS 11-15

error()

if upper(cFile) = set("DIRECTORY") and right(upper(cFile), 4) ==".TXT"
erase (cFile)

else
msgbox("Not a text file in the current directory", "Can't delete", 48)

endif

The beginning of the returned file name is compared with the current directory returned by
SET("DIRECTORY™") using the equals operator (with SET EXACT OFF). The end of the file name is checked
to see if it is a text file.

If the file is a text file in the current directory, the indirection operators convert the file name stored into a name
the command can use. Without the indirection operators (or the macro operator, which would have the same
effect), the command would attempt to erase the file named “cFile”.

See Also COPY FILE, delete(), DELETE FILE, RENAME

error()

Returns the error number of the most recent byte-level input or output error, or 0 if the most recent byte-level
method was successful.

Syntax <oRef>.error()
<ORef> A reference to the File object that attempted the operation.
Property of File

Description To trap errors, call the File object method in a TRY block. Use the number that error() returns in a CATCH
block to respond to errors in the byte-level methods of the File object. The following table lists the byte-level
method errors that error() returns.

Error number Cause of error
2 File or directory not found
3 Bad path name
4 No more file handles available
5 Can't access file
6 Bad file handle
8 No more directory entries available
9 Error trying to set the file pointer
13 No more disk space
14 End of file

See also close(), create(), eof(), flush(), gets(), open(), puts(), read(), seek(), write()

exists()

Tests for the existence of a file. Returns true if the file exists and false if it doesn’t.
Syntax <oRef>.exists(<filename expC>)
<oRef> A reference to a File object.

<filename expC> The name of the file to search for. Wildcard characters are not allowed; you must
specify the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension.

Property of File

Description Use exists() to determine whether a file exists. You can use either the long file name or the short file name.

11-16 dBASE dBL Language Reference

FILE()

Example The following example writes the current date and time to a text file, which you might do for a simple access

See also

FILE()

log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS. TXT"

f=new File()
if f.exists(LOG_FILE)
f.open(LOG_FILE, "A")
else
f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

create(), error(), GETFILE(), open(), PUTFILE(), shortName()

Syntax

Description

Example

See Also

flush()

Tests for the existence of a file. Returns true if the file exists and false if it doesn't.
FILE(<filename expC>)

FILE() is identical to the File object’s exists() method, except that as a built-in function, it does not require a
File object to work.

When you specify a <path list> using the SET PATH command, dBASE Plus searches those directories in
addition to the current directory. When no SET PATH setting exists, and you don't provide the full path name
when you specify a file name, dBASE Plus searches for the file in the current directory only.

Compare this example with the equivalent example for exists():
#define LOG_FILE "ACCESS. TXT"

if file(LOG_FILE)
h = fopen(LOG_FILE, "A")
else
h = fcreate(LOG_FILE, "A")
endif
fputs(h, new Date().toLocaleString())
fclose(h)

FCREATE(), FERROR(), FOPEN(), FSHORTNAME(), GETFILE(), PUTFILE()

Syntax

Property of

Description

Writes to disk a file previously opened with create() or open() without closing the file. Returns true if
successful and false if unsuccessful.

<oRef>.flush()
<ORef> A reference to the File object that created or opened the file.
File

Use flush() to save a file in the file buffer to disk, flush the file buffer, and keep the file open. If flush() is
successful, it returns true.

Flushing a buffer to disk is similar to saving the file and continuing to work on it. Until you flush an open file
buffer to disk, any data in the buffer is stored only in RAM (random-access memory). If the power to the
computer fails or dBASE Plus ends abnormally, data in RAM is lost. However, if you have used flush() to write
the file buffer to disk, you lose only data that was added between the time you issued flush() and the time the
system failed.

To save the file to disk and close the file, use close().

File/OS 11-17

FNAMEMAX()

See also

close()

flush() is also a method of the Rowset class

FNAMEMAX()

Syntax

Description

See Also

Returns the maximum allowable file-name length on a given drive or volume.
FNAMEMAX([<expC>])

<expC> The drive letter (with a colon), or name of the volume, to check. If <expC> is not provided, the
current drive/volume is assumed. If the drive/volume does not exist, an error occurs.

FNAMEMAX() checks the drive or volume specified by <expC> and returns the maximum file-name length
(including the dot and three-letter extension) allowed for files on that drive/volume. Typical values are:

FNAMEMAX() Drive type
255 Windows long file name
12 MS-DOS-compatible 8.3 name
240 Novell Netware long file name
FSHORTNAME()

FUNIQUE()

Syntax

Description

Example

See Also

Creates a unique file name.
FUNIQUE([<expC>])
<expC> A file-name skeleton, using ? as the wildcard character (the * character is not allowed).

Use FUNIQUE() when creating temporary files to generate a file name that is not being used by an existing file.
The generated file name follows the file name skeleton you specify, with random numbers substituted for each ?
character.

FUNIQUE() generates the new file name by replacing each wildcard character with a random number, then
looking in the current or specified directory for a file name that matches the new file name. If no match is found,
FUNIQUE() returns that name—but it does not create the file. If a match is found, FUNIQUE() tries again
until a unique file name is found. If no combination of random numbers is successful, FUNIQUE() returns an
empty string.

If you omit <expC>, FUNIQUE() returns an 8-character file name with no extension, composed entirely of
random numbers, in the Windows temp directory.

The following example shows the top-level routine used to process a generated text file. An intermediate file is
created during the process. The final result is stored in a subdirectory. Because the application is used by many
people on a network, a fixed file name cannot be used. Instead it uses a temporary file whose name is generated
by FUNIQUE().

parameter cFile // Name of file to process

local cTmpFile

preProcess(cFile, cTmpFile) // Create intermediate temp file
mainProcess(cTmpFile, cFile) // Create result file in subdirectory
erase (cTmpFile) // Erase temp file when done

exists(), FILE()

GETDIRECTORY()

Displays a dialog box from which you can select a directory for use with subsequent commands.

11-18 dBASE dBL Language Reference

GETENV()

Syntax GETDIRECTORY ([<directory expC>])

<directory expC> The initial directory to appear in the dialog box. If <directory expC> is omitted, the
current directory appears as the initial directory.

Description Use GETDIRECTORY() to return a directory name for use in subsequent commands.

GETDIRECTORY() does not return a final backslash at the end of the directory name it returns.
GETDIRECTORY() returns an empty string if the user clicks Cancel or presses EScC.

See Also CD, GETFILE(), SET DIRECTORY

GETENV()

Returns the value of an operating system environment variable.

Syntax GETENV(<expC>)
<expC> The name of the environment variable to return.

Description Use GETENV() to return the current value of an operating system environment variable.
If dBASE Plus can't find the environment variable specified by <expC>, it returns an emptry string.
See Also OS()

GETFILE()

Displays a dialog box, from which the user can choose or enter an existing file name, and returns the file name.

Syntax GETFILE([<filename skeleton expC>
[, <title expC>
[, <suppress database expL>]]])

<filename skeleton expC> A character string that matches selected file names with the wildcard
characters ? and *. The GETFILE() dialog box initially lists only those file names in the current directory that
match the file name skeleton. Without <filename skeleton expC>, the dialog box lists all file names.

<title expC> A title displayed in the top of the dialog box. Without <title expC>, the GETFILE() dialog
box displays the default title. If you want to specify a value for <title expC>, you must also specify a value or
empty string ("") for <filename skeleton expC>.

<suppress database expL> Whether to suppress the combobox from which you can choose a
database. The default is true; the Database combobox is not displayed. If you want to specify a value for
<suppress database expL>, you must also specify a value or empty string ("") for <filename skeleton expC>
and <title expC>.

Description Use GETFILE() to present the user with a dialog box from which they can choose an existing file or table.
GETFILE() does not open any files.

The GETFILE() dialog box includes names of files whether they are currently open or closed. dBASE Plus
returns the full path name of the file whether SET FULLPATH is ON or OFF.

By default, the dialog box opened with GETFILE() displays file names from the current directory the first time
you issue GETFILE(). After the first time you use GETFILE() and exit successfully, the subdirectory you
choose becomes the default the next time you use GETFILE().

If <suppress database expL> is false, you can also choose from a list of databases. When a database is selected,
the dialog box displays a list of tables in that database instead of files in the current directory.

The dialog box is a standard Windows dialog box. The user can perform many Windows Explorer-like activities
in this dialog box, including renaming files, deleting files, and creating new folders. They can also right-click on
a file to get its context menu. These features are disabled when the dialog is displaying tables in a database
instead of files in a directory.

GETFILE() returns an empty string if the user chooses the Cancel button or presses ESc.

File/OS 11-19

gets()

See Also

gets()

FILE(), GETDIRECTORY(), PUTFILE()

Syntax

Property of

Description

Example

Returns a line of text from a file previously opened with create() or open().

<oRef>.gets([<characters expN> [, <end-of-line expC>]])

<0ORef> A reference to the File object that created or opened the file.

<characters expN> The number of characters to read and return before a carriage return is reached.

<end-of-line expC> The end-of-line indicator, which can be a string of one or two characters. If omitted,
the default is a hard carriage return and line feed. The following table lists standard codes used as end-of-line
indicators.

Character code

(decimal) (hexadecimal) Represents

CHR(141) 0x8D Soft carriage return (U.S.)
CHR(255) OxFF Soft carriage return (Europe)
CHR(138) 0x8A Soft linefeed (U.S.)

CHR(0) 0x00 Soft linefeed (Europe)
CHR(13) 0x0D Hard carriage return
CHR(10) 0x0A Hard linefeed

Use the CHR() function to create the <end-of-line expC> if needed. To designate the <end-of-line expC>, you
must also specify the <characters expN>. If you don’t want a line length limit, use an arbitrarily high number.
For example:

cLine = f.gets(10000, chr(0x8d)) // Soft carriage return (U.S.)
File

Use gets() to read lines from a text file. gets() reads and returns a character string from the file opened by the
File object, starting at the file pointer position, and reading past but not returning the first end-of-line
character(s) it encounters.

gets() will read characters until it encounters the end-of-line character(s) or it reads the number of characters
you specify with <characters expN>, whichever comes first. If a file does not have end-of-line character(s) and
you do not specify <characters expN>, gets() will read and return everything from the current file pointer
position to the end of the file.

If the file pointer position is at an end-of-line character(s), gets() returns an empty string (""); the line is empty.

If gets() encounters an end-of-line character(s), it positions the file pointer at the character after the end-of-line
character(s); that is, at the beginning of the next line. Otherwise, gets() positions the file pointer at the character
after the last character it returns. Use seek() to move the file pointer before or after using gets().

If the file being read is not a text file, use read() instead. read() requires <characters expN> to be specified,
and does not treat end-of-line characters specially.

To write a text file, use puts(). readIn() is identical to gets().

The following statements display the contents of a text file in an Text component, replacing the line breaks in
the text file with the HTML
 tag. The name of the file is typed into a Entryfield component named
entryfieldl, and the Text component is named text1.

f=new File() // Create File object
if f.exists(form.entryfieldl.value) // Make sure file exists
f.open(form.entryfield1.value)

form.textl.text="" // Clear HTML component
do while not f.eof()
form.textl.text += f.gets() + "
" // Write lines to HTML component
enddo
f.close() // Close file

11-20 dBASE dBL Language Reference

See Also

handle

handle

else
form.text1.text = form.entryfield1.value + " not found"
endif

create(), eof(), error(), open(), puts(), read(), seek()

Property of

Description

See also

The operating system file handle for a file previously opened with create() or open().

File

When a file is opened by the operating system, it is assigned a file handle, an arbitrary number that identifies
that open file. Applications then use that file handle to refer to that file.

A File object’s handle property reflects the file handle used by dBASE Plus to access a file opened with create()
or open(). It is a read-only property and is generally informational only. By calling methods of the File object,
dBASE Plus internally uses the file handle to perform its operations.

C:\Program Files\dBASE\Plus\

handle is also a property of many data access classes.

HOME()

Syntax

Description

See Also

Returns the directory where the PLUS.exe in use is located.
HOME()

There are two “home” directories:
* The directory where dBASE Plus is installed, by default:
C:\Program Files\dBASE\Plus\\

e The directory where the actual executable file, PLUS.exe is installed. This is in the \Bin subdirectory of the
installation directory, so by default, it’s:

C:\Program Files\dBASE\Plus\Bin\

HOME() identifies the directory in which the currently running copy of PLUS-exe is located. HOME() returns
the full path name whether SET FULLPATH is ON or OFF, and always includes the trailing backslash, as
shown.

To identify the dBASE Plus installation home directory, use _dbwinhome.
CD, SET DIRECTORY, dbwinhome

LIST FILES

Syntax

Displays information about files on disk in the results pane of the Command window.

LIST FILES

[[LIKE] <drive/path/filename skeleton>]

[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

TO FILE <filename> | ? | <filename skeleton> Directs output to a text file as well as to the results
pane of the Command window. By default, dBASE Plus assigns a .TXT extension. The ? and <filename
skeleton> options display a dialog box in which you specify the name of the target file and the directory to save
it in.

TO PRINTER Directs output to the printer as well as to the results pane of the Command window.

File/OS 11-21

MD

Description LIST FILES is the same as DISPLAY FILES, except that LIST FILES doesn't pause for each screenful of
information but rather lists the information continuously. This makes LIST FILES more appropriate when
directing output to a file or printer.

See Also DIR, DISPLAY FILES

MD

Creates a new directory.
Syntax MD <directory>
Description MD is identical to MKDIR. See MKDIR for details.
See Also CD, MKDIR, SET DIRECTORY

MKDIR

Creates a new directory.

Syntax MKDIR <directory>
<directory> The directory you want to create.
Description Use MKDIR to create a new directory. The MD command is identical to MKDIR.
The new directory name must follow the standard naming conventions for the operating system.
If you try to make a directory that already exists or is on a path that does not exist, an error occurs.

After you create the new directory, you can use CD or SET DIRECTORY to make the new directory the current
directory.

See Also CD, SET DIRECTORY

open()

Opens a specified file.

Syntax <oRef>.open(<filename expC>[, <access expC>])
<ORef> A reference to a File object.

<filename expC> The name of the file to open. Wildcard characters are not allowed; you must specify the
actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<access expC> The access level of the file being opened, as shown in the following table. The access
level string is not case-sensitive, and the characters in the string may be in any order. If omitted, the default is
read-only text file. Append is a more restrictive version of write; the data is always added to the end of the file

<access expC> Access level

“R” Read-only text file

“W” Write-only text file

“A” Append-only text file
“RW” Read and write text file
“RA” Read and append text file
“RB” Read-only binary file
“WB” Write-only binary file

11-22 dBASE dBL Language Reference

Property of

Description

Example

See also

OS()

0S()

<access expC> Access level

“AB” Append-only binary file

“RWB” Read and write binary file

“RAB” Read and append binary file
File

Use open() to open a file with a name you specify and assign the file the level of access you specify. If IBASE
Plus can’t open the file (for example, if the file is already open), an exception occurs.

The open() method can also be used to access StdIn and StdOut, enabling direct communication with a web
server. To do this, set the parameter <filename expC> to "StdIn" to receive data, or "StdOut" to transmit.

To open StdIn use: To open StdOut use:
fIn = new File() fOut = new File()
fIn.open("StdIn", "RA") fOut.open("StdOut", "RA")

To use other File methods, such as read() and write(), first open a file with open() or create().

If you open the file with append-only or read and append access, the file pointer is positioned at the end-of-file,
after the last character. For other access levels, the file pointer is positioned at the first character in the file. Use
seek() to position the file pointer before reading from or writing to a file.

The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of the week, so you need to test for its existence to determine
whether it should be created or opened. The name of the file, which is used in three different places, is set in a
manifest constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS. TXT"

f=new File()
if f.exists(LOG_FILE)
f.open(LOG_FILE, "A")
else
f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

close(), create(), error()

open() is also a method of the Form class.

Syntax

Description

See Also

Returns the name and version number of the current operating system.
0Ss()

Use OS() to determine the version of Windows in which dBASE Plus is running. To determine which version
of dBASE Plus is running, use VERSION(). OS() returns a character string like:

Windows NT version 4.00

with the name of the operating system, the word “version” and the version number.

VERSION()

C:\Program Files\dBASE\Plus\

Property of

The full path and file name for a file previously opened with create() or open().
File

File/OS 11-23

position

Description When you open a file with create() or open(), the path is optional. If you use create() without a path, the file is
created in the current directory. If you use open() without a path, dBASE Plus looks for the file in the current
directory, then in the search path(s) you specified with SET PATH, if any.

A File object’s C:\Program Files\dBASE\Plus\ property reflects the full path and file name for the open file. It is
a read-only property.

See also handle

position

The position of the file pointer in a file previously opened with create() or open().
Property of File

Description A File object’s position property reflects the current position of the file pointer.
It is a read-only property. To move the file pointer, use seek(). Reading and writing to a file also moves the file
pointer.

The position is zero-based. The first character in the file is at position zero.

See also seek()

PUTFILE()

Displays a dialog box within which the user can choose an exisiting file to overwrite or a new file name, and
returns the file name.

Syntax PUTFILE([<title expC>
[, <filename expC>
[, <extension expC>
[, <suppress database expL>]]]])

<title expC > A title that is displayed at the top of the dialog box.

<filename expC > The default file name that is displayed in the dialog box's entryfield. Without
<filename expC >, PUTFILE() displays an empty entryfield.

<extension expC > A default extension for the file name that PUTFILE() returns.

<suppress database expL> Whether to suppress the combobox from which you can choose a
database. The default is true; the Database combobox is not displayed. If you want to specify a value for
<suppress database expL>, you must also specify a value or empty string ("") for <filename skeleton>,
<title expC>, and <extension expC>.

Description Use PUTFILE() to present the user with a dialog box from which they can choose an existing file or table or
specify a new file or table name. If they choose an existing file, and SET SAFETY is ON, the user gets the standard
"Replace existing file?" dialog box. If they choose "No", their choice is ignored and they are left in the PUTFILE() dialog
box. PUTFILE() does not actually create or write anything to the specified file.

The PUTFILE() dialog box includes names of files whether they are currently open or closed. dBASE Plus
returns the full path name of the file whether SET FULLPATH is ON or OFF.

By default, the dialog box opened with PUTFILE() displays file names from the current directory the first time
you issue PUTFILE(). After the first time you use PUTFILE() and exit successfully, the subdirectory you
choose becomes the default the next time you use PUTFILE().

If <suppress database expL> is false, you can also choose from a list of databases. When a database is selected,
the dialog box displays a list of tables in that database instead of files in the current directory.

The dialog box is a standard Windows dialog box. Users can perform many Windows Explorer-like activities in
this dialog box, including renaming files, deleting files, and creating new folders. They can also right-click on a
file to get its context menu. These features are disabled when the dialog is displaying tables in a database instead
of files in a directory.

PUTFILE() returns an empty string if the user chooses the Cancel button or presses ESc.

11-24 dBASE dBL Language Reference

See Also

puts()

puts()
FILE(), GETFILE()

Syntax

Property of

Description

Example

Writes a character string and one or two end-of-line characters to a file previously opened with create() or
open(). Returns the number of characters written.

<oRef>.puts(<string expC> [, <characters expN> [, <end-of-line expC>]])
<0ORef> A reference to the File object that created or opened the file.

<string expC> The character expression to write to the specified file. If you want to write only a portion of
<string expC> to the file, use the <characters expN> argument.

<characters expN> The number of characters of the specified character expression <string expC> to
write to the specified file, starting at the first character in <string expC>. If omitted, the entire string is written.

<end-of-line expC> The end-of-line indicator, which can be a string of one or two characters. If omitted,
the default is a hard carriage return and line feed. The following table lists standard codes used as end-of-line
indicators.

Character code

(decimal) (hexadecimal) Represents

CHR(141) 0x8D Soft carriage return (U.S.)
CHR(255) OxFF Soft carriage return (Europe)
CHR(138) 0x8A Soft linefeed (U.S.)

CHR(0) 0x00 Soft linefeed (Europe)
CHR(13) 0x0D Hard carriage return
CHR(10) 0x0A Hard linefeed

Use the CHR() function to create the <end-of-line expC> if needed. To designate the <end-of-line expC>, you
must also specify the <characters expN>. If you don’t want a line length limit, use an arbitrarily high number.
For example:

f.puts(cLine, 10000, chr(0x8d)) // Soft carriage return (U.S.)
File

Use puts() to write text files. puts() writes a character string and one or two end-of-line characters to a file. If
the file was opened in append-only or read and append mode, the string is always added to the end of the file.
Otherwise, the string is written starting at the current file pointer position, overwriting any existing characters.
You must have either write or append access to use puts().

puts() returns the number of bytes written to the file, including the end-of-line character(s). If puts() returns 0,
no characters were written. Either <string expC> is an empty string, or the write was unsuccessful.

Use error() to determine if an error occurred.

When puts() finishes executing, the file pointer is located at the character immediately after the last character
written, which is the end-of-line character. Successive puts() calls writes one line after another. Use seek() to
move the file pointer before or after you use puts().

To write to a file that is not a text file, use write(). write() does not add the end-of-line character(s). To read
from a text file, use gets(). writeln() is identical to puts().

The following example writes the current date and time to a text file, which you might do for a simple access
log. The file is archived and deleted at the end of week, so you need to test for its existence to determine whether
it should be created or opened. The name of the file, which is used in three different places, is set in a manifest
constant created by the #define preprocessor directive for ease of maintenance.

#define LOG_FILE "ACCESS. TXT"
f=new File()

if f.exists(LOG_FILE)
f.open(LOG FILE, "A")

File/OS 11-25

read()

See Also

read ()

else
f.create(LOG_FILE, "A")
endif
f.puts(new Date().toLocaleString())
f.close()

create(), eof(), error(), gets(), open(), seek(), write()

Syntax

Property of

Description

Example

See also

Returns a specified number of characters from a file previously opened with create() or open().
<oRef>.read(<characters expN>)

<ORef> A reference to the File object that created or opened the file.

<characters expN> The number of characters to return from the specified file.

File

read() returns the number of characters you specify from the file opened by the File object. read() starts
reading characters from the current file pointer position, leaving the file pointer at the character immediately
after the last character read. Use seek() to move the file pointer before or after you use read().

If the file to be read is a text file, use gets() instead. gets() looks for end-of-line characters, and returns the
contents of the line, without the end-of-line character(s).

To write to a file, use write().

Suppose you have a data file generated by a mainframe computer that has fixed-length records with no record
breaks. You want to convert this file so that you have one record on each line. Use two File objects to read and
write the file, adding line breaks as you write:

#define REC_LENGTH 80

#define IN_FILE "STUFF.REC"
#define OUT FILE "STUFF.TXT"

fln = new File()
fOut = new File()

fin.open(IN_FILE);
fOut.create(OUT_FILE);

do while not fIn.eof{()
fOut.puts(fIn.read(REC_LENGTH)) // Read fixed length; write with line break
enddo

fIn.close()
fOut.close()

create(), eof(), error(), gets(), open(), seek(), write()

readin()

Syntax
Property of

Description

Returns a line of text from a file previously opened with create() or open().
<oRef>.readIn([<characters expN> [, <end-of-line expC>]])
File

readIn() is identical to gets(). See gets() for details.

RENAME

Syntax

Renames a file on disk.

RENAME <filename> TO <new name>

11-26 dBASE dBL Language Reference

Description

Example

See Also

rename()

RENAME is identical to the File object’s rename() method, except that as a command, the file name arguments
are treated as names, not a character expressions. They do not require quotes unless they contain spaces or other
special characters. If the name is in a variable, you must use the indirection or macro operators.

See rename() for details on the operation of the command.

Compare this example with the equivalent example for rename():
rename AFILE to SOMETHING

COPY FILE, DELETE FILE, ERASE, rename()

rename()

Syntax

Property of

Description

Example

See also

RUN

Renames a file on disk.
<oRef>.rename(<filename expC>, <new name expC>)
<ORef> A reference to a File object.

<filename expC> Identifies the file to rename (also known as the source file). <filename expC> may be a
file name skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in which you select
the file to rename.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

<new name expC> Identifies the new name for the source file (also known as the target file). <new name
expC> may be a file name skeleton with wildcard characters. In that case, dBASE Plus displays a dialog box in
which you specify the name of the target file and its directory.

File
rename() lets you change the name of a file at the operating system level.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE Plus displays a dialog box
asking if you want to overwrite the existing file. If SET SAFETY is OFF and a file exists with the same name as
the target file, an exception occurs, and the target file is not overwritten.

If you specify a different drive or directory for the target file, IBASE Plus moves the source file to that location.
When a path is not specified, the target file is moved to the current directory.

rename() does not automatically rename the auxiliary files associated with table files, such as indexes and
memo files. For example, it does not rename the MDX or DBT files associated with a DBF file. When renaming
tables, use the Database object’s renameTable() method.

The following example changes the name of a file in the current directory to something else:
new File().rename("AFILE", "SOMETHING")

copy()

Syntax

Description

Executes a program or operating system command from within dBASE Plus.
RUN <command>
<command> A command recognized by your operating system.

Use RUN to execute a single operating system command or program from within dBASE Plus. Enter
commands and file names exactly as you would when working in the command prompt; do not enclose them in
quotes. ! is equivalent to RUN.

RUN opens a command prompt in the current directory and executes <command>. The command prompt
automatically closes when the program or command is finished. Commands and programs launched by RUN

File/OS 11-27

RUN()

Example

See Also

RUN()

execute as a separate task, as if you had started that task from the Start menu. dBASE Plus continues to run on
its own.

To open a command prompt so you can enter multiple commands yourself, use the DOS command. To execute
a Windows application, use RUN() instead; it does not open a command prompt window.

In the following example, clicking a button on a form runs a command line compression utility through a batch
file:

function backupButton_onClick
run ZIPEM.BAT

DOS, RUN()

Syntax

Description

See Also

seek()

Executes a program or operating system command from within dBASE Plus, returning the instance handle of
the program.

RUN([<direct expL>,] <command expC>)

<direct expL> Determines whether RUN() runs a Windows program directly (true) or through a
command prompt (false). If <command expC> is not a Windows program, <direct expL> must be false, or
RUN() has no effect. If you omit <direct expL>, dBASE Plus assumes a value of false.

<command expC> A Windows program name or a command recognized by your operating system.
Use RUN() to execute another Windows program or an operating system command from within dBASE Plus.

To run another Windows program, <direct expL> should be true; otherwise, a separate command prompt is
opened first, and you cannot get the returned instance handle.

DOS, RUN

Syntax

Property of

Description

Moves the file pointer in a file previously opened with create() or open(), and returns the new position of the
file pointer.

<oRef>.seek(<offset expN> [, <position expN>])
<oRef> A reference to the File object that created or opened the file.

<offset expN> The number of bytes to move the file pointer in the specified file. If <offset expN=> is
negative, the file pointer moves toward the beginning of the file. If <offset expN> is 0, the file pointer moves to
the position you specify with <position expN>. If <offset expN> is positive, the file pointer moves toward the
end of the file or beyond the end of the file.

<position expN> The number 0, 1, or 2, indicating a position relative to the beginning of the file (0), to
the file pointer’s current position (1), or to the end of the file (2). The default is 0.

File

seek() moves the file pointer in the file you specify relative to the position specified by <position_expN>, and
returns the resulting position of the file pointer as an offset from the beginning of the file. The File object’s
position property is also updated with this new position. If an error occurs, seek() returns —1.

The movement of the file pointer is relative to the beginning of the file unless you specify otherwise with
<position expN>. For example, seek(5) moves the file pointer five characters from the beginning of the file (the
6th character) while seek(5,1) moves it five characters forward from its current position. You can move the file
pointer beyond the end of the file, but you can’t move it before the beginning of the file.

To move the file pointer to the beginning of a file, use seek(0). To move it to the end of a file, use seek(0, 2). To
move to the last character in a file, use seek(-1,2).

gets(), puts(), read(), and write() also move the file pointer as they read from or write to the file.

11-28 dBASE dBL Language Reference

SET DIRECTORY

Example Suppose you’re exporting data from a table in a special format for another program. The export file must have
the number of rows of data written in the file, starting at the 9th character. You extend the File class, adding
methods to create the export file, write the data in the special format, and record the number of rows written.
The following is the method that records the number of rows.

function recordRowsWritten()
this.seek(8) // 9th character == offset 8
this.write("" + this.rowsExported) // Convert number to string to write

See also gets(), position, puts(), read(), write()

SET DIRECTORY

Changes the current drive or directory.

Syntax SET DIRECTORY TO [<path>]

<path> The new drive and/or path. Quotes (single or double) are required if the path contains spaces or other
special characters; optional otherwise.

Description SET DIRECTORY works like CD, except SET DIRECTORY TO (with no argument) returns you to the
HOME() directory, while CD with no argument displays the current directory.

To get the current directory, use SET("DIRECTORY").
See Also CD, HOME(), SET(), VALIDDRIVE(), dbwinhome

SET FULLPATH

Specifies whether functions that return file names return the full path with the file name.

Syntax SET FULLPATH on | OFF

Description Use SET FULLPATH ON when you need to have functions or methods such as shortName(), return a file name
with its full path. When SET FULLPATH is OFF, these functions include the drive letter (and colon) with the
file name only.

Some functions, such as GETFILE(), always return the full path, regardless of SET FULLPATH.
See Also GETFILE(), shortName()

SET PATH

Specifies the directory search route that dBASE Plus follows to find files that are not in the current directory.

Syntax SET PATH TO [<path list>]

<path list> A list of (optional) drives and directories indicating the search path—one or more drives and
directories you want dBASE Plus to search for files. Separate each directory path name with commas,
semicolons, or spaces. If the path name contains spaces or other special characters, the path name should be
enclosed in quotes.

Description Use SET PATH to establish a search path to access files located on directories other than the current directory.
When no SET PATH setting exists and you don't provide the full path name when you specify a file name,
dBASE Plus searches for that file only in the current directory.

The order in which you list drives and directories with SET PATH TO <path list> is the order dBASE Plus
searches for a file in that search path. Use SET PATH when an application's files are in several directories.

SET PATH TO without the option <path list> resets the search path to the default value (no path).
See Also CD, SET DIRECTORY

File/OS 11-29

shortName()

shortName()

Syntax

Property of

Description

See also

size()

Returns the short (8.3) name of a file.
<oRef>.shortName(<filename expC>)
<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

File

shortName() checks the file specified by <filename expC> and returns a name for the file following the DOS
file-naming convention (eight-character file name, three-character extension). If SET FULLPATH is ON, the
path is also returned.

exists()

Syntax

Property of

Description

Example

See also

time()

Returns the size of a file in bytes.
<oRef>.size(<filename expC>)
<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

File
Use size() to determine the size of a file on disk.

With the byte-level access methods of the File object, dBASE Plus doesn’t update the size on the file recorded
on the disk until you close() the file.

The following example uses Size() to display the size of the autoexec.bat:

? new File().size("C:\autoexec.bat")

date(), time()

Syntax

Property of

Returns the time stamp for a file, the time the file was last modified.
<oRef>.time(<filename expC>)
<oRef> A reference to a File object.

<filename expC> The name of the file to check. Wildcard characters are not allowed; you must specify
the actual file name.

If you specify a file without including its path, dBASE Plus looks for the file in the current directory, then in the
search path(s) you specified with SET PATH, if any. If you specify a file without including its extension,
dBASE Plus assumes no extension. If the named file cannot be found, an exception occurs.

File

11-30 dBASE dBL Language Reference

Description

Example

See also

TYPE

TYPE
Use time() to determine the time of day when the last change was made to a file on disk. time() returns the time
as a character string.

When you update a file, dBASE Plus changes the file’s time stamp to the current operating system time when
the file is written to disk. For example, when the user edits a DB table, dBASE Plus changes the time stamp on
the table file when the file is closed. time() reads the time stamp and returns its current value.

To get the time the file was created, use createTime(). For the date the file was last modified, use date().
The following example uses time() to display the time the autoexec.bat was last modified:
? new File().time("C:\autoexec.bat")

createTime(), date()

Syntax

Description

See Also

Display the contents of a text file.

TYPE <filename 1> | ? | <filename skeleton 1>

[MORE]

[NUMBER]

[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

<filename> | ? | <filename skeleton> The file whose contents to display. TYPE ? and TYPE
<filename skeleton> display a dialog box from which you can select a file. If you specify a file without
including its path, dBASE Plus looks for the file in the current directory, then in the path you specify with
SET PATH. You must specify a file-name extension.

MORE Pauses output when it fills the Command window; otherwise, the output scrolls through the
Command window to the end of the file.

NUMBER Precedes each line of output with its line number.

TO FILE <filename 2> | ? | <filename skeleton> Directs output to the text file <filename 2>, as
well as to the results pane of the Command window. By default, dBASE Plus assigns a .TXT extension to
<filename 2> and saves the file in the current directory. The ? and <filename skeleton> options display a dialog
box in which you specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer, as well as to the results pane of the Command window.

Use TYPE to display the contents of text files. All program files in dBASE Plus are text files that you can
display with TYPE.

If you TYPE a file TO FILE or TO PRINTER, dBASE Plus adds two lines of output at the beginning of the
saved or printed output if SET HEADINGS is ON. The first line is a blank line, and the second line contains the
full path name and date stamp of the source file. If you specify NUMBER, these two lines are not numbered,
numbering begins with 1 at the first actual line of the source file.

If you specify MORE and cancel output before completion, *** INTERRUPTED *** appears in the results
pane of the Command window, but does not appear in the incomplete saved or printed output.

If SET SAFETY is ON and a file exists with the same name as the target file, IBASE Plus displays a dialog box
asking if you want to overwrite the file. If SET SAFETY is OFF, any existing file with the same name is
overwritten without warning.

EJECT, SET ALTERNATE, SET HEADINGS, SET PRINTER, SET SAFETY

VALIDDRIVE()

Syntax

Returns true if the specified drive exists and can be read. Returns false if the specified drive does not exist or
cannot be read.

VALIDDRIVE(<drive expC>)
<drive expC> The drive to be tested, which can be either:

File/OS 11-31

write()

* A drive letter, optionally followed by a colon, or
* The UNC name for a drive

Description Use VALIDDRIVE() to determine if a specified drive exists and is ready before using CD, SET DEFAULT,
SET DIRECTORY or SET PATH. VALIDDRIVE() is also useful if your program copies files to or from a
drive, or includes drive letters in any file names.

VALIDDRIVE() can verify any drive specified, including drives created by partitioning a hard disk and
mapped network drives. Checking for a floppy disk or network drive takes a few seconds, so you should display
a message before you check.
Example The following example checks if a disk is inserted in drive A:
if not validdrive("a:"
// No disk (or no floppy drive installed)
endif
The following example use a UNC name to check if the user is connected to a particular network drive:
if validdrive("\\finance\vol2")
// Not connected to Finance server, or has no access to Vol2 volume
endif
See Also CD, SET DIRECTORY, SET PATH

write()

Writes a character string to a file previously opened with create() or open(). Returns the number of characters
written.
Syntax <oRef>.write(<expC> [, <characters expN>])

Property of

Description

Example

See also

<oRef> A reference to the File object that created or opened the file.

<expC> The character expression to write to the specified file. If you want to write only a portion of
<string expC> to the file, use the <characters expN> argument.

<characters expN> The number of characters of the specified character expression <string expC> to
write to the specified file, starting at the first character in <string expC>. If omitted, the entire string is written.

File

write() writes a character string to a file. If the file was opened in append-only or read and append mode, the
string is always added to the end of the file. Otherwise, the string is written starting at the current file pointer
position, overwriting any existing characters. You must have either write or append access to use write().

write() returns the number of bytes written to the file. If write() returns 0, no characters were written. Either
<expC> is an empty string, or the write was unsuccessful.

Use error() to determine if an error occurred.

When write() finishes executing, the file pointer is located at the character immediately after the last character
written. Use seek() to move the file pointer before or after you use write().

To write to a text file, use puts(). puts() automatically adds the end-of-line character(s).
To read from a file, use read().

Suppose you’re exporting data from a table in a special format for another program. The export file must have
the number of rows of data written in the file, starting at the 9th character. You extend the File class, adding
methods to create the export file, write the data in the special format, and record the number of rows written.
The following is the method that records the number of rows.

function recordRowsWritten()
this.seek(8) /I 9th character == offset 8
this.write("" + this.rowsExported) // Convert number to string to write

create(), eof(), error(), open(), puts(), read(), seek()

11-32 dBASE dBL Language Reference

writeln()

writeln()

Syntax
Property of

Description

Writes a character string and one or two end-of-line characters to a file previously opened with create() or
open(). Returns the number of characters written.

<oRef>.writeln(<string expC> [, <characters expN> [, <end-of-line expC>]])
File

writeln() is identical to puts(). See puts() for details.

_dbwinhome

Description

Example

See Also

Contains the home directory of the currently running instance of dBASE Plus.
There are two “home” directories:
e The directory where dBASE Plus is installed, by default:

C:\Program Files\dBASE\Plus\

e The directory where the actual executable file, PLUS.exe is installed. This is in the \Bin subdirectory of the
installation diretory, so by default, it’s:

C:\Program Files\dBASE\Plus\Bin\

_dbwinhome contains the installation home directory, from which you can access all subdirectories.
_dbwinhome contains the full path name whether SET FULLPATH is ON or OFF, and always includes the
trailing backslash, as shown.

_dbwinhome is read-only.

To identify where the currently running instance of PLUS.exe is located, use HOME().

The following statement changes the directory to dBASE Plus’ \Sample subdirectory:
cd "& dbwinhome.Custom"

The macro operator is used to expand the path name contained in _dbwinhome. The period acts as the macro
terminator. The resulting command looks like:

cd "C:\PROGRAM FILES\DBASE\PLUS\SAMPLE"

(The path name in _dbwinhome is all-uppercase.) The quotes are required because the path name contains
spaces.

CD, HOME(), SET DIRECTORY

File/OS 11-33

11-34 dBASE dBL Language Reference

Xbase

Every Xbase command and function includes an OODML section that lists the object-oriented dBL equivalent,
if there is one.

The examples in this chapter are mostly data processing and utility code. Data entry in dBASE Plus is done at
another level, either using the form-based events that are melded into the Xbase worksets, or the new dBL data
objects, which replace most Xbase functionality and provide powerful new object-oriented capabilities.

The examples also do not use any new dBL syntax, and thus are compatible with older versions of dBASE.

Common command elements

The following sections detail command elements that are common to many Xbase commands and functions.

Filenames

Filenames are required for many Xbase commands. The filename may refer to a file on disk or a table in a
database. A filename is indicated by <filename> in the syntax diagram and may be any one of the following
forms:

« A filename, without the extension. When the filename refers to a table, dBASE Plus will assume the
extension specified by the SET DBTYPE command (.DBF for dBASE and .DB for Paradox), which can be
overridden in most commands with the command’s TYPE clause. If the SET DATABASE command has
been used to set a server database as the default, then the table name will be used as-is, without an extension.
When the filename is not a table, there is always a default extension, which is listed in each command
description.

¢ A filename, with the extension.

* A table in a database. Use the BDE Administrator to create database aliases. Specify the database alias in
colons before the table name as follows:

:databaseAlias:tableName

If the database is not already open, dBASE Plus displays a dialog box in which you specify the parameters,
such as a login name and password, necessary to establish a connection to that database.

* A filename skeleton. Use the ? and * as wildcard characters. A single ? is the same as *, meaning any
filename. A dialog box is displayed from which you can choose a table, either a file on disk or a table from a
database.

In all cases, the <filename> may be enclosed in string delimiters (single quotes, double quotes, or square
brackets). Delimiters are required if <table name> contains spaces or other special characters. If the <filename>
is contained in a variable and is not defined as an expression—functions expect filenames that are character
expressions, commands do not—use the parentheses as indirection operators on the variable containing the
<filename>.

Xbase 12-1

If the <filename> refers to a file and does not contain a path and the file is not found in the current directory,
then the path specified by SET PATH is also searched.

In many commands, the <filename> does not have to be specified in the statement. If it is omitted, dBASE Plus
will display a dialog box from which you can choose a file to execute the command.

For commands that specifically create files and not tables, the database options are not allowed. If a dialog box
is displayed, it will not include the controls to choose a database.

If you are about to overwrite a file, you will get a confirmation dialog box if SET SAFETY is ON. If SET
SAFETY is OFF, the file will be overwritten without a warning.

Aliases

While some commands work only in the current work area, others allow you to specify the work area in which
they perform their function. Work areas are referenced by their alias, which may take one of the following
forms:

* The work area number, from 1 to 225

» A character string that contains a single letter from A through J, which correspond to work area 1 through 10.
This is supported for compatibility.

» A character string containing the name of the work area: the name of the table, or the alias assigned to the
work area when the table was opened. See the USE command for information on assigning aliases.

When using a letter or work area name as the alias in a function, the alias must be a character expression, usually
the string enclosed in string delimiters. In a command, the delimiters are optional and usually not used, unless
the alias contains spaces or other special characters. In addition to the normal string delimiters (single quotes,
double quotes, and square brackets), colons may be used to delimit aliases in commands.

The alias option is indicated by <alias> in the syntax tables. When you do not specify an alias, the command or
function works on the current work area.

Command scope

Many Xbase commands have a scope option (not to be confused with the scope resolution operator) that dictates
which records to process. The scope honors the current index order, filter, and key constraints. Three clauses
comprise a command’s scope:

» <scope>
* FOR <for condition>
» WHILE <while condition>

There are four different options for <scope>:
ALL All records, starting with the first.
REST Starting with the current record, processes all subsequent records in the table

NEXT <expN> Starting with the current record, processes the next <expN> records. NEXT 1 processes the
current record only.

RECORD <bookmark> The individual record referenced by the bookmark <bookmark>. You may also
specify a record number for DBF tables.

Different commands have different default scopes. In conjunction with <scope>, many commands have one or
both of the following conditional clauses:

FOR <for condition> Specifies a condition that must evaluate to true for each record to be processed. If
the <for condition> fails, that record is skipped and the next record is tested.

WHILE <while condition> Specifies a condition that must evaluate to true for processing to continue.
The test is performed before processing each record. If the <while condition> fails, processing stops.

If you specify a FOR clause, the default scope of the command becomes ALL. If you specify a WHILE clause,
with or without a FOR clause, the default scope of the command becomes REST.

12-2 dBASE dBL Language Reference

ALIAS()

ALIAS()

Syntax

Description

OODML

Example

See Also

Returns the alias name of the current or a specified work area.
ALIAS([<alias>])

<alias> The work area you want to check. (If <alias> is a work area alias name, there is no reason to use this
function because that alias name is what the function will return.)

ALIAS() returns the alias name of any work area within the current workset, in all uppercase. If no table is
opened in the specified work area, ALIAS() returns an empty string ("").

Routines that do work in other work areas usually save the current work area before switching, and then switch
back when done. Use ALIAS() to get the name of the current work area, then switch back using the SELECT
command.

There is no concept of the "current” Query object. You may refer to any Query object at any time through its
object reference.

In this example, a function changes the index order of table of classes at a school:

PROCEDURE ClassesByRoom
local cAlias
cAlias = alias()
select CLASSES
set order to ROOM
select (cAlias)

This function saves the alias name of the currently selected table—which might be the table of teachers,
students, or even the classes table—in the variable cAlias. When the function is done, that alias is reselected
with the SELECT command, using the parentheses as indirection operators.

DBF(), SELECT, SELECT(), USE, WORKAREA()

APPEND

Syntax

Description

OODML

Example

Adds a new record to a table.
APPEND [BLANK]
BLANK Adds a blank record to the end of the table and makes the blank record the current record.

APPEND displays the currently selected table in an auto-generated data entry form and puts the form in Append
mode. This has the same effect as using the EDIT command to display the data entry form and manually
choosing Add Row from the menu or toolbar. This interactive APPEND is rarely used in applications because
you have no control over the appearance of the data entry form.

The APPEND BLANK command adds a blank record to the current table and positions the record pointer on the
new record, but it doesn't display a window to edit the data. This is often done in an older style of dBASE
programming, and is typically followed by REPLACE statements to store values into the newly-created record.

When accessing SQL tables, some database servers do not allow you to enter blank records. Also, constraints on
tables created with non-null fields, including DBF7 tables, prevent entering records with fields left blank. In
these cases, APPEND BLANK will fail and cause an error.

Use the Rowset object’s beginAppend() method. While APPEND BLANK creates a blank record first that you
must delete if you decide to discard the new record, beginAppend() blanks the row buffer and creates a new row
only if the row is modified and saved.

The following function is used when adding data to a table. It attempts to recycle records by looking for a blank
deleted record. If one is not found the APPEND BLANK command is used to create a new record.

PROCEDURE NewRec
set deleted off
if seek(" ") .and. deleted() .and. rlock()
recall
else

Xbase 12-3

APPEND AUTOMEM

See Also

append blank
endif
set deleted on

First, DELETED is turned OFF so that deleted records can be found. (The normal operation of the application
has DELETED ON.) The SEEK() function looks for a record with a character key that starts with a blank space,
which indicates a blank record; a valid index key cannot be blank. The table must be ordered on a character field
when the function is called. If a blank record is found, the DELETED() function makes sure it’s deleted, and an
RLOCK() is attempted to prevent anyone else from grabbing the same record at the same time.

If all of these things are successful, the record is RECALLed and made available for use. Otherwise, a new
blank record is created with APPEND BLANK. Either way, DELETED is turned back ON and the function is
completed, leaving the record pointer at the new or recycled record.

To see the function that deletes records for recycling, see the example for BLANK.

APPEND AUTOMEM, APPEND FROM, EDIT, SET CARRY, SET RELATION

APPEND AUTOMEM

Syntax

Description

Note:

OODML

Example

Adds a new record to a table using the values stored in automem variables.

APPEND AUTOMEM

APPEND AUTOMEM adds a new record to the currently selected table and then replaces the value of fields in
the table with the contents of corresponding automem variables. Automem variables are variables that have the
same names and data types as the fields in the current table. Automem variables must be private or public; they
cannot be local or static. If a field does not have a matching variable, that field is left blank.

APPEND AUTOMEM is used as part of data entry in an older style of dBASE programming. In dBASE Plus,
controls in data entry forms are dataLinked to fields; there is no need for a set of corresponding variables.
APPEND AUTOMEM is also used for programatically adding records to a table. It is more convenient than
using APPEND BLANK and REPLACE.

To use APPEND AUTOMEM to add records to a table, first create a set of automem variables. The
USE...AUTOMEM command opens a table and creates the corresponding empty automem variables for that
table. CLEAR AUTOMEM creates a set of empty automem variables for the current table or reinitializes
existing automem variables to empty values. STORE AUTOMEM copies the values in the current record to
automem variables. You may also create the individual variables manually.

When referring to the value of automem variables you need to prefix the name of an automem variable with
M-> to distinguish the variable from the corresponding fields, which have the same name. The M-> prefix is not
needed during variable assignment; the STORE command and the = and := operators do not work on Xbase
fields.

Read-only field type - Autoincrement

Because APPEND AUTOMEM and REPLACE AUTOMEM write values to your table, the contents of the
read-only field type, Autoincrement, must be released before using either of these commands. In the following
example, the autoincrement field is represented by "myAutolnc™:

use tablel in 1

use table2 in 2

select 1 // navigate to record
store automem

release m->myAutolnc

select 2

append automem

The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

The following function is used to record access to an application as part of its startup process:

PROCEDURE LogRec
private user, date, time
use LOGREC in select()
select LOGREC

12-4 dBASE dBL Language Reference

See Also

APPEND FROM

user = user()
date = date()
time = time()
append automem
use

The variables that will be used as automem variables are first declared private, to hide any variables of the same
name that might exist. Then the table is opened in an unused work area and selected. The automem variables are
created manually, using built-in functions. Finally, the values are appended to the table, and the table is closed.

APPEND, CLEAR AUTOMEM, REPLACE AUTOMEM, STORE AUTOMEM, USE

APPEND FROM

Syntax

Copies records from an existing table to the end of the current table.

APPEND FROM <filename>
[FOR <condition>]
[[TYPE] DBASE | PARADOX | SDF |
DELIMITED [WITH
<char> | BLANK]]
[REINDEX]

<filename> The name of the file whose records you want to append to the current table.

FOR <condition> Restricts APPEND FROM to records in <filename> that meet <condition>. You can
specify a FOR <condition> only for fields that exist in the current table. dBASE Plus pretends that the record is
appended, then evalulates the <condition>. If it fails, the record is not actually appended.

[TYPE] DBASE | PARADOX | SDF |

DELIMITED [WITH <char> | BLANK] Specifies the default file extension, and for text files, the text
file format. For example, if you specify a .DBF file as the <filename> and TYPE PARADOX, the TYPE is
ignored because the file is really a dBASE file. The TYPE keyword is included for readability only; it has no
effect on the operation of the command. The following table provides a description of the different file formats
that are supported:

Type Description

DBASE A dBASE table. If you don't include an extension for <filename>, dBASE Plus
assumes a .DBF extension.

PARADOX A Paradox table. If you don't include an extension for <filename>, dBASE
Plus assumes a .DB extension.

SDF A System Data Format text file. Records in an SDF file are fixed-length, and

the end of a record is marked with a carriage return and a linefeed. If you don't
specify an extension, dBASE Plus assumes .TXT.

DELIMITED A text file with fields separated by commas. These files are also referred to as
CSV (Comma Separated Value) files. Character fields may be delimited with
double quotation marks; the quotes are required if the field itself contains a
comma.
Each carriage return and linefeed indicates a new record. If you don't specify
an extension, dBASE Plus assumes .TXT.

DELIMITED Indicates that character data is delimited with the character <char> instead of

WITH <char> with double quotes. For example, if delimited with a single quote instead of a
double quote, the clause would be:
DELIMITED WITH'

DELIMITED Indicates that data is separated with spaces instead of commas, with no
WITH BLANK delimiters.

REINDEX Rebuilds all open index files after APPEND FROM finishes executing. Without REINDEX,
dBASE Plus updates all open indexes after appending each record from <filename>. When the current table has
multiple open indexes or contains many records, APPEND FROM executes faster with the REINDEX option.

Xbase 12-5

APPEND FROM ARRAY

Description

OODML

See Also

Use the APPEND FROM command to add data from another file or table to the end of the current table. You
can append data from dBASE tables or files in other formats. Data is appended to the current table in the order
in which it is stored in the file you specify.

When you specify a table as the source of data, fields are copied by name. If a field in the current table does not
have a matching field in the source table, those fields will be blank in the appended records. If the field types do
not match, type conversion is attempted. For example, if a field named ID in the current table is character field,
but the ID field in the source table is numeric, the number will be converted into a string when it is appended.

When appending text files, SDF or DELIMITED, there is no data type in the source file; everything is a string.
For non-character fields, the strings should be in the following format to match the data type in the table:

» For logical or boolean fields, the letters T, t, Y, and Y indicate true. All other letters and blanks are
considered false.

¢ Dates must be in the format YYYYMMDD.

If the field of the current table is shorter than the matching field of the source table, dBASE Plus truncates the
data.

If SET DELETED is OFF, dBASE Plus adds records from a source dBASE table that are marked for deletion
and doesn't mark them for deletion in the current table. If SET DELETED is ON, dBASE Plus doesn't add
records from a source dBASE table that are marked for deletion.

When importing data from other files, remove column headings and leading blank rows and columns;
otherwise, this data is also appended.

Use the UpdateSet object’s append() or appendUpdate() method to append data from other tables.
APPEND, APPEND AUTOMEM, COPY, REINDEX, SET DELETED

APPEND FROM ARRAY

Syntax

Description

Adds to the current table one or more records containing data stored in a specified array.

APPEND FROM ARRAY <array>
[FIELDS <field list>]

[FOR <condition>]

[REINDEX]

<array> A reference to the array containing the data to store in the current table as records.

FIELDS <field list> Appends <array> data only to the fields in <field list>. Without FIELDS <field list>,
APPEND FROM ARRAY appends to all the fields in the table, starting with the first field.

FOR <condition> Restricts APPEND FROM ARRAY to array rows in <array> that meet <condition>.
The FOR <condition> should reference the fields in the current table. dBASE Plus pretends that the record is
appended, then evalulates the <condition>. If it fails, the record is not actually appended.

REINDEX Rebuilds open indexes after all records have been changed. Without REINDEX, dBASE Plus
updates all open indexes after appending each record from <array>. When the current table has multiple open
indexes or contains many records, APPEND FROM ARRAY executes faster with the REINDEX option.

APPEND FROM ARRAY treats one- and two-dimensional arrays as tables, with columns corresponding to
fields and rows corresponding to records. A one-dimensional array works as a table with only one row;
therefore, you can append only one record from a one-dimensional array. A two-dimensional array works as a
table with multiple rows; therefore, you can append as many records from a two-dimensional array as it has
TOWS.

When you append data from an array to the current table, dBASE Plus appends each array row as a single
record. If the table has more fields than the array has columns, the excess fields are left empty. If the array has
more columns than the table has fields, the excess columns are ignored. The data in the first column is added to
the first field's contents, the data in the second column to the second field's contents, and so on.

The data types of the array must match those of corresponding fields in the table you are appending. If the data
type of an array element and a corresponding field don't match, dBASE Plus returns an error.

12-6 dBASE dBL Language Reference

OODML

See Also

APPEND MEMO

If the current table has a memo field, dBASE Plus ignores this field. For example, if the second field is a memo
field, dBASE Plus adds the data in the array's first column to the first field's contents, and the data in the array's
second column to the third field's contents.

Use APPEND FROM ARRAY as an alternative to automem variables when you need to transfer data between
tables where the structures are similar but the field names are different.

Use two nested loops to first call the Rowset object’s beginAppend() method to create the new rows, and then to
copy the elements of the array into the value properties of the Field objects in the rowset’s fields array.

APPEND AUTOMEM, COPY TO ARRAY, DECLARE, REPLACE FROM ARRAY, STORE AUTOMEM

APPEND MEMO

Syntax

Description

OODML

Example

See Also

Appends a text file to a memo field.

APPEND MEMO <memo field> FROM <filename>
[OVERWRITE]

<memo field> The memo field to append to.
FROM <filename> The text file to append. The default extension is .TXT.

OVERWRITE Erases the contents of the current record memo field before copying the contents of
<filename>.

Use the APPEND MEMO command to insert the contents of a text file into a memo field. You may use an alias
name and the alias operator (that is, alias->memofield) to specify a memo field in the current record of any open
table.

APPEND MEMO is identical to REPLACE MEMO, except that APPEND MEMO defaults to appending the
file to the current contents of the memo field and has the option of overwriting, while REPLACE MEMO is the
opposite.

While memo fields may contain types of information other than text, binary fields are recommended for storing
images, sound, and other user-defined binary type information. Use OLE fields for linking to OLE documents
from other Windows applications.

Use the Field object’s replaceFromFile() method.

The following event handler displays a dialog to pick a text file, then adds the contents of that file to a memo
field. The date and time are written to the memo field before the added file.

PROCEDURE addTextButton_onClick

local cFile, cCRLF

c¢CRLF =chr(13)+ chr(10)

cFile = getfile("*.txt", "Text file to import")

if "" # cFile
replace MEMO_FIELD with cCRLF + dtoc(date()) + " " + time() + cCRLF additive
append memo MEMO_FIELD from (cFile)

endif

The date and time, with a line break before and after, is written to the memo field using the REPLACE
command with the ADDITIVE option for memo fields.

GETFILE() will return an empty string if no file is selected. In the IF statement, the order of the empty string
and the variable cFile is important. If they were the other way around and SET EXACT is OFF, then the IF
statement would always be false.

The parentheses are used as indirection operators to get the name of the file from the variable. Without them,
dBASE Plus would attempt to append a file named cFile.

COPY MEMO, REPLACE BINARY, REPLACE MEMO, REPLACE MEMO...WITH ARRAY, REPLACE
OLE

Xbase 12-7

AVERAGE

AVERAGE

Syntax

Description

OODML

Example

See Also

Computes the arithmetic mean (average) of specified numeric fields in the current table.

AVERAGE [<exp list>]

[<scope>]

[FOR <condition 1>]

[WHILE <condition 2>]

[TO <memvar list> | TO ARRAY <array>]

<exp list> The numeric fields, or expressions involving numeric fields, to average.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar list>| TO ARRAY <array> Initializes and stores averages to the variables (or
properties) of <memvar list> or stores averages to the existing array <array>. If you specify an array, each field
average is stored to elements in the order in which you specify the fields in <exp list>. If you don't specify
<exp list>, each field average is stored in field order. <array> can be a single- or multidimensional array; the
array elements are accessed via their element numbers, not their subscripts.

The AVERAGE command computes the arithmetic means (averages) of numeric expressions and stores the

results in specified variables or array elements. If you store the values in variables, the number of variables must
be exactly the same as the number of fields or expressions averaged. If you store the values in an array, the array
must already exist, and the array must contain at least as many elements as the number of averaged expressions.

If SET TALK is ON, AVERAGE also displays its results in the results pane of the Command window. The SET
DECIMALS setting determines the number of decimal places that AVERAGE displays. Numeric fields in blank
records are evaluated as zero. To exclude blank records, use the ISBLANK() function in defining a FOR
condition. EMPTY() excludes records in which a specified expression is either O or blank.

Loop through the rowset to calculate the average.

The following example uses AVERAGE to calculate the average year to date sales for all companies in the
Company table and displays it in Text control on a form:

select COMPANY
average YTD_SALES to form.ytdSalesText.text

CALCULATE, COUNT, SUM, TOTAL

BEGINTRANS()

Syntax

Begins transaction logging.
BEGINTRANS([<database name expC> [,<isolation level expN>]])
<database name expC> The BDE alias of the SQL database in which to begin the transaction.

» If <database name expC> is omitted but a SET DATABASE statement has been issued, BEGINTRANS()
refers to the database in the SET DATABASE statement.

» If <database name expC=> is omitted and no SET DATABASE statement has been issued, the default
database, which supports DBF and DB tables is used.

<isolation level expN> Specifies a pre-defined server-level transaction isolation scheme.

* Valid values for <isolation level> are:

Value Description

0 Server's default isolation level

1 Uncommitted changes read (dirty read)

2 Committed changes read (read committed)
3 Full read repeatability (repeatable read)

12-8 dBASE dBL Language Reference

BINTYPE()

+ <isolation level> is not supported for DBF and DB tables.
» Ifan invalid value is given for <isolation level>, a "Value out of range" error is generated.

» The <isolation level> is server-specific; a "Not supported" error will result from the database engine if an
unsupported level is specified.

Note Ifyou include <database name expC> when you issue BEGINTRANS(), you must also include it in subsequent

Description

OODML

See Also

COMMIT() or ROLLBACK() statements within that transaction. If you don't, dBASE Plus ignores the
COMMIT() or ROLLBACK() statement.

Separate changes that must be applied together are considered to be a transaction. For example, transferring
money from one account to another means debiting one account and crediting another. If for whatever reason
one of those two changes cannot be done, the whole transaction is considered a failure and any change that was
made must be undone.

Transaction logging records all the changes made to all the tables in a database. If no errors are encountered
while making the individual changes in the transaction, the transaction log is cleared with COMMIT() and the
transaction is done. If an error is encountered, all changes made so far are undone by calling ROLLBACK().

All locks made during a transaction are maintained until the transaction is completed. This ensures that no one
else can make any changes until the transaction is committed or abandoned.

You can't nest transactions with BEGINTRANS(). If you issue BEGINTRANS() against an SQL database that
does not support transactions, or if a server error occurs, BEGINTRANS() returns false. Otherwise, it returns
true. If BEGINTRANS() returns false, use SQLERROR() or SQLMESSAGE() to determine the nature of the
server error that might have occurred.

Call the beginTrans() method of the Database object.
COMMIT(), FLOCK(), RLOCK(), ROLLBACK(), SET EXCLUSIVE, SQLERROR(), SQLMESSAGE()

BINTYPE()

Syntax

Description

OODML

See Also

BLANK

Returns the predefined type number of a specified binary field.
BINTYPE([<field nhame>])
<field name> The name of a field in the current table.

BINTYPE() returns the predefined binary type number of a binary field in the current table. Using this
command, you can determine the type of data stored in the field. The values returned by BINTYPE() are the
following:

Predefined binary type

numbers Description

1to 32K —1 (1 to 32,767) User-defined file types
32K (32,768) WAV files

32K +1(32,769) .BMP and .PCX files

BINTYPE() returns an error if a non-binary field is specified. It returns a value of 0 if the binary field is empty.

No direct equivalent. You may be able to ascertain the data type by examining the data in the value of the Field
object.

COPY BINARY, PLAY SOUND REPLACE BINARY, RESTORE IMAGE

Syntax

Fills fields in records with blanks.

BLANK
[<scope>]
[FOR <condition 1>]

Xbase 12-9

BOF()

Description

OODML

Example

See Also

BOF()

[WHILE <condition 2>]
[FIELDS

<field list> | [LIKE <skeleton 1>] [EXCEPT <skeleton 2>]]
[REINDEX]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

FIELDS <field list> | LIKE <skeleton 1> | EXCEPT <skeleton 2> The fields to blank. Without
FIELDS, BLANK replaces all fields. If you specify FIELDS LIKE <skeleton 1>, the BLANK command
restricts the fields that are blanked to the fields that match <skeleton 1>. Conversely, if you specify FIELDS
EXCEPT <skeleton 2>, the BLANK command makes all fields blank except those whose names match
<skeleton 2>.

REINDEX Rebuilds all open indexes after BLANK finishes executing. Without REINDEX, dBASE Plus
updates all open indexes after each record is made blank. When the current table has multiple open indexes or
contains many records, BLANK executes faster with the REINDEX option.

Use BLANK to blank-out fields or records in the current table. BLANK has the same effect as using REPLACE
on each field with a null value. For DBF7, DB, and SQL tables, the fields are replaced with null values. For
earlier versions of DBF tables, the fields are replaced with blanks (spaces). EMPTY() and ISBLANK() return
true for a field whose value has been replaced using BLANK. BLANK fills an existing record with the same
values as APPEND BLANK. Updates to open indexes are performed after each record or a set of records is
blanked.

The distinction between blank and zero values in numeric fields can be significant when you use commands
such as AVERAGE and CALCULATE.

For earlier DBF tables, blank numeric fields evaluate to zero and blank logical or boolean fields evaluate to
false. In DBF7 tables, which support true null values, the value of the field is null, although some commands
may display the null value as zero or false.

Use a loop to assign null values to the value properties of the Field objects.

The followin function blanks records before deleting them, making them available for recycling:

PROCEDURE DelRec
blank
delete

To see the function that reclaims recycled records, see the example for APPEND.

APPEND, ISBLANK(), EMPTY(), REPLACE

Syntax

Description

Indicates if the record pointer in a table is at the beginning of the file.
BOF([<alias>])
<alias> The work area you want to check.

BOF() returns true when the record pointer has just moved before the first logical record of the table in the
specified work area; otherwise, it returns false. For example, if you issue SKIP -1 when the record pointer is on
the first record, BOF() returns true. If you attempt to navigate backwards when BOF() is true, an error occurs.

However, unlike EOF(), the record pointer can never stay before the first record. After the record pointer has
moved past the first record, it is automatically moved back to the first record, even though BOF() remains true.
Subsequent navigation will cause BOF() to return false unless the navigation moves the record pointer before
the first record again.

When you first USE a table, BOF() can never be true, but EOF() can if the table is empty, or you are using a
conditional index with no matching records.

If no table is open in the specified work area, BOF() also returns false.

12-10 dBASE dBL Language Reference

OODML

Example

See Also

BOOKMARK()

The Rowset object’s endOfSet property is true when the row pointer is past either end of the rowset. Unlike
BOF() and EOF(), there is symmetry with the endOfSet property. You can determine which end you’re on
based on the direction of the last navigation.

There is also an atFirst() method that determines whether you are on the first row in the rowset.

The following is an event handler for a button that navigates backward through a table:

PROCEDURE prevButton_onClick
if .not. bof()
skip -1
endif
if bof()
msgbox("First record", "Navigation", 64)
endif

This example demonstrates an atypical programming construct: instead of using IF and ELSE, there is an IF
statement for a condition, followed by a separate IF statement for the opposite condition. In this case, it works
like this: if you are already at BOF() you do not want to attempt to navigate backwards, because that will cause
an error. But if you end up at BOF(), or if you’re already at BOF(), then you will get a message.

EOF(), RECNO(), SKIP

BOOKMARK()

Syntax

Description

OODML

See Also

Returns a bookmark for the current record.
BOOKMARK([<alias>])
<alias> The work area you want to check.

BOOKMARK() returns a value for the current record. The value returned by BOOKMARK() is of a special
unprintable data type called bookmark. BOOKMARK() returns an empty bookmark if no table is open in the
current work area.

When used with the GO command, bookmarks let you navigate to particular records.

Unlike record numbers, which work only with DBF tables, bookmarks work with all tables, including DBFs.
Bookmarks are only guaranteed to be valid for the table from which they are created.

Bookmark values can be used in all commands and functions that can otherwise use a record number, and with
relational operators to check for equality and relative position in a table.

Use the Rowset object’s bookmark() method.
GO, RECNO()

BROWSE

Syntax

Provides display and editing of records in a table format.

BROWSE
[COLOR <color>]
[FIELDS <field 1> [<field option list 1>] |
<calculated field 1> = <exp 1> [<calculated field option list 1>]
[, <field 2> [<field option list 2>] |
<calculated field 2> = <exp 2> [<calculated field option list 2>]...]]
[FREEZE <field 3>]
[LOCK <expN 1>]
[NOAPPEND]
[NOEDIT | NOMODIFY]

COLOR <color> Specifies the color of the cells in the BROWSE. The current highlighted cell has its own,
fixed color. The <color> is made up of a foreground color and a background color, separated by a forward slash

Xbase 12-11

BROWSE

Note

Description

OODML

(/). You may use a Windows-named color, one of the basic 16-color color codes, or a user-defined color name.
For more information on colors, see colorNormal (page 15-63).

FIELDS <field 1> [<field option list 1>] |

<calculated field 1> = <exp 1> [<calculated field option list 1>]

[, <field 2> [<field option list 2>] |

<calculated field 2> = <exp 2> [<calculated field option list 2>] ...]] Displays the specified
fields, in the order they're listed, in the Table window. Options for <field option list 1>, <field option list 2>,
which apply to <field 1>, <field 2>, and so on, affect the way these fields are displayed. These options are as
follows:

Option Description

\<column width> The width of the column within which <field 1> appears when <field
1> is character type

\B = <exp 1>, <exp 2> RANGE option; forces any value entered in <field 1> to fall within
<exp 1> and <exp 2>, inclusive.

\C=<color> COLOR option; sets the foreground and/or background colors of the
column according to the values specified in <color>

\H = <expC> HEADER option; causes <expC> to appear above the field column
in the Table window, replacing the field name

\P = <expC> PICTURE option; displays <field 1> according to the PICTURE or
FUNCTION clause <expC>

\V = <condition> VALID option; allows a new <field 1> value to be entered only

[\E = <expC>] when <condition> evaluates to true

ERROR MESSAGE option; \E = <expC> causes <expC> to appear
when <condition> evaluates to false

You may also use the forward slash (/) instead of the backslash (\) when specifying only a single option in a
field option list.

Read-only calculated fields are composed of an assigned field name and an expression that results in the
calculated field value, for example:

browse fields commission = RATE * SALEPRICE

Options for calculated fields affect the way these fields are displayed. These options are as follows:

Option Description
\<column width> The width of the column within which <calculated field 1> is displayed
\H = <expC> Causes <expC> to appear above the calculated field column in the Table

window, replacing the calculated field name

FREEZE <field 3> Restricts editing to <field 3>, although other fields are visible.

LOCK <expN 2> Keeps the first <expN 2> fields in place onscreen as you move the cursor to fields on the
right.

NOAPPEND Prevents records from being added when you cursor down past the last record in the Table
window. The NOAPPEND option works in dBASE versions up to, and including, 5.7. It has no affect in dBASE versions
higher than 5.7, or in dBL.

NOEDIT | NOMODIFY Prevents you from modifying records from the Table window. The NOEDIT |
NOMODIFY option works in dBASE versions up to, and including, 5.7. It has no affect in dBASE versions higher than 5.7,
or in dBL.

The BROWSE command opens a table grid in a window, displaying the fields in the currently selected work
area. It is intended more for interactive use; in an application, you have more control over a Browse or Grid
object in a form.

The BROWSE command is modeless. After the window is opened, the next statement is executed.

Use a Grid control on a form.

See Also APPEND, EDIT, SET FIELDS, SET MEMOWIDTH, SET RELATION

12-12 dBASE dBL Language Reference

CALCULATE

CALCULATE

Syntax

Description

Performs financial and statistical operations for values of records in the current table.

CALCULATE <function list>

[<scope>]

[FOR <condition 1>]

[WHILE <condition 2>]

[TO <memuvar list> | TO ARRAY <array>]

<function list> You can use one or more of the following functions:

Function Purpose

AVG(<expN>) Calculates the average of the specified numeric expression.

CNT() Counts the number of records in the current table.

MAX(<expC> | Calculates the maximum value of the specified numeric, character, or date
<expN> | expression.

<expD>)

MIN(<expC> | Calculates the minimum value of the specified numeric, character, or date
<expN> | expression.

<expD>)

NPV(<expN 1>, Calculates the net present value of the numeric values in <expN 2>; <expN 1> is
<expN 2> the periodic interest rate, expressed as a decimal; <expN 3> is the initial

[, <expN 3>]) investment and is generally a negative number.

STD(<expN>) Calculates the standard deviation of the specified numeric expression.
SUM(<expN>) Calculates the sum of the specified numeric expression.

VAR(<expN>) Calculates the variance of the specified numeric expression.
<scope>

FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar list> | TO ARRAY <array> Initializes and stores the results to the variables (or
properties) of <memvar list> or stores results to the existing array <array>. <array> can be a single- or
multidimensional array; the array elements are accessed via their element numbers, not their subscripts.

CALCULATE uses one or more of the eight associated functions listed in the previous table to calculate and
store sums, maximums, minimums, averages, variances, standard deviations, or net present values of specified
expressions. The expressions are usually, but not required to be, based on fields in the current table. You can
calculate values in a work area other than the current work area if you set a relation between the work areas.

CALCULATE can also return the count or number of records in the current table. These special functions, with
the exception of MAX() and MIN(), can be used only with CALCULATE.

CALCULATE can use the same function on different expressions or different functions on the same expression.
For instance, if your table contains a Salary field and a Bonus field, you can issue the command:

calculate sum(SALARY), sum(BONUS), avg(SALARY), avg(12 * (SALARY + BONUS))

CALCULATE stores results to variables or to an existing array in the order of the specified functions. If you
store the results to memory variables, specify the same number of variables as the number of functions in the
CALCULATE command line. If you store the values in an array, the array must already exist, and the array
must contain at least as many elements as the number calculations.

If SET TALK is ON, CALCULATE displays the results in the result pane of the Command window. The SET
DECIMALS setting determines the number of decimal places that CALCULATE displays.

CALCULATE treats a blank numeric field as containing 0 and includes the field in its calculations. For
example, if you calculate the average of a numeric field in a table containing ten records, five of which are
blank, CALCULATE divides the sum by 10 to find the average. Furthermore, if you calculate the minimum of
the same table field and five records contain positive non-zero numbers and the five others are blank in the same
fields, CALCULATE returns 0 as the minimum. If you want to exclude blank fields when using CALCULATE,
be sure to specify a condition such as FOR .NOT. ISBLANK (numfield).

Xbase 12-13

CHANGE()

OODML

See Also

When calculating an empty column, CALCULATE works differently on level 7 tables than it does on table
levels less than 7. With level 7 tables, CALCULATE returns "null" on an empty column. For an empty column
in tables with a level less than 7, CALCULATE returns 0.

Although you can use the SUM or AVERAGE commands to find sums and averages, if you are mixing sums
and averages, CALCULATE is faster because it runs through the table just once while making all specified
calculations.

Loop through the rowset to calculate the values.

AVERAGE, DECLARE, MAX(), MIN(), SET FIELDS, SET RELATION, SUM

CHANGE()

Syntax

Description

Note

OODML

See Also

Returns true if another user has changed a record since it was read from disk.
CHANGE([<alias>])
<alias> The work area you want to check.

Use CHANGE() to determine if another user has made changes to a record since it was read from disk. If the
record has been changed, you might want to display a message to the user before allowing the user to continue.
CHANGE() only works with DBF tables.

For CHANGE() to return information, the table being checked must have a DBASELOCK field. Use
CONVERT to adda DBASELOCK field to a table. If the table doesn't containa DBASELOCK field,
CHANGE() returns false

CHANGE() compares the counter in the workstation's memory image of DBASELOCK to the counter stored
on disk. If they are different, the record has changed, and CHANGE() returns true.

You can reset the value of CHANGE() to false by moving the record pointer. GOTO BOOKMARK() rereads
the current record's DBASELOCK field, and a subsequent CHANGE() returns false, unless another user has
changed the record in the interim between moving to it and issuing CHANGE().

Call rowset.fields[" DBASELOCK"].update()
CONVERT, FLOCK(), LKSYS(), RLOCK(), SET EXCLUSIVE, SET REFRESH

CLEAR AUTOMEM

Syntax

Description

OODML

See Also

Initializes automem variables with empty values for the current table.

CLEAR AUTOMEM

Use CLEAR AUTOMEM to initialize a set of automem variables containing empty values for the current table.
CLEAR AUTOMEM creates any automem variables that don't exist already. If the variables exist, CLEAR
AUTOMEM reinitializes them. If no table is in use, CLEAR AUTOMEM doesn't create any variables.

CLEAR AUTOMEM creates normal variables. They default to private scope when CLEAR AUTOMEM is
executed in a program or function. If there is a danger of overwriting previously created public or private
variables with the same name, you must declare the new automem variables PRIVATE individually by name
before issuing CLEAR AUTOMEM, just as you would if you created the variables manually.

Automem variables have the same names and data types as the fields in an active table. You can create empty
automem variables automatically for the current table by using CLEAR AUTOMEM or USE... AUTOMEM, or
manually by using STORE or the assignment operators.

The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

APPEND, STORE, USE

12-14 dBASE dBL Language Reference

CLEAR FIELDS

CLEAR FIELDS

Syntax

Description

OODML

See Also

Removes the fields list defined with the SET FIELDS TO command.
CLEAR FIELDS

Use CLEAR FIELDS to remove the SET FIELDS TO <field list> setting in all work areas and automatically
turn SET FIELDS to OFF, thus making all fields in all open tables accessible. You can use CLEAR FIELDS
prior to specifying a new fields list with SET FIELDS TO. You might also want to use CLEAR FIELDS at the
end of a program. CLEAR FIELDS has the same effect as SET FIELDS TO with no options.

No direct equivalent. When accessing the fields array, you may include program logic to include or exclude
specific fields.

SET FIELDS

CLOSE DATABASES

Syntax

Description

OODML

See Also

Closes databases, including their tables and indexes.
CLOSE DATABASES [<database name list>]

<database name list> The list of database names, separated by commas. If no list is specified, all open
databases are closed.

Closing a database closes all the open tables in the database, including all the index, memo, and other associated
files. For the default database, which gives access to DBF and DB tables, this means all open tables in all work
areas.

CLOSE DATABASES only closes those tables opened in the current workset. For more information on
worksets, see CREATE SESSION.

Set the active property of the Database object (or all its Query objects) to false.
CLOSE TABLES, USE

CLOSE INDEXES

Syntax

Description

OODML

See Also

Closes DBF index files in the current work area.
CLOSE INDEXES

Closes index (.MDX and .NDX) files open in the current work area. This option does not close the production
.MDX file.

Clear the indexName property of the Rowset object.
CLOSE TABLES, SET INDEX TO

CLOSE TABLES

Syntax

Description

OODML

See Also

Closes all tables.
CLOSE TABLES

Closes all tables in all work areas or all tables in the current database, if one is selected.

CLOSE TABLES only closes those tables opened in the current workset. For more information on worksets, see
CREATE SESSION.

Set the active property of all the Query objects to false.
CLOSE DATABASES, USE

Xbase 12-15

COMMIT()

COMMIT()

Syntax

Description

OODML

See Also

Clears the transaction log, committing all logged changes.
COMMIT ([<database name expC>])
<database name expC> The name of the database in which to complete the transaction.

» If'you began the transaction with BEGINTRANS(<database name expC>), you must issue
COMMIT(<database name expC>). If instead you issue COMMIT(), dBASE Plus ignores the COMMIT()
statement.

» If you began the transaction with BEGINTRANS(), <database name expC=> is an optional COMMIT()
argument. If you include it, it must refer to the same database as the SET DATABASE TO statement that
preceded BEGINTRANS().

A transaction works by logging all changes. If an error occurs while attempting one of the changes, or the
changes need to be undone for some other reason, the transaction is canceled by calling ROLLBACK().
Otherwise, COMMIT() is called to clear the transaction log, thereby indicating that all the changes in the
transaction were committed and that the transaction as a whole was posted.

For more information on transactions, sse BEGINTRANS().
Call the commit() method of the Database object.
BEGINTRANS(), ROLLBACK(), SET EXCLUSIVE

CONTINUE

Syntax

Description

OODML

See Also

COPY

Continues a search for the next record that meets the conditions specified in a previously issued LOCATE
command.

CONTINUE

CONTINUE continues the search of the last LOCATE issued in the selected work area. When you issue the
LOCATE command, the current table is searched sequentially for the first record that matches the search
criteria.

If a record is found, the record pointer is left at the matching record. To continue the search, issue the
CONTINUE command. Whenever a match is found, FOUND() returns true. If match is not found, the record
pointer is left after the last record checked, which usually leaves it at the end-of-file. Also, FOUND() returns
false.

If SET TALK is ON, CONTINUE will display the record number of the matching record in the result pane of
the Command window if you are searching a DBF table. If no match is found, CONTINUE will display "End of
Locate scope".

If you issue CONTINUE without first issuing a LOCATE command for the current table, an error occurs..
Use the Rowset object’s locateNext() method. This method also allows going backwards or to the nth match.
EOF(), FOUND(), LOCATE, SEEK, SEEK()

Syntax

Copies records from the current table to another table or text file.

COPY TO <filename>

[<scope>]

[FOR <condition 1>]

[WHILE <condition 2>]

[FIELDS <field list>]

[[TYPE] DBASE | DBMEMOS3 | PARADOX | SDF |
DELIMITED [WITH

12-16 dBASE dBL Language Reference

Description

COPY

<char> | BLANK]] |
[[WITH] PRODUCTION]

TO <filename> Specifies the name of the table or file you want to create.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

FIELDS <field list> Specifies which fields to copy to the new table.

[TYPE] DBASE | DBMEMO3 | PARADOX | SDF |

DELIMITED [WITH <char> | BLANK] Specifies the format of the file to which you want to copy data.
The TYPE keyword is included for readability only; it has no effect on the operation of the command. The
following table provides a description of the different file formats that are supported:

Type Description

DBASE A dBASE table. If you don't include an extension for <filename>, dBASE Plus
assumes a .DBF extension.

DBMEMO3 A table (.DBF) and memo (.DBT) files in dBASE III PLUS format.

PARADOX A Paradox table. If you don't include an extension for <filename>, dBASE
Plus assumes a .DB extension.

SDF A System Data Format text file. Records in an SDF file are fixed-length, and

the end of a record is marked with a carriage return and a linefeed. If you don't
specify an extension, dBASE Plus assumes .TXT.

DELIMITED A text file with fields separated by commas. These files are also referred to as
CSV (Comma Separated Value) files. Character fields are delimited with double
quotation marks when they are not empty() or null.

Each carriage return and linefeed indicates a new record. If you don't specify
an extension, dBASE Plus assumes .TXT.

DELIMITED Indicates that character data is delimited with the character <char> instead of

WITH <char> with double quotes. For example, if delimited with a single quote instead of a
double quote, the clause would be:

DELIMITED WITH'

DELIMITED Indicates that data is separated with spaces instead of commas, with no
WITH BLANK delimiters.

[WITH] PRODUCTION Specifies copying the production .MDX file along with the associated table. This
option can be used only when copying to another dBASE table.

Use COPY to copy all or part of a table to a file of the same or a different type. If an index is active, COPY
arranges the records of the new table or file according to the indexed order.

The COPY command does not copy a DBASELOCK field in a table that you've created with CONVERT.

The COPY TO command does not copy standard, custom or referential integrity properties to the new file.
Standard properties include default, maximim, minimum and required.

COPY TO [WITH] PRODUCTION results in a table whose natural order mimics that of the active index being
copied.

COPY TO [WITH] PRODUCTION also changes the "date of last update" (datestamp) in the headers of newly
created files to reflect the date they were created (in other words, today’s date).

Use the COPY TABLE command to make a copy of a table, including all its index, memo, and other associated
files, if any. Unlike the COPY command, the table does not have to be open, and an exact copy of all the records
is always made. COPY TABLE copies all field property information and, unlike COPY TO [WITH]
PRODUCTION, does not change the datestamp in headers of newly created .dbf and .mdx files.

When COPYing to text files, SDF or DELIMITED, non-character fields are written as follows:
* Numbers are written as-is.

» Logical or boolean fields use the letter T for true and F for false.

* Dates are written in the format YYYYMMDD.

Xbase 12-17

COPY BINARY

OODML

See Also

If you COPY a table containing a memo field to another dBASE table, dBASE Plus creates another file with the
same name as the table but having a .DBT extension, and copies the contents of the memo field to it. If,
however, you use the SDF or DELIMITED options and COPY to a text file, dBASE Plus doesn't copy the
memo fields.

Deleted records are copied to the target file (if it's a dBASE table) unless a FOR or WHILE condition excludes
them or unless SET DELETED is ON. Deleted records remain marked for deletion in the target dBASE table.

You can use COPY to create a file containing fields from more than one table. To do that, open the source tables
in different work areas and define a relation between the tables. Use SET FIELDS TO to select the fields from
each table that you want to copy to a new file. Before you issue the COPY command, SET FIELDS must be ON
and you must be in the work area in which the parent table resides.

The COPY command does not verify that the files you build are compatible with other software programs. You
may specify field lengths, record lengths, number of fields, or number of records that are incompatible with
other software. Check the file limitations of your other software program before exporting tables using COPY.

Use the UpdateSet object’s copy() method. Set filter options in the source rowset.

APPEND FROM, CONVERT, COPY FILE, COPY STRUCTURE, COPY TABLE, COPY
TO..STRUCTURE EXTENDED, SET DELETED, SET FIELDS

COPY BINARY

Syntax

Description

OODML

See Also

Copies the contents of the specified binary field to a file.

COPY BINARY <field name> TO <filename>
[ADDITIVE]

<field name> The binary field to copy.

TO <filename> The name of the file where the contents of the binary field are copied. For predefined
binary file types, dBASE Plus assigns the appropriate extension, for example, .BMP, WAV, and so on. For
user-defined binary type fields, dBASE Plus assigns a . TXT extension by default.

ADDITIVE Appends the contents of the binary field to the end of an existing file. Without the ADDITIVE
option, dBASE Plus overwrites the previous contents of the file.

Use COPY BINARY to export data from a binary field in the current record to a file. You can use binary fields
to store text, images, sound, video, and other user-defined binary data.

If you specify the ADDITIVE option, dBASE Plus appends the contents of the binary field to the end of the
named file, which lets you combine the contents of binary fields from more than one record. When you don't use
ADDITIVE, dBASE Plus displays a warning message before overwriting an existing file if SET SAFETY is
ON. Note that you can't combine the data from more than one field for many of the predefined binary data types.
For example, you can store only a single image in a binary field or file, so do not use the ADDITIVE option of
COPY BINARY when copying an image to a file.

Use the Field object’s copyToFile() method.

APPEND MEMO, BINTYPE(), CLASS IMAGE, COPY, COPY FILE, COPY MEMO, PLAY SOUND,
REPLACE BINARY, RESTORE IMAGE

COPY MEMO

Syntax

Copies the contents of the specified memo field to a file.

COPY MEMO <memo field> TO <filename>
[ADDITIVE]

<memo field> The memo field to copy.
TO <filename>| ? The name of the text file where text will be copied. The default extension is .TXT.

12-18 dBASE dBL Language Reference

Description

OODML

See Also

COPY STRUCTURE

ADDITIVE Appends the contents of the memo field to the end of an existing text file. Without the
ADDITIVE option, dBASE Plus overwrites any previous text in the text file.

Use COPY MEMO to export memo file text in the current record to a text file. You can also use COPY MEMO
to copy images or other binary-type data to a file; however, binary fields are recommended for storing images,
sound, and other user-defined binary information.

If you specify the ADDITIVE option, dBASE Plus appends the contents of the memo field to the end of the
named file, which lets you combine the contents of memo fields from more than one record. When you don't use
ADDITIVE, dBASE Plus displays a warning message before overwriting an existing file if SET SAFETY is
ON. You can store only a single image in either a memo field or in a file, so do not use the ADDITIVE option of
COPY MEMO when copying an image to a file. (RESTORE IMAGE can display an image stored in either a
memo field or a text file.)

Use the Field object’s copyToFile() method.
APPEND MEMO, COPY, COPY BINARY, COPY FILE, REPLACE BINARY, REPLACE OLE

COPY STRUCTURE

Syntax

Description

OODML

See Also

Creates an empty table with the same structure as the current table.

COPY STRUCTURE TO <filename>
[[TYPE] PARADOX | DBASE]
[FIELDS <field list>]

[[WITH] PRODUCTION]

<filename> The name of the table you want to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

FIELDS <field list> Determines which fields dBASE Plus includes in the structure of the new table. The
fields appear in the order specified by <field list>.

[WITH] PRODUCTION Creates a production .MDX file for the new table. The new index file has the
same index tags as the production index file associated with the original table.

The COPY STRUCTURE command copies the structure of the current table but does not copy any records. If
SET SAFETY is OFF, dBASE Plus overwrites any existing tables of the same name without issuing a warning
message.

The COPY STRUCTURE command copies the entire table structure unless limited by the FIELDS option or the
SET FIELDS command. When you issue COPY STRUCTURE without the FIELDS <field list> option, dBASE
Plus copies the fields in the SET FIELDS TO list to the new table. The DBASELOCK field created with the
CONVERT command is not copied to new tables.

You can use COPY STRUCTURE to create an empty table structure with fields from more than one table. To
do so,

1 Open the source tables in different work areas.
2 Use the FIELDS <field list> option, including the table alias for each field name not in the current table.
No equivalent.

APPEND, APPEND FROM, COPY, COPY STRUCTURE EXTENDED, DISPLAY STRUCTURE, MODIFY
STRUCTURE, SET FIELDS, SET SAFETY

COPY STRUCTURE EXTENDED

Syntax

Creates a new table whose records contain the structure of the current table.

COPY STRUCTURE EXTENDED TO <filename>
[[TYPE] PARADOX | DBASE]

Xbase 12-19

COPY TABLE

or

COPY TO <filename>
STRUCTURE EXTENDED
[[TYPE] PARADOX | DBASE]

<filename> The name of the table that you want to create to contain the structure of the current table.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

Description COPY STRUCTURE EXTENDED copies the structure of the current table to records in a new table.

COPY STRUCTURE EXTENDED first defines a table, called a structure-extended table, containing five fields
of fixed names, types, and lengths. Once the structure-extended table is defined, COPY STRUCTURE
EXTENDED appends records that provide information about each field in the current table. The fields in the
structure-extended table store the following information about fields in the current table:

Field Contents

FIELD_NAME Character field that contains the name of the field.

FIELD_TYPE Character field that contains the field's data type.

FIELD_LEN Numeric field that contains the field length.

FIELD_DEC Numeric field that contains the number of decimal places for numeric fields.

FIELD_IDX Character field that indicates if index tags were created on individual fields in
the table.

When the process is complete, the structure-extended table contains as many records as there are fields in the
current table. You can then use CREATE...FROM to create a new table from the information provided by the
structure-extended table.

No record is created in the structured-extended table for the dbaselock field created with the CONVERT
command.

OODML Use the Database object’s executeSQL() method to call the SQL command CREATE TABLE (see CREATE
STUCTURE EXTENDED) to create the structure-extended table. Then use a loop to populate the table with
information from the array of Field objects.

See Also COPY, COPY STRUCTURE, CREATE, CREATE...FROM, CREATE STRUCTURE EXTENDED,
DISPLAY STRUCTURE, LIST STRUCTURE, MODIFY STRUCTURE, SET SAFETY

COPY TABLE

Makes a copy of a table.

Syntax COPY TABLE <source tablename> TO <target tablename>
[[TYPE] PARADOX | DBASE]

<source table name> The name of the table that you want to copy. You can also copy a table in a
database (defined using the BDE Administrator) by specifying the database as a prefix (enclosed in colons) to
the name of the table, that is, :database name:table name. If the database is not already open, dBASE Plus
displays a dialog box in which you specify the parameters, such as a login name and password, necessary to
establish a connection to that database.

<target table name> The name of the table you want to create. The table type is the same as the source
table. If you copy a table in a database, you must specify the same database as the destination of the target table.

[TYPE] PARADOX | DBASE Specifies the default extension for the both the source table and target
table: .DB for Paradox and .DBF for dBASE. This overrides the current setting of DBTYPE. You cannot change
the table type during the copy; this clause is useful only when using filenames that do not have extensions.

Description Use the COPY TABLE command to make a copy of a table, including all its index, memo, and other associated
files, if any. Unlike the COPY command, the table does not have to be open, and an exact copy of all the records
is always made.

12-20 dBASE dBL Language Reference

OODML

See Also

COPY TO ARRAY

Use the Database object’s copyTable() method.
COPY, COPY FILE, DELETE FILE, DELETE TABLE, ERASE

COPY TO ARRAY

Syntax

Description

OODML

Example

Copies data from non-memo fields of the current table, overwrites elements of an existing array, and moves the
record pointer to the last record copied.

COPY TO ARRAY <array>
[<scope>]

[FOR <condition 1>]
[WHILE <condition 2>]
[FIELDS <field list>]

<array> A reference to the target array

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL, until <array> is filled.

FIELDS <field list> Copies data from the fields in <field list> in the order of <field list>. Without
FIELDS, dBASE Plus copies all the fields the array can hold in the order they occur in the current table.

Use COPY TO ARRAY to copy records from the current table to an existing array. COPY TO ARRAY treats

the columns in a one-dimensional array like a single record of fields; and treats a two-dimensional array like a

table, with the rows (the first dimension) of the array like records, and the columns (the second dimension) like
fields.

To copy the fields from a single record, create a one-dimensional array the same size as the number of fields to
copy. To copy all the fields in the record, use FLDCOUNT() to get the number of fields; for example

a =new Array(fldcount())

To copy multiple records, create a two-dimensional array. The first dimension will indicate the number of
records. The second dimension indicates the maximum number of fields. To copy all the records, use
RECCOUNTY() to get the number of records; for example

a =new Array(reccount(), fldcount())

If the array has more columns than the table has fields, the additional elements will be left untouched. Similarly,
if a two-dimensional array has more rows than the table, the additional rows are left untouched.

COPY TO ARRAY does not copy memo (or binary) fields; these fields should not be counted when sizing the
target array.

COPY TO ARRAY copies records in their current order and, within each record, in field order unless you use
the FIELDS option to specify the order of the fields to copy.

After copying, the record pointer is left at the last record copied, unless the array has more rows than the table
has records. In this case, the record pointer is left at the end-of-file.

Use two nested loops, the first to traverse the rowset, and the second to copy the value properties of the Field
objects in the rowset’s fields array to the target array’s elements.

The following example uses COPY TO ARRAY and APPEND FROM ARRAY to copy records between tables
where the fields are the same data type, but may not have the same field names. (If the field names were the
same, the APPEND FROM command would be easier.) To minimize disk access, records are read in blocks of
100.

PROCEDURE AppendByPosition(cSource)
#define BLOCK_SIZE 100
local cTarget, aRec, nRecs, nCopied
*-- Get alias for current table
cTarget = alias()
use (cSource) in select() alias SOURCE
if reccount("SOURCE")==0
*-- If source table is empty, do nothing

Xbase 12-21

COUNT

See Also

return 0
endif
*-- Create array with default block size
aRec =new Array(BLOCK SIZE, FLDCOUNT("SOURCE"))
nCopied =0
do while .not. eof("SOURCE")
*-- Calculate number of records to copy, the smaller of
*-- the block size and the number of records left
nRecs = min(BLOCK_SIZE, reccount("SOURCE") - nCopied)
if nRecs < BLOCK SIZE
*-- Resize array for last block to copy
aRec.resize(nRecs, FLDCOUNT("SOURCE"))
endif
select SOURCE
*-- Copy next block
copy to array aRec rest
*-- Move from last record copied to first record in next block
skip
select (cTarget)
append from array aRec
nCopied = nCopied + nRecs
enddo
use in SOURCE
return nCopied

The COPY TO ARRAY command uses the REST scope to copy the next block of records. Because the number
of records to copy is known (it’s calculated for the nRec variable), NEXT nRec would also work, but it’s
redundant, because the array has been sized to copy the right number of records. The array sizing is important
because that determines the number of records that get appended with APPEND FROM ARRAY.

APPEND FROM ARRAY, DECLARE, REPLACE FROM ARRAY, SET FIELDS, STORE MEMO

COUNT

Syntax

Description

OODML

See Also

Counts the number of records that match specified conditions.

COUNT

[<scope>]

[FOR <condition 1>]
[WHILE <condition 2>]
[TO <memvar>]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar> Stores the result of COUNT, a number, to the specified variable (or property).

Use COUNT to total the number of visible records. The current index, filter, key constraints, DELETED setting,
and other factors control which records are visible at any time. You may specify further criteria with the
<scope> and FOR and WHILE conditons.

If the COUNT is not stored to a memvar, the result is displayed in a dialog box. If the COUNT is stored to a
memvar and SET TALK is ON, the result is also displayed in the status bar.

COUNT automatically locks the table during its operation if SET LOCK is ON (the default), and unlocks it after
the count is finished. If SET LOCK is OFF, you can still perform a count; however the result may change if
another user changes the table.

You can also count the total number of records in a table using the RECCOUNT() function. However, unlike
COUNT, RECCOUNT() does not let you specify conditions to qualify the records it counts.

Use the Rowset object’s count() method.
AVERAGE, CALCULATE, RECCOUNT(), SUM, TOTAL

12-22 dBASE dBL Language Reference

CREATE SESSION

CREATE SESSION

Syntax

Description

Note

OODML

Example

Creates a new session—now referred to as a workset—and immediately selects it.
CREATE SESSION

Use CREATE SESSION in an application that uses form-based data handling and the Xbase DML.
Applications that only use the data objects generally do not need CREATE SESSION.

A workset is the more precise term for what was called a session in earlier versions of dBASE and is used to
encapsulate separate user tasks. It consists of the set of all 225 work areas and the current settings of most of the
SET commands. There is always an active workset. When dBASE Plus starts, the settings are read from the
PLUS.ini file and all work areas are empty. This is sometimes referred to as the startup workset.

Whenever you open or close a table or change a setting, that occurs in the current workset. Commands that
affect all work areas, like CLOSE DATABASES, affect all work areas in the current workset only. Record
locks are workset-based. If a record is locked in one workset, you cannot lock that same record from another
workset; but you could lock that record if the same table is open in another work area in the same workset.

When you issue CREATE SESSION, a new workset is created and made active. A new unused set of work
areas is created and all settings are reread from the .INI file. Any previously existing worksets are unaffected,
except that they are no longer active. In fact, you cannot change anything about a dormant workset; you must
make it active first.

Whenever a form is created, it is bound to the currently active workset. Any number of forms may be bound to
a single workset. Each workset has a reference count that indicates the number of forms bound to it. The
Command window and Navigator are both bound to the startup workset.

Whenever a form receives focus or any of its methods are called, its workset is activated. This means that all
commands, functions, and methods take place in the context of a specific workset and have no effect on the
tables or settings in other worksets.

Worksets have no effect on variables.

When a form is released (either explicitly or when there are no more references to the form) its workset’s
reference count is reduced by one. If that reduces the reference count to zero, the workset is also released.

Whenever a workset is released, any tables that are open in it are closed automatically.

The active workset’s reference count is also checked:

» Just before another workset is activated (usually by giving focus to a form in another workset)
* Whenever CREATE SESSION is executed (before the new workset is created)

* When a form method has finished executing.

If the count is zero, the active workset is released. When a form method is finished, it also selects the workset
that was active when the method started. So if you click a button button on a form that currently does not have
focus, and that button’s onClick event handler (all event handlers are methods) has a CREATE SESSION
command then the sequence of events is as follows:

1 Clicking the form causes a focus change. The active workset is checked; if its reference count is zero, it is
released.

2 The form’s workset is activated.
3 The onClick executes, creating and activating a new workset.

4 The onClick ends. If the reference count of the just-created workset is zero, which it would be if the method
didn’t create any forms after the CREATE SESSION, it is released.

5 The form’s workset, the one that was active when the method was executed, is reactivated. It is now the
active workset.

Clicking the button again would only go through steps 3 through 5, because the form still has focus, so there is
no focus change.

Use Session objects.

The following is the onClick event handler for a menu item that opens a customer form:

Xbase 12-23

CREATE...FROM

function View_Customer_onClick
create session

do CUSTOMER.WFM

By using the CREATE SESSION command, each customer form operates independently, as if they were being
viewed by different people on different workstations. Navigation in one form does not affect the other. A record
locked in one form will be respected by another form.

This example demonstrates some of the details of CREATE SESSION. Go to the dBASE Plus\Samples
subdirectory. Select the Tables tab of the Navigator, and type the following statements in the Command
window:

clear all && Release all variables and close all tables

create session && Nothing appears to happen

f=new Form()

use FISH && FISH appears in status bar, table is italicized in Navigator

create session && The status bar is cleared

use SAMPLES && SAMPLES appears in status bar, table is italicized in Navigator

This creates two worksets—call them WS1 and WS2 for reference. The order of the statements within each
workset is irrelevant; they are simply executed in the currently active workset. The Fish table is the currently
selected table in WS1 and the Samples table is the currently selected table in WS2. Form F is bound to WS1.
WS2 has no forms bound to it, so its reference count is zero. The table names are now italic in the Navigator to
indicate that they are open somewhere.

Now watch the italic Samples.dbf while you click the Navigator. Clicking the Navigator selected the startup
workset. In switching worksets, the current workset, WS2, was checked. Its reference count was zero, so it was
released, closing all the tables in it. Now click the Command window. This checks the Navigator’s workset, the
startup workset. Its reference count is at least two for both the Command window and the Navigator, so it is
never released. Now type:

f.alias = {; ? alias()}
This attaches a codeblock to the form so that it becomes a method of the form. Now execute the method:

falias() && Displays FISH
? alias() && Blank, no table selected in startup workset

Executing a form’s method selects the form’s workset, where the Fish table is the currently selected table. After
the method is complete, the previously active workset is reselected (note that there is no focus change here).
Finally, watch the italic Fish.dbf in the Navigator as you execute:

release f

The variable is the only reference to the form (it’s not open on-screen), so the form is destroyed, reducing
WS 1’s reference count to zero, which releases WS1 and closes all the tables in it.

CREATE...FROM

Creates a table with the structure defined by using the COPY STRUCTURE EXTENDED or
CREATE...STRUCTURE EXTENDED commands.

Syntax CREATE <filename 1>
[[TYPE] PARADOX | DBASE]
FROM <filename 2>
[[TYPE] PARADOX | DBASE]

<filename 1> The name of the table you want to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

FROM <filename 2>
[TYPE] PARADOX | DBASE Identifies the table that contains the structure of the table you want to
create.

12-24 dBASE dBL Language Reference

Description

OODML

See Also

CREATE...STRUCTURE EXTENDED

The CREATE.. FROM command is most often used with the COPY STRUCTURE EXTENDED command in a
program to create a new table from another table that defines its structure, instead of using the interactive
CREATE or MODIFY STRUCTURE commands. To do this, you can

1 Use COPY STRUCTURE EXTENDED to create a table whose records provide information on each field of
the original table.

2 Optionally, modify the structural data in the new table with any dBASE command used to manipulate data,
such as REPLACE.

3 Use CREATE...FROM to create a new table from the structural information in the structure extended file.
The new table is active when you exit CREATE...FROM.

The table created with CREATE...FROM becomes the current table in the currently selected work area. If the
CREATE...FROM operation fails for any reason, no table remains open in the current work area.

If any fields in the table created with COPY STRUCTURE EXTENDED have index flag fields set,
CREATE...FROM also creates a production .MDX file with the specified index tags.

No equivalent.

COPY STRUCTURE, COPY STRUCTURE EXTENDED, CREATE, DISPLAY STRUCTURE, LIST
STRUCTURE, MODIFY STRUCTURE

CREATE...STRUCTURE EXTENDED

Syntax

Description

OODML

See Also

Creates and opens a table that you can use to design the structure of a new table.

CREATE <filename> STRUCTURE EXTENDED
[[TYPE] PARADOX | DBASE]

<tablename> | ? The name of the table you want to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

CREATE...STRUCTURE EXTENDED creates an empty table, called a structure-extended table, containing
five fields of fixed names, types, and lengths. The fields correspond to attributes that describe fields in the table
you want to create:

Field Contents

FIELD NAME Character field that contains the name of the field.

FIELD_TYPE Character field that contains the field's data type.

FIELD_LEN Numeric field that contains the field length.

FIELD_DEC Numeric field that contains the number of decimal places for numeric fields.

FIELD_IDX Character field that indicates if index tags were created on individual fields in
the table.

The CREATE...STRUCTURE EXTENDED command is similar to the COPY STRUCTURE EXTENDED
command. However, unlike COPY STRUCTURE EXTENDED, which creates a table with records providing
information on fields in the current table, CREATE...STRUCTURE EXTENDED creates an empty structure-
extended table. After using CREATE...STRUCTURE EXTENDED to create a new table, add records to define
the structure of a new table. Then use the CREATE...FROM command to create a new table from the field
definitions stored in the structure-extended table.

Use the SQL command CREATE TABLE to create the STRUCTURE EXTENDED table.
COPY STRUCTURE EXTENDED, CREATE, CREATE... FROM

DATABASE()

Returns the name of the current database from which tables are accessed.

Xbase 12-25

DBF()
Syntax

Description

OODML

See Also

DBF()

DATABASE()

DATABASE() returns the name of the current default database selected with the SET DATABASE command.
If no database is open, the DATABASE() function returns an empty string ("").

Note: Databases are defined with the BDE Administrator.
Check the Database object’s databaseName property.
CLOSE..., OPEN DATABASE, SET DATABASE, SET DBTYPE

Syntax

Description

OODML

See Also

Returns the name of a table open in the current or a specified work area.
DBF([<alias>])
<alias> The work area to check.

DBF() returns the name of the table open in a specified work area. If the table is a file on disk, as it is with DBF
and DB tables, the filename includes the extension and the drive letter. If SET FULLPATH is ON, the DBF()
function also returns the directory location of the table in addition to the table name.

If no table is in use in the current or specified work area, DBF() returns an empty string ("").

There is no concept of the "current”" Query object. In most cases, you can ascertain the name of the table by
parsing the SQL SELECT statement in the Query object’s sql property.

ALIAS(), MDX(), NDX(), SET FULLPATH, TAG(), WORKAREA(), USE

DELETE

Syntax

Description

OODML

Deletes records from the current table.

DELETE

[<scope>]

[FOR <condition 1>]
[WHILE <condition 2>]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

DBF tables support the concept of soft deletes, where the record is marked as deleted and normally hidden when
SET DELETED is ON (the default). If you SET DELETED OFF, you can see the deleted records along with the
records that are not marked as deleted. You can RECALL the record to undelete it. To actually remove the
record from the table, you must PACK the table. If you use the LIST or DISPLAY commands to display
records, records marked as deleted are displayed with an asterisk.

For other table types, when you delete a record, it is removed from the table and cannot be recovered. (Some
tables still require you to perform a maintenance operation on the table to reclaim the unused space. For more
information, refer to your database server documentation.)

Relying on soft deletes to be able to recover information from deleted records is not recommended. This
technique does not scale well to other databases, because they don’t support soft deletes. If you want to make
data available for recover, consider using an identically-structured purge table that stores copies of the records
that you have deleted.

Soft deletes are useful when you want to recycle deleted records. This obviates the need to PACK the table. You
BLANK the record before you DELETE it. Then whenever you need to add a new record, you can search for a
deleted record and reuse it.

To delete all records from a table, use ZAP.

Use the Rowset object’s delete() method. There is no support for soft deletes; if you delete() a row in a DBF
table, there is no corresponding method to recall it. You may still use the RECALL command.

12-26 dBASE dBL Language Reference

Example

See Also

DELETE TABLE

The following function makes a copy of the record to be deleted from the table named Main in the purge table
named Purge:

PROCEDURE DelMainRec
store automem
select PURGE
append automem
select MAIN
blank
delete

PACK, RECALL, SET DELETED, ZAP

DELETE TABLE

Syntax

Description

OODML

See Also

Deletes a specified table.
DELETE TABLE <filename> [[TYPE] PARADOX | DBASE]
<filename> The name of the table that you want to delete.

[TYPE] PARADOX | DBASE Specifies the type of table you want to delete, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

Use the DELETE TABLE command to delete a table and its index, memo, and other associated files. Make sure
the table is not in use before you attempt to delete it.

Use the Database object’s dropTable() method.
DELETE FILE, DELETE TAG, ERASE

DELETE TAG

Syntax

Description

OODML

Example

Deletes index tags from tables.

DELETE TAG <tag name 1>
[OF <filename 1>]

[, <tag name 2>
[OF <filename 2>]...]

<tag name 1>, <tag name 2>, ... <tag name n> The index tag names to delete.

OF <filename 1> | ? | <filename skeleton 1> For DBF tables, specifies the .MDX file containing
the tag name to delete. If you specify a file without including an extension, dBASE Plus assumes an .MDX
extension. If you don't specify an index file, dBASE Plus assumes the index tag you want to delete is in the
index file with the same name as the current table.

Use DELETE TAG to delete index tags from .MDX files for dBASE tables or secondary indexes on a Paradox
table. dBASE Plus allows a maximum of 47 index tags in a single .MDX file, so deleting unneeded tags frees
slots for new tags as well as reducing the amount of disk space and memory that an .MDX file requires.

For dBASE tables, the .MDX file must be open when you delete the tags. If you delete all tags in an .MDX file,
the .MDX file is also deleted. If you delete the production .MDX file by deleting all index tags, the table file
header is updated to indicate there is no longer a production index associated with the table.

The table associated with the indexes you want to delete must be opened in exclusive mode. When accessing a
Paradox table, specifying DELETE TAG without an argument deletes the primary index.

Use the Database object’s dropIndex() method.

The following function deletes all the tags in the current table, which you would do before rebuilding all the tags
from scratch.

PROCEDURE ZapTags
do while "" # tag(1)

Xbase 12-27

DELETED()

See Also

delete tag tag(1)
enddo

CLOSE INDEXES, COPY INDEXES, SET INDEX, TAG()

DELETED()

Syntax

Description

OODML

See Also

Indicates if the current record is marked as deleted.
DELETED([<alias>])
<alias> A work area to check.

DELETED() returns true if the current record in the specified work area is marked as deleted otherwise,
DELETED() returns false.

If no table is open in the current or specified work area, DELETED() also returns false.
No support for soft deletes.
DELETE, PACK, RECALL, SET DELETED

DESCENDING()

Syntax

Note

Description

OODML
Example

See Also

Indicates if a specified index is in descending order.
DESCENDING([<.mdx filename expC>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.

Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters
shift forward one; the second parameter becomes the first parameter, and so on.

DESCENDING() returns true if the index tag specified by the <index position expN> parameter was created
with the DESCENDING keyword; otherwise, it returns false.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, DESCENDING() checks the current master index tag and returns false if the
master index is an .NDX file or there is no master index.

If the specified .MDX file or index tag does not exist, DESCENDING() returns false.
No equivalent

See MDX().

FOR(), INDEX, KEY(), MDX(), ORDER(), TAGCOUNT(), TAGNO(), UNIQUE()

DISPLAY

Syntax

Displays records from the current table in the result pane of the Command window.

DISPLAY
[<scope>]
[FOR <condition 1>]

12-28 dBASE dBL Language Reference

Description

OODML

See Also

EDIT

EDIT

[WHILE <condition 2>]
[[FIELDS] <exp list>]
[OFF]

[TO FILE <filename>]
[TO PRINTER]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

FIELDS <exp list> Field names or expressions whose contents (values) you want to display; the names of
the fields in the list are separated by commas. If you omit <exp list>, dBASE Plus displays all fields in the
current table. The FIELDS keyword is included for readability only; it has no affect on the operation of the
command.

OFF Suppresses display of the record number when displaying records from a DBF table.

TO FILE <filename> Directs output to a file, as well as to the results pane of the Command window. By
default, dBASE Plus assigns a .TXT extension to <filename>.

TO PRINTER Directs output to the default printer, as well as to the results pane of the Command window.

Use DISPLAY to view one or more records of the current table in the results pane of the Command window. If
SET HEADINGS is OFF, dBASE Plus doesn't display field names when you issue DISPLAY. DISPLAY
pauses when the results pane is full and displays a dialog box prompting you to display another screenful of
information.

Use the TO FILE clause to send the information to a file. Use the TO PRINTER clause to send the information
to the printer. In either case, you can use SET CONSOLE OFF to suppress the display of the information in the
results pane.

The LIST command is almost identical to DISPLAY, except that:
e The default scope for LIST is ALL.

e LIST doesn't pause for each screenful of information but rather lists the information continuously. This
makes LIST more appropriate when directing output to a file or printer.

Memo fields are displayed as "MEMO" if they contain data or "memo" if they are empty; unless the field is
listed in <exp list>, in which case the contents of the memo field is displayed.

No equivalent

LIST, SET CONSOLE, SET FIELDS, SET HEADINGS

Syntax

Description
OODML

See Also

Displays fields in the current table for editing.

EDIT

[COLUMNAR]

[FIELDS <field1> | <Calc field1> = <Exp1>[<Option for Calc field 1>]
[,<field2> | <Calc field2> = <Exp2>[<Option for Calc field 2>]...]]

COLUMNAR Creates a form with the field names in one column and the field controls in another column.

[FIELDS <field list>] Displays the fields specified in <field list> for editing. Field names are separated by
commas. The field list may include calculated fields in the format:

<calculated field name> = <expression>
EDIT displays the current record in the current table in a wizard-generated form for editing.
Use a form.

APPEND, BROWSE

Xbase 12-29

EOF()

EOF()

Syntax

Description

OODML

Example

See Also

Indicates if the record pointer is at the end-of-file.
EOF([<alias>])
<alias> The work area to check.

EOF() returns true when the record pointer in the current or specified work area is positioned past the last
record; otherwise it returns false. If you attempt to navigate forward when EOF() is true, an error occurs.

When you first USE a table, EOF() is true if the table is empty, or you are using a conditional index with no
matching records.

Many operations leave the record pointer at the end-of-file when they are complete or when they fail. For
example, EOF() returns true after SCAN processes the last record in a table, when you use SKIP to pass the last
record in a table, when you use LIST with no options, or when SEEK() or SEEK fails to find the specified
record (and SET NEAR is OFF).

The position at the end-of-file is sometimes referred to as the phantom record. When you get the values of the
fields at the phantom record, they are always blank. Attempting to REPLACE field values in the phatom record
causes an error.

If no table is open in the specified work area, EOF() returns false.

The Rowset object’s endOfSet property is true when the row pointer is past either end of the rowset. Unlike
BOF() and EOF(), there is symmetry with the endOfSet property. You can determine which end you’re on
based on the direction of the last navigation.

There is also an atLast() method that determines whether you are on the last row in the rowset, the row before
EOF().

The following is an event handler for a button that navigates forward through a table:

PROCEDURE nextButton_onClick
if .not. eof()
skip
endif
if eof()
msgbox("Last record", "Navigation", 64)
endif

This example demonstrates an atypical programming construct: instead of using IF and ELSE, there is an IF
statement for a condition, followed by a separate IF statement for the opposite condition. In this case, it works
like this: if you are already at EOF() you do not want to attempt to navigate forward, because that will cause an
error. But if you end up at EOF(), or if you’re already at EOF(), then you will get a message.

Many processes require traversing the entire table. The SCAN loop is designed to visit each record
automatically, but sometimes you may want to manually code a loop and check for EOF() to see when you are
done. For an example of this, see the example for COPY TO ARRAY.

BOF(), FIND, FOUND(), LOCATE, RECNO(), SEEK, SEEK()

FDECIMAL()

Syntax

Description

Returns the number of decimal places in a specified field of a table.
FDECIMAL(<field number expN> [, <alias>])

<field number expN> The position of the field that you want to evaluate. The first field in a table is field
number 1.

<alias> The work area that contains the field to check.

FDECIMAL() returns the number of decimal places in a specified field of a table. FDECIMAL() returns zero
if the field has no decimal places, if the field is not a numeric field, or if the table doesn't contain a field in the
specified position.

12-30 dBASE dBL Language Reference

OODML

See Also

FIELD()

Check the decimalLength property of the Field object.
FIELD(), FLENGTH()

FIELD()

Syntax

Description

OODML

Example

See Also

Returns the name of the field in a specified position of a table.
FIELD(<field number expN> [, <alias>])

<field number expN> The position of the field whose name you want returned. The first field in a table is
field number 1.

<alias> The work area to check.

FIELD() returns the name of a field in a table based on the specified <field number expN> parameter. The
example shows a function that performs the reverse operation, returning the field number for a specified field
name.

If the field name has spaces, FIELD() returns the name enclosed in colons, for example:

:Primary power coupling:
FIELD() returns an empty string ("") if the table does not contain a field in the specified position.
Check the fieldName property of the Field object.

The following uses the FIELD() function to perform the reverse operation: return the number of a field with the
given name.

PROCEDURE FieldNum(cName, xAlias)
local nWork, nFld
if argcount() <2
xAlias = workarea()
endif
for nFld = 1 to fldcount(xAlias)
if upper(cName) == upper(field(nFld, xAlias))
return nFld
endif
endfor
return 0

This function takes an optional alias parameter, just like the FIELD() function. If the alias is not specified, the
current work area number is used.

The names are converted to uppercase for comparison, so the field name specified does not have to match the
case of the field in the table.

DBF(), FLENGTH()

FLDCOUNT()

Syntax

Description

OODML

See Also

Returns the number of fields in a table.
FLDCOUNT([<alias>])
<alias> The work area you want to check.

FLDCOUNT() returns the number of fields for the table opened in the current or specified work area.
FLDCOUNT() returns a value of 0 if no table is open in that work area.

Check the size property of Rowset object’s fields array.
FIELD(), DISPLAY STRUCTURE, LIST STRUCTURE, RECCOUNT(), TYPE()

Xbase 12-31

FLDLIST()

FLDLIST()

Syntax

Description

OODML

See Also

Returns the fields and calculated field expressions of a SET FIELDS TO list.
FLDLIST([<field number expN>])

<field number expN> The position of the field or calculated field expression in a SET FIELDS TO list
whose name you want returned. If you do not specify a field number, FLDLIST() returns the entire field list.

FLDLIST() returns the field or calculated field expression in a SET FIELDS TO list that corresponds to a
specified field number. If you do not specify a field number, FLDLIST() returns the entire field list. Each field
name or expression in the field list is separated by a comma. FLDLIST() always returns fully-qualified field
names, that is, it includes the table or alias name. For read-only fields, FLDLIST() appends "/R" to the field
name.

FLDLIST() returns the field list even if SET FIELDS is OFF. If there is no SET FIELDS TO list, or the
specified field number exceeds the number of items in the field list, FLDLIST() returns an empty string ("").

Check the fieldName property of the Field object for a normal field. A calculated field is defined by either its
value property, or by its beforeGetValue event.

SET FIELDS

FLENGTH()

Syntax

Description

OODML

Example

Returns the length of the field in a specified position of a table.
FLENGTH(<field number expN> [, <alias>])

<field number expN> The position of the field whose length you want returned. The first field in a table
is field number 1.

<alias> The work area you want to check.

FLENGTH() returns the length of a field in a table based on the specified <field number expN> parameter. The
field length for numeric fields includes the decimal digits and one for the decimal point character. Certain field
types have fixed lengths. For example, in a DBF table, FLENGTH() returns 8 for date fields and 10 for memo
fields.

FLENGTH() returns 0 if the table does not contain a field in the specified position.
Check the length property of the Field object.

The following routine is used to read the data in a generated text file into the corresponding fields of a table.
Character fields in the text file are the same length as in the table. Dates are formatted in six characters as
MMDDYY (which matches the current SET DATE format). Numbers are always twelve characters and
represent currency stored in cents, so it needs to be divided by 100.

function decodeLine(cLine, aDest)
#define YEAR LEN 2
#define NUM_LEN 12
local nPtr, nFld, cFld, nLen
nPtr=1 && Pointer into string
for nFld = 1 to fldcount()
cFld = field(nFld) && Store name of field in string variable for reuse
do case
case type(cFld) =="C"
aDest[nFld] = substr(cLine, nPtr, flength(nF1d))
nPtr += flength(nF1d)
case type(cFld) =="D"
aDest[nFld] = ctod(substr(cLine, nPtr, 2) +"/" +;
substr(cLine, nPtr +2,2) +"/" +;
substr(cLine, nPtr + 4, YEAR LEN))
nPtr+=2+2+ YEAR _LEN
case type(cFld) =="N"
aDest[nFld] = val(substr(cLine, nPtr, NUM_LEN)) / 100

12-32 dBASE dBL Language Reference

See Also

FLOCK()

nPtr += NUM_LEN
endcase
endfor

An array is passed to the routine along with the line to read. The field values are stored in the array, which is
appended to the table with APPEND FROM ARRAY in the calling routine (not shown here). The function
defines some manifest constants for the size of a numeric field and whether the year is two or four digits in case
this changes in the future. A FOR loop goes through each field in the table. The name of each field is stored in a
variable for convenience; it’s used repeatedly in the DO CASE structure.

FDECIMAL(), FIELD()

FLOCK()

Syntax

Description

OODML

See Also

FLUSH

Locks a table.
FLOCK([<alias>])
<alias> The work area you want to lock.

Use FLOCK() to lock the table in the current work area, or in another specified work area, preventing others
from using the table.

When you lock a table with FLOCK(), only you can make changes to it. However, unlike USE...EXCLUSIVE
and SET EXCLUSIVE ON, FLOCK() lets other users view the locked table while you are using it. When you
lock a table with FLOCK(), it remains locked until you issue UNLOCK or close the table.

FLOCK() is similar to RLOCK(), except that FLOCK() locks an entire table, while RLOCK() lets you lock
specific records of a table. Use FLOCK(), therefore, when you need to have sole access to an entire table or
related tables—for example, when you need to update multiple tables related by a common key.

FLOCK() can lock a table even if another user is viewing data contained in the table. FLOCK() is unsuccessful
only if another user has explicitly locked the table or a record in the table, or is using a command that
automatically locks the table or a record in the table. FLOCK() returns true if it is successful, and false if it is
not.

All commands that change table data cause dBASE Plus to attempt an automatic record or file lock. If iBASE
Plus fails to get an automatic record or file lock, it an error occurs. You might want to use FLOCK() to handle
a lock failure youself, instead of letting the error occur.

When SET REPROCESS is set to 0 (the default) and FLOCK() can't immediately lock a table, dBASE Plus
prompts you to attempt the lock again or cancel the attempt. Until you choose to cancel the function, FLOCK()
repeatedly attempts to lock the table. Use SET REPROCESS to eliminate being prompted to cancel the
FLOCK() function, or to set the number of locking attempts.

When you set a relation to a parent table with SET RELATION and then lock the table with FLOCK(), dBASE
Plus attempts to lock all child tables. For more information about relating tables, see SET RELATION.

Use the Rowset object’s lockSet() method.

BEGINTRANS(), LOCK(), RLOCK(), SET EXCLUSIVE, SET LOCK, SET RELATION, SET
REPROCESS, UNLOCK, USE

Syntax

Description

Writes data buffers for the current work area to disk.
FLUSH
Use FLUSH to protect data integrity.

When you open a table, dBASE Plus loads a certain number of records from that table into a memory buffer,
along with the portion of each open index that pertains to those records. When another block of records needs to
be read or when you close tables, dBASE Plus writes the records in the buffer back to disk, storing any
modifications you have made.

Xbase 12-33

FOR()

OODML

See Also

FOR()

FLUSH allows you to save information from the data buffer to disk on-demand, without closing the table. Use
FLUSH when you need to store critical information to disk that could otherwise be lost. However, don't use
FLUSH too frequently, as it slows execution. For example, in an order-entry application in which only a few
orders are entered each hour, FLUSH can save data that might be lost if the power is inadvertently turned off;
since orders are entered infrequently, the time needed to execute FLUSH is not important.

Use the Rowset object’s flush() method.
CLOSE TABLES, SET AUTOSAVE

Syntax

Note

Description

OODML
Example

See Also

Returns the FOR clause of a specified index tag.
FOR([<.mdx filename expC>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.

Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters
shift forward one; the second parameter becomes the first parameter, and so on.

FOR() returns a string containing the FOR expression of the specified .MDX tag. FOR() returns an empty
string ("") if the specified index tag does not have a FOR expression.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, FOR() checks the current master index tag and returns an empty string if the
master index is an .NDX file or there is no master index.

If the specified .MDX file or index tag does not exist, FOR() returns an empty string.
No equivalent.

See MDX().

INDEX, DESCENDING(), TAG(), TAGCOUNT(), TAGNO(), UNIQUE(), USE

FOUND()

Syntax

Description

Indicates if the last-issued search command found a match.
FOUND([<alias>])
<alias> The work area you want to check.

FOUND() returns true if LOCATE, CONTINUE, SEEK, LOOKUP(), or SEEK() found a match in the current
or specified table. FOUND() returns false if no previous search has been performed in that work area, or if the
last search was unsuccessful. You can perform searches in different work areas and maintain the status of each
FOUND() operation, independent of the other work areas.

If tables are linked by a SET RELATION TO command, dBASE Plus searches the related tables as you move in
the active table with normal navigation or with a search command. This allows you to determine if there is a
match in related tables.

When SET NEAR is ON and you use SEEK or SEEK(),

e FOUND() returns true if an exact match occurs.

12-34 dBASE dBL Language Reference

OODML

Example

See Also

GENERATE

* FOUND() returns false for a near match, and the record pointer is moved to the record whose key
immediately follows the value searched for.

When SET NEAR is OFF, FOUND() returns false if a match does not occur.

Check the return value of the Rowset object’s findKey() or findKeyNearest() method.

The following statements create a relation between a table of customers and orders, and use FOUND() to show
only those customers that have orders:

use CUSTOMER

use ORDERS in select() order CUST DATE
set relation to CUST _ID into ORDERS

set filter to found("ORDERS")

CONTINUE, EOF(), LOCATE, LOOKUP(), SEEK, SEEK(), SET NEAR, SET RELATION

GENERATE

Syntax

Description

OODML

See Also

GO

Adds random records to the current table.
GENERATE [<expN>]

<eXpN> A number of random-data records to add to the current table. If you specify a <expN> value that is
less than or equal to 0, no records are generated. If you don't specify a value for <expN>, dBASE Plus prompts
you for a number.

GENERATE fills a table with sample data. If a table contains existing records, GENERATE leaves them intact
and adds <expN> records to the table.

GENERATE does not create data for memo or binary fields.
No equivalent.

none

Syntax

Description

Moves the record pointer to the specified position in a table.

GO[TO]
BOTTOM | TOP | <bookmark> | [RECORD] <expN>
[IN <alias>]

TO Include for readability only; you may use GO or GOTO.

BOTTOM | TOP | <bookmark> | [RECORD] <expN> Specifies where to move the record pointer.
The following table describes each of the available keywords or options.

Option Moves the record pointer to

BOTTOM The last record in the table, using the current index order, if any.
TOP The first record in the table, using the current index order, if any
<bookmark> The record saved in <bookmark>

[RECORD] <expN> That record number. Entering a number in the Command window is
equivalent to GO <expN>. The RECORD keyword is included for readability
only; it has no affect on the operation of the command.

IN <alias> The work area where you want to move the record pointer.

GO positions the record pointer in a table.

GO <expN> or GO RECORD <expN> moves the record pointer to a specific record, regardless of whether a
master index is open or where that record number occurs in an indexed order. It works only for DBF tables. For
tables that do not support record numbers (that is, Paradox and SQL tables), GO <expN> causes an error.

Xbase 12-35

INDEX

OODML

See Also

INDEX

To go to a specific record, use the BOOKMARK() to get a bookmark for that record and store it in a variable or
property. Then when you need to go back to that record, issue GO <bookmark>.

If an index isn't in use, TOP and BOTTOM refer to the first and last records in a table. If an index is in use for a
table, TOP and BOTTOM refer to the first and last records in the index order.

If a relation is set up among several tables, moving the record pointer in the parent table with GOTO repositions
the record pointer in a child table to a related record. If there is no related record, the child table record pointer is
positioned at the end of the file. Moving the record pointer in a child table, however, doesn't reposition the
record pointer in the parent table.

Use the Rowset object’s first(), last(), and goto() methods.
BOOKMARK(), EOF(), RECNO(), SET DELETED, SET FILTER, SET RELATION, SKIP

Syntax

Creates an index for the current table.

For DBF tables:

INDEX ON <key exp>
TAG <tag name>
[OF <.mdx filename>]
[FOR <condition>]
[DESCENDING]
[UNIQUE | DISTINCT | PRIMARY]

or to create dBASE IlI-compatible .NDX index files:
INDEX ON <key exp> TO <.ndx filename> [UNIQUE]

For DB and SQL tables:

INDEX ON <field list>
PRIMARY | TAG <tag name> [UNIQUE]

<key exp> For DBF tables, <key exp> can be a dBASE expression of up to 220 characters that includes
field names, operators, or functions. The maximum length of the key—the result of the evaluated index <key
exp>—is 100 characters.

<field list> For Paradox and SQL tables, indexes can't include expressions; however, you can create
indexes based on one or more fields. In that case, you specify the index key as a <field list>, separating the
name of each field with a comma.

TAG <tag name> Specifies the name of the index tag for the index

OF <.mdx filename> Specifies the . MDX multiple index file that dBASE Plus adds new index tags to. If
you do not specify an .MDX file, index tags are added to the production .MDX file. If you specify a file that
doesn't exist, dBASE Plus creates it and adds the index tag name. By default, dBASE Plus assigns an .MDX
extension and saves the file in the current directory.

TO <.ndx filename> Specifies the name of an .NDX index file.

FOR <condition> Restricts the records dBASE Plus includes in the index to those meeting the specified
<condition>.

DESCENDING Creates the index in descending order (Z to A, 9 to 1, later dates to earlier dates). Without
DESCENDING, INDEX creates an index in ascending order.

UNIQUE For DBF tables, prevents multiple records with the same <key exp> value from being included in
the index; dBASE Plus includes in the index only the first record with that value. For DB and SQL tables,
specifies creating a distinct index which prevents entry of duplicate index keys in a table.

DISTINCT Prevents multiple records with the same <key exp> value from being included in the table; any
such attempt causes a key violation error. Records marked as deleted are never included in a DISTINCT index.
DISTINCT indexes may be created for DBF tables only.

12-36 dBASE dBL Language Reference

Description

Note

Warning

INDEX

PRIMARY Specifies that the index is the primary key for the table. For DBF tables, the PRIMARY index is
a distinct index that is designated as the primary index; it currently has no other special meaning. For DB and
SQL tables, the primary key has a specific meaning. A table may have only one primary key.

Use INDEX to organize data for rapid retrieval and ordered display. INDEX doesn't actually change the order of
the records in a table but rather creates an index in which records are arranged in numeric, alphabetical, or date
order based on the value of a key expression. Like the index of a book, with ordered entries and corresponding
page numbers, an index file contains ordered key expressions with corresponding record numbers. When the
table is used with an index, the contents of the table appear in the order specified by the index.

DBF expression indexes To index on multiple fields in a DBF table, you must create an expression
index. When combining fields with different data types, use conversion functions to convert all the fields to the
same data type. Most multi-field expression indexes are character type; numeric and date fields are converted to
strings using the STR() and DTOS() functions. When using the STR() function, be sure to specify the length
of the resulting string so that it matches the numeric field.

Do not use the DTOC() function to convert a date to a string. In many date formats, the day comes before the
month, or the month comes before the day and year, resulting in records in the wrong order.

To concatenate the fields, use the + or - operators.

Do not create an index where the length of the index key expression varies from record to record. Specifically,
do not use TRIM() or LTRIM() to remove blanks from strings unless you compensate by adding enough
spaces to make sure the index key values are all the same length. The - operator concatenates strings while
rearranging trailing blanks. Varied key lengths may cause corrupted indexes.

If a function is used in a key expression, keep in mind that the index is ordered according to the function output.
Thus, when you use search for a particular key, you must search for the key expression as it was generated. For
example, INDEX ON SOUNDEX(Name) TO Names creates an index ordered by the values SOUNDEX()
returns. When attempting to find data by the key value, you would have to use something like SEEK
SOUNDEX("Jones") rather than SEEK "Jones".

FOR <condition> limits the records that are included in the index to those meeting the specified condition. For
example, if you use INDEX ON Lastname + Firstname TO Salaried FOR Salary > 24000, dBASE Plus includes
only records of employees with salaries higher than $24,000 in the index. The FOR condition can't include
calculated fields.

The following built-in functions may be used in the index <key exp> and FOR <condition> expressions of a
DBEF index tag.

Table 12.1 List of functions supported in DBF expression indexes

ABS() CHR() FLOOR() MEMLINES() RTOD()
ACOS() CoS() FV() MIN() RTRIM()
ANSI() CTOD() HTOI() MLINE() SECONDS()
ASC() DATABASE() ID() MOD() SIGN()
ASIN() DATE() INT() MONTH() SIN()

AT() DAY() ISALPHA() OEM() SOUNDEX()
ATAN() DBF() ISBLANK() 0S() SPACE()
ATN2() DELETED() ISLOWER() PAYMENT() SQRT()
BITAND() DIFFERENCE() ISUPPER() PI() STR()
BITLSHIFT() DOW() ITOH() PROPER() STUFF()
BITNOT() DTOC() LEFT() PV() SUBSTR()
BITOR() DTOR() LEN() RAND() TAN()
BITRSHIFT() DTOS() LIKE() RAT() TIME()
BITSET() ELAPSED() LOG() RECNO() TRIM()
BITXOR() EMPTY() LOG10() RECSIZE() UPPER()
BITZRSHIFT() EXP() LOWER() REPLICATE() VAL()
CEILING() FCOUNT() LTRIM() RIGHT() VERSION()
CENTER() FIELD() MAX() ROUND() YEAR()

Index sort order

In an index, records are usually arranged in ascending order, with lowest key values at

the beginning of the index. Using the DOS Code Page 437 (U.S.) character set, character keys are ordered in

Xbase 12-37

INDEX

Note

ASCII order (from A to Z and then from a to z); numeric keys are ordered from lowest to highest numbers; and
date keys are ordered from earliest to latest date (a blank date is higher than all other dates). Use the UPPER()
function on the key expression to convert all lowercase letters to uppercase and achieve alphabetical order for
character-type indexes.

Most non-U.S. character sets provide a different sort order for characters than the DOS Code Page 437 character
set.

You can reverse the order of an index, arranging records in descending order, by including the DESCENDING
keyword. (You can use DESCENDING only when building .MDX tags.)

Distinct, primary, and unique indexes You may use an index to ensure that there are no duplicate
key values. For example, in a table of customers, each customer is assigned their own unique customer ID
number. To prevent an existing customer ID number from being used by another customer, you can create a
special kind of index on the customer ID field. For DB and SQL tables, this type of index is called a unique
index; the key value for each record in the table must be unique. For DBF tables, this type of index is called a
distinct index; a unique index for a DBF table has a different meaning. For clarity, the DBF terms are used.

A distinct index is created with the DISTINCT option for DBF tables, and the UNIQUE option for DB and SQL
tables. When a table has a distinct index, any attempt to create a duplicate key entry, either by adding a new
record with a duplicate value or by changing an existing record so that its key field(s) duplicates another record,
causes a key violation error. The new or changed record is not written to the table. Distinct indexes for DBF
tables never include records that are marked as deleted.

A table may also have one distinct index designated as its primary index, or primary key. A primary index is
usually created for the ID field or fields that uniquely identify each record in the table. For example, while you
may index on the customer’s name, their ID field is what uniquely identifies each customer, and that is the field
you use for the primary key. For DB tables, a table’s primary key determines the default order for the records in
the table, and you must have a primary key to create other secondary indexes. For DBF tables, a primary key
currently has no special meaning, other than self-documenting the primary key field(s) of the table. The
PRIMARY clause is used to create the primary index. For DB and SQL tables, a primary index may have no
other options other than the field list.

DBEF tables support a kind of index that allows duplicate key values in the table, but only shows the first such
record in the index. These are called unique indexes, not to be confused with the distinct unique indexes used by
DB and SQL tables. For example, you may be interested in the names of the cities in which your customers
reside. By using a unique index, each city is listed once (alphabetically), no matter how many customers you
have in that city.

A record’s index key value is tested for uniqueness only when the record is added or updated. For example, suppose
you have a unique index on the City field, and have records in both "Bismark" and "Fargo". If you append another
record in "Bismark", it does not appear in the index, although the table is updated with the new record. If you
then change the first record, which was listed in the index, from "Bismark" to "Fargo", then it too becomes
hidden because there is already a "Fargo" in the index. It also does not automatically expose the other record
with "Bismark", because that record was not updated; no records in "Bismark" are in the index at that moment.
REINDEX explicitly updates all key values in a unique index.

Indexing a table with SET UNIQUE ON has the same effect as INDEX with the UNIQUE option. With DB and
SQL tables, it creates a distinct index. With DBF tables, it creates a unique index.

Using indexes Once a table has been indexed, use LOOKUP(), SEEK, and SEEK() to retrieve data. The
structure of an index file allows these commands to quickly locate values of the key expression.

Whenever data in key fields is modified, dBASE Plus automatically updates all open index files. Index files
closed when changes are made in a table can be opened and then updated using REINDEX.

Multiple index files simplify updating indexes, since dBASE Plus updates all indexes with tag names listed in
.MDX files specified with USE...ORDER or SET ORDER. dBASE Plus automatically opens a production
.MDX file, if one exists, when you open the associated table.

INDEX...TAG creates an index and adds the tag name to a multiple index file. If you don't include OF
<filename>, INDEX...TAG adds the tag name to the production .MDX file. dBASE Plus creates the production
.MDX or the specified file if it doesn't already exist.

INDEX is similar to SORT, another command that allows ordering of a table. Unlike INDEX, though, SORT
physically rearranges the table records, a time-consuming process for large files. To maintain the sorted order,
either new records must be inserted in their proper position, which is also very time-consuming, or the entire

12-38 dBASE dBL Language Reference

OODML

Example

See Also

ISBLANK()
table must be resorted. Also, SORT doesn't support LOOKUP(), SEEK, or SEEK(), making the process of
locating data in a sorted table much slower.

At the end of an indexing operation, the new index file is the master index, and the record pointer is positioned
at the first record of the new indexed.

Use the Database object’s createlndex() method.

The following example creates an index based on the last name and first name in a table:
index on upper(LAST NAME + FIRST NAME) tag FULL NAME

The next example indexes on a customer ID and the order date as the primary key for an Orders table:
index on CUST_ID + dtos(ORDER_DATE) tag CUST_ORD primary

FIND, KEY(), LOOKUP(), ORDER(), REINDEX, SEEK, SEEK(), SET INDEX, SET ORDER, SET
UNIQUE, SORT, TAG(), USE

ISBLANK()

Syntax

Description

OODML

See Also

Determines if a specified field or expression is blank.
ISBLANK(<exp>)
<exp> An expression of any data type.

ISBLANK() returns true if a specified expression is blank or null; false if it contains data. A field is blank if it
has never contained a value or if you used the BLANK command on it. ISBLANK() returns a different result
from EMPTY() when used on numeric fields; ISBLANK() differentiates between zero and blank values, while
EMPTY() does not.

ISBLANK() is especially useful when performing functions such as averaging, since it ensures that blank
values are not included in the calculation. If you don't need to differentiate between 0 or blank values in numeric
fields, you can use either ISBLANK() or EMPTY().

No equivalent.

APPEND, BLANK, EMPTY(), SPACE(), TYPE()

ISTABLE()

Syntax

Description

OODML

See Also

KEY()

Tests for the existence of a table in a specified database.
ISTABLE(<filename>)

<filename> The name of the table to search for. You cannnot use a filename skeleton for ISTABLE(). If
you do, it will return false.

Use ISTABLE() to confirm the existence of a table. If the table exists, ISTABLE() returns true; otherwise it
returns false.

Use the Database object’s tableExists() method.

DIR, DISPLAY FILES, FILE(), GETFILE(), PUTFILE(), SET DEFAULT, SET DATABASE, SET
DBTYPE, SET DIRECTORY, SET PATH

Syntax

Returns the key expression of the specified index.
KEY([<.mdx filename>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

Xbase 12-39

KEYMATCH()

Note

Description

OODML

Example

See Also

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.

Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters
shift forward one; the second parameter becomes the first parameter, and so on.

KEY() returns a string containing the key expression of the specified index. To see the value of the key
expression for a given record, store the string returned by KEY() in a private variable. Then use macro
substitution to evaluate the expression.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, KEY() checks the current master index tag and returns an empty string if
there is no master index.

If the specified .MDX file or index tag does not exist, KEY() returns an empty string.
No equivalent.

The following example displays the current index key value during navigation for debugging purposes:

PROCEDURE Form_onNavigate
private cKey
cKey = key()
? "Key value: [" + &cKey + "]"

INDEX, NDX(), ORDER(), SET INDEX, SET ORDER, TAG(), TAGCOUNT(), TAGNO(), USE

KEYMATCH()

Syntax

Description

Indicates if a specified expression is found in an index.
KEYMATCH (<exp> [,<index number> [,<alias>]])
where <index number> is:
<index position expN> | [<.mdx filename expC>,] <tag expN>
<exp list> The expression, of the same data type as the index, that you want to look for.
<index position expN> The numeric position of the index in the list of open indexes for the table.

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area.

<tag expN> The numeric position of the index tag in the specified .MDX file.
<alias> The work area you want to check.

The KEYMATCH() function determines if a specified key expression is found in a particular index.
KEYMATCHY() returns true or false to indicate whether the specified expression was found. SET EXACT
controls whether exact matches of character string data is required.

A primary use of the KEYMATCH() function is to check for duplicate values when adding records. Unlike
SEEK(), KEYMATCH() looks for a matching index value without moving the record pointer and disturbing
the current state of the record buffer.

KEYMATCH() ignores the settings for SET FILTER and SET KEY TO, ensuring the integrity of data in a
table even when you work with a subset of the table records. KEYMATCH() honors SET DELETED, so that
when SET DELETED is ON, existing key values in records marked as deleted are ignored, as if those records
did not exist.

If you specify only an expression (<exp>) whose value you want to match, KEYMATCH() searches the current
master index for an index key with the same value.

12-40 dBASE dBL Language Reference

OODML

See Also

LIST

LIST
To search indexes other than the current master index, you must specify the index by index position. There are
two ways to do this:

* By the index’s position in the list of open indexes. Index numbering is complicated if you have open .NDX
indexes or open non-production .MDX files. For information on index numbering, see SET INDEX.

* By an index tag’s position in an .MDX file. If you do not specify <.mdx filename expC>, the production
.MDX is used.

Either way, it is often easier to reference an index tag by name by using the TAGNO() function to get the
corresponding position number.

No equivalent.

INDEX, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET ORDER, TAGNO(), USE

Syntax

Description

OODML

See Also

Displays records from the current table in the result pane of the Command window.

LIST

[<scope>]

[FOR <condition 1>]
[WHILE <condition 2>]
[[FIELDS] <exp list>]
[OFF]

[TO FILE <filename>]
[TO PRINTER]

Both LIST and DISPLAY display records in the results pane of the Command window. There are two
differences between the commands:

« LIST displays continuously until complete, while DISPLAY pauses after each screenful of information.
e The default scope of LIST is ALL, while the default scope of DISPLAY is NEXT 1, the current record only.

Because LIST does not pause between screens, it is more appropriate when directing output to a file or printer.
For more information on the options of LIST, see DISPLAY.

No equivalent.

DISPLAY, SET CONSOLE, SET HEADING

LKSYS()

Syntax

Description

Returns information about a locked record or file.
LKSYS(<expN>)
<eXpN> A number representing the information for LKSYS() to return:

Value Returns

0 Time when lock was placed

1 Date when lock was placed

2 Login name of user who locked record or file

3 Time of last update or lock

4 Date of last update or lock

5 Login name of user who last updated or locked record or file

LKSYS() returns multiuser information contained ina DBASELOCK field of a DBF table. For LKSYS() to
return information, the current table must havea DBASELOCK field. Use CONVERT to add a
_DBASELOCK field to a table. If the current table doesn't containa DBASELOCK field, LKSYS() returns an
empty string for any value of <expN>.

Xbase 12-41

LOCATE

Note LKSYS() works only with DBF tables.

OODML

Example

See Also

LKSYS() always returns a string. When LKSYS() returns a date, it is a string containing the date in the current
date format dictated by SET DATE and SET CENTURY. Use CTOD() to convert the date string to a date.

When a record is locked, either explicitly or automatically, the time, date, and login name of the user placing the
lock are stored in the DBASELOCK field of that record. When a file is locked, this same information is stored
inthe DBASELOCK field of the first physical record in the table.

Passing 0, 1, or 2 as arguments to LKSYS() returns values only after an attempted file or record lock has failed.
If a file or record lock on a converted table fails, the information for LKSYS() arguments 0, 1, and 2 is written
to a buffer from the record's DBASELOCK field. If you then pass 0, 1, or 2 to LKSYS(), the information is
read from the buffer. The buffer isn't overwritten until you attempt another lock that fails. Thus, 0, 1, and 2
always return the information that was current at the time of the last lock failure.

You can pass 3, 4, or 5 as arguments to LKSYS() whether or not the current record or file is currently locked.
These arguments return information about the last successful record or file lock. When you pass any of these
arguments to LKSYS(), it returns information directly from the DBASELOCK field rather than from an
internal buffer.

If you pass 2 or 5 to obtain a user login name, and the DBASELOCK field is only 8 characters wide, LKSYS()
returns an empty string. The first 8 characters of a DBASELOCK field are the count, time, and date
information of the last update or lock, so the field must be wider than 8 characters to fit part or all of the login
user name. Set the width of the field with CONVERT.

Check the properties of the rowset.fields[" DBASELOCK"] field.

The following function is used to lock individual records. If it fails, it uses LKSYS() to display information on
who has the lock and when they got it. SET REPROCESS must be changed to 1 instead of 0 so that if the lock
attempt fails the standard dialog, which does not have as much information, will not be displayed.

PROCEDURE RecLock
local cMsg
do while .t.
if rlock()
return .t.
else
cMsg = "Locked by: " + lksys(2) + chr(13) +;
"since: " + lksys(1) +" " + lksys(0)
if msgbox(cMsg, "Record is locked by another", 5 + 48) ==
return .f.
endif
endif
enddo

The MSGBOX() used is a Retry/Cancel dialog box. The button number, which MSGBOX() returns, is 2 if the
Cancel button is clicked or the user presses ESc.

CHANGE(), CONVERT, FLOCK(), RLOCK(), SET LOCK, UNLOCK

LOCATE

Syntax

Description

Searches a table for the first record that matches a specified condition.

LOCATE

[<scope>]

[FOR <condition 1>]
[WHILE <condition 2>]

<scope>

FOR <condition 1>

WHILE <condition 2> The scope of the command. The default scope is ALL. LOCATE is usually used
with a FOR condition.

LOCATE performs a sequential search of a table and tests each record for a match to the specified condition. If
a match is found the record pointer is left at that record. Issuing CONTINUE resumes the search, allowing
additional records meeting the specified condition to be found.

12-42 dBASE dBL Language Reference

OODML

Example

See Also

LOCK()

Whenever a match is found, FOUND() returns true. If match is not found, the record pointer is left after the last
record checked, which usually leaves it at the end-of-file. Also, FOUND() returns false.

If SET TALK is ON, LOCATE will display the record number of the matching record in the result pane of the
Command window if you are searching a DBF table. If no match is found, LOCATE will display "End of
Locate scope"

Because the default scope of the command is ALL, issuing LOCATE with no options will move the record
pointer to the first record in the table, because that is the first matching record in that scope. However, there is
no practical reason to use LOCATE in this manner. A FOR condition is usually used with LOCATE to find
records that match a condition. An understanding of command scope, as explained on page 12-2, is essesntial to
using LOCATE effectively.

LOCATE does not require an indexed table; however, if an index is in use, LOCATE follows its index order.
When using the = operator to compare strings, LOCATE uses the rules established by SET EXACT to
determine whether the strings match. Use the == operator to perform exact matches regardless of SET EXACT.

The search commands LOCATE and SEEK are each designed for use under particular conditions. LOCATE is
the most flexible, accepting expressions of any data type as input and searching any field of a table. For large
tables, however, a sequential search using LOCATE might be slow.

Use SEEK or SEEK() for greater speed. Both conduct an indexed search, similar to looking up a topic in a book
index and turning directly to the appropriate page, allowing information to be found almost immediately. Once
you use the INDEX command to create an index for a table, SEEK uses this index to quickly identify an
appropriate record.

You can use SEEK and LOCATE in combination. Use SEEK to quickly narrow down a search and then use
LOCATE with the appropriate scope to find the exact you’re looking for.

Use the Rowset object’s beginLocate() and applyLocate() methods.

The following example uses SEEK and LOCATE in combination to find the first vendor in Texas that is not in
either Dallas or Houston. The table is indexed on state and city, but you cannot use SEEK alone to find a
matching record.

use VENDOR order STATE_CITY
if seek("TX")
locate while STATE == "TX" for CITY # "Dallas" .and. CITY # "Houston"
if found()
*-- Do something
endif
endif

If SEEK() finds a vendor in Texas, the WHILE clause of the LOCATE command restricts the sequential search
to Texas. The FOR clause looks for the city match, (or non-match in this case).

CONTINUE, FIND, FOUND(), LOOKUP(), SEEK, SEEK(), SET EXACT

LOCK()

Syntax

Description

See Also

Locks the current record or a specified list of records in a table.

LOCK([<record list expC>,<alias>] | [<alias>])

<list expC> The list of record numbers to lock, separated by commas.

<alias> The work area in which to lock records.

LOCK() is identical to RLOCK(). For more information, see RLOCK().

FLOCK(), RLOCK(), SET LOCK, SET RELATION, SET REPROCESS, UNLOCK

LOOKUP()

Searches a field for a specified expression and, if the expression is found, returns the value of a field within the same
record.

Xbase 12-43

LUPDATE()

Syntax

Description

OODML

Example

See Also

LOOKUP(<return field>, <exp>, <lookup field>)
<return field> The field whose value you want to return if a match is found.

<exp> The expression to look for in the <lookup field>. Specify an alias when referring to fields outside the
current work area.

<lookup field> The field you want to search for the value <exp>.

The <return field> and <lookup field> are usually fields in the same table, a table that is not in the current work
area. Use the alias name and alias operator (->) to reference fields in other tables.

LOOKUP() looks for the first record where <lookup field> matches the specified expression <exp>. The record
pointer is left at the matching record. If no match is found, the record pointer is left at the end-of-file. Either
way, LOOKUP() then returns the value of <return field>.

Therefore, if no match is found, LOOKUP() returns the blank value for that field, either an empty string (""),
zero, a blank date, or false, depending on the data type of <lookup field>. Calling FOUND() will also return
true or false to indicate if the search was successful.

LOOKUP() performs a sequential search, unless an index whose key matches <lookup field> is available in the
lookup table. To minimize the time LOOKUP() takes to search a table, you should create index keys for your
most common lookups.

Because LOOKUP() moves the record pointer you can perform a lookup with related tables, where the <lookup
field> is in the parent table, and <return field> is in the child table.

No equivalent.

The following event handler displays the city for a zip code that is typed into the control:

PROCEUDRE zipCode onChange
form.city.text = lookup(ZIPCODE->CITY, this.value, ZIPCODE->ZIP_CODE)

FOUND(), LOCATE, SEEK, SEEK()

LUPDATE()

Syntax

Description

OODML

See Also

MDX()

Returns the date of the last change to a table.
LUPDATE([<alias>])
<alias> The work area you want to check.

LUPDATE() returns the last update date of the specified table. If no table is open, LUPDATE() returns a blank
date.

No equivalent. You may use functions to check the last update date of the table file.

DTOC(), SET CENTURY, SET DATE

Syntax

Description

Returns the names of a DBF table’s open .MDX index files.

MDX([<mdx expN>[, <alias>]])

<mdx eXpN> A number indicating which open .MDX file whose name to return.
<alias> The work area you want to check.

MDX() returns the name of an .MDX file open in the current or specified work area. .MDX files are numbered
in the order in which they were opened. The production .MDX file, the one with the same name as the DBF file,
is number 1.

If <mdx expN> is omitted, the name of the .MDX file containing the current master index tag is returned.

12-44 dBASE dBL Language Reference

OODML

Example

MDX()

MDX() includes the drive letter (and colon) in the filename. If SET FULLPATH is ON, MDX() also returns
the directory location of the .MDX file in addition to the drive and name.

If <mdx expN> is higher than the number of open .MDX files, or if you do not specify an index order number
and the master index is an .NDX file, MDX() returns an empty string (""). MDX() also returns an empty string
if there is no .MDX file open.

No equivalent.

The following utility function generates a program file that will recreate all indexes from scratch. This
generated program also documents the index tags. It uses the MDX() function to get the name of the .MDX file
that contains the active index tag. If there is no active index tag, the production .MDX is used. Please be aware
that this program does not take into account primary and distinct indexes.

PROCEDURE GenMDX(cFile)
local cMdx, cMdxFile
cMdx = mdx()
if cMdx ==""
*-- If no active index tag, try production .MDX
cMdx =mdx(1)
if cMdx ==""
msgbox("No MDX file", "Nothing to do", 48)
return
endif
endif

*-- Set OF clause for non-production .MDX

cMdxFile = iif(cMdx ==mdx(1), "", [of "] + cMdx +["])

*-- Remove drive and/or path from .MDX filename

*-- (after setting OF clause, because that checks cMdx)

cMdx = substr(cMdx, max(rat(":", cMdx), rat("\",cMdx)) + 1)

local ISafety
ISafety = ('set("SAFETY") =="ON")
set safety on

if argcount() < 1
cFile = left(cMdx, rat(".", cMdx) - 1) + "X.PRG"
endif

set alternate to (cFile)
set console off

?

set alternate on

27"* " + cFile
? "*"
? "* Index file for " + cMdx
if cMdxFile ==""
2?2 " (production .MDX)"
endif
? "kn
? "* Generated on " + dtoc(date()) +" " + time()
? "n
?
? [*-- Delete all current tags from specific .MDX only]
? [do while "" # tag("] + cMdx +[", 1)]
7 [delete tag tag("] + cMdx +[", 1)]

? [enddo]
?
nNdx =1

do while "" # key(cMdx, nNdx)
? [index tag] + transform(tag(cMdx, nNdx), "@! XXXXXXXXXX") +;
cMdxFile + [on] + key(cMdx, nNdx)
if "" # for(cMdx, nNdx)
?? [for] + for(cMdx, nNdx)

Xbase 12-45

MEMLINES()

See Also

endif

if descending(cMdx, nNdx)
7? [descending]

endif

if unique(cMdx, nNdx)
?? [unique]

endif

nNdx =nNdx + 1

enddo

close alternate
if .not. ISafety

set safety off
endif

The function uses the KEY(), FOR(), DESCENDING(), and UNIQUE() functions to get the definition of
each index.

INDEX, NDX(), SET FULLPATH, SET INDEX, SET ORDER, TAG(), TAGCOUNT(), TAGNO(), USE

MEMLINES()

Syntax

Description

OODML

See Also

Returns the number of lines in a memo field.
MEMLINES(<memo field> [,<line length expN>])
<memo field> The memo field the MEMLINES() function operates on.

<line length expN> Specifies the line length used in calculating the number of lines in a memo field.
<expN> can be set to any number from 8 to 255. If <expN> is not specified, MEMLINES() calculates each line
using the memo width specified using the SET MEMOWIDTH command.

The MEMLINES() function returns the number of lines in a memo field based on the memo width specified by
the line length parameter. If you don't specify a line length, MEMLINES() uses the width specified by SET
MEMOWIDTH, which defaults to 50.

If a word doesn't completely fit within the remainder of a line, MEMLINES() wraps that word and everything
on the line following it to the beginning of the next line. If the number of characters in a word is longer than the
default or specified memo field line length, MEMLINES() truncates the word at the end of the line and includes
the remainder of the word at the beginning of the next line.

A carriage return/line feed combination in the memo text always starts a new line. Note that if the carriage
return/line feed is at the end of the memo field contents, the empty blank line that follows it is counted in the
total line count.

No equivalent. You cannot accurately determine the amount of text that can fit on a line when using
proportional fonts.

MLINE(), SET MEMOWIDTH, STORE MEMO

MLINE()

Syntax

Extracts a specified line of text from a memo field in the current record.
MLINE(<memo field> [, <line number expN > [, <line length expN>]])
<memo field> The memo field the MLINE() function operates on.

<line number expN > The number of the line in the memo field returned by the MLINE() function. The
default for <line number expN> is 1, the first line.

<line length expN > The number that determines the length of a line in the memo field. <line
length expN> can be set to any number from 8 to 255. If <line length expN> is not set, the SET MEMOWIDTH
setting specifies the length of the line.

12-46 dBASE dBL Language Reference

Description

OODML

Example

See Also

NDX()

NDX()

MLINE() returns a specified line of text from a memo field. MLINE() treats the text of the memo field as if it
were wordwrapped within a display width specified by the SET MEMOWIDTH setting or by <line
length expN>.

If a word doesn't completely fit within the remainder of a line, MLINE() wraps that word and everything on the
line following it to the beginning of the next line. If the number of characters in a word is longer than the default
or specified memo field line length, MLINE() truncates the word at the end of the line and includes the
remainder of the word at the beginning of the next line.

No equivalent.

MEMLINES(), REPLACE MEMO, SET MEMOWIDTH, STORE MEMO

Syntax

Description

OODML

See Also

Returns the names of a DBF table’s open .NDX files.

NDX([<ndx expN> [, <alias>]])

<ndx expN> A number indicating which open .NDX file whose name to return.
<alias> The work area you want to check.

NDX() returns the name of the .NDX file open in the current or specified work area. .NDX files are numbered
in the order in which they were opened. The first one is number 1.

If <ndx expN> is omitted, the name of the .NDX file containing the current master index tag is returned.

NDX() includes the drive letter (and colon) in the filename. If SET FULLPATH is ON, NDX() also returns the
directory location of the .NDX file in addition to the drive and name.

If <ndx expN> is higher than the number of open .NDX files, or if you do not specify an index order number and
the master index is an index tag in an .MDX file, NDX() returns an empty string ("").

No equivalent.

DBF(), FIELD(), KEY(), MDX(),0RDER(), SET FULLPATH, SET INDEX, SET ORDER, TAG(), USE

OPEN DATABASE

Syntax

Description

Establishes a connection to a database server or a database defined for a specific directory location.

OPEN DATABASE <database name>
[LOGIN <username>/<password>]
[WITH <option string>]
[AUTOEXTERN]

<database name> The name, or alias, of the database you want to open. Database aliases are created
using the BDE Administrator.

<user name>/<password> The user name and password, separated by a slash, required to access the
database.

WITH <option string> Character string specifying server-specific information required to establish a
database server connection. For information about establishing database server connections, refer to your
Borland SQL Link documentation, and contact your network or database administrator for specific connection
information.

AUTOEXTERN Treat all stored procedures as EXTERN. This eliminates the need for the user to EXTERN
SQL any stored procedure calls. Once the database is open, the stored procedures are immediately available. For
use with Interbase and Oracle databases only.

The OPEN DATABASE command is used to establish a connection with a database defined with the BDE
Administrator. When opening a database, you need to specify whatever login parameters and database-specific

Xbase 12-47

ORDER()

OODML

See Also

information that connection requires. Typically, your network or system administrator can provide you with the
information necessary to establish connections to established databases and database servers at your site.

Use a Database object.
CLOSE..., DATABASE(), SET DATABASE, SET DBTYPE

ORDER()

Syntax

Description

OODML

Example

See Also

PACK

Returns the name of the current master index.
ORDER([<alias>])
<alias> The work area you want to check.

ORDER() returns the name of the current master index. For DBF tables, this could be either the name of an
index tag in an .MDX file, or the name of an .NDX file (the name only, no drive or extension as returned by the
NDX() function). For all other table types, the name is the name of an index tag.

ORDER() returns an empty string ("") if the table is in its natural order: either its primary key order, if it has a
primary key; or no active index.

Some routines need to use a specific index. Use ORDER() to get the name of the current master index before
switching to the desired index and then use the SET ORDER command to later restore the master index.

Check the indexName property of the Rowset object.

In this example, a function switches to a specific index tag before calling another function that creates a new
record:

PROCEDURE NewStudent
local cOrder
cOrder = order()
set order to STUDENT _ID
NewRec()
set order to (¢cOrder)

This example function assumes that the Students table is the currently selected table, which might be ordered
according to name, average test score, or some other index. This function saves the index order of the table in
the variable cOrder. At the end of the function, that index is restored with the SET ORDER command using the
parentheses as indirection operators.

The NewRec function is shown in the example for APPEND.
ALIAS(), KEY(), MDX(), NDX(), SELECT(), SET INDEX, SET ORDER, TAG(), USE

Syntax

Description

Removes all records from a DBF table that have been marked as deleted.

PACK

Use PACK to remove records from the current DBF table that were previously marked as deleted by the
DELETE command. You must open the table for exclusive use before using PACK.

After you execute a PACK command, the disk space used by the deleted records is reclaimed when the table is
closed. All open index files are automatically re-indexed after PACK is executed. (Use REINDEX to update
closed indexes.)

Use PACK with caution. Records that have been marked for deletion but not yet eliminated with PACK can be
undeleted and restored to a table using RECALL. Records eliminated with PACK are permanently lost and can't
be recovered.

SET DELETED ON provides many of the benefits of PACK without actually removing records from a table.
With SET DELETED ON, most commands function as if records marked for deletion had been eliminated from
a table.

12-48 dBASE dBL Language Reference

OODML

See Also

RECALL

Because PACK requires the exclusive use of a table, it may be difficult to find a time to PACK a table for
applications that run continuously. Also for large tables, PACK is time-consuming and requires enough disk
space to make a copy of the table. Consider recycling deleted records instead, which is quicker and safer. For an
example of how to implement record recycling, see the examples for APPEND and BLANK.

To permanently remove all records of the current table in one step, use the ZAP command.
Use the Database object’s packTable() method.
DELETE, RECALL, SET DELETED, ZAP

RECALL

Syntax

Description

OODML
Example

See Also

Restores records that were previously marked as deleted in the current DBF table.

RECALL

[<scope>]

[FOR <condition 1>]
[WHILE <condition 2>]

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

Use RECALL to undelete records that have been marked as deleted in the current DBF table with DELETE but
have not yet been removed with PACK. Executing DELETE marks the record as deleted but doesn’t physically
remove them from the table. If SET DELETED is ON (the default), these deleted records cannot be seen.
RECALL reverses this process, unmarking the records and fully restoring them to the table.

Records eliminated with PACK or ZAP are permanently removed and can't be recovered using RECALL.

When using RECALL, SET DELETED should be OFF; otherwise you will not be able to see the deleted
records you want to recall. Using RECALL on records that are not marked as deleted has no effect.

Soft deletes are not supported.
See APPEND for an example of RECALL being used in record recycling.
DELETE, PACK, SET DELETED, ZAP

RECCOUNT()

Syntax

Description

OODML

See Also

Returns the number of records in a table.
RECCOUNT [<alias>])
<alias> The work area you want to check.

RECCOUNTY() retrieves a count of a table's records from the table header, which holds information about the
table structure. In contrast, COUNT with no options yields a record count by actually counting the table's
records using the table’s current filter, key constraints, the setting of SET DELETED and so on. RECCOUNT()
includes all records, even those marked as deleted, and is always instantaneous; COUNT is not.

If no table is active in the specified work area, RECCOUNT() returns zero.

You can use RECSIZE() in combination with RECCOUNT() to determine the approximate size, in bytes, of a
table.

In some cases, the Rowset object’s rowCount() method will return the same value.

DIR, DBF(), DISKSPACE(), DISPLAY STRUCTURE, RECNO(), RECSIZE()

Xbase 12-49

RECNO()

RECNO()

Syntax

Description

OODML

See Also

For DBEF tables, returns the current record number. For all other table types, returns a bookmark of the current
position in a table.

RECNO([<alias>])
<alias> The work area you want to check.

RECNO() returns the current record number of the table in the current or a specified work area, if that table is a
DBEF table. For all other table types, RECNO() behaves like BOOKMARK(), returning a bookmark. If no table
is open in the specified work area, RECNO() returns a value of 0.

If the record pointer is at end-of-file (past the last record in the table), RECNO() returns a value that is one more
than the total number of records in the table. Therefore, RECNO() returns a value of 1 if there are no records in
the table—RECCOUNT() would return zero.

The use of BOOKMARK() is recommended instead of RECNO(). Besides returning a consistent data type
with all tables, with BOOKMARK() you can bookmark the position at the end-of-file and GO back to it.
Although RECNO() will return a record number for the end-of-file, you cannot GO to that record number,
because there actually is no record with that number.

Use the Rowset object’s bookmark() method.
BOF(), BOOKMARK(), EOF(), RECCOUNTY()

RECSIZE()

Syntax

Description

OODML

Example

See Also

Returns the number of bytes in a record of a table.
RECSIZE([<alias>])
<alias> The work area you want to check.

RECSIZE() returns the number of bytes in a record of a table in the current or specified work area. If no table is
open in the specified work area, RECSIZE() returns a value of zero.

LIST STRUCTURE and DISPLAY STRUCTURE also show the size of a table's records.
Use a loop to add up the length properties of the Field objects in the fields array.

The following example uses RECSIZE() to determine if there is enough disk space to append the records
contained in another file (which might be on a CD-ROM or other large capacity disk). The other file is opened
with the alias "OTHERFILE":

if reccount("OTHERFILE") * recsize() > diskspace()
msgbox("Insufficient disk space to append records", "Error", 48)
endif

DBF(), DIR, DISPLAY STRUCTURE, LIST STRUCTURE, RECCOUNT(), RECNO()

REFRESH

Syntax

Description

OODML

See Also

Updates data buffers to reflect the latest changes to data.
REFRESH [<alias>]
<alias> The work area to refresh.

Use REFRESH to update specified work area data buffers so that data you display reflects the latest changes
made to tables by other users.

Use the Rowset object’s refresh() method or the Query object’s requery() method.
SET REFRESH

12-50 dBASE dBL Language Reference

REINDEX

REINDEX

Syntax

Description

OODML

Example

See Also

Regenerates all open index files in the current work area.
REINDEX

Use REINDEX to manually regenerate all open indexes in the current work area. In a normal application,
indexes remain open as long as their tables are open. These indexes are automatically updated whenever there is
a change to the table, so there is no need to manually REINDEX.

You would use REINDEX if your application uses non-production .MDX files or .NDX files that are not always
open. To update these indexes, open them with the corresponding table and issue REINDEX.

You might also use REINDEX if you suspect that the index files have been damaged. REINDEX rebuilds the
entire index file from scratch.

You must have exclusive use of a table to REINDEX it.
Use the Database object’s reindex() method.

In the following example, a DBF file is generated and downloaded from a mainframe on a weekly basis,
overwriting the previous week’s file. The DBF has an .MDX file that must be manually regenerated for each
week’s download before processing the downloaded data. The beginning of the process looks like this:

use DOWNLOAD index PROCESS.MDX exclusive
reindex

set order to NAME

*-- Rest of process

INDEX, SET INDEX, SET ORDER, USE

RELATION()

Syntax

Description

OODML

See Also

Returns the link expression defined with the SET RELATION command.
RELATION(<expN> [,<alias>])

<eXpN> The number of a relation that you want to return.
<alias> The work area you want to check.

RELATION() returns a string containing the expression that links one table with another that was defined with
the SET RELATION command. You must specify the number of the relation; if the table in the current or
specified work area is linked to only one table, that <eXxpN> is the number 1. RELATION() returns an empty
string ("") if no relation is set in the <eXpN> position.

Use RELATIONY() to save the link expressions of all SET RELATION settings for later use when restoring
relations. To save the target table (the table into which you SET a RELATION), use the TARGET() function.

Check the detail Rowset object’s masterFields and masterRowset properties, or the detail Query object’s
masterSource property to determine the nature of the master-detail linkage.

ALIAS(), CREATE QUERY, CREATE VIEW, CREATE VIEW...FROM ENVIRONMENT, SELECT(),
SET RELATION, SET VIEW, SET(), TARGET()

RELEASE AUTOMEM

Syntax

Description

Clears automem variables from memory.

RELEASE AUTOMEM

Automem variables are private or public memory variables that have the same name as the fields of the
currently selected table. These variables can be created manually, or with the STORE AUTOMEM, CLEAR
AUTOMEM, or USE...AUTOMEM commands.

Xbase 12-51

RENAME TABLE

OODML

See Also

RELEASE AUTOMEM releases any private or public memory variables that have the same name as one of the
fields in the currently selected table, no matter how or for what purpose the variable was created.

Closing a table or moving to another work area doesn’t automatically release a table’s associated automem
variables. dBASE Plus doesn’t recognize a variable as an automem variable, even if it was created as an
automem variable, if it doesn't have the same name as a field in the current table. But because automem
variables are usually private variables, and private variables are automatically released when the routine that
created them is complete, there is rarely any reason to issue RELEASE AUTOMEM in an application.

The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

CLEAR AUTOMEM, RELEASE, STORE AUTOMEM, USE

RENAME TABLE

Syntax

Description

OODML

See Also

Changes the name of a specified table.

RENAME TABLE <old table name> TO <new table name>
[[TYPE] PARADOX | DBASE]

<old table name> The table you want to rename.

<new table name> The new name of the table. If you rename a table in a database, you must specify the
same database as the destination of the new table. Also, the new table name must be the same type as the old
table.

[TYPE] PARADOX | DBASE Specifies the type of table you want to rename, in case you do not specify
a file extension with <old table name>. This option overrides the current SET DBTYPE setting. The TYPE
keyword is included for readability only; it has no effect on the operation of the command.

Use the RENAME TABLE command to change the name of a table and its associated files, if any. You cannot
rename an open table, and the new table name cannot already exist in the same directory or database.

Use the Database object’s renameTable() method.
CLOSE..., COPY, COPY FILE, USE

REPLACE

Syntax

Replaces the contents of fields with data from expressions.

REPLACE

<field 1> WITH <exp 1> [ADDITIVE]

[, <field 2> WITH <exp 2> [ADDITIVE]...]
[<scope>]

[FOR <condition 1>]

[WHILE <condition 2>]

[REINDEX]

<field> WITH <exp> Designates fields to be replaced by the value of the specified expressions. Multiple
fields of a record may be changed by including additional <field n> WITH <exp n> expressions, separated by
commas.

ADDITIVE Adds text to the end of memo field text instead of replacing existing text. You can use
ADDITIVE only when the specified field is a memo field in a DBF table.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is NEXT 1, the current record only.

REINDEX Specifies that all affected indexes are rebuilt once the REPLACE operation finishes. Without
REINDEX, dBASE Plus updates all open indexes after replacing each record in the scope. When replacing

12-52 dBASE dBL Language Reference

Description

OODML

Example

REPLACE

many or all records in a table that has multiple open indexes, REPLACE executes faster with the REINDEX
option.

The REPLACE command overwrites a specified field with new data. The field you select can be any type,
including memo fields. (To replace binary or OLE fields, use REPLACE BINARY and REPLACE OLE.) The
field and the expression specified by the WITH clause must have the same data type.

When storing a long string or the contents of a memo field into a shorter character field, the data is truncated.
Use the ADDITIVE option to add a character string to the end of existing memo field text. You can leave a
blank space at the beginning of the string to provide proper spacing.

Be careful when replacing data in the key fields of the current master index, in more than one record (that is,
with the <scope>, WHILE, or FOR options).dBASE Plus automatically updates all open index files after a
REPLACE operation finishes. After replacing data that changes the value in the key field in the master index,
the record and the record pointer immediately move to the position in the index based on the new value of a key.
If replacement in the key field causes a record (and the pointer) to move down past other records that fall within
the scope or meet the specified conditions, those records are not replaced. If replacement in the key field causes
a record to move up before records that have already been replaced, those records may be replaced again.

To make replacements to an indexed table's key field, you may place the table in natural order with the SET
ORDER TO command, or use other techniques, one of which is shown in the example. Replacements in key
fields other than the key fields of the master index don't affect the order of the current index and can be made
over multiple records without complications.

When replacing a Numeric or Float field in a DBF table, the magnitude of the new value should not exceed the
integer portion of the field. For example, if the Numeric field is defined as width 4 with 1 decimal place, you
cannot have a number greater than 99.9. If so, the field contents are replaced with an approximation to the new
value in scientific notation, if it will fit; otherwise the field contents are replaced with asterisks, destroying
stored data. Scientific notation requires a field width of at least 7 characters. This condition is not an error, but
dBASE Plus will display a numeric overflow warning message in the result pane of the Command window.

Other field types that store numbers, including Long and Short integers, have a numeric range they support.
Make sure that the number you attempt to store does not exceed those ranges.

Use the alias operator in the <field> (that is, alias—>field) to REPLACE fields in tables other than the currently
selected table. You may mix fields from different tables in the same REPLACE statement, although the scope of
the command is based on the current table. If there is no relation between the current table and other tables,
traversing the current table—for example, because of an ALL scope—does not move the record pointer in the
other tables.

Assign values directly to the value properties of the Field objects in the Rowset object’s fields array (in a loop
that traverses the rowset if necessary).

The following statement updates salaries to conform to the new minimum wage, which is in the variable
nMinWage:

replace for SALARY <nMinWage SALARY with nMinWage
The following statement gives everyone a 10% raise, and two weeks (80 hours) extra vacation:
replace all SALARY with SALARY * 1.1, VACATION with VACATION + 80

The next example replaces all instances of an inadvertently assigned duplicate customer ID number with their
actual customer number.

PROCEDURE ChangeCustID(oldCust, newCust)
local cOrder
cOrder = order()
set order to CUST_ID
do while seek(oldCust)
replace CUST_ID with newCust
enddo
set order to (cOrder)

The routine uses the SEEK() function to find any records that have the old customer ID number. The number is
replaced in that record only, which moves the record into its updated position in the index. This movement
doesn’t matter because the loop uses the SEEK() function again to find another match.

The current index order is saved before the loop, and restored at the end of the routine.

Xbase 12-53

REPLACE AUTOMEM

See Also

APPEND, BLANK, BROWSE, EDIT, REINDEX, REPLACE AUTOMEM, REPLACE BINARY, REPLACE
MEMO, REPLACE OLE, SET RELATION, UPDATE

REPLACE AUTOMEM

Syntax

Description

Note:

OODML

See Also

Replaces fields in the current table that have corresponding automem variables.
REPLACE AUTOMEM

Automem variables are private or public memory variables that have the same name as the corresponding fields
of the current table. Automem variables are used to hold data that will be stored in the fields of records. You can
manipulate data stored in automem variables as memory variables rather than as field values, and you can
validate the data before storing the data to a table.

Create a set of automem variables for the fields in a table with USE... AUTOMEM, CLEAR AUTOMEM, or
STORE AUTOMEM (or create the variable manually). To add new records to a table and fill the fields with
values from corresponding automem variables, use APPEND AUTOMEM. To update the fields of existing
records with values from corresponding automem variables, use REPLACE AUTOMEM.

Use REPLACE AUTOMEM to update all the fields of a record without having to name the fields. By contrast,
with the REPLACE command, you need to name every field you want updated.

Remember that an automem variable and its corresponding field have the same name. When a command allows
an argument that could be either a field or a private or public memory variable, dBASE Plus assumes the
argument refers to a field. To distinguish the memory variable from the field, prefix the names of automem
variables with M->.

REPLACE AUTOMEM updates the current record. It can't update all records within a specified scope or all
records matching a condition, as the REPLACE command can with the options <scope>, FOR <condition>, and
WHILE <condition>.

REPLACE AUTOMEM doesn't replace field data with data from a memory variable with the same name but of
a different data type. Those variables are ignored. If a field does not have a corresponding private or public
variable with the same name, that field is left unchanged.

Read-only field type - Autoincrement

Because APPEND AUTOMEM and REPLACE AUTOMEM write values to your table, the contents of the
read-only field type, Autoincrement, must be released before using either of these commands. In the following
example, the autoincrement field is represented by "myAutolnc":

use tablel in 1

use table2 in 2

select 1 // navigate to record
store automem

release m->myAutolnc

select 2

append automem

The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

APPEND AUTOMEM, CLEAR AUTOMEM, REPLACE, STORE AUTOMEM, USE

REPLACE BINARY

Syntax

Replaces the contents of a binary field with the contents of a binary file.

REPLACE BINARY <binary field name> FROM <filename>
[TYPE <binary type user number>]

<binary field name> The binary field of the current table that is replaced by the contents of <filename>.

FROM <filename> Specifies the file to copy to the binary field in the current record. If you specify a file
without including its extension, dBASE Plus assumes a .BMP extension; however, the file may be any type.

12-54 dBASE dBL Language Reference

Description

OODML

Example

See Also

REPLACE FROM ARRAY

TYPE <binary type user number> Specifies a number that can be used to identify the type of binary
data being stored. By default, dBASE Plus attempts to detect the type of file and assigns the appropriate binary
type. Use the BINTYPE() function to retrieve the type number. The range is from 1 to 32K — 1 for user-defined
file types and 32K to 64K — 1 for predefined types (although any number may be specified within the allowable
range).

Predefined binary type

numbers Description

1to 32K -1 (32,767) User-defined file types
32K (32,768) WAV files

32K +1(32,769) Image files

Use REPLACE BINARY to copy a binary file to the current record's binary field. You can copy one binary file
to each binary field of each record in a table.

While memo fields may contain types of information other than text, binary fields are recommended for storing
images, sound, or any other binary or BLOB type data.

See class Image for a list of image types that dBASE Plus can automatically detect and display.
Use the Field object’s replaceFromFile() method. The binary type option is not supported.

The following event handler displays a dialog to pick an image file, then stores the contents of that file in a
binary field, erasing any previous contents.

PROCEDURE importlmageButton_onClick

local cFile
cFile = getfile("*.bmp", "Image file to import")
if "" # cFile

replace binary IMAG_FIELD from (cFile)
endif

GETFILE() will return an empty string if no file is selected. In the IF statement, the order of the empty string
and the variable cFile is important. If they were the other way around and SET EXACT is OFF, then the IF
statement would always be false.

The parentheses are used as indirection operators to get the name of the file from the variable. Without them,
dBASE Plus would attempt to append a file named cFile.

The binary type for an image, 32,769, is automatically assigned.

APPEND MEMO, BINTYPE(), COPY BINARY, REPLACE MEMO, REPLACE MEMO.. FROM,
REPLACE OLE, RESTORE IMAGE

REPLACE FROM ARRAY

Syntax

Transfers data stored in an array to the fields of the current table.

REPLACE FROM ARRAY <array>
[<scope>]

[FOR <condition 1>]

[WHILE <condition 2>]

[FIELDS <field list>]

[REINDEX]

<array> The name of the array that you want to transfer data from.

<scope>

FOR <condition 1>

WHILE <condition 2> The scope of the command. The default scope is REST. The dimensions and size
of <array> also controls which records are updated.

FIELDS <field list> Restricts data replacement to the fields specified by <field list>.

Xbase 12-55

REPLACE MEMO

Description

OODML

See Also

REINDEX Specifies that all affected indexes are rebuilt once the REPLACE FROM ARRAY operation
finishes. Without REINDEX, dBASE Plus updates all open indexes after replacing each record in the scope.
When replacing many or all records in a table that has multiple open indexes, REPLACE FROM ARRAY
executes faster with the REINDEX option.

Use REPLACE FROM ARRAY to transfer values from an array into fields of the current table. REPLACE
FROM ARRAY treats the columns in a one-dimensional array like a single record of fields; and treats a two-
dimensional array like a table, with the rows (the first dimension) of the array like records, and the columns (the
second dimension) like fields.

For a one-dimensional array, REPLACE FROM ARRAY will replace the first record in the command scope
that matches the specified condition. If there is no specified scope and condition, the current record is replaced.

For a two-dimensional array, REPLACE FROM ARRAY will attempt to copy each row in the array to a record
in the command scope that matches the specified condition until the end-of-scope or all rows of the array have
been copied, in which case the record pointer is left at the last record replaced. As with the REPLACE
command, be careful if are changing the values of the key fields of the current master index; see REPLACE for
details.

If the array has more columns than the table has fields, the additional elements are ignored. Similarly, if a two-
dimensional array has more rows than can be copied to the table, the additional rows are ignored.

REPLACE FROM ARRAY does not replace memo (or binary) fields; these fields should not be counted when
sizing the array, and cannot be included in the <field list>.

The data types of the array must match those of corresponding fields in the table you are replacing. If the data
type of an array element and a corresponding field don't match, an error occurs.

Use a loop to copy the elements of the array into the value properties of the Field objects in the rowset’s fields
array, nested in another loop to traverse the rowset if necessary.

APPEND FROM ARRAY, COPY TO ARRAY, REPLACE

REPLACE MEMO

Syntax

Description

OODML

Example

Copies a text file into a memo field.

REPLACE MEMO <memo field> FROM <filename>
[ADDITIVE]

<memo field> The memo field to replace.
FROM <file name> The name of the text file. The default extension is .TXT.

ADDITIVE Causes the new text to be appended to existing text. REPLACE MEMO without the ADDITIVE
option causes dBASE Plus to overwrite any text currently in the memo field.

Use the REPLACE MEMO command to insert the contents of a text file into a memo field. You may use an
alias name and the alias operator (that is, alias->memofield) to specify a memo field in the current record of any
open table.

REPLACE MEMO is identical to APPEND MEMO, except that REPLACE MEMO defaults to overwriting the
current contents of the memo field, and has the option of appending, while APPEND MEMO is the opposite.

While memo fields may contain types of information other than text, binary fields are recommended for storing
images, sound, and other user-defined binary type information. Use OLE fields for linking to OLE documents
from other Windows applications.

Use the Field object’s replaceFromFile() method.

The following event handler displays a dialog to pick a text file, then stores the contents of that file in a memo
field, erasing any previous contents.

PROCEDURE importTextButton_onClick
local cFile
cFile = getfile("*.txt", "Text file to import")
if "" # cFile
replace memo MEMO_FIELD from (cFile)

12-56 dBASE dBL Language Reference

See Also

REPLACE OLE

endif

GETFILE() will return an empty string if no file is selected. In the IF statement, the order of the empty string
and the variable cFile is important. If they were the other way around and SET EXACT is OFF, then the IF
statement would always be false.

The parentheses are used as indirection operators to get the name of the file from the variable. Without them,
dBASE Plus would attempt to append a file named cFile.

APPEND MEMO, COPY MEMO, REPLACE BINARY, REPLACE MEMO...WITH ARRAY, REPLACE
OLE

REPLACE OLE

Syntax

Description

OODML

See Also

Inserts an OLE document into an OLE field.

REPLACE OLE <OLE field name> FROM <filename>
[LINK]

<OLE field name> The field where an OLE document is inserted.

FROM <file name> The file that identifies an OLE document, including its extension. There is no default
extension.

LINK LINK stores a pointer to the OLE document. By default, dABASE Plus embeds the OLE document itself
in the specified memo field.

Use REPLACE OLE to insert the contents of an OLE document into an OLE field. You can either embed the
actual OLE document in an OLE field (the default) or access the OLE document by linking it to the OLE field.

If you link the OLE document, the OLE field contains only a reference to the OLE document. As long as the
OLE document remains in the same location, the OLE field displays the most current version of the document.

If you embed the OLE document, the OLE field contains a copy of the document. There are no links between
the field and the OLE document: therefore, any changes to the original version of the OLE document are not
reflected in the embedded document.

Use the Field object’s replaceFromFile() method. The file is embedded; you cannot link it.
CLASS OLE

RLOCK()

Syntax

Description

Locks the current record or a specified list of records in the current or specified table.
RLOCK([<list expC>, <alias>] | [<alias>])

<list expC> The list of record numbers to lock, separated by commas. If omitted, the current record is
locked.

<alias> The work area to lock.

You don't have to specify record numbers if you want to specify a value for <alias> only. However, if you have
specified record numbers, you must specify an <alias>.

Use RLOCK() to lock the current record or a list of records in any open table. If you don't pass RLOCK() any
arguments, it locks the current record in the current table. If you pass only <alias>to RLOCK(), it locks the
current record in the specified table. If RLOCK() is successful in locking all the records you specify, it returns
true; otherwise it returns false. You can lock up to 100 records in each table open at your workstation with
RLOCK().

You can view and update a record you lock with RLOCK(). Other users can view this record but can't update it.
When you lock a record with RLOCK(), it remains locked until you do one of the following:

¢ Issue UNLOCK
¢ Close the table

Xbase 12-57

ROLLBACK()

OODML

See Also

All commands that change table data cause dBASE Plus to attempt to execute an automatic record or file lock.
If dBASE Plus fails to execute an automatic record or file lock, it an error occurs. You might want to use
RLOCK() to handle a lock failure youself, instead of letting the error occur.

RLOCK() can't lock the records you specify when any of the following conditions exist:
» Another user has locked, explicitly or automatically, the current record or one of the records in <list expC>.
* Another user has locked, explicitly or automatically, the table that contains the records you’re trying to lock.

When SET REPROCESS is set to 0 (the default) and RLOCK() can't immediately lock its records, dBASE Plus
prompts you to attempt the lock again or cancel the attempt. Until you choose to cancel the function, RLOCK()
repeatedly attempts to get the record locks. Use SET REPROCESS to eliminate being prompted to cancel the
RLOCK() function, or to set the number of locking attempts.

RLOCK() is similar to FLOCK(), except FLOCK() locks an entire table. Use FLOCK(), therefore, when you
need to have sole access to an entire table or related tables—for example, when you need to update multiple
tables related by a common key—or when you want to update more than 100 records at a time.

When you set a relation in a parent table with SET RELATION and then lock a record in that table with
RLOCK(), dBASE Plus attempts to lock all child records in child tables. For more information on relating
tables, see SET RELATION.

RLOCK() is equivalent to LOCK().
Use the Rowset object’s lockRow() method.
FLOCK(), SET LOCK, SET RELATION, SET REPROCESS, UNLOCK

ROLLBACK()

Syntax

Description

OODML

See Also

Cancels the transaction by undoing all logged changes.
ROLLBACK([<database name expC>])
<database name expC> The name of the database in which to rollback the transaction.

» Ifyou began the transaction with BEGINTRANS(<database name expC>), you must issue
ROLLBACK((<database name expC>). If instead you issue ROLLBACK(), dBASE Plus ignores the
ROLLBACK() statement.

+ If'you began the transaction with BEGINTRANS(), <database name expC> is an optional ROLLBACK()
argument. If you include it, it must refer to the same database as the SET DATABASE TO statement that
preceded BEGINTRANS().

A transaction works by logging all changes. If an error occurs while attempting one of the changes, or the
changes need to be undone for some other reason, the transaction is canceled by calling ROLLBACK().
Otherwise, COMMIT() is called to clear the transaction log, thereby indicating that all the changes in the
transaction were committed and that the transaction as a whole was posted.

Since new rows have already been written to disk, rows that were added during the transaction are deleted. In
the case of DBF tables, the rows are marked as deleted, but are not physically removed from the table. If you
want to actually remove them, you can pack the table with PACK. Rows that were just edited are returned to

their saved values.

All locks made during a transaction are maintained until the transaction is completed. This ensures that no one
else can make any changes until the transaction is committed or abandoned.

For more information on transactions, sese BEGINTRANS().
Call the rollback() method of the Database object.
BEGINTRANS(), COMMIT(), SET EXCLUSIVE

12-58 dBASE dBL Language Reference

SCAN

SCAN

Syntax

Description

OODML

Steps through each record in the current table, executing specified statements on each record that meets specified
conditions.

SCAN [<scope>] [FOR <condition 1>] [WHILE <condition 2>]
[<statements>]
ENDSCAN

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

<statements> Statements to execute for each record visited.
ENDSCAN A required keyword that marks the end of the SCAN loop.

Use SCAN to process the current table record by record. With no scope options, SCAN starts with the first
record in the table in the current index order and visits all the records, stopping at the end-of-file. You may
specify a different <scope> and a WHILE condition to control the range of records, and a FOR condition that
each record must pass for the <statements> to be executed.

At the end of each loop, dBASE Plus automatically moves the record pointer forward one record in the table
before returning to the beginning of the loop; therefore, don't include a SKIP command. You may use the EXIT
command to exit out of the loop and the LOOP command to go to the next record, skipping all remaining
commands in the loop.

You may nest SCAN loops, except that you cannot nest SCAN loops for the same table.

SCAN works like a DO WHILE .NOT. EOF()...SKIP...ENDDO construct; however, with SCAN you can
specify conditions with FOR, WHILE, and <scope>. SCAN also requires fewer lines of code than DO WHILE.

When using SCAN with an indexed table, don't change the value of a field that is (or is part of) the master index
key. When you change the value of such a field, dBASE Plus repositions the record in the index file, which
might cause unintended results. For example, if you change a key field that causes its record to move to the end
of the index, that record might have the SCAN...ENDSCAN statements executed on it a second time.

If you change work areas within a SCAN loop, select the work area containing the table being scanned before
control passes back to the first statement in the SCAN loop.

This example opens a table named FOO and traverses all the records, copying the value of the character field C1
to a throw-away variable, using a SCAN loop and the OODML equivalent:

use FOO
scan

x=Cl
endscan
use

local g, r
q = new Query("select * from FOO")
r = q.rowset
if r.first()

do

x =r.fields["C1"].value

until not r.next()

endif

Of note:
* A “SELECT * FROM” query is equivalent to a plain USE command.
* A reference to the query’s rowset is assigned to another variable as shorthand. It also executes a bit quicker.

* A SCAN—without any scope qualifiers like REST or NEXT—always starts at the beginning of the table, so
a call to the first() method is needed.

 Iffirst() returns false, there’s nothing to do

Xbase 12-59

SEEK

See Also

SEEK

* A DO...UNTIL loop is used so that the navigation happens after processing the current row. Since the first()
method returned true to get into the loop, there must be at least one row to process.

* When next() returns false, you’ve hit the EOF, which terminates the loop.
DO WHILE, DO...UNTIL, FOR..NEXT, INDEX, LOCATE, SEEK, SKIP

Syntax

Description

Searches for the first record in an indexed table whose key fields matches the specified expression or expression list.
SEEK <exp> | <exp list>
<exp> The expression to search for in an index for a DBF table.

<exp list> One or more expressions, separated by commas, to search for in a simple or composite key index
for non-DBF tables.

dBASE Plus can search a table for specific information either by a sequential search of a table or by an indexed
search of the table's master index. A sequential search is similar to looking for information in a book by reading
the first page, then the second, and so on, until the information is found or all pages have been read. LOCATE
uses this method, checking each record until the information is found or the last record has been inspected.

An indexed search is similar to looking up a topic in a book index and turning directly to the appropriate page.
Once a table index is created, SEEK can use this index to quickly identify the appropriate record.

SEEK looks for the first match in the index. If a match is found, the record pointer of the associated table is
positioned at the record containing the match, and FOUND() returns true.

Use SKIP to access other records whose key fields match the index key fields or expression. SKIP advances the
record pointer one record; because of the indexed order, other matches immediately follow the first. However,
SKIP after SEEK (unlike CONTINUE after LOCATE) doesn't search for a match; it moves the record pointer
one record whether or not it finds a match. You can combine SEEK and LOCATE or SEEK and SCAN (both
with the WHILE clause) to do a quick indexed search for the first matching record before looking through or
processing all the other matches.

The SET NEAR setting determines whether dBASE Plus, after an unsuccessful SEEK, positions the record
pointer at the end-of-file or at the record in the indexed table immediately after the position at which the value
searched for would have been found. If SET NEAR is OFF (the default) and SEEK is unsuccessful, EOF()
returns true and FOUND() returns false. If SET NEAR is ON and SEEK is unsuccessful, EOF() returns false
(unless the position at which the sought value would have been found is the last record in the index), and
FOUND() returns false.

The expression you look for with SEEK must match the key expression or fields of the master index. For
example, if the master index key uses UPPER(), the search expression must also be in uppercase.

For tables that support composite key indexes based on multiple fields, specify a value for each field in the
composite key, separated by commas.

When you seek a key expression of type character, the rules established by SET EXACT determine if a match
exists. If SET EXACT is OFF (the default) only the beginning characters of the key field need to be used for
SEEK to find a match. For example, if SET EXACT is OFF, SEEK "S" will find "Sanders", or whatever the first
key value is that starts with "S". If SET EXACT is ON, the expression must be identical to the key field for a
match to exist.

SEEK and LOCATE each have their own advantages. SEEK conducts the most rapid searches; however, it
requires an indexed table and can search only for values of the key expression.

If the information for which you are searching is in an unindexed table or is not contained in the key fields of an
index, you can use LOCATE. LOCATE accepts any logical condition, which can specify any fields in the table
in any combination. For large tables, however, a sequential search using LOCATE can be slow. In such cases,
you might want to use INDEX to create a new index and then use SEEK or SEEK().

The SEEK() function works like SEEK followed by FOUND(), except that SEEK searches in the current work
area, while SEEK() can search in the current or a specified work area. However, SEEK() can only search for a
single expression; it does not support composite keys based on multiple fields. SEEK() returns true or false
depending on whether the search is successful.

12-60 dBASE dBL Language Reference

OODML

See Also

SEEK()

Use the Rowset object’s findKey() or findKeyNearest() methods.
EOF(), FOUND(), INDEX, LOCATE, SEEK(), SET EXACT, SET NEAR

SEEK()

Syntax

Description

OODML

Example

See Also

Searches for the first record in an indexed table whose keymatches the specified expression.
SEEK(<exp> [,<alias>])

<exp> The key value to search for.

<alias> The work area you want to search

SEEK() evaluates the expression <exp> and attempts to find its value in the master index of the table opened in
the current or specified work area. SEEK() returns true if it finds a match of the key expression in the master
index, and false if no match is found.

The SEEK() function combines the SEEK command and the FOUND() function, adding the ability to search in
any work area. However, SEEK() does not support composite key indexes based on multiple fields used by
non-DBF tables.

Because an index search is almost always followed by a test to see if the search was successful, when searching
DBEF tables, use SEEK() instead of SEEK and FOUND(). FOUND() will return the result of the last SEEK()
as well.

SET NEAR and SET EXACT affect SEEK() the same way they affect SEEK. See SEEK for more details.
Use the Rowset object’s findKey() or findKeyNearest() methods.

The following example uses SEEK() to prune a customer table by deleting all records that do not have any
orders.

use CUSTOMERS
use ORDERS in select() order CUST_ID
delete for .not. seek(CUST_ID, "ORDERS")

The Customers table is in the current work area while the SEEK() is performed in the Orders table.

EOF(), FOUND(), INDEX, SEEK, SET EXACT, SET NEAR

SELECT

Syntax

Description

OODML

See Also

Sets the current work area in which to open or perform operations on a table.
SELECT <alias>
<alias> The work area to select.

Use SELECT to choose a work area in which to open a table, or to specify a work area in which a table is
already open. Many commands operate on the currently selected work area only, or by default.

To select a table that is already open, its alias name is preferred over the work area number, because tables may
be opened in different work areas depending on conditions. The alias name will always select the right table (or
cause an error if the table is not opened), while the work area number may take you to the wrong table.

Each work area supports its own value of FOUND() and an independent record pointer. Changes in the record
pointer of the active work area have no effect on the record pointers of any other work areas, unless you set a
relation between the work areas with the SET RELATION command.

If the <alias> is in a variable, use the parentheses as indirection operators. For example, if xAlias is a variable
containing a work area number or alias name, use SELECT(xAlias). Otherwise, dBASE Plus will attempt select
a work area with the alias name "xAlias".

There is no concept of the "current" Query object. Use your usual object management techniques to manage
Query objects.

ALIAS(), SELECT(), SET RELATION, USE, WORKAREA()

Xbase 12-61

SELECT()

SELECT()

Syntax

Description

OODML

Example

See Also

Returns the number of an available work area or the work area number associated with a specified alias.
SELECT([<alias>])

<alias> The work area to return. (If <alias> is a work area number, there is no need to call this function,
because that number is what the function will return.)

If you do not specify an alias, SELECT() returns the number of the next available work area, a number between
1 and 225; or zero if all work areas in the current workset are being used. If you specify an alias, SELECT()
determines whether the specified alias name is already in use. If it is, SELECT() returns the work area number
that’s using the alias name; otherwise it returns zero.

Use SELECT() to locate an available work area in which to open a table, or to see if a table is already open so
that you don’t open it again.

There is no concept of the "current" Query object. Use your usual object management techniques to manage
Query objects.

It’s common practice to use SELECT() to open a table in the next available work area. This way, you don’t
have to worry about accidentally closing an open table. You then always use the alias name to refer to that table.
For example:

use CUSTOMER in select() order CUST _NAME
use ORDERS in select() order CUST_ORD

use LINEITEM in select() order ORD_LINE
select CUSTOMER

ALIAS(), DBF(), SELECT, WORKAREA()

SET AUTOSAVE

Syntax

Description

OODML

See Also

Determines if dBASE Plus writes data to disk each time a record is changed or added.
SET AUTOSAVE on | OFF

Use SET AUTOSAVE ON to reduce the chances of data loss. When SET AUTOSAVE is ON and you alter or
add a record, dBASE Plus updates tables and index files on disk when you move the record pointer. When SET
AUTOSAVE is OFF, changes are saved to disk as the record buffer is filled.

Since dBASE Plus periodically saves table changes to disk, in most situations you don't need to SET
AUTOSAVE ON. SET AUTOSAVE OFF lets you process data faster, since dBASE Plus writes your changes
to disk less often.

AUTOSAVE is always OFF. To force data to be written to disk, call the Rowset object’s flush() method in the
onSave event.

CLOSE TABLES, FLUSH

SET DATABASE

Syntax

Description

Sets the default database from which tables are accessed.
SET DATABASE TO [<database name>]
<database name> Specifies the name of the database you want to make the current database.

SET DATABASE sets the current database, which defines the default location for tables accessed by dBASE
Plus commands. Using this command, you can select from any databases previously opened with the OPEN
DATABASE command. Databases are defined using the BDE Administrator.

When you issue the SET DATABASE TO command without a database, dBASE Plus restores operation to
accessing tables in the current directory (or in the directory specified by SET PATH) instead of through a
database.

12-62 dBASE dBL Language Reference

OODML

See Also

SET DBTYPE

Assign the appropriate Database object to the Query object’s database property.
CLOSE..., DATABASE(), OPEN DATABASE, SET DBTYPE

SET DBTYPE

Syntax

Description

OODML

See Also

Sets the default table type to either Paradox or dBASE.
SET DBTYPE TO [PARADOX | DBASE]

PARADOX | DBASE Sets the default table type to a Paradox (DB) or dBASE (DBF) table. The default is
DBASE.

SET DBTYPE sets the default type of table used by commands that open or create a table. You can override this
selection by specifying a specific extension, that is, .DBF for a dBASE table or .DB for a Paradox table; or by
using the TYPE option offered by many commands.

SET DBTYPE TO specified without a DBASE or PARADOX argument returns DBTYPE to its default
(dBASE).

No equivalent.

CLOSE..., COPY TABLE, CREATE, DATABASE(), DELETE TABLE, MODIFY STRUCTURE, OPEN
DATABASE, RENAME TABLE, SET DATABASE, USE

SET DELETED

Syntax

Description

OODML

See Also

Controls whether dBASE Plus hides records marked as deleted in a DBF table.
SET DELETED ON | off

Use SET DELETED to include or exclude records marked as deleted in a DBF table. When SET DELETED is
OFF, all records appear in a table. When SET DELETED is ON, dBASE Plus excludes records that have been
marked as deleted, hiding them from most operations.

INDEX, REINDEX, and RECCOUNTY() aren't affected by SET DELETED.

If two tables are related with SET RELATION, SET DELETED ON suppresses the display of deleted records in
the child table. The related record in the parent table still appears, however, unless the parent record is also
deleted.

Soft deletes are not supported.

DELETE, DELETED(), PACK, RECALL, SET(), SET FILTER, SET RELATION

SET EXACT

Syntax

Description

Establishes the rules used to determine whether two character strings are equal.
SET EXACT on | OFF

Use SET EXACT to choose between a partial string match and an exact string match for certain Xbase DML
commands, the Array class scan() method, and the = comparison operator. The == comparison operator always
behaves like SET EXACT is ON.

When SET EXACT is OFF, partial string matches are performed. For example, SEEK("S") will find "Smith" in
an index, and "Smith"="S" evaluates to true.

When SET EXACT is ON, the two strings must match exactly, except that trailing blanks are ignored. For
example, SEEK("Smith") will find "Smith " in an index and "Smith"="Smith " will evaluate to true.

A partial string match can be thought of as a "begins with" check. For example, the SEEK() function searches
for an index key value that begins with certain characters, and the = operator checks to see if one string begins
with another string.

Xbase 12-63

SET EXCLUSIVE

See Also

In language drivers that have primary and secondary weights for characters (not U.S. language drivers but most
others), dBASE Plus compares characters by their primary weights when SET EXACT is OFF and by their
secondary weights when SET EXACT is ON. For example, when SET EXACT is OFF, and the current
language driver is German, "driicken" and "drucken" are equal.

SET NEAR

SET EXCLUSIVE

Syntax

Description

OODML

See Also

Controls whether dBASE Plus opens tables and their associated index and memo files in exclusive or shared mode.
SET EXCLUSIVE on | OFF

When you issue SET EXCLUSIVE ON, subsequent tables you open—and their associated indexes and
memos—are in exclusive mode, unless you open them with USE...SHARED. When you open a table in
exclusive mode, other users can't open, view, or change the file or any of its associated index and memo files. If
you try to open a table that another user has opened in exclusive mode, or if you try to open in exclusive mode a
table that another user has opened, an error occurs.

Exclusive use of a table is different than a file lock that you would get with FLOCK(). With a file lock, others
may have the table open and can read data, although only one user may have a file lock at any time. With
exclusive use, no one else can have the table open.

SET EXCLUSIVE OFF causes subsequent tables you open—and their associated indexes and memos—to be in
shared mode, unless you open them with USE...EXCLUSIVE. If a table in shared mode is in a shared network

directory, other users on the network with access to the directory can open, view, and change the file and any of
its associated index and memo files.

If you use SET INDEX and the table is open in exclusive mode, dBASE Plus opens the index in exclusive
mode. If the table is open in shared mode by way of an overriding USE...SHARED, dBASE Plus opens the
index in the mode specified by USE.

An index created with INDEX is opened in exclusive mode, regardless of whether the table is opened in shared
or exclusive mode and regardless of the SET EXCLUSIVE setting. After creating an index, you can open the
index in shared mode with USE...INDEX...SHARED or by issuing SET EXCLUSIVE OFF followed by SET
INDEX TO.

The following commands require the exclusive use of a table with either SET EXCLUSIVE ON or
USE...EXCLUSIVE:

* CONVERT

 DELETE TAG

» INDEX..TAG

» MODIFY STRUCTURE
« PACK

* REINDEX

« ZAP

EXCLUSIVE is always OFF. When a method like packTable() requires exclusive access to a table, the method
always attempts to open the table in exclusive mode. If the table is already open in another query, the method
will fail.

FLOCK(), INDEX, RLOCK(), SET INDEX, SET LOCK, USE

SET FIELDS

Syntax

Defines the list of fields a table appears to have.

SET FIELDS TO
[<field list> | ALL [LIKE <skeleton 1>] [EXCEPT <skeleton 2>]]

SET FIELDS on | OFF

12-64 dBASE dBL Language Reference

Description

SET FIELDS

<field list> | ALL [LIKE <skeleton 1> | EXCEPT <skeleton 2>] Adds the specified fields to the
list of fields the table appears to have. The fields list may include fields from tables open in all work areas and
may also include read-only calculated fields. The following table provides a description of SET FIELDS TO
options:

Option Description

ALL Adds all fields in the current work area to the field list

LIKE <skeleton 1> Adds all fields in the current work area whose names match <skeleton
1> to the field list

EXCEPT <skeleton 2> Adds all fields in the current work area except those whose names
match <skeleton 2> to the field list

LIKE <skeleton 1> Adds all fields in the current work area whose names are like <skeleton

EXCEPT <skeleton 2> 1> except those whose names match <skeleton 2> to the field list

When there is no field list, or SET FIELDS is OFF, operations in a work area that use all fields (by default) use
all the fields in the currently selected table. For example, if you LIST a Customer table with 10 fields and 500
records, those 10 fields are displayed.

A field list overrides this default behavior, making the table appear to have the fields you specify. This is usually
done to either:

* Restrict the fields to certain fields in the table. For example, you can make the Customer table appear to have
only a customer ID and name, hiding the other 8 fields.

* Include fields in other related tables. For example, you could set a relation to a table of sales people, and
make the Customer table appear to have the customer ID, customer name, and the name of their account
representative.

When a field list is active, it is the field list for all work areas in the workset. Because the fields in a field list
always contain the full alias and field name, the fields in the field list will always be used, even if those fields
are in another, unrelated work area. For example, suppose you create a field list with fields from the Customer
table, and then select the Vendor, which has 90 records and is not related into the Customer table. If you then
issue LIST, you will see 90 records, because the LIST command works on the current work area, but you will
see the fields from the Customer table—the fields from the same record repeated 90 times, because the two
tables are not related, and those are the values of the named fields for each record in the Vendor table.

Therefore, when you create a field list, it is usually used only for the work area in which it is created. If the field
list contains fields from other work areas, some way of synchronizing the movement of the record pointers in
those work areas, usually with SET RELATION, is required.

If there is no field list, SET FIELDS creates the specified field list and activates it. If there is a field list, whether
it’s active or not, SET FIELDS adds the specified fields to the field list, and activates it. Fields in other work
areas that are added to the field list may be referred to by their field name only, without using an alias; those
fields now appear to be fields in the current work area. The alias is still allowed, and is necessary if you have
two fields with the same name from different tables in the field list.

A field may be added to the field list more than once, although this is not recommended. For example, if you
execute SET FIELDS TO ALL twice, you will see all the fields in the current table twice. Be sure to use
CLEAR FIELDS before issuing SET FIELDS if your intent is to create a new field list, not add to an existing
field list. To specify a field in other work areas, prefix the field name with the alias name and alias operator (that
is, alias->field).

You can temporarily disable the field list with SET FIELDS OFF. To reactivate the field list, use SET FIELDS
ON. Adding fields with SET FIELDS always reactivates the field list. If you SET FIELDS ON without using
the SET FIELDS TO <field list> command, no fields are accessible. SET FIELDS TO with no fields has the
same effect as CLEAR FIELDS, deactivating and clearing the field list.

Some commands have a FIELDS option, or some way of specifying fields. You may further restrict the fields
used with this option, but you cannot reference fields that have been hidden because they have not been
included with SET FIELDS.

When a field list is active, fields that are not on the field list cannot be used in expressions. However, some
commands ignore the field list, including:

» INDEX and index expressions

Xbase 12-65

SET FILTER

» LOCATE
» SET FILTER
» SET RELATION

The fields list specified with SET FIELDS TO can include both table field names and calculated fields. The /R
option provides a setting to specify read-only access to table fields, for example:

salary/R, hours/R
To specify a calculated field, you can specify any valid expression. For example,
gross_pay = salary * hours

OODML No direct equivalent. When accessing the fields array, you may include program logic to include or exclude
specific fields.

Example This example takes a table of customers and a table of sales persons and creates a table that contains only the
customer name and the name of their sales representative.

use CUSTOMER in select()

use SALESPER in select() order SALES ID

select customer

set relation to SALES_ID into SALESPER

set fields to CUST_NAME = CUSTOMER->NAME, SALES PERS = SALESPER->NAME
copy to CUSTSALES

The field list contains two calculated fields that are used simply to assign new names to the fields from two
different tables that happen to have the same name.

Although the COPY command has a FIELDS option, it does not support calculated fields. Therefore SET
FIELDS is required for this operation.

See Also CLEAR FIELDS, FLDLIST(), SET(), SET RELATION

SET FILTER

Hides records based on a logical condition.

Syntax SET FILTER TO [<condition>]
<condition> The condition that records must meet to be seen.

Description A filter is a mechanism by which you can temporarily hide, or filter out, those records that do not match certain
criteria so that you can see only those records that do match. The criteria is expressed as a logical expression, for
example,

set filter to upper(FIRST_NAME) == "WALDO"

In this case, you would see only those records in the current table whose First name field was “Waldo”
(capitalized in any way).

The filter does not take effect until some sort of record navigation is attempted. For example, any command
with an ALL scope will attempt to start at the first record. In this case, the command will start at the first record
that matches the filter condition, and process all matching records. A SKIP command would attempt to navigate
to the next matching record, and SKIP -1 would attempt to navigate to the previous matching record. GO TOP is
often used after SET FILTER to position the record pointer on the first matching record.

Any time you attempt to navigate to a record, the record is evaluated to see if it matches the filter condition. If it
does, then the record pointer is allowed to position itself at that record and the record can be seen. If the record
does not match the filter condition, the record pointer continues in the direction it was moving to find the next
matching record. It will continue to move in that direction until it finds a match or reaches end-of-file. For
example, suppose you issue:

skip 4

If no filter is active, you would move four records forward. If a filter is active, the records pointer will move
forward until it has encountered four records that match the filter condition, and stop at the fourth. That may be
the next four records in the table, if they all happen to match, or the next five, or the next 400, or never, if there

12-66 dBASE dBL Language Reference

Note

OODML

Example

See Also

SET HEADINGS

aren’t four records after the current record that match. In that last case, the record pointer will be at the end-of-
file.

In other words, when there is no filter active, every record is considered a match. By setting a filter, you filter
out all the records that don’t match certain criteria.

You cannot use the special variables this or form in the <condition>. This is explicitly prohibited because these
special variables automatically take on the value of whatever object and form has focus (or fires an event) at any
given moment. Therefore, the filter condition will vary and quite likely be invalid. Generally speaking, you
should not use variables in a filter condition at all, because the variables may go out of scope, making the filter
condition an invalid expression. To solve these problems, use macro substitution, as shown in the example.

Many commands have scope option that includes FOR and WHILE conditions. These conditions are applied in
addition to the filter condition.

SET FILTER applies to the current work area. Each work area may have its own filter condition. To disable the
filter condition, issue SET FILTER TO with no options.

Use the rowset object’s beginFilter() and applyFilter() methods.

The following example sets a filter based on the state that is chosen from a combobox on a form:

PROCEDURE setFilter_onClick
private cState
cState = form.stateCombobox.value
set filter to STATE == "&cState"

Note the use of macro substitution inside a literal string. A private variable is used; you cannot use the macro
operator on a local variable. For example, if the variable contains the value "CA", then the macro substitution
would evaluate to:

set filter to STATE == "CA"
SET(), SET DELETED, SET KEY

SET HEADINGS

Syntax

Description

OODML

See Also

Controls the display of field names in the output of DISPLAY and LIST.
SET HEADINGS ON | off

When SET HEADINGS is ON, the output of DISPLAY and LIST includes a heading identifying the fields of
the table(s). Issue SET HEADINGS OFF before issuing DISPLAY or LIST to view the output without field-
name headings.

No equivalent.

DISPLAY, LIST

SET INDEX

Syntax

Opens index files for the current DBF table.

SET INDEX TO [<filename list> [ORDER [TAG]
<ndx filename> | <tag name> [OF <mdx filename>]]]

<filename list> Specifies the index files to open, including both NDX and .MDX indexes. The default
extension is .MDX.

ORDER [TAG] <ndx filename> | <tag name> Specifies a master index, which can be an .NDX file
or a tag name contained within an .MDX index file. The TAG keyword is for readability only; it has no effect on
the command.

OF <mdx filename> Specifies a multiple index file containing <tag name>. The default extension is
.MDX.

Xbase 12-67

SET KEY TO

Description

OODML

See Also

Use SET INDEX to open the specified NDX and .MDX files in the current work area. Open index files are
updated when changes are made to the associated table. Including an index file list when issuing USE...INDEX
is equivalent to following the USE command with the SET INDEX command.

If the first index opened with SET INDEX is an .NDX file, that index becomes the master index unless you
specify another master index with the ORDER option or the SET ORDER command. If the first index opened
with SET INDEX is an .MDX file and you don't specify the ORDER clause, no master index is defined, and
records in the table appear in record number or natural order. To specify a master index for the current table,
specify the ORDER option or use the SET ORDER command.

Before opening the indexes specified with the command, SET INDEX closes all open index files except the
production .MDX file, the index file with the same name as the current table. Specifying SET INDEX TO
without a list of indexes closes all open .NDX and .MDX files in the current work area, except for the
production index file. You can also use the CLOSE INDEX command. All indexes, including the production
.MDX file, are closed when you close the table.

The order in which you specify indexes with the SET INDEX command isn't necessarily the same as the order
dBASE Plus uses for functions like TAG(). Open indexes for a specified work area are ordered as follows:

1 All NDX index files in the order you list them in <filename list>.

2 All tags in the production .MDX file, in the order they were created. The tags are listed in order by the
DISPLAY STATUS command.

3 All tags in other open .MDX files.

The order of the open indexes remains the same until you specify another index order with the USE...INDEX or
SET INDEX commands, or you issue an INDEX command.

Assign to the Rowset object’s indexName property.

CLOSE INDEXES, INDEX, KEY(), MDX(), NDX(), ORDER(), REINDEX, SET ORDER, TAG(),
TAGNO(), TAGCOUNT(), USE

SET KEY TO

Syntax

Constrains the records in a table to those whose key field values falls within a range.

SET KEY TO
[<expl> | <exp list 1> |
RANGE
<exp2> [,] | ,<exp3> | <exp2>, <exp 3>
[EXCLUDE] |
LOW <exp list 2>] [HIGH <exp list 3>]
[EXCLUDE]]
[IN <alias>]

<expl> Shows only those records whose key value matches <exp 1>.

<exp list 1> For tables indexed on a composite (multi-field) key index, shows only those records whose
key field values match the corresponding values in <exp list 1>, separated by commas.

RANGE <exp2> [,] | ,<exp3> | <exp2>, <exp3>

LOW <exp list 2> HIGH <exp list 3> Shows only those records whose key values fall within a range.
Use RANGE for single key values and LOW/HIGH for composite keys. You may use either the RANGE clause
or LOW/HIGH, but not both in the same command. The following table summarizes how SET KEY constrains
records in the master index:

Option Description
RANGE <exp2> [,] Shows only those records whose key values are greater
LOW <exp list 2> than or equal to <exp2>/<exp list 2>

12-68 dBASE dBL Language Reference

Description

OODML

See Also

SET LOCK

Option Description

RANGE , <exp3> Shows only those records whose key values are less than or
HIGH <exp list 3> equal to <exp3>/<exp list 3>

RANGE <exp2>, <exp3> Shows only those records whose key values are greater

LOW <exp list 2> HIGH <exp list 3> than or equal to <exp2>/<exp list 2> and less than or equal
to <exp3>/<exp list 3>

EXCLUDE Excludes records whose key values are equal to <exp2>/<exp list 2> or <exp3>/<exp list 3>. If
omitted, these records are included in the range.

IN <alias> The work area in which to set the key constraint.

SET KEY TO is similar to SET FILTER; SET KEY TO uses the table’s current master index and shows only
those records whose key value matches a single value or falls within a range of values. This is referred to as a
key constraint. Because it uses an index, a key constraint is instantaneous, while a filter condition must be

evaluated for each record. SET KEY TO with no arguments removes any range of key values previously
established for the current table with SET KEY TO.

The key range values must match the key expression of the master index. For example, if the index key is
UPPER(Name), specify uppercase letters in the range expressions. In determining whether the specified range
expressions match key field expressions, SET KEY TO follows the rules established by SET EXACT. The SET
KEY TO range takes effect after you move the record pointer.

When you issue both SET KEY and SET FILTER for the same table, dBASE Plus processes only records that
are within the SET KEY index range and that also meet the SET FILTER condition.

Use the Rowset object’s setRange() method.
INDEX, KEY(), MDX(), NDX(), TAG(), SET FILTER

SET LOCK

Syntax

Description

OODML

See Also

Determines whether dBASE Plus attempts to lock a shared table during execution of certain commands that read the
table but don't change its data.

SET LOCK ON | off

Issue SET LOCK OFF to disable automatic file locking for certain commands that only read a table. This lets
other users change data in the file while you access it with read-only commands. For example, you might want
to issue SET LOCK OFF before using AVERAGE if you don't expect other users to alter the data in the table
you're using significantly. Or, you might want to issue SET LOCK OFF before processing a range of records
that other users aren't going to update.

The following commands automatically lock tables when SET LOCK is ON and don't lock tables when SET
LOCK is OFF:

* AVERAGE

+ CALCULATE

* COPY (source file)

* COPY MEMO

* COPY STRUCTURE
*+ COPY TO ARRAY

* COPY STRUCTURE [EXTENDED] (source file)
* COUNT

* SORT (source file)

- SUM

* TOTAL (source file)

dBASE Plus continues to lock records and tables automatically for commands that let you change data whether
SET LOCK is ON or OFF.

This setting is not applicable.
FLOCK(), RLOCK()

Xbase 12-69

SET MEMOWIDTH

SET MEMOWIDTH

Syntax

Description

OODML

See Also

Sets the width of memo field display or output.
SET MEMOWIDTH TO [<expN>]

<eXpN> Specifies a number from 8 to 255 that sets the width of memo field display and output. The default
is 50.

Use SET MEMOWIDTH to change the column width of memo fields during display and output, and the default
column width for the MEMLINES() and MLINE() functions. Memo fields can be displayed using the
commands DISPLAY, LIST, ?, or ??. SET MEMOWIDTH doesn't affect the display of a memo field in an
Editor control. If the system memory variable variable wrap is set to true, the system memory variables
_Imargin and _rmargin determine the memo width.

The @V (vertical stretch) picture function causes memo fields to be displayed in a vertical column when wrap
is true. When @V is specified, the pcolno system memory variable is incremented by the @V value. This lets
you change the appearance of the printed output of ? or ?? commands by using the @V function. When @V is
equal to zero, memo fields wrap within the SET MEMOWIDTH width.

This setting is not applicable.
7,77, DISPLAY, LIST, MEMLINES(), MLINE(), SET(), lmargin, rmargin, wrap

SET NEAR

Syntax

Description

OODML

See Also

Specifies where to move the record pointer after a SEEK or SEEK() operation fails to find an exact match.
SET NEAR on | OFF

Use SET NEAR to position the record pointer in an indexed table close to a particular key value when a search
does not find an exact match. When SET NEAR is ON, the record pointer is set to the record closest to the key
expression searched for but not found with SEEK or SEEK(). When SET NEAR is OFF and a search is
unsuccessful, the record pointer is positioned at the end-of-file.

The closest record is the the record whose key value follows the value searched for in the index order, toward
the end-of-file. When SET DELETED is ON or a filter is set with the SET FILTER command, SET NEAR
skips over deleted or filtered-out records in determining the record nearest the key value expression. The record
pointer will be at the end-of-file if search value comes after the key value of the last record in the index order.

With SET NEAR ON, FOUND() and SEEK() return true for an exact match or false for a near match. With
SET NEAR OFF, FOUND() and SEEK() return false if no match occurs.

Use either the findKey() or findKeyNearest() method of the Rowset object.
EOF(), FOUND(), SEEK, SEEK(), SET DELETED, SET FILTER

SET ODOMETER

Syntax

Description

Specifies how frequently dBASE Plus updates and displays record counter information for certain commands in the
status bar.

SET ODOMETER TO [<expN>]

<exXpN> The interval at which dBASE Plus updates the record counter. <expN> must be at least 1 and is
truncated to an integer. If omitted, the default value, 100, is used.

Use SET ODOMETER to specify how frequently dBASE Plus updates and displays record counter information
during the execution of certain commands, such as AVERAGE, CALCULATE, COUNT, DELETE,
GENERATE, INDEX, RECALL, SUM, and TOTAL. If the status bar is not enabled, SET ODOMETER has no
effect. The status bar is enabled through _app.statusBar.

12-70 dBASE dBL Language Reference

OODML

SET ORDER

If SET TALK is OFF, dBASE Plus does not display any record counter information in the status bar, regardless
of the SET ODOMETER setting. If SET TALK is ON, use SET ODOMETER with a relatively high value to
improve performance.

Use the Session object’s onProgress event.

SET ORDER

Syntax

Description

OODML

See Also

Specifies an open index file or tag as the master index of a table.
SET ORDER TO [[TAG] <tag name> [OF <mdx>] [NOSAVE]]

[TAG] <tag name> The name of an index tag in an open .MDX file or the name of an open .NDX file
(without the file extension). The TAG keyword is included for readability only; TAG has no affect on the
operation of the command.

OF <mdx> The open .MDX file that contains <tag name>. Use this option when two open .MDX files have
a tag with the same name. The default extension is .MDX.

If you use the <tag name> option but don't specify <mdx>, dBASE Plus searches for the named index in the list
of open indexes.

NOSAVE Used to delete a temporary index after the associated table is closed. If you decide after choosing
this option that you want to keep the index, open the index again using SET ORDER without the NOSAVE
option, before you close the table.

Use SET ORDER to change the master index of a table without having to close and reopen indexes. You can
choose the master index from the list of .NDX files or MDX index tags opened with the SET INDEX or
USE...INDEX commands.

If you specify SET ORDER without specifying an index, the table appears in primary key order, if the table has
a primary key; or unindexed, in record number order.

Assign the tag name to the Rowset object’s indexName property.

CLOSE INDEXES, INDEX, KEY(), MDX(), NDX(), ORDER(), REINDEX, SET INDEX, TAG(),
TAGCOUNT(), TAGNO(), USE

SET REFRESH

Syntax

Description

OODML

See Also

Determines how often dBASE Plus refreshes the workstation screen with table information from the server.
SET REFRESH TO <expN>

<exXpN> A time interval expressed in seconds from 0 to 3,600 (1 hour), inclusive. The default is 0, meaning
that dBASE Plus doesn’t update the screen.

Use SET REFRESH to set a refresh interval when working with shared tables on a network. Then, when you use
BROWSE or EDIT to edit shared tables, your screen refreshes at the interval you set, showing you changes
made by other users on the network to the same tables.

If another user has a lock on the file or records you're currently viewing, the file or records won't be refreshed
until that user releases the lock.

Use a Timer object to periodically call the Rowset object’s refreshControls() method.
BROWSE, EDIT, FLOCK(), REFRESH, RLOCK()

SET RELATION

Syntax

Links two or more open tables with common fields or expressions.

SET RELATION TO
[<key exp list 1> INTO <alias 1> [CONSTRAIN]

Xbase 12-71

SET RELATION

Description

OODML

Example

[, <key exp list 2> INTO <alias 2> [CONSTRAIN]] ...
[ADDITIVE]]

<key exp list 1> The key expression or field list that is common to both the current table and a child table
and links both tables. The child table must be indexed on the key field and that index must be the master index
in use for the child table.

INTO <alias> <alias> specifies the child table linked to the current table.

<key exp list 2> INTO <alias 2> ...] Specifies additional relationships from the current table into other
tables.

CONSTRAIN Limits records processed in the child table to those matching the key expression in the parent
table.

ADDITIVE Adds the new relation to any existing ones. Without ADDITIVE, SET RELATION clears
existing relations before establishing the new relation.

Use SET RELATION to establish a link between open tables based on common fields or expressions.

Before setting a relation, open each table in a separate work area. When a relation is set, the table in the current
work area is referred to as the parent table, and a table linked to the parent table by the specified key is called a
child table. The child table must be indexed on the fields or expressions that link tables and that index must be
the master index in use for the child table.

A relation between tables is usually set through common keys specified by <key exp list>. The relating
expression can be any expression derived from the parent table that matches the keys of the child table master
index. The keys may be a single field or a set of concatenated fields contained in each table. The fields in each
table can have different names but must contain the same type of data. For Paradox and SQL tables, you can
specify single or composite index key fields.

SET RELATION clears existing relations before establishing a new one, unless you use the ADDITIVE option.
SET RELATION TO without any arguments clears existing relations from the current table without establishing
any new relations.

The CONSTRAIN option restricts access in the child table to only those records whose key values match
records in a parent table. This is the same as using SET KEY TO on the key field of the child table. As a result,
you can't use SET KEY TO and CONSTRALIN at the same time. If a SET KEY TO operation is in effect on the
child table when you specify CONSTRAIN with SET RELATION, dBASE Plus returns a "SET KEY active in
alias" message. If the CONSTRAIN option is in effect when SET KEY TO is specified, dBASE Plus returns the
error "Relation using CONSTRAIN." You can use SET FILTER with the CONSTRAIN option, if you want to
specify additional conditions to qualify records in a child table.

More than one relation can be defined from the same table. Also, more than one relation can be set from the
same parent table if you use the ADDITIVE option or if you specify multiple relations with the same SET
RELATION command. You can also establish additional relations from a child table, thus defining a chain of
relations. Cyclic relations aren't allowed; that is, dBASE Plus returns an error if you attempt to define a relation
from a child table back into its parent table.

When a relation is set from a parent table to a child table, the relation can be accessed only from the work area
that contains the parent table. To access fields of the child table from the current work area, use the alias
operator(->) and prefix the name of fields in the child table by its alias name.

If a matching record can't be found in a linked table, the linked table is positioned at the end-of-file, and EOF()
in the child alias returns true while FOUND() returns false. The setting of SET NEAR does not affect
positioning of the record pointer in child tables.

When a SET SKIP list is active, the record pointer is advanced in each table, starting with the last work area in
the relation chain and moving up the chain toward the parent table.

Use the Rowset object’s masterFields and masterRowset properties, or the Query object’s masterSource
property.

The first example links a table of reviews to a table of authors. This is a one-to-one link that can be used to get
the name of the lead author (stored in the Authors table) for each review:

use REVIEWS && Open in current work area

use AUTHORS in select() order AUTH_ID && Open in next available work area
set relation to LEAD AUTH into AUTHORS && Link Reviews to Authors

12-72 dBASE dBL Language Reference

See Also

SET REPROCESS

The Reviews table has a Lead auth field that contains the ID of the lead author for each review. The Authors
table identifies each author with an ID field named Auth _id. The Auth id field is indexed by itself, so the index
has the same name.

The following example is a one-to-many link between a customer table and an orders table that shows only
those customers that have made orders in the past:

use CUSTOMER

use ORDERS in select() order CUST_DATE
set relation to CUST ID into ORDERS

set filter to found("ORDERS")

The Customer table has a Cust_id field that contains the customer ID. The same field is a foreign key in the
Orders table. The Cust_date index is an expression index created with:

index on CUST _ID + dtos(ORDER_DATE) tag CUST DATE
The SET FILTER command shows only those Customers that have a record in the Orders table.

FOUND(), SELECT, SET SKIP, SKIP

SET REPROCESS

Syntax

Description

OODML

See Also

Specifies the number of times dBASE Plus tries to lock a file or record before generating an error or returning false.
SET REPROCESS TO <expN>

<exXpN> A number from -1 to 32,000, inclusive, that is the number of times for dBASE Plus to try get a
lock. The default is 0; both 0 and -1 have a special meaning, described below.

Use SET REPROCESS to specify how many times dBASE Plus should try to get a lock before giving up.
RLOCK() and FLOCK() return false if the lock attempt fails. For automatic locks, failure to get a lock causes
an error. SET REPROCESS affects RLOCK(), and FLOCK(), and all commands and functions that
automatically attempt to lock a file or records.

SET REPROCESS TO 0 causes dBASE Plus to display a dialog that gives you the option of cancelling while it
indefinitely attempts to get the lock.

Setting SET REPROCESS to a number greater than 0 causes dBASE Plus to retry getting a lock the specified
number of times without prompting.

SET REPROCESS TO -1 causes dBASE Plus to retry getting a lock indefinitely, without prompting.
Set the Session object’s lockRetryCount property.
FLOCK(), ON ERROR, ON NETERROR, RETRY, RLOCK(), SET LOCK

SET SAFETY

Syntax

Description

Determines whether dBASE Plus asks for confirmation before overwriting a file or removing records from a table
when you issue ZAP.

SET SAFETY ON | off

When SET SAFETY is ON, dBASE Plus prompts for confirmation before overwriting a file or removing
records from a table when you issue ZAP. If you want your application to control the interaction between
dBASE Plus and the user with regard to overwriting files, issue SET SAFETY OFF in your program.

SET SAFETY affects the following commands:

* Commands using a TO FILE option
+ COPY

* COPY FILE

* COPY STRUCTURE [EXTENDED]
* CREATE/MODIFY commands

» INDEX

* SAVE

Xbase 12-73

SET SKIP

» SET ALTERNATE TO
* SORT

» TOTAL

» UPDATE

« ZAP

SET SAFETY also affects the PUTFILE() function
Note SET TALK OFF does not suppress SET SAFETY warnings.

OODML SAFETY is always OFF.
See Also SET TALK

SET SKIP

Specifies how to advance the record pointer through records of linked tables.

Syntax SET SKIP TO [<aliasl> [, <alias2>]...]
<alias1> [, <alias2>] ... The work areas defined in the relation.

Description SET SKIP works only with tables that have been linked with the SET RELATION command. Used together, the
SET RELATION and SET SKIP commands determine the way in which the record pointer moves through
parent and child tables.

Use SET SKIP when you set a relation from a parent table containing unique key values to child tables that
contain duplicate key values, that is, a one-to-many relationship. SET SKIP causes commands that move the
record pointer to move the pointer to every record with matching key values in a child table before moving the
record pointer in the parent table. If you define a chain of relations and use SET SKIP to move from one table to
the next down the chain, the record pointer moves to every record in the last child table before the pointer moves
in its parent table.

You do not need to specify the root (parent) alias in the SET SKIP list. SET SKIP TO with no options cancels
any previously defined SET SKIP behavior.

OODML Override the next() method of the detail table. For example:

function next(nArg)
if argcount() < 1

nArg =1 // Skip one row forward by default
endif
if not rowset::next(nArg) // Navigate as far as specified, but

/I if end of detail rowset
this.masterRowset.next(sign(nArg)) // Move forward or backward in master

ifnArg <0 // If navigating backwards
this.last() /I Go to last matching detail row
endif
endif

Then navigate by calling next() in detail rowset—not the master rowset, as you would with SET SKIP.
See Also SET RELATION, SKIP

SET UNIQUE

Determines if unique indexes are always created.

Syntax SET UNIQUE on | OFF

Description When SET UNIQUE is ON, the INDEX command always creates the index as if the UNIQUE option is
specified. The UNIQUE option has different meanings for different table types. For DBF tables, it allows
records with duplicate key values to be stored in the table, but only shows the first record with that key value.

12-74 dBASE dBL Language Reference

OODML

See Also

SET VIEW

For DB and SQL tables, it prevents records with duplicate key values from being stored in the table; attempting
to do so causes a key violation error. This type of index is referred to as a distinct index. You can create the
same kind of index for DBF tables by using the DISTINCT option.

Whenever you reindex an index file, dBASE Plus maintains the index in the same way it was created. For more
information on unique and distinct indexes, see the INDEX command.

No equivalent.

INDEX, REINDEX, SET(), SET INDEX, SET ORDER, UNIQUE(), USE

SET VIEW

Syntax

Description

OODML

See Also

SKIP

Opens a previously defined .QBE query or .DBF table.
SET VIEW TO <filename>

<filename> The query or view file containing the commands to define the current working environment or
view. If you specify a file without including its extension, dBASE Plus looks for a .QBE query or a .DBF table.

Use SET VIEW to change the working environment of the current workset to one that was previously defined
by CREATE QUERY or CREATE VIEW. The working environment includes open tables and index files, all
relations, the active fields list, and filter conditions.

Use a DataModule object.
CREATE QUERY, CREATE VIEW

Syntax

Description

OODML

See Also

SORT

Moves the record pointer in the current or specified work area.
SKIP [<expN>] [IN <alias>]

<eXpN> The number of records dBASE Plus moves the record pointer forward or backward in the table
open in the current or specified work area. If <expN> evaluates to a negative number, the record pointer moves
backward. SKIP with no <expN> argument moves the record pointer forward one record.

IN <alias> The work area in which to move the record pointer.

Use SKIP to move the record pointer relative to its current position, in the current index order, if any.

If you issue a SKIP command when the record pointer is at the last record in a table, the record pointer moves to
the end-of-file; EOF() returns true. Issuing any additional SKIP commands (that move forward) causes an
error. Similarly, if you issue a SKIP -1 command when the record pointer is at the first record of a file, BOF()
returns true, and a subsequent negative SKIP command cause an error.

SKIP IN <alias> lets you advance the record pointer in another work area without selecting that work area first
with the SELECT command.

If you are using SKIP in a loop to visit all the records in a table, consider using a SCAN loop instead.
Call the next() method of the desired Rowset object.
BOF(), EOF(), GO, SCAN, SET SKIP

Syntax

Copies the current table to a new table, arranging records in the specified order.

SORT TO <filename> [[TYPE] PARADOX | DBASE]
ON <field 1> [/A | /D [/C]]
[,<field 2> [/A| /D [/C]]...]
[<scope>]
[FOR <condition 1>]

Xbase 12-75

SORT

Description

OODML

Example

[WHILE <condition 2>]
[ASCENDING | DESCENDING]

<filename> The new table file to copy and sort the current table's records to.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

ON <field 1> Makes <field 1> the first field of <filename>and sorts <filename> records by the values in
<field 1>, which can be any data type except binary, memo, or OLE.

/A Sorts records in ascending order (A to Z; 1 to 9; past to future (blank dates come after non-blank dates);
false then true). Since this is the default sort order, include /A for readability only.

/D Sorts records in descending order.

/C Removes the distinction between uppercase and lowercase letters. When you specify both A and C, or both
D and C, use only one forward slash (for example, /DC).

<field 2>[/A | /D [IC]] ... Sorts on a second field so that the new table is ordered first according to <field
1>, then, for identical values of <field 1>, according to <field 2>. If a third field is specified, records with
identical values in <field 1> and in <field 2> are then sorted according to <field 3>. The sorting continues in this
way for as many fields as are specified.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

ASCENDING Sorts all specified fields for which you don't include a sort order in ascending order. Since
this is the default, include ASCENDING for readability only.

DESCENDING Sorts all specified fields for which you don't include a sort order in descending order.

The SORT command creates a new table in which the records in the current table are positioned in the order of
the specified key fields.

SORT creates a temporary index file. During the sorting process, your disk must have space for this temporary
index file and the new table file.

SORT differs from INDEX in that it creates a new table rather than provide an index to the original table.
Although using SORT is generally not as efficient as using an index to organize tables, you might want to use
SORT for the following applications:

» To archive an outdated table and store it in a sorted order

* To create a table that is a sorted subset of an original table

* To maintain a small table that needs to be sorted in only one order

e To create an ordered table where record numbers are sequential and contiguous
No equivalent.

Suppose you have a large table and you want to delete any duplicate records, records that have the same value in
6 important fields. The easiest way to remove duplicate records in general is to index the table so that all
duplicate records are next to each other. Unfortunately, some of the 6 important fields are large; the resulting the
index key would be larger than the allowed limit, 100 characters. So you sort the table to a temporary table
instead.

use THETABLE
sort to SORTTEMP on FIELD1, FIELD2, FIELD3, FIELD4, FIELDS, FIELD6
use SORTTEMP
set fields to KEY = FIELD1 + FIELD2 + FIELD3 + FIELD4 + FIELD5 + FIELD6
local cKey
do while .not. eof()
cKey =KEY
skip
delete while KEY == cKey
enddo
clear fields

12-76 dBASE dBL Language Reference

See Also

STORE AUTOMEM

SET FIELDS is used to create a temporary calculated field to make it easier to compare the important field
values for each record.

INDEX

STORE AUTOMEM

Syntax

Description

OODML

See Also

SUM

Stores the contents of all the current record’s fields to a set of memory variables.
STORE AUTOMEM

STORE AUTOMEM copies every field of the current record to a set of matching automem variables. Each
memory variable has the same name, length, and data type as one of the fields. dBASE Plus creates these
memory variables if they don't already exist.

Automem variables let you temporarily store the data from table records, manipulate the data as memory
variables rather than as field values, and then return the data to the table (using REPLACE AUTOMEM or
APPEND AUTOMEM).

STORE AUTOMEM is one of three commands that create automem variables. The other two, USE <filename>
AUTOMEM and CLEAR AUTOMEM, initialize blank automem variables for the fields of the current table.

When referring to the value of automem variables you need to prefix the name of an automem variable with
M-> to distinguish the variable from the corresponding fields, which have the same name. The M-> prefix is not
needed during variable assignment; the STORE command and the = and := operators do not work on Xbase
fields.

The Rowset object’s contains an array of Field objects, accessed through its fields property. These Field objects
have value properties that may be programmed like variables.

CLEAR AUTOMEM, REPLACE, USE

Syntax

Description

Computes a total for specified numeric fields in the current table.

SUM [<exp list>]

[<scope>]

[FOR <condition 1>]

[WHILE <condition 2>]

[TO <memvar list> | TO ARRAY <array>]

<exp list> The numeric fields, or expressions involving numeric fields, to sum.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

TO <memvar list>| TO ARRAY <array> Initializes and stores sums to the variables (or properties) of
<memvar list> or stores sums to the existing array <array>. If you specify an array, each field sum is stored to
elements in the order in which you specify the fields in <exp list>. If you don't specify <exp list>, each field sum
is stored in field order. <array> can be a single- or multidimensional array; the array elements are accessed via
their element numbers, not their subscripts.

The SUM command computes the sum of numeric expressions and stores the results in specified variables or
array elements. If you store the values in variables, the number of variables must be exactly the same as the
number of fields or expressions summed. If you store the values in an array, the array must already exist, and the
array must contain at least as many elements as the number of summed expressions.

If SET TALK is ON, SUM also displays its results in the result pane of the Command window. The SET

DECIMALS setting determines the number of decimal places that SUM displays. Numeric fields in blank
records are evaluated as zero. To exclude blank records, use the ISBLANK() function in defining a FOR
condition. EMPTY () excludes records in which a specified expression is either 0 or blank.

Xbase 12-77

TAG()

OODML

See Also

TAG()

SUM is similar to TOTAL, which operates on an indexed or sorted table to create a second table containing the
sums of the numeric and float fields of records grouped on a key expression.

Loop through the rowset to calculate the sum.

AVERAGE, CALCULATE, COUNT, TOTAL

Syntax

Note

Description

OODML
Example

See Also

Returns the name of an open index.
TAG([<.mdx filename expC>,] [<index number expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.

Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters
shift forward one; the second parameter becomes the first parameter, and so on.

TAG() returns the name of the specified index, either:
* The tag name of an index in an .MDX file, or
¢ The name of an .NDX file, without the file extension.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX.

If you do not specify an index tag, TAG() returns the name of the current master index tag, or an empty string if
there is no master index.

If the specified .MDX file or index tag does not exist, TAG() returns an empty string.
No equivalent.
See MDX()

DBF(), DISPLAY STATUS, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET ORDER,
TAGCOUNT(), TAGNO(), USE

TAGCOUNT()

Syntax

Description

OODML

Returns the number of active indexes in a specified work area or .MDX index file.
TAGCOUNT([<.mdx filename> [,<alias>]])

<.mdx filename expC> The .MDX file you want to check. The .MDX must be opened in the specified
work area.

<alias> The work area you want to check.

TAGCOUNT() returns the total number of open indexes or the number of index tag names in a specified .MDX
file. TAGCOUNT() returns 0 if there are no indexes or index tags open for the current or specified work area,
or if the . MDX index file specified with <.mdx filename expC> does not exist. If you do not specify an . MDX
file name, TAGCOUNTY() returns the total number of indexes in the specified work area: the number of open
NDX files, plus the total number of tags in all open .MDX files. If you do not specify an alias, TAGCOUNT()
returns the total number of indexes in the current work area.

No equivalent.

12-78 dBASE dBL Language Reference

See Also

TAGNO()

DBF(), DISPLAY STATUS, KEY(), MDX(), NDX(), ORDER(), SET INDEX, SET ORDER, TAG(),
TAGNO(), USE, WORKAREA()

TAGNO()

Syntax

Description

OODML

See Also

Returns the index number of the specified index.
TAGNO([<tag name expC> [,<.mdx filename expC> [,<alias>]]])

<tag name expC> The name of the index tag that you want to return the position of. If you don't specify a
tag name, TAGNO() returns the position of the current master index.

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<alias> The work area you want to check.

TAGNO() returns a number that indicates the position of the specified index name in the list of open indexes in
the current or specified work area. The order of indexes is determined by the order in which they were opened
with the USE or SET INDEX commands.

If you don't specify a tag name, TAGNO() returns the number of the master index. If you don't specify an
.MDX file name, TAGNO() searches the list of open index files in the specified work area, including .NDX
files. If you don't specify an alias, TAGNO() operates on the list of open indexes in the current work area.

TAGNO() returns zero if the specified index tag or .MDX file does not exist.

Use TAGNO() to get the index number of an index when you know the tag name for functions like
DESCENDING(), FOR(), KEY(), and UNIQUE().

No equivalent.

DBF(), DESCENDING(), DISPLAY STATUS, FOR(), KEY(), MDX(), NDX(), ORDER(), SET INDEX,
SET ORDER, TAG(), TAGCOUNT(), UNIQUE(), USE

TARGET()

Syntax

Description

OODML

See Also

TOTAL

Returns the name of a table linked with the SET RELATION command.
TARGET(<expN> [,<alias>])

<eXpN> The number of the relation that you want to check.
<alias> The work area you want to check.

TARGET() returns a string containing the name of the child tables that are linked to a parent table by the SET
RELATION command. You must specify the number of the relation; if the table in the current or specified work
area is linked to only one table, that <expN> is the number 1. TARGET() returns an empty string ("") if no
relation is set in the <expN> position.

Use TARGET() to save the link tables of all SET RELATION settings for later use when restoring relations. To
save the link expression, use the RELATION() function.

No equivalent. The masterSource and masterRowset properties contain references to the parent query or rowset;
TARGET() returns the names of the child tables.

CREATE, CREATE VIEW...FROM ENVIRONMENT, DISPLAY STATUS, RELATION(), SET(), SET
RELATION, SET VIEW

Creates a table that stores totals for specified numeric fields of records grouped by common key values.

Xbase 12-79

UNIQUE()

Syntax

Description

OODML

Example

See Also

TOTAL ON <key field> TO <filename> [[TYPE] PARADOX | DBASE]
[<scope>]

[FOR <condition 1>]

[WHILE <condition 2>]

[FIELDS <field list>]

<key field> The name of the field on which the current table has been indexed or sorted.
TO <filename> The table to create.

[TYPE] PARADOX | DBASE Specifies the type of table you want to create, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

<scope>
FOR <condition 1>
WHILE <condition 2> The scope of the command. The default scope is ALL.

FIELDS <field list> Specifies which numeric and float fields to total. If you don't include FIELDS,
dBASE Plus totals all numeric and float fields.

Use TOTAL to total the value of numeric fields in a table and create a second table to store the results. The
numeric fields in the table storing the results contain totals for all records that have the same key field in the
original table.

The current table must be either indexed or sorted on the key field. All records with the same key field become
a single record in the table storing the result totals. All numeric fields appearing in the fields list contain totals.
All other fields contain data from the first record of the set of records with identical keys.

To limit the fields that are created in the new file, or to group on more than one key field, use SET FIELDS as
shown in the example.

TOTAL is similar to SUM, except that SUM operates on an indexed or unindexed table, returning a sum for all
records of each numeric field. SUM doesn't create another table, but stores the results to memory variables or an
array.

No equivalent.

Suppose you’re totaling licensee fee revenue for a county, and you want totals for each city, for each different
fee category. First you create an index on the city and fee category:

index on CITY + FEE_CAT tag CITY_FEE
Then you use SET FIELDS to create a calculated key field based on the two fields on which you can TOTAL:

set fields to CITY FEE = CITY + FEE_CAT
set fields to CITY, FEE_CAT, LIC_PAID
total on CITY_FEE to CITY_PAID

Even though the composite field, which will appear in the result table, has the city and fee category, the city and
fee category fields are included in the field list so that they will appear in the result table as separate fields. The
field containing the license fee paid is also included in the field list, otherwise there would be nothing to total.

AVERAGE, CALCULATE, COUNT, SUM

UNIQUE()

Syntax

Indicates if a specified index ignores duplicate records.
UNIQUE([<.mdx filename expC>,] [<index position expN> [,<alias>]])

<.mdx filename expC> The .MDX file that contains the index tag you want to check. The .MDX must
be opened in the specified work area. If omitted, all open indexes, including the production .MDX file, are
searched.

<index position expN> the numeric position of the index tag in the specified .MDX file, or the position
of the index in the list of open indexes.

<alias> The work area you want to check.

12-80 dBASE dBL Language Reference

Note

Description

OODML
Example

See Also

UNLOCK

Unlike most functions, the first parameter is optional. If you omit the first parameter, the remaining parameters
shift forward one; the second parameter becomes the first parameter, and so on.

UNIQUE() returns true if the index tag specified by the <index position expN> parameter was created with the
UNIQUE keyword or with SET UNIQUE ON; otherwise, it returns false.

The index must be referenced by number. If you do not specify an .MDX file to check, index numbering in the
list of open indexes is complicated if you have open .NDX indexes or you have open non-production .MDX
files. For more information on index numbering, see SET INDEX. Either way, it is often easier to reference an
index tag by name by using the TAGNO() function to get the corresponding position number.

If you do not specify an index tag, UNIQUE() checks the current master index tag and returns false if there is
no master index.

If the specified .MDX file or index tag does not exist, UNIQUE() returns false.
No equivalent.
See MDX()

DESCENDING(), FOR(), INDEX, KEY(), MDX(), NDX(), ORDER(), SET UNIQUE, TAG(),
TAGCOUNT(), TAGNO(), WORKAREA()

UNLOCK

Syntax

Description

OODML

See Also

Releases all explicit locks.

UNLOCK [ALL | IN <alias>]

ALL Releases all explicit locks in all work areas in the current workset.
IN <alias> Releases all explicit locks in the specified work area.

Use UNLOCK to unlock file locks you obtained with FLOCK(), or to unlock record locks you obtained with
RLOCK() or LOCK(). Issue UNLOCK at the same workstation as the one at which you issued the FLOCK(),
RLOCK(), and LOCK() functions. UNLOCK can't release locks obtained through other workstations, and
does not release automatic file and record locks.

When you set a relation from parent table to child tables with SET RELATION and then unlock the parent table
or records in the parent table with UNLOCK, dBASE Plus also unlocks child tables or records. For more
information on relating tables, see SET RELATION.

Use the Rowset object’s unlock() method.
FLOCK(), RLOCK(), SET RELATION

UPDATE

Syntax

Replaces data in the specified fields of the current table with data from another table.

UPDATE ON <key field> FROM <alias>
REPLACE <field 1> WITH <exp 1>

[, <field 2> WITH <exp 2>...]
[RANDOM]
[REINDEX]

<key field> The key field that is common to both the current table and the table containing the updated
information.

FROM <alias> The work area that provides updates to the current table.

REPLACE <field 1> The field in the current table to be updated with data from the table specified by
FROM <alias>.

WITH <exp 1> The expression to store in field <field 1>. Use the FROM table’s alias name and the alias
operator (that is, alias->field) to refer to field values in the FROM table.

Xbase 12-81

USE

Description

OODML

Example

See Also

USE

[,<field n> WITH <exp n>...] Specifies additional fields to be updated.

RANDOM Specifies the FROM table is neither indexed nor sorted. (The current table must be indexed on
the key field common to both tables.)

REINDEX Rebuilds open indexes after all records have been updated. Without REINDEX, dBASE Plus
updates all open indexes after updating each record. When the current table has multiple open indexes or
contains many records, UPDATE executes faster with the REINDEX option.

The UPDATE command uses data from a specified table to replace field values in the current table. It makes the
changes by matching records in the two files based on a single key field.

The current table must be indexed on the field in the key field. Unless the RANDOM option is used, the table in
the specified work area should also be indexed or sorted on the same field. The key fields must have identical
names in the two tables.

UPDATE works by traversing the FROM table, finding the matching record in the current table (the current
table must be indexed or sorted so that the match can be found quickly), and executing the REPLACE clause. If
there is no match for a record in the FROM table, it is ignored. If there are multiple records in the FROM table
that match a single record in the current table, all the replacements will be applied. For a simple REPLACE
clause, only the last one will appear to have taken effect.

SET EXACT affects the matching, so if you are using a language driver with both primary and secondary
weights (not U.S. language drivers but most others) you should have SET EXACT ON.

Use the update() method of an UpdateSet object. Unlike the UPDATE command, the update() method updates all,
rather than selected, fields in a row.

Suppose you have a list of students and you receive an update file containing their new grade point averages.
You can use the UPDATE command to update your list of students:

use STUDENTS order STU_ID
use ? alias UPDATES
update on STU_ID from UPDATES replace GPA with UPDATES->GPA RANDOM

The ? option in the USE command displays a dialog box from which you can pick the new file. The file is
always opened with the alias UPDATES.

APPEND FROM, REPLACE, SELECT, SET RELATION

Syntax

Opens the specified table and its associated index and memo files, if any.

USE
[<filenamel> [[TYPE] PARADOX | DBASE]
[IN <alias>]
[INDEX <filename2> [, <filename3> ...]]
[ORDER [TAG] <.ndx filename> |
<tag name> [OF <.mdx filename>]]
[AGAIN]
[ALIAS <alias name>]
[AUTOMEM]
[EXCLUSIVE | SHARED]
[NOSAVE]
[NOUPDATE]]

<filename 1> The table you want to open.

[TYPE] PARADOX | DBASE Specifies the type of table you want to open, if <filename> does not
include an extension. This option overrides the current SET DBTYPE setting. The TYPE keyword is included
for readability only; it has no effect on the operation of the command.

IN <alias> The work area in which to open the table. You can specify the work area that is being used by
another table, in which case the other table is closed first.

12-82 dBASE dBL Language Reference

Description

USE

INDEX <filename2> [, <filename3> ...] Applicable to DBF indexes only. (Indexes on other table
types are specified by the ORDER clause.) Opens up to 100 individual index files for the specified table, which
can include single (.NDX) and multiple index file (MDX) names and wildcards.

ORDER [TAG] <tag name> Makes the <tag name> index file the master index.

If you don't include the ORDER clause and the first file name after INDEX is a single index .NDX file, the
single index file is the master index. If you don't include ORDER and the first file name after INDEX is a
multiple index .MDX file, the table is in natural order. If the table has a primary key index, it is used; otherwise
the table is unordered.

OF <.mdx filename> The .MDX file that includes <tag name>. Without OF <filename>, dBASE Plus
searches for <tag name> in the table’s production .MDX file, the .MDX file with the same root name as the
table.

ORDER [TAG] <.ndx filename> Makes the single index file, <.ndx filename>, the master index. The
NDX file must be specified in the INDEX clause. Use the name of the index without the file extension.

AGAIN Opens a table and its related index files in the current or specified work area, leaving the table open
in one or more other work areas. This keyword is superfluous and included for compatiblity. dBASE Plus
always opens tables with AGAIN.

ALIAS <alias name> An alternate alias name to assign to the table.

AUTOMEM TInitializes a memory variable for each field of the specified table (not including memo, binary,
or OLE types). The memory variables are assigned the same names and types as the fields.

EXCLUSIVE | SHARED EXCLUSIVE opens the table so that no other users can open the table until you
close it; SHARED allows other users access while the table is opened. This option overrides the current setting
of SET EXCLUSIVE.

NOSAVE Used to open a table as a temporary table. When you close a table opened with NOSAVE, it is
erased along with its associated index and memo files. If you inadvertently open a table with the NOSAVE
option, use COPY to save the data.

NOUPDATE Prevents users from altering, deleting, or recalling any records in the table.

The USE command opens an existing table and its associated files, including index and memo files. You need to
open a table before you can access any data stored in the table.

USE with no options closes the open table and its associated files in the current work area. USE IN <alias>,
with no other options, does the same in the specified work area. CLOSE TABLES closes tables in all work
areas.

You can open a table in any work area. It is common practice to USE IN SELECT() to open the table in the first
available work area. If a table is already opened in the specified work area, that table is closed before the
specified table is opened.

USE...INDEX specifies index files that are opened and maintained for a particular table. For a DBF table, its
production .MDX is automatically opened and does not need to be listed.

The ORDER option specifies the master index from the list of indexes opened with the INDEX option and the
production . MDX index. USE...INDEX is identical to USE followed by SET INDEX. See the SET INDEX and
SET ORDER commands for an explanation of the open index order and specifying a master index.

You can include .NDX as well as . MDX index file names with the INDEX option. If a table has an .NDX and an
.MDX index file with the same name, dBASE Plus opens indexes listed in the .MDX index file. In that case, to
open the .NDX file you would need to specify its full name, including its extension.

When opening a table, you can name the work area by including the ALIAS option in the USE command line.
ALIAS names follow the same rules as file names. Aliases are used when referring to a table from another work
area. If you do not specify an <alias name> the table name (without the extension) is used, unless that name is
invalid, because:

* That alias name is already in use by another open table, perhaps because the table is already open in another
work area, or

* The table name is not a valid alias name because it is a single letter from A to J or M, which are all reserved
alias names, or some other reason.

Xbase 12-83

WORKAREA()

OODML

Example

See Also

If the table name is not a valid alias, a valid default alias is generated.

The AUTOMEM option creates blank automem variables for the table, as if the CLEAR AUTOMEM command
was executed immediately after opening the table.

Use the NOSAVE option of USE to open a table as a temporary file. dBASE Plus automatically erases the table,
along with its associated memo and index files, when you close the table.

To open a table read-only, which prevents intentional or accidental changes, use the NOUPDATE option.
Use a Query object with "SELECT * FROM <table>" as the sql property.
The following opens the Flight table in the Fleet database with a specific index order:
use :FLEET:FLIGHT order :FROM ID:
the the use of the colon delimiters to both specify a table in a database and an index tag name that has spaces
in it.

ALIAS(), CLOSE TABLES, SELECT, SELECT(), SET INDEX, SET ORDER

WORKAREA()

Syntax

Description

OODML

See Also

ZAP

Returns a number representing the currently selected work area.
WORKAREA()

The WORKAREA() function returns the number of the currently selected work area. Use WORKAREA() ina
program to save the current work area number and then later restore that work area using the SELECT
command.

Using the work area name returned by ALIAS() is generally preferred, but WORKAREA() will work better if
there’s a possibility that no table is in use in the current work area.

There is no concept of the "current" Query object. Use your usual object management techniques to manage
Query objects.

ALIAS(), DBF(), SELECT, SELECT()

Syntax

Description

OODML

See Also

Removes all records from the current table.
ZAP

ZAP is the fastest way to delete all records from a table. DELETE ALL, followed by PACK, also deletes all
records from a table. Using ZAP requires a table be opened exclusively.

When SET SAFETY is ON and you issue ZAP, dBASE Plus displays a warning message asking you to confirm
the operation before removing records.

Use the Database object’s emptyTable() method.
DELETE, PACK, SET SAFETY

12-84 dBASE dBL Language Reference

Local SQL

The Borland Database Engine (BDE) enables access to database tables through the industry-standard SQL
language. Different table formats, for example InterBase® and Oracle, use different dialects of SQL. Local SQL
(sometimes called “client-based SQL”) is a subset of ANSI-92 SQL for accessing DB (Paradox) and DBF
(dBASE) tables and fields (called “columns” in SQL).

Although it is called “local” SQL, the DB and DBF tables may reside on a remote network file server.
For information on the SQL dialect for other table formats, consult your SQL server documentation.
SQL statements are divided into two categories:

* Data definition language
These statements are used for creating, altering, and dropping tables, and for creating and dropping indexes.

« Data manipulation language
These statements are used for selecting, inserting, updating, and deleting table data.

In the examples, an SQL statement may be displayed on multiple lines for readability. But SQL is not line-
oriented. When an SQL statement is specified in a string, as it is in a Query object’s sgl property, the entire SQL
statement is specified in a single line. However, if you include a multi-line SQL statement in a program file, you
must add semicolons to the end of each line (except the last) to act as line continuation characters; otherwise, the
statement will not compile correctly.

SQL is not case-sensitive. The convention for SQL keywords is all uppercase, which is used in this chapter.
SQL statements in the rest of the Language Reference may use either uppercase or lowercase.

Naming conventions

This section describes the naming conventions for tables and columns in local SQL.

Tables

Local SQL supports full file and path specifications for table names. Table names with a path, spaces, or other
special characters in their names must be enclosed in single or double quotation marks. You may use forward
slashes instead of backslashes. For example,

SELECT * FROM PARTS.DB // Simple name with extension; no quotes required
SELECT * FROM "AIRCRAFT PARTS.DB" // Name has space; quotes needed
SELECT * FROM "C:\SAMPLE\PARTS.DB" // Filename with path

SELECT * FROM "C:/SAMPLE/PARTS.DB" // Forward slash instead of backslash

Local SQL also supports BDE aliases for table names. For example,
SELECT * FROM :IBAPPS:KBCAT

If you omit the file extension for a local table name, the table is assumed to be the table type specified the
current setting of SET DBTYPE.

Local SQL 13-1

Operators

Fi