dBASE Plus 9 LR

Table of Contents

[T gL 0Tz Vo T R =Y =1 (= o7 SO 1
Language DefiNItiONcooiiiiiiii ettt oottt ettt e e e e e e e e e e e e e e e e e ae e e e nnaaaraee 1
LANQUAGE SYNTBX .eeeiiiiiiiiieeiiie ittt ettt et e e e e e e e e e e et e a4 e e s s bbb e e b e e e e e ettt et e et e e e e e e eeeeeaeennea e 17
OPerators and SYMDOIS. ..ot e e e oo bbb bbb e e e e e e e e e e e e e e e e e e aaaa e e e e aaan 20
IDE LaNQUAGJE EIEMENTS.ciiiiiiiiiiii ettt ettt e e e e sttt e e e s et b e e e e e e s aabbreeeeeeaas 33
Y Y o] o] o= 11 o]] 1= | RSP 62
(Ofe] (<3 =T o To [E=To = TP T TP P PUPPPPTPTRR 117

)11 SO 143
D= 1= WO o] [T £ J PP PPUPTPPTPU TN 160
o110 11 @] o] =T £ PRSP PPPT PRI 272
=T 010 @ o] [=Tox £ S PUUUUURRRR N 480
Files and OPerating SYSTEMueiiiieiiiiit ittt e e e e e st e e e s et b b e e e e e s annnneeees 516
D0 L SRR PT PR 558
[0 To7= 110 | SRR 659
N = £ PSPPI PPTRTTRTN 673
(D= L= IR oo I N 0= PO PRSP PTTPEPR PP 713
IMIBEN / IMIOMBY ...ttt ettt ettt e e 4okttt e e e 4ok bbbttt e o4 skttt e e s ettt e e e e e s e b e eee s 742
S (1o PSRRI 766
S S 1 =T 1o 11 o [T PPPPRRPRPP 793
AACTIVEX .ttt e Rt n e e et e e e R e e e e R et e n et e e e e nr e nnes 820
Bt IS ...ttt e et e e et e e s e et e e s e e e s s 842
Miscellaneous Language EIEMENTS...........iiiiiiiiiiiiiie ettt e e e aaeeee s 847
EXtENAING OBASE PlUSot e e e e e e e e e e e e e e e e sttt e e s e e e e e eeeaeaaaaaeaeaaeasaesaanannnnnns 864
PIEPIOCESSON ...ttt ettt et e et oot oo oottt t et e e e e e e e e e e e nn e 883
2] 0] S I o 1 PP PP PTRR PPN 893

T aTo [PP PPPPRTTPR 897

Language Reference
Language Definition

Language definition
Topic group Related topics

dBL is a dynamic object-oriented programming language. It features dozens of built-in classes
that represent forms, visual components, reports, and databases in an advanced integrated
development environment with Two-Way Tool designers.

These topics define the language elements in dBL. After a brief overview of basic language
attributes, which is geared toward those with previous programming experience, the language is
described from its most fundamental elements, data types, to the most general.

Basic attributes

Topic group Related topics

If you're familiar with another programming language, knowing the following attributes will help
orient you to dBL. If dBL is your first programming language, you may not recognize some of the
terminology below. Keep the rules in mind; the terminology will be explained later in this series
of topics.
dBL is not case-sensitive.
Although language elements are capitalized using certain conventions in the dBL Language Reference, you are
not required to follow these conventions.

Rules of thumb for how things are capitalized are listed in Syntax conventions. You are encouraged to follow
these rules when you create your own names for variables and properties.

dBL is line-oriented.

By default, there is one line per statement, and one statement per line. You may use the semicolon (;) to
continue a statement on the next line, or to combine multiple statements on the same line.

Most structural language elements use keyword pairs.

Most structual language elements start with a specific keyword, and end with a paired keyword. The ending
keyword is usually the word starting keyword preceded by the word END; for example IF/ENDIF,
CLASS/ENDCLASS, and TRY/ENDTRY.

Literal strings are delimited by single quotes, double quotes, or square brackets.
dBL is weakly typed with automatic type conversion.

You don't have to declare a variable before you use it. You can change the type of a variable at any time.
dBASE Plus’s object model supports dynamic subclassing.

Dynamic subclassing allows you to add new properties on-the-fly, properties that were not declared in the class
structure.

Command Line Switches
Topic group

dBASE Plus 9 LR

When running dBASE Plus.exe, Plusrun.exe or an Application .exe built by dBASE, there are several
Command Line Switches which can be used to override certain defaults.

Switches
The command line switch, -c<.ini file path>, specifies an alternate .ini file to be used in place of the
default.

For example:
"c:\program files\dbase\plus\bin\plus.exe" -cC:\iniPath //open dBASE Plus using C:\iniPath\Plus.ini

The command line switch, -v0, specifies that _app.useUACPaths is to be set to 'False’
The command line switch, -v1, specifies that _app.useUACPaths is to be set to True'

For example:

/lopen App.exe with it's _app.useUACPaths = false
"c:\program files\YourApp\App.exe" -v0

/lopen dbase Plus.exe with it's _app.useUACPaths = true
"c:\program files\dBASE\Plus\Bin\Plus.exe" -v1

Data types

Topic group Related topics

Data is both the means and the end for both programming and databases. Because dBASE
Plus is designed to manipulate databases, there are three categories of data types:

Simple data types common to both the language and databases

Database-specific data types

Data types used in programming

Simple data types
Topic group Related topics
There are five simple data types common to both dBASE Plus and databases:

String

Numeric

Logical or boolean
Date

Null

Keep in mind that different table formats support different data types to varying degrees.

For each of these data types, there is a way to designate a value of that type in dBL code. This
is known as the literal representation.

String data

Topic group Related topics

Language Reference

A string is composed of zero or more characters: letters, digits, spaces, or special symbols. A
string with no characters is called an empty string or a null string (not to be confused with the
null data type).

The maximum number of characters allowed in a string depends on where that string is stored.
In dBASE Plus, the maximum is approximately 1 billion characters, if you have enough virtual
memory. For DBF (dBASE") tables, you may store 254 characters in a character field and an
unlimited number in a memo field. For DB (Paradox) tables, the limit is 255 characters in an
alpha field, and no limit with memo fields. Different database servers on different platforms each
have their own limits.

Literal character strings must be enclosed in matching single or double quotation marks, or
square brackets, as shown in the following examples:

"text”

"text"

[text]
A literal null string, or empty string, is indicated by two matching quotation marks or a set of
square brackets with nothing in between.

Numeric data

Topic group Related topics

dBL supports a single numeric data type. It does not distinguish between integers and non-
integers, which are also referred to as floating-point numbers. Table formats vary in the types of
numbers they store. Some support short (16-bit) and long (32-bit) integers or currency in
addition to a numeric format. When these numbers are read into dBASE Plus, they are all
treated as plain numbers. When numbers are stored into tables, they are automatically
truncated to fit the table format.

In dBL, a numeric literal may contain a fractional portion, or be multiplied by a power of 10. The
following are all valid numeric literals:

42

5e7

.315
19e+4
4.6
8.306E-2

As the examples show, the "E" to designate a power of 10 may be uppercase or lowercase, and
you may include a plus sign to indicate a positive power of 10 even though it is unnecessary.

In addition to decimal literals, you may use octal (base 8) or hexadecimal (base 16) literal
integers. If an integer starts with a zero (0), it is assumed to be octal, with digits from 0 to 7. If it
starts with Ox or 0X; it is hexadecimal, with the digits from 0 to 9 and the letters A to F,
uppercase or lowercase. For example,

]

Literal Base Decimal value
031 Octal 25

0x64 Hexadecimal 100
Logical data

dBASE Plus 9 LR

Topic group Related topics

A logical, or boolean, value can be one of three things: true, false or null. These logical values
are expressed literally in dBL by the keywords true, false and null.

For compatibility with earlier versions of dBASE, you may also express true as .T. or .Y., and
false as .F. or .N.

Date data

Topic group Related topics

dBASE Plus features native support for dates, including date arithmetic. To specify a literal date,
enclose the date in curly braces. The order of the day, month, and year depends on the current
setting of SET DATE, which derives its default setting from the Regional Settings in the
Windows Control Panel. For example, if SET DATE is MDY (month/day/year), then the literal
date:

{10/02/97%}

is October 2nd, 1997. The way dBASE Plus handles two-digit years depends on the setting of
SET EPOCH. The default is to interpret two-digit years between 50 and 99 as a year in the
1900s. Two digit years between 00 and 49 will be interpreted as a year in the 2000s. Curly
braces with nothing between them represent a special date value, known as a blank date.

Null values
Topic group Related topics

dBASE Plus supports a special value represented by the keyword null. It is its own data type,
and is used to indicate a nonexistent or undefined value. A null value is different from a blank or
zero value; null is the absence of a value.

The new DBF7 (dBASE) table type support nulls, as do most other tables, including DB
(Paradox). Older DBF formats do not. A null value in a field would indicate that no data has
been entered into the field, like in a new row, or that the field has been emptied on purpose. In
certain summary operations, null fields are ignored. For example, if you are averaging a numeric
field, rows with a null value in the field are ignored. If instead a null value was considered to be
zero or some other value, it would affect the average.

null is also used in dBASE Plus to indicate an empty function pointer, a property or variable that
is supposed to refer to a function, but doesn’t contain anything.

Database-specific data types

Topic group Related topics

There are a number of data types supported by different databases that do not have a direct
equivalent in dBASE Plus. The following list is not exhaustive; a new or upgraded table format
may introduce new types. In any case, the type is represented by the closest matching dBASE
Plus data type, with the string type being the catchall, since all data can be represented as a
bunch of bytes.

The common database-specific types are:
Memo

Language Reference

Binary and OLE

Memo data
Topic group Related topics

As far as dBASE Plus is concerned, a memo is just a character string; potentially a very long
one. For tables, it is important to distinguish between a character field, which is of fixed and
usually small size, and a memo field, which is unlimited in size. For example, a character field
might contain the title of a court decision, and the memo field contain the actual text of that court
decision.

Binary and OLE data

Topic group Related topics

Binary and OLE data are similar to memos, except that they are usually meant to be modified by
external programs, not dBASE Plus. For example, a binary field might contain a graphic bitmap,
which dBASE Plus can display, but you cannot edit the bitmap with dBASE Plus.

Programming data types
Topic group Related topics
There are three data types used specifically for programming:

Object reference
Function pointer
Codeblock

These types are explained later, in the context in which they are used.

Operators and symbols

Topic group Related topics

An operator is a symbol, set of symbols, or keyword that performs an operation on data. dBL
provides many types of operators, used throughout the language, in the following categories:

Operator category Operator symbols
Assignment = "= 4= = *= [= Y=
Comparison === <> #><>=<=$
String concatenation + -
Numeric R AT
N xR 4 o
Logical AND OR NOT
Object - [1 NEW ::
Call, Indirection)

dBASE Plus 9 LR

Alias _>

Macro &

All operators require either one or two arguments, called operands. Those that require a single
operand are called unary operators; those requiring two operands are called binary operators.
For example, the logical NOT operator is a unary operator:

not endOfSet
The (*) is the binary operator for multiplication, for example,
59 * 436
If you see a symbol in dBL code, it's probably an operator, but not all symbols are operators.

For example, quote marks are used to denote literal strings, but are not operators, since they do
not act upon data—they are part of the representation of a data type.

Another common symbol is the end-of-line comment symbol, a double slash. It and everything
on the line after it are ignored by dBASE Plus. For example,
calcAverages() // Call the function named calcAverages

All operators and symbols are described in full in the Operators and Symbols section of this
Help file.

Names

Topic group Related topics

Names are given to variables, fields in work areas, properties, events, methods, functions, and
classes. The following rules are the naming conventions in dBL:

A name begins with an underscore or letter, and contains any combination of underscores, letters, spaces, or digits.
If the name contains spaces, it must be enclosed in colons.
The letters may be uppercase or lowercase. dBL is not case-sensitive.

With dBL, only the first 32 characters in a name are significant. There can be more than 32, but
the extra characters are ignored. For example, the following two names are considered to be
the same:

theFirst_32 CharactersAreTheSameButTheRestArent
theFirst_32_CharactersAreTheSameAndTheRestDontMatter

The following are some examples of valid names:

X
:First name:
DbException

Form

messagesl _onOpen

Filename skeletons

Topic group

A Filename skeleton is a character string used as a template to search for matching filenames.
It consists of an optional directory path followed by a backslash, \, followed by a filename
template. The template can contain a mix of required characters plus the wildcard, or

"placeholder”, characters ? and *.
C:\MyFile.txt
C:\MyFile*_*

Language Reference

C:\??File.txt

A wildcard character can be used to represent any character that occupies the same position in
the filename. A question mark, ?, will match any single character. An asterisk, *, will match any
group of characters.

Any other characters in the template must exactly match the filenames' character, and its'
position, to be considered a match.

For example:

. All filenames are matches.
*. Specifies that any group of characters to the left of
the period are valid matches.
* Specifies that any group of characters to the right of
the period are valid matches.

* txt All files with an extension of .txt are matches.

MyTable.* All files, regardless of their extension, whose base
name is MyTable are matches.

A?c.wf? All files starting with an A, followed by any character,
followed by a c.wf and ending in any character are
matches.

C:\myfolder*.dbf All files in folder C:\myfolder with a .dbf extension are
matches.

Expressions
Topic group Related topics

An expression is anything that results in a value. Expressions are built from literal data, names,
and operators.

Basic expressions
Topic group Related topics

The simplest expression is a single literal data value; for example,
6 // The number 6
"eloign"™ // The string "eloign"

You can use operators to join multiple literals; for example,

6 + 456 * 3 // The number 1374
“sep'" + "a" + "rat" + "e" // The string 'separate™

To see the value of an expression in the Command window, precede the expression with the ?
symbol:
? 6 + 456 * 3 // Displays 1374

Variables

dBASE Plus 9 LR

Topic group Related topics
Variables are named locations in memory where you store data values: strings, humbers, logical

values, dates, nulls, object references, function pointers, and codeblocks. You assign each of
these values a name so that you can later retrieve them or change them.

You can use these values to store user input, perform calculations, do comparisons, define
values that are used as parameters for other statements, and much more.

Assigning variables
Topic group Related topics
Before a variable can be used, a value must be assigned to it. Use a single equal sign to assign
an expression to a variable; for example,

alpha = 6 + 456 * 3 // alpha now contains 1374
If the variable does not exist, it is created. There are special assignment operators that will
assign to existing variables only, and others that combine an arithmetic operation and an
assignment.

Using variables and field names in expressions

Topic group Related topics

When a variable is not the target (on the left side) of an assignment operator, its value is
retrieved. For example, type the following lines in the Command window, without the comments:
alpha = 6 // Assigns 6 to alpha

beta = alpha * 4 // Assigns values of alpha (6) times 4 to beta
? beta // Displays 24

In the same way, when the name of a field in a work area is used in an expression, its value for
the current record is retrieved. (Note that assignment operators do not work on fields in work
areas; you must use the REPLACE command.) Continuing the previous example:

use FISH // Open Fish table in current work area

? Name // Display value of Name field in Ffirst record

? :Length CM: // Display value of Length CM field in first record

// Colons required around field name because it contailns spaces

? :Length CM: * beta // Display value of field multiplied by variable

For information on referencing fields in different work areas and resolving name conflicts
between variables and field names, see Alias operator.

Type conversion
Topic group Related topics

When combining data of two different types with operators, they must be converted to a
common type. If the type conversion does not occur automatically, it must be done explicitly.

Automatic type conversion

Topic group Related topics

Language Reference

dBASE Plus features automatic type conversion between its simple data types. When a
particular type is expected, either as part of an operation or because a property is of a particular
type, automatic conversion may occur. In particular, both numbers and logical values are
converted into strings, as shown in the following examples:

"There are " + 6 * 2 + " in a dozen" // The string "There are 12 in a dozen"

'+ 4 // The string "4"

"2+ 2equals 5is "+ (2 +2==5)// The string "2 + 2 equals 5 is false"
As shown above, to convert a number into a string, simply add the number to an empty string.
Be careful, though; the following expression doesn’t work as you might expect:

"The answer is " + 12 + 1 // The string "The answer is 121"

The number 12 is converted to a string and concatenated, then the number 1 is converted and
concatenated, yielding "121". To concatenate the sum of 12 plus 1, use parentheses to force
the addition to be performed first:

"The answer is " + (12 + 1) // The string "The answer is 13"

Explicit type conversion
Topic group Related topics
In addition to automatic type conversion, there are a number of functions to convert from one
type to another:
String to number: use the VAL() function
Number to formatted string: use the STR() function

Date to string: use the DTOC() function
String to date: use the CTOD() function

Arrays
Topic group Related topics
dBASE Plus supports a rich set of array classes. An array is an n-dimensional list of values

stored in memory. Each entry in the array is called an element, and each element in an array
can be treated like a variable.

To create an array, you can use the object syntax detailed in Array objects, but for a one-
dimensional array, you can also use the literal array syntax.

Literal arrays
Topic group Related topics
A literal array declares and populates an array in a single expression. For example,
aTest = { 4, "yclept", true }
creates an array with three elements:
The number 4

The string "yclept"
The logical value true

and assigns it to the variable aTest. The three elements are enclosed in curly braces (the same
curly braces used for dates) and separated by commas.

dBASE Plus 9 LR

Array elements are referenced with the index operator, the square brackets ([]). Elements are
numbered from one. For example, the third element is element number 3:

? aTest[3] // Displays true

You can assign a new value directly to an element, just like a variable:
aTest[3] = false // Element now contains false

Complex expressions

Topic group Related topics

The following is an example of a complex expression that uses multiple names, operators, and
literal data. It is preceded by a question mark so that when it's typed into the Command window,
it displays the resulting value:

? {"1st","2nd","3rd","4th"}[ceiling(month(date()) /7 3)] + " quarter"”

Except for the question mark, the entire line is a single complex expression, made up of many
smaller basic expressions. The expression is evaluated as follows:
1. Aliteral array of literal strings is enclosed in braces, separated by commas. The strings are enclosed in
double quotation marks.

0 The resulting array is referenced using the square brackets as the index operator. Inside the
square brackets is a numeric expression.

0 The numeric expression uses nested functions, which are evaluated from the inside out. First,
the DATE() function returns the current date. The MONTH() function returns the month of the
current date.

0 The month is divided by the number 3, then the CEILING() function rounds the number up to
the nearest integer.

0 The string containing the ordinal number for the calendar quarter that corresponds to the
month of the current date is extracted from the array, which is then added to the literal string
"quarter".

The value of this complex expression is a string like "4th quarter".

Statements
Topic group Related topics
A statement is an instruction that directs dBASE Plus to perfom a single action. This action may

be simple or it may be complex, causing other actions to occur. You may type and execute
individual statements in the Command window.

Basic statements

Topic group Related topics

There are four types of basic statements:

1. dBL commands: These commands make up a significant portion of the entries in the dBL Language
Reference. For example:

clear // Clears the Command window

erase TEMP.TXT // Erases a file on the disk
build from FISHBASE // Creates an executable
? time() // Displays the current time

2. Assignment statements: A statement may include only one assignment operator, although the value
assigned may be a very complex expression. For example:

10

Language Reference

clear = 14 // Assign 14 to variable named clear
f = new Form() // NEW and call operator on class name Form, assigned to
variable T

Note that the first example uses the word "clear", but because the syntax of the statement a variable is created
instead of executing the command. While creating variables with the same name as a command keyword is
allowed, it is strongly discouraged.

3. dBL expressions: An expression is a valid statement. If the expression evaluates to a number, it is
equivalent to a GO command. For example:

6 // Goto record 6

3 + 4 // Goto record 7

date() // Get today"s date and throw it away
f.open() // Call object f*s open() method

4. Embedded SQL statements: dBASE Plus features native support for SQL statements. You may type
an SQL statement in the Command window, or include them in programs. If the command results in an
answer table, that table is opened in the current work area. For example:

select * from FISH // Open FISH table in current work area

Control statements
Topic group Related topics

dBASE Plus supports a number of control statements that can affect the execution of other
statements. Control statements fall into the following categories:

Conditional execution

IF

DO CASE

Looping

FOR

DO WHILE

DO...UNTIL

Object manipulation

WITH

Exception handling

TRY

These control statements are fully documented in the Core language topic series.

Functions and codeblocks
Topic group Related topics

In addition to the built-in functions, you may create your own. A function is a code module—a
set of statements—to which a name is assigned. The statements can be called by the function
name as often as needed. Functions also provide a mechanism whereby the function can take
one or more parameters that are acted upon by the function.

A function is called by following the function name with a set of parentheses, which act as the
call operator. When discussing a function, the parentheses are included to help distinguish
functions from other language elements like variables.

For example, the function LDoM() takes a date parameter dArg and returns the last day of the
month of that date.

function LDoM(dArg)
local dNextMonth

11

dBASE Plus 9 LR

dNextMonth = dArg - date(dArg) + 45 // Day in the middle of next month

return dNextMonth - day(dNextMonth)
Functions are identified by the keyword FUNCTION in a program file; they cannot be typed into
the Command window. While many functions use RETURN to return a value, they are not
required to do so.

Function pointers

Topic group Related topics

The name of a function that you create is actually a pointer to that function. Applying the call
operator (a pair of open and closed parenthesis) to a function pointer calls that function. (Built-in
functions work differently; there is no function pointer.)

Function pointers are a distinct data type, and can be assigned to other variables or passed as
parameters. The function can then be called through that function pointer variable.

Function pointers enable you to assign a particular function to a variable or property. The
decision can be made up front and changed as needed. Then that function can be called as
needed, without having to decide which function to call every time.

Codeblocks

Topic group Related topics

While a function pointer points to a function defined in a program, a codeblock is compiled code
that can be stored in a variable or property. Codeblocks do not require a separate program; they
actually contain code. Codeblocks are another distinct data type that can be stored in variables
or properties and passed as parameters, just like function pointers.

Codeblocks are called with the same call operator that functions use, and may receive
parameters.

There are two types of codeblocks:

1. Expression codeblocks
0 Statement codeblocks

Expression codeblocks return the value of a single expression. Statement codeblocks act like
functions; they contain one or more statements, and may return a value.

In terms of syntax, both kinds of codeblocks are enclosed in curly braces ({ }) and
Cannot span multiple lines.
Must start with either two pipe characters (|[) or a semicolon (;)
If ; it must be a statement codeblock with no parameters
If || it may be either an expression or statement codeblock

The || are used for parameters to the codeblock, which are placed between the two pipe
characters. They may also have nothing in-between, meaning no parameters for either an
expression or statement codeblock.

Parameters inside the ||, if any, are separated by commas.

For an expression codeblock, the || must be followed by one and only one expression, with no ;
These are valid expression codeblocks:
{]| false}

{ll date()}
{Ix1 x * x}

12

Language Reference

Otherwise, it is a statement codeblock. A statement codeblock may begin with || (again, with or
without parameters in-between).

Each statement in a statement codeblock must be preceded by a ; symbol. These are valid
statement codeblocks (the first two are functionally the same):

{; clear}
{ll; clear}
{Ix1: ? x3

{Ix]; clear; ? x}

You may use a RETURN inside a statement codeblock, just like with any other function. (A
RETURN is implied with an expression codeblock.) For example,
{In]; for i=2 to sqrt(n); if n % 1 == 0; return false; endif; endfor; return true}

Because codeblocks don’t rely on functions in programs, you can create them in the Command
window. For example,

square = {|x] x * x} // Expression codeblock

? square(4) // Displays 16

// A statement codeblock that returns true if a number is prime

p = {In]; for i=2 to sqrt(n); if n % i == 0; return false; endif; endfor; return

true}

? p(23) // Displays true

? p(25) // Displays false
As mentioned previously, curly braces are also used for literal dates and literal arrays. Compare
the following:

{10} // A literal array containing one element with the value 10

{10/5} // A literal array containing one element with the value 2

{10/5/97} // A literal date
{1110/5} 7/ An expression codeblock that returns 2

Codeblocks vs. functions

Topic group Related topics

A codeblock is a convenient way to create a small anonymous function and assign it directly to
a variable or property. The code is physically close to its usage and easy to see. In contrast, a

function pointer refers to a function defined elsewhere, perhaps much later in the same program
file, or in a different program file.

Functions are easier to maintain. Their syntax is not cramped like codeblocks, and it's easier to
include readable comments in the code. In a class definition, all FUNCTION definitions are all
together at the bottom. Codeblocks are scattered throughout the constructor. If you want to run
the same code from multiple locations, using function pointers that point to the same function
means that changing the code requires changing the function once; multiple codeblocks would
require changing each codeblock individually.

You can create a codeblock at runtime by constructing a string that looks like a codeblock and
using the macro operator to evaluate it.

Objects and classes

Topic group Related topics

An object is a collection of properties. Each of these properties has a hame. These properties
may be simple data values, such as numbers or strings, or references to code, such as function

13

dBASE Plus 9 LR

pointers and codeblocks. A property that references code is called a method. A method that is
called by dBASE Plus in response to a user action is called an event.

Objects are used to represent abstract programming constructs, like arrays and files, and visual
components, like buttons and forms. All objects are initially based on a class, which acts as a
template for the object. For example, the PushButton class contains properties that describe the
position of the button, the text that appears on the button, and what the button should do when it
is clicked. All these properties have default values. Individual button objects are instances of the
PushButton class that have different values for the properties of the button.

dBASE Plus contains many built-in, or stock, classes, which are documented throughout the
dBL Language Reference. You can extend these stock classes or build your own from scratch
with a new CLASS definition.

While the class acts as a formal definition of an object, you can always add properties as
needed. This is called dynamic subclassing.

Dynamic subclassing

Topic group Related topics

To demonstrate dynamic subclassing, start with the simplest object: an instance of the Object
class. The Object class has no properties. To create an object, use the NEW operator, along
with the class name and the call operator, which would include any parameters for the class
(none are used for the Object class).

obj = new Object()

This statement creates a hew instance of the Object class and assigns an object reference to
the variable obj. Unlike variables that contain simple data types, which actually contain the
value, an object reference variable contains only a reference to the object, not the object itself.
This also means that making a copy of the variable:

copy = obj
does not duplicate the object. Instead, you now have two variables that refer to the same object.

To assign values to properties, use the dot operator. For example,

obj.name = "triangle”

obj.sides = 3

obj.length = 4
If the property does not exist, it is added; otherwise, the value of the property is simply
reassigned. This behavior can cause simple bugs in your programs. If you mistype a property
name during an assignment, for example,

obj.wides = 4 // should be s, not w
a new property is created instead of changing the value of the existing property you intended.
To catch these kinds of problems, use the assignment-only := operator when you know you are
not initializing a property or variable. If you attempt to assign a value to a property or variable
that does not exist, an error occurs instead of creating the property or variable. For example:

obj.wides := 4 // Error if wides property does not already exist

Methods

Topic group Related topics

14

Language Reference

A method is a function or codeblock assigned to a property. The method is then called through
the object via the dot and call operators. Continuing the example above:

obj.perimeter = {]| this.sides * this.length}

? obj.perimeter() // Displays 12
As you may have deduced by now, the object referred to by the variable obj represents a
regular polygon. The perimeter of such a polygon is the product of the length of each side and
the number of sides.

The reference this is used to access these values. In the method of an object, the reference this
always refers to the object that called the method. By using this, you can write code that can be

shared by different objects, and even different classes, as long as the property names are the
same.

A simple class

Topic group Related topics

Here is a class representing the polygon:

class RegPolygon
this.sides = 3 // Default number of sides
this.length = 1 // and default length

function perimeter()
return this.sides * this.length

endclass

The top of the CLASS definition, up to the first FUNCTION, is called the class constructor, which
is executed when an instance of the class is created. In the constructor, the reference this refers
to the object being created. The sides and length properties are added, just as they were
before.

The function in the class definition is considered a method, and the object automatically has a
property with the same name as the method that points to the method. The code is the same,
but now instead of a codeblock, the method is a function in the class. Methods have the
advantage of being easier to maintain and subclass.

Programs
Topic group Related topics

A program contains any combination of the following items:
Statements to be executed

Functions and classes that may be called
Comments

The dBASE Plus compiler also supports a standard language preprocessor, so a program that
is run by dBASE Plus may contain preprocessor directives. These directives are not part of the
dBL language; instead they form a separate simple language that can affect the code
compilation process, and are explained later.

Program files

Topic group Related topics

15

dBASE Plus 9 LR

A program file may have any file-name extension, although there are a number of defaults:
A program containing a form is .WFM
A program containing a report is .REP
Any other program is .PRG

These file-name extensions are assumed by the Navigator and the Source Editor.

When a program is compiled into byte code by dBASE Plus, it stores the byte code in a file with
the same name and extension, but it changes the last character of the extension to the letter
"O": .PRG becomes .PRO, .WFM becomes .WFO, and .REP becomes .REO.

Program execution

Topic group Related topics

Use the DO command to run a program file, or double-click the file in the Navigator. If you run
the program through the Navigator, the equivalent DO command will be streamed out to the
Command window and executed. You can also call a .PRG program by name with the call
operator, the parentheses, in the Command window; for example,

sales_report()

will attempt to execute the file SALES REPORTS.PRG. Since the operating system is not case-
sensitive about file names when searching for files, neither is dBASE Plus.

A basic program simply contains a number of dBL statements, which are executed once in the
order that they appear in the program file, from the top down. For example, the following four
statements remember the current directory, switch to another directory, execute a report, and
switch back to the previous directory:

cDir = set("DIRECTORY")

cd C:\SALES

do DAILY.REP

cd &cDir
Control statements, discussed earlier, are acted upon as they occur; they may affect the
execution of the code that they contain. Some statements may be executed only when a certain
condition is true and other statements may be executed more than once in a loop. But even
within these control statements, the execution is still basically the same, from the top down.

When and if there are no more statement to execute, the program ends, and control returns to
where the program was called. For example, if the program was executed from the Command
window, then control returns to the Command window and you can do something else.

Functions and classes

Topic group Related topics

Functions and classes affect execution in two ways. First, when a function or class definition is
encountered in the straight top-down execution of a program, execution in that program is
terminated.

The second effect is that when a function, class constructor, or method is called, execution

jumps into that function or class, executes that code in the usual top-down fashion, then goes
back to where the call was made and continues where it left off.

16

Language Reference

Comments
Topic group Related topics

Use comments to include notes to yourself or others. The contents of a comment do not follow
any dBL rules; include anything you want. Comments are stripped out at the beginning of the
program compilation process.

A program will typically contain a group of comments at the beginning of the file, containing
information like the name of the program, who wrote it and when, version information, and
instructions for using it. But the most important use for comments is in the code itself, to explain
the code—not obvious things like this:

n++ // Add one to the variable n

(unless you're writing example code to explain a language) but rather things like what you're
doing in the overall scheme of the program, or why you decided to do something in a particular
way. Decisions that are obvious to you when you write a statement will often completely
bewilder you a few months later. Write comments so that they can be read by others, and put
them in as you code, since there’s rarely time to add them in after you're done, and you may
have forgotten what you did by then anyway.

Preprocessor directives

Topic group Related topics
A preprocessor directive must be on its own line, and starts with the number sign (#).

Because preprocessor directives are not part of the dBL language, you cannot execute them in
the Command window.

For more information about using preprocessor directives, see Preprocessor.

A simple program
Topic group Related topics

Here is a simple program that creates an instance of the RegPolygon class, changes the length
of a side, and displays the perimeter:

// Polygon._prg

// A simple program example

//

local poly

poly = new RegPolygon()
poly.length = 4

? poly.perimeter() // Displays 12

class RegPolygon

this.sides = 3 // Default number of sides
this.length = 1 // and default length
function perimeter()

return this.sides * this.length

endclass

Language Syntax

Syntax conventions

17

dBASE Plus 9 LR

Topic group Related topics
The Language Reference uses specific symbols and conventions in presenting the syntax of
dBL language elements.

This section explains dBL syntax notation and provides an example of the various elements of
the language syntax.

Syntax notation

Topic group Related topics

Statements, methods, and functions are described with syntax diagrams. These syntax
diagrams consist of a least one fixed language element—the one being documented—and may
include arguments, which are enclosed in angle brackets (< >).

The dBL language is not case-sensitive.
The following table describes the symbols used in syntax:

Symbol Description

<> Indicates an argument that you must supply

[1 Indicates an optional item

| Indicates two or more mutually exclusive options

Indicates an item that may be repeated any number of times

Arguments are often expressions of a particular type. The description of an expression
argument will indicate the type of argument expected, as listed in the following table:

Descriptor Type

expC A character expression

expN A numeric expression

expL A logical or boolean expression; that is, one that evaluates to true
or false

expD A date expression

exp An expression of any type

oRef An object reference

All the arguments and optional elements are described in the syntax description.

Unlike legacy dBASE command and function keywords, which are shown in uppercase letters,
property names are capitalized differently. Property names are camel-capped, that is, they
contain both uppercase and lowercase letters if the name consists of more than one word. If the
property is a method, the name is followed by parentheses. Examples of properties include
onAppend, onRightMouseDown, checked, and close().

These conventions help you differentiate the language elements; for example,

DELETE is a command
delete is a property
DELETED() is a function
delete() is a method

These typographical conventions are for readability only. When writing code, you can use any
combination of uppercase and lowercase letters.

18

Language Reference

Note

In dBL, you must refer to classes and properties by their full names. However, you can still
abbreviate some keywords in the dBL language to the first four characters, though for reasons
of readability and clarity such abbreviation is not recommended.

Syntax example

Topic group Related topics
The syntax entries for the EXTERN statement illustrate all of the syntax symbols:

EXTERN [CDECL | PASCAL | STDCALL] <return type> <function name>
([<parameter type> [, <parameter type> ...]])
<filename>

The square brackets enclosing the calling convention, [CDECL | PASCAL | STDCALL], means the item is optional.
The pipe character between the three calling conventions is an "or" indicator. In other words, if you want to use a
calling convention, you must choose one of the three.

<return type> and <function name> are both required arguments.

The parentheses are fixed language elements, and thus also required. Inside the parentheses are optional
<parameter type> arguments, as indicated by the square brackets.

The location of the comma inside the second square bracket indicates that the comma is needed only if more
than one <parameter type> is specified.

The ellipsis (...) at the end means that any number of parameter type arguments may be specified (with a
comma delimiter, if more than one is used).

<filename> is a required argument.

A simple EXTERN statement with neither of the two optional elements would look like this:
extern CINT angelsOnAPin() ANSWER.DLL

The <return type> argument is CINT, and the <function name> is angelsOnAPiIn.

A more complicated EXTERN statement with a calling convention and parameters would look

like this:
extern PASCAL CLONG wordCount(CPTR, CLOGICAL) ANSWER.DLL

Capitalization guidelines
Topic group Related topics

The following guidelines describe the standard capitalization of various language elements.
Although dBL is not a case-sensitive language, you are encouraged to follow these guidelines in
your own scripts.
Commands and built-in functions are shown in uppercase in descriptions so that they stand out, but are all
lowercase in code examples.

Class names start with a capital letter. Multiple-word class names are joined together without any separators
between the words, and each word starts with a capital letter. For example,

Form
PageTemplate

Property, event, and method names start with a lowercase letter. If they are multiple-word names, the words are
joined together without any separators between the words, and each word (except the first) starts with a capital
letter. They also appear italicized in the Language Reference. For example,

color
dataLink
showMemokEditor()

Variable and function names are capitalized like property names.

19

dBASE Plus 9 LR

Manifest constants created with the #define preprocessor directive are all uppercase, with underscores between
words. For example,

ARRAY_DIR_NAME
NUM_REPS

Field names and table names from DBF tables are in all uppercase in code so that they stand out.
Operators and Symbols

Operators and symbols

Topic group Related topics

An operator is a symbol, set of symbols, or keyword that specifies an operation to be performed
on data. Data is supplied in the form of arguments, or operands.

For example, in the expression "total = 0", the equal sign is the operator and "total" and "0" are
the operands. In this expression, the numeric operator "=" takes two operands, which makes it a
binary operator. Operators that require just one operand (such as the numeric increment
operator "++") are known as unary operators.

Operators are categorized by type. dBL’s operators are classified as follows:

Operator symbols Operator category
= = 4= —= *= /= Y= Assignment
== <> # > < >=<=$ Comparison
+ - String concatenation
+ oo * [N RE Numeric
AND OR NOT Logical
. [0 NEW :: Object
) Call, Indirection
-> Alias
& Macro

Most symbols you see in dBL code are operators, but not all. Quotation marks, for example, are
used to denote literal strings and thus are part of the representation of a data type. Since they
don't act upon data, they’re a "non-operational” symbol.

You can use the following non-operational symbols in dBL code:

Symbols Name/meaning

- Statement separator, line continuation

// && End-of-line comment

* Full-line comment

/* =/ Block comment

O an Literal date/literal array/codeblock markers
SN Literal strings

- - Name/database delimiters

20

Language Reference

Preprocessor directive

Finally, the following symbols are used as dBL commands when they are used to begin a
statement:

Symbols Name/meaning
2 ?? Displays streaming output
1 Runs program or operating system command

Operator precedence

Topic group Related topics

dBL applies strict rules of precedence to compound expressions. In expressions that contain
multiple operations, parenthetical groupings are evaluated first, with nested groupings evaluated
from the "innermost" grouping outward. After all parenthetical groupings are evaluated, the rest
of the expression is evaluated according to the following operator precedence:

Order of precedence (highest to lowest) Operator description or category

& Macro

(expression) Parenthetical grouping, all expressions

> Alias

()[1-NEW :: Object operators: call; member (square bracket or dot);
new; scope resolution

+ -+t —— Unary plus/minus, increment/decrement

N xx Exponentiation

*| % Multiply, divide, modulus

+ - Addition, subtraction

—So= <> #H<<=>>=$ Comparison

NOT Logical Not

AND Logical And

OR Logical Or

== 4= = *= [= Y%= Assignment

In compound expressions that contain operators from the same precedence level, evaluation is
conducted on a literal left-to-right basis. For example, no operator precedence is applied in the
expressions 21/7*3 and 3*21/7 (both return 9).
Here’s another example:

4+5*(6+2*(8-4)-9)%19>=11
This example is evaluated in the following order:

8-4=4

2*4=8

6+8=14

14-9=5

5*5=25

25%19=6

21

dBASE Plus 9 LR

4+6=10
The result is the logical value false.

Assignment operators

Topic group Related topics

Assign/create operator: =

Assignment-only operator: ;=

Arithmetic assignment operators; += —= *= /= %=

Syntax

X=n

y=Xx

X+=y
Description

Assignment operators are binary operators that assign the value of the operand on the right to
the operand on the left.

The standard assignment operator is the equal sign. For example, x = 4 assigns the value 4 to
the variable x, and y= x assigns the value of the variable x (which must already have an
assigned value) to the variable y. If the variable or property on the left of the equal sign does not
exist, it is created.

To prevent the creation of a variable or property if it does not exist, use the assignment-only :=
operator. This operator is particularly useful when assigning values to properties. If you
inadvertently misspell the name of the property with the = operator, a new property is created,;
your code will run without error, but it will not behave as you intended. By using the := operator,
if the property (or variable) does not exist, an error occurs.

The arithmetic assignment operators are shortcuts to self-updating arithmetic operations. For
example, the expression x +=y means that x is assigned its own value plus that of y(x = x +
y).Both operands must already have assigned values, or an error occurs. Thus, if the operand x
has already been assigned the value 4 and y has been assigned the value 6, the expression x
+=y returns 10.

+ operator

Topic group Related topics Example

Addition, concatenation, unary positive operator.

Syntax
n+m

date + n
"strl" + "str2"
"str + x

x+ "str"

+n

Description

22

Language Reference

The "plus" operator performs a variety of additive operations:

It adds two numeric values together.

You may add a number to a date (or vice-versa). The result is the day that many days in the future (or the past if the
number is negative). Adding any number to a blank date always results in a blank date.

It concatenates two strings.

You may concatenate any other data type to a string (or vice versa). The other data type is converted into its
display representation:

Numbers become strings with no leading spaces. Integer values eight digits or less have no decimal point or
decimal portion. Integer values larger than eight digits and non-integer values have as many decimals
places as indicated by SET DECIMALS.

The logical values true and false become the strings "true" and "false".

Dates (primitive dates and Date objects) are converted using DTOC().
Object references to arrays are converted to the word "Array".

References to objects of all other classes are converted to the word "Object".
Function pointers take on the form "Function: " followed by the function name.

Note
Adding the value null to anything (or anything to null) results in the value null.

The plus sign may also be used as a unary operator to indicate no change in sign, as opposed
to the unary minus operator, which changes sign. Of course, it is generally superfluous to
indicate no change in sign; the unary plus is rarely used.

- operator

Topic group Related topics Example

Subtraction, concatenation, unary negative operator.

Syntax
n-m

date - n
date - date
"str1" - "str2"
"str' - x

X - "str"

-n
Description

The "minus" operator is similar to the "plus" operator. It subtracts two numbers, and subtracts
days from a date. You may also subtract one date from another date; the result is the number of
days between the two dates. If you subtract a blank date from another date, the result is always
zero.

The minus symbol is also used as the unary negation operator, to change the sign of a numeric
value.

You may concatenate two strings, or a string with any other data type, just like with the plus
operator. The difference is that with the minus operator, the trailing blanks from the first operand
are removed before the concatenation, and placed at the end of the result. This means that the
concatenation with either the plus or minus results in a string with the same length, but with the
minus operator, the trailing blanks are combined at the end of the result.

23

dBASE Plus 9 LR

If you want to trim field values when creating an expression index for a DBF table, use the
minus operator.

Numeric operators

Topic group Related topics
Binary numeric operators: + — * [% " **
Unary numeric operators: ++ — —

Syntax
n+m
n++
n——
++n
n-m
n*m
n/m
n%m
n*m
n**m
--Nn
Description

Perform standard arithmetic operations on two operands, or increment or decrement a single
operand.

All of these operators take numeric values as operands. The + (plus) and - (minus) symbols can
also be used to concatenate strings.

As binary numeric operators, the +, —, *, and / symbols perform the standard arithmetic
operations addition, subtraction, multiplication and division.

The modulus operator returns the remainder of an integral division operation on its two
operands. For example, 50%8 returns 2, which is the remainder after dividing 50 by 8.

You may use either ™ or ** for exponentiation. For example, 275 is 32.

The increment/decrement operators ++ and — — take a variable or property and increase or
decrease its value by one. The operator may be used before the variable or property as a prefix
operator, or afterward as postfix operator. For example,

n=>5// Start with 5

? n++ // Get value (5), then increment

?n // Now 6

? ++n // Increment first, then get value (7)

? n // Still 7
If the value is not used immediately, it doesn’t matter whether the ++/— — operator is prefix or
postfix, but the convention is postfix.

Logical operators

Topic group Related topics

24

Language Reference

Binary logical operators: AND OR
Unary logical operator: NOT

Syntax
a AND b
aORb
NOT b

Description

The AND and OR logical operators return a logical value (true or false) based on the result of a
comparison of two operands. In a logical AND, both expressions must be true for the result to
be true. In a logical OR, if either expression is true, or both are true, the result is true; if both
expressions are false, the result is false.

When dBASE Plus evaluates an expression involving AND or OR, it uses short-circuit
evaluation:

false AND <any expL> is always false
true OR <any expL> is always true

Because the result of the comparison is already known, there is no need to evaluate <any
explL>. If <any expL> contains a function or method call, it is not called; therefore any side
effects of calling that function or method do not occur.

The unary NOT operator returns the opposite of its operand expression. If the expression
evaluates to true, then NOT exp returns false. If the expression evaluates to false, NOT exp
returns true.

You may enclose the logical operators in dots, that is: .AND., .OR., and .NOT. The dots are
required in earlier versions of dBASE.

Comparison operators

Topic group Related topics Example

Comparison operators compare two expressions. The comparison returns a logical true or false
value. Comparing logical expressions is allowed, but redundant; use logical operators instead.
dBASE Plus automatically converts data types in a comparison, using the following rules:

1. If the two operands are the same type, they are compared as-is.
0 If either operand is a numeric expression, the other operand is converted to a number:

If a string contains a number only (leading spaces are OK), that number is used, otherwise it is interpreted as
an invalid number.

The logical value true becomes one; false becomes zero.
All other data types are invalid numbers.

All comparisons between a number and an invalid number result in false.
0 If either operand is a string, the other operand is converted to its display representation:

Numbers become strings with no leading spaces. Integer values eight digits or less have no decimal point or
decimal portion. Integer values larger than eight digits and non-integer values have as many decimals
places as indicated by SET DECIMALS.

The logical values true and false become the strings "true" and "false".
Dates (primitive dates and Date objects) are converted using DTOC().
Object references to arrays are converted to the word "Array".

References to objects of all other classes are converted to the word "Object".

25

dBASE Plus 9 LR

Function pointers take on the form "Function: " followed by the function name.
0 All other comparisons between mismatched data types return false.

These are the comparison operators:

Operator Description

== Exactly equal to

= Equal to or Begins with

<>or# Not equal to or Doesn'’t begin with
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
$ Contained in

When comparing dates, a blank date comes after (is greater than) a non-blank date.

When comparing Date objects, the date/time they represent are compared; they may be earlier,
later, or exactly the same. For all other objects, only the equality tests makes sense. It tests
whether two object references refer to the same object.

String equality comparisons are case-sensitive and follow the rules of SET EXACT. The ==
operator always compares two strings as if SET EXACT is ON. The other equality operators (=,
<>, #) use the current setting of SET EXACT. When SET EXACT is ON, trailing blanks in either
string are ignored in the comparison. When SET EXACT is OFF (the default), the = operator act
like a "begins with" operator: the string on the left must begin with the string on the right. The <>
and # operators act like "does not begin with" operators. Note that there is no single genuinely
exactly equal comparison for strings in dBASE Plus.

It is recommended that you leave SET EXACT OFF so that you have the flexibility of doing an
"exact" comparison or a "begins with" comparison as needed. By definition, all strings "begin
with" an empty string, so when checking if a string is empty, always put the empty string on the
left of the equality operator.

Warning!

For compatibility with earlier versions of dBASE, if the string on the right of the = operator is (or
begins with) CHR(0) and SET EXACT is OFF, then the comparison always returns true. When
checking for CHR(0), always use the == operator.

The $ operator determines if one string is contained in, or is a substring of, another string. By
definition, an empty string is not contained in another string.

Object operators

Topic group Related topics

Object operators are used to create and reference objects, properties, and methods. Here are
the Object operators:

Operator Description

NEW Creates a new instance of an object

[] Index operator, which accesses the contents of an object through a numeric or string
value

26

Language Reference

. (period) Dot operator, which accesses the contents of an object through an identifier name
Scope resolution operator, to reference a method in a class or call a method from a
class.

NEW operator
The NEW operator creates an object or instance of a specified class.

The following is the syntax for the NEW operator:
[<object reference> =] new <class name>([<parameters>])
The <object reference> is a variable or property in which you want to store a reference to the
newly created object.
Note that the reference is optional syntactically; you may create an object without storing a
reference to it. For most classes, this results in the object being destroyed after the statement
that created it is finished, since there are no references to it.
The following example shows how to use the NEW operator to create a Form object from the
Form class. A reference to the object is assigned to the variable customerForm:
customerForm = new Form()
This example creates and immediately uses a Date object. The object is discarded after the
statement is complete:
? new Date().-toGMTString()
Index operator
The index operator, [], accesses an object’s properties or methods through a value, which is
either a number or a character string. The following shows the syntax for using the index
operator (often called the array index operator):
<object reference>[<exp>]
You typically use the index operator to reference elements of array objects, as shown in the
following example:

aScores = new Array(20) // Create a new array object with 20 elements
aScores[1] = 10 // Change the value of the 1st element to 10
? aScores[1] // Displays 10 in results pane of Command window

Dot operator

The dot operator, ("."), accesses an object’s properties, events, or methods through a name.
The following shows the syntax for using the dot operator:

<object reference>[.<object reference> .._].<property name>
Objects may be nested: the property of an object may contain a reference to another object, and
so on. Therefore, a single property reference may include many dots.
The following statements demonstrate how you use the dot operator to assign values:

custForm = new Form() // Create a new form object
custForm.title = "Customers"™ // Set the title property of custForm
custForm.height = 14 // Set the height property of custForm

If an object contains another object, you can access the child object’s properties by building a
path of object references leading to the property, as the following statements illustrate:

custForm.addButton = new Button(custForm) // Create a button in the custForm form
custForm.addButton.text = ""Add" // Set the text property of addButton

Scope resolution operator

The scope resolution operator (::, two colons, no space between them) lets you reference
methods directly from a class or call a method from a class.

27

dBASE Plus 9 LR

The scope resolution operator uses the following syntax:
<class name>]class]|super::<method name>
The operator must be preceded by either an explicit class name, the keyword CLASS or the

keyword SUPER. CLASS and SUPER may be used only inside a class definition. CLASS refers
to the class being defined and SUPER refers to the base class of the current class, if any.

<method name> is the method to be referenced or called.

Scope resolution searches for the named method, starting at the specified class and back
through the class’s ancestry. Because SUPER starts searching in a class’s base class, it is
used primarily when overriding methods.

Call, indirection, grouping operator

Topic group Related topics

Parentheses are used to call functions and methods, and to execute codeblocks. For example:
MyClass: :MyMethod

is a function pointer to a method in the class, while
MyClass: :MyMethod()

actually calls that method. Any parameters to include in the call are placed inside the
parentheses. Multiple parameters are separated by commas. Here is an example using a
codeblock:

rootn = {|x,n] x*(1/n)} // Create expression codeblock with two parameters

? rootn(27, 3) // Displays cube root of 27: 3
Some commands expect the names of files, indexes, aliases, and so forth to specified directly in
command—"bare"—not in a character expression. Therefore, you cannot use a variable directly.
For example, the ERASE command erases a file from disk. The following code will not work:

cFile = getfile("*.*", "Erase file") // Store filename to variable
erase cFile // Tries to erase fTile named "'cFile"

because the ERASE command tries to erase the file with the name of the variable, not the
contents of the variable. To use the variable name in the file, enclose the variable in
parentheses. In these commands, the parentheses evaluate the indirect file reference, and
when used in this way, they are referred to as indirection operators:

erase (cFile) // Spaces inside parentheses optional

Macro substitution also works in these cases, but macro substitution can be ambiguous.
Indirection operators are recommended in commands where they are allowed.

Finally, parentheses are also used for grouping in expressions to override or emphasize
operator precedence. Emphasizing precedence simply means making the code more readable
by explicitly grouping expressions in the normal order they are evaluated, so that you don't need
to remember all the precedence rules to understand an expression. Overriding precedence uses
the parentheses to change the order of evaluation. For example:

? 3+ 4 *5 // Multiplication Ffirst, result is 23
? (3 +4) *5 // Do addition first, result is 35

Alias operator

Topic group Related topics Example

28

Language Reference

Designates a field name in a specific work area, or a private or public variable.

Syntax
alias->name

Description
When using a name that may be a variable or the name of a field in the current work area, the
name is matched in the following order:

1. Local or static variable
0 Field name
O Private or public variable

To resolve the ambiguity, or to refer to a field in another work area, use the alias operator.
Aliases are not case-sensitive.

Private and public variables are referenced by the alias M. Use the alias of the specific work
area to identify a particular field. Local and static variables cannot use the alias operator; you
must use the variable alone.

Macro operator

Topic group Related topics Example

Substitutes the contents of a private or public string variable during the evaluation of a
statement.

Syntax
&<character variable>[.]

Description

Macro substitution with the & operator allows you to change the actual text of a program
statement at runtime. This capabilities allows you to overcome certain syntactic and
architectural limitations in dBL.

The mechanics of macro substitution are as follows. When compiling a statement, in a program
or for immediate execution in the Command window, dBASE Plus looks for any single &
symbols in the statement. (Double ampersands [&&] denote end-of-line comments.) If
something that looks like it could be a variable name—that is, a word made up of letters,
numbers, and underscores—immediately follows the & symbol, its location is noted during
compilation. If a period (.) happens to immediately follow the word, that period is considered to
be a macro terminator.

When the statement is executed, dBASE Plus searches for a private or public variable with that
name. If that variable exists, and that variable is a character variable, the contents of that
variable are substituted in the statement in the place of the & symbol, the variable name, and
the terminating period, if any. This is referred to as macro substitution. If no private or public
variable with that name can be found, or if the variable is not a character variable, nothing
happens; the statement is executed as-is.

Note

The & character is also used as the pick character in the text property of some form and menu
components. For example, if you use the string "&Close" to designate the letter C as the pick
character, if you happen to have a private or public variable named close, it will be substituted.

If macro substitution occurs, one of two things can happen:

29

dBASE Plus 9 LR

Some commands expect certain kinds macro substitution. If the substitution is one of those cases, the command
can immediately use the substituted value. For example, SET commands which expect either ON or OFF as the
final word in the statement are optimized in this way.

If the substituted value is not an expected case, or if the command or statement does not expect macro substitution,
the entire statement in its new form is recompiled on-the-fly and executed.
Recompiling the statement takes a small amount of time that is negligible unless you are
constantly recompiling in a loop. Also, local and static variables may be out-of-scope when a
recompiled statement is executed.

You cannot use the & operator immediately after a dot operator. You also cannot have the &
and dot operators on the left side of an assignment operator; that is, you cannot assign to a
property that is partially resolved with macro substitution. If you do either of these, a compile-
time error occurs. You can assign to a property that is completely resolved with macro
substitution, or use the STORE command instead of an assignment operator.

The macro terminator (a period, the same character as the dot operator) is required if you want
to abut the macro variable name with a letter, number, underscore or dot operator. Compare the
following examples:

&ftext // The macro variable ftext
&F.text // The macro variable ¥ followed by the word text
&F..text // The macro variable f followed by the dot operator and the word text

Non-operational symbols

Topic group Related topics

Though they don't act upon data or hold values in themselves, non-operational symbols have
their own purpose in dBL code and in the interpretation of programs.The symbols are:

Symbols Name/meaning

Statement separator, line continuation

// && End-of-line comment

* Eull-line comment

/* =/ Block comment

O 4G 1 Literal date/literal array/codeblock markers
SN Literal strings

Name/database delimiters

Preprocessor directive

String delimiters
Topic group Related topics
Enclose literal strings in either:

1. A set of single quote marks,
0 A set of double quote marks, or
0 A set of square brackets

The following example simply assigns the string "literal text" to the variable xString:

30

Language Reference

xString = "literal text”
To use a string delimiter in a literal string, use a different set of delimiters to delimit the string.
For example:

? [There are three string delimiters: the ", the ",] + " and the []"

Note that the literal string had to be broken up into two separate strings, because all three kinds
of delimiters were used.

Name/database delimiters

Topic group Related topics

If the name of a variable or a field in a work area contains a space, you may enclose the name
in colons, for example:

local :a var:

ta var: = 4

? za var: // Displays 4
Creating variables with spaces in them is strongly discouraged, but for some table types, it is
not unlikely to get field names with spaces. If you create automem variables for that table, those
variables will also have spaces.

However, if you're using the data objects instead of the Xbase DML, the fields are contained in
a fields array and are referenced by name. The field name is a character expression, so you
don’t have to do anything different if the field hame contains a space. The colons are not used.

You may also use colons when designating a table in a database. The name of the database is
enclosed in colons before the name of the table, in the form:

:database:table
For example:

use :IBLOCAL:EMPLOYEE // IBLOCAL is sample Interbase database

Comment symbols
Topic group Related topics
Two forward slashes (//, no space between them) indicate that all text following the slashes
(until the next carriage return) is a comment. Comments let you provide reference information
and notes describing your code:

x = 4 *y // multiply the value of y by four and assign the result to variable x

Two ampersands (&&) can also be used for an end-of-line comment, but they are usually seen
in older code.

If an asterisk (*) is the first character in a statement, the entire line is considered a comment.

A pair of single forward slashes with "inside" asterisks (/* */) encloses a block comment that can
be used for a multi-line comment block:

/* this is the first line of a comment block
this is more of the comment
this is the last line of the comment block */

You can also use the pair for a comment in the middle of a statement:
X = 1000000 /* a million! */ * y

Comment blocks cannot be nested. This example shows improper usage:

31

dBASE Plus 9 LR

/* this is the first line of a comment block

this is more of the same /* this nested comment will cause problems*/

this is the last line of the comment block */
After the opening block marker, dBASE Plus ends the comment at the next closing block marker
it finds, which means that only the section of the comment from "this is the first line" to the word
"problems" will be interpreted as a comment. The unenclosed remainder of the block will
generate an error.

Statement separator, line continuation

Topic group Related topics
There is normally one statement per line in a program file. Use the semicolon to either:

Combine multiple statements on a single line, or
Create a multi-line statement

For example, a DO...UNTIL loop usually takes more than two lines: one for the DO, one for the
UNTIL condition, and one or more lines in the loop body. But suppose all you want to do is loop
until the condition is true; you can combine them using the semicolon as the statement
separator:

do ; until rlock() // Wait for record lock

Long statements are easier to read if you break them up into multiple lines. Use the semicolon
as the last non-comment character on the line to indicate that the statement continues on the
next line. When the program is compiled, the comments are stripped; then any line that ends
with a semicolon is tacked onto the beginning of the next line. For example, the program:

? "abc" + ; // A comment

“def” + ;

ghi

is compiled as
? "abc™ + "def" + ghi
on line 3 of the program file. Note that the spaces before the semicolons and the spaces used to

indent the code are not stripped. If an error occurs because there is no variable named ghi, the
error will be reported on line 3.

Codeblock, literal date, literal array symbol

Topic group Related topics

Braces ({ }) enclose codeblocks, literal dates, and literal array elements. They must always be

paired. The following examples show how braces may be used in dBL code.

Literal dates are interpreted according to the current settings of SET DATE and SET EPOCH:
dMoon = {07/20/69} // July 20, 1969 if SET DATE is MDY and SET EPOCH is 1950

To enclose arrays

a={1,2,3}
? a[2] // displays 2

To assign a statement codeblock to an object’s event handling property
form.onOpen = {;msgbox(""Warning: You are about to enter a restricted area.")}

To assign an expression codeblock to a variable, and pass parameters to it
c = {Ix] x*9}

32

Language Reference

? c(4) // returns 36
// or
q = {In] {"ist","2nd","3rd"}[n]1}
? q(2) // displays "2nd"
To assign an expression codeblock to a variable, without passing parameters

c = {ll 4*9} // pipes (|]) must be included in an expression codeblock,
// even if a parameter is not being passed
? c() // returns 36

Preprocessor directive symbol

Topic group Related topics

The number sign (#) marks preprocessor directives, which provide instructions to the dBASE
Plus compiler. Preprocessor directives may be used in programs only.

Use directives in your dBL code to perform such compile-time actions as replacing text
throughout your program, perform conditional compilations, include other source files, or specify
compiler options.

The symbol must be the non-blank first character on a line, followed by the directive (with no
space), followed by any conditions or parameters for the directive.

For example, you might use this statement:

#include "IDENT_H"
to include a source file named IDENT.H (the "H" extension us generally used to identify the file
as a "header" file) in the compilation. The included file might contain its own directives, such as
constant definitions:

//File IDENT.H: constant definitions for MYPROG
#define COMPANY_NAME "Nobody"s Business"
#define NUM_EMPLOYEES 1

#define COUNTRY "Liechtenstein”

For a complete listing of all dBASE Plus preprocessor directives, along with syntax and
examples for each, see Preprocessor.
IDE Language Elements

IDE overview

Topic group

This section of the Language Reference describes language elements that you use within the
dBASE Plus integrated development environment (IDE) to programmatically create, modify,
compile and build applications.

BUILD

Topic group Related topics

Creates a Windows executable file (.EXE) from your dBASE Plus object files and resources.

Syntax
BUILD FROM <project or response file name>
or

33

dBASE Plus 9 LR

BUILD <filename>[, <filename> ...] /[FROM <resp-filename>
[ICON <filename>] [SPLASH <filename>] [TO <exe-filename>]
[WEB] [INI [ON | OFF | ROAM]]

[UAC]

FROM <project or response file name>

Name of a dBASE Plus project or response file that contains the names of all object files and
resources that are to be linked into your executable. If no extension is provided, .PRJ is
assumed.

<filename list>

List of compiled program elements, separated by commas. If you provide a filename without an
extension, .PRO (compiled program) is assumed.

ICON <icon filename>

Optional icon (.ICO) file used to identify your program in the Windows environment (e.g., when
minimized or listed in the Windows Explorer or a program group).

SPLASH <bmp format filename>

Optional bitmap (.BMP) file that displays while your program loads.
TO <executable filename>

The name of the Windows executable file ((EXE) to create. If not specified, the base file name of
the named project or response file (or the first file name in <filename list>) is used.

WEB

Specifies that an application will be used as a web application, rather than a desktop
application.

When run, an application built using the WEB keyword will take advantage of optimizations built
into PLUSrun.exe which allow it to load faster and use fewer resources than a non-WEB
application. Please note that these optimizations restrict a web application from containing code
to create, or use, visual components such as forms, buttons, toolbars, status bars, and other
form components. Only non-visual objects such as sessions, data modules, queries, rowsets,
non-visual objects and custom classes should be used.

In addition, when a web application .exe is run directly, rather than as a parameter to
PLUSrun.exe, using the WEB parameter allows it to detect when it's been prematurely
terminated by a Web server (as happens when an application takes too long to respond). If a
premature termination occurs, PLUSrun.exe also terminates to prevent it from becoming
stranded in memory.

To determine if an application was built using the WEB parameter, see the _app object's web
property. For additional information, see "Startup optimizations for Web applications" and
"Change to command line for PLUSrun.exe".

INI
INI or INI ON - indicates that the application will create and use an inifile. This is the same as
NOT specifying an INI clause at all.

If _app.useUACPaths is True,

- the .ini file will be located in the path contained in _app.currentUserPath.
If _app.useUACPaths is False,

- the .ini file will be located in the path contained in _app.exeName

34

Language Reference

INI ROAM - indicates that the application will create and use an ini file under the path in
_app.roamingUsersPath instead of the _app.currentUserPath

Note that the location of an .ini file can be overridden via the -c command line switch which can
be used to specify an alternate folder in which to locate the .ini file.

UAC

When UAC is specified the resulting .exe is built with an embedded default to set
_app.UseUACPaths to True when the .exe is run.

This embedded UAC setting overrides the runtime engine default set via the registry key:
HKLM\SOFTWARE\dBASE\Plus\Series1\useUACPaths

However, the embedded setting can be overridden by:

1- setting a RuntimeApp specific registry setting in registry key:
HKLM\SOFTWARE\dBASE\Plus\RuntimeApps\<app file name>\useUACPaths
useUACPaths is a string value set to "Y" or "y" for 'True' and setto "N" or "n" for 'False'
(NOTE: the <app file name> is case sensitive so 'MyApp.exe' is NOT the same as
'myApp.exe’)

Or

2 - by using the -v command line switch:
-v1 sets UseUACPaths to true
-v0 sets UseUACPaths to false

Description

Use the BUILD command to link compiled dBASE Plus program elements and supporting
resources (such as bitmaps and icons) into a Windows executable (.EXE) file.

Though the new project file format is the default for build specifications, support for response
(.RSP) files is offered for backward compatibility.

For Web based applications, it's important to use the WEB parameter. When a server
terminates an application, the WEB parameter enables dBASE Plus to simultaneously terminate
it's runtime.

Code Signing
dBASE has been upgraded so it can build .exe's that can be code signed.

New executables built with dBASE Plus will contain some additional information that will allow
them to be loaded successfully with the newruntime engine whether or not they are signed with
a digital signature.

The new dBASE runtime will check a dBASE built .exe for the new data. If found, it will be
loaded using the digital signature safe way. If not found, it will be loaded the old way which will
not support digital signatures.

The new runtime is therefore, backward compatible with executables built with prior versions of
dBASE Plus.

In addition, executables built with the new version of dBASE Plus will work with older dBASE
Plus runtime engines unless it requires features available only in the newer runtime engine.

35

dBASE Plus 9 LR

CLEAR ALL

Topic group Related topics

Releases all user-defined memory variables and closes all open files.

Syntax
CLEAR ALL

Description

CLEAR ALL combines the CLEAR MEMORY and CLOSE ALL commands, releasing all user-
defined memory variables, closing all open tables in the current workset, and all other files. For
more information, see CLEAR MEMORY and CLOSE ALL.

Note

CLEAR ALL does not explicitly release objects. However, if the only reference to an object is in
a variable, releasing the variable with CLEAR ALL in turn releases the object.

Use CLEAR ALL during development to clear all variables (and any objects that rely on those
references) and close all files to reset your working environment. Because of the event-driven
nature of dBASE Plus, CLEAR ALL is generally not used in programs.

CLOSE ALL

Topic group Related topics

Closes (almost) all open files.

Syntax
CLOSE ALL [PERSISTENT]
PERSISTENT

In addition to files closed by CLOSE ALL, the PERSISTENT designation closes files tagged
PERSISTENT. Without the PERSISTENT designation, these files would not be affected.

Description

CLOSE ALL closes almost all open files, including:
All databases opened by the Navigator and with OPEN DATABASE
All tables opened (with USE) in all work areas in the current workset
All files opened with low-level file functions, or a File object
All procedure and library files opened with SET PROCEDURE and SET LIBRARY
Any text streaming file opened by SET ALTERNATE

It does not close:
The printer file specified by the SET PRINTER TO command
Tables or databases opened through the data objects

Use CLOSE ALL during development to close files and reset your working environment without
affecting any variables. To close all files and release all variables, use CLEAR ALL. Because of
the event-driven nature of dBASE Plus, CLOSE ALL is generally not used in programs.

CLOSE FORMS

Topic group Related topics

36

Language Reference

Closes all open forms.
Syntax

CLOSE FORMS [<form name list>]
<form name list>

List of forms (wfm.) to close.

Description

Closes the specified forms when using <form name list>. Closes all forms when no list is
specified. Executes the standard close routines for the forms and the objects that are contained
in them.

COMPILE

Topic group Related topics

Compiles program files (.PRG, .WFM), creating object code files (.PRO, .WFO).
Syntax

COMPILE <filename 1> | <filename skeleton>
[AUTQO]
[LOG <filename 2>]

<filename 1> | <filename skeleton>
The file(s) to compile. If you specify a file without including its path, dBASE Plus looks for the file

in the current directory only. If you specify a file without including its extension, dBASE Plus
assumes .PRG.

AUTO

The optional AUTO clause causes the compiler to detect automatically which files are called by
your program, and to recompile those files.
LOG <filename 2>

Logs the files that were compiled, and any compiler errors or warning messages to <filename
2>. The default extension for the log file is .TXT.

Description

Use COMPILE to explicitly compile or recompile program files without loading or executing

them. dBASE Plus automatically compiles program source files into object (bytecode) files when

they are loaded (with SET PROCEDURE or SET LIBRARY) or executed (with DO or the call

operator). The compiled object files are created in the same directory as the source code files.

The file is compiled with coverage information if SET COVERAGE is ON or the file contains the
#pragma coverage(on)

directive.

When you compile a program, dBASE Plus detects any syntax errors in the source file and

either logs the error in the LOG file, or displays an error message corresponding to the error in a
dialog box that contains three buttons:

Cancel cancels compilation (equivalent to pressing Esc).

Ignore cancels compilation of the program containing the syntax error but continues compilation of the rest of the
files that match <filename skeleton> if you specified a skeleton.

37

dBASE Plus 9 LR

Fix lets you fix the error by opening the source code in an editing window, positioning the insertion point at the point
where the error occurred.

CONVERT

Topic group Related topics Example

Adds a _dbaselock field to a table for storing multiuser lock information.

Syntax
CONVERT [TO <expN>]
TO <expN>

Specifies the length of the multiuser information field to add to the current table. The <expN>
argument can be a number from 8 to 24, inclusive. The default is 16.

Description

Use CONVERT to add a special _dbaselock field to the structure of the current table. In general,
CONVERT is a one-time operation required for each table that is shared in a multi-user
environment.

Use the option TO <expN> to specify the length of the field. If you issue CONVERT without the
TO <expN> option, the width of the field is 16. If you want to change the length of the
_dbaselock field after using CONVERT, you can issue CONVERT again on the same table. To
view the contents of the _dbaselock field, use LKSYS().

Note

You must use the table exclusively (USE...EXCLUSIVE) before issuing CONVERT. Any records
marked as deleted with be lost during the CONVERT.

The _dbaselock field contains the following values:
Count A 2-byte hexadecimal number used by CHANGE()

Time A 3-byte hexadecimal number that records the time a lock was
placed

Date A 3-byte hexadecimal number that records the date a lock was
placed

Name A 0O-to 16-character representation of the login name of the user
who placed a lock, if a lock is active

The count, time, and date portions of the _dbaselock field always make up its first 8 characters.
If you accept the default 16-character width of the _dbaselock field, the login name is truncated
to 8 characters. If you set the field width to fewer than 16 characters, the login name is
truncated the necessary amount. If you set the width of <expN> to 8 characters, the login name
doesn't appear at all.

Every time a record is updated, dBASE Plus rewrites the count portion of _dbaselock. If you
issue CHANGE(), dBASE Plus reads the count portion from disk and compares it to the

previous value it stored in memory when the record was initially read. If the values are different,
another user has changed the record, and CHANGE() returns true. For more information, see

CHANGE().

LKSYS() returns the login name, date, and time portions of the _dbaselock field. If you place a
file lock on the table containing the _dbaselock field, the value in the _dbaselock field of the first

38

Language Reference

record contains the information used by CHANGE() and LKSYS(). For more information, see
LKSYS().
Note

CONVERT doesn't affect SQL databases or Paradox tables.

CREATE

Topic group Related topics

Opens the Table designer to create or modify a table interactively.

Syntax

CREATE

[<filename> | ? | <filename skeleton>
[[TYPE] FOXPRO | PARADOX | DBASE]
[WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton>

The name of the table you want to create. Both CREATE ? and CREATE <filename skeleton>
display a dialog box in which you can specify the name of a new table. The <filename> follows
the standard Xbase DML table naming conventions.

If you don't specify a name, the table remains untitled until you save the file. If you specify an
existing table name, dBASE Plus asks whether you want to overwrite it. If you reply no, nothing
further happens.

[TYPE] FOXPRO | PARADOX | DBASE

Overrides the default table type set by SET DBTYPE. The TYPE keyword is included for
readability only; it has no effect on the operation of the command.
PARADOX creates a Paradox table with a .DB extension.
FOXPRO creates a FoxPro table with a .DBF extension.
DBASE creates a DBF table with a .DBF extension.
CREATE MYTABLE PARADOX // Opens the table designer for "Mytable._db"

[WIZARD | EXPERT [PROMPT]]

If the PROMPT clause is used, a dialog appears asking if you want to use the Table designer or
the Table wizard. You can then invoke either the designer or the wizard. The WIZARD clause
without PROMPT causes the Table wizard to be invoked. You may use the keyword EXPERT
instead of WIZARD.

CREATE MYTABLE PARADOX WIZARD // Opens the Table Wizard

CREATE MYTABLE PARADOX WIZARD PROMPT // Opens the New Table dialog
allowing a choice of using the Table Designer or the Table Wizard.

Description

CREATE opens the Table designer, an interactive environment in which you can create or
modify the structure of a table, or the Table wizard, a tool that guides you through the process of
creating tables. The type of table you create depends on the <filename> you specify, or the
current database and the current setting of SET DBTYPE.

Create a table by defining the name, type, and size of each field. For more information on using
the Table designer, see The Table designer window.

To modify an existing table, use the MODIFY STRUCTURE command.

39

dBASE Plus 9 LR

CREATE COMMAND

Topic group Related topics

Displays a specified program file for editing, or displays an empty editing window.

Syntax

CREATE COMMAND [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton>

The file to display and edit. The ? and <filename skeleton> options display a dialog box from
which you can select a file. If you specify a file without including its path, dBASE Plus looks for
the file in the current directory, then in the path you specify with SET PATH. If you specify a file
without including its extension, dBASE Plus assumes .PRG. If you issue CREATE COMMAND
without an option, dBASE Plus displays an untitled empty editing window.

Description

Use CREATE COMMAND to create new or edit existing program files. Use DO to execute
program files.

If you're creating a new program file, CREATE COMMAND displays an empty editing window. If
you specify an existing file, dBASE Plus asks whether you want to modify it. If you reply no,
nothing further happens. Use the MODIFY COMMAND command to edit an existing file without
being asked whether you want to modify it.

By default, CREATE COMMAND launches the dBASE Plus Source Editor. You can specify an
alternate editor by using the SET EDITOR command or by changing the EDITOR setting in
PLUS.ini. To do so, either use the SET command to specify the setting interactively, or enter the
EDITOR parameter directly in PLUS.ini.

Note

dBASE Plus compiles programs before running them, and assigns the compiled files the same
name as the original, but with the letter "O" as the last letter in the filename extension. For
example, the compiled version of SALESRPT.PRG would be SALESRPT.PRO. If

SALESPRT.PRO already exists, it is overwritten. For this reason, avoid using filename
extensions ending in "O" in directories containing compiled programs.

CREATE DATAMODULE

Topic group
Opens the Data Module designer.

Syntax

CREATE DATAMODULE
[<filename> | ? | <filename skeleton>]
[CUSTOM] | [WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton>

The file to display and edit. The default extension is .DMD. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without
including its path, dBASE Plus looks for the file in the current directory. If you issue CREATE
DATAMODULE without an option, dBASE Plus creates an untitled empty data module.

CUSTOM

40

Language Reference

Invokes the Custom Data Module designer instead of the Data Module designer. The default
extension is .CDM instead of .DMD.

WIZARD | EXPERT [PROMPT]

If the PROMPT clause is used, a dialog appears asking if you want to use the Data Module
designer or the Data Module wizard. You can then invoke either the designer or the wizard. The
WIZARD clause without PROMPT causes the Table wizard to be invoked. You may use the
keyword EXPERT instead of WIZARD.

You cannot combine the CUSTOM and WIZARD options; there is no Custom Data Module
wizard.

Description

Use CREATE DATAMODULE to open the Data Module designer and create new or edit existing
data modules. The Data Module designer automatically generates dBL program code that
defines the data in the data module, and stores this code in an editable source code file with a
.DMD extension. Use a dataModRef object to use a data module.

If you're creating a new data module, CREATE DATAMODULE displays an empty design
surface. If you specify an existing file, dBASE Plus asks whether you want to modify it. If you
reply no, nothing further happens. Use the MODIFY DATAMODULE command to edit an
existing file without being asked whether you want to modify it.

CREATE FILE

Topic group Related topics

Displays a specified text file for editing, or displays an empty editing window.

Syntax
CREATE FILE [<filename> | ? | <filename skeleton>]
Description

CREATE FILE is identical to CREATE COMMAND, except that it defaults to displaying and
editing text files, which have a .TXT extension (instead of program files, which have a .PRG
extension).

CREATE FORM

Topic group Related topics

Opens the Form designer to create or modify a form.

Syntax

CREATE FORM
[<filename> | ? | <filename skeleton>]
[CUSTOM] | [WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton>

The form to create or modify. The default extension is .WFM. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without
including its path, dBASE Plus looks for the file in the current directory. If you issue CREATE
FORM without an option, dBASE Plus creates an untitled empty form.

CUSTOM

41

dBASE Plus 9 LR

Invokes the Custom Form designer instead of the Form designer. The default extension is .CFM
instead of WFM.

WIZARD | EXPERT [PROMPT]

If the PROMPT clause is used, a dialog appears asking if you want to use the Form designer or
the Form wizard. You can then invoke either the designer or the wizard. The WIZARD clause
without PROMPT causes the Form wizard to be invoked. You may use the keyword EXPERT
instead of WIZARD.

You cannot combine the CUSTOM and WIZARD options; there is no Custom Form wizard.

Description

Use CREATE FORM to open the Form designer or Form wizard and create or modify a form
interactively. The Form designer automatically generates dBL program code that defines the
contents and format of a form, and stores this code in an editable source code file with a .WFM
extension. DO the .WFM file to run the form.

If you're creating a new form, CREATE FORM displays an empty design surface. If you specify
an existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing further
happens. Use the MODIFY FORM command to edit an existing file without being asked whether
you want to modify it.

You may invoke the Custom Form designer by specifying the CUSTOM keyword. A custom
form is stored in a .CFM file, and does not have the standard bootstrap code that instantiates
and opens a form when the file is executed. It is intended to be used as a base class for other
forms. A single .CFM file may contain more than one custom form class definition. If there is
more than one form class in the .CFM file, dBASE Plus presents a list of classes to modify.

By default, the Form designer creates a class made up of the name of the file plus the word
"Form". For example, when creating STUDENT.WFM, the form class is hamed StudentForm.
The Custom Form designer uses the word "CForm" instead; for example, in SCHOOL.CFM, the
form class is named SchoolCForm.

See Using the Form and Report designers (overview) for instructions on using the Form
designer.

CREATE LABEL

Topic group Related topics

Opens the Label designer to create or modify a label file.

Syntax

CREATE LABEL
[<filename> | ? | <filename skeleton>]
[WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton>

The label file to create or modify. The default extension is .LAB. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without
including its path, dBASE Plus looks for the file in the current directory. If you issue CREATE
LABEL without an option, dBASE Plus creates an untitled label file.

WIZARD | EXPERT [PROMPT]

If the PROMPT clause is used, a dialog appears asking if you want to use the Label designer or
the Label wizard. You can then invoke either the designer or the wizard. The WIZARD clause

42

Language Reference

without PROMPT causes the Label wizard to be invoked. You may use the keyword EXPERT
instead of WIZARD.

Description

Use CREATE LABEL to open the Label designer and create new or edit existing labels. The
Label designer automatically generates dBL program code that defines the contents and format
of the labels, and stores this code in an editable source code file with a .LAB extension. DO the
.LAB file to print the labels.

If you're creating a new label file, CREATE LABEL displays an empty design surface. If you
specify an existing file, dBASE Plus asks whether you want to maodify it. If you reply no, nothing
further happens. Use the MODIFY LABEL command to edit an existing file without being asked
whether you want to modify it.

CREATE MENU

Topic group Related topics

Opens the Menu designer to create or modify a menu file.

Syntax

CREATE MENU [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton>

The menu file to create or modify. The default extension is .MNU. The ? and <filename
skeleton> options display a dialog box from which you can select a file. If you specify a file

without including its path, dBASE Plus looks for the file in the current directory. If you issue
CREATE MENU without an option, dBASE Plus creates an untitled menu file.

Description

Use CREATE MENU to open the Menu designer and create new or edit existing menus. The
Menu designer automatically generates dBL program code that defines the contents of a menu,
and stores this code in an editable source code file with a .MNU extension. To use the menu,
assign the .MNU file name as the menuFile property of a form, or

DO <.MNU file> WITH <form reference>

to assign the menu to the form. The Menu designer always creates a menu named "root", so
that when assigned to a form, it is referenced as form.root.

If you're creating a new menu file, CREATE MENU displays an empty design surface. If you
specify an existing file, dBASE Plus asks whether you want to modify it. If you reply no, nothing
further happens. Use the MODIFY MENU command to edit an existing file without being asked
whether you want to modify it.

CREATE POPUP

Topic group Related topics

Opens the Popup Menu designer to create or modify a popup menu file.

Syntax
CREATE POPUP [<filename> | ? | <filename skeleton>]
<filename> | ? | <filename skeleton>

43

dBASE Plus 9 LR

The popup menu file to create or modify. The default extension is .POP. The ? and <filename
skeleton> options display a dialog box from which you can select a file. If you specify a file
without including its path, dBASE Plus looks for the file in the current directory. If you issue
CREATE POPUP without an option, dBASE Plus creates an untitled popup menu file.

Description

Use CREATE POPUP to open the Popup Menu designer and create new or edit existing popup
menus. The Popup Menu designer automatically generates dBL program code that defines the
contents of a popup menu, and stores this code in an editable source code file with a .POP
extension. To assign the popup menu to a form, create the popup as a property of the form with:

DO <.POP file> WITH <form reference>, <property name>
then assign the popup object to the form’s popupMenu property.

If you're creating a new popup menu file, CREATE POPUP displays an empty design surface. If
you specify an existing file, dBASE Plus asks whether you want to modify it. If you reply no,
nothing further happens. Use the MODIFY POPUP command to edit an existing file without
being asked whether you want to modify it.

CREATE PROJECT

Topic group Related topics

Syntax

CREATE PROJECT

Description

CREATE PROJECT opens the Project Explorer, where you can design a new project.
Use MODIFY PROJECT to open existing project.

CREATE QUERY

Topic group Related topics

Opens a new or existing query in the SQL designer.

Syntax

CREATE QUERY [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton>

The SQL query file to create or modify. The default extension is .SQL. The ? and <filename
skeleton> options display a dialog box from which you can select a file. If you specify a file

without including its path, dBASE Plus looks for the file in the current directory. If you issue
CREATE QUERY without an option, dBASE Plus creates an untitled SQL query file.

Description

Use CREATE QUERY to open the SQL designer and create new or edit existing SQL queries.
The SQL designer automatically generates an SQL statement that defines the query, and stores
this statement in an editable source code file with a .SQL extension. The .SQL file can be run
directly from the Navigator or used as the sql property of a Query object.

If you're creating a new SQL query file, CREATE QUERY displays an empty design surface. If
you specify an existing file, dBBASE Plus asks whether you want to modify it. If you reply no,

44

Language Reference

nothing further happens. Use the MODIFY QUERY command to edit an existing file without
being asked whether you want to modify it.

CREATE REPORT

Topic group Related topics

Opens the Report designer to create or modify a report.

Syntax

CREATE REPORT
[<filename> | ? | <filename skeleton>]
[CUSTOM] | [WIZARD | EXPERT [PROMPT]]

<filename> | ? | <filename skeleton>

The report to create or modify. The default extension is .REP. The ? and <filename skeleton>
options display a dialog box from which you can select a file. If you specify a file without
including its path, dBASE Plus looks for the file in the current directory. If you issue CREATE
REPORT without an option, dBASE Plus creates an untitled empty report.

CUSTOM

Invokes the Custom Report designer instead of the Report designer. The default extension is
.CRP instead of .REP.

WIZARD | EXPERT [PROMPT]

If the PROMPT clause is used, a dialog appears asking if you want to use the Report designer
or the Report wizard. You can then invoke either the designer or the wizard. The WIZARD
clause without PROMPT causes the Report wizard to be invoked. You may use the keyword
EXPERT instead of WIZARD.

You cannot combine the CUSTOM and WIZARD options; there is no Custom Report wizard.

Description

Use CREATE Report to open the Report designer or Report wizard and create or modify a
report interactively. The Report designer automatically generates dBL program code that
defines the contents and format of a report, and stores this code in an editable source code file
with a .REP extension. DO the .REP file to run the report.

If you're creating a new report, CREATE REPORT displays an empty design surface. If you
specify an existing file, dBASE Plus asks whether you want to maodify it. If you reply no, nothing
further happens. Use the MODIFY REPORT command to edit an existing file without being
asked whether you want to modify it.

You may invoke the Custom Report designer by specifying the CUSTOM keyword. A custom
report is stored in a .CRP file, and does not have the standard bootstrap code that instantiates
and renders a report when the file is executed. It is intended to be used as a base class for
other reports. A single .CRP file may contain more than one custom report class definition. If
there is more than one report class in the .CRP file, dBASE Plus presents a list of classes to
modify.

See Using the Report and Report designers (overview) for instructions on using the Report
designer.

DEBUG

45

dBASE Plus 9 LR

Topic group Related topics

Opens the dBASE Plus Debugger.

Syntax

DEBUG
[<filename> | ? | <filename skeleton> [WITH <parameter list>]]

<filename> | ? | <filename skeleton>
The program file to debug. DEBUG ? and DEBUG <filename skeleton> display the Open
Source File dialog box, from which you can select a file. If you specify a file without including its

path, dBASE Plus looks for the file in the current directory, then in the path you specify with SET
PATH. If you specify a file without including its extension, dBASE Plus assumes .PRG.

WITH <parameter list>

Specifies expressions to pass as parameters to a program. For information about parameter
passing, see the description of PARAMETERS.

Description

Use DEBUG to open the Debugger and view or control program execution interactively. You
must issue DEBUG in the Command window; the command has no effect in a program. If you
issue DEBUG without any options, dBASE Plus opens the Debugger without loading a program
file. (You can load a file to debug from the Debugger.)

To debug a function, open the program file that contains the function, and set a breakpoint at
the FUNCTION or PROCEDURE line. When the function is called, the debugger will appear, at
the breakpoint that you set.

If an unhandled exception or error occurs during program execution, the standard error dialog
gives you the option of opening the Debugger at the line where the error occurred.

For more information, see Using the Debugger, which describes the Debugger in detail.

DISPLAY COVERAGE

Topic group Related topics

Displays the contents of a coverage file in the results pane of the Command window.

Syntax

DISPLAY COVERAGE <filenamel> | ? | <filename skeleton 1>
[ALL]

[SUMMARY]

[TO FILE <filename2> | ? | <filename skeleton 2>]

[TO PRINTER]

<filenamel> | ? | <filename skeleton 1>
The coverage file for the desired program. The ? and <filename skeleton 1> options display a
dialog box from which you can select a coverage file. If you specify a file without including its

path, dBASE Plus looks for the file in the current directory, then in the path you specify with SET
PATH. If you specify a file without including its extension, dBASE Plus assumes .COV.

ALL
Includes the coverage files, if any, for all other program files that could be called by the main
program file, adding to the display:

The total number of logical blocks exercised in all the program files combined

The percentage of logical blocks exercised in all the program files combined

46

Language Reference

SUMMARY

Excludes the logical blocks that were exercised. Without SUMMARY, both the logical blocks
that were exercised, and the logical blocks not exercised are displayed. Use the SUMMARY
option to find code that still needs to be exercised.

TO FILE <filename2> | ? | <filename skeleton 2>

Directs output to <filename2> in addition to the results pane of the Command window. By
default, dBASE Plus assigns a .TXT extension to <filename2> and saves the file in the current
directory. The ? and <filename skeleton 2> options display a dialog box in which you specify the
name of the target file and the directory to save it in.

TO PRINTER
Directs output to the printer in addition to the results pane of the Command window.

Description

A coverage file contains the results of the coverage analysis of a program file. You cause
dBASE Plus to analyze the execution of any code in a program file by compiling the program file
with coverage, either by having SET COVERAGE ON when the program is compiled, or with the
#pragma coverage(on) directive in the program file. A coverage file is created whenever any
code in the program file is executed.

The coverage file has the same name as the program file, and changes the last letter of the
extension to the letter "V"; unless the file is a .PRG, in which case the coverage file has an
extension of .COV. For example, the coverage file for GRADES.PRG is GRADES.COV, and the
coverage file for STUDENTS.WFM is STUDENTS.WFV.

The coverage file accumulates statistics whenever any code in the program file is executed.
You will usually want to make sure that all logical blocks in your code have been exercised. You
may erase the coverage file to restart the coverage analysis totals.

DISPLAY COVERAGE displays the results of the coverage analysis:

Each logical block, and how many times it was exercised

The total number of blocks, and the number of blocks that were tested

The percentage of blocks tested
DISPLAY COVERAGE pauses when the results pane is full and displays a dialog box prompting
you to display another screenful of information. Use the TO FILE clause to send the information
to a file. Use the TO PRINTER clause to send the information to the printer. In either case, you
can use SET CONSOLE OFF to suppress the display of the information in the results pane.

DISPLAY COVERAGE is the same as LIST COVERAGE, except that LIST COVERAGE does
not pause with the first window of information but rather continuously lists the information until
complete. This makes LIST COVERAGE more appropriate for outputting to a file or printer.

DISPLAY MEMORY

Topic group Related topics

Displays information about memory variables in the results pane of the Command window.

Syntax

DISPLAY MEMORY
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

TO FILE <filename> | ? | <filename skeleton>

47

dBASE Plus 9 LR

Directs output to the text file <filename>, in addition to the results pane of the Command
window. By default, dBASE Plus assigns a .TXT extension to <filename> and saves the file in
the current directory. The ? and <filename skeleton> options display a dialog box in which you
specify the name of the target file and the directory to save it in.

TO PRINTER
Directs output to the printer in addition to the results pane of the Command window.

Description

Use DISPLAY MEMORY to display the contents and size of a memory variable list. If you
haven't used ON KEY or to reassign the F7 key, pressing F7 when the Command window has
focus is a quick way to execute DISPLAY MEMORY.

DISPLAY MEMORY displays information about both user-defined and system memory
variables. The following information on user-defined memory variables is displayed.

Name

Scope (public, private, local, static or hidden)

Data type

Value

Number of active memory variables

Number of memory variables still available for use

Number of bytes of memory used by character variables

Number of bytes of memory still available for user character variables

Name of the program that initialized private memory variables

The following information on system memory variables is displayed.
Name
Scope (public, private, or hidden)
Data type
Current value

DISPLAY MEMORY pauses when the results pane is full and displays a dialog box prompting
you to display another screenful of information. Use the TO FILE clause to send the information
to a file. Use the TO PRINTER clause to send the information to the printer. In either case, you
can use SET CONSOLE OFF to suppress the display of the information in the results pane.

DISPLAY MEMORY is the same as LIST MEMORY, except that LIST MEMORY does not
pause with the first window of information but rather continuously lists the information until
complete. This makes LIST MEMORY more appropriate for outputting to a file or printer.

DISPLAY STATUS

Topic group Related topics

Displays information about the current dBASE Plus environment in the results pane of the
Command window.

Syntax

DISPLAY STATUS
[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

TO FILE <filename> | ? | <filename skeleton>

Directs output to the text file <filename>, in addition to the results pane of the Command
window. By default, dBASE Plus assigns a .TXT extension to <filename> and saves the file in

48

Language Reference

the current directory. The ? and <filename skeleton> options display a dialog box in which you
specify the name of the target file and the directory to save it in.

TO PRINTER
Directs output to the printer in addition to the results pane of the Command window.
Description

Use DISPLAY STATUS to identify open tables and index files and to check the status of the
SET commands. DISPLAY STATUS shows information related to the current session only.

If you haven't used ON KEY, SET, or SET FUNCTION to reassign the F6 key, pressing F6
when the Command window has focus is a quick way to execute DISPLAY STATUS.

DISPLAY STATUS displays the following information:

Name and alias of open tables in each work area, and for each table:
Whether that table is the table in the currently selected work area
The language driver and character set of each open table
Names of all open indexes and their index key expressions in each work area
Master index, if any, in each work area
Locked records in each work area
Database relations in each work area

Filter conditions in each work area

The name of the SET LIBRARY file, if any
The name of all open SET PROCEDURE files
SET PATH file search path

SET DEFAULT drive setting

Current work area

SET PRINTER setting

Current language driver and character set
DBTYPE setting

Numeric settings for SET MARGIN, SET DECIMALS, SET MEMOWIDTH, SET TYPEAHEAD, SET ODOMETER,
SET REFRESH, and SET REPROCESS

The current directory

ON KEY, ON ESCAPE, and ON ERROR settings

SET ON/OFF command settings

Programmable function key and SET FUNCTION settings

DISPLAY STATUS pauses when the results pane is full and displays a dialog box prompting
you to display another screenful of information. Use the TO FILE clause to send the information
to a file. Use the TO PRINTER clause to send the information to the printer. In either case, you
can use SET CONSOLE OFF to suppress the display of the information in the results pane.

DISPLAY STATUS is the same as LIST STATUS, except that LIST STATUS does not pause
with the first window of information but rather continuously lists the information until complete.
This makes LIST STATUS more appropriate for outputting to a file or printer.

DISPLAY STRUCTURE

Topic group Related topics Example

Displays the field definitions of the specified table.

Syntax

DISPLAY STRUCTURE
[IN <alias>]

49

dBASE Plus 9 LR

[TO FILE <filename> | ? <filename skeleton>]
[TO PRINTER]

IN <alias>

Identifies the work area of the open table whose structure you want to display rather than that of
the current table. For more information, see Aliases.

TO FILE <filename> | ? | <filename skeleton>

Directs output to the text file <filename>, in addition to the results pane of the Command
window. By default, dBASE Plus assigns a .TXT extension to <filename> and saves the file in
the current directory. The ? and <filename skeleton> options display a dialog box in which you
specify the name of the target file and the directory to save it in.

TO PRINTER
Directs output to the printer in addition to the results pane of the Command window.

Description

Use DISPLAY STRUCTURE to view the structure of the current or a specified table in the
results pane of the Command window. DISPLAY STRUCTURE displays the following
information about the current or specified table:
Name of the table
Type of table (Paradox, dBASE, or SQL)
Table type version number
Number of records
Date of last update (DBF only)
Fields
Field number
Field name (if SET FIELDS is ON, the greater-than symbol (>) appears next to each field specified with the
SET FIELDS TO command)
Type
Length
Dec: The number of decimal places in a numeric or float field
Index: Whether there is a simple index on that field
Number of bytes per record (the sum of field lengths; for DBF includes one additional byte reserved for storing the
asterisk that marks a record as deleted)
Multiply the total number of bytes per record by the number of records in the table to estimate
the size of a DBF table (excluding the size of the table header).

DISPLAY STRUCTURE pauses when the results pane is full and displays a dialog box
prompting you to display another screenful of information. Use the TO FILE clause to send the
information to a file. Use the TO PRINTER clause to send the information to the printer. In either
case, you can use SET CONSOLE OFF to suppress the display of the information in the results
pane.

DISPLAY STRUCTURE is the same as LIST STRUCTURE, except that LIST STRUCTURE
does not pause with the first window of information but rather continuously lists the information
until complete. This makes LIST STRUCTURE more appropriate for outputting to a file or
printer.

The index column of DISPLAY STRUCTURE provides information about simple indexes only.
When DISPLAY STRUCTURE indicates no index exists for a particular field (N), this does not
preclude the possibility that it is included in an existing complex index. Complex indexes are
those containing expressions such as "last_name-+first_name".

Neither DISPLAY STRUCTURE nor LIST STRUCTURE permit modification of an existing table
structure. To alter the structure, use MODIFY STRUCTURE.

50

Language Reference

HELP

Topic group Related topics Example

Activates the dBASE Plus Help system.

Syntax

HELP [<help topic>]

<help topic>

The Help topic you access with HELP.

Description

Use the HELP command in the Command window to get information on dBASE Plus.

dBASE Plus locates the first Help topic in the index beginning with <help topic>. If only one topic
with the index entry is found, that topic is displayed. If there are multiple matches, Help displays
a dialog box to let you choose the topic. If there is no match, the Help index is opened with
<help topic> as the current search value.

Pressing F1 gives you context-sensitive help based on the control or window that currently has
focus, or text that is highlighted in the Command window or Source Editor.

INSPECT()

Topic group Related topics

Opens the Inspector, a window that lists object properties and lets you change their settings.

Syntax
INSPECT (<oRef>)
<oRef>

A reference to the object that you want to inspect.

Description

Use INSPECT() to examine and change object properties directly. For example, during
program development you can use INSPECT() to evaluate objects and experiment with
different property settings.

The Inspector is modeless, and doesn't affect program execution.
Note

You can access the Inspector from the Form designer by pressing F11.
You can get help on any property in the Inspector by selecting the property and pressing F1.

LIST...

Topic group Related topics
Lists information in the results pane of the Command window without pausing.

Syntax

51

dBASE Plus 9 LR

LIST COVERAGE <filenamel> | ? | <filename skeleton 1>
[ALL]

[SUMMARY]

[TO FILE <filename2> | ? | <filename skeleton 2>]

[TO PRINTER]

LIST MEMORY

[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

LIST STATUS

[TO FILE <filename> | ? | <filename skeleton>]
[TO PRINTER]

LIST STRUCTURE

[IN <alias>]

[TO FILE <filename> | ? <filename skeleton>]
[TO PRINTER]

Description

The LIST commands listed above are the same as their DISPLAY command counterparts,
except that LIST commands do not pause with the first window of information but rather
continuously list the information until complete. This makes the LIST versions more appropriate
for outputting to a file or printer.

MODIFY...

Topic group Related topics

Modifies the corresponding file.

Syntax

MODIFY COMMAND [<filename> | ? | <filename skeleton>]
MODIFY DATAMODULE [<filename> | ? | <filename skeleton>]
MODIFY FILE [<filename> | ? | <filename skeleton>]

MODIFY FORM [<filename> | ? | <filename skeleton>]
MODIFY LABEL [<filename> | ? | <filename skeleton>]
MODIFY MENU [<filename> | ? | <filename skeleton>]
MODIFY POPUP [<filename> | ? | <filename skeleton>]
MODIFY QUERY [<filename> | ? | <filename skeleton>]
MODIFY REPORT [<filename> | ? | <filename skeleton>]

Description

The MODIFY commands listed above operate the same as their CREATE command
counterparts, except that if the specified file exists it is modified without prompting. For more
information, see the corresponding CREATE commands.

MODIFY PROJECT

Topic group Related topics

52

Language Reference

Opens an existing project in the Project Explorer.
Syntax

MODIFY PROJECT [<filename> | ? | <filename skeleton>]
<filename> | ? | <filename skeleton>

The project file to open. The default extension is .PRJ. The ? and <filename skeleton> options
display a dialog box from which you can select a file. If you specify a file without including its
path, dBASE Plus looks for the file in the current directory.

If you issue MODIFY PROJECT without an option, the Project Explorer is displayed, as if you
issued CREATE PROJECT. Selecting File | New from the Main menu opens the Open Project
dialog box from which you can navigate to your project (.prj) file

Description

MODIFY PROJECT opens the specified .PRJ file in the Project Explorer, making it the current
project.

MODIFY STRUCTURE

Topic group Related topics Example

Allows you to modify the structure of the current table.

Syntax
MODIFY STRUCTURE

Description

Use MODIFY STRUCTURE to change the structure of the current table by adding or deleting
fields, or changing a field name, width, or data type. Issuing the MODIFY STRUCTURE
command opens the Table designer, an interactive environment in which you can create or
modify the structure of a table. dBASE Plus will reopen a table in EXCLUSIVE mode if it wasn't
already exclusive when you issued the MODIFY STRUCTURE command.

Before allowing changes to the structure of a dBASE table, dBASE Plus makes a backup of the
original table assigning the file a .DBK extension. dBASE Plus then creates a new table file with
the .DBF extension and copies the modified table structure to that file. When you've finished
modifying a table structure, dBASE Plus copies the content of the backup file into the new
structure. If data is accidentally truncated or lost, you can recover the original data from the
.DBK file. Before modifying the structure of a table, make sure that you have sufficient disk
space to create the backup file plus any temporary storage required to copy records between
the two tables (approximately twice the size of the original table).

If a table contains a memo field, MODIFY STRUCTURE also creates a backup memo file to
store the original memo field data. This file has the same name as the table, but is given a .TBK
extension.

You shouldn't change a field name and its width or type at the same time. If you do, dBASE
Plus won't be able to append data from the old field, and your new field will be blank. Change
the name of a field, save the file, and then use MODIFY STRUCTURE again to change the field
width or data type.

Also, don't insert or delete fields from a table and change field names at the same time. If you
change field names, MODIFY STRUCTURE appends data from the old file by using the field
position in the file. If you insert or delete fields as well as change field names, you change field
positions and could lose data. You can, however, change field widths or data types at the same

53

dBASE Plus 9 LR

time as you insert or delete fields. In those cases, since MODIFY STRUCTURE appends data
by field name, the data will be appended correcily.

dBASE Plus successfully converts data between a number of field types. If you change field
types, however, keep a backup copy of your original file, and check your new files to make sure
the data has been converted correctly.

If you convert numeric fields to character fields, dBASE Plus converts numbers from the
numeric fields to right-aligned character strings. If you convert a character field to a numeric
field, dBASE Plus converts numeric characters in each record to digits until it encounters a non-
numeric character. If the first character in a character field is a letter, the converted numeric field
will contain zero.

You can convert logical fields to character fields, and vice versa. You can also convert character
strings that are formatted as a date (for example, mm/dd/yy or mm-dd-yy) to a date field, or
convert date fields to character fields. You can't convert logical fields to numeric fields.

In general, dBASE Plus attempts to make a conversion you request, but the conversion must be
a sensible one or data may be lost. Numeric data can easily be handled as characters, but
logical data, for example, cannot become numeric. To convert incompatible data types (such as
logical to numeric), first add a new field to the file, use REPLACE to convert the data, then
delete the old field.

If you modify the field name, length, or type of any fields that have an associated tag in the
production (.MDX) file, the tag is rebuilt. If any indexes are open when you modify a table
structure, dBASE Plus automatically closes those indexes when saving the modified table. You
should re-index the table after you modify its structure.

SET

Topic group Related topics

Displays a dialog box for viewing and changing the values of many SET commands. The
changed values are stored in the PLUS.ini file.

Syntax
SET
Description

Use SET to view and change settings interactively, instead of typing individual SET commands
such as SET TALK ON in the Command window.

Note

Any changes you make to settings by using SET are automatically saved to PLUS.ini. This
means that the settings will be in effect each time you start dBASE Plus. If you want to change

the value of SET commands only temporarily, issue individual SET commands in the Command
window or in a program.

Issuing SET is the same as choosing the Properties|Desktop menu option.

SET AUTONULLFIELDS

Topic group Related topics

Global setting used to affect the status of fields in blank records when APPENDIng to a Level 7
database.

54

Language Reference

Syntax
SET AUTONULLFIELDS ON | off
Description

Use SET AUTONULLFIELDS to determine whether empty fields are assigned a NULL value, or
when applicable, filled with spaces, zero or "false".

When AUTONULLFIELDS is ON (the default setting), dBASE Plus allows an empty field to
assume a “null value”. Null values are those which are nonexistent or undefined. Null is the
absence of a value and, therefore, different from a blank or zero value.

When AUTONULLFIELDS is OFF, numeric fields (long, float, etc.) are assigned a value of zero,
logical fields a value of "false", and character fields are filled with spaces.

OODML
Use the rowset object's autonullFields() property. This property will override the global setting.

SET BELL

Topic group Related topics Example

Turns the computer bell on or off and sets the bell frequency and duration.

Syntax
SET BELL ON | off

SET BELL TO
[<frequency expN>, <duration expN>]

<frequency expN>

The frequency of the bell tone in cycles per second, which must be an integer from 37 to
32,767, inclusive.

<duration expN>

The duration of the bell tone in milliseconds, which must be an integer from 1 to 2000 (two
seconds), inclusive.

Description

When SET BELL is ON, dBASE Plus produces a tone when you fill a data entry field or enter
invalid data. SET BELL TO determines the frequency and duration of this tone, unless the
computer is running Windows 95 and has a sound card. In that case, the Windows Default
sound is played (through the sound card) instead of the tone.

Displaying CHR(7) in the results pane of the Command window sounds the "bell" whether SET
BELL is ON or OFF.

SET BELL TO with no arguments sets the frequency and duration to the default values of 512
Hertz (cycles per second) for 50 milliseconds.

SET BLOCKSIZE

Topic group Related topics Example

Changes the default block size of memo field and .MDX index files.

Syntax

55

dBASE Plus 9 LR

SET BLOCKSIZE TO <expN>
<expN>

A number from 1 to 63 that sets the size of blocks used in memo and .MDX index files. (The
actual size in bytes is the number you specify multiplied by 512.)

Default

The default for SET BLOCKSIZE is 1 (for compatibility with dBASE Il PLUS). To change the
default, update the BLOCKSIZE setting in PLUS.ini.

Description

Use SET BLOCKSIZE to change the size of blocks in which dBASE Plus stores memo field files
and .MDX index files on disk. The actual number of bytes used in blocks is <expN> multiplied by
512. Instead of using SET BLOCKSIZE, you can set the block size used for memo and .MDX
index files individually, by using SET MBLOCK and SET IBLOCK commands.

After the block size is changed, memo fields created with the COPY, CREATE, and MODIFY
STRUCTURE commands have the new block size. To change the block size of an existing
memo field file, use the SET BLOCKSIZE command to change the block size and then copy the
table containing the associated memo field to a new file. The new file then has the new block
size.

SET COVERAGE

Topic group Related topics

Determines whether program files are compiled with coverage.

Syntax
SET COVERAGE on | OFF

Description

A coverage file is a binary file containing cumulative information on how many times, if any,
dBASE Plus enters and exits (and thus fully executes) each logical block of a program. Use
SET COVERAGE as a program development tool to determine which program lines dBASE
Plus executes and doesn't execute each time you run a program.

A program file is either compiled with coverage or not. To disable coverage analysis, the file
must be recompiled with coverage off.

There are two ways to control compilation with coverage. The first way is with SET
COVERAGE, which can be either ON or OFF. The second way is with the coverage #pragma in
the program file. The #pragma directive overrides the SET COVERAGE setting.

If a file is compiled with coverage enabled, dBASE Plus creates a new coverage file or updates
an existing one. When dBASE Plus creates a coverage file, it uses the name of the program file,
and changes the last letter of the extension to the letter "V"; unless the file is a .PRG, in which
case the coverage file has an extension of .COV. For example, the coverage file for
GRADES.PRG is GRADES.COV, and the coverage file for STUDENTS.WFM is
STUDENT.WFV.

To view the contents of a coverage file, use DISPLAY COVERAGE or LIST COVERAGE. If the
coverage file reveals that some lines aren't executing, you can respond by changing the
program or the input to the program to make the lines execute. In this way, you can make sure
that you test all lines of code in the program.

56

Language Reference

Coverage analysis divides a program into logical blocks. A logical block doesn't include
commented lines or programming construct command lines such as IF and ENDIF. It does,
however, include command lines within programming construct command lines. If your program
doesn't contain any programming constructs (like IF, DO WHILE, FOR...ENDFOR,
SCAN...ENDSCAN, LOOP, DO CASE, DO...UNTIL), the program has only one logical block
consisting of all uncommented command lines.

The coverage file identifies a logical block by its corresponding program line number(s):

Line 1 * UPDATES.PRG

Line 2 SET TALK OFF Block 1 (Lines 2-3)
Line 3 USE Customer INDEX Salespers

Line 4 SCAN

Line 5 DO CASE

Line 6 CASE Salesper = "S-12"

Line 7 SELECT 2 Block 2 (Lines 7-8)
Line 8 USE S12

Line 9 CASE Salesper = "L-5"

Line 10 SELECT 2 Block 3 (Lines 10-11)
Line 11 USE L5

Line 12 CASE Salesper = "J-25"

Line 13 SELECT 2 Block 4 (Lines 13-14)
Line 14 USE J25

Line 15 ENDCASE

Line 16 DO Changes Block 5 (Lines 16-17)
Line 17 SELECT 1

Line 18 ENDSCAN

Line 19 CLOSE ALL Block 6 (Lines 19-20)
Line 20 SET TALK ON

dBASE Plus writes the coverage file to disk when the program is unloaded from memaory or
when you issue a LIST COVERAGE or DISPLAY COVERAGE. To unload a program from
memory, use CLEAR PROGRAM.

SET DESIGN

Topic group Related topics Example

Determines whether CREATE and MODIFY commands can be executed.

Syntax
SET DESIGN ON | off

Default

The default for SET DESIGN is ON. To change the default, set the DESIGN parameter in
PLUS.ini. To do so, either use the SET command to specify the setting interactively, or enter the
DESIGN parameter directly in PLUS.ini.

Description

When SET DESIGN is ON, dBASE Plus lets you use CREATE and MODIFY commands to
create and modify tables, forms, labels, reports, text, and queries. To prevent users of your
applications from creating and modifying these types of files, issue SET DESIGN OFF in your
programs.

If you issue SET DESIGN ON or OFF in a subroutine, the setting is effective only during
execution of that subroutine.

57

dBASE Plus 9 LR

SET DEVELOPMENT

Topic group Related topics

Determines whether dBASE Plus automatically compiles a program, procedure, or format file
when you change the file and then execute it or open it for execution.

Syntax
SET DEVELOPMENT ON | off

Default

The default for SET DEVELOPMENT is ON. To change the default, set the DEVELOPMENT
parameter in PLUS.ini. To do so, either use the SET command to specify the "Ensure
Compilation" setting interactively, or enter the DEVELOPMENT parameter directly in PLUS.ini.

Description

When SET DEVELOPMENT is ON and you execute a program file with DO, or open a
procedure or format file, dBASE Plus compares the time and date stamp of the source file and
the compiled file. If the source file has a later time and date stamp than the compiled file,
dBASE Plus recompiles the file.

When SET DEVELOPMENT is ON and you change a source program, procedure, or format file
with MODIFY COMMAND, dBASE Plus erases the corresponding compiled file. When you then
execute the program or open the procedure or format file, dBASE Plus recompiles it.

When SET DEVELOPMENT is OFF, dBASE Plus doesn't compare time and date stamps, and
executes or opens existing compiled program, procedure, or format files. When you modify a
source file and then open or execute it, dBASE Plus first looks for a compiled file in memory and
executes it if found. If no compiled file is in memory, dBASE Plus looks for a compiled disk file
and executes it if found. If no compiled file is found, dBASE Plus compiles the file.

When you DO a program, open a procedure file with SET PROCEDURE, or open a format file
with SET FORMAT, dBASE Plus always looks for, opens, and executes a compiled file.
Therefore, if dBASE Plus can't find a compiled version of a source file when you execute or
open the source, dBASE Plus compiles the file regardless of the SET DEVELOPMENT setting.

During program development, when you're editing files often, you should turn SET
DEVELOPMENT ON. This ensures that you're always executing an up-to-date compiled file.

Turn SET DEVELOPMENT OFF when you no longer plan to change any source code. Turning
SET DEVELOPMENT OFF speeds up program execution because dBASE Plus doesn't have to
check time and date stamps. You might want to set the DEVELOPMENT parameter to OFF in
the PLUS.ini file you distribute with your compiled code.

SET ECHO

Topic group

Opens the dBASE Plus Debugger. This command is supported primarily for compatibility with
dBASEIV. In dBASE Plus, use DEBUG to open the debugger.

Syntax

SET ECHO on | OFF

The default for SET ECHO is OFF.

58

Language Reference

Description

Use SET ECHO to turn on the Debugger and view or control program execution interactively.
SET ECHO is identical to DEBUG. For more information, see DEBUG.

SET EDITOR

Topic group Related topics Example

Specifies the text editor to use when creating and editing programs and text files.

Syntax

SET EDITOR TO

[<expC>]

<expC>

The expression you would enter at the DOS prompt or as the Windows command line to start
the editor, usually the name of the editor's executable file (.EXE) or a Windows .PIF file. If
<expC> doesn't include the file's full path name, dBASE Plus looks for the file in the current
directory, then in the DOS path.

Default

The default for SET EDITOR is the dBASE Plus internal Source editor. To specify a different
default editor, set the EDITOR parameter in PLUS.ini. To do so, either use the SET command to
specify the setting interactively, or enter the EDITOR parameter directly in PLUS.ini.

Description

Use SET EDITOR to specify an editor other than the default dBASE Plus Source editor to use
when creating or editing text files. The file name you specify can be any text editor that
produces standard ASCII text files. The specified editor opens when you issue
CREATE/MODIFY FILE or CREATE/MODIFY COMMAND. If you issue SET EDITOR TO
without a file name for <expC>, dBASE Plus returns to the default editor.

You can use SET EDITOR to specify a .PIF file, which is a Windows file that controls the
Windows environment for a DOS application, or a Windows .EXE file. Start the DOS editor by
running the .PIF file rather than the .EXE. For more information about .PIF files, see your
Windows documentation. If there is not enough memory available to access an external editor,
dBASE Plus returns an "Unable to execute DOS" error message.

If the text editor you specify is already in use when you open a memo or file for editing, a
second instance of the editor starts.

SET HELP

Topic group Related topics Example

Determines which Help file (.HLP) the dBASE Plus Help system uses.

Syntax

SETHELP TO
[<help filename> | ? | <help filename skeleton>]
<help filename> | ? | <help filename skeleton>

59

dBASE Plus 9 LR

Identifies the Help file to activate. ? and <filename skeleton> display a dialog box, from which
you can select a file. If you specify a file without including its extension, dBASE Plus assumes
HLP.

Description

Use SET HELP TO to specify which Help file to use when the dBASE Plus Help system is
activated.

The Help file is opened automatically when you start dBASE Plus if you place the file in the
dBASE Plus home directory. SET HELP TO closes any open Help file before it opens a new file.

SET IBLOCK

Topic group Related topics Example

Changes the default block size used for new .MDX files.

Syntax
SET IBLOCK TO <expN>
<expN>

A number from 1 to 63 that sets the size of index blocks allocated to new .MDX files. The default
value is 1. (The actual size in bytes is the number you specify multiplied by 512 bytes; however,
the minimum size of a block is 1024 bytes.) To change the default, update the IBLOCK setting
in PLUS.ini. To do so, either use the SET command to specify the setting interactively, or enter
the IBLOCK parameter directly in PLUS.ini.

Description

Use SET IBLOCK to change the size of blocks in which dBASE Plus stores .MDX files on disk
to improve the performance and efficiency of indexes. You can specify a block size from 1024
bytes to approximately 32K. The IBLOCK setting overrides any previous block size defined by
the SET BLOCKSIZE command or specified in the PLUS.ini file. After the block size has been
changed, new .MDX index files are created with the new block size.

Multiple index (.MDX) files are composed of individual index blocks (or nodes). Nodes contain
the value of keys corresponding to individual records and provide the information to locate the
appropriate record for each key value. Since the IBLOCK setting determines the size of nodes,
the setting also determines the number of key values that can fit into each node. When a single
node can't contain all the key values in an index, dBASE Plus creates one or more parent
nodes. These intermediate nodes also contain key values. Instead of pointing to record
numbers, however, intermediate nodes point to leaf nodes or other lower-level intermediate
nodes. If you increase the size of index blocks and create a new .MDX file, the new and larger
leaf nodes contain more key values.

Whether you can improve performance by storing key values in larger or smaller nodes
depends on several factors: the distribution of data, if tables are linked together, the length of
key values and the type of operation requested. Typically, every .MDX file contains more than
one index tag. Finding the best setting for a given .MDX file requires experimentation because
the best size for one index tag might not be the best size for another.

The following is a list of basic principles governing index performance.

Since nodes might not be sequential, dBASE Plus reads only one node at a time from the disk. Reading more than
one node is usually inefficient, because typically the second node is not the next node in the sequential list.

Once a node is read into memory, dBASE Plus attempts to store it there for later use.

60

Language Reference

When users link several tables together, for example, with SET RELATION, performance is better if all the relevant
nodes for the tables are in memory simultaneously. For example, if a large node for table B pushes out the
previously read node for table A, dBASE Plus must find and read the table A node again from disk when the
node for table A needs to be used again. If both nodes remain in memory, performance can be improved.

When tables have many identical key values, dBASE Plus might have to store them in many nodes. In this
situation, performance might be improved by increasing the node size so that dBASE Plus reads fewer nodes
from disk to load the same number of key values into memory.

Small node sizes can cause performance degradation. This occurs because as nodes are read in and out, dBASE
Plus attempts to cache them all. When the small nodes are removed from memory by more recently read nodes,
they leave unused spaces in memory that are too small to contain larger nodes. Over time, memory can become
fragmented, resulting in slower performance.

SET MBLOCK

Topic group Related topics Example

Changes the default block size of new memo field (.DBT) files.

Syntax
SET MBLOCK TO <expN>
<expN>

A number from 1 to 512 that sets the size of blocks used to store new memo (.DBT) files. (The
actual size in bytes is the number you specify multiplied by 64.)

Default

The default value for SET MBLOCK is 8 (or 512 bytes). To change the default, update the
MBLOCK setting in PLUS.ini. To do so, either use the SET command to specify the setting
interactively, or enter the MBLOCK parameter directly in PLUS.ini.

Description

Use SET MBLOCK to change the size of blocks in which dBASE Plus stores new memo field
(.DBT) files on disk. You can specify a block size from 64 bytes to approximately 32K. The
MBLOCK setting overrides any previous block size defined by the SET BLOCKSIZE command
or specified in the PLUS.ini file. After the block size has been changed, new memo .DBT files
are created with the new block size. dBASE Plus stores data in each memo field in a group
made up of as many blocks as needed.

After the block size is changed, memo fields created with the COPY, CREATE, and MODIFY
STRUCTURE commands have the new block size. To change the block size of an existing
memo field file, use the SET BLOCKSIZE command to change the block size and then copy the
table containing the associated memo field to a new file. The new file then has the new block
size.

When the block sizes are large and the memo contents are small, memo (.DBT) files contain
unused space and become larger than necessary. If you expect the contents of the memo fields
to occupy less than 512 bytes (the default size allocated), set the block size to a smaller size to
reduce wasted space. If you expect to store larger pieces of information in memo fields,
increase the size of the block.

SET MBLOCK is similar to the older SET BLOCKSIZE command except for two advantages:

You can allocate different block sizes for memo field and index data, whereas SET BLOCKSIZE requires the same
block size for both. To allocate block sizes for index data, use SET IBLOCK.

You can specify smaller blocks with SET MBLOCK than with SET BLOCKSIZE. SET BLOCKSIZE creates blocks in
increments of 512 bytes, compared to 64 bytes with SET MBLOCK.

61

dBASE Plus 9 LR

SET STEP

Topic group

SET STEP ON opens the dBASE Plus Debugger. This command is supported primarily for
compatibility with dBASEIV. In dBASE Plus, use DEBUG to open the debugger.

Syntax

SET STEP on | OFF

The default for SET STEP is OFF.

Description

Use SET STEP to turn on the Debugger and view or control program execution interactively.
SET STEP is identical to DEBUG. For more information, see DEBUG.

SET TALK

Topic group Related topics Example

Determines whether dBASE Plus displays messages in the status bar, or displays memory
variable assignments in the results pane of the Command window.

Syntax
SET TALK ON | off

Default

The default for SET TALK is ON. To change the default, set the TALK parameter in PLUS.ini.
To do so, either use the SET command to specify the setting interactively, or enter the TALK
parameter directly in PLUS.ini.

Description

When SET TALK is ON, dBASE Plus uses the current SET ODOMETER setting to indicate
when operations such as COUNT and SORT are in progress in the status bar. It also displays
the results of memory variable assignments (using STORE or =) in the results pane of the
Command window.

Depending on the amount of memory your system has and the amount of memory particular
operations require, issuing SET TALK OFF might improve the performance of some operations.

Use SET TALK with SET ALTERNATE to send SET TALK output to a file or printer rather than
to the results pane of the Command window.

When SET TALK is ON, dBASE Plus reports the results of the BUILD command in a dialog box.
If SET TALK is OFF, nothing happens when BUILD is successful.
Application Shell

Appshell
Topic group

This section covers supporting application elements such as menus, popups, toolbars, standard
dialogs, keyboard behavior, and the _app object.

62

—app

Topic group Related topics Example

Language Reference

The global object representing the currently running instance of dBASE Plus.

Syntax

The _app object is automatically created when you start dBASE Plus.

Properties

The following tables list the properties, events and methods of the _app object.

Property

allowDEOExeOverride

allowYieldOnMsg

allUsersPath

baseClassName
charSet

className

currentUserPath

databases

ddeServiceName

detailNavigationOverride

errorAction

errorHTMFile

errorLogFile

errorLogMaxSize
errorTrapFilter

exeName
frameWin
iniFile

insert

language

IDriver

printer
roamingUsersPath

Default

true

false

APPLICATION

(APPLICATION)

Object array

DBASE

0 - Use rowset’s detail
settings

4 - Show Error Dialog

error.htm

PLUSErr.log

100

0 - Trap all errors

Object

true

Object

Description

Whether a dBASE Plus application checks for external objects

Whether dBASE Plus checks for messages during progam
execution

Full path to the shared folder where shared files or folders may
be located for dBASE Plus or for an application

Identifies the object as an instance of the dBASE Plus application
The current global character set

Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

Full path to the user's private dBASE or application folder.

An array containing references to all database objects used by
the Navigator

The name used to identify each instance of dBASE Plus when
used as a DDE service

Controls whether or not a rowset’s navigateMaster and
navigateByMaster properties are overridden

Default action to be taken when an error is encountered
Filename of an HTM file template (runtime web apps only)

Filename of the error log file to be used when the _app object's
errorAction property is set to 2,3, or 5.

Approximate maximum size of the error log file (kilobytes)
Enables, or disables, the detection of certain kinds of errors.

Drive, path and filename of the currently running instance of
PLUS.exe or a dBASE Plus application .exe.

The dBASE Plus MDI frame window
Full path and filename to the dBASE or Application .ini file

Whether text typed at the cursor is inserted or overwrites existing
text

The currently used display language in the design and runtime
environments. Read only.

The current global language driver
Configuration properties for the default printer

Full path the the current users' roaming folder where you can
choose to store data for an application that will roam from one

workstation to another if a network hosting an application is
configured to support roaming users

63

dBASE Plus 9 LR

session

sourceAliases

speedBar

statusBar

terminateTimerinterval

useUACPaths

Object

Object array

true

true

5000 milliseconds

false

The default Session object

A read-only array containing references to all Source Aliases
defined in the PLUS.ini.

Whether to display the default toolbar.

Whether to display the status bar at the bottom of the MDI frame
window

Determines the amount of time, in milliseconds, between the
closing of an application .exe and the removal of PLUSrun.exe
from the Web servers memory

Indicates whether or not dBASE or a dBASE application should
create and maintain private copies of various files and folders for
each user according to Window's User Account Control (UAC)
rules.

Indicates whether an application .exe was built using the WEB
parameter

Event

beforeRelease

Parameters

Description

before an object is released from memory.

onlnitiate <topic expC> When a client application requests a DDE link with dBASE Plus
as the server, and no DDETopic object for the specified topic
exists in memory.

Method Parameters Description

addToMRU() <filename> When called, adds a file to the “most recently used” files list

executeMessages()

<launchMode>

located on the “Files | Recent Files” and “Files | Recent Projects”
menus.

When called, handles pending messages during execution of a

processing routine.

themeState() Indicates whether themes are in use for the application.

Description

Use _app to control and get information about the currently running instance of dBASE Plus.
The insert property controls the insert or overwrite behavior of typed text in all forms, the Source
Editor, and the Command window. It is toggled by pressing the Insert key. You may show or
hide the default toolbars and the status bar. To control other aspects of the main application
window, use the _app.frameWin object.

The databases array contains references to all databases opened by the Navigator. The default
database is the first element in that array. The session property points to the default session.
Therefore _app.databases[1].session and _app.session point to the same object.

To use dBASE Plus as a DDE server, set the ddeServiceName to a unique identifier if there is
more than one instance of dBASE Plus running or if you want your application to have a specific
DDE service name other than the default "DBASE", then assign an onlnitiate event handler to
handle the service request.

The _app object is also used to store important global values and other objects used by your
application. Dynamically creating properties of _app is preferable to creating public variables.
Variables may be inadvertently released or conflict with other variable names.

Objects referenced only in variables cannot communicate with each other using object-oriented techniques. Objects
attached to the same parent object, in this case _app, can.

64

Language Reference

_app.frameWin

Topic group Related topics Example

The dBASE Plus MDI frame window.

Syntax

The _app.frameWin object is automatically created when you start dBASE Plus.

Properties

The following table lists the properties and methods of the _app.frameWin object. (No events
are associated with the _app.frameWin object.)

Property Default Description

baseClassName FRAMEWINDOW Identifies the object as an instance of an MDI frame window

className (FRAMEWINDOW) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

hwnd The Windows handle to the frame window

text dBASE Plus The title displayed in the frame window

systemTheme true Whethor or not to use the common controls in the manifest file
for Windows XP or Windows Vista.

visible true Whether the frame window is visible

windowState The state of the frame window: 0=Normal, 1=Minimized,
2=Maximized

Event Parameters Description

onClose() After the framewin has been closed.

Method Parameters Description

hasHScrollBar() Indicates whether a frame window uses a horizontal scrollbar.

hasVScrollBar() Indicates whether a frame window uses a vertical scrollbar.

Description

_app.frameWin represents the main dBASE Plus application window. This window is the frame
window that contains all MDI windows during development and in an MDI application. If your
application uses SDI windows only, the MDI frame window is usually hidden with the SHELL()
function.

If you assign a MenuBar to _app.frameWin, that menu becomes the default menu that is visible
when no MDI windows are open, or the current MDI window has no menu of its own. If you are
using SHELL() to hide the Navigator and Command window in an MDI application, you must
call SHELL() after assigning the _app.frameWin menu.

class Menu

Topic group Related topics Example

A menu item in a menubar or popup menu.

Syntax
[<oRef> =] new Menu(<parent>)
<oRef>

65

dBASE Plus 9 LR

A variable or property—typically of <parent>—in which to store a reference to the newly created

Menu object.
<parent>

The parent object—a MenuBar, Popup, or another Menu object—that contains the Menu object.

Properties

The following tables list the properties, events, and methods of the Menu class.

Property Default
baseClassName MENU
before

checked false

checkedBitmap

className (MENU)

enabled true
helpFile

helpid

id -1
name

parent

separator false

shortCut

statusMessage

Description

Identifies the object as an instance of the Menu class.
The next sibling menu object
Whether to display a checkmark next to a menu item.

An image to represent the mark to appear next to the menu item
if checked is true.

Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

Determines if the menu can be selected.

Help file name

Help index topic or context number for context-sensitive help
Supplementary ID number for menu item

The name of the menu item.

The menu item’s immediate container

Whether the menu object is a separator instead of a selectable
menu item.

The key combination that fires the onClick event.

The message to display on the status bar when the menu item
has focus.

text The text of the menu item prompt.

uncheckedBitmap An image to represent the mark to appear next to the menu item
if checked is false.

Event Parameters Description

beforeRelease

before an object is released from memory.

onClick After the menu item is chosen.

onHelp When F1 is pressed—overrides context-sensitive help
Method Parameters Description

release() Explicitly removes the menu object from memory.
Description

Menu objects represent the individual menu items, or prompts, in a menu system. They can be

attached to MenuBar objects, Popup objects, or other Menu objects so that:

When attached to a menubar, they are the top-level menu items, such as the standard File and Edit menus.
Menu items attached to a top-level menu item form the drop-down menu, such as the standard Cut and Paste menu

items in the top-level Edit menu.

Menu items attached to a popup comprise the items in the popup.

66

Language Reference

Any other menu items that have menu items attached to them become cascading menus.

Unless a menu item has other menu items attached (making it a cascading menu), selecting the
menu item fires its onClick event. Actions are assigned to each menu item by creating an
onClick event handler for the menu object.

The actions for the standard Undo, Cut, Copy, and Paste menu items and the Window menu
are handled by assigning the menu items to the menubar’s editUndoMenu, editCutMenu,
editCopyMenu, editPasteMenu, and windowMenu properties respectively.

Menu objects are also used as separators in a drop-down or popup menu by setting their
separator property to true. In this case, the menu item serves no other purpose and cannot be a
cascading menu or have an onClick event handler.

Creating accelerators and pick characters

There are two ways to let the user choose a menu item by using the keyboard (which may be
used at the same time):
Assign a key combination to the menu item’s shortCut property. This is sometimes called an accelerator. For

example, Ctrl+C is usually used for the Cut menu item. Pressing the accelerator chooses the menu item even if
the menu item is not visible.

Specify a pick character in the text prompt of the menu item by preceding it with an ampersand (&). Pick characters
work only when the menu item is visible. For top-level items in a menubar, you must press Alt and the pick
character to activate the menu. Once the menu system is activated, pressing Alt in combination with the pick
character is optional.

Note
Assigning F1 as the shortCut key for a menu item disables the built-in context-sensitive help
based on the helpFile and helpld properties. The onClick for the menu item will be called

instead. Therefore, if you have a menu item for Help it should not have F1 assigned as its
shortCut key unless you want to handle help yourself.

class MenuBar

Topic group Related topics Example

A form’s menu.

Syntax

[<oRef> =] new MenuBar(<parent> [, <name expC>])

<oRef>

A variable or property in which to store a reference to the newly created MenuBar object.
<parent>

The form (or the _app.frameWin object) to which you're binding the MenuBar object.
<name expC>

An optional name for the MenuBar object. The Menu Designer always uses the name "root". If
not specified, the MenuBar class will auto-generate a name for the object.

Properties
The following table lists the properties of the Menubar class.

Property Default Description

baseClassName MENUBAR Identifies the object as an instance of the MenuBar class.

67

dBASE Plus 9 LR

className (MENUBAR) Identifies the object as an instance of a custom class. When
no custom class exists, defaults to baseClassName

editCopyMenu A menu item that copies selected text from a control to the
Windows clipboard.

editCutMenu A menu item that deletes selected text from a control and
copies it to the Windows clipboard.

editPasteMenu A menu item that pastes text from the Windows clipboard to
the edit control with focus.

editUndoMenu A menu item that restores the form to the state before the last
edit operation was performed.

id -1 A supplementary ID number for the object

name The menubar object's name.

parent An object reference that points to the parent form.

windowMenu A top-level menu that lists open MDI windows.

Event Parameters Description

onlnitMenu When the menu is opened.

Method Parameters Description

release() Explicitly removes the menubar object from memory.

Description

A MenuBar object represents the top-level menu for a form. It contains one or more Menu
objects which comprise the individual top-level menu items. The top-level menu of a form is
displayed at the top of the form if the form’s mdi property is false, or in the MDI frame window if
the form’s mdi property is true when the form has focus.

You may also designate a menubar that appears in the MDI frame when no MDI forms have
focus by assigning a menubar to the _app.frameWin object.

The MenuBar object automatically binds itself to the <parent> form. Unlike other controls, you
usually do not assign the resulting <oRef> as a property of the form, since this is done
automatically, using the <name expC> that is specified. The Menu Designer always uses the
name "root", so a form’s menu is referred to with the object reference:

form.root

class Popup

Topic group Related topics

A popup menu assigned to a form.

Syntax

[<oRef> =] new Popup(<parent> [, <name expC>])

<oRef>

A variable or property in which to store a reference to the newly created Popup object.
<parent>

The form to which you’re binding the Popup object.

68

Language Reference

<name expC>

An optional name for the Popup object. If not specified, the Popup class will auto-generate a
name for the object.

Properties
The following tables list the properties, events and methods of the Popup class.

Property Default Description

alignment Align Center Aligns the popup menu horizontally relative to the right-click
location (0=Align Center, 1=Align Left, 2=Align
Right).

baseClassName POPUP Identifies the object as an instance of the Popup class.

className (POPUP) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

id -1 A supplementary ID number for the object

left Sets the position of the left border.

name The popup object's name.

parent An object reference that points to the parent form.

top Sets the position of the top border.

trackRight true Determines whether the popup menu responds to a right mouse
click for selection of a menu item.

Event Parameters Description

beforeRelease before an object is released from memory.

onlnitMenu After the popup menu is opened.

Method Parameters Description

open() Opens the popup menu.

release() Explicitly removes the popup object from memory.

Description

A Popup object represents a context or popup menu that is displayed when you right-click a
form. You may also open the popup explicitly by calling its open() method.

A form may have any number of popup menu bound to it. Only one menu at time can be
assigned to the form’s popupMenu property; that is the menu that appears when right-clicking
the form.

The popup contains Menu objects that represent the menu items in the popup.

class ToolBar

Topic group Related topics Example

A toolbar assigned to a form.

Properties
The following tables list the properties, events and methods of the ToolBar class.

69

dBASE Plus 9 LR

Property

alignment

allowdocking

baseClassName

className

enabled

flat

floating

form

frame

gripper

imageSource

70

Default

0

TOOLBAR
(TOOLBAR)

true

true

false

null

true

Description

Set the alignment to determine the placement of the toolbar in
the frame.

Options are:

0 — Top //default
1—left

2 — Right

3 — Bottom

Options for allowing the toolbar to be docked. Options are:
0 - None

1 — Horizontal

2 — Vertical

3 — Any //default

Identifies the object as an instance of the ToolBar class.

Identifies the object as an instance of a custom class. When
no custom class exists, defaults to baseClassName

Logical value which toggles the appearance of buttons on the
toolbar between always raised (false) to only raised when the
pointer is over a button (true).

Logical value which toggles the appearance of buttons on the
toolbar between always raised (false) to only raised when the
pointer is over a button (true).

Logical value that lets you specify your toolbar as docked
(false) or floating (true).

Returns the object reference of the form to which the toolbar is
attached.

A reference to the FrameWindow object

Whether or not a gripper is attached to the left side of the
toolbar. A gripper will allow the user to grab the toolbar and
move it around

Returns the toolbar’'s handle.

a Numeric ID given to the toolbar. The default is -1 until the
toolbar is attached to a form. Then this number is set to 1000
initially for the first new toolbar that is created and attached to
an open form.

For each additional toolbar that is created and then attached
to aform, it's ID is incremented by 1.

For example in the command window you will find the
following:

t1 = new toolbar()
?t1.id //returns -1

f1 = new form()
tl.attach(f1)

?t1.id //returns -1
fl.open()

?t1.id //returns 1000
t2 = new toolbar()
f2 = new form()
t2.attach(f2)
f2.open()

?t2.id //returns 1001

can be used to specify an image containing multiple toolbutton
images within it.

Language Reference

In each toolbutton you must also set imageld to an image ID
which is just the position of the desired image within the large
image beginning with 0 for the left most image and increasing
by 1 for each additional image.

For example:
t = new toolbar()

t.imageSource = "RESOURCE #430
C:\ashley\EXE\Plus_EN.dII" // bitmap with multiple images

t.imageWidth = 16 // 24 or 32 pixel depth each button image
t.imageHeight = 16 // usually the same as imageWidth

tb1l = new toolbutton(t)
tbl.imageld = 0 // leftmost image from toolbar's imageSource

tb2 = new toolbutton(t)
tb2.imageld = 1 // use second from left image

tb3 = new toolbutton(t)
th3.imageid = 2 // use third from left image

etc...

imageHeight 0 Adjusts the default height for all buttons on the toolbar. Since
all buttons must have the same height, if ImageHeight is set to
0, all buttons will match the height of the tallest button. If
ImageHeight is set to a non-zero positive number, images
assigned to buttons are either padded (by adding to the button
frame) or truncated (by removing pixels from the center of the
image or by clipping the edge of the image).

imageWidth 0 Specifies the width, in pixels, for all buttons on the toolbar.

left 0 Specifies the distance from the left side of the screen to the
edge of a floating toolbar.

name The name of the toolbar. You can name your toolbar to make
identifying it a little easier, especially if you have multiple
versions of your toolbar in memory.

padding 6 Pads the height of the toolbar.

parent The current FRAMEWINDOW object.

text String that appears in the title bar of a floating toolBar.

toolltems A read only property which contains an array object containing
the toolbutton objects that are defined in the toolbar.
For example:
t = new toolbar()
tb = new toolButton(t)
?t.toolltems[1].baseClassName //returns TOOLBUTTON
or
?t.toolltems[“tb”].baseClassName

top 0 Specifies the distance from the top of the screen to the top of
a floating toolbar.

transparent false whether or not the background of the toolbar shows the same
as the frame's background.

visible true Logical property that lets you hide or reveal the toolbar.

Event Parameters Description

onCommand Fires when any toolbutton is pressed. Can be used to

71

dBASE Plus 9 LR

determine what happens when any toolbutton is pressed by
the user.

This example checks to see if the current database is the
correct one and based on that enables or disables the onClick
event for a list of toolbuttons:

app.t = new toolbar()

_app.t.onCommand = {;if
upper(app.databases.current.databasename) <>
"DBASESAMPLES"; this.b1.onClick = null; this.b2.onClick =
null; else; this.b1.onClick = CLASS::B1_ONCLICK;
this.b2.onClick = CLASS::B2_ONCLICK; endif; ?"onclick =

" this.b1.onclick}

onUpdate Fires repeatedly while application is idle to update the status
of the toolbuttons

Method Parameters Description

attach() <form> Establishes link between the toolbar and a form
detach() <form> Breaks link between the toolbar and a form
Description

Use class ToolBar to add a toolbar to a form.

class ToolButton

Topic group Related topics Example

Defines the buttons on a toolbar.

Properties

The following tables list the properties and events of the ToolButton class. (No methods are
associated with this class.)

Property Default Description
baseClassName TOOLBUTTON Identifies the object as an instance of the ToolButton class.
bitmap Graphic file (any supported format) or resource reference that

contains one or more images that are to appear on the button.

bitmapOffset 0 Specifies the distance, in pixels, from the left of the specified
Bitmap to the point at which your button graphic begins. This
property is only needed when you specify a Bitmap that
contain a series of images arranged from left to right. Use with
BitmapWidth to specify how many pixels to display from the
multiple-image Bitmap. Default is O (first item in a multiple-
image Bitmap).

bitmapWidth 0 Specifies the number of pixels from the specified Bitmap that
you want to display on your button. This property is only
needed when you specify a Bitmap that contain a series of
images arranged from left to right. Use with BitmapOffset,
which specifies the starting point of the image you want to
display.

checked false Returns true if the button has itsTwoState property set to true.
Otherwise returns false.

className (TOOLBUTTON) Identifies the object as an instance of a custom class. When
no custom class exists, defaults to baseClassName

enabled true Logical value that specifies whether or not the button
responds when clicked. When set to false, the operating
system attempts to visually change the button with hatching or

72

Language Reference

a low-contrast version of the bitmap to indicate that the button
is not available.

parent N/A An object reference that points to the parent ToolBar.
separator false Logical value that lets you set a vertical line on the toolbar to

visually group buttons. If you specify a separator button, only
its Visible property has any meaning.

speedTip Specifies the text that appears when the mouse rests over a
button for more than one second.

twoState true Logical value that determines whether the button displays
differently when it has been depressed and consequently sets
the Checked property to true.

visible false Logical value that lets you hide (false) or show (true) the
button.

Event Parameters Description

onClick After the button is clicked.

Description

Use class ToolButton to define the buttons on an existing toolbar.

addToMRU()

Topic group
Use the addToMRU() method to add a file to the “most recently used” files list located on the
“Files | Recent Files” and “Files | Recent Projects” menus.
Syntax
_app.addToMRU(<filename>, <launchMode>)
<filename>
File name and optional path or alias
In order to be added to the Recent Files list:
If no alias is specified, a file must exist and must not have an extension of .TMP
If an alias IS specified, it is added to the list without first checking if it exists
In order to be added to the Recent Projects list:
A file must have an extension of .PRJ and <launchMode> must be 4 - "Run"
<launchMode>

A number from 0 to 12 specifying how the file should be launched, or opened, when a user
selects it from the "Recent Files" list.

Number Launch Mode Description
0 Use the default method based on files extension
1 Launch as if user selected, "File | New", from menu
2 reserved
3 Open file in appropriate designer
4 "Run" the file
for Projects: Open in Project Explorer

73

dBASE Plus 9 LR

for Programs: DO <program>
for Tables: Edit Records
for Queries: Edit Records

5 Alternate "Run"

for Programs: DEBUG

for Tables: APPEND

for Queries: SET VIEW only
for .gry: SET FILT only

6 Open a table via USE
7 reserved

8 Close

9 Open in Source Editor
10 Compile

11 Debug

12 Build

Property of
_app object
Description

The addToMRU() method can be called from a dBL program that runs in the dBASE Plus IDE.
If called in a dBASE Plus runtime application, it will RETURN without doing anything.

allowDEOExeOverride

Topic group Related topics

Determines whether an application will search for external objects.

Property of
_app object
Description

Dynamic External Objects (DEO) is active in dBASE Plus by default, which allows applications
to perform an automatic search for external objects. Setting the allowDEOExeOverride property
to false prevents procedures, built into an application .exe, from being overridden by external
objects, by first searching within the application .exe. Only procedures that do NOT exist within
the .exe are then searched for outside of the application .exe.

When allowDEOExeOverride is false:

dBASE Plus searches for objects as follows:
1. It looks inside the application's .exe file, the way Visual dBASE did in the past.
2. Itlooks in the "home" folder from which the application was launched.

3. Itlooks in the .ini file to see if there's a series of search paths specified. It checks all the paths in the list
looking for the object file requested by the application.

When allowDEOExeOverride is true (the default):
dBASE Plus searches for objects as follows:

4. It looks in the "home" folder from which the application was launched.

5. It looks in the .ini file to see if there's a series of search paths specified. It checks all the paths in the list
looking for the object file requested by the application.

6. It looks inside the application's .exe file, the way Visual dBASE did in the past.

74

Language Reference

The default setting for the allowDEOExeOverride property is true.

allowYieldOnMsg

Topic group
Enables or disables the message pump during execution of dBASE Plus applications.

Property of

_app object

Description

Use allowYieldOnMsg to allow dBASE Plus to be more responsive while the interpreter is
running a lengthy routine.

When allowYieldOnMsg is set to false, the default setting, dBASE Plus does NOT check for
messages until the interpreter completes running the current program. Setting allowYieldOnMsg
to false will speed up processing.

When allowYieldOnMsg is set to true, the dBASE Plus interpreter periodically checks for
messages waiting to be processed and, if found, sends them to the appropriate routines.
Messages pumped when allowYieldOnMsg is set to true include the following:
WM_PAINT - signals dBASE Plus to repaint a control, container, form, or framewindow to update its contents.
WM_CLOSE - signals dBASE Plus to close a window.

WM_QUERYENDSESSION - signals that the current user is logging out of Win 9x, Win NT, Win ME or 2000, which
in turn, causes dBASE Plus to shut down.

WM_QUIT - signals that the user has closed dBASE Plus by
Clicking the X in the upper right of the frame window
Selecting "Close" from the menu which appears when right clicking on the title bar of the frame window.
Pressing "Alt-F4".

allUsersPath

Topic group

Contains the full path to the folder where shared files or folders may be located for dBASE Plus
or for a dBASE Plus application.

Property of
_app object
Description

allUsersPath is set during startup to a subfolder of the special Window's folder intended to hold
files or folders that may be shared by all authenticated users.

An application may install files and folders under this folder which contain data shared by all
users of an application - such as shared configuration settings, shared images or other
resources, and other shared data files. In addition, master copies of files that will be copied for
each user into their private folder tree, can be installed here as well.

How allUsersPath is set

75

dBASE Plus 9 LR

During startup dBASE or the dBASE runtime engine retrieves the current user's shared
application folder path from Windows. The Windows designation for this path is:
CSIDL_COMMON_APPDATA.

The path retrieved looks like one of the following paths:
On Windows XP,
C:\Documents and Settings\All Users\Application Data
On newer versions of Windows, this folder defaults to:
C:\ProgramData

Next, the subpath is determined based on the folder from which dBASE or an application .exe
was launched.

If launched from under \Program Files or \Program Files (x86), the path remaining after
dropping this initial folder is appended to the shared application folder path.

For example, when running dBASE Plus from its default location:
On Windows XP, allUsersPath is set to:
C:\Documents and Settings\All Users\Application Data\dBASE\PLUS\BIN
On newer versions of Windows, allUsersPath is set to:
C:\ProgramData\dBASE\PLUS\BIN

If launched from some other folder, the path remaining after dropping the initial drive specifier or
UNC path is appended to the shared application folder path.

For example, when running a dBASE application from:
C:\MyApp\myapp.exe

allUsersPath will be set as follows:
On Windows XP: C:\Documents and Settings\All Users\Application Data\MyApp
On newer versions of Windows: C:\ProgramData\MyApp

When running a dBASE application via a UNC path:
\SomeUNC\MyApp\myapp.exe

allUsersPath will be set as follows:
On Windows XP: C:\Documents and Settings\All Users\Application Data\MyApp
On newer versions of Windows: C:\ProgramData\MyApp

attach()

Topic group Related topics

Establishes link between a toolbar and a form.

Syntax
<toRef>.attach(<oRef>)
<toRef>

An object reference to the toolbar.

76

Language Reference

<oRef>
An object reference to the form.

Property of
ToolBar

Description

Along with detach(), this method lets you manage toolbars in your application by connecting
and disconnecting the objects as needed.

Typically, however, a toolbar is attached when a form calls a program in which the toolbar is
defined, as is done in the included CLIPBAR.PRG sample:

parameter FormObj, blLarge

private typeCheck

local t, bNew

bNew = false

if (PCOUNTQ == 0)

MSGBOX(""To attach this toolbar to a form use: " + ;
CHR(13) + CHR(13) + ;

DO " + PROGRAM(Q) + " WITH <form reference>","Alert")

else

typeCheck = FindInstance("'ClipToolbar'™)
it (TYPE("typeCheck'™) == "0")

t = typeCheck

else

SET PROCEDURE TO (PROGRAM()) ADDITIVE
t = new ClipToolbar(bLarge)

bNew := true

endif

t.attach(FormObj)
endif

return (bNew)

charSet

Topic group Related topics

Returns the name of the global character set.

Property of
_app object
Description

Use the charSet property to display the name of the current global character set. This is the
same name returned by LIST STATUS or DISPLAY STATUS in the Command window. The
charSet property is read-only.

checked

Topic group Related topics Example

Determines if a checkmark appears beside a menu item.

Property of
Menu

77

dBASE Plus 9 LR

Description
Use checked to indicate that a condition or a process is turned on or off.

The checkmark appears to the left of the menu command when you set the checked property to
true; the checkmark is removed when you set the checked property to false.

You may specify a bitmap to display instead of the checkmark with the checkedBitmap property,
and a bitmap to display when checked is false with the uncheckedBitmap property.

checkedBitmap
Topic group Related topics
A bitmap to display instead of a checkmark when a menu item is checked.

Property of
Menu

Description

Use checkedBitmap to display a bitmap instead of a checkmark when a menu item’s checked
property is true.

The checkedBitmap setting can take one of two forms:

RESOURCE <resource id> <dIl name>
specifies a bitmap resource and the DLL file that holds it.

FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

Note
The display area in the menu item is very small (13 pixels square with Small fonts). If the bitmap
is too large, the top left corner is displayed. Also, the color of the bitmap when the menu item is

highlighted changes, depending on the system menu highlight color. Therefore, you may want
to limit yourself to simple monochrome bitmaps.

CLEAR TYPEAHEAD

Topic group Related topics
Clears the typeahead buffer, where keystrokes are stored while dBASE Plus is busy.

Syntax
CLEAR TYPEAHEAD

Description

If you have notissued a SET TYPEAHEAD TO 0 command, the keyboard typeahead buffer
stores keystrokes the user enters while dBASE Plus is busy processing other data. When the
processing is complete and keyboard input is enabled again, dBASE Plus processes and
deletes the values in the buffer in the order they were entered until the buffer is empty. Use
CLEAR TYPEAHEAD to discard any keystrokes that may have been entered during processing,
to ensure that the keyboard data currently being processed comes directly from the keyboard.

For example, if you want to be able to fill in multiple screens quickly, one after the other, you
would not issue CLEAR TYPEAHEAD during processing. This would let you continue typing
data while data from one screen was being saved and the next (blank) one being displayed. The
data you entered during processing would be entered onto the new screen when it appeared.

78

Language Reference

On the other hand, if you want to make sure that no data is entered until the next screen is
displayed, issue CLEAR TYPEAHEAD after displaying the blank screen and before beginning
data entry.

currentUserPath
Topic group

Contains the full path to the current user's private dBASE folder or private dBASE application
folder.

Property of
_app object
Description

currentUserPath is set during startup to a subfolder of the current user's private folder tree
where the user's private program settings may be kept and any temporary files can be created,
used, and deleted.

Many operating systems, including Microsoft Windows, setup a private folder tree for each user
in which their personal files, program settings, and temporary files can be kept.

In Windows XP, the private user folders are located under C:\Documents and Settings.
In newer versions of Windows, the private user folders are located under C:\Users

For dBASE Plus and dBASE applications, a user's private program settings are stored in an .ini
file.

- When running dBASE Plus, these settings are stored in a file named plus.ini

- When running an application .exe, these settings are stored in an .ini file named after the
application .exe file. For myapp.exe, the .ini file would be named myapp.ini.

The default location for these .ini files is the path contained in currentUserPath.

Note that property _app.inifile contains the full path to the .ini file including the name of the .ini
file.

For example, for a user with Windows username: jsmith
? _app.inifile returns..
C:\Users\jsmith\AppData\Loca\dBASE\PLUS\BIN\PIlus.ini

How currentUserPath is set :

During startup dBASE or the dBASE runtime engine retrieves the current user's private folder
path from Windows. The Windows designation for this path is: CSIDL_LOCAL_APPDATA.

The path retrieved looks something like:
C:\Users\jsmith\AppData\Local\

Next, the subpath is determined based on the folder from which dBASE or an application .exe
was launched.

If launched from under \Program Files or \Program Files (x86), the path remaining after
dropping this initial folder is appended to the user's private folder path.

For example, for user jsmith, running dBASE Plus from its default location:

79

dBASE Plus 9 LR

C:\Users\jsmith\AppData\Loca\dBASE\PLUS\BIN

If launched from some other folder, the path remaining after dropping the initial drive specifier or
UNC path is appended to the user's private folder path.

For example, for user jsmith, running a dBASE application from:
C:\MyApp\myapp.exe
currentUserPath will be set to:
C:\Users\jsmith\AppData\Loca\MyApp

databases

Topic group Related topics
An array containing references to all database objects used by the Navigator.

Property of

_app object

Description

Use the databases property to reference an array of database objects associated with the _app
object. The default database, _app.databases[1], is the first element in that array.

To add a database to the array:

d = new database()
d.databaseName = "MyBDEAlias"
d.active = true
_app-databases.add(d)

To work with tables referenced by that alias:
_app-databases[2] .copyTable("Stuff", "CopyOfStuff")

ddeServiceName

Topic group Related topics

The name used to identify each instance of dBASE Plus when used as a DDE (Dynamic Data
Exchange) service

Property of
_app object
Description

The _app object’s ddeServiceName property contains the service name for the current instance
of dBASE Plus; the default is "DBASE". You may change the ddeServiceName if there is more
than one instance of dBASE Plus running, or if you want to identify your dBASE Plus application
with a specific DDE service name.

DEFINE COLOR

Topic group Related topics Example

80

Language Reference

Creates and names a customized color.

Syntax

DEFINE COLOR <color name>
<red expN>, <green expN>, <blue expN>

<red expN>, <green expN>, <blue expN>
Specifies the proportions of red, green, and blue (RGB) that make up the defined color. Each

number determines the intensity of the color it represents, and can range from 0 (least intensity)
to 255 (greatest intensity).

Description

Use DEFINE COLOR to create a custom color. Once you have defined <color name>, you can
use it instead of one of the standard colors such as R, W, BG, silver, lemonchiffon, and so on.
The color you create with DEFINE COLOR is based on three numbers, <red expN>, <green
expN>, and<blue expN>. Adjusting these numbers alters the color you create. For example,
increasing or decreasing <green expN> increases or decreases the amount of green contained
in the customized color.

Use the GETCOLOR() function to open a dialog box in which you create a custom color or
choose from a palette of available colors. After exiting GETCOLOR(), issue DEFINE COLOR
with the values it returns to define the desired color.

You can't override any standard color definitions. For a full list of standard colors, see the
colorNormal property.

Colors defined with DEFINE COLOR are active only during the current dBASE Plus session. If
you restart dBASE Plus, you must redefine the colors. You may redefine a custom color as
often as you wish. Changing the definition of a color does not automatically change the color of
objects that have been set to that color; you must reassign the color.

detach()

Topic group Related topics

Breaks links between a toolbar and a form.

Syntax
<toRef>.detach(<oRef>)
<toRef>

An object reference to the toolbar.
<oRef>

An object reference to the form.
Property of

ToolBar

Description

Along with attach(), this method lets you manage toolbars in your application by connecting and
disconnecting the objects as needed.

Typically, however, a toolbar is detached as part of a form’s cleanup routines, as is done in the
following example:
function close

81

dBASE Plus 9 LR

private sFolder

sFolder = this.restoreSet.folder

CLOSE FORMS

SET DIRECTORY TO &sFolder.
this.toolbars.appbar.detach(_app.framewin)
with (Capp)

framewin.text := this.restoreSet.frameText
speedbar := this.restoreSet._speedBar

app := null

endwith

shell(true, true)

return

detailNavigationOverride

Topic group Related topics

Controls whether or not a rowset’s navigateMaster and navigateByMaster properties are
overridden.

Property of
_app object
Description

I

Value Description

0 Use rowset’s detail settings

1 Always Navigate Detail Rowsets

2 Never Navigate Detail Rowsets

0 - Use rowset’s actual navigateMaster and navigateByMaster properties to determine whether
or not to navigate through detail rowsets when navigating through a master rowset.

1 - All rowsets display SET SKIP behavior. Rowsets behave as if their navigateMaster and
navigateByMaster properties were set to true.

2 - All rowsets will not display SET SKIP behavior. Rowsets behave as if their navigateMaster
and navigateByMaster properties were set to false.

The default setting for detailNavigationOverride is 0.

Whenever you change the value of detailNavigationOverride, calling the refresh() method of
any grid with datalinked rowsets will cause the grid to display correctly.

editCopyMenu
Topic group Related topics

Specifies a menu item that copies selected text from a control to the Windows Clipboard.

Property of
MenuBar

Description

82

Language Reference

The editCopyMenu property contains a reference to a menu object users select when they want
to copy text.

You can use the editCopyMenu property of a form's menuBar to copy selected text to the
Windows Clipboard from any edit control in the form, instead of using the control's copy()
method. In effect, editCopyMenu calls copy() for the active control. This lets you provide a way
to copy text with less programming than would otherwise be needed. The Copy menu item is
automatically disabled when no text is selected, and enabled when text is selected.

For example, suppose you have a Browse object (b) and an Editor object (e) on a form (f). To
implement text copying, you could specify actions that would call b.copy() or e.copy()
whenever a user wanted to copy text. However, if you use a menuBar, you can set the
editCopyMenu property to the menu item the user will select to copy text. Then, when the user
selects that menu item, the text is automatically copied to the Windows Clipboard from the
currently active control. You don't need to use the control's copy() method at all.

If you use the Menu designer to create a menubar, editCopyMenu is automatically set to an item
named Copy on a pulldown menu named Edit when you add the Edit menu to the menubar:

this._EditCopyMenu = this.Edit.Copy

editCutMenu

Topic group Related topics

Specifies a menu item that cuts selected text from a control and places it on the Windows
Clipboard.

Property of

MenuBar

Description

The editCutMenu property contains a reference to a menu object users select when they want
to cut text.

You can use the editCutMenu property of a form's menubar to cut (delete) selected text and
place it on the Windows Clipboard from any edit control in the form, instead of using the
control's cut() method. In effect, editCutMenu calls cut() for the active control. This lets you
provide a way to copy text with less programming than would otherwise be needed. The Cut
menu item is automatically disabled when no text is selected and enabled when text is selected.

For more information, see editCopyMenu.

editPasteMenu

Topic group Related topics

Specifies a menu item that copies text from the Windows clipboard to the currently active edit
control.

Property of
MenuBar
Description

The editPasteMenu property contains a reference to a menu object users select when they want
to paste text to the cursor position in the currently active edit control.

83

dBASE Plus 9 LR

You can use the editPasteMenu property of a form's menubar to paste text from the Windows
Clipboard into any edit control in the form, instead of using the control's paste() method. In
effect, editPasteMenu calls paste() for the active control. This lets you provide a way to paste
text with less programming than would otherwise be needed. The Paste menu item is
automatically disabled when the clipboard is empty, and enabled when text is copied or cut to
the Clipboard.

For more information, see editCopyMenu.

editUndoMenu

Topic group Related topics

Specifies a menu item that reverses the effects of the last Cut, Copy, or Paste action.

Property of
MenuBar
Description

The editUndoMenu property contains a reference to a menu object users select when they want
to undo their last Cut, Copy, or Paste action.

You can use the editUndoMenu property of a form's menubar to undo a Cut or Paste action
from any edit control in the form, instead of using the control's undo() method. In effect,
editUndoMenu calls undo() for the active control. This lets you provide a way to undo with less
programming than would otherwise be needed.

For more information, see editCopyMenu.

errorAction

Topic group Related topics

Default action to be taken when an error is encountered.

Property of
_app object
Description

Use the errorAction property to handle errors, and error reporting, when a TRY. .. CATCH or
ON ERROR handler is not in affect. If the error occurs within a try...catch, or if an on error
handler is active, the TRY...CATCH or ON ERROR handlers will retain control.

errorAction is an enumerated property with the following values:

Value Description

Quit

Send HTML Error & Quit

Log Error & Quit

Send HTML Error, Log Error & Quit

Show Error Dialog (Default)

a A W N+ O

Log Error & Show Error Dialog

84

Language Reference

Option 0
dBASE Plus will shutdown cleanly without reporting the error.
Options 1 and 3

dBASE Plus will to use the file specified in errorHtmFile as a template to format error
information sent out as an HTML page. These options are only appropriate when running a
dBASE Plus Web application that was invoked via a web server such as Apache or IIS (Internet
Information Server).

The default value for errorHtmFile is error.htm.

If error.htm cannot be found, or an error occurs when trying to open or read it into memory,
dBASE Plus will use a built-in default HTML template that matches the default US English
error.htm.

Options 2, 3,and 5

dBASE Plus will log the error to disk using the file specified in errorLogFile. If the error log file
cannot be opened, for instance when another application has it opened exclusively, dBASE Plus
will try up to 15 times to open the file and write the log entry. dBASE Plus will wait approximately
300 milliseconds between retries. Should all 15 attempts fail, dBASE Plus will proceed without
logging the error.

Option 4

This is the default option which displays an error dialog offering the option to Fix, Ignore, or
Cancel the error.

Option 5

dBASE Plus will log the error and display an error dialog. The error dialog offers the option to
Fix, Ignore, or Cancel the error.

errorHTMFile

Topic group Related topics

Filename of an HTM file template. Used for runtime web apps only.

Property of
_app object
Description

Use the errorHTMFile property to designate a name for the HTM file used to format an error
page sent back to the browser. The filename may include an explicit path or source alias. When
a path is not included, the application .exe path is assumed. The default filename for
errorHTMFile is Error.HTM. dBASE Plus's error handling code will only try to use the
errorHtmFile property when errorAction is set to option 1 - Send HTML Error & Quit or 3 - Send
HTML Error, Log Error & Quit.

HTM file template may contain the following replaceable tokens:

Token Description
%d Date and Time of error
%e Application EXE filename

85

dBASE Plus 9 LR

%s Source filename

%p Name of procedure or function in which error
occurred

%l Source line number

%cC Location where error code is displayed

%m Location where error message is displayed

errorLogFile
Topic group Related topics

Specifies the filename of the error log file to be used when the _app objects’ errorAction
property is setto 2, 3, or 5.

Property of
_app object
Description

Use the errorLogFile property to designate a filename for the error log file generated when an
error occurs, and the errorAction property is set to option 2, 3 or 5. The filename may include an
explicit path. When a path is not included, the path is set as follows:

- When _app.useUACPaths is True:

the path returned by _app.currentUserPath is used
- When _app.useUACPaths is False:

the path returned by _app.exeName is used

The default filename for errorLogFile is PLUSErr.log
Information is saved to the log file in the following order:
Date and Time of error

Application Path and Filename (as contained in _app.exeName)
When running PLUS.exe, this will be the path to PLUS.exe.
When running an application exe, this will be the full path and name of the application exe.
Source File Name (if available)
Procedure or Function Name (if available)
Line Number (if available)
Error Code
Error Message

errorLogMaxSize
Topic group Related topics

Approximate maximum size of error log file in kilobytes.

Property of
_app object
Description

86

Language Reference

The errorLogMaxSize property is used to limit the size of an error log file. On a web server or
regular file server, limiting the error log size prevents slowly using up all available disk space.

When the size of the file specified in errorLogFile exceeds errorLogMaxSize x 1024, dBASE
Plus will skip past the first 10 percent of log entries, find the start of the next complete log entry,
and copy the remaining 90 percent of the log file to a new file. Once the log file has been copied
successfully, the original log file is deleted and the new log file is renamed to the name specified
in errorLogFile.

If you do not want to limit the size of the error log file, set errorLogMaxSize to zero (0).

The default for errorLogMaxSize is 100. The minimum value allowed is zero and the maximum
is 2048.

errorTrapFilter

Topic group

Use the errorTrapFilter property to enable, or disable, the detection of certain kinds of errors.
Property of

_app object:

Default

0 (Trap all errors)

Description

This property can be set:
Programmatically, by assigning the desired value from a dBL program.

or
Via a setting in the dBASE Plus or application ini file as follows:

[ErrorHandling]
ErrorTrapFilter=0

or

[ErrorHandling]
ErrorTrapFilter=1

Currently supported options are:

0 Trap all errors. Provides the same level of error trapping introduced in dBASE
Plus 2.5

1 Ignore interpreter memory access violations. Provides the same level of error
trapping available in versions of dBASE Plus prior to 2.5.

executeMessages()

Topic group

Use the executeMessages() method to periodically process pending messages while running a
lengthy processing routine.

Syntax

<oRef>.executeMessages()

<oRef>

87

dBASE Plus 9 LR

A reference to the _app object
Property of
_app object
Description

When called, executeMessages() checks for messages in the dBASE message queue. If found,
they are processed and executed.

While the dBASE interpreter is executing, messages may accumulate in the dBASE message
gqueue - typically mouse, keyboard or paint messages. By calling the executeMessages()
method during a long processing routine, dBASE can be made responsive to these messages
rather than having to wait until the processing routine ends.

exeName
Topic group
The drive, path and filename of the currently running instance of PLUS.exe or a dBASE Plus
application .exe.
Property of
_app object
Description
exeName is a read-only property used to support error handling.
When running PLUS.exe, the exeName property will include the drive, path, and file name for
the currently running instance of PLUS.exe.
For example:
C:\Program Files\dBASE\Plus\bin\PLUS.exe
When running a dBASE Plus application .exe, the exeName property will include the drive, path,
and file name of the running application.

In both instances, the exeName property preserves the case of the folder and .exe names
(except on Win 9x where it is converted to uppercase). When starting an application .exe as a
parameter to PLUSrun.exe, the exeName property will use the case entered on the command
line for the applications path & name.

GETCOLOR()

Topic group Related topics Example
Calls a dialog box in which you can define a custom color or select a color from the color

palette. Returns a character string containing the red, green, and blue values for the color
selected.

Syntax

GETCOLOR([<title expC>])

<title expC>

A character string to appear as the title of the dialog box.

Description

88

Language Reference

Use GETCOLOR() to open a dialog box in which you can choose a color from a palette of
predefined colors or create a customized color. In this dialog box, you choose and create colors
in the same way you do if you use the Color Palette available when you choose Color in the
Windows Control Panel.

GETCOLOR() returns a string in the format "red value, green value, blue value”, with each
color value ranging from 0 to 255; for example "115,180,40". If you cancel the color dialog,
GETCOLOR() returns an empty string.

You can use the string returned by GETCOLOR() in a related command, DEFINE COLOR, to
use a specific color in a program.

GETFONT()

Topic group Example

Calls a dialog box in which you select a character font. Returns a string containing the font
name, point size, font style (if you choose a style other than Regular), and family.

Syntax

GETFONT([<title expC>
[, <fontstr expC>]])

<title expC>
A character string to appear as the title of the dialog box. Whenever the <fontstr expC>

parameter is used, the <title expC> parameter must also be present, as a valid title string or a
null string ("), in order to specify the use of the default dialog title.

<fontstr expC>
A character string containing the default font settings to be used in the dialog box. This string
has the same format as the results string returned by this dialog,
fontstr = “fontName, pointsize [, [B] [I1]1 [U] [S] 1 L[,fontFamily]”
where the style options, B => Bold, | => ltalic, U => Underline, and S => Strikeout, can appear in
any order, and in either upper or lower case.
The following are valid examples of the GETFONT() syntax:
GETFONTQ)
GETFONT(""My Title™)
GETFONT('**,"Arial,14,BU"™)
Whereas,
GETFONT(,"Arial,14,BU"™)

will result in an error dialog.
Description

Use GETFONT() to place the values associated with a specified font into a character string. If
you want to add a font to the [Fonts] section of PLUS.ini but don't know its exact name or family,
use GETFONT(). Then add the information GETFONT() returns into PLUS.ini.

hasHScrollBar()

Topic group Related topics Example
Use the hasHScrollBar() method to determine if a frame window is using a horizontal scrollbar.

89

dBASE Plus 9 LR

Syntax

<oRef>.hasHScrollBar()

<oRef>

<oRef> a reference to the _app.FrameWin object.

Property of
_app.frameWin

Description

By indicating whether a horizontal scrollbar is present, the hasHScrollBar() method allows a
form to more accurately determine how much room is available within the frame window.

The hasHScrollBar() method returns True if the frame window has a horizontal scrollbar.

hasVScrollBar()

Topic group Related topics Example

Use the hasVScrollBar() method to determine if a frame window is using a vertical scrollbar.

Syntax

<oRef>.hasVScrollBar()

<oRef>

<oRef> a reference to the _app.FrameWin object.

Property of
_app.frameWin

Description

By indicating whether a vertical scrollbar is present, the hasVScrollBar() method allows a form
to more accurately determine how much room is available within the frame window.

The hasVScrollBar() method returns True if the frame window has a vertical scrollbar.

INKEY()

Topic group Related topics Example

Gets the first keystroke waiting in the keyboard typeahead buffer. Can also be used to wait for a
keystroke and return its value.

Syntax
INKEY ([<seconds expN>] [, <mouse expC>])
<seconds expN>

The number of seconds INKEY/() waits for a keystroke. Fractional times are allowed. If <expN>
is zero, INKEY() waits indefinitely for a keystroke. If <expN> is less than zero, the parameter is
ignored.

<mouse expC>

Determines whether INKEY() returns a value when you click the mouse. If <expC> is "M" or
"m", INKEY() returns —100. If <expC> is not "M" or "m", INKEY() ignores a mouse click and
waits for a keystroke.

90

Language Reference

Description

The keyboard typeahead buffer stores keystrokes the user enters while dBASE Plus is busy. A
very fast typist may also fill the keyboard typeahead buffer—dBASE Plus is busy trying to keep
up. These keystrokes are normally handled automatically; for example, characters are typed
into entryfields and menu choices are made. Use INKEY() to handle the keystrokes yourself.

INKEY() returns the decimal value associated with the first key or key combination held in the
keyboard typeahead buffer and removes that keystroke from the buffer. If the typeahead buffer
is empty, INKEY() returns the value of zero.

Key pressed Return value Shift+key Ctrl+Key Alt+key*
return value return value return value
0 48 Depends on keyboard —-404 -452
1 49 Depends on keyboard —-404 -451
2 50 Depends on keyboard -404 —450
3 51 Depends on keyboard —-404 —449
4 52 Depends on keyboard —404 —448
5 53 Depends on keyboard 0 —447
6 54 Depends on keyboard -30 —446
7 55 Depends on keyboard —-404 —445
8 56 Depends on keyboard —-404 —444
9 57 Depends on keyboard —-404 —443
a 97 65 1 —435
b 98 66 2 —434
c 99 67 3 —433
d 100 68 4 —432
e 101 69 5 -431
f 102 70 6 -430
g 103 71 7 —429
104 72 8 —428
i 105 73 9 —427
j 106 74 10 —426
k 107 75 11 —425
| 108 76 12 —424
m 109 77 13 —423
n 110 78 14 —422
o] 111 79 15 —421
p 112 80 16 —420
q 113 81 17 -419
r 114 82 18 -418
S 115 83 19 —417
t 116 84 20 -416
u 117 85 21 —-415
\Y 118 86 22 —-414

91

dBASE Plus 9 LR

w 119 87 23 -413
X 120 88 24 —412
y 121 89 25 411
z 122 90 26 -410
F1 (Ctrl+\) 28 -20 -10 -30
F2 -1 -21 -1 -31
F3 -2 -22 -12 -32
F4 -3 -23 -13 -33
F5 —4 —24 -14 -34
F6) -25 -15 -35
F7 -6 —26 -16 -36
F8 —7 =27 =17 =37
F9 -8 —-28 -18 -38
F10 -9 -29 -19 -39
F11 —544 —546 -548 -550
F12 —545 -547 -549 -551
Left Arrow 19 -500 1 0
Right Arrow 4 -501 6 0

Up Arrow 5 5 5 0
Down Arrow 24 24 24 0
Home (Ctrl+]) 26 26 29 0
End 2 2 23 0
Tab 9 —-400 0 0
Enter 13 0 —402 0
Esc (Ctrl+]) 27 27 - -

Ins 22 0 0 0
Del 7 -502 7 7
Backspace 127 127 —401 —403
PgUp 18 18 31 0
PgDn 3 3 30 0
Note

The Alt+key value returned for all character keys, except lower-case letters a through z, is the
character value minus 500. For lower-case letters, the Alt+key values are the same as those for
upper-case letters.

Because of the event-driven nature of dBASE Plus, INKEY() is rarely used. When it is used, it's
in one of three ways:

When keystrokes are expected to be buffered, INKEY() is used to get those keystrokes.

In a loop that’s busy doing something, INKEY() is used to see if a key has been pressed, and if so to take an
action.

INKEY() can be used to wait for a keystroke, and then take an action.

In any of these cases, because dBASE Plus is busy executing your INKEY() code, it will not
respond to keystrokes and mouse clicks as it normally would.

92

Language Reference

To check if there is a key waiting in the buffer without removing it, or to determine a value in the
buffer in a position other than the first position, use NEXTKEY().

KEYBOARD

Topic group Related topics Example

Inserts keystrokes into the typeahead buffer.

Syntax

KEYBOARD <expC> [CLEAR]

<expC>

A character string, which may include mnemonic strings representing key labels.
CLEAR

Empties the typeahead buffer before inserting <expC>.

Description
Use KEYBOARD to simulate keystrokes by placing or "stuffing" them in the typeahead buffer.

KEYBOARD can place any number of characters in the typeahead buffer, up to the limit
specified by SET TYPEAHEAD; subsequent characters are ignored. If SET TYPEAHEAD is 0,
you may KEYBOARD one character.

Keystrokes simulated with KEYBOARD are treated like normal keystrokes, going into the control
that currently has focus. Some controls support a keyboard() method that enables you to send
keystrokes to that specific control.

In addition to the simple alphanumeric keys on the keyboard, you may also use mnemonic
strings to simulate must function keys. For a list of mnemonic strings, see the keyboard()
method.

language [_app object]

Topic group

Identifies the display language currently used in the design and runtime environments. This
property is read only.

Property of

_app object

Description

Use the app object's language property to determine which language version of dBASE Plus
was installed. It's value is read on startup from the Plus.ini file or, in the case of deployed
dBASE Plus applications, from the applications .INI file.

If multiple languages have been installed, the value of the language property is determined by
the first language installed (that which was written to the PLUS.ini file), or a language selected
via the Desktop Properties dialog. Languages selected via the Desktop Properties dialog will
only allow a change if you have the appropriate language .DLLs installed.

93

dBASE Plus 9 LR

IDriver

Topic group Related topics

Returns the global language driver name and description.

Property of
_app object
Description

Use the IDriver property to view information about the current global language driver.
Information displayed, name and description, is the same as that returned by LIST STATUS or
DISPLAY STATUS in the Command window. The IDriver property is read-only.

MSGBOX()

Topic group Related topics Example

Opens a dialog box that displays a message and pushbuttons, and returns a numeric value that
corresponds to the pushbutton the user chooses.

Syntax

MSGBOX(<message expC>, [<title expC>, [<box type expN>]])
<message expC>

The message to display in the dialog box.

<title expC>

The title to display in the title bar of the dialog box.
<box type expN>

A numeric value that determines which icon (if any) and which pushbuttons to display in the
dialog box. To specify a dialog box with pushbuttons and no icon, use the following numbers:

<box type expN> Pushbuttons
0 OK
OK, Cancel
Abort, Retry, Ignore
Yes, No, Cancel

Yes, No

a A W N P

Retry, Cancel

To specify a dialog box with pushbuttons and an icon, add any of the following numbers to <box
type expN>:

Number to add Icon displayed

S
- @
-

94

Language Reference

<

When a dialog box has more than one pushbutton, the left most pushbutton is normally the
default, However, if you add 256 to <box type expN>, the second pushbutton is the default, and
if you add 512 to <box type expN>, the third pushbutton is the default.

If you omit <box type expN>, box type 0—one with just the title, message, and an OK button—is
used by default.

Note

If you specify <box type expN>, make sure it's a valid combination of the choices outlined
above. An invalid number may result in a dialog box that you cannot close.

Description

Use MSGBOX() to prompt the user to make a choice or acknowledge a message by clicking a
pushbutton in a modal dialog box.

While the dialog box is open, program execution stops and the user cannot give focus to
another window. When the user chooses a pushbutton, the dialog box disappears, program
execution resumes, and MSGBOX() returns a numeric value that indicates which pushbutton
was chosen.

Pushbutton Return value
OK
Cancel
Abort
Retry
Ignore

Yes

N o o0~ W N P

No

NEXTKEY()

Topic group Related topics Example

Checks for and returns a keystroke held in the keyboard typeahead buffer.

Syntax

NEXTKEY ([<expN>])

<expN>

The position of the key or key combination in the typeahead buffer. If <expN> is omitted,

NEXTKEY() returns the value of the first keystroke in the buffer. If <expN> is larger than the
number of keystrokes in the buffer, NEXTKEY() returns O.

Description

The keyboard typeahead buffer stores keystrokes the user enters while dBASE Plus is busy. A
very fast typist may also fill the keyboard typeahead buffe—dBASE Plus is busy trying to keep
up. These keystrokes are normally handled automatically; for example, characters are typed
into entryfields and menu choices are made. Use NEXTKEY() to check if there are any buffered
keystrokes, or to look for a keystroke in a specific position in the buffer.

95

dBASE Plus 9 LR

NEXTKEY() returns the decimal value associated with the key or key combination held in the
keyboard typeahead buffer at the specified position in the buffer. Unlike INKEY(), NEXTKEY()
does not remove the keystroke from the buffer. If the buffer is empty or there is no keystroke at
the specified position, NEXTKEY() returns a value of zero.

For a list of keystroke values, see INKEY().

ON ESCAPE

Topic group Related topics

Changes the default behavior of the Esc key so that it executes a specified command instead of
interrupting command or program execution.

Syntax
ON ESCAPE [<command>]
<command>

The command to execute when the following conditions are in effect:

SET ESCAPE is ON
The user presses Esc during command or program execution

The <command> may be any valid dBL command, including a DO command to execute a
program file, a function call that executes a program or function loaded in memory, or a
codeblock.

ON ESCAPE without a <command> option disables any previous ON ESCAPE <command>.

Description

The primary purpose of the Esc key is to interrupt command or program execution. This
behavior may be changed with ON ESCAPE; either way it occurs only when SET ESCAPE is
ON (its default setting).

When no ON ESCAPE <command> is in effect, pressing Esc interrupts program execution and
displays the dBASE Plus Program Interrupted dialog box. If ON ESCAPE <command> is in
effect, pressing Esc during program execution executes the specified command instead and
then continues program execution.

While executing a command (like CALCULATE) from the Command window, pressing Esc with
ON ESCAPE <command> in effect executes <command> and then terminates the command,
returning control to the Command window. If no ON ESCAPE <command> is in effect, pressing
Esc during a command from the Command window simply terminates that command and
displays a message in the status bar.

Note that user interface elements such as menus, forms, and dialog boxes handle Esc
differently, usually closing or dismissing that Ul element. (For forms, this behavior is controlled
by its escExit property.) In those cases, ON ESCAPE and SET ESCAPE have no effect. In fact,
with the exception of dialog boxes and forms opened with ReadModal(), because of the event-
driven nature of dBASE Plus there is no program executing when you use a menu or type into a
form, so there is nothing to interrupt.

Use ON KEY to specify a new meaning or mapping for Esc or any other key. If both ON KEY
and ON ESCAPE are in effect, ON KEY takes precedence when Esc is pressed. In other words,
while ON ESCAPE changes the Escape behavior, ON KEY changes the meaning of the Esc
key, so that pressing it no longer causes that Escape behavior. While the Escape behavior
affects only programs or commands that are executing, ON KEY works at all times.

96

Language Reference

If you issue ON ESCAPE<command> in a program, you should disable the current ON
ESCAPE condition by issuing ON ESCAPE without a <command> option before the program
ends. Otherwise, the ON ESCAPE condition remains in effect for any subsequent commands
and programs you issue and run until you exit dBASE Plus.

ON KEY

Topic group Related topics

Changes the keyboard mapping to execute a command when a specified key or key
combination is pressed.

Syntax
ON KEY [LABEL <key label>] [<xcommand>]
LABEL <key label>

Identifies the key or key combination that, when pressed, causes <command> to execute.
Without LABEL <key label>, dBASE Plus executes <command> when you press any key. ON
KEY LABEL is not case-sensitive.

<command>

The command that is executed when you press the key or key combination. If you omit
<command>, the command previously assigned by ON KEY is disabled.

Description

Each key on the keyboard has a default meaning or mapping. For alphanumeric keys, this
mapping simply types the character. Function keys have predefined actions. The Esc key
terminates program execution. Use ON KEY to specify a command that executes when the user
presses a key or key combination, overriding the default mapping.

Actions defined by ON KEY will interrupt programs, but not commands; in a program, the ON
KEY action will occur after the current command has completed and then the program will
continue. ON KEY also doesn't affect the execution of some commands or functions that are
specifically looking for keystrokes, such WAIT or INKEY(). On the other hand, if you
KEYBOARD a key that has been remapped, the remapped behavior will occur.

When you issue both ON KEY LABEL <key label> <command> and ON KEY <command>, the
key or key combination you specify with ON KEY LABEL <key label> <command> takes
precedence and executes its associated <command>. This way you can define actions for
specific keys, and a default global action for all other keys. There may be only one ON KEY
specification for each specific key and one global action defined at a given time.

ON KEY without arguments removes the effect of all previously-entered ON KEY <command>
commands, with or without a LABEL.

To change the default Escape behavior, which interrupts the currently executing program or
command, use ON ESCAPE. If both ON KEY and ON ESCAPE are in effect, ON KEY takes
precedence when Esc is pressed. In other words, while ON ESCAPE changes the Escape
behavior, ON KEY changes the meaning of the Esc key, so that pressing it no longer causes
that Escape behavior. While the Escape behavior affects only programs or commands that are
executing, ON KEY works at all times.

To assign strings to function keys, use SET FUNCTION. If both ON KEY on SET FUNCTION
are in effect, ON KEY takes precedence.

ON KEY LABEL

97

dBASE Plus 9 LR

The <key label> for the standard alphanumeric keys is simply the character on that key, for
example, A, b, 2, or @. Use the following key label names to assign special keys or key
combinations with ON KEY LABEL <key label>.

Key identification <key label>
Backspace Backspace
Back Tab Backtab
Delete Del

End End

Home Home
Insert Ins

Page Up PgUp

Page Down PgDn

Tab Tab

Left arrow Leftarrow
Right arrow Rightarrow
Up arrow Uparrow
Down arrow Dnarrow
F1to F12 F1, F2, F3, ...

Control+<key>

Ctrl-<key> or Ctrl+<key>

Shift+<key> Shift-<key> or Shift+<key>
Alt+<key> Alt-<key> or Alt+<key>
Enter Enter

Escape Esc

Space bar Spacebar

onlnitiate

Topic group Related topics Example

Event fired when a client application requests a DDE link with dBASE Plus as the server, and no
DDETopic object for the specified topic exists in memory.

Parameters

<topic expC>

The requested DDE topic.
Property of

_app object

Description

The onlnitiate event executes a DDE (Dynamic Data Exchange) initiation-handler routine. You
write this routine to create DDETopic objects, which handle DDE server events.

A DDE client application initiates a DDE link by specifying the DDE service name and a topic.
The _app object’'s ddeServiceName property contains the service name for the current instance
of dBASE Plus; the default is "DBASE". You may change the ddeServiceName if there is more

98

Language Reference

than one instance of dBASE Plus running, or if you want to identify your dBASE Plus application
with a specific DDE service name.

Once the client application locates the desired dBASE Plus server by service name, it attempts
to create a link on a specific topic. If a DDETopic object already exists in memory for the named
topic, that object is used and the link is completed. If there is no DDETopic object for that topic,
the onlnitiate event fires. The onlinitiate event handler must then create the DDETopic object,
using that topic as a parameter to the constructor, and RETURN the resulting object to complete
the link.

onlnitMenu

Topic group Related topics

Specifies code that executes when a menubar or popup is opened.

Property of
MenuBar, Popup
Description

The onInitMenu event is called whenever a menubar or popup is invoked, and is processed
before the menubar's child menus or the popup is displayed.

You can use the onInitMenu event to determine the status of menu items that will be displayed.
For example, use the onlnitMenu event to determine if the enabled or checked property of a
menu item should be true or false.

onUpdate

Topic group

Fires repeatedly while application is idle to refresh toolbuttons.
Property of

ToolBar

Description

This event maintains the status of toolbuttons on a toolbar by firing whenever the application
hosting the toolbar is idle.

roamingUsersPath
Topic group

Contains the full path to the current user's roaming dBASE folder or roaming dBASE application
folder

Property of
_app object
Description

roamingUsersPath is set during startup to a subfolder of the current user's roaming user profile
folder tree where the user's roaming program settings may be kept.

99

dBASE Plus 9 LR

When connected to a Windows network where roaming user profiles are enabled, you can set
up a roaming user profile in Microsoft Windows for each user in which their personal files,
program settings, and other files can be kept and updated on a server.

When logging into a Windows server via a local workstation, the user's roaming profile files will
be copied from the server to the local workstation.

When logging out, the user's roaming profile files are copied back up to the server.

In Windows XP, the roaming user profile folders are located under:
C:\Documents and Settings\<username>\application data\.

In newer versions of Windows, roaming user profile folders are located under:
C:\Users\<username>\AppData\Roaming\

For dBASE Plus and dBASE applications, a user's private program settings are stored in an .ini
file.

- When running dBASE Plus, these settings are stored in a file named plus.ini

- When running an application .exe, these settings are stored in an .ini file named after the
application .exe file. For myapp.exe, the .ini file would be named myapp.ini.

How to enable a dBASE application to use roamingUsersPath:
When building an application specify: INl ROAM in the BUILD command.
For Example:
BUILD myapp.pro to myapp.exe INl ROAM

This will enable the application to automatically use the path in _app.roamingUsersPath to set
the location for its .ini file. This path will be copied into _app.inifile during application startup.

In the dBASE Project Explorer, this can be set by choosing the "Roaming" option for the INI
Type? setting on the Project tab.

Caution - in order for roaming profiles to work correctly, any paths stored in an application's .ini
file must be valid on any workstation the user chooses to work from.

How roamingUsersPath is set :

During startup dBASE or the dBASE runtime engine retrieves the current user's roaming user
profile folder path from Windows. The Windows designation for this path is: CSIDL_APPDATA.

The path retrieved looks something like:
C:\Users\jsmith\AppData\Roaming

Next, the subpath is determined based on the folder from which dBASE or an application .exe
was launched.

If launched from under \Program Files or \Program Files (x86), the path remaining after
dropping this initial folder is appended to the user's roaming profile folder path.

For example, for user jsmith, running dBASE Plus from its default location:
C:\Users\jsmith\AppData\Roaming\dBASE\PLUS\BIN

100

Language Reference

If launched from some other folder, the path remaining after dropping the initial drive specifier or
UNC path is appended to the user's roaming profile folder path.

For example, for user jsmith, running a dBASE application from:
C:\MyApp\myapp.exe
roamingUsersPath will be set to:
C:\Users\jsmith\AppData\Roaming\MyApp

separator

Topic group

Determines if a menu item is a separator line instead of a menu option.
Property of

Menu

Description

Set the separator property to true when you want to use a menu item as a separator between
groups of menu commands. When the separator property is true, other properties such text and
onClick are ignored.

SET CONFIRM

Topic group
Controls the cursor's movement from one entry field to the next during data entry.

Syntax
SET CONFIRM ON | off

Description

When SET CONFIRM is OFF, dBASE Plus moves the cursor immediately to the next input area
when the current one is full. When SET CONFIRM is ON, the cursor moves to the next input
area only when you press Enter or a cursor-control key, or when you click another input area
with the mouse.

Use SET CONFIRM ON to prevent moving the cursor from one input area to the next
automatically, thus avoiding data-entry errors such as the overflow of contents from one input
area into the next. Use SET CONFIRM OFF when input speed is more important.

SET CUAENTER

Topic group Related topics

Determines whether Enter simulates Tab in a form.

Syntax
SET CUAENTER ON | off

101

dBASE Plus 9 LR

Default

The default for SET CUAENTER is ON. To change the default, update the CUAENTER setting
in PLUS.ini. To do so, either use the SET command to specify the setting interactively, or enter
the CUAENTER parameter directly in PLUS.ini.

Description

The CUA (Common User Access) interface standard dictates that the Tab key moves focus
from one control to another, while the Enter key submits the entire form (which fires the form’s
onSelection event). Use SET CUAENTER to control whether Enter follows the CUA standard. If
SET CUAENTER is OFF, the Enter key emulates the Tab key, moving the focus to the next
control. This behavior is important to note in the case of dialog boxes, where either the OK or
Cancel button is specified as the default (See the PushButton's default property). When
CUAENTER is set to OFF, pressing the Enter key will cause focus to toggle between these
buttons, thus preventing the form from being submitted.

There are two good reasons to ignore the CUA behavior:

In many forms, especially ones that take advantage of the numeric keypad, using the Enter key to move to the next
control speeds data entry.

For non-trivial forms, there are usually a number of pushbuttons which take completely different actions; for
example, adding a new record, deleting the current record, navigating forward, navigating backward, etc. If you
press Enter while the focus is in an entryfield for example, the act of submitting the form tells you nothing about
what the user wants to do next.

In fact, few applications consider the action of submitting the form; the onSelection event is
rarely used. When the onSelection event is left undefined, nothing happens when you press
Enter (except in a control like the Editor). So you might as well make the Enter key do
something useful and have it move the focus to the next control.

Regardless of the setting of SET CUAENTER, you can move focus from object to object with
the mouse or by pressing Tab and Shift-Tab.

SET ESCAPE

Topic group
Specifies whether pressing Esc interrupts program execution.

Syntax
SET ESCAPE ON | off

Default

The default for SET ESCAPE is ON. To change the default, set the ESCAPE parameter in
PLUS.ini.

Description

The primary purpose of the Esc key is to interrupt command or program execution. While this
behavior may be changed with ON ESCAPE, this behavior occurs only when SET ESCAPE is
ON.

Typically, SET ESCAPE is ON during application development. This allows you to stop
processes which are taking too long or have run amok. When an application is deployed, you
should either:

1. SET ESCAPE OFF so that the user cannot cause your application to terminate abnormally, or

0 Define a specific ON ESCAPE behavior so that your application or process can shutdown or
be canceled gracefully, usually after confirming that the user really wants to do so.

102

Language Reference

Note

If SET ESCAPE is OFF and you have not used ON KEY or some other method to interrupt your
program, you can interrupt program execution only by forcing the termination of dBASE Plus or
your dBASE Plus application. Forced termination can cause data loss.

Note that user interface elements such as menus, forms, and dialog boxes handle Esc
differently, usually closing or dismissing that Ul element. (For forms, this behavior is controlled
by its escExit property). In those cases, ON ESCAPE and SET ESCAPE have no effect. In fact,
with the exception of dialog boxes and forms opened with the readModal() method, because of
the event-driven nature of dBASE Plus there is no program executing when you use a menu or
type into a form, so there is nothing to interrupt.

SET FUNCTION

Topic group Related topics Example

Assigns a string to a function key or to a combination of the Ctrl (control) key or the Shift key
and a function key.

Syntax

SET FUNCTION <key> TO <expC>

<key>

A function key number, function key name, or character expression of a function key name—for
example, 3, F3, or "F3". Specify a character expression for <key> to assign a key combination
using the Ctrl or Shift key with a function key. Type "CTRL+" or "SHIFT+" and then a function
key name—for example, "shift+F5" or "Ctrl+f3". The function key names are not case-sensitive
and you may use a hyphen in place of the plus sign. You can't combine Ctrl and Shift, such as
"Ctrl+Shift+F3".

<expC>

Any character string, often the text of a command. Use a semicolon (;) to represent the Enter
key. Placing a semicolon at the end of a command has the effect of executing that command
when you press the function key in the Command window. You can execute more than one
command by separating each command in the list with a semicolon.

Default
The following function key settings are in effect when dBASE Plus starts:

Key Command Key Command

F1 HELP; F7 DISPLAY MEMORY;
F3 LIST,; F8 DISPLAY;

F4 DIR; F9 APPEND;

F5 DISPLAY STRUCTURE; F10 Activates the menu
F6 DISPLAY STATUS;

Description

Use SET FUNCTION to simulate typing a string with a single keystroke. These strings are
usually commands to be executed in the Command window, or common strings used in data
entry.

Note

103

dBASE Plus 9 LR

F2 is reserved for toggling between views while in the Browse window. You can program it, but
it will not be recognized when in the Browse window. You cannot program F10, or any
combination using F11 or F12. You cannot program keys that are used as standard Windows
functions, such as Ctrl-F4.

When you press the programmed function key or key combination, the assigned string appears
at the cursor. Strings for the Command window usually end in a semicolon, which represents
the Enter key. The simulated Enter key causes the command to be executed immediately.

While SET FUNCTION is specifically intended to simulate typing a string, you can use the ON
KEY command to program a function key or any other key to execute any command. For
example, these two commands (executed separately, not consecutively):

set function f7 to "display memory;"
on key label T7 display memory

would both cause the F7 key to execute the DISPLAY MEMORY command if the key was
pressed on a blank line in the Command window. But suppose the line in the Command window
contained the word "field" and the cursor was at the beginning of that line. Then with SET
FUNCTION F7, pressing the function key would cause the string "display memory" to be typed
into the line, resulting in "display memoryfield", and then the Enter key would be simulated,
causing dBASE Plus to attempt to display a field named "memoryfield" in the current workarea.
With ON KEY LABEL F7, the DISPLAY MEMORY command would be executed with nothing
being typed into the Command window.

If the cursor was in an entryfield for a city in a form, then with SET FUNCTION F7, you would
get the city of "display memory" and the cursor would move to the next control if SET
CUAENTER was OFF. Again, with ON KEY LABEL F7, the DISPLAY MEMORY command
would be executed without affecting the data entry.

To see the list of strings currently assigned to function keys, use DISPLAY STATUS.

SET MESSAGE

Topic group

Specifies the default message to display in the status bar.
Syntax

SET MESSAGE TO [<message expC>]

<message expC>

The message to display

Description

Use SET MESSAGE to set the default message that appears the status bar. Menu items and
controls on forms have a statusMessage property. When that object has focus, and that
property is not empty, that message is displayed instead.

SET MESSAGE TO without the option <message expC> sets the default message to an empty
string, and removes any message from the status bar.

The status bar may be suppressed by setting the _app.statusBar property to false.

SET TYPEAHEAD

104

Language Reference

Topic group Related topics

Sets the size of the typeahead buffer, where keystrokes are stored while dBASE Plus is busy.

Syntax

SET TYPEAHEAD TO <expN>

<expN>

the size of the keyboard typeahead buffer, any number from 0 to 1600.

Default

The default size of the typeahead buffer is 50 characters. To change the default, set the
TYPEAHEAD parameter in PLUS.ini.

Description

The keyboard typeahead buffer stores keystrokes the user enters while dBASE Plus is busy, for
example while reindexing a table. When the processing is complete and the application is ready
to accept keystrokes, dBASE Plus fetches and deletes the values in the buffer in the order they
were entered. Any keys typed while there are still keystrokes in the buffer are added to the end

of the buffer.

If the size of the typeahead buffer is set to 50, dBASE Plus can store values for 50 keypresses;
further keystrokes are ignored without any warnings. A large typeahead buffer is useful if the
user does not want to stop typing when dBASE Plus is unavailable for processing direct
keyboard input.

For some programs, you may want to disable the typeahead buffer with SET TYPEAHEAD TO
0. This ensures that user input comes directly from the keyboard, rather than from the
typeahead buffer.

For example, if you want to be able to fill in multiple forms quickly, one after the other, you might
SET TYPEAHEAD to a relatively high number during form processing. This would let you
continue typing data while one form was being saved and the next (blank) one being displayed.
The data you entered during processing would be entered onto the new form when it appeared.
On the other hand, if you want to make sure that no data is entered until the form is displayed
on the screen, you can issue SET TYPEAHEAD TO 0.

You can also clear the typeahead buffer manually with CLEAR TYPEAHEAD.

SET TYPEAHEAD limits the number of characters you can put into the typeahead buffer using
KEYBOARD.

SHELL()

Topic group Related topics

Hides or restores the components of the application shell: the Command window (and
Navigator) and the MDI frame window. Returns a logical value corresponding to the previous
SHELL() state.

Syntax

SHELL([<expL1>, [<expL2>]])

<explL1>

The value that determines whether to display the shell.

<explL2>

105

dBASE Plus 9 LR

The value that determines whether to force the display of the MDI frame window. If <expL1> is
true, the full shell is on and <expL2> is ignored. If <expL1> is false, <expL2> defaults to false.

Description

SHELL() controls the display of the components of the application shell:

The Command window
The Navigator

The MDI frame window, which contains the Command window, Navigator, and all MDI forms and their toolbars and
menus. This window is represented by the _app.frameWin object.

In dBASE Plus, SHELL() defaults to true; all three components are displayed. In a compiled
application, SHELL() defaults to false; none of the elements are displayed, unless either:

An MDI form is open, in which case the MDI frame window must be displayed to contain the MDI form(s), or
A menu has been assigned to _app.frameWin.

In either case, the MDI frame window stays visible regardless of the <expL2> value.

shortCut

Topic group Related topics
Specifies a key combination that fires the onClick event of a menu object.

Property of
Menu

Description

Use the shortCut property to provide a quick way to execute a menu command with the
keyboard. For example, if you assign the character string "CTRL+S" to a menu option’s shortCut
property, the user can execute that menu option by pressing Ctrl+S.

The value you specify with the shortCut property is displayed next to the prompt you specify
with the Text property.

To view a list of dBASE keyboard combinations, see topics:
dBASE Plus Classic keyboard mappings
Brief Editor keyboard mappings

SLEEP

Topic group Related topics Example

Pauses a program for a specified interval or until a specified time.

Syntax

SLEEP
<seconds expN> |
UNTIL <time expC> [,<date expC>]

<seconds expN>
The number of seconds to pause the program. The number must be greater than zero and no

more than 65,000 (a little over 18 hours). Fractional times are allowed. Counting starts from the
time you issue the SLEEP command.

UNTIL <time expC>

106

Language Reference

Causes program execution to pause until a specified time (<time expC>) on the current day. If
you also specify <date expC>, the program pauses until the time on that day. The time and date
dBASE Plus uses are the system time and date. You can set the system time with SET TIME
and the system date with SET DATE TO. If the time has already passed, SLEEP UNTIL <time
expC> has no effect.

The <time expC> argument is a 24-hour time that matches the format returned by the TIME()
function. A typical format for <time expC> is "HH:MM:SS". The delimiter is conventionally a
colon but can be changed through the Regional Settings in the Windows Control Panel. The
time string must include the seconds.

<date expC>

An optional date until which the program is to pause. The <date expC> argument is a character
expression (not a date expression) that represents a date in the current date format; it would
match the string returned by the DTOC() function. For example, if SET DATE is AMERICAN,
the format would be "MM/DD/YY".

If the date has already passed, SLEEP UNTIL <time expC> [,<date expC>] has no effect. If you
want to specify a value for <date expC>, you must also specify a value for <time expC>.

Description

Use SLEEP to pause a program either for <seconds expN> seconds or until a specified time
(<time expC>). The specified time is the same day the program is running unless you specify a
date with <date expC>. If SET ESCAPE is ON, you can interrupt SLEEP by pressing Esc.

Note

If SET ESCAPE is OFF, there is no way to interrupt SLEEP. However, you can use Ctrl+Esc
and Alt+Tab to switch to another Windows application, or Alt+F4 to exit dBASE Plus.

Although SLEEP can generate a pause from the Command window, programmers use it
primarily within programs. For example, you can use SLEEP to generate a pause between
multiple displaying windows or to allow a user to read a message on the screen or complete an
action. Pauses are also useful when you need to delay program execution until a specific time.

While SLEEP is active, dBASE Plus is considered busy; that is, busy sleeping. Program
execution is suspended, keystrokes go into the typeahead buffer, and dBASE Plus does not

respond to events like mouse clicks or timers. If you want an event to occur at a specified time
without putting dBASE Plus to sleep, use a Timer object.

SLEEP is an alternative to using a DO WHILE loop, a FOR loop, or WAIT to generate pauses in
a program. SLEEP is more accurate than using loops because it's independent of the execution
speed of the system. You can also use INKEY(<expN>) if you want the user to be able to
interrupt the pause and continue with program processing.

sourceAliases

Topic group Related topics

An associative array containing object references to currently defined Source Aliases

Property of
_app object
Description

107

dBASE Plus 9 LR

The sourceAliases property is a read-only associative array which contains object references to
all source aliases defined in the PLUS.ini. To loop through the elements of the array, use the
firstKey property:

aKey = _app-sourceAliases.firstkey // Get first key in the AssocArray
Once you have the key value for the first element, use the nextKey() method to get key values
for the rest of the elements:

for nElements = 1 to _app.sourceAliases.count()

aKey := _app-sourceAliases._nextKey(aKey) // Get next key value
? aKey, _app-SourceAliases[aKey] // display
endfor

Values in the sourceAliases array can also be accessed from the Source Aliases section of the
Properties | Desktop Properties dialog.

speedBar [_app]

Topic group Related topics

Determines whether to display the default toolbar

Property of
_app object
Description

The value of the _app object's speedBar property is determined at dBASE Plus startup by the
setting stored in PLUS.ini, or an application's .ini file. You can view or change this setting
through the Standard option in the PLUS.ini [Toolbars] section.

[Toolbars]

Standard=1 // for _app.speedBar = True
or

Standard=0 // for _app.speedBar = False

_app.speedBar defaults to "True".

terminateTimerlinterval

Topic group Related topics

Determines the number of milliseconds it takes to remove an orphaned PLUSrun.exe from a
web servers memory.

Property of
_app object

Description

The terminateTimerInterval property allows you to set a value for the interval between
termination of a dBASE Plus application and termination of the dBASE Plus runtime for Web
based applications. This property is relevant only for applications built using the BUILD
command's WEB parameter.

themeState

108

Language Reference

Topic group

Indicates whether themes are in use for the application.

Property of
_app object

Description
_app.themeState() returns one of the following values:

e 0 - themes are not available (old OS, or no manifest file, or themes were disabled at the application
initialization in another manner).

e 1 -themes are enabled, but with the old theme (the user has chosen the "Windows Classic" theme).

e 2 - themes are enabled and a newer theme is active.

Note:
0 With theme states 0 and 1, the controls have the old look and are backward compatible.
0 With state 2, some form components may have new colors or their border may have new shape and
position. Therefore, with state 2 some modifications (in dBL code) may be needed.
trackRight

Topic group Related topics

Determines if the user can select a popup menu item with a right mouse click.

Property of
Popup
Description

When the trackRight property is set to true (the default), users can select popup menu items
with either the right mouse button or the left mouse button.

Set the trackRight property to false if you don't want users to be able to select items from a
popup menu with a right mouse click.

uncheckedBitmap

Topic group Related topics

A bitmap to display when a menu item is not checked.

Property of
Menu

Description

Use uncheckedBitmap to display a bitmap when a menu item’s checked property is false. If no
bitmap is specified, nothing is displayed when a menu item is not checked.

The uncheckedBitmap setting can take one of two forms:

RESOURCE <resource id> <dll name>
specifies a bitmap resource and the DLL file that holds it.

109

dBASE Plus 9 LR

FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

Note

The display area in the menu item is very small (13 pixels square with Small fonts). If the bitmap
is too large, the top left corner is displayed. Also, the color of the bitmap when the menu item is
highlighted changes, depending on the system menu highlight color. Therefore, you may want
to limit yourself to simple monochrome bitmaps.

useUACPaths

Topic group

Indicates whether or not dBASE or a dBASE application should create and maintain private
copies of various files and folders for each user according to Window's User Account Control
(UAC) rules.

Property of
_app object

Background - What is UAC (User Account Controls)

Starting with Vista (and subsequently Windows 7) Microsoft implemented the User Account
Controls security component. UAC was implemented to make sure applications adhere to
certain conventions to make it easier for Windows to prevent program files from being modified
or corrupted - whether by user error or by malicious users or by viruses.

Window's UAC rules are intended to:
- Protect installed program files from being modified or damaged by users or programs that should not have access
to them.

- Keep each user's files, configuration settings, etc. separate from other users except where shared files or settings
are needed.
- Restrict access to any machine wide settings to the maximum extent possible. By default, only users with
Administrator privileges have access to machine wide settings.
Windows Vista and Windows 7 implement these rules by carefully limiting default permissions
on folders under the Program Files folder tree, the ProgramData folder tree, the Windows folder
tree, and the Users folder tree.

Permissions to registry keys are also carefully limited so that standard users will not be allowed
to modify any settings that can affect other users.

In order to follow UAC rules a program must:

- place executable code under the Program Files folder tree and NOT attempt to modify or
create any new files under this folder tree while running the program. (Standard users generally
have read and execute permissions to files under this folder tree. However, programs may be
configured to require administrator privileges which would prevent standard users from running
them).

- place shared configuration and data files under the ProgramData folder tree - but NOT
attempt to modify or create any new files under this folder tree while running the program. (By
default, standard users have readonly access to this folder tree).

110

Language Reference

- place master copies of files heeded by each user under the ProgramData folder tree (to be
copied to each user's private folder tree).

- setup a private folder tree under the Users folder tree for each user when a user first runs the
program so that each user can modify their private files however they wish without interferring
with other users.

What does this mean for dBASE Plus

the _app.useUACPaths property gives dBASE Plus the ability to adhere to the Vista and
Windows 7 conventions with regard to:

- The location where dBASE Plus creates and stores its .ini files (containing user settings)

- The location where Source and BDE Aliases are pointing

- The location where dBASE Plus creates and stores samples files.

- Where dBASE instructs the BDE to create its temporary files and the default path for the default session at dBASE

startup.

During startup, dBASE and dBASE applications will determine the setting for useUACPaths (as
described below) and then check useUACpaths to determine the location for various files and
folders mentioned above.

When useUACPaths = False, dBASE will NOT use UAC folders and all locations for .ini files,
conversion utilities, include files and various sample files are set to subdirectories under the root
dBASE directory.

When useUACPaths = True, dBASE will set the locations for .ini files, conversion utilities,
include files, various sample files, and temporary files to folders within the current user's private
folder tree as required by Window's UAC rules. dBASE determines the path for the user's
private folder tree by retrieving the following Window's special folder paths:
CSIDL_LOCAL_APPDATA and CSIDL_APPDATA.

How is _app.useUACPaths determined.

when opening Plus.exe or an application (which uses Plusrun.exe) the _app.useUACPaths
property is determined in the following manner:

During startup of plus.exe:

- Checks if registry key
HKEY_LOCAL_MACHINE\SOFTWARE\IBASE\PLUS\series1\useUACPaths exists and is set

to "y" or "Y".
If yes,
Sets _app.useUACPaths to TRUE
Otherwise,
Sets _app.useUACPaths to FALSE

- Next, checks if -v switch was passed to plus.exe on the command line which would override
default setting above.

If yes,

111

dBASE Plus 9 LR

If -v1 (or -V1) found on command line,
Sets _app.useUACPaths to TRUE
If -vO (or -VO) found on command line,
Sets _app.useUACPaths to FALSE

In summary for plus.exe:

If a useUACPaths registry key exists for dBASE Plus, it sets the default for
_app.useUACPaths. If this key does NOT exist, _app.useUACPaths is defaulted to FALSE.

If a -v switch is passed on the command line, it will override the default set above.

During startup of plusrun.exe
- Check if registry key
HKEY_LOCAL MACHINE\SOFTWARE\IBASE\PLUS\series1\useUACPaths exists and is set
to "y" or "Y".
If yes,
Sets _app.useUACPaths to TRUE
Otherwise,

Sets _app.useUACPaths to FALSE

- Next, checks if -v switch was passed to plusrun.exe (or an application .exe) on the command
line which would override default setting above.

If yes,
If -v1 (or -V1) found on command line,
Sets _app.useUACPaths to TRUE
If -vO (or -V0) found on command line,
Sets _app.useUACPaths to FALSE

- If no -v switch was passed via command line plusrun.exe checks the registry for an
application specific registry key specifying the setting for useUACPaths:

HKEY_LOCAL_MACHINE\SOFTWARE\dBASE\PLUS\RuntimeApps\<app file
name>\useUACPaths

If this key is found, it overrides the default setting via the above dBASE\PLUS\series1 registry
key

If its settoy or Y

Sets _app.useUACPaths to TRUE
If its setto nor N

Sets _app.useUACPaths to FALSE

112

Language Reference

- If no -v switch was passed via the command line AND no RuntimeApps registry key setting
was found for the application, then the application .exe is checked to see if has an embedded
setting to set _app.useUACPaths to TRUE.

If an embedded UAC flag is found
Sets _app.useUACPaths to TRUE

In summary for an application .exe:

If a useUACPaths registry key exists for dBASE Plus, its used to set the default for app.useUACPaths.
If this key does NOT exist, _app.useUACPaths is defaulted to FALSE.

If an application .exe is built with an embedded UAC setting, the embedded setting will override the global default
set for dBASE Plus above.

If an application specific registry key exists, its setting will override the dBASE Plus registry key setting and the
embedded UAC setting in the application .exe (if one exists).

If a -v switch is passed on the command line, it will override all of the above settings.

Folders and files affected by _app.useUACPaths

During startup, dBASE PLUS or dBASE PLUS Runtime checks _app.useUACPaths for the
following items:
1. INIfile: Determines default location for plus.ini or an application .ini file

When useUACPaths is true the dBASE Plus plus.ini or an application .ini file will load from a user's local folder
tree rather than from the same folder as plus.exe or an application .exe was launched.

First Plus.exe or plusrun.exe will ensure that the following folders exist and create them if they do not yet exist:
For PLUS.EXE:
<CSIDL_LOCAL_APPDATA>\<dBASE Plus subpath>
<CSIDL_APPDATA>\<dBASE Plus subpath>
For an application .exe:
<CSIDL_LOCAL_APPDATA>\<application launch subpath>
<CSIDL_APPDATA>\<application launch subpath>

The <... subpath> For Both dBASE PLUS IDE and a dBASE Plus Application are evaluated as follows...

o [f the launch path contains either "\Program Files" or "\Program Files (x86)", the launch subpath is
set to the portion of the launch path remaining, once the portion containing the "\Program Files" or
"\Program Files (x86)" folder is removed.

For Example:

If dBASE plus is installed in folder:
C:\Program Files\dBASE\Plus

the <dBASE Plus subpath> will be set to:
\dBASE\Plus

If an application .exe is installed in folder:
C:\Program Files\YourCompany\YourApp

the <application launch subpath> will be set to:

\YourCompany\YourApp

e |[f the launch path does NOT contain "\Program Files" or "Program Files (x86)", then the <....
subpath> is set to the path remaining after removing the drive letter and colon or removing the top
level UNC path from the launch path.

For Example:

113

dBASE Plus 9 LR

If dBASE Plus is launched from:
C:\dBASE\PLUS

The <application launch subpath> is set to:
\dBASE\PLUS

An application built by dBASE Plus is launched from:
\\YourUNCPath\YourCompany\YourApp

The <application launch subpath> is set to:
\YourCompany\YourApp

Next plus.exe or plusrun.exe will ensure an .ini file is loaded as follows:
Check for ini file in a path passed via -C command line switch
If found, load .ini from this path
If not found,
Check for .ini in <CSIDL_LOCAL_APPDATA>\<.... subpath>[\Bin](for dBASE Plus.ini)
If not found,
Check for .ini in <CSIDL_COMMON_APPDATA>\<.... subpath>[\Bin](for dBASE Plus.ini)
if found, copy to <CSIDL_LOCAL_APPDATA>\<.... subpath>[\Bin](for dBASE Plus.ini)
if not found,
Check for .ini in Exe launch path
If found, copy to <CSIDL_LOCAL_APPDATA>\<.... subpath>[\Bin](for dBASE Plus.ini)
If not found,
Create new plus.ini file in:
<CSIDL_LOCAL_APPDATA>\<.... subpath>[\Bin](for dBASE Plus.ini)
The open .ini is now located in <CSIDL_LOCAL_APPDATA>\<.... subpath>[\Bin](for dBASE Plus.ini)
(NOTE: if useUACPaths is false the ini file is saved in the same location as the Plus.exe or application's exe)
2. Startup and User files: on Startup dBASE determines whether or not this is the first
time a user has launched dBASE Plus. If so a new utility (:dBStartup:InitNewUser.pro) is
called to setup the new user.

In dBASE Plus, InitNewUser.pro will create private copies of the various converter and
sample folders as follows:

Converters
dBLClasses
Include
Media
Samples
Web
In a dBASE application, a custom InitNewUser.pro can be used to perform custom setup tasks for a new user.

(NOTE: if useUACPaths is false this entire step is skipped since no user files need to be created and these
folders were installed under the root dBASE folder such as C:\Program Files\dBASE\PLUS)

3. Source Aliases: dBASE Sets Source Alias paths to match the private locations for the
following Source Aliases:
DOS5Conv
Examples
FormControls
Forms

114

Language Reference

Images

Movies
Nonvisual
Output
ReportControls
Reports
Samples
Toolbars
Webwizards

(NOTE: if useUACPaths is false the source aliases are set to the non-UAC location for these
files under the root dBASE folder such as C:\Program Files\dBASE\PLUS)

4. BDE Aliases: Determines the BDE paths matching the private locations for the following
aliases and creates User Aliases in the user's Plus.ini file pointing to the user's sample
folders:

dBASESamples
dBASEContax
dBASESignup
dBASETemp
See the INI topic for more information on User BDE Aliases.

(NOTE: if useUACPaths is false permanent BDE Aliases are created in the IDAPI.CFG file and set to the non-UAC
location for these files under the root dBASE folder. e.x.: C:\Program Files\dBASE\PLUS\Samples)

5. Project Explorer: Used by Project Explorer to determine the location of:
projexp.ini
Project Explorer temporary files

(NOTE: if useUACPaths is false the projexp.ini file can be found under in the Project Explorer
root folder such as C:\Program Files\dBASE\PLUS\BIN\dBLCore\ProjExp)

WAIT

Topic group Related topics

Pauses the current program, displays a message in the results pane of the Command window,
and resumes execution when any key is pressed. The keystroke may be stored in a variable.

Syntax

WAIT [<prompt expC>] [TO <memvar>]

<prompt expC>

A character expression that prompts the user for input. If you don't specify <prompt expC>,
dBASE Plus displays "Press any key to continue..." when you issue WAIT.

TO <memvar>

Assigns a single character to the memory variable you specify for <memvar> as a character-
type variable. If <memvar> doesn't exist, dBASE Plus creates it. If <memvar> does exist, WAIT
overwrites it.

115

dBASE Plus 9 LR

Description

Use WAIT to halt program execution temporarily. Pressing any key exits WAIT and resumes
program execution. WAIT is usually used during application development to display information
and create simple breakpoints. It is usually not used in deployed applications.

In simple test applications, you can also WAIT to get a single key or character. If the user
presses Enter without typing any characters, WAIT assigns an empty string (") to <memvar>.
Note

If SET ESCAPE is ON, pressing Esc at the WAIT prompt causes dBASE Plus to interrupt

program execution. If SET ESCAPE is OFF, pressing Esc in response to WAIT causes program
execution to resume the same as any other key.

web

Topic group Related topics

Indicates whether the application .exe was built using the WEB parameter

Property of
_app object

Description

The web property provides a means to determine whether the WEB parameter was used when
an application was built. Compiling an application by including the BUILD command's WEB
parameter allows it to load faster and use fewer resources than a non-WEB application.
Additionally, when a web application .exe is run directly, rather than as a parameter to
PLUSrun.exe, using the WEB parameter allows it to detect when it's been prematurely
terminated by a Web server (as happens when an application takes too long to respond). If a
premature termination occurs, PLUSrun.exe also terminates to prevent it from becoming
stranded in memory.

A timeout value, the number of milliseconds it takes to remove an orphaned PLUSrun.exe from
memory, can be set through the _app objects's terminateTimerInterval property.

windowMenu

Topic group Related topics

Specifies a menu object that displays a list of all open MDI windows.

Property of
MenuBar

Description

The windowMenu property contains a reference to a menu object that has a MenuBar as its
parent. When users open this menu object, dBASE Plus displays a pulldown list of all open MDI
windows.

The windowMenu property automatically places a separator line on the pulldown list between
any menu prompts and the list of open windows. The currently active window shows a check
next to the window name.

116

Language Reference

If you use the Menu Designer to create a MenuBar, the windowMenu propety is automatically
set to an item named Window on the menubar:

this.windowMenu = this._Window
Core Language

Core language overview

Topic group
This section of the Help file describes the core features of the dBL programming language,
primarily:

Structural elements

Function linking/loading

Program flow

Variable scoping

Global properties and methods

Basic understanding of programming concepts such as loops and variables is assumed.

class Designer

Topic group Related topics

An object that provides access to the Inspector, Source Editor and streaming engine.

Syntax

[<oRef> =] new Designer([<object>] [,<filename expC>])

<oRef>

A variable or property in which to store a reference to the newly created Designer object.
<object>

The object currently being designed

<filename expC>

The name of the file to which the designed object will be saved.

Properties
The following tables list the properties, events, and methods of interest in the Designer class.

Property Default Description

baseClassName DESIGNER Identifies the object as an instance of the Designer class

className (DESIGNER) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

custom false Whether the designed object will have a custom keyword

filename Empty string The name of the file to which the object's class definition is saved.
This should be set before the SAVE method is called

inspector false Whether the Designer's inspector is displayed

object Null The object currently being designed

selection Null The currently selected object displayed in the inspector

sourceChanged false Whether a change has been made to the object class by the

source editor

117

dBASE Plus 9 LR

unsaved false Whether changes have been saved

Event Parameters Description

beforeStream Just before editor calls the designer object to stream code into the
editor.

onMemberChange <expC> After a change has been made to a member- property, event or
method-of the currently selected object in the Inspector. The
parameter, <expC>, is the name of the property, event or method.

onNotify <source name expC>, When notification is received from another object. Currently, this

onSelChange

<filename expC>

event fires when the Table Designer, or SQL Designer closes,
and the first parameter is, "TABLE_DESIGNER_CLOSE", or
"SQL_DESIGNER_CLOSE". The second parameter is the
filename that was being designed.

After a different object has been selected in the inspector and the
selection property modified.

Method

editor()

isInherited()
loadObjectFromFile()

reloadFromEditor()

save()

update()

Description

Parameters

<oRefl>, <oRef2>

<filename expC>

Description

Opens a source editor to display the current object.

Determines if an object, <oRef2>, in the designer <oRefl> is
inherited from a superclass. By doing so, the isInherited() method
can be used to programatically enforce rules of inheritance.

Loads the object property of an existing file. Resets the filename
property to <filename expC>.

Reloads the object from the current editor contents. Resets the
sourceChanged property.

Saves the current object to filename.

Causes the source editor to reflect changes made to an object or
any of it's components.

Use Designer objects to gain access to the Inspector, Source editor or streaming engine during
RunMode. While the Designer's parameters, OBJECT and FILENAME, are listed as optional,

they must be used in certain situations.

When modifying a custom class, the filename parameter must be used to specify the file from which the object was
loaded. The filename parameter is not necessary when a new class is being derived from the custom class.

When creating a new custom class from a base class, the filename parameter is optional. However, if no
parameters are specified, the Designer must subsequently be intialized using it's properties and/or methods.

When designing a new class, the OBJECT and FILENAME parameters must be set.
When modifying an existing class, the loadObjectFromFile () method must be called.

class Exception

Topic group Related topics Example

An object that describes an exception condition.

Syntax

[<oRef> =] new Exception()

<oRef>

A variable or property in which to store a reference to the newly created Exception object.

Properties

118

Language Reference

The following table lists the properties of the Exception class. (No events or methods are
associated with this class.)

Property Default Description

baseClassName EXCEPTION Identifies the object as an instance of the Exception class

className (EXCEPTION) Identifies the object as an instance of a custom class. When no custom
class exists, defaults to baseClassName

code 0 A numeric code to identify the type of exception

filename The name of the file in which a system-generated exception occurs

lineNo 0 The line number in the file in which a system-generated exception occurs

message Text to describe the exception

Description

An Exception object is automatically generated by dBASE Plus whenever an error occurs. The
object’s properties contain information about the error.

You can also create an Exception object manually, which you can fill with information and
THROW to manage execution or to jump out of deeply nested statements.

You may subclass the Exception class to create your own custom exception objects. A TRY
block may be followed by multiple CATCH blocks, each one looking for a different exception
class.

class Object
Topic group Related topics Example

An empty object.

Syntax

[<oRef> =] new Obiject()

<oRef>

A variable or property in which to store a reference to the newly created object.

Properties
An object of the Object class has no initial properties, events, or methods.

Description

Use the Object class to create your own simple objects. Once the new object is created, you
may add properties and methods through assignment. You cannot add events.

This technique of adding properties and methods on-the-fly is known as dynamic subclassing. In
dBASE Plus, dynamic subclassing supplements formal subclassing, which is achieved through
CLASS definitions.

The Object class is the only class in dBASE Plus that does not have the read-only
baseClassName or className properties.

ARGCOUNT()

Topic group Related topics Example

119

dBASE Plus 9 LR

Returns the number of parameters passed to a routine.

Syntax
ARGCOUNT()
Description

Use ARGCOUNT() to determine how many parameters, or arguments, have been passed to a
routine. You may alter the behavior of the routine based on the number of parameters. If there
are fewer parameters than expected, you may provide default values.

ARGCOUNT() returns 0 if no parameters are passed.

The function PCOUNT() is identical to ARGCOUNT(). Neither function recognizes parameters
passed to codeblocks. If called within a codeblock, the function will return the parameter
information for the currently executing FUNCTION or PROCEDURE.

ARGVECTOR()

Topic group Related topics Example

Returns the specified parameter passed to a routine.

Syntax

ARGVECTOR(<parameter expN>)

<parameter expN>

The number of the parameter to return. 1 returns the first parameter, 2 returns the second
parameter, etc.

Description

Use ARGVECTOR() to get a copy of the value of a parameter passed to a routine. Because it
is a copy, there is no danger of modifying the parameter, even if it was a variable that was
passed by reference. For more information on parameter passing, see PARAMETERS.

ARGVECTOR() can be used in a routine that receives a variable number of parameters, where
declaring the parameters would be difficult. ARGVECTOR() cannot be used within a codeblock.

baseClassName

Topic group Related topics
Identifies to which class an object belongs.

Property of
All classes except Object.
Description

The baseClassName property identifies the class constructor that originally created the object.
Although you may dynamically subclass the object by adding new properties, the
baseClassName property does not change.

The baseClassName property is read-only.

120

Language Reference

CASE
Topic group
Designates a block of code in a DO CASE block.

Description
See DO CASE for details.

CATCH

Topic group
Designates a block of code to execute if an exception occurs inside a TRY block.

Description
See TRY...ENDTRY for details.

CLASS

Topic group

A class declaration including constructor code, which typically creates member properties, and
class methods.

Syntax

CLASS <class name>[(<parameters>)]
[OF <superclass name>[(<parameters>)]
[CUSTOM]
[FROM <filename expC>]]

[PROTECT <propertyList>]
[<constructor code>]
[<methods>]

ENDCLASS

<class name>

The name of the class. Although dBASE Plus imposes no limit to the length of class names, it
recognizes only the first 32 characters.

OF <superclass name>

Indicates that the class is a derived class that inherits the properties defined in the superclass.
The superclass constructor is called before the <constructor code> in the current CLASS is
called, which means that any properties created in the superclass are inherited by the class.

<parameters>
Optional parameters to pass to the class, and through to the superclass.
CUSTOM

Identifies the class as a custom component class, so that its predefined properties are not
streamed out by the visual design tools.

FROM <filename>

<filename> specifies the file containing the definition code for the <superclass>, if the
<superclass> is not defined in the same file as the class.

PROTECT <propertyList>

121

dBASE Plus 9 LR

<propertyList> is a list of properties and/or methods of the class which are to be accessible only
by other members of the class, and by classes derived from the class.

<constructor code>

The code that is called when a new instance of the class is created with the NEW operator or a
DEFINE statement. The constructor consists of all the code at the top of the class declaration
up to the first method.

<methods>

Any number of functions designed for the class.
ENDCLASS

A required keyword that marks the end of the CLASS structure.
Description
Use CLASS to create a new class.

A class is a specification, or template, for a type of object. dBASE Plus provides many stock
classes, such as Form and Query; for example, when you create a form, you are creating a new
Form object that has the standard properties and methods from the Form class. However, when
you declare a class with CLASS, you specify the properties and methods of objects derived
from the new class.

A CLASS declaration formalizes the creation of an object and its methods. Although you can
always add properties to an object and assign methods dynamically, a CLASS simplifies the
task and allows you to build a clear class hierarchy.

Another benefit is polymorphism. Every FUNCTION (or PROCEDURE) defined in the CLASS
becomes a method of the class. An object of that class automatically has a property with the
same name as each FUNCTION that contains a reference to that FUNCTION. Because a
method is part of the CLASS, different functions may use the same name as long as they are
methods of different classes. For example, you can have multiple copy() functions in different
classes, with each one applying to objects of that class. Without classes, you would have to
name the functions differently even if they performed the same task conceptually.

Before the first statement in the constructor is executed, if the CLASS extends another class,
the constructor for that superclass has already been executed, so the object contains all the
superclass properties. Any properties that refer to methods, as described in the previous
paragraph, are assigned. This means that if the CLASS contains a method with the same name
as a method in a superclass, the method in the CLASS overrides the method in the superclass.
The CLASS constructor, if any, then executes.

In the constructor, the variable this refers to the object being created. Typically, the constructor
creates properties by assigning them to this with dot notation. However, the constructor may
contain any code at all, except another CLASS—you can’t nest classes—or a FUNCTION, since
that FUNCTION would become a method of the class and indicate the end of the constructor.

Properties and methods can be protected to prevent the user of the class from reading or
changing the protected property values, or calling the protected methods from outside of the
class.

className

Topic group Related topics

122

Language Reference

Identifies an object as an instance of a custom class. When no custom class exists, the
className property defaults to the baseClassName.

Property of
All classes except Object.

Description

The className property identifies a custom object derived from a standard dBASE Plus class.
The className property is read-only.

CLEAR MEMORY

Topic group Related topics

Clears all user-defined memory variables.

Syntax
CLEAR MEMORY

Description

Use CLEAR MEMORY to release all memory variables (except system memory variables),
including those declared PUBLIC and STATIC and those initialized in higher-level routines.
CLEAR MEMORY has no effect on system memory variables.

Note

CLEAR MEMORY does not explicitly release objects. However, if the only reference to an
object is in a memory variable, releasing the variable with CLEAR MEMORY will in turn release
the object.

Issuing RELEASE ALL in the Command window has the same effect as CLEAR MEMORY.
However, issuing RELEASE ALL in a program clears only memory variables created at the
same program level as the RELEASE ALL statement, and has no effect on higher-level, public,
or static variables. CLEAR MEMORY, whether issued in a program or in the Command window,
always has the same effect, releasing all variables.

To clear only selected memory variables, use RELEASE.

CLEAR PROGRAM

Topic group Related topics

Clears from memory all program files that aren't currently executing and aren't currently open
with SET PROCEDURE or SET LIBRARY.

Syntax

CLEAR PROGRAM

Description

Program files are loaded into memory when they are executed with DO, and when they are
loaded as library or procedure files with SET LIBRARY and SET PROCEDURE. When dBASE
Plus is done with the program—the execution is complete, or the file is unloaded—the program
file is not automatically cleared from memory. This allows these files to be quickly reloaded
without having to reread them from disk. dBASE Plus' internal dynamic memory management
will clear these files if it needs more memory; for example, when you create a very large array.

123

dBASE Plus 9 LR

You may use CLEAR PROGRAM to force the clearing of all inactive program (object code) files
from memory. The command doesn't clear files that are currently executing or files that are
currently open with SET PROCEDURE or SET LIBRARY. However, if you close a file (for
example, with CLOSE PROCEDURE), a subsequent CLEAR PROGRAM clears the closed file
from memory.

CLEAR PROGRAM is rarely used in a deployed application. Because of the event-driven nature
of dBASE Plus, program files must remain open to handle events; these files are not affected by
CLEAR PROGRAM anyway. Also, the amount of memory used by dormant program files is
small compared to the total amount of memory available. You are more likely to use CLEAR
PROGRAM during development, for example to ensure that you are running the latest version
of a program file, and not one that is stuck in memory.

CLOSE PROCEDURE

Topic group Related topics

Closes one or more procedure files, preventing further access and execution of its functions,
classes, and methods.

Syntax

CLOSE PROCEDURE [<filename list>] | [PERSISTENT]
<filename list>

A list of procedure files you want to close, separated by commas. If you specify a file without
including its extension, dBASE Plus assumes PRG. If you omit <filename list>, all procedure
files not tagged PERSISTENT are closed, regardless of their load count.

PERSISTENT

When <filename list> is omitted, CLOSE PROCEDURE PERSISTENT will close all files,
including those tagged PERSISTENT. Without the PERSISTENT designation, these files would
not be affected.

Description

CLOSE PROCEDURE reduces the load count of each specified program file by one. If that
reduces its load count to zero, then that program file is closed, and its memory is marked as
available for reuse.

When you specify more than one file in <filename list>, they are processed in reverse order,
from right to left. If a specified file is not open as a procedure file, an error occurs, and no more
files in the list are processed.

Closing a program file does not automatically remove the file from memory. If a request is made
to open that program file, and the file is still in memory and its source code has not been
updated, it will be reopened without having to reread the file from disk. Use CLEAR MEMORY
to release a closed program file from memory.

In a deployed application, it is not unusual to open program files as procedure files and never
close them. Because of the event-driven nature of dBASE Plus, program files must remain open
to respond to events. The memory used by a procedure file is small in comparison to the
amount of system memory.

See SET PROCEDURE for a description of the reference count system used to manage
procedure files. You may issue SET PROCEDURE TO or CLOSE PROCEDURE with no

124

Language Reference

<filename list> to close all open procedure files, not tagged PERSISTENT, regardless of their
load count.

DEFINE

Topic group
Creates an object from a class.

Syntax

DEFINE <class name> <object name>

[OF <container object>]

[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <stock property list>]

[CUSTOM <custom property list>]

<class name>
The class of the object to create.
<object name>

The identifier for the object you create. <object name> will become an object reference variable,
or a named property of the container if a <containter object> is specified.

OF <container object>

Identifies the object that contains the object you define.

FROM <row>, <col> TO <row>, <col> | AT <row>, <col>

Specifies the initial location and size of the object within its container. FROM and TO specify the

upper left and lower right coordinates of the object, respectively. AT specifies the position of the
upper left corner.

PROPERTY <stock property list>

Specifies values you assign to the built-in properties of the object.

CUSTOM <custom property list>

Specifies new properties you create for the object and the values you assign to them.

Description

Use DEFINE to create an object in memory. DEFINE provides an alternate, shorthand syntax
for creating objects that directly maps to using the NEW operator. The equivalence depends on
whether the object created with DEFINE is created inside a container object. With no container,

define <class name> <object name>
is equivalent to:
<object name> = new <class name>()

With a container,
define <class name> <object name> of <container object>

is equivalent to:
new <class name>(<container object>, ''<object name>")

where <object name> becomes an all-uppercase string containing the specified name. These
two parameters, the container object reference and the object name, are the two properties
expected by the class constructors for all stock control classes such as PushButton and
Entryfield. For example, these two sets of statements are functionally identical (and you can use
the first statement in one set with the second statement of the other set):

125

dBASE Plus 9 LR

define Form myForm

define PushButton cancelButton of myForm

myForm = new Form()

new PushButton(myForm, "CANCELBUTTON")
The FROM or AT clause of the DEFINE command provide a way to specify the top and left
properties of an object, and the TO coordinates are used to calculate the object’s height and
width.

The PROPERTY clause allows assignment to existing properties only. Attempting to assign a
value to a non-existent property generates an error at runtime. This will catch spelling errors in
property names, when you want to assign to an existing property; it prevents the creation of a
new property with the misspelled name. Using the assignment-only (:=) operator has the same
effect when assigning directly to a property in a separate assignment statement. In contrast, the
CUSTOM clause will create the named property if it doesn’t already exist.

While the DEFINE syntax offers some amenities, it is not as flexible as using the NEW operator
and a WITH block. In particular, with DEFINE you cannot pass any parameters to the class
constructor other than the two properties used for control containership, and you cannot assign
values to the elements of properties that are arrays.

DO

Topic group Related topics

Runs a program or function.

Syntax

DO <filename> | ? | <filename skeleton> |
<function name>
[WITH <parameter list>]

<filename> | ? | <filename skeleton>

The program file to execute. The ? and <filename skeleton> options display a dialog box from
which you can select a file. If you specify a file without including its path, dBASE Plus looks for
the file in the current directory, then in the search path in search order. See "Search path and
order" later in this section for more information.

If you specify a file without including its extension, dBASE Plus assumes a .PRO extension (a

compiled object file). If ABASE Plus can't find a .PRO file, it looks for a .PRG file (a source file),
which, if found, it compiles. By default, dBASE Plus creates the .PRO in the same directory as
the .PRG, which might not be the current directory.

<function name>
The function name in an open program file to execute. The function must be in the program file

containing the DO command that calls it, or in a separate open file on the search path. The
search path is described later in this section.

WITH <parameter list>
Specifies memory variable values, field values, or any other valid expressions to pass as

parameters to the program or function. See the description of PARAMETERS for information on
parameter passing.

Description

Use DO to run program files from the Command window or to run other programs from a
program. If you enter DO in the Command window, control returns to the Command window

126

Language Reference

when the program or function ends. If you use DO in a program to execute another program,
control returns to the program line following the DO statement when the program ends.

Although you may use DO to execute functions, common style dictates the use of the call
operator (the parentheses) when calling functions, and the DO command when running a
program file. The DO command supports the use of a file path and extension, and the ? and
<filename skeleton> options. The call operator supports calling a function by name only. In the
not-recommended situation where you have a program file that has the same name as a
function loaded into memory, the DO command will execute the program file, and the call
operator will executed the loaded function. Other than these differences, the two calling
methods behave the same, and follow the same search rules described later in this section.

You may nest routines; that is, one routine may call another routine, which may call another
routine, and so on. This series of routines, in the order in which they are called, is referred to as
the call chain.

When dBASE Plus executes or loads a program file, it will automatically compile the program
file into object code when either:

There is no object code file, or
SET DEVELOPMENT is ON, and program file is newer than the object code file (the source code file’s last update
date and time is later than the object code file’s)

When dBASE Plus encounters a function call in a program file, it looks in that file for a
FUNCTION or PROCEDURE of the specified name. If the current program file contains a
FUNCTION and a PROCEDURE with the same name, dBASE Plus executes the first one
declared. If dBASE Plus doesn't find a FUNCTION or PROCEDURE definition of the specified
name in the same program file, it looks for a program file, FUNCTION, or PROCEDURE of the
specified name on the search path in search order.

Search path and order

If the name you specify with DO doesn't include a path or a file-name extension, it can be a file,
FUNCTION, or PROCEDURE name. To resolve the ambiguity, dBASE Plus searches for the
name in specific places (the search path) in a specific order (the search order) and runs the first
program or function of the specified name that it finds. The search path and order dBASE Plus
uses is as follows:

1. The executing program's object file (PRO)
0 Other open object files (.PRO) in the call chain, in most recently opened order
0 The file specified by SYSPROC = <filename> in PLUS.ini

0 Any files opened with SET PROCEDURE, SET PROCEDURE...ADDITIVE, or SET LIBRARY
statements, in the order in which they were opened

0 The object file ((PRO) with the specified name in the search path
0 The program file (.PRG) with the specified name in the search path, whichdBASE Plus
automatically compiles

The search path is controlled with the SET PATH command. It is not used when you are running
a compiled EXE (a deployed application)—all program files must be linked into the executable.
All path information is lost during linking and ignored during execution, which means that you
cannot have more than one file with the same name, even if they originally came from different
directories.

Because program files must be compiled into object code to be linked into a compiled EXE, the
last search step, #6, does not apply when running a compiled EXE.

DO CASE

127

dBASE Plus 9 LR

Topic group Related topics Example

Conditionally processes statements by evaluating one or more conditions and executing the
statements following the first condition that evaluates to true.

Syntax

DO CASE

CASE <condition expL 1>
<statements>

[CASE <condition expL 2>
<statements>...]

[OTHERWISE
<statements>]

ENDCASE
CASE <condition expL>

If the condition is true, executes the set of commands between CASE and the next CASE,
OTHERWISE, or ENDCASE command, and then transfers control to the line following
ENDCASE. If the condition is false, control transfers to the next CASE, OTHERWISE, or
ENDCASE command.

<statements>

Zero or more statements to execute if the preceding CASE statement evaluates to true.
OTHERWISE

Executes a set of statements if all the CASE statements evaluate to false.

ENDCASE

A required keyword that marks the end of the DO CASE structure.

Description

DO CASE is similar to IF...ELSE...ENDIF. As with IF conditions, dBASE Plus evaluates DO
CASE conditions in the order they're listed in the structure. DO CASE acts on the first true
condition in the structure, even if several apply. In situations where you want only the first true
instance to be processed, use DO CASE instead of a series of IF commands.

Also, use DO CASE when you want to program a number of exceptions to a condition. The
CASE <condition> statements can represent the exceptions, and the OTHERWISE statement
the remaining situation.

Starting with the first CASE condition, dBASE Plus does the following.
Evaluates each CASE condition until it encounters one that's true
Executes the statements between the first true CASE statement and the next CASE, OTHERWISE, or ENDCASE
(if any)
Exits the DO CASE structure without evaluating subsequent CASE conditions
Moves program control to the first line after the ENDCASE command

If none of the conditions are true, dBASE Plus executes the statements under OTHERWISE if
it's included. If no OTHERWISE statement exists, dBASE Plus exits the structure without
executing any statements and transfers program control to the first line after the ENDCASE
command.

DO CASE is functionally identical to an IF...ELSEIF...ENDIF structure. Both specify a series of
conditions and an optional fallback (OTHERWISE and ELSE) if none of the conditions are true.
Common style dictates the use of DO CASE when the conditions are dependent on the same
variable, for example what key was pressed, while IF...ELSEIF...ENDIF is used when the
conditions are not directly related. In addition, DO CASE usually involves more indenting of
code.

128

Language Reference

DO WHILE

Topic group Related topics Example

Executes the statements between DO WHILE and ENDDO while a specified condition is true.

Syntax

DO WHILE <condition expL>
[<statements>]
ENDDO

<condition expL>

A logical expression that is evaluated before each iteration of the loop to determine whether the
iteration should occur. If it evaluates to true, the statements are executed. Once it evaluates to
false, the loop is terminated and execution continues with the statement following the ENDDO.

<statements>

Zero or more statements executed in each iteration of the loop.
ENDDO

A required keyword that marks the end of the DO WHILE loop.

Description

Use a DO WHILE loop to repeat a statement or block of statements while a condition is true. If
the condition is initially false, the statements are never executed.

You may also exit the loop with EXIT, or restart the loop with LOOP.

DO...UNTIL

Topic group Related topics Example

Executes the statements between DO and UNTIL at least once while a specified condition is
false.

Syntax

DO
[<statements>]
UNTIL <condition expL>

<statements>
Zero or more statements executed in each iteration of the loop.
UNTIL<condition expL>

The statement that marks the end of the DO...UNTIL loop. <condition expL> is a logical
expression that is evaluated after each iteration of the loop to determine whether the iteration
should occur again. If it evaluates to false, the statements are executed. Once it evaluates to
true, the loop is terminated and execution continues with the statement following the UNTIL.

Description

Use a DO...UNTIL loop to repeat a block of statements until a condition is true (in other words,
while the condition is false). Because the condition is evaluated at the end of the loop, a
DO...UNTIL loop always executes at least once, even when the condition is initially true.

You may also exit the loop with EXIT, or restart the loop with LOOP.

129

dBASE Plus 9 LR

DO...UNTIL is rarely used. In most condition-based loops, you don’t want to execute the loop at
all if the condition is initially invalid. DO WHILE loops are much more common, because they
check the condition before they begin.

In a DO WHILE loop, the condition fails—that is, the loop should not be executed—when it
evaluates to false; in a DO...UNTIL loop, the condition fails when it evaluates to true. This is
simply the result of the wording of the looping commands. You can easily reverse any logical
condition by using the logical NOT operator or the opposite comparison operator (for example,
less than instead of greater than or equal, or not equal instead of equal).

ELSE

Topic group
Designates an alternate statement to execute if the condition in an IF statement is false.

Description
See [F for details.

ELSEIF

Topic group
Designates an alternate condition to test if the condition in an IF statement is false.

Description
See |F for details.

EMPTY()

Topic group Related topics

Returns true if a specified expression is empty.

Syntax

EMPTY (<exp>)

<eXp>

An expression of any type.
Description

Use EMPTY() to determine if an expression is empty. The definition of empty depends on the
type of the expression:

Expression type Empty if value is

Numeric 0 (zero)

String empty string (") or a string of just spaces (" ")
Date blank date ({//})

Logical false

Null null is always considered empty

Object reference Reference points to object that has been released

130

Language Reference

Note that event properties that have not been assigned handlers have a value of null, and are
therefore considered empty. In contrast, an object reference pointing to an object that has been
released is not null; you must use EMPTY().

EMPTY() is similar to ISBLANK(). However, ISBLANK() is intended to test field values; it
differentiates between zero and blank values in numeric fields, while EMPTY() does not.
EMPTY() understands null values and object references, while ISBLANK() does not. For more
information, see ISBLANK().

ENUMERATE()

Topic group Related topics Example

Returns a listing of the member names of an object.

Syntax
Enumerate(<oRef>)
<oRef>)

Object reference to any valid object.

Description

Use ENUMERATE() to retrieve a listing of the member names of an object with each member
name identified as a property, event, or method of the specified object.

ENUMERATE() returns an AssocArray object. Each index into the AssocArray is a member
name for the enumerated object. The value of the index is filled with one of the following values:

Value Description
P The type of member is a property.
E The type of member is an event.
M The type of member is a method.
EXIT

Topic group Related topics Example

Immediately terminates the current loop. Execution continues with the statement after the loop.

Syntax
EXIT

Description

Normally, all of the statements in the loop are executed in each iteration of the loop; in other
words, the loop always exits after the last statement in the loop. Use EXIT to exit a loop from the
middle of a loop, due to some extra or abnormal condition.

In most cases, you don’t have to resort to using EXIT; you can code the condition that controls
the loop to handle the extra condition. The condition is tested between loop iterations, after the
last statement, but that usually means that there are some statements that should not be
executed because of this condition. Those statements would have to be conditionalized out with
an IF statement. Therefore, often it's simpler to EXIT out of a loop immediately once the
condition occurs.

131

dBASE Plus 9 LR

filename
Topic group Related topics

The name of a file containing an existing class definition, or the name of a file to which a newly
created class definition will be saved.

Property of
Designer

Description

To design a new custom class, or modify a stock class, set the filename property to the name of
the file under which the class definition will be saved. While designating a filename, when
initially creating a custom class, is not required, a filename must be assigned before the class
definition can be saved. Calling the save() method, without first setting the filename property,
will open a Save As dialog.

When modifying an existing custom class, the filename property will be set by the
loadObjectFromFile() method.

FINALLY

Topic group
Designates a block of code that always executes after a TRY block, even if an exception occurs.

Description
See TRY...ENDTRY for details.

FINDINSTANCE()

Topic group Related topics Example

Returns an object of the specified class from the object heap.

Syntax

FINDINSTANCE(<classname expC> [, <previous oRef>])

<classname expC>

The name of the class you want to find an instance of. <classname expC> is not case-sensitive.
<previous oRef>

When omitted, FINDINSTANCE() returns the first instance of the specified class. Otherwise, it
returns the instance following <previous oRef> in the object heap.

Description

Use FINDINSTANCE() to find any instance of a particular class, or to find all instances of a
class in the object heap.

Objects are stored in the object heap in no predefined order. Creating a new instance of a class
or destroying an instance may reorder all other instances of that class. A newly created object is
not necessarily last in the heap.

132

Language Reference

Sometimes you will want to make sure there is only one instance of a class, and reuse that
instance; a particular toolbar is the prime example. To see if there is an instance of that class,
call FINDINSTANCE() with the class name only. If the return value is null, there is no instance
of that class in memory.

Other times, you may want to iterate through all instances of a class to perform an action. For
example, you may want to close all data entry forms, which are all instances of the same class.
Call FINDINSTANCE() with the class name only to find the first instance of the class. Then call
FINDINSTANCE() in a loop with the class name and the object reference to get the next
instance in the object heap. When FINDINSTANCE() returns null, there are no more instances.

FOR...ENDFOR

Topic group Related topics Example

Executes the statements between FOR and ENDFOR the number of times indicated by the
FOR statement.

Syntax

FOR <memvar> = <start expN> TO <end expN> [STEP <step expN>]
[<statements>]
ENDFOR | NEXT

<memvar>

The loop counter, a memory variable that's incremented or decremented and then tested each
time through the loop.

<start expN>

The initial value of <memvar>.

<end expN>

The final allowed value of <memvar>.
STEP <step expN>

Defines a step size (<step expN>) by which dBASE Plus increments or decrements <memvar>
each time the loop executes. The default step size is 1.

When <step expN> is positive, dBASE Plus increments <memvar> until it is greater than <end
expN>. When <step expN> is negative, dBASE Plus decrements <memvar> until it is less than
<end expN>.

<statements>

Zero or more statements executed in each iteration of the loop.

ENDFOR | NEXT

A required keyword that marks the end of the FOR loop. You may use either ENDFOR (more
dBASE-ish) or NEXT.

Description

Use FOR...ENDFOR to execute a block of statements a specified number of times. When
dBASE Plus first encounters a FOR loop, it sets <memvar> to <start expN>, and reads the
values for <end expN> and <step expN>. (If <end expN> or <step expN> are variables and are
changed inside the loop, the loop will not see the change and the original values will still be
used to control the loop.)

133

dBASE Plus 9 LR

The loop counter is checked at the beginning of each iteration of the loop, including the first
iteration. If <memvar> evaluates to a number greater than <end expN> (or less than <end
expN> if <step expN> is negative), dBASE Plus exits the FOR loop and executes the line
following ENDFOR (or NEXT). Therefore, it's possible that the loop body is not executed at all.

If <memvar> is in the range from <start expN> through <end expN>, the loop body is executed.
After executing the statements in the loop, <step expN> is added to <memvar>, and the loop
counter is checked again. The process repeats until the loop counter goes out of range.

You may also exit the loop with EXIT, or restart the loop with LOOP.

The <memvar> is usually used inside the loop to refer to numbered items, and continues to
exist after the loop is done, just like a normal variable. If you do not want the variable to be the
default private scope, you should declare the scope of the variable before the FOR loop.

FUNCTION

Topic group Related topics

Defines a function in a program file including variables to represent parameters passed to the
function.

Syntax

FUNCTION <function name>[([<parameter list>])]
[<statements>]

<function name>

The name of the function. Although dBASE Plus imposes no limit to the length of function
names, it recognizes only the first 32 characters.

(<parameter list>)

Variable names to assign to data items (or parameters) passed to the function by the statement

that called it. The variables in <parameter list> are local in scope, protecting them from
modification in lower-level subroutines. For more information about the local scope, see LOCAL.

<statements>
Any statements that you want the function to execute. You can call functions recursively.
Description

Use functions to create code modules. By putting commonly used code in a function, you can
easily call it whenever needed, pass parameters to the function, and optionally return a value.
You also create more modular code, which is easier to debug and maintain.

When a FUNCTION is defined inside a CLASS definition, the FUNCTION is considered a
method of that CLASS. You cannot nest functions.

The keywords FUNCTION and PROCEDURE are interchangable in dBASE Plus.

A single program file can contain a total of 184 functions and methods. Each class also counts
as one function (for the class constructor). To access more functions simultaneously, use SET
PROCEDURE...ADDITIVE. The maximum size of a function is limited to the maximum size of a
program file.

When a function is called via an object, usually as a method or event handler, the variable this
refers to the object that called the function.

Function naming restrictions

134

Language Reference

Do not give a function the same name as the file in which it's contained. Statements at the
beginning of the file, before any FUNCTION, PROCEDURE, or CLASS statement, are
considered to be a function (not counted against the total limit) with the same name as the file.
(This function is sometimes referred to as the "main” procedure in the program file.) Multiple
functions with the same name do not cause an error, but the first function with that name is the
only one that is ever called.

Don't give the function the same name as a built-in dBL function. You cannot call such a
function with the DO command, and if you call the function with the call operator (parentheses),
dBASE Plus always executes its built-in function instead.

Also do not give the function a name that matches a dBL command keyword. For example, you
should not name a function OTHER() because that matches the beginning of the keyword
OTHERWISE. When you call the OTHER() function, the compiler will think it's the
OTHERWISE keyword and will generate an error, unless you happen to be in a DO CASE
block, in which case it will be treated like the OTHERWISE keyword, instead of calling the
function.

These function naming restrictions do not apply to methods, because calling a method through
the dot or scope resolution operator clearly indicates what is being called. However, you may
run into problems calling methods inside a WITH block. See WITH for details.

Making procedures available

You can include a procedure in the program file that uses it, or place it in a separate program
file you access with SET PROCEDURE or SET LIBRARY. If you include a procedure in the
program file that uses it, you should place it at the end of the file and group it with other
procedures.

When you call a procedure, dBASE Plus searches for it in the search path in search order. If
there is more than one procedure available with the same name, dBASE Plus runs the first one
it finds. For this reason, avoid using the same name for more than one procedure. See the
description of DO for an explanation of the search path and order dBASE Plus uses.

1=

Topic group

Conditionally executes statements by evaluating one or more conditions and executing the
statements following the first condition that evaluates to true.

Syntax

IF <condition expL 1>
[<statements>]

[ELSEIF <condition expL 2>
<statements>

[ELSEIF <condition expL 3>
<statements>...]]

[ELSE
[<statements>]|

ENDIF
<condition expL>

A logical expression that determines if the set of statements between IF and the next ELSE,
ELSEIF, or ENDIF command execute. If the condition is true, the statements execute. If the
condition is false, control passes to the next ELSE, ELSEIF, or ENDIF.

135

dBASE Plus 9 LR

<statements>

One or more statements that execute depending on the value of <condition expL>.
ELSEIF <condition expL> <statements>

Specifies that when the previous IF or ELSEIF condition is false, control passes to this ELSEIF
<condition expL>. As with IF, if the condition is true, only the set of statements between this
ELSEIF and the next ELSEIF, ELSE, or ENDIF execute. If the condition is false, control passes
to the next ELSEIF, ELSE, or ENDIF.

You can enter this option as either ELSEIF or ELSE IF. The ellipsis (...) in the syntax statement
indicates that you can have multiple ELSEIF statements.

ELSE <statements>

Specifies statements to execute if all previous conditions are false.

ENDIF

A required keyword that marks the end of the IF structure.

Description

Use IF to evaluate one or more conditions and execute only the set of statements following the
first condition that evaluates to true. For the first true condition, dBASE Plus executes the
statements between that program line and the next ELSEIF, ELSE, or ENDIF, then skips
everything else in the IF structure and executes the program line following ENDIF. If no
condition is true and an associated ELSE command exists, dBASE Plus executes the set of
statements after ELSE and then executes the program line following ENDIF.

Use IF...ENDIF to test one condition and IF...ELSEIF...ENDIF to test two or more conditions. If
you have more than three conditions to test, consider using DO CASE instead of IF. Compare
the example in this section with the example for DO CASE.

If you're evaluating a condition to decide which value you want to assign to a variable or
property, you may be able to use the IIF() function, which involves less duplication (you don’t
have to type the target of the assignment twice).

You can nest IF statements to test multiple conditions; however, the ELSEIF option is an
efficient alternative. When you use ELSEIF, you don't need to keep track of which ELSE applies
to which IF, nor do you have to put in an ending ENDIF.

You can put many statements for each condition. If the number of statements in a set makes the
code hard to read, consider putting them in a function and calling the function from the IF
statement instead.

IIF()

Topic group Related topics

Returns one of two values depending on the result of a specified logical expression.

Syntax

IIF(<expL>, <expl>, <exp2>)

<explL>

The logical expression to evaluate to determine whether to return <expl> or <exp2>.
<expl>

The expression to return if <expL> evaluates to true.

136

Language Reference

<exp2>

The expression to return if <expL> evaluates to false. The data type of <exp2> doesn't have to
be the same as that of <exp 1>.

Description

IIF() stands for "immediate IF" and is a shortcut to the IF...ELSE...ENDIF programming
construct. Use IIF() as an expression or part of an expression where using IF would be
cumbersome or not allowed. In particular, if you're evaluating a condition to decide which value
you want to assign to a variable or property, using IIF() involves less duplication (you don't
have to type the target of the assignment twice).

If <expl> and <exp2> are true and false, in either order, using IIF() is redundant because
<expL> must evaluate to either true or false anyway.

isinherited()

Topic group Example

Returns true if the object reference passed in to it refers to an object that is part of a superclass,
otherwise, the isInherited() method returns false.

Syntax

<oRefl>.isInherited(<oRef2>)

<oRefl>

An object reference to a designer object

<oRef2>

An object reference to an object contained within the Form, Report, or Datamodule currently
loaded into the designer object (oRefl).

Property of

Designer

Description

Use the isInherited() method to programatically enforce rules of inheritance, such as deleting
an inherited Query object from a subclassed dataModule

Take the case of a dataModule (dmd2), subclassed from another dataModule (dmd1),
containing Query object 1 and Query object 2, and currently being designed in the Data Module
designer.

If Query object 1, currently containted in dmd2, was inherited from its superclass, dmd1, you
would not be able to remove it (delete it) from the dataModule dmd2. Should a user attempt
such a delete, the islnherited() method would determine that:

In the current designer // Data Module (<oRef1>)
An object // Query object 1 (<oRef2>)
Was inherited from a superClass // (dmd1)

The isInherited() method would return true, and the removal of Query object 1 could be
disallowed.

LOCAL

137

dBASE Plus 9 LR

Topic group Related topics

Declares memory variables that are visible only in the routine where they're declared.

Syntax
LOCAL <memvar list>

<memvar list>

The list of memory variables to declare local.

Description

Use LOCAL to declare a list of memory variables available only to the routine in which the
command is issued. Local variables differ from those declared PRIVATE in the following ways:
Private variables are available to lower-level subroutines, while local variables are not. Local variables are
accessible only to the routine—the program or function—in which they are declared.

TYPE() does not "see" local variables. If you want to determine the TYPE() of a local variable, you must copy it to
a private (or public) variable and call TYPE() with that variable name in a string.

You cannot use a local variable for macro substitution with the & operator. Again, you must copy it to a private (or
public) variable first.

LOCAL variables cannot be inspected using the Debugger.

Despite these limitations, local variables are generally preferred over private variables because
of their limited visibilty. You cannot accidentally overwrite them in a lower-level routine, which
would happen if you forget to hide a public variable; nor can you inadvertently use a variable
created in a higher-level routine, thinking that it's one declared in the current routine, which
would happen if you misspell the variable name in the current routine.

Note The special variables this and form are local.

You must declare a variable LOCAL before initializing it to a particular value. Declaring a
variable LOCAL doesn't create it, but it does hide any higher-level variable with the same name.
After declaring a variable LOCAL, you can create and initialize it to a value with STORE or =.
(The := operator will not work at this point because the variable hasn’'t been created yet.) Local
variables are erased from memory when the routine that creates them finishes executing.

For more information, see PUBLIC for a table that compares the scope of public, private, local,
and static variables.

LOOP

Topic group Related topics

Skips the remaining statements in the current loop, causing another loop iteration to be
attempted.

Syntax
LOOP

Description

Conditional statements are often used inside a loop to control which statements are executed in
each loop iteration. For example, in a loop that processes the rows in an employee table, you
might want to increase the monthly salary of non-managers and the annual bonus for
managers, all in the same loop.

There can be many different sets of statements in the loop, each with a different combination of
conditions dictating whether they should be executed. Sometimes you can be in the middle of a
loop, and none of the remaining statements apply. The condition that determines this may be

138

Language Reference

nested a few levels deep. While it would be possible to code the rest of the loop with conditional
statements to take this condition into account, often it's simpler to use a LOOP statement when
this condition is encountered. This causes the remaining statements in the loop to be skipped,
and the next iteration of the loop to be attempted.

OTHERWISE

Topic group

Designates a block of code in a DO CASE block to execute if there are no matching CASE
blocks.

Description

See DO CASE for details.

PARAMETERS

Topic group Related topics Example

Assigns data passed from a calling routine to private variables.

Syntax
PARAMETERS <parameter list>
<parameter list>

The memory variable names to assign, separated by commas.

Description

There are three ways to access values passed to program or function:

1. Variable names may be declared on the FUNCTION (or PROCEDURE) line in parentheses. These
variables are local to that routine.
O Variable names may be declared in a PARAMETERS statement. These variables are private
in scope.

0 The values may be retrieved through the ARGVECTOR() function.
Passed values may be assigned to variables only once in a routine. You may either create local
variables on the FUNCTION line or use the PARAMETERS statement, and you may only use
the PARAMETERS statement once.

The ARGVECTOR() function returns copies of the passed values. It has no effect on, nor is it
affected by, the other two techniques.

Parameters passed to the main procedure of a dBASE Plus application .exe, such as from a
DOS command line, will be received as character strings.

For example:
someApp abcd efgh

In someApp.prg,
PARAMETERS varl, var?2

varl will be received as, "abcd", and var2 as, "efgh".

To pass a string containing an embedded space, use quotes around the string. Such as:
someApp "abcd efgh™ ijk

varl will be received as, "abcd efgh", and var2 as, "ijk".

139

dBASE Plus 9 LR

In general, local variables are preferred because they cannot be accidentally overwritten by a
lower-level routine. Reasons to use PARAMETERS instead include:

Using values passed to a program file: a program file may contain statements that are not part of a function or
class, like the statements in the Header of a WFM file. Because there is no FUNCTION or PROCEDURE line,
there is no place to declare local parameters. A PARAMETERS statement must be used instead.

You specifically want the parameters to be private, so they can for example be modified by a lower-level routine, or
be used in a macro substitution.
For more information on the difference between local and private variable scope, see LOCAL.

If you specify more variables in the <parameter list> than values passed to the routine, the extra
variables assume a value of false. If you specify fewer variables, the extra values do not get
assigned.

The PARAMETERS statement should be at or near the top of the routine. This is good
programming style; there is no rule requiring this.

Passing mechanisms

There are two ways to pass parameters, by reference or by value. This section uses the term
"variable" to refer to both memory variables and properties.

If you pass variables by reference, the called function has direct access to the variable. Its actions can change
(overwrite) the value in that variable. Pass variables by reference if you want the called function to manipulate
the values stored in the variables it receives as parameters.

If you pass variables by value, the called function gets a copy of the value contained in the variable. Its actions can't
change the contents of the variable itself. Pass variables by value if you want the called function to use the
values in the variables without changing their values—on purpose or by accident—in the calling subroutine.

The following rules apply to parameter passing mechanisms:

Literal values (like 7) and calculated expression values (like xVar + 3) must be passed by value—there is no
reference for the called function to manipulate, nor is there any way to tell that the parameter has been changed.

Memory variables and properties may be passed by reference or by value. The default is pass-by-reference.

The scope declaration of a variable (local, private, etc.) does not have any effect on whether the variable is passed
by reference or by value. The scope declaration protects the name of the variable. That name is used inside the
calling routine; the called function assigns its own name (which is often different but sometimes happens to be
the same) to the parameter, making the scope declaration irrelevant.

To pass a variable or property by value, enclose it in parentheses when you pass it.

Passing objects
Because an object reference is itself a reference, passing one as a parameter is a bit more
complicated:

Passing a variable (or property) that contains an object reference by reference means that you can change the
contents of that variable, so that it points to another object, or contains any other value.

Even if you pass an object reference by value, you can access that object, and change any of its properties. This is
because the value of a object reference is still a reference to that object.

Passing this and form

When passing the special object references this and form as parameters to the method of
another object, they must be enclosed in parentheses to be passed by value. If not, the value of
the this and form parameters take on the corresponding values for the target object, and no
longer refer to the calling objects.

Passing fields in XBase DML

With the XBase DML, fields are accessed directly by name (instead of a Field object’s value
property). When used as parameters, they are always passed by value, so the called function
can't change their contents.

There are two ways to alter the contents of an XBase field with a function:

140

Language Reference

Store its contents to a memory variable and call the function with that variable. When control returns to the calling
routine, REPLACE the field contents with the memory variable contents.

Design the function to accept a field name. Pass the name of the field, and have the function REPLACE the
contents of the named field, using macro substitution to convert the field name to a field reference.

Protecting parameters from change

Because the decision whether to pass by reference or by value is made by the caller, the called
function doesn’t know whether it's safe to modify the parameter. It's a good idea to copy
parameters to work variables and to use those variables instead if their values are going to be
changed, unless the intent of the function is specifically to modify the parameters.

parent
Topic group
The immediate container of an object.

Property of
Most data, form, and report objects

Description

Many objects are related in a containership hierarchy. If the container object— referred to as the
parent—is destroyed, all the objects it contains—referred to as child objects—are also
destroyed. Child objects may be parents themselves and contain other objects. Destroying the
highest-level parent destroys all the descendant child objects.

An object’s parent property refers to its parent object.

For example, a form contains both data objects and visual components. A Query object in a
form has the form as its parent. The Query object contains a rowset, which contains an array of
fields, which in turn contains Field objects. Each object in the hierarchy has a parent property
that refers back up the chain, up to the form, which has no parent. A button on the form also has
a parent property that refers to the form. If the form is destroyed, all of the objects it contains are
destroyed.

The parent property is often used to refer to sibling objects—other objects that are contained by
the parent. For example, one Field object can refer to another by using the parent reference to
go one level up in the hierarchy, then use the name of the other field to go back down one level
to the sibling object.

The parent property is read-only.

PCOUNT()

Topic group
Returns the number of parameters passed to a routine.

Syntax

PCOUNT()

Description

PCOUNTY() is identical to ARGCOUNT().

141

dBASE Plus 9 LR

PRIVATE

Topic group Related topics

Declares variables that you can use in the routine where they're declared and in all lower-level
subroutines.

Syntax

PRIVATE <memvar list> |

ALL
[LIKE <memvar skeleton 1>]
[EXCEPT <memvar skeleton 2>]

<memvar list>

The list of memory variables you want to declare private, separated by commas.
ALL

Makes private all memory variables declared in the subroutine.
LIKE <memvar skeleton 1>

Makes private the memory variables whose names are like the memory variable skeleton you
specify for <memvar skeleton 1>. Use characters of the variable names and the wildcards * and
? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2>

Makes private all memory variables except those whose names are like the memory variable
skeleton you specify for <memvar skeleton 2>. Use characters of the variable names and the
wildcards * and ? to create <memvar skeleton 2>. You can use LIKE and EXCEPT in the same
statement, for example, PRIVATE ALL LIKE ?_* EXCEPT c_*.

Description

Use PRIVATE in a function to avoid accidentally overwriting a variable with the same name that
was declared in a higher-level routine. Normally, variables are visible and changeable in lower-
level routines. In effect, PRIVATE hides any existing variable with the same name that was not
created in the current routine.lt's a good practice to always use LOCAL or PRIVATE. For
example, if you write a function that someone else might use, you probably won’t know what
variables they're using. If you don’t use LOCAL or PRIVATE, you might accidentally change the
value of one of their variables when they call your function.

Although they have some limitations, local variables are generally preferred over private
variables because of their more limited visibilty. You cannot accidentally overwrite them in a
lower-level routine, which would happen if you forget to hide a public variable; nor can you
inadvertently use a variable created in a higher-level routine, thinking that it's one declared in
the current routine, which would happen if you misspell the variable name in the current routine.
Also, private variables may be macro-substituted inadvertently with the & operator. For
example, if you specify the text of a menu item as "&Close" to designate the letter C as the pick
character and you happen to have a private variable named close, the variable with be macro-
substituted when the menu is created. If the variable was declared local, this wouldn't happen.

You must declare a variable PRIVATE before initializing it to a particular value. Declaring a
variable PRIVATE doesn't create it, but it does hide any higher-level variable with the same
name. After declaring a variable PRIVATE, you can create and initialize it to a value with
STORE or =. (The := operator will not work at this point because the variable hasn’t been
created yet.) Private variables are erased from memory when the routine that creates them
finishes executing.

142

Language Reference

Unless declared otherwise, variables you initialize in programs are private. If you initialize a
variable that has the same name as a variable created in the Command window or declared
PUBLIC or PRIVATE in an earlier routine—in other words, a variable that is visible to the current
routine—and don't declare the variable PRIVATE first, it is not created as a private variable.
Instead, the routine uses and alters the value of the existing variable. Therefore, you should
always declare your private variables, even though that is the default.

For more information, see PUBLIC for a table that compares the scope of public, private, local,
and static variables.

PROCEDURE

Topic group
Defines a function in a program file including variables to represent parameters passed to the
function.

Description

PROCEDURE is identical to FUNCTION. While earlier versions of dBASE differentiated
between the two, these differences have been removed. The descriptive terms "function" and
"procedure” are used interchangably in dBASE Plus. (The term "procedure file" refers to a
program file opened with the SET PROCEDURE command, which is not restricted to a file that
contains PROCEDUREs only.)

See FUNCTION for details.

PROCREFCOUNT()

Topic group Related topics

Returns the number of references to a procedure file.

Syntax

PROCREFCOUNT(<procedure file expC>)

<procedure file expC>

The filename or the path and filename of a procedure file.

Description

Use PROCREFCOUNTY() to find the number of references to a procedure file.
PROCREFCOUNT() accepts a single parameter which is the name of the procedure file or the
full path and name of the procedure file for which you want the count returned.
The returned value is numeric.

Each time a procedure file is loaded it's reference count is incremented by one.

Each time a procedure file is closed it's reference count is decremented by one.

When a procedure file's reference count reaches zero, the procedure file is removed from memory and its contents
are no longer accessible.

143

dBASE Plus 9 LR

Use SET PROCEDURE TO <procedure file expC> to load a procedure file.
Use CLOSE PROCEDURE <procedure file expC> to close a procedure file.

PUBLIC

Topic group Related topics

Declares global memory variables.

Syntax
PUBLIC <memvar list>
<memvar list>

The memory variables to make public.
Description

A variable’s scope is determined by two factors: its duration and its visibility. A variable’s
duration determines when the variable will be destroyed, and its visibility determines in which
routines the variable can be seen.

Use PUBLIC to declare a memory variable that has an indefinite duration and is available to all
routines and to the Command window.

You must declare a variable PUBLIC before initializing it to a particular value. Declaring a
variable PUBLIC creates it and initializes it to false. Once declared, a public variable will remain
in memory until it is explicitly released.

By default, variables you initialize in the Command window are public, and those you initialize in
programs without a scope declaration are private. (Variables initialized in the Command window
when a program is suspended are private to that program.) The following table compares the
characteristics of variables declared PUBLIC, PRIVATE, LOCAL and STATIC in a routine called
CreateVar.

PUBLIC PRIVATE LOCAL STATIC
Created when it is declared and initialized to a Y N N Y
value of false
Can be used and changed in CreateVar Y Y Y Y
Can be used and changed in lower-level
routines called by CreateVar
Can be used and changed in higher-level Y N N N
routines that call CreateVar
Automatically released when CreateVar ends N Y Y N

Public variables are rarely used in programs. To maintain global values, it's better to create
properties of the _app object. As properties, they will not conflict with variables that you might
have with the same name, and they can communicate with each other more easily.

QUIT

Topic group Example
Closes all open files and terminates dBASE Plus.

144

Language Reference

Syntax

QUIT [WITH <expN>]

WITH <expN>

Passes a return code, <expN>, to the operating system when you exit dBASE Plus.

Description

Use QUIT to end your dBASE Plus work. It has the same effect as closing the dBASE Plus
application.

If you include QUIT in a program file, dBASE Plus halts the program's execution and exits
dBASE Plus. To end a program's execution without leaving dBASE Plus, use CANCEL or
RETURN.

Use QUIT WITH <expN> to pass a return code to Windows or to another application.

REDEFINE

Topic group Related topics

Assigns new values to an object’s properties.

Syntax

REDEFINE <class hame> <object name>

[OF <container object>]

[FROM <row, col> TO <row, col> > | <AT <row, col>]
[PROPERTY <changed property list>]

[CUSTOM <new property list>]

<class name>
The class of the object you want to redefine.
<object name>

The identifier for the object you want to modify. <object name> is either an object reference
variable, or a named property of the container if a <containter object> is specified.

OF <container object>
Identifies the object that contains the object you want to redefine.
FROM <row>, <col> TO <row>, <col> | AT <row>, <col>

Specifies the new location and size of the object within its container. FROM and TO specify the
upper left and lower right coordinates of the object, respectively. AT specifies the position of the
upper left corner.

PROPERTY <changed property list>

Specifies new values you assign to the existing properties of the object.

CUSTOM <new property list>

Specifies new properties you create for the object and the values you assign to them.
Description

Use REDEFINE to assign new values to the properties of an existing object.

While the REDEFINE syntax offers some amenities (like DEFINE), it is not as flexible as
assigning values in a WITH block. In particular, with REDEFINE you cannot assign values to the
elements of properties that are arrays.

145

dBASE Plus 9 LR

REFCOUNT()

Topic group Related topics Example

Returns the number of references to an object.

Syntax
REFCOUNT(<oRef>)
<oRef>

Object reference to any valid object

Description

Use REFCOUNTY() to find the number of references to an object. REFCOUNT() accepts a
single parameter which is the object reference for which you want the count returned. The
returned value is numeric.

RELEASE

Topic group Related topics

Deletes specified memory variables.

Syntax

RELEASE <memvar list> |

ALL
[LIKE <memvar skeleton 1>]
[EXCEPT <memvar skeleton 2>]

<memvar list>

The specific memory variables to release from memory, separated by commas.
ALL

Removes all variables in memory (except system memory variables).

LIKE <memvar skeleton 1>

Removes from memory all memory variables whose names are like the memory variable
skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the
wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2>
Removes from memory all memory variables except those whose names are like the memory
variable skeleton you specify for <memvar skeleton 2>. Use characters of the variable names

and the wildcards * and ? to create <memvar skeleton 2>. You can use LIKE and EXCEPT in
the same statement, for example, RELEASE ALL LIKE ?_* EXCEPT c_*.

Description

Use RELEASE to clear memory variables. To remove large groups of variables, use the option
ALL [LIKE <memvar skeleton 1>] [EXCEPT <memvar skeleton 2>].

If you issue RELEASE ALL [LIKE <memvar skeleton 1>] [EXCEPT <memvar skeleton 2>] in a
program or function, dBASE Plus releases only the local and private variables declared in that
routine. It doesn't release public or static variables, or variables declared in higher-level
routines.

146

Language Reference

To release a variable by name, that variable must be in scope. For example, you may release a
private variable declared in a higher-level routine by name, because the private variable is still
visible; but you cannot release a local variable the same way because the local variable is not
visible outside its routine.

Note

RELEASE does not explicitly release objects. However, if the only reference to an object is in a
memory variable, releasing the variable with RELEASE will in turn release the object. In
contrast, RELEASE OBJECT will explicitly release an object, but it does not release any
variables that used to point to that object.

When control returns from a subroutine to its calling routine, dBASE Plus clears from memory
all variables initialized in the subroutine that weren't declared PUBLIC or STATIC. Thus, you
don't have to release a routine's local or private variables explicitly with RELEASE before the
routine terminates.

RELEASE OBJECT

Topic group Related topics

Explicitly releases an object from memory.

Syntax
RELEASE OBJECT <oRef>
<oRef>

An object reference to the object you want to release.

Description
RELEASE OBJECT functions identically to the release() method. See release() for details.

Because release() is a method, its use is preferred, especially when called from a method. But
release() is not a method in all classes. Use RELEASE OBJECT when the object does not
have a release() method, or to release an object regardless of its class.

If <oRef> is a variable, RELEASE OBJECT does not release that variable, or any other
variables that point to the just-released object. Testing these variables with EMPTY() will return
true once the object has been released.

RESTORE

Topic group Related topics

Copies the memory variables stored in the specified disk file to active memory.

Syntax

RESTORE FROM <filename> | ? | <filename skeleton>
[ADDITIVE]

<filename> | ? | <filename skeleton>

The file of memory variables to restore. RESTORE FROM ? and RESTORE FROM <filename
skeleton> display a dialog box, from which you can select a file. If you specify a file without
including its path, dBASE Plus looks for the file in the current directory, then in the path you
specify with SET PATH. If you specify a file without including its extension, dBASE Plus
assumes MEM.

147

dBASE Plus 9 LR

ADDITIVE
Preserves existing memory variables when RESTORE is executed.

Description

Use RESTORE with SAVE to retrieve and store important memory variables. All local and
private variables are cleared at the end of execution of the routine that created them, while all
public and static variables are cleared when you exit dABASE Plus. To preserve these values for
future use, store them in a memory file by using SAVE. You can then retrieve these values later
by using RESTORE.

SAVE saves simple variables only—those containing numeric, string, logical, or null values—

and objects of class Array. It ignores all other object reference variables. Therefore you can
neither SAVE nor RESTORE objects (other than arrays).

Without the ADDITIVE option, RESTORE clears all existing user memory variables before
returning to active memory the variables stored in a memory file. Use ADDITIVE when you want
to restore a set of variables while retaining those already in memory.

Note If you use ADDITIVE, and a restored variable has the same name as an existing variable, the restored variable
will replace the existing one.

If you issue RESTORE in the Command window, dBASE Plus makes all restored variables
public. When dBASE Plus encounters RESTORE in a program file, it makes all restored
variables private to the currently executing function.

RETURN

Topic group Related topics

Ends execution of a program or function, returning control to the calling routine—program or
function—or to the Command window.

Syntax
RETURN [<return exp>]
<return exp>

The value a function returns to the calling routine or the Command window.
Description

Programs and functions return to their callers when there are no more statements to execute.
When ended this way, they do not return a value.

Use RETURN in a program or function to return a value, or to return before the end of the
program or function.

If the RETURN is inside a TRY block, the corresponding FINALLY block, if any, is executed
before returning. If there is a RETURN inside that FINALLY block, whatever it returns is
returned instead.

SAVE

Topic group Related topics

Stores memory variables to a file on disk.

Syntax

148

Language Reference

SAVE TO <filename> | ? | <filename skeleton>
[ALL]

[LIKE <memvar skeleton 1>]

[EXCEPT <memvar skeleton 2>]

TO <filename> | ? | <filename skeleton>

Directs the memory variable output to be saved to the target file <filename>. By default, dBBASE
Plus assigns a MEM extension to <filename> and saves the file in the current directory. The ?
and <filename skeleton> options display a dialog box in which you specify the name of the
target file and the directory to save it in.

ALL

Stores all memory variables to the memory file. If you issue SAVE TO <filename> with no
options, dBASE Plus also saves all memory variables to the memory file.

LIKE <memvar skeleton 1>

Stores in the target file the memory variables whose names are like the memory variable
skeleton you specify for <memvar skeleton 1>. Use characters of the variable names and the
wildcards * and ? to create <memvar skeleton 1>.

EXCEPT <memvar skeleton 2>]

Stores in the target file all memory variables except those whose names are like the memory
variable skeleton you specify for <memvar skeleton 2>. Use characters of the variable names
and the wildcards * and ? to create <memvar skeleton 2>.

Description

Use SAVE with RESTORE to store and retrieve important memory variables. Local and private
variables are cleared at the end of the routine that created them, while public and static
variables are cleared when you exit dBASE Plus. To preserve these values for future use, store
them in a memory file with SAVE. Use RESTORE to retrieve them.

If SET SAFETY is ON and a file exists with the same name as the target file, dBASE Plus
displays a dialog box asking if you want to overwrite the file. If SET SAFETY is OFF, any
existing file with the same name is overwritten without warning.

Note SAVE saves simple variables only—those containing numeric, string, logical, or null values—and objects of
class Array. It ignores all other object reference variables. Therefore you can neither SAVE nor RESTORE
objects (other than arrays). SAVE also does not save function pointer, bookmark, or system memory
variables.

SET LIBRARY

Topic group Related topics

Opens a dBASE Plus program file as the library file, making its functions, classes, and methods
available for execution.

Syntax

SET LIBRARY TO [<filename> | ? | <filename skeleton>]

<filename> | ? | <filename skeleton>

The program file to open. The ? and <filename skeleton> options display a dialog box from
which you can select a file. If you specify a file without including its path, dBASE Plus looks for

the file in the current directory, then in the path you specify with SET PATH. If you specify a file
without including its extension, dBASE Plus assumes .PRO (a compiled object file). If dBASE

149

dBASE Plus 9 LR

Plus can't find a .PRO file, it looks for a .PRG file (a source file). If dBASE Plus finds a .PRG file,
it compiles it.

Description

SET LIBRARY is similar to SET PROCEDURE. Both commands open a program file, allowing
access to the functions, classes, and methods the file contains. The difference is that while SET

PROCEDURE can add a program file to a list of procedure files, there can be only one library
file open at any time. The library file cannot be closed with the SET PROCEDURE command.

Otherwise, the library file is treated like a procedure file. The library and procedure files are
searched in the order they were opened. You may want to designate a stable program file with
core functionality as the library file, and all other program files as procedure files.

Issue SET LIBRARY TO without a file name to close the open library file.

SET PROCEDURE

Topic group Related topics

Opens a dBASE Plus program file as a procedure file, making its functions, classes, and
methods available for execution.

Syntax

SET PROCEDURE TO
[<filename> | ? | <filename skeleton>] [ADDITIVE][PERSISTENT]

<filename> | ? | <filename skeleton>

The procedure file to open. The ? and <filename skeleton> options display a dialog box, from
which you can select a file. If you specify a file without including its path, dBASE Plus looks for
the file in the current directory, then in the path you specify with SET PATH. If you specify a file
without including its extension, dBASE Plus assumes .PRO (a compiled object file). If dBASE
Plus can't find a .PRO file, it looks for a .PRG file (a source file). If dBASE Plus finds a .PRG file,
it compiles it.

ADDITIVE

Prior to dBASE Plus version 2.50

Opens the procedure file(s) without closing any you've opened with previous SET
PROCEDURE statements. SET PROCEDURE TO < filename> (without the ADDITIVE option)
closes all procedure files you've opened with previous SET PROCEDURE statements other
than those tagged PERSISTENT.

Starting with dBASE Plus version 2.50

SET PROCEDURE TO <filename> acts as if ADDITIVE was included. In other words, SET
PROCEDURE TO <filename> (without specifying ADDITIVE) will NOT close any open
procedure files

PERSISTENT

Opens the procedure file with the PERSISTENT designation and, unless it is specifically
referenced in the CLOSE PROCEDUREc<filename list>, prevents it from being closed by any
means other than CLOSE PROCEDURE PERSISTENT, CLOSE ALL PERSISTENT, or by
compiling the file with COMPILE <filename>.

All SET PROCEDURE TO statements, streamed in the form class definition, will have a
PERSISTENT designation when the form's persistent property is set to true in The Form
Designer.

150

Language Reference

Description

To execute a function or method, that function must be loaded in memory. To be more precise,
a simple pointer to that function must be in memory. The contents of the function itself are not
necessarily in memory at any given time; if not, the contents get loaded into memory
automatically when the function is executed. But if that function’s pointer is in memory, it is
considered to be loaded.

Whenever you execute a program file with DO (or with the call operator), it is loaded implicitly;
pointers to all of the functions, classes, and methods in that file are loaded into memory.
Therefore, code in a program file may always call any other functions or methods in the same
file.

To access functions, classes, and methods in other program files, load the program file with
SET PROCEDURE first. Its function pointers stay in memory until the program file is unloaded
with CLOSE PROCEDURE or SET PROCEDURE TO (with no options).

dBASE Plus uses a reference count system to manage program files in memory. Each loaded
program file has a counter for the number of times it has been loaded, either explicitly with SET
PROCEDURE or implicitly. As long as the count is more than zero, the file stays loaded. Calling
CLOSE PROCEDURE reduces the count by one. Therefore, if you issue SET PROCEDURE
twice, you need to issue CLOSE PROCEDURE twice to close the program file.

A program file’s load count has no impact on memory; it is simply a counter. Loading a program
file 10 times uses the same amount of memory as loading it once.

Whenever a function is called, dBASE Plus looks for the routine in specific places in a specific
order. After searching the program files in the call chain, dBASE Plus looks in files opened with
SET PROCEDURE. See the DO command for an explanation of the search path and order.

To make the file containing the currently executing routine a procedure file—for example, after
creating an object, to make the object’'s methods which are defined in the same file available to
it—execute the following statement:

set procedure to program(1l) additive

Some operations, such as assigning a menuFile to a form or opening a form defined in a WFM
file, automatically open the associated file as a procedure file, and that statement is not
necessary.

If you issue SET PROCEDURE TO with no options, dBASE Plus closes all procedure files
opened with SET PROCEDURE other than those tagged PERSISTENT. If you want to close
only specific procedure files, use CLOSE PROCEDURE. The maximum number of open
procedure files depends on available memory.

Note A common mistake is to forget the ADDITIVE clause when opening a procedure file. This will close all other

open procedure files not tagged PERSISTENT.

When dBASE Plus executes or loads a program file, it will automatically compile the program
file into object code when either:

There is no object code file, or

SET DEVELOPMENT is ON, and program file is newer than the object code file (the source code file’s last update

date and time is later than the object code file’s)

If a file is opened as a procedure file and the file is changed in the Source editor, the file is
automatically recompiled so that the changed code takes effect immediately.

Use TYPE() to detect whether a function, class, or method is loaded into memory. If so,
TYPE() will return "FP" (for function pointer), as shown in the following IF statements:

if type("myfunc”) # "FP" // Function name
if type("myclass::myclass") # "FP" // Class constructor name

151

dBASE Plus 9 LR

iT type("myclass::mymethod") # "FP" // Method name

SET()

Topic group Related topics Example

Returns the current setting of a SET command or function key.

Syntax

SET(<expC> [,<expN>])

<expC>

A character expression that is the SET command or function key whose setting value to return.
<expN>

The nth such setting to return.

Description

Use SET() to get a SET or function key setting so that you can change it or save it. For
example, you can issue SET() at the beginning of a routine to get current settings. You can
then save these settings in memory variables, change the settings, and restore the original
settings from the memory variables at the end of the routine.

When dBASE Plus supports a SET and a SET...TO command that use the same keyword,
SET() returns the ON|OFF setting and SETTO() returns the SET...TO setting. For example,
you can issue SET FIELDS ON, SET FIELDS OFF, or SET FIELDS TO <field list>.
SET("FIELDS") returns "ON" or "OFF" and SETTO("FIELDS") returns the field list as a
character expression.

If dBASE Plus supports a SET...TO command but not a corresponding SET command, SET()
and SETTO() both return the SET...TO value. For example, SET("BLOCKSIZE") and
SETTO("BLOCKSIZE") both return the same value.

When <expC> is a function key name, such as "F4", SET() returns the function key setting. To
return the value of a Ctrl+function key setting, add 10 to the function key number; to return the
value of a Shift+function key setting, add 20 to the function key number. That is, to return the
value of Ctrl+F4, use SET("F14"), and to return the value of Shift+F4, use SET("F24").

If a procedure file is open, SET("PROCEDURE") returns the name of the procedure file. If more
than one procedure file is open, SET("PROCEDURE") returns the name of the first one loaded.
To return the name of another open procedure file, enter a number as the second argument; for
example, SET("PROCEDURE",2) returns the name of the second procedure file that was
loaded. If no procedure files are open, SET("PROCEDURE") returns an empty string ().

The command you specify for <expC> can be abbreviated to four letters in most cases,
following the same rules as those for abbreviating keywords. For example, SET("DECI") and
SET("DECIMALS") have the same meaning. The <expC> argument is not case-sensitive.

SETTO()

Topic group Related topics
Returns the current setting of a SET...TO command or function key.

Syntax
SETTO(<expC> [,<expN>])

152

Language Reference

<expC>

A character expression that is the SET...TO command whose setting value to return.
<expN>

The nth such setting to return.

Description

Use SETTO() to get a SET or function key setting so that you can change it or save it. For
example, you can issue SETTO() at the beginning of a routine to get current settings. You can
then save these settings in memory variables, change the settings, and restore the original
settings from the memory variables at the end of the routine.

When dBASE Plus supports a SET and a SET...TO command that use the same keyword,
SET() returns the SET setting and SETTO() returns the SET...TO setting. For example, you
can issue SET FIELDS ON, SET FIELDS OFF, or SET FIELDS TO <field list>. SET("FIELDS")
returns the ON or OFF setting and SETTO("FIELDS") returns the field list as a character
expression.

SETTO() is almost identical to SET(). For more information, see SET().

STATIC

Topic group Related topics Example

Declares memory variables that are local in visibility but public in duration.

Syntax

STATIC <variable 1> [= <value 1>] [,<variable 2> [= <value>] ...]
<variable>

The variable to declare static.

<value>

The value to assign to the variable.

Description

Use STATIC to declare memory variables that are visible only to the routine where they’re
declared but are not automatically cleared when the routine ends. Static variables are different
from other scopes of memory variables in two important ways:
You can declare and assign a value to a static variable in a single statement, referred to as an in-line assignment.
Static variables initialized in a single statement are assigned the initialization value whenever the variable is
undefined, including the first time the routine is executed and after the variable is cleared.
You must declare a variable STATIC before initializing it to a particular value. Declaring a
variable STATIC without an in-line assignment creates it and initializes it to false. Once
declared, a static variable will remain in memory until it is explicitly released (usually with
CLEAR MEMORY).

Because static variables are not released when the routine in which they are created ends, you
can use them to retain values for subsequent times that routine runs. To do this, use an in-line
assignment. The first time dBASE Plus encounters the STATIC declaration, the variable is
initialized to the in-line value. If the subroutine is run again, the variable is not reinitialized;
instead, it retains whatever value it had when the routine last ended.

153

dBASE Plus 9 LR

Because dBL is a dynamic object-oriented language, you usually assigh new properties to an
object to retain values between method calls. For example, if you're calculating a running total in
a report, you can create a property of the Report or Group object to store that number.

Static variables are only useful for truly generic functions that are not associated with objects,
functions that might be called from different objects that need to share a persistent value, or for
values that are maintained by a class—not each object. In this last case, the variables are
referred to as static class variables.

For more information, see PUBLIC for a table that compares the scope of public, private, local,
and static variables.

STORE

Topic group Related topics

Stores an expression to specified memory variables or properties.

Syntax

STORE <exp> TO <memvar list>

<eXp>

The expression to store.

TO <memvar list>

The list of memory variables and/or properties to store <exp>, separated by commas.
Description

Use STORE to store any valid expression to a one or more variables or properties.

Common style dictates the use of STORE only when storing a single value to multiple locations.
When storing to a single variable or property, an assignment operator, either = or :=, is
preferred.

To specify the scope of a variable, use LOCAL, PRIVATE, PUBLIC, or STATIC before assigning
a value to the variable.

THROW

Topic group Related topics Example

Generates an exception.

Syntax
THROW <exception oRef>
<exception oRef>

A reference to the Exception object you want to pass to the CATCH handler.

Description

Use THROW to manually generate an exception. THROW must pass a reference to an existing
Exception object that describes the exception.

TRY

154

Language Reference

Topic group Related topics Example

A control statement used to handle exceptions and other deviations of program flow.

Syntax

TRY

<statement block 1>

CATCHY(<exception typel> <exception oRefl>)
<statement block 2>

[CATCH(<exception type2> <exception oRef2>)
<statement block 3>]

[CATCH ...]

[FINALLY

<statement block 4>]

ENDTRY

TRY <statement block 1>
A statement block for which the following CATCH or FINALLY block—or both—will be used if an

exception occurs during execution. A TRY block must be followed by either a CATCH block, a
FINALLY block, or both.

CATCH <statement block 2>

A statement block that is executed when an exception occurs. The first CATCH or FINALLY is
not optional and must be included.

<exception type>

The class name of the exception to look for—usually, Exception.

<exception oRef>

A formal parameter to receive the Exception object passed to the CATCH block.
CATCH...

Catch blocks for other types of exceptions.
FINALLY <statement block 4>

A statement block that is always executed after the TRY block, even if an exception or other
deviation of program flow occurs. If there is both a CATCH and a FINALLY, the FINALLY block
executes after the CATCH block.

ENDTRY
A required keyword that marks the end of the TRY structure.

Description

An exception is a condition that is either generated by dBASE Plus, usually in response to an
error, or by the programmer. By default, dBASE Plus handles an exception by displaying an
error dialog and terminating the currently executing program. You can use FINALLY to make
sure some code gets executed even if there is an exception, and CATCH to handle the
exception yourself, in the following combinations:
For a block of code that may generate an exception, place the code inside a TRY block. To prevent the exception
from generating a standard error dialog and terminating execution, place exception handling code in a CATCH

block after the TRY. If an exception occurs, execution immediately jumps to the CATCH block; no more
statements in the TRY block are executed. If no exception occurs, the CATCH block is not executed.

If there’s some code that should always be executed at the end of a process, whether or not the process completes
successfully, place that code in a FINALLY block. With TRY and FINALLY but no CATCH, if an exception occurs
during the TRY block, execution immediately jumps to the FINALLY block; no more statements in the TRY block
are executed. Since there was no CATCH, you would still have an exception, which if not handled by a higher-
level CATCH as described later, dBASE Plus would handle as usual, after executing the FINALLY block. If no
exception occurs, the FINALLY block is executed after the TRY.

155

dBASE Plus 9 LR

If you have all three—TRY, CATCH, and FINALLY—if an exception occurs, execution immediately jumps to the
CATCH block; after the CATCH block executes, the FINALLY block is executed. If there is no exception during
the TRY, then the CATCH block is skipped, and the FINALLY block is executed.

The code that is covered by TRY doesn’t have to be inside the statement block physically; the
coverage exists until that entire block of code is executed. For example, you may have a
function call inside a TRY block, and if an exception occurs while that function is executing—
even if that function is defined in another program file—execution jumps back to the
corresponding CATCH or FINALLY.

A TRY block may be followed by multiple CATCH blocks, each with its own <exception type>.
When an exception occurs, dBASE Plus compares the <exception type> with the className
property of the Exception object. If they match, that CATCH block is executed and all others are
skipped. If the className does not match, dBASE Plus searches the class hierarchy of that
object to find a match. If no match is found, the next CATCH block is tested. Class name
matches are not case-sensitive. For example, the DbEXxception class is a subclass of the
Exception class. If the blocks are arranged like this:

try

// Statements

catch (DbException e)

// Block 1

catch (Exception e)

// Block 2

endtry

and a DbException occurs, execution goes to Block 1, because that's a match. If an Exception
occurs, execution goes to Block 2, because Block 1 doesn’t match, but Block 2 does. If the
blocks are arranged the other way around, like this:

try

// Statements

catch (Exception e)

// Block 1

catch (DbException e)

// Block 2

endtry

then all exceptions always go to Block 1, because all Exceptions are derived from the Exception
class. Therefore, when using multiple CATCH blocks, list the most specific exception classes
first.

You can generate exceptions on purpose with the THROW statement to control program flow.
For example, if you enter deeply nested control structures or subroutines from a TRY block, you
can THROW an exception from anywhere in the nested code. This would cause execution to
jump back to the corresponding CATCH or FINALLY, instead of having to exit each control
structure or subroutine one-by-one.

You may also nest TRY structures. An exception inside the TRY block causes execution to jump
to the corresponding CATCH or FINALLY, but an exception in a CATCH or FINALLY is simply
treated as an exception. Also, if you have a TRY and FINALLY but no CATCH, that leaves you
with an unhandled exception. If the TRY/CATCH/FINALLY is itself inside a TRY block, then that
exception would be handled at that next higher level, as illustrated in the following code
skeleton:

try

// exception level 1

try

// exception level 2

catch (Exception e)

// handler for level 2

// but exception level 1

156

Language Reference

finally

// level 2

endtry

catch (Exception e)
// handler for level 1
endtry

Note that if an exception occurs in the level 2 CATCH, the level 2 FINALLY is still executed
before going to the level 1 CATCH, because a FINALLY block is always executed after a TRY
block.

In addition to exceptions, other program flow deviations—specifically EXIT, LOOP, and
RETURN—are also caught by TRY. If there is a corresponding FINALLY block, it's executed
before control is transferred to the expected destination. (CATCH catches only exceptions.)

TYPE()

Topic group Related topics Example

Returns a character string that indicates a specified expression's data type.

Syntax

TYPE(<expC>)

<expC>

A character string containing the expression whose type to evaluate and return.

Description

Use TYPE() to determine the data type of an expression, including whether a variable is
undefined.

TYPE() expects a character string containing the expression. This allows you to specify a
variable name that may not exist. (If you were to use an actual expression with an undefined
variable instead of putting the expression in a string, the expression would cause an error.) The
<expC> may be any valid character expression, including a variable or a literal string
representing the expression to evaluate.

TYPE() returns a character string containing a one- or two- letter code indicating the data type.
The following table lists the values TYPE() returns.

Expression type TYPE() code
Array object A
DBF or Paradox binary field (BLOB) B
Bookmark BM
Character field or string value, Paradox alphanumeric field c
Codeblock CB
Date field or value, Paradox date field D
DateTime value bT
Float field, Paradox numeric or currency field F
Function pointer FP
OLE (general) field G

Logical field or value

DBF or Paradox memo field M

157

dBASE Plus 9 LR

DBF numeric field or value

Object reference (other than Array)
Time value

cC 40 =z

Undefined variable, field, invalid expression, or null

Note that an object of class Array is a special case. Unlike other objects, its code is "A" (this is
for backward compatibility with earlier versions of dBASE).

TYPE() cannot "see" variables declared as local or static. If there is a public or private variable
hidden by a local or static variable of the same name, then TYPE() will return the code for that
hidden variable. Otherwise, that variable and any expression using that variable is considered
undefined.

Use TYPE() to detect whether a function, class, or method is loaded into memory. If so,
TYPE() will return "FP" (for function pointer), as shown in the following IF statements, which
detect if the named function is not loaded (this is done to determine if the specified function
needs to be loaded):

if type("myfunc") # "FP'" // Function name
it type("myclass::myclass"™) # "FP" // Class constructor name
if type("myclass::mymethod") # "FP" // Method name

WITH

Topic group Example

A control statement that causes all the variable and property references within it to first assume
that they are properties of the specified object.

Syntax

WITH <oRef>
<statement block>
ENDWITH

<oRef>
A reference to the default object.
<statement block>

A statement block that assumes that the specified object is the default.
ENDWITH

A required keyword that marks the end of the WITH structure.

Description

Use WITH when working with multiple properties of the same object. Instead of using the object
reference and the dot operator every time you refer to a property of that object, you specify the
object reference once. Then every time a variable or property name is used, it is first checked to
see if that name is a property of the specified object. If it is, then that property is used. If not,
then the variable or property name is used as-is.

You cannot take advantage of the WITH syntax to create properties. For example:

with someObject
existingProperty = 2
newProperty = existingProperty
endwith

158

Language Reference

Suppose that existingProperty is an existing property of the object, and newProperty is not. In
the first statement in the WITH block, the value 2 is assigned to the existing property. Then in
the second statement, newProperty is treated like a variable, because it does not exist in the

object. The statement creates a variable named newProperty, assigning to it the value of the

existingProperty property.

Method name conflicts
You may encounter naming conflicts when calling methods inside a WITH block in two ways:

The name of the method matches the name of a built-in function. The built-in function takes
precedence. For example, you create a class with a method center() and try to call it within a
WITH block:

with X

center()

// other code
endwith

The CENTER() function would be called. It expects parameters, so you'll get a runtime error.
You might check your center() method, which has no parameters, and wonder what's going on.

It may be possible to call your method by using the explicit object reference, which is normally
redundant in a WITH block, and will not work if the object happens to have a property with the
same name as the object reference. For example, you could call your center() method like this:
with x
x.center()

// other code
endwith

If the object x happens to have a property named x, then you would have to create a temporary
duplicate reference that does not have the same name as the any other property of x outside
the WITH block first:

y =X

with X

y.center()

// other code

endwith
The name of the method matches the first word of a command. For example, if the object f has
a method named open(), the method call with the dot operator would look like:

f.open()

Using WITH, it would be:

with f

open()

endwith
but that code will not work because the name of the method matches the first word in a dBL
command; there are some commands that start with the word OPEN. When the compiler sees
the word OPEN, it considers that statement to be a command starting with that keyword, and
looks for the rest of the command; for example, OPEN DATABASE. When it doesn't find the
rest of the command, it considers the statement to be incorrect and generates a compile-time
error.

To call such a method inside a WITH block, you may use an explicit object reference as shown
above, or change the statement from a direct method call to an indirect method call—an
assignment or through the EMPTY() function. Many methods return values. By assigning the
return value of the method call to variable, even a dummy variable, you bypass the naming

159

dBASE Plus 9 LR

conflict. For example, with another object that has a copy() method (there are several
commands that begin with the word COPY):

with X

dummy = copy() // As long as x does not have property named dummy!

endwith
For methods that don’t return values, you may use the EMPTY() function, which will safely
"absorb" the undefined value:

with x

empty(copy())
endwith

Data Objects

Data objects overview
Topic group
Data objects provide access to database tables and are used to link tables to the user interface.

The Borland Database Engine (BDE) considers the DBF (dBASE/FoxPro) and DB (Paradox)
tables types as Standard tables. The BDE can access any Standard table directly through its
path and file name, without having to use a BDE alias.

All other table types, including InterBase, Oracle, Microsoft SQL Server, Sybase, Informix, and
any ODBC connection, require the creation of a BDE alias through the BDE Administrator. You
may also create a BDE alias to access Standard tables. In that case, the alias specifies the
directory in which the tables exist; the database consists of the Standard tables in that directory,
and you may not open any others from another directory unless you explicitly specify the full
path without the alias. See class Database.

All tables, whether or not they require a BDE alias, are accessed through SQL and the data
objects.

Data objects: Class hierarchy

Topic group

To understand the implications of using a BDE alias, you need to understand the class
hierarchy of the data objects.

At the top of the hierarchy is dBASE Plus itself. Next is the Session class. A session represents
a separate user task, and is required primarily for DBF and DB table security. dBASE Plus
supports up to 2048 simultaneous sessions. When dBASE Plus first starts, it already has a
default session. Unless your application needs to log in as more than one person
simultaneously, there is usually no need to create your own session objects.

Each session contains one or more Database objects. A session always contains a default
Database object, one that has no BDE alias and is intended to directly access Standard tables.
You must create new Database objects to use tables through a BDE alias. Once you set the
BDE alias, activate the Database object, and log in if necessary, you have access to that
database’s tables. You may also log transactions or buffer updates to each database to allow
you to rollback, abandon, or post changes as desired.

Accessing tables

160

Language Reference

The Query object acts primarily as a container for an SQL statement and the set of rows, or
rowset, that results from it. A rowset represents all or part of a single table or group of related
tables. There is only one rowset per query, but you may have more than one query, and
therefore more than one rowset, per database. A rowset maintains the current record or row,
and therefore contains the typical navigation, buffering, and filtering methods.

The SQL statement may also contain parameters, which are represented in the Query object’s
params array.

Finally, a rowset also contains a fields property, which is an array of field objects that contain
information about the fields and the values of the fields for the current row. There are events
that allow you to morph the values so that the values stored in the table are different than the
values displayed. Each field object can also be linked to a visual component through the
component’s dataLink property to form a link between the user interface and the table. When
the two objects are linked in this way, they are said to be datalLinked.

Putting the data objects together

If you're using Standard tables only, at the minimum you create a query, which gets assigned to
the default database in the default session, set the SQL statement and make the query active. If
the query is successful, it generates a rowset, and you can access the data through the fields
array.

When accessing tables through a BDE alias, you will need to create a new database, create the
query, assign the database to the query, then set the SQL and make the query active.

If you use the Form or Report designers, you design these relationships visually and code is
generated.

Using stored procedures

The object hierarchy for using stored procedures in an SQL-server database is very similar to
the one used for accessing tables. The difference is that a StoredProc object is used instead of
a Query object. Above the StoredProc object, the Database and Session objects do the same
thing. If the stored procedure returns a rowset, the StoredProc object contains a rowset, just like
a Query object.

A StoredProc object also has a params array, but instead of simple values to substitute into an
SQL statement in a Query object, the params array of a StoredProc object contains Parameter
objects. Each object describes both the type of parameter—input, output, or result—and the
value of that parameter.

Before running the stored procedure, input values are set. After the stored procedure runs,
output and result values can be read from the params array, or data can be accessed through
its rowset.

class Database

Topic group Related topics Example

A session’s built-in database or a BDE database alias, which gives access to tables.

Syntax
[<oRef> =] new Database()
<oRef>

A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created Database object.

161

dBASE Plus 9 LR

Properties

The following tables list the properties and methods of the Database class. (No events are
associated with this class.) For details on each property, click on the property below.

Property
active
baseClassName

cacheUpdates

className

databaseName
driverName
handle

isolationLevel

Default

false
DATABASE
false

(DATABASE)

Empty string
Empty string

Read committed

Description

Whether the database is open and active or closed
Identifies the object as an instance of the Database class
Whether to cache changes locally for batch posting later

Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

BDE alias, or empty string for built-in database
Type (table format or server) of database
BDE database handle

Isolation level of transaction

loginDBAlias Empty string The currently active database alias, or BDE alias, from which to
obtain login credentials (user id and password) to be used in
activating an additional connection to a database.
loginString Empty string User name and password to automatically try when opening
database
name Empty string The name of custom object
parent null Form, SubForm, Report, or Datamodule
session Default session Session to which a database is assigned
share All How to share the database connection
Event Parameters Description
beforeRelease Before the object is released from memory.
Method Parameters Description
abandonUpdates() Discards all cached changes
applyUpdates() Attempts to post cached changes
beginTrans() Begins transaction; starts logging changes
close Closes the database connection (called implicitly when active is set
to false)
commit() Commits changes made during transaction; ends transaction
copyTable() <source name expC>, Makes a copy of a table in the same database
<destination name expC>
createlndex() <table name expC>, Creates an index in the table
<.dbf index oRef>,
dropindex() <table name expC>, Deletes index from table
<index hame expC>
dropTable() <table name expC> Deletes table from database
emptyTable() <table name expC> Deletes all records from a table
executeSQL() <expC> Pass-through SQL statement
getSchema() "DATABASES" |"TABLES" Retrieves information about a database
|"PROCEDURES" |
"VIEWS"

162

Language Reference

open() Opens the database connection (called implicitly when active is set
to true)
packTable() <table name expC> Removes deleted records from DBF or DB table and reconsolidates
disk usage
reindex() <table name expC> Rebuilds indexes for DBF or DB table
renameTable() <old name expC>, Renames table in database
<new name expC>
rollback() Undoes changes made during transaction; ends transaction
tableExists() <table name expC> Whether or not specified table exists in database or on disk
Description

All sessions, including the default session you get when you start dBASE Plus, contain a default
database, which can access the Standard table types, DBF (dBASE) and DB (Paradox) tables,
without requiring a BDE alias. Whenever you create a Query object, it is initially assigned to the
default database in the default session. If you want to use Standard tables in the default
session, you don’t have to do anything with that Query object’s database or session properties.
If you want to use a Standard table in another session, for example to use DBF or DB table
security, assign that session to the Query object’s session property, which causes that session’s
default database to be assigned to that Query object. Default databases are always active; their
active property has no effect.

You may also set up a BDE alias to access Standard tables. By referring to your Standard
tables through a database alias, you can move the tables to a different drive or directory without
having to change any paths in your code. All you would have to do is change the path
specification for that alias in the BDE Administrator. When using a BDE alias with Standard
tables, you must explicitly give the directory path when opening a table in a different directory.
You cannot use relative pathing from the directory specified by the alias. For example, if your
alias is set to:

C:\MyTables

and you want to use a table somewhere else on the hard drive, such as:
C:\MyTables\TestDir

you must specify the full path without the alias:
C:\MyTables\TestDir or C:\TestDir

For all non-Standard table types, you will need to set up a BDE alias for the database if you
haven't done so already. After creating a new Database object, you may assign it to another
session if desired; otherwise it is assigned to the default session. Then you need to do the
following:

Assign the BDE alias to the databaseName property.

If you need to log in to that database, either set the loginString property if you already know the user name and
password; or let the login dialog appear.

Set the active property to true. This attempts to open the named database. If it's successful, you now have access
to the tables in the database. Methods associated with a Database object will not function properly when the
database is not active.

Each database, including any default databases, is able to independently support either
transaction logging or cached updates. Transaction logging allows changes to be made to
tables as usual, but keeps track of those changes. Those changes can then be undone through
a rollback(), or OK’d with a commit(). In contrast, cached updates are not written to the table as
they happen, but are cached locally instead. You can then either abandon all the updates or
attempt to apply them as a group. If any of the changes fail to post—for a variety of reasons, like

163

dBASE Plus 9 LR

locked records or hardware failures—any changes that did take are immediately undone, and
the updates remain cached. You can then attempt to solve the problem and reapply the update,
or abandon the changes. You may also want to use cached updates to reduce network traffic.

Each non-Standard database is responsible for its own transaction processing, up to whatever
isolation level it supports. For Standard tables opened through the default database, if you want
simultaneous multiple transactions, you need to create multiple sessions, because each
database object can support only one active transaction or update cache, and there is only one
default database per session.

All Database objects opened by the Navigator are listed in the databases array property of the
_app object. The default database of the default session is _app.databases[1].

A Database object also encapsulates a number of table maintenance methods. These methods
occur in the context of the specified Database object. For example, the copyTable() method
makes a copy of a table in the same database. To use these methods on Standard tables, call
the methods through the default database of the default session; for example,

_app-databases[1].copyTable("Stuff”, "CopyOfStuff")

class DataModule

Topic group Related topics Example

An empty container in which to store data objects.

Syntax
[<oRef> =] new DataModule()
<oRef>

A variable or property in which to store a reference to the newly created DataModule object.

Properties

The following table lists the properties of the DataModule class. (No events or methods are
associated with this class.)

Properties Default Description

baseClassName DATAMODULE Identifies the object as an instance of the DataModule class

className (DATAMODULE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

name Empty string The name of a custom object

parent null Container, form or report

rowset The primary rowset of the data module

Event Parameter Description

beforeRelease Before the object is released.

Description

Use data modules to maintain multiple data objects and the relationships between them. Data
modules bear some similarity to forms, except that they contain data objects only. Array,

164

Language Reference

Session, Database, Query, and StoredProc objects are contained inside a DataModule object.
They are represented by source code in files with a .DMD extension. You can create custom
data modules (in .CDM files) and subclass them.

The relationships between the objects—in particular any masterSource, masterRowset, or
masterFields properties—in addition to other properties and event handlers can be set for all the
objects in the data module. A primary rowset is assigned in the data module’s rowset property,
just like in a form. The DataModule object is intended to be a simple container. Other than
rowset, the only other properties associated with this object are baseClassName, className,
name and parent.

class DataModRef

Topic group Related topics Example

A reference to a DataModule object.

Syntax

[<oRef> =] new DataModRef()

<oRef>

A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created DataModRef object.

Properties

The following table lists the properties of the DataModRef class. (No events or methods are
associated with this class.) For details on each property, click on the property below.

Property Default Description

active false Whether the referenced dataModule is active

baseClassName DATAMODREF Identifies the object as an instance of the DataModule class

className (DATAMODREF) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

dataModClass The class name of the dataModule

filename The name of the file containing the dataModule class

parent null Container, form or report

ref null A reference to the dataModule object

share None How to share the dataModule

Event Parameter Description

beforeRelease Before the object is released.

Description

A DataModRef object is used to access dataModules. The filename property is set to the .DMD
file that contains the dataModule class definition. The dataModClass property is set to the class
name of the desired dataModule. Then the active property is set to true to activate the
dataModule.

165

dBASE Plus 9 LR

If the share property is All instead of None, any existing instance of the desired dataModule
class is used. Otherwise a new instance is created. A reference to the dataModule is assigned
to the ref property.

When a DataModRef object is activated in the Form designer, the dataModule object’s rowset
property is assigned to the form’s rowset property. Therefore you can access the form’s primary
rowset, and all other rowsets relative to it, in the same way whether you're using a dataModule
or not. To reference the queries in the dataModule from the form, you have to go through two
additional levels of objects. For example, instead of:

form.queryl.rowset

you would have to use:
form.dataModRefl._ref._queryl.rowset

However, if queryl.rowset was the primary rowset of the dataModule, you would still use:
form.rowset

anyway, and in queryl.rowset's event handlers, you would still use:
this.parent.parent.query2.rowset

to access query2.rowset whether you're using a dataModule or not, because the two Query
objects are in the same relative position in the object containership hierarchy.

class DbError

Topic group Related topics Example

An object that describes a BDE or server error.

Syntax
These objects are created automatically by dBASE Plus when a DbException occurs.
Properties

The following table lists the properties of the DbError class. (No events or methods are
associated with this class.) For details on each property, click on the property below.

Property Default Description

baseClassName DBERROR Identifies the object as an instance of the DbError class

className (DBERROR) Identifies the object as an instance of a custom class. When no custom
class exists, defaults to baseClassName

code BDE error number

context Field name, table name, and so on, that caused error

message Empty string Text to describe the error

nativeCode Server error code

Description

When an error using a data object occurs, a DbException is generated. Its errors property points
to an array of DbError objects.

Each DbError object describes a BDE or SQL server error. If nativeCode is zero, the erroris a
BDE error. If nativeCode is non-zero, the error is a server error. The message property
describes the error.

166

Language Reference

class DbException

Topic group Related topics Example

An object that describes a data access exception. DbException subclasses the Exception class.

Syntax
These objects are created automatically by dBASE Plus when an exception occurs.

Properties

The following table lists the properties of the DbException class. DbException objects also
contain those properties inherited from the Exception class. (No events or methods are
associated with the DbException class.) For details on each property, click on the property
below.

Property Default Description

baseClassName DBEXCEPTION Identifies the object as an instance of the DbException class

className (DBEXCEPTION) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

errors Array of DbError objects

Description

The DbException class is a subclass of the Exception class. It is generated when an error using
a data object occurs. In addition to the dBASE Plus error code and message, it provides access
to BDE and SQL server error codes and messages.

class DbfField

Topic group Related topics

A field from a DBF (dBASE) table. DbfField subclasses the Field class.
Syntax

These objects are created automatically by the rowset.

Properties

The following table lists the properties of the DbfField class. DbfField objects also contain those
properties inherited from the Field class. (No events or methods are associated with the
DbfField class.) For details on each property, click on the property below.

Property Default Description

baseClassName DBFFIELD Identifies the object as an instance of the DbfField class

className (DBFFIELD) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

decimallLength 0 Number of decimal places if the field is a numeric field

default Default value for field (DBF7 only)

maximum Maximum allowed value for field (DBF7 only)

minimum Minimum allowed value for field (DBF7 only)

readOnly false Specifies whether the field has read-only access

required false Whether the field must be filled in (DBF7 only)

167

dBASE Plus 9 LR

Description

The DbfField class is a subclass of the Field class. It represents a field from a DBF (ABASE)
table, and contains properties that are specific to fields of that table type. Otherwise it is
considered to be a Field object.

class Field

Topic group Related topics Example

A base class object that represents a field from a table and can be used as a calculated field.

Syntax
[<oRef> =] new Field()
<oRef>

A variable or property in which to store the reference to the newly created Field object for use as
a calculated field.

Properties

The following tables list the properties, events. and methods of the Field class. For details on

each property, click on the property below.

Property Default Description

baseClassName FIELD Identifies the object as an instance of the Field class

className (FIELD) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

fieldName Name of the field the Field object represents, or the assigned
calculated field name

length Maximum length

logicalSubType A database independent name indicating the data subtype of a value
stored in a field

logicalType A database independent name indicating the data type of a value
stored in a field

lookupRowset Reference to lookup table for field

lookupSQL SQL SELECT statement for field lookup values

parent null fields array that contains the object

type Character The field’s data type

value Empty string Represents current value of field in row buffer

Event Parameters Description

beforeGetValue

When value property is to be read; return value is used as value

canChange <new value> When attempting to change value property; return value allows or
disallows change

onChange After value property is successfully changed

onGotValue After value is read

Method Parameters Description

copyToFile() <filename expC> Copies data from BLOB field to external file

168

Language Reference

replaceFromFile() <filename expC> Copies data from external file to BLOB field
[, <append expL>]

Description

The Field class acts as the base class for the DbfField (dBASE), PdxField (Paradox), and
SqlField (everything else) classes. It contains the properties common to all field types. Each
subclass contains the properties specific to that table type. You also create calculated fields with
a Field object.

Each rowset has a fields property, which points to an array. Each element of that array is an
object of one of the subclasses of the Field class, depending on the table type or types
contained in the rowset. Each field object corresponds to one of the fields returned by the query
or stored procedure that created the rowset.

While the fieldName, length, and type properties describe the field and are the same from row to
row, the value property is the link to the field’s value in the table. The value property’s value
reflects the current value of that field for the current row in the row buffer; assigning a value to
the value property assigns that value to the row buffer. The buffer is not written to disk unless
the rowset’s save() method is explicitly called or there is an implicit save, which is usually
caused by navigation in the rowset. You can abandon any changes you make to the row buffer
by calling the rowset’s abandon() method.

You may assign a Field object to the dataLink property of a control on a form. This makes the
control data-aware, and causes it to display the current value of the Field object’s value
property; if changes are made to the control, the new value is written to the Field object’s value

property.
Calculated fields

Use a calculated field to generate a value based on one or more fields, or some other
calculation. For example, in a line item table with both the quantity ordered and price per item,
you can calculate the total price for that line item. There would be no need to actually store that
total in the table, which wastes space.

Because a calculated field is treated like a field in most respects, you can do things like dataLink
it to a control on a form, show it in a grid, or use it in a report. Because a calculated field does
not actually represent a field in a table, writing to its value property directly or changing its value
through a dataLinked control never causes a change in a table.

To create a calculated field, create a new Field object and assign it a fieldName, then add() it to
the fields array of a Rowset object.

Morphed and calculated fields sometimes require display widths that are larger than their field

widths. To avoid truncating the display, use a picture that represents the field’s maximum size.
Note You must assign the fieldName before adding the field to the fields array.

Because a rowset is not valid until its query opens, you must make the query active before you
add the Field object. The query’s onOpen event, which fires after the query is activated, is a

good place to create the calculated field. To set the value of a calculated field, you can do one
of two things

Assign a code-reference, either a codeblock or function pointer, to the Field object’s beforeGetValue event. The
return value of the code becomes the Field object’s value.

Assign a value to the Field object’s value property directly as needed, like in the rowset’'s onNavigate event.

class Dbflndex

169

dBASE Plus 9 LR

Topic group Related topics Example

Creates a reference to a DbfIndex object for local tables

Syntax

[<oRef>]=new DbfIndex(<indexname expC>,<expression expC>)

<oRef>

A variable or property in which to store a reference to the newly created Dbflndex object.
<indexname expC>

The name of the index tag for the index

<expression expC>

A dBL expression of up to 220 characters that includes field names, operators, or functions
Properties

The following tables list the properties of the Dbflndex class. No events or methods are
associated with this class. For details on each property, click on the property below.

Property Default Description
baseClassName DBFINDEX Identifies the object as an instance of the Dbflndex class
className (DBFINDEX) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName

descending False Creates the index in descending order (Zto A, 9 to 1, later dates to
earlier dates). Without DESCENDING, Dbflndex creates an index in
ascending order.

expression Empty string A dBASE expression of up to 220 characters that includes field
names, operators, or functions.

forExpression Empty string Limits the records included in the index to those meeting a specific
condition.

indexName Empty string Specifies the name of the index tag for the index

parent null Container, form or report

type 0(MDX) Identifies the index type. 0=MDX, 1=NDX

unique False Prevents multiple records with the same expression value from being
included in the index. dBASE Plus includes only the first record for
each value.

Description

Dbfindex() is a subclass of INDEX() created specifically for use with DBF tables. If you are
using Paradox or SQL tables, see class Index. Use Dbflndex() to store a reference in a newly
created Dbflndex object. A Dbflndex object requires setting only two properties, indexName and
expression. However you may find others, such as descending or unique, particularly helpful.
Once you've referenced a Dbflndex object, it's easy to create a new index for your table using
the database class method: createlndex().

indexName

Feel free to name the index whatever you choose. It may be helpful, however, to select an index
name that provides some indication of it's function.

Index order (Ascending vs. Descending)

Character keys are ordered in ASCII order (from A to Z, and then a to z); numeric keys are
ordered from lowest to highest; and date keys are ordered from earliest to latest (a blank date is
higher than all other dates).

170

Language Reference

class Index

Topic group Related topics Example

An object representing an index from a non-local table

Syntax
[<oRef>]=new Index()
<oRef>

A variable or property in which to store a reference to the newly created Index object.
Properties

The following tables list the properties of the Index class. No events or methods are associated
with this class. For details on each property, click on the property below.

Property Default Description

baseClassName INDEX Identifies the object as an instance of the Index class

caseSensitive true Whether a search string is required to match the case, upper or lower,
of a field value.

className (INDEX) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

descending false Creates the index in descending order (Zto A, 9 to 1, later dates to
earlier dates). Without DESCENDING, creates an index in ascending
order.

fields Empty string A list of fields on which the table is indexed

indexName Empty string Specifies the name of the index tag for the index

parent null Container, form or report

unique false Prevents multiple records with the same expression value from being
included in the index. dBASE Plus includes only the first record for
each value.

Description

Use Index() to store a reference in a newly created Index object for non-local tables. A subclass
of Index, DBFIndex is available when working with local DBF tables (See class DBFIndex). An
Index object requires setting only two properties, indexName and fields. As the name implies,
indexName is the name you'll give the index, and fields is a list of fields on which the index is
based. Once an Index object has been referenced, use the database class method:
createlndex() to create a new index for your table.

class LockField

Topic group Related topics

A _DBASELOCK field in a DBF table.

Syntax

These objects are created automatically by the rowset.

Properties

171

dBASE Plus 9 LR

The following table lists the properties of the LockField class. (No events or methods are
associated with this class.) For details on each property, click on the property below.

Property Default Description

baseClassName LOCKFIELD Identifies the object as an instance of the LockField class

className (LOCKFIELD) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

fieldName _DBASELOCK Name of the field the LockField object represents (read-only)

lock Date and time of last row lock

parent null fields array that contains the object

update Date and time of last row update

user Name of user that last locked or updated the row

Description

A LockField object is used to represent the _DBASELOCK field in a DBF table that has been
CONVERTed. By examing the properties of a LockField object, you may determine the nature
of the last row lock or update.

When a row is locked, either explicitly or automatically, the time, date, and login name of the
user placing the lock are stored in the _DBASELOCK field of that row. When a file is locked, this
same information is stored in the _DBASELOCK field of the first physical record in the table.

If a DBF table has a DBASELOCK field, the LockField object is always the last field in the
fields array, and is referenced by its field name, "_DBASELOCK".

All the properties of a LockField object are read-only.

class Parameter

Topic group Related topics Example

A parameter for a stored procedure.

Syntax
These objects are created automatically by the stored procedure.
Properties

The following table lists the properties of the Parameter class. (No events or methods are
associated with this class.) For details on each property, click on the property below.

Property Default Description

baseClassName PARAMETER Identifies the object as an instance of the Parameter class

className (PARAMETER) Identifies the object as an instance of a custom class. When no custom
class exists, defaults to baseClassName

type Input The parameter type
(O=Input, 1=0utput, 2=InputOutput, 3=Result)

value The value of the parameter

Description

Parameter objects represent parameters to stored procedures. Each element of the params
array of a StoredProc object is a Parameter object. The Parameter objects are automatically
created when the procedureName property is set, either by getting the parameter names for that

172

Language Reference

stored procedure from the SQL server or by using parameter names specified directly in the
procedureName property.

A parameter may be one of four types, as indicated by its type property:
1. Input: an input value for the stored procedure. The value must be set before the stored procedure is
called.

0 Output: an output value from the stored procedure. The value must be set to the correct data
type before the stored procedure is called; any dummy value may be used. Calling the stored
procedure sets the value property to the output value.

0 InputOutput: both input and output. The value must be set before the stored procedure is
called. Calling the stored procedure updates the value property with the output value.

0 Result: the result value of the stored procedure. In this case, the stored procedure acts like a
function, returning a single result value, instead of updating parameters that are passed to it.
Otherwise, the value is treated like an output value. The name of the Result parameter is
always "Result".
A Parameter object may be assigned as the dataLink of a component in a form. Changes to the
component are reflected in the value property of the Parameter object, and updates to the value
property of the Parameter object are displayed in the component.

class PdxField

Topic group Related topics
A field from a DB (Paradox) table. PdxField subclasses the Field class.

Syntax
These objects are created automatically by the rowset.

Properties

The following table lists the properties of the PdxField class. PdxField objects also contain those
properties inherited from the Field class. (No events or methods are associated with the
PdxField class.) For details on each property, click on the property below.

Property Default Description

baseClassName PDXFIELD Identifies the object as an instance of the PdxField class

className (PDXFIELD) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

default Default value for field

lookupTable Empty string Table to use for lookup value

lookupType Empty string Type of lookup

maximum Maximum allowed value for field

minimum Minimum allowed value for field

picture Empty string Formatting template

required false Whether the field must be filled in

readOnly false Whether the field has read-only access

Description

This class is called PdxField—not "DbField"—to avoid confusion and simple typographical
errors between it and the DbfField class.

173

dBASE Plus 9 LR

The PdxField class is a subclass of the Field class. It represents a field from a DB (Paradox)
table, and contains properties that are specific to fields of that table type. Otherwise it is
considered to be a Field object.

class Query

Topic group Related topics Example

A representation of an SQL statement that describes a query and contains the resulting rowset.

Syntax
[<oRef> =] new Query()
<oRef>

A variable or property in which to store a reference to the newly created Query object.
Properties

The following tables list the properties, events, and methods of the Query class. For details on
each property, click on the property below:

Property Default Description

active false Whether the query is open and active or closed

baseClassName QUERY Identifies the object as an instance of the Query class

className (QUERY) Identifies the object as an instance of a custom class. When no custom
class exists, defaults to baseClassName

constrained false Whether the WHERE clause of the SQL SELECT statement will be
enforced when attempting to update Standard tables

database null Database to which the query is assigned

handle BDE statement handle

masterSource null Query that acts as master query and provides parameter values

name Empty string The name of custom object

params AssocArray Associative array that contains parameter names and values for the SQL
statement

parent null Container, form or report

requestLive true Whether you want a writable rowset

rowset Object Reference to the rowset object containing the results of the query

session null Session to which the query is assigned

sal Empty string SQL statement that describes the query

unidirectional false Whether to assume forward-only navigation to increase performance on

SQL-based servers

updateWhere AllFields Enum to determine which fields to use in constructing the WHERE
clause of an SQL UPDATE statement, used for posting changes to SQL-
based servers

usePassThrough false Controls whether or not a query, with a simple sql select statement (of
the form "select * from <table>), is sent directly to the DBMS for
execution or is setup to behave like a local database table.

Event Parameters Description
beforeRelease Before the object is released.
canClose When attempting to close query; return value allows or disallows closure

174

Language Reference

canOpen When attempting to open query; return value allows or disallows opening
onClose After query closes

onOpen After query first opens

Method Parameters Description

execute() Executes query (called implicitly when active property is set to true)
prepare() Prepares SQL statement

requery() Rebinds and executes SQL statement

unprepare() Cleans up when query is deactivated (called implicitly when active

property is set to false)

Description

The Query object is where you specify which fields you want from which rows in which tables
and the order in which you want to see them, through an SQL SELECT statement stored in the
query’s sql property. The results are accessed through the query’s rowset property. To use a
stored procedure that results in a rowset, use a StoredProc object instead.

Whenever you create a query object, it is initially assigned to the default database in the default
session. If you want to use Standard tables in the default session you don’t have to do anything
with that query’s database or session properties. If you want to use a Standard table in another
session, assign that session to the query’s session property, which causes that session’s default
database to be assigned to that query.

For non-Standard tables, you will need to set up a BDE alias for the database if you haven't
done so already. After creating a new Database object, you may assign it to another session if
desired; otherwise it is assigned to the default session. Once the Database object is active, you
can assign it to the query’s database property. If the database is assigned to another session,
you need to assign that session to the query’s session property first.

After the newly created query is assigned to the desired database, an SQL SELECT statement
describing the data you want is assigned to the query’s sql property.

If the SQL statement contains parameters, the Query object’s params array is automatically
populated with the corresponding elements. The value of each array element must be set before
the query is activated. A Query with parameters can be used as a detail query in a master-detalil
relationship through the masterSource property.

Setting the Query object’s active property to true opens the query and executes the SQL
statement stored in the sql property. If the SQL statement fails, for example the statement is
misspelled or the named table is missing, an error is generated and the active property remains
false. If the SQL statement executes but does not generate any rows, the active property is true
and the endOfSet property of the query’s rowset is true. Otherwise the endOfSet property is
false, and the rowset contains the resulting rows.

Setting the active property to false closes the query, writing any buffered changes.

class Rowset

Topic group Related topics Example

The data that results from an SQL statement in a Query object.

Syntax

175

dBASE Plus 9 LR

These objects are created automatically by the query.

Properties

The following tables list the properties, events, and methods of the Rowset class. For details on

each property, click on the property below.

Property

autoEdit

autolLockChildRows

autoNullFields

baseClassName

className

codePage

endOfSet

exactMatch

filterOptions

handle

indexName

languageDriver

live

locateOptions

lockType

masterChild

masterFields
masterRowset
modified

name

navigateByMaster

navigateMaster

notifyControls
parent
state

tableDriver

176

Default

true

true

true

ROWSET
(ROWSET)

true

Object
Empty string

Match length and case

Empty string
Empty string

true

Match length and case

0 - Automatic

Constrained

Empty string
null

false

Empty string

false

false

true

null

0

Empty string

Description

Whether the rowset automatically switches to Edit mode when
a change is made in a dataLinked component.

Whether locking a parent row also automatically locks its child
rows.

Whether empty fields will assume a null value, or be filled with
blanks, zero or, in the case of logical fields, false.

Identifies the object as an instance of the Rowset class

Identifies the object as an instance of a custom class. When
no custom class exists, defaults to baseClassName

Returns a number indicating the current code page associated
with a table

Whether the row cursor is at either end of the set

Whether rowset searches use a partial string match or an
exact string match

Array of field objects in row

Filter SQL expression

Enum designating how the filter expression should be applied
BDE cursor handle

Active index tag

Returns a character string indicating the name of the language
driver currently being used

Whether the data can be modified

Enum designating how the locate expression should be
applied

Enum determinating whether or not explicit locks can be
released by a call to rowset.save()

In a master-detail link, enum specifying whether or not the
child table’s rowset is constrained.

Field list for master-detail link
Reference to master Rowset object
Whether the row has changed

The name of custom object

Whether to syncronize movement in a linked-detail rowset to
match that of it's master.

Whether to move the row position in a master rowset when a
linked-detail rowset reaches endofSet.

Whether to automatically update dataLinked controls
Query object that contains the Rowset object
Enum that indicates the rowset's current mode

Returns a character string indicating the name of the driver
currently being used to access a table

Language Reference

tableLevel 0 Returns an integer indicating the version of the current local
table

tableName Empty string Returns a character string indicating the name of the table the
current rowset is based on

tempTable false Returns a logical (True/.T.) when the current table (referenced
by tableName) is a temporary table

Event Parameters Description

beforeRelease

canAbandon

canAppend

canDelete

canEdit

canGetRow

canNavigate

Before the object is released

When abandon() is called; return value allows or disallows
abandoning of row

When beginAppend() is called; return value allows or
disallows start of append

When delete() is called; return value allows or disallows
deletion

When beginEdit() is called; return value allows or disallows
switch to Edit mode

When attempting to read row; return value acts as an
additional filter

When attempting row navigation; return value allows or
disallows navigation

canSave When save() is called; return value allows or disallows saving
of row
onAbandon After successful abandon()
onAppend After successful beginAppend()
onDelete After successful delete()
onEdit After successful beginEdit()
onNavigate <method expN>, After rowset navigation
<rows expN>
onSave After successful save()
Method Parameters Description
abandon() Abandons pending changes to current row
applyFilter() Applies filter set during rowset's Filter mode
applyLocate() [<locate expC>] Finds first row that matches specified criteria
atFirst() Returns true if current row is first row in rowset
atLast() Returns true if current row is last row in rowset
beginAppend() Starts append of new row
beginEdit() Puts rowset in Edit mode, allowing changes to fields
beginFilter() Puts rowset in Filter mode, allowing entry of filter criteria
beginLocate() Puts rowset in Locate mode, allowing entry of search criteria
bookmark() Returns bookmark for current row

bookmarksEqual()

clearFilter()

clearRange

<bookmark 1>
[,<bookmark 2>]

Compares two bookmarks or one bookmark with current row
to see if they refer to same row

Disables filter created by applyFilter() and clears filter property

Disables constraint created by setRange()

177

dBASE Plus 9 LR

count() Returns number of rows in rowset, honoring filters
delete() Deletes current row
findKey() <key exp> Finds the row with the exact matching key value
findKeyNearest() <key exp> Finds the row with the nearest matching key value
first Moves row cursor to first row in set
flush Commits the rowset buffer to disk
oto <bookmark> Moves row cursor to specified row
isRowLocked() Determines if the current row, in the current session, is locked
isSetLocked() Determines if the current rowset, in the current session, is
locked
last() Moves row cursor to last row in set
locateNext() [<rows expN>] Finds other rows that match search criteria
lockRow() Locks current row
lockSet() Locks entire set
next() [<rows expN>] Navigates to adjacent rows
refresh() Refreshes entire rowset
refreshControls() Refreshes dataLinked controls
refreshRow() Refreshes current row only
rowCount () Returns logical row count if known
rowNo() Returns logical row number if known
save() Saves current row
setRange() <key exp> Constrains the rowset to those rows whose key field values
or falls within a range

<startkKey exp> | null
,<endKey exp> | null

unlock() Releases locks set by lockRow() and lockSet()

Description

A Rowset object represents a set of rows that results from a query. It maintains a cursor that
points to one of the rows in the set, which is considered the current row, and a buffer to manage
the contents of that row. The row cursor may also point outside the set, either before the first
row or after the last row, in which case it is considered to be at the end-of-set. Each row
contains fields from one or more tables. These fields are represented by an array of Field
objects that is represented by the rowset’s fields property. For a simple query like the following,
which selects all the fields from a single table with no conditions, the rowset represents all the
data in the table:

select * from CUSTOMER
As the cursor moves from row to row, you can access the fields in that row.

A Query object always has a rowset property, but that rowset is not open and usable and does
not contain any fields until the query has been successfully activated. Setting the Query object’s
active property to true opens the query and executes the SQL statement stored in the sql
property. If the SQL statement fails, for example the statement is misspelled or the named table
is missing, an error is generated and the active property remains false. If the SQL statement
executes but does not generate any rows, the active property is true and the endOfSet property
of the query’s rowset is true. Otherwise the endOfSet property is false, and the rowset contains
the resulting rows.

178

Language Reference

Once the rowset has been opened, you can do any of the following:
Navigate the rowset; that is, move the row cursor
Filter and search for rows
Add, modify, and delete rows
Explicitly lock individual rows or the entire set
Get information about the rowset, including row cursor’s current position

The individual Field objects in a rowset’s fields array property may be datalLinked to controls on
a form. As the row cursor is navigated from row to row, the controls will be updated with the
current row’s values, unless the rowset’s notifyControls property is set to false. Changing the
values shown in the controls will change the value property of the dataLinked Field objects. You
may also directly modify the value property of the Field objects. All of the values are maintained
in the row buffer.

Rowset objects support master-detail linking. Navigation and updates in the master rowset
change the set of rows in the detail rowset. The detail rowset is controlled by changing the key
range of an existing index in the detail rowset. The masterRowset and masterFields properties
are set in the detail rowset. This allows a single master rowset to control any number of detail
rowsets.

When a query opens, its rowset is in Browse mode. By default, a rowset’s autoEdit property is
true, which means that its fields are changeable through dataLinked controls. Typing a
destructive key in a dataLinked control automatically attempts to switch the rowset into Edit
mode. By setting autoEdit to false, the rowset is read-only, and the beginEdit() method must be
called to switch to Edit mode and allow editing. autoEdit has no effect on assignments to the
value of a field; they are always allowed.

The rowset’'s modified property indicates whether any changes have been made to the current
row. Changes made to the row buffer are not written until the save() method is called. However,
even after save() has been called, no attempt is made to save data if the rowset's modified
property is false. This architecture lets you define row-validation code once in the canSave
event handler that is called whenever it is needed and only when it is needed.

In addition to normal data access through Browse and Edit modes, the rowset supports three
other modes: Append, Filter, and Locate, which are initiated by beginAppend(), beginFilter(),
and beginLocate() respectively. At the beginning of all three modes, the row buffer is
disassociated from whatever row it was buffering and cleared. This allows the entry of field
values typed into dataLinked controls or assigned directly to the value property. In Append
mode, these new values are saved as a new row if the row buffer is written. In Filter mode,
executing an applyFilter() causes the non-blank field values to be used as criteria for filtering
rows, showing only those that match. In Locate mode, calling applyLocate() causes the non-
blank field values to be used as criteria to search for matching rows. In all three modes, using
the field values cancels that mode. Also, calling the abandon() method causes the rowset to
revert back to Browse mode without using the values.

You can easily implement filter-by-form and locate-by-form features with the Filter and Locate
modes. Instead of using Filter mode, you can assign an SQL expression directly to the rowset’s
filter property. The rowset’s canGetRow event will filter rows based on any dBL code, not just an
SQL expression, and can be used instead of or in addition to Filter mode and the filter property.
You can also use applyLocate() without starting Locate mode first by passing an SQL
expression to find the first row for which the expression is true.

Any row-selection criteria—from the WHERE clause of the query’'s SQL SELECT statement, the
key range enforced by a master-detail link, or a filter—is actively enforced. applyLocate() will
not find a row that does not match the criteria. When appending a new row or changing an

179

dBASE Plus 9 LR

existing row, if the fields in the row are written such that the row no longer matches the selection
criteria, that row becomes out-of-set, and the row cursor moves to the next row, or to the end-of-
set if there are no more matching rows. To see the out-of-set row, you must remove or modify
the selection criteria to allow that row.

Row and set locking support varies among different table types. The Standard (DBF and DB)
tables fully support locking, as do some SQL servers. For servers that do not support true locks,
the Borland Database Engine emulates optimistic locking. Any lock request is assumed to
succeed. Later, when the actual attempt to change the data occurs, if the data has changed
since the lock attempt, an error occurs.

Any attempt to change the data in a row, like typing a letter in a dataLinked Entryfield control,
causes an automatic row lock to be attempted. If that row is already locked, the lock is retried up
to the number of times specified by the session’s lockRetryCount property; if after those
attempts the lock is unsuccessful, the change does not take. If the automatic lock is successful,
the lock remains until navigation off the locked row occurs or the row is saved or abandoned;
then the lock is automatically removed.

class Session

Topic group Related topics Example

An object that manages simultaneous database access.

Syntax
[<oRef> =] new Session()
<oRef>

A variable or property—typically of a Form or Report object—in which to store a reference to the
newly created Session object.

Properties

The following tables list the properties, events, and methods of the Session class. For details on
each property, click on the property below.

Property Default Description

baseClassName SESSION Identifies the object as an instance of the Session class

className (SESSION) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

handle BDE session handle

lockRetryCount 0 Number of times to retry a failed lock attempt

lockRetryInterval 0 Number of seconds to wait between each lock attempt

name Empty string The name of custom object. Read-only.

parent null Container form or report

Event Parameters Description

beforeRelease Before the object is released

onProgress <percent expN>, Periodically during data processing operations

<message expC>

Method Parameters Description

180

Language Reference

access() Returns the user's access level for the session

addAlias() <cAlias>, <cDriver>, adds a User BDE Alias to the current BDE session
<cOptions>

addPassword() <password expC> Adds a password to the password table for access to encrypted DB

(Paradox) tables

deleteAlias() <cAlias> Deletes a User BDE Alias from the current BDE session

login() <group expC>, Logs the specified user into the session to access encrypted DBF
<user expC>, (dBASE) tables
<password expC>

user() Returns the user’s login name for the session

Description

A session represents a separate user task, and is required primarily for DBF and DB table
security. dBASE Plus supports up to 2048 simultaneous sessions. When dBASE Plus first
starts, it already has a default session.

DBF and DB table security is session-based. (SQL-table security is database-based.) To enable
the Session object's security features, the database it is assigned to must be active. When you
create a new Session object, it copies the security settings of the default session. Therefore, if
you have a user log in when dBASE Plus starts, all the new sessions you create to handle
multiple tasks will have the access level.

Unlike the Database and Query objects, a Session object does not have an active property.
Sessions are always active. To close a session, you must destroy it by releasing all references
to it.

class SqlField

Topic group Related topics

A field from an SQL-server-based table. SqlField subclasses the Field class.

Syntax
These objects are created automatically by the rowset.

Properties

The following table lists the properties of the SqlField class. SqlField objects also contain those
inherited from the Field class. (No events or methods are associated with the SqlField class.)
For details on each property, click on the property below.

Property Default Description

baseClassName SQLFIELD Identifies the object as an instance of the SqlField class

className (SQLFIELD) Identifies the object as an instance of a custom class. When no custom
class exists, defaults to baseClassName

precision The number of digits allowed in an SQL-based field

scale The number of digits, to the right of the decimal point, that can be stored

in a SQL-based field

Description

The SqlField class is a subclass of the Field class. It represents a field from an SQL-server-
based table, including any ODBC connection, and contains properties that are specific to fields
of that table type. Otherwise it is considered to be a Field object.

181

dBASE Plus 9 LR

class StoredProc

Topic group Related topics Example

A representation of a stored procedure call.

Syntax

[<oRef> =] new StoredProc()

<oRef>

A variable or property—typically of a Form or Report object—in which to store a reference to the

newly created StoredProc object.

Properties

The following tables list the properties, events, and methods of the StoredProc class. For details

on each property, click on the property below:

Property Default Description

active false Whether the stored procedure is open and active or closed

baseClassName STOREDPROC Identifies the object as an instance of the StoredProc class

className (STOREDPROC) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

database null Database to which the stored procedure is assigned

handle BDE statement handle

name Empty string The name of custom object

arams AssocArray Associative array that contains Parameter objects for the stored

procedure call

parent null Container form or report

procedureName Empty string Name of the stored procedure

rowset Object Reference to the rowset object containing the results of the stored
procedure call

session null Session to which the stored procedure is assigned

Event Parameters Description

beforeRelease Before the object is released

canClose When attempting to close stored procedure; return value allows or
disallows closure

canOpen When attempting to open stored procedure; return value allows or
disallows opening

onClose After stored procedure closes

onOpen After stored procedure first opens

Method Parameters Description

execute() Executes stored procedure (called implicitly when active property is
set to true)

prepare() Prepares stored procedure call

requery() Rebinds and executes stored procedure

182

Language Reference

unprepare() Cleans up when stored procedure is deactivated (called implicitly
when active property is set to false)

Description

Use a StoredProc object to call a stored procedure in a database. Most stored procedures take
one or more parameters as input and may return one or more values as output. Parameters are
passed to and from the stored procedure through the StoredProc object’s params property,
which points to an associative array of Parameter Objects.

Some stored procedures return a rowset. In that case, the StoredProc object is similar to a
Query object; but instead of executing an SQL statement that describes the data to retrieve, you
name a stored procedure, pass parameters to it, and execute it. The resulting rowset is
accessed through the StoredProc object’s rowset property, just like in a Query object.

Because stored procedures are SQL-server-based, you must create and activate a Database
object and assign that object to the StoredProc object’s database property. Standard tables do
not support stored procedures.

Next, the procedureName property must be set to the name of the stored procedure. For most
SQL servers, the BDE can get the names and types of the parameters for the stored procedure.
On some servers, no information is available; in that case you must include the parameter
names in the procedureName property as well.

Getting or specifying the names of the parameters automatically creates the corresponding
elements in the StoredProc object’s params array. Each element is a Parameter object. Again,
for some servers, information on the parameter types is available. For those servers, the type
properties are automatically filled in and the value properties are initialized. For other servers,
you must supply the missing type information and initialize the value to the correct type.

To call the stored procedure, set its active property to true. If the stored procedure does not
generate a rowset, the active property is reset to false after the stored procedure executes and
returns its results, if any. This facilitates calling the stored procedure again if desired, after
reading the results from the params array.

If the stored procedure generates a rowset, the active property remains true, and the resulting
rowset acts just like a rowset generated by a Query object.

You can dataLink components in a form to fields in a rowset, or to the Parameter objects in the
params array.

class TableDef
Topic group Related topics

Creates a reference from which to view the definition of a table.

Syntax
[<oRef>]=new TableDef()
<oRef>

A variable or property in which to store a reference to the newly created TableDef object.
Properties

The following tables list the properties and methods of the TableDef class. No events are
associated with this class. For details on each property, click on the property below.

183

dBASE Plus 9 LR

Property Default Description

baseClassName TABLEDEF Identifies the object as an instance of the TableDef class

className (TABLEDEF) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

constraints AssocArray An array of row-level constraints associated with the table being
defined.

database Object A reference to the Database object to which the table being defined
is assigned.

fields Object A reference to an array that contains the table's Field objects

indexes Object A reference to an array that contains the table's Index objects

language Empty string The Language Driver currently being used to access the table being
defined

parent null Container, form or report

primaryKey Empty string The key expression of the table's primary index

recordCount zero Number of records in the table being defined

tableName Empty string The name of the table being defined

tableType DBASE The current table type

version 7 The tableLevel version number

Method Parameters Description

load() Loads the table's definition into memory

Description

A TableDef object allows you to view various aspects of a table's definition. Using the TableDef
object does not let you make changes to the table's definition, but instead provides a means to
read information about it's index tags, fields, constraints and other elements. For information on
making changes to a table's definition, see Table Designer.

To view a table's definition you must create an instance of the object, provide the table name
and load the definition using the TableDef object's load() method.

t=new TableDef()

t.tableName=""tablename"

t.load()

Once the table's definition has been loaded, you can view it's contents through The Inspector:
inspect(t)

or using dot notation from the Command Window:
?t.fields.size
?t_fields[n]-fieldname // Where n is a number from 1 to the value
of "t.fields.size"
?t.indexes.size
?t.indexes[n].indexname // Where n is a number from 1 to the value of
""t.indexes.size"

class UpdateSet

Topic group Related topics Example

An object that updates one table with data from another.

184

Syntax
[<oRef> =] new UpdateSet()
<oRef>

Language Reference

A variable or property in which to store a reference to the newly created UpdateSet object.

Properties

The following tables list the properties and methods of the UpdateSet class. (No events are
associated with this class.) For details on each property, click on the property below.

Property Default Description

baseClassName UPDATESET Identifies the object as an instance of the UpdateSet class

changedTableName Table to collect copies of original values of changed rows

className (UPDATESET) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

destination Rowset object or table name that is updated or created

indexName Name of index to use

keyViolationTableName Table to collect rows with duplicate primary keys

parent null Container, form or report

problemTableName Table that collects problem rows

source Rowset object or table name that contains updates

Method Parameters Description

append() Adds new rows

appendUpdate() Updates existing rows and adds new rows

copy() Creates destination table

delete() Deletes rows in destination that match rows in source

update() Updates existing rows

Description

The UpdateSet object is used to update data from one rowset to another, or to copy or convert
data from one format to another, either in the same database or across databases.

To update a DBF table with appendUpdate(), delete(), or update(), the indexName property of
the UpdateSet object must be set to a valid index. To update a DB table with the same
operations, the DB table’s primary key is used by default, or you can assign a secondary index

to the indexName property.

The source and destination can be either a character string containing the name of a table, or
an object reference to a rowset. If the source is a rowset, the data used in the update can be

filtered.

For Standard table names, specify the name of the table and the extension (DBF or DB). For all
other tables, place the database name (the BDE alias) in colons before the table name; that is,

in this form:
alias:table

The named database must be open when the UpdateSet() method is executed.

185

dBASE Plus 9 LR

abandon()

Topic group Related topics Example

Abandons any pending changes to the current row.

Syntax

<oRef>.abandon()

<oRef>

The rowset whose current row buffer you want to abandon.
Property of

Rowset

Description

Changes made to a row, either through dataLinked controls or by assigning values to the value
property of fields, are not written to disk until the rowset’s save() method is explicitly called or
there is an implicit save, which is usually caused by navigation in the rowset. You can discard
any pending changes to the rowset with the abandon() method. This is usually done in
response to the user’s request.

You can check the modified property first to see if there have been any changes made to the
row. Calling abandon() when there’s nothing to abandon has no ill effects (although the
canAbandon and onAbandon events are still fired).

You may also want to discard unwritten changes when a query is closed, the opposite of the
default behavior. If you are relying on the query’s event handlers to do this instead of
abandoning and closing the query through code, you must call abandon() during the query’s
canClose event and return true from the canClose event handler; calling abandon() during the
onClose event will have no effect, since the onClose event fires after the query has already
closed, and any changes have been written.

When using abandon() to discard changes to an existing row, all fields are returned to their
original values and any dataLinked controls are automatically restored. If the row was
automatically locked when editing began, it is unlocked.

You may also use abandon() to discard a new row created by the beginAppend() method, in
which case the new row is discarded, and the row that was current at the time beginAppend()
was called is restored. This is not considered navigation, so the rowset’s onNavigate does not
fire. If you have a onNavigate event handler, call it from the onAbandon event. abandon() also
cancels a rowset’s Filter or Locate mode in the same manner.

The order of events when calling abandon() is as follows:

1. If the rowset has a canAbandon event handler, it is called. If not, it's as if canAbandon returns true.

0 If the canAbandon event handler returns false, nothing else happens and abandon() returns
false.

0 If the canAbandon event handler returns true:
The current row buffer/state is abandoned, restoring the rowset to its previous row/state.
The onAbandon event fires.
abandon() returns true.

While abandon() discards unwritten changes to the current row, there are two mutually
exclusive ways of abandoning changes to more than one row in more than one table in a
database, which you can use instead of or in addition to single-row buffering. Calling
beginTrans() starts transaction logging which logs all changes and allows you to undo them by
calling rollback() if necessary. The alternative is to set the database’s cacheUpdates property to

186

Language Reference

true so that changes are written to a local cache but not written to disk, and then call
abandonUpdates() to discard all the changes if needed.

abandonUpdates()

Topic group Related topics Example

Abandons all cached updates in the database.

Syntax
<oRef>.abandonUpdates()
<oRef>

The database whose cached changes you want to abandon.
Property of

Database

Description

abandonUpdates() discards all changes to a database that have been cached. Unlike
applyUpdates(), it cannot fail. See cacheUpdates for more information on caching updates.

Changes to the current row that have not been written are still in the row buffer, and have not
been cached. To abandon changes made to the row buffer, call the rowset's abandon()
method.

access()

Topic group Related topics Example

Returns the access level of the current session for DBF table security.

Syntax
<oRef>.access()
<oRef>

The session you want to test.
Property of

Session

Description

DBF table security is session-based. All queries assigned to the same session in their session
property have the same access level.

access() returns a number from 0 to 8. 8 is the lowest level of access, 1 is the highest level of
access, and 0 is returned if the session is not using DBF security.

active
Topic group Related topics

Specifies whether an object is open and active or closed.

Property of

187

dBASE Plus 9 LR

Database, DataModRef, Query, StoredProc
Description

When created, a new session’s default database is active since it does not require any setup.
Other Database, DataModRef, Query, and StoredProc objects do require setup, so their active
property defaults to false. Once they have been set up, set their active property to true to open
the object and make it active.

When a Query or StoredProc object’s active property is set to true, its canOpen event is called.
If there is no canOpen event handler, or the event handler returns true, the object is activated.
In a Query object, the SQL statement in its sql property is executed; in a StoredProc object, the
stored procedure named in its procedureName property is called. Then the object’s onOpen
event is fired.

To close the object, set its active property to false. Closing an object closes all objects below it
in the class hierarchy. Attempting to close a Query or StoredProc object calls its canClose
event. If there is no canClose event handler, or the event handler returns true, the object is
closed. Closing a Database object closes all its Query and StoredProc objects. After the objects
are closed, all the Query and StoredProc objects’ onClose events are fired.

Activating and deactivating an object implicitly calls a number of advanced methods. You may
override or completely redefine these methods for custom data classes; in typical usage, don’t
touch them. When you set active to true (methods associated with a Database object will not
function properly when the database is not active), a Database object’s open() method is
called; activating a query or stored procedure calls prepare(), then execute(). When you set
active to false, a Database object’s close() method is called; deactivating a query or stored
procedure calls its unprepare() method. These methods are called as part of the activation or
deactivation of the object, before the onOpen or onClose event.

Closing a query or a StoredProc object that generated a rowset attempts to write any changes
to its rowset’s current row buffer, and to apply all cached updates or commit all logged changes.
To circumvent this, you must call the abandon(), abandonUpdates(), and/or rollback() before
the object’s onClose event—for example, during the canClose event or before setting the active
property to false—because onClose fires after the object has already closed.

Once an object has been closed, you may change its properties if desired and reopen it by
setting its active property back to true.

addPassword()

Topic group Related topics Example

Adds a password to the session’s password list for DB table security.

Syntax
<oRef>.addPassword(<expC>)
<oRef>

The session you want to receive the password.
<expC>

The password string.

Property of

Session

188

Language Reference

Description

DB table security is based on password lists. If you know a password, you have access to all
the files that use that password. There is no matching between a user name and password. The
access level for each file may be different for the same password.

Password lists are session-based. Once a password has been added to a session, it will
continue to be tried for all encrypted tables. All queries assigned to the same session in their
session property use the same password list. If you attempt to open an encrypted table and
there is no valid password that gives access to that table in the list, you will be prompted for the
password. Responding with a password adds it to the list.

The addPassword() method allows you add passwords directly to the session’s password list.
You can do this if you want to add a default password, so that users won't be prompted, or if
you're writing your own custom login form, and need to add the password to the session.

append()

Topic group Related topics Example

Adds rows from one rowset or table to another.

Syntax

<oRef>.append()

<oRef>

The UpdateSet object that describes the append.

Property of
UpdateSet

Description

Use append() to add rows from a source rowset or table to an existing destination rowset or
table. If there is no primary key in the destination, the rows from the source are always added. If
there is a primary key in the destination, rows with keys that already exist in the destination will
be copied to the table specified by the UpdateSet object’s keyViolationTableName property
instead.

To update rows with the same primary key in the destination, use the appendUpdate() method.
To move data to a new table instead of an existing table or rowset, use the copy() method.

When appending multiple rows, be sure the destination and source table structures are exact
matches. If the table structures are not exact matches, append() will terminate when it
encounters the discrepency.

appendUpdate()

Topic group Related topics
Updates one rowset or table from another by updating existing rows and adding new rows.

Syntax
<oRef>.appendUpdate()
<oRef>

The UpdateSet object that describes the update.

189

dBASE Plus 9 LR

Property of
UpdateSet

Description

Use appendUpdate() to update a rowset, allowing new rows to be added. You must specify the
UpdateSet object’s indexName property which will be used to match the records. The index
must exist for the destination rowset. The original values of all changed records will be copied to
the table specified by the updateSet’s changedTableName property.

To update existing rows only, use the update() method instead. To always add new rows, use
the append() method.

When updating multiple rows, be sure the destination and source table structures are exact
matches. If the table structures are not exact matches, appendUpdate() will terminate when it
encounters the discrepency.

applyFilter()

Topic group Related topics Example

Applies the filter that was set during a rowset’s Filter mode.

Syntax
<oRef>.applyFilter()
<oRef>

The rowset whose filter criteria you want to apply.

Property of
Rowset

Description

Rowset objects support a Filter mode in which values can be assigned to Field objects and then
used to filter the rows in a rowset to show only those rows with matching values. beginFilter()
puts the rowset in Filter mode and applyFilter() applies the filter values. clearFilter() cancels
the filter. Because dataLinked controls on forms write to the value properties of Field objects, a
call to those three methods are all you need to implement a filter-by-form feature in your
application.

When applyFilter() is called, the row cursor is repositioned to the first matching row in the set,
or to the end-of-set if there are no matches. The rowset’s filter property is updated to contain the
resulting SQL expression used for the filter. applyFilter() returns true or false to indicate if a
match was found.

To filter rows with a condition without using Filter mode, set the rowset's filter property directly.
See the filter property for more information on how filters are applied to data. To filter rows with
dBL code instead of or in addition to an SQL expression, use the canGetRow event.

applyLocate()

Topic group Related topics Example

Finds the first row that matches specified criteria.

Syntax

190

Language Reference

<oRef>.applyLocate([<SQL condition expC>])

<oRef>

The rowset you want to search for the specified criteria.
<SQL condition expC>

An SQL condition expression.

Property of
Rowset

Description

Rowset objects support a Locate mode in which values can be assigned to Field objects and
then used to find rows in a rowset that contains matching values. beginLocate() puts the rowset
in Locate mode and applyLocate() finds the first matching row. locateNext() finds other
matching rows. Because dataLinked controls on forms write to the value properties of Field
objects, a call to those three methods are all you need to implement a search-by-form feature in
your application.

applyLocate() moves the row cursor to the first row that matches the criteria set during the
rowset's Locate mode.

You may also use applyLocate() without calling beginLocate() first to put the rowset in Locate
mode: call applyLocate() with a parameter string that contains an SQL condition expression.
Doing so finds the first row that matches the condition. (Calling applyLocate() with a parameter
when the rowset is in Locate mode discards any field values entered during Locate mode and
uses the specified condition expression only to find a match.)

Calling applyLocate() with a parameter will attempt an implicit save if the rowset is not in Locate
mode and the rowset’'s modified property is true. If the implicit save fails, because the canSave
returns false or any other reason, the search is not attempted.

If a search is attempted, applyLocate() returns true or false to indicate if a match is found.
onNavigate always fires after a search attempt, either on the first matching row, or the current
row if the search failed.

applyLocate() will use available indexes to find a match more quickly. When searching on the
current index specified by the rowset’s indexName property, you may find the findKey() and
findKeyNearest() methods more convenient and direct.

applyUpdates()
Topic group Related topics

Attempts to apply all cached updates in the database.

Syntax
<oRef>.applyUpdates()
<oRef>

The database whose cached updates you want to apply.
Property of
Database

Description

191

dBASE Plus 9 LR

The applyUpdates() method attempts to apply all changes to a database that have been
cached and returns true or false to indicate success or failure. If it succeeds, all cached updates
are cleared; if it fails, the updates remain cached. Since the applyUpdates() method uses a
transaction while attempting to apply the changes and you cannot nest transactions in a
database, cached updates and transaction logging with beginTrans() are mutually exclusive.
See cacheUpdates for more information on caching updates.

Changes to the current row that have not been written are still in the row buffer, and have not
been cached. To apply changes made to the row buffer, call the rowset's save() method before
you call applyUpdates().

atFirst()

Topic group Related topics Example

Returns true if the row cursor is at the first row in the rowset.

Syntax
<oRef>.atFirst()
<oRef>

The rowset whose position you want to check.

Property of
Rowset

Description

Use atFirst() to determine if the row cursor is at the first row in the rowset. When atFirst()
returns true, the row cursor is at the first row. In most cases, atFirst() is an inexpensive
operation. The current row is usually compared with a bookmark of the first row made when the
guery is first opened. However, atFirst() may be time-consuming for certain data drivers.

A common use of atFirst() is to conditionally disable backward navigation controls. If you know
you are on the first row, you can’t go backward, and you reflect this visually with a disabled
control.

The end-of-set is different from the first row, so endOfSet cannot be true if atFirst() returns true.
endOfSet is true if the row cursor is before the first row in the rowset (or after the last row).

Note

Using the rowset's navigateByMaster property to synchronize movement in master-detail

rowsets, modifies the behavior of the atFirst() method. See navigateByMaster for more
information.

atLast()

Topic group Related topics Example

Returns true if the row cursor is at the last row in the rowset.

Syntax
<oRef>.atLast()
<oRef>

The rowset whose position you want to check.

192

Language Reference

Property of
Rowset

Description

Use atLast() to determine if the row cursor is at the last row in the rowset. When atLast()
returns true, the row cursor is at the last row. atLast() may be an expensive operation. For
example, if you have not navigated to the last row in a rowset returned by an SQL server, such
a navigation would have to be attempted to determine if you are at the last row, which could be
time-consuming for large rowsets.

A common use of atLast() is to conditionally disable forward navigation controls. If you know
you are on the last row, you can't go forward, and you reflect this visually with a disabled
control.

The end-of-set is different from the last row, so endOfSet cannot be true if atLast() returns true;
endOfSet is true if the row cursor is after the last row in the rowset (or before the first row).

Note

Using the rowset's navigateByMaster property to synchronize movement in master-detail

rowsets, modifies the behavior of the atLast() method. See navigateByMaster for more
information.

autoEdit

Topic group Related topics

Specifies whether the rowset automatically switches to Edit mode when changes are made
through dataLinked components.

Property of
Rowset

Description

When a query (or stored procedure) is activated, its rowset opens in Browse mode. If a rowset’s
autoEdit property is true (the default), typing a destructive keystroke in a dataLinked component
automatically attempts to switch the rowset into Edit mode by implicitly calling beginEdit(). If
you set autoEdit to false, data displayed in a form is read-only, and you must explicitly call
beginEdit() to switch to Edit mode.

autoEdit has no effect on assignments to the value of a field; the first assignment to a row
always calls beginEdit() implicitly to secure a row lock.

autoLockChildRows

Topic group Example

Controls whether or not child rows are automaticallly locked (or unlocked) when a parent row is
locked (or unlocked).

Property of
Rowset

Description
When true (the default), child rows are automatically locked when a parent row is locked.

193

dBASE Plus 9 LR

When false, child rows are not locked when a parent row is locked.

The autoLockChildRows property can be used to turn off automatic locking of child rows in a
data entry form when locking of the child rows is not needed.

A common use for this would be in a data entry form that uses a datamodule where an indexed
parent child link is setup between a parent table and a lookup table.

Other rows in the parent table can be linked to the same lookup table rows.

If two users attempt to edit two different parent rows that are linked to the same lookup table
row, the second user to attempt an edit will receive an error that the row is locked.

However, if the parent rowset's autoLockChildRows property is set to false, then the locking
conflict would not occur as only the parent rows will be locked.

autoNullFields
Topic group Related topics

Determines whether empty fields are assigned a NULL value, or when applicable, filled with
spaces, zero or "false".

Property
Rowset

Description

When the rowset's autoNullFields property is set to true (the default setting), dBASE Plus allows
an empty field to assume a “null value”. Null values are those which are nonexistent or
undefined. Null is the absence of a value and, therefore, different from a blank or zero value.

When the rowset's autoNullFields property is set to false, numeric fields (long, float, etc.) are
assigned a value of zero, logical fields a value of "false", and character fields are filled with
spaces.

A null value in a field may simply indicate data has yet to be entered, as in a new row, or the
field has been purposely left empty . In certain summary operations, null fields are ignored. For
example, if you are averaging a numeric field, rows with a null value in the field would not affect
the result as they would if the field were filled with zero, or any other value.

beforeGetValue

Topic group Related topics Example

Event fired when reading a field’s value property, which returns its apparent value.

Parameters

none

Property of

Field (including DbfField, PdxField, SqlField)
Description

By using a field's beforeGetValue event, you can make its value property appear to be anything
you want. For example, in a table you can store codes, but when looking at the data, you see

194

Language Reference

descriptions. This effect is called field morphing. The beforeGetValue event is also the primary
way to set up a calculated field.

A field’'s beforeGetValue event handler must return a value. That value is used as the value
property. During the beforeGetValue event handler, the field’s value property represents its true
value, as stored in the row buffer, which is read from the table.

Be sure to include checks for blank values—which will occur when a beginAppend() starts—
and the end-of-set. Any attempt to access the field values when the rowset is at the end-of-set
will cause an error. Return a null instead.

beforeGetValue is fired when reading a field’s value property explicitly and when read to update
a datalLinked control. It does not fire when accessed internally for SpeedFilters, index
expressions, or master-detail links, or when calling copyToFile().

To reverse the process, use the field’s canChange event.
Note

Morphed and calculated fields sometimes require display widths that are larger than their field
widths. To avoid truncating the display, use a picture that represents the field’s maximum size.

beginAppend()
Topic group Related topics Example

Starts append of a new row.

Syntax

<oRef>.beginAppend()

<oRef>

The rowset you want to put in Append mode.

Property of
Rowset

Description

beginAppend() clears the row buffer and puts the rowset in Append mode, allowing the creation
of a new row, via data entry through dataLinked controls, by directly assigning values to the
value property of fields, or a combination of both. The row buffer is not written to disk until the
rowset’s save() method is explicitly called or there is an implicit save, which is usually caused
by navigation in the rowset. At that point, a save attempt is made only if the rowset’'s modified
property is true; this is intended to prevent blank rows from being added. Calling beginAppend()
again to add another row will also cause an implicit save first, if the row has been modified.

The integrity of the data in the row, for example making sure that all required fields are filled in,
should be checked in the rowset’s canSave event. The abandon() method will discard the new
row, leaving no trace of the attempt.

The rowset's canAppend event is fired when beginAppend() is called. If there is a canAppend
event handler, it must return true or the beginAppend() will not proceed.

The onAppend event is fired after the row buffer is cleared, allowing you to preset default values
for any fields. After you preset values, set the modified property to false, so that the values in
the fields immediately after the onAppend event are considered as the baseline for whether the
row has been changed and needs to be saved.

The order of events when calling beginAppend() is as follows:

195

dBASE Plus 9 LR

1. If the rowset has a canAppend event handler, it is called. If not, it's as if canAppend returns true.

0 If the canAppend event handler returns false, nothing else happens and beginAppend()
returns false.

0 If the canAppend event handler returns true, the rowset’s modified property is checked.
O If modified is true:

= The rowset’s canSave event is fired. If there is no canSave event, it's as if canSave
returns true.

= |f canSave returns false, nothing else happens and beginAppend() returns false.

= |f canSave returns true, dBASE Plus tries to save the row. If the row is not saved,
perhaps because it fails some database engine-level validation, a DbException occurs—
beginAppend() does not return.

= |f the row is saved, the modified property is set to false, and the onSave event is fired.
0 Ater the current row is saved (if necessary):

= The rowset is switched to Append mode.

= The onAppend event fires.

= beginAppend() returns true.

An exception occurs when calling beginAppend() if the rowset’s live property is false, or if the
user has insufficient rights to add rows.

beginEdit()
Topic group Related topics

Makes contents of a row editable.

Syntax
<oRef>.beginEdit()
<oRef>

The rowset you want to put in Edit mode.

Property of
Rowset

Description

By default, a rowset’s autoEdit property is true, which means that data is immediately editable.
The rowset implicitly calls beginEdit() when a destructive keystroke is typed in a dataLinked
component. But you can more strictly control how editing occurs by setting autoEdit to false and
explicitly calling beginEdit() as needed.

As usual, the row buffer is not written until the rowset’s save() method is explicitly called or
there is an implicit save, which is usually caused by navigation in the rowset. The integrity of the
data in the row, for example making sure that there are no invalid entries in any fields, should be
checked in the rowset’s canSave event. The abandon() method will discard any changes to the
row. After saving or abandoning any changes, the rowset goes back to Browse mode.

The rowset's canEdit event is fired when beginEdit() is called. If there is a canEdit event
handler, it must return true or the beginEdit() will not proceed. The onEdit event is fired after
switching to Edit mode.

The order of events when calling beginEdit() is as follows, even if the rowset is already in Edit
mode:

1. If the rowset has a canEdit event handler, it is called. If not, it's as if canEdit returns true.
0 If the canEdit event handler returns false, nothing else happens and beginEdit() returns false.

196

Language Reference

0 If the canEdit event handler returns true:

The rowset attempts to switch to Edit mode by getting an automatic row lock. If the lock cannot be secured, the
mode switch fails and beginEdit() returns false.

If the lock is secured, the onEdit event fires.
The beginEdit() method returns true.

An exception occurs if the rowset’s live property is false, or if the user has insufficient rights to
edit rows, and they call beginEdit().

beginFilter()
Topic group Related topics

Puts a rowset in Filter mode, allowing the entry of filter criteria.

Syntax
<oRef>.beginFilter()
<oRef>

The rowset you want to put in Filter mode.

Property of
Rowset

Description

Rowset objects support a Filter mode in which values can be assigned to Field objects and then
used to filter the rows in a rowset to show only those rows with matching values. beginFilter()
puts the rowset in Filter mode and applyFilter() applies the filter values. clearFilter() cancels
the filter. Because dataLinked controls on forms write to the value properties of Field objects, a
call to those three methods are all you need to implement a filter-by-form feature in your
application.

When beginFilter() is called, the row buffer is cleared. Values that are set either through
dataLinked controls or by assigning values to value properties are used for matching. Fields
whose value property is left blank are not considered. To cancel Filter mode, call the abandon()
method.

If navigation is attempted while in Filter mode, Filter mode is canceled and the navigation
occurs, relative to the position of the row cursor at the time beginFilter() was called.

To filter rows with a condition without using Filter mode, set the rowset’s filter property. See the
filter property for more information on how filters are applied to data. To filter rows with dBL
code instead of or in addition to Filter mode, use the canGetRow event.

beginLocate()

Topic group Related topics

Puts a rowset in Locate mode, allowing the entry of search criteria.

Syntax
<oRef>.beginLocate()
<oRef>

The rowset you want to put in Locate mode.

197

dBASE Plus 9 LR

Property of
Rowset

Description

Rowset objects support a Locate mode in which values can be assigned to Field objects and
then used to find rows in a rowset that contain matching values. beginLocate() puts the rowset
in Locate mode and applyLocate() finds the first matching row. locateNext() finds other
matching rows. Because dataLinked controls on forms write to the value properties of Field
objects, a call to those three methods are all you need to implement a search-by-form feature in
your application.

When beginLocate() is called, the row buffer is cleared. Values that are set either through
dataLinked controls or by assigning values to value properties are used for matching. Fields
whose value property is left blank are not considered. To cancel Locate mode, call the
abandon() method.

If navigation is attempted while in Locate mode, Locate mode is canceled and the navigation
occurs, relative to the position of the row cursor at the time beginLocate() was called.

beginTrans()

Topic group Related topics

Begins transaction logging.

Syntax
<oRef>.beginTrans()
<oRef>

The database in which you want to start transaction logging.

Property of
Database

Description

Separate changes that must be applied together are considered to be a transaction. For
example, transferring money from one account to another means debiting one account and
crediting another. If for whatever reason one of those two changes cannot be done, the whole
transaction is considered a failure and any change that was made must be undone.

Transaction logging records all the changes made to all the tables in a database. If no errors are
encountered while making the individual changes in the transaction, the transaction log is
cleared with the commit() method and the transaction is done. If an error is encountered, all
changes made so far are undone by calling the rollback() method.

Transaction logging differs from caching updates in that changes are actually written to the disk.
This means that others who are accessing the database can see your changes. In contrast, with
cached updates your changes are written all at once later, when and if you decide to post the
changes. For example, if you're reserving seats on an airplane, you want to post a reservation
as soon as possible. If the customer changes their mind, you can undo the reservation with a
rollback. With cached updates, the seat might be taken by someone else between the time the
data entry for the reservation begins and the time it is actually posted.

198

Language Reference

All locks made during a transaction are maintained until the transaction is completed. This
ensures that no one else can make any changes until the transaction is committed or
abandoned.

For SQL-server databases, the Database object’s isolationLevel property determines the
isolation level of the transaction.

A Database object may have only one transaction active at one time; you cannot nest
transactions.

bookmark()

Topic group Related topics Example

Returns the current position in a rowset.

Syntax
<oRef>.bookmark()

<oRef>

The rowset whose current position you want to return.

Property of
Rowset

Description

A bookmark represents a position in a rowset. bookmark() returns the current position in the
rowset. The bookmark may be stored in a variable or property so that you can go back to that
position later with the goto() method.

A bookmark is guaranteed to be valid only as long as the rowset stays open. The bookmark
uses the current index represented by the indexName property, if any. The same physical row in
the table returns different bookmarks when different indexes are in effect. When you goto() a
bookmark, the index that was in effect when the bookmark was returned is automatically
activated.

bookmarksEqual()

Topic group Related topics

Checks if a given bookmark matches the current row, or if two bookmarks refer to the same row.

Syntax

<oRef>.bookmarksEqual(<bookmark1> [, <bookmark2>])
<oRef>

The rowset in which to check the bookmark(s).
<bookmark1>

The bookmark to check against the current row in the rowset, if only one bookmark is specified;
or the first of two bookmarks to compare.

<bookmark2>
The second of two bookmarks to compare.
Property of

199

dBASE Plus 9 LR

Rowset

Description

Use bookmarksEqual() to check a bookmark against the current row, without having to first use
bookmark() to get a bookmark for the current row. If the bookmark refers to the current row,
bookmarksEqual() returns true; if not it returns false. You may also use bookmarksEqual() to
compare two bookmarks to see if they refer to the same row; the equality operators (= and ==
may also be used to compare two bookmarks.

The bookmark uses the current index represented by the indexName property, if any. The same
physical row in the table returns different bookmarks when different indexes are in effect. When
checking a bookmark against the current row, the rowset must be in the same index order as
the bookmark; otherwise bookmarksEqual() will return false. When comparing two bookmarks,
they must have been taken when the same index was in effect; if not, they will not match.

cacheUpdates

Topic group Related topics

Whether to cache updates locally instead of writing to disk as they occur.

Property of
Database

Description

Normally, when a row buffer is saved, it is written to disk. By setting the cacheUpdates property
to true, those changes are cached locally instead of being written to disk. One reason to do this
is to reduce network traffic. Changes are accumulated and then posted with the applyUpdates()
method, after a certain amount of time or a certain number of changes have been made.

Another reason is to simulate a transaction when you have more than one change in an all-or-
nothing situation. For example, if you need to fill a customer order and reduce the stock in
inventory, you cannot let one happen and not the other. When the changes are posted with
applyUpdates(), they are applied inside a transaction at the database level. Because you
cannot nest transactions, you cannot have a transaction with beginTrans() and use cached
updates at the same time. If any of the changes do not post, for example one of the records is
locked, all of the changes that did post are undone and applyUpdates() returns false to indicate
failure. The cached updates remain cached so that you can retry the posting. If all the changes
are posted successfully, applyUpdates() returns true.

Finally, because of the all-or-nothing nature of cached updates, you can use them to allow the
user to tentatively make changes that you can simply discard as a group. For example, you
could allow a user to modify a lookup table. If the user submits the changes they are applied,
but if the user chooses to cancel, any changes made can be discarded by calling the
abandonUpdates() method. Note that with cached updates, the changes aren’t actually written
until posted. In contrast, transaction logging actually makes the changes as they happen, but
allows you to undo them if desired.

canAbandon

Topic group Related topics Example

200

Language Reference

Event fired when attempt to abandon rowset occurs; return value determines if changes to row
are abandoned.

Parameters
none

Property of
Rowset

Description

A rowset may be abandoned explicitly by calling its abandon() method, or implicitly via the user
interface by pressing Esc or choosing Abandon Row from the default Table menu or toolbar
while editing table rows. canAbandon may be used to verify that the user wants to abandon any
changes that they have made. You may check the modified property first to see if there are any
changes to abandon; if not, there is no need to ask.

The canAbandon event handler must return true or false to indicate whether the changes to the
rowset, if any, are abandoned.

canAppend

Topic group Related topics

Event fired when attempting to put rowset in Append mode; return value determines if the mode
switch occurs.

Parameters
none

Property of
Rowset

Description

A rowset may be put in Append mode explicitly by calling its beginAppend() method, or
implicitly via the user interface by choosing Append Row from the default Table menu or toolbar
while editing table rows. canAppend may be used to verify that the user wants to add a new
row. You can check the modified property first to see if the user has made any changes to the
current row; if not, you may not want to ask.

The canAppend event handler must return true or false to indicate whether beginAppend()
proceeds. For information on how canAppend interacts with other events and implicit saves, see
beginAppend().

canChange

Topic group Related topics Example

Event fired when a change to the value property of a Field object is attempted; return value
determines if the change occurs.

Parameters
<new value>

The proposed new value

201

dBASE Plus 9 LR

Property of
Field

Description

Use canChange to determine whether changes to individual fields occur. canChange fires when
something is assigned to the value property of a Field object, either directly or through a
dataLinked control. The proposed new value is passed as a parameter to the canChange event
handler. If the canChange event handler returns false, the Field object’s value remains
unchanged.

While canChange provides field-level validation to see whether changes are saved into the row
buffer, use canSave to provide row-level validation to determine whether the buffer can be
saved to disk. You should always do row-level validation no matter whether you do field-level
validation or not.

The canChange event operates separately from database engine-level validation. Even if
canChange returns true, attempting to write an invalid value to a field, for example exceeding a
field’s maximum allowed value, will fail and the field's value property will remain unchanged.
You can also use canChange to reverse the field morphing performed by beforeGetValue.
Inside the canChange event handler, examine the <new value> parameter and assign the value
you want to store in the table directly to the value property of the Field object. Doing so does not
fire canChange recursively. Then have the canChange event handler return false so that the
<new value> does not get saved into the row buffer.

canClose
Topic group Related topics

Event fired when there’s an attempt to deactivate a query or stored procedure; return value
determines if the object is deactivated.

Parameters

none

Property of
Query, StoredProc

Description

If the active property of a Query or StoredProc object is set to false, that object’s canClose
event fires. If the canClose event handler returns false, the close attempt fails and the active
property remains true.

A StoredProc object may be deactivated only if it returns a rowset. If it returns values only, the
active property is automatically reset to false after the stored procedure is called; there is
nothing to deactivate.

Normally when a Query or StoredProc object closes, it saves any changes in its rowset’'s row
buffer, if any. In attempting to save those changes, the rowset's canSave event is also fired,
before canClose. If canSave returns false, the row is not saved, and the object is not closed.

If you want to abandon uncommitted changes instead of saving them when closing the object,
call the rowset’s abandon() method before closing.

202

Language Reference

canDelete
Topic group Related topics

Event fired when attempting to delete the current row; return value determines if the row is
deleted.

Parameters

none

Property of
Rowset

Description

A row may be deleted explicitly by calling the delete() method, or implicitly via the user interface
by choosing Delete Rows from the default Table menu or toolbar. canDelete may be used to
make sure that the user wants to delete the current row.

canDelete may also be used to do something with the current row, just before you delete it. In
this case, the canDelete event handler would always return true.

The canDelete event handler must return true or false to indicate whether the row is deleted.
For information on how canDelete interacts with other events, see delete().

canEdit

Topic group Related topics

Event fired when attempting to put rowset in Edit mode; return value determines if the mode
switch occurs.

Parameters
none

Property of
Rowset

Description

The beginEdit() method is called (implicitly or explicity) to put the rowset in Edit mode. canEdit
may be used to verify that the user is allowed to or wants to edit the row.

The canEdit event handler must return true or false to indicate whether the switch to Edit mode
proceeds.

canGetRow

Topic group Related topics Example

Event fired when attempting to read a row into the row buffer; return value determines if the row
stays in or is filtered out.

Parameters
none

Property of

203

dBASE Plus 9 LR

Rowset

Description

In addition to setting an SQL filter expression in the filter property, you can filter out rows
through dBL code with canGetRow. In a canGetRow handler, the rowset acts as if the row is
read into the row buffer. You can test the value properties of the field objects, or anything else.

If canGetRow returns true, that row is kept. If it returns false, the row is discarded and the next
row is tried.

Note that canGetRow fires before applying the constrain on a detail table linked through
masterRowset or masterSource. Therefore, when using this type of link, you cannot check for
the existence of detail rows (by checking the detail rowset’s endOfSet property) or get the
values of the first matching detail row in the canGetRow event handler. To access the matching
rows in the linked table during the canGetRow event, you must manually apply the constrain
(using the setRange() or requery() methods) inside the canGetRow instead of using the built-in
properties. Then you are free to access the detail table as usual.

canNavigate
Topic group Related topics

Event fired when attempting navigation in a rowset; return value determines if row cursor is
moved.

Parameters
none

Property of
Rowset

Description

Navigation in a rowset may occur explicitly by calling a navigation method like next() or goto(),
or implicitly via the user interface by choosing a navigation option from the default Table menu
or toolbar while viewing a rowset. canNavigate may be used to verify that the user wants to
leave the current row to go to another. You may check the modified property first to see if the
user has made any changes to the current row; if not, you may not want to ask.

canNavigate may also be used to do something with the current row, just before you leave it. In
this case, the canNavigate event handler would always return true.

The canNavigate event handler must return true or false to indicate whether the navigation
occurs. For information on how canNavigate interacts with other events and implicit saves, see

next().

canOpen
Topic group Related topics

Event fired when attempting to open a query or stored procedure; return value determines if
object is opened.

Parameters
none

204

Language Reference

Property of

Query, StoredProc

Description

canOpen fires when a Query or StoredProc object’s active property is set to true.

If an event handler is assigned to the canOpen property, the event handler must return true or
false to indicate whether the object is opened and activated.

canOpen may also be used to do something with the query, just before you open it. In this case,
the canOpen event handler would always return true.

canSave

Topic group Related topics Example

Event fired when attempting to save the row buffer; return value determines if the buffer is
written.

Parameters
none

Property of
Rowset

Description

The row buffer may be saved explicitly by calling save() or implicitly, usually by navigating in
the rowset. Use canSave to verify that the data is good before attempting to write it to the disk.

The canSave event handler must return true or false to indicate whether the row is saved. If the
user has changed the current row and attempts to append a new row or navigate, canAppend or
canNavigate fires first. If that event returns true, then the canSave event fires. If canSave
returns false, the row is not saved, and the attempted action does not occur. If canSave returns
true, then the row is saved and the action occurs. This allows you to put row validation code in
the canSave event handler that you do not need to duplicate in either canAppend or
canNavigate.

The canSave event operates separately from database engine-level validation. Even if canSave
returns true, attempting to write an invalid row, for example one that fails to pass a table
contraint, will fail and cause an exception.

changedTableName

Topic group Related topics

Name of the table for which you want to collect copies of original values of rows that were
changed.

Property of
UpdateSet
Description

When doing an update() or appendUpdate(), rows will be changed. The original contents of the
rows that are changed are copied to the table specified by the changedTableName property. If

205

dBASE Plus 9 LR

the table does not exist, it is created. If it does exist, it is erased first so that it contains only
those rows that were changed on the last update.

By making copies of the original values of the rows that are changed, you can undo the changes
by doing another update(), using the changedTableName table as the source table.

clearFilter()

Topic group Related topics

Clears any active filter on a rowset.

Syntax
<oRef>.clearFilter()
<oRef>

The rowset whose filter to clear.
Property of

Rowset

Description

clearFilter() clears the filter property and any filter set through the rowset'’s Filter mode, thereby
deactivating any filters. Rows that were hidden by the filter become visible. The row cursor is
not moved.

clearRange()

Topic group Related topics

Clears any active range on a rowset.

Syntax
<oRef>.clearRange()
<oRef>

The rowset whose range to clear.

Property of

Rowset

Description

clearRange() clears the range set by the setRange() method. The row cursor is not moved.

close()
Topic group Related topics

Closes a database connection.

Syntax
This method is called implicitly by the Database object.

Property of

206

Language Reference

Database

Description

The close() method closes the database connection. It is called implicitly when you set the
Database object’s active property to false. In typical usage, you do not call this method directly.

Advanced applications may override the definition of this method to perform supplementary
actions when closing the database connection. Custom data drivers must define this method to
perform the appropriate actions to close their database connection.

codePage

Topic group Related topics

The current code page number asssociated with a table

Property of
Rowset

Description

For characters whose ASCII values are between 128 and 255, a code page number identifies
which character set is used. codePage will return a non-zero value only when the BDE detects a
code page in a table's header. Read-only.

commit()

Topic group Related topics

Clears the transaction log, committing all logged changes

Syntax
<oRef>.commit()

<oRef>
The database whose changes you want to commit.

Property of
Database

Description

A transaction works by logging all changes. If an error occurs while attempting one of the
changes, or the changes need to be undone for some other reason, the transaction is canceled
by calling the rollback() method. Otherwise, commit() is called to clear the transaction log,
thereby indicating that all the changes in the transaction were committed and that the
transaction as a whole was posted.

constrained

Topic group Related topics

Specifies whether updates to a rowset will be constrained by the WHERE clause of the query’s
SQL SELECT command. Applies to Standard tables only.

207

dBASE Plus 9 LR

Property of
Query
Description

When constrained is set to true, any time a row is saved, if the query’s SQL SELECT
statement—which was stored in the sqgl property and used to generate the rowset—contains a
WHERE clause, the newly saved row is evaluated against the WHERE clause. If the row no
longer matches the condition set by the WHERE clause, the row is considered to be out-of-set,
and the row cursor moves to the next row in the set, or to the end-of-set if already at the last
row.

This property applies only to Standard tables and defaults to false, which means that the SQL
SELECT statement is used only to generate the rowset, not to actively constrain it. By setting
the constrained property to true, Standard tables behave more like SQL-server based tables,
which always constrain rows according to the WHERE clause.

copy()

Topic group Related topics

Copies a rowset or table to a new table.

Syntax
<oRef>.copy()
<oRef>

The UpdateSet object that describes the copy.
Property of
UpdateSet

Description

Use the UpdateSet's copy() method copy a rowset to a new table in the same database, or to a
new table in a different database.

The source and destination properties specify what to copy and where to copy it. Because you
can use a rowset as a source, you can copy only part of a table by selecting only those rows
you want to copy for the rowset. When using a table name as a destination, that table is
created, or overwritten if it already exists. To convert from one table type to another, create a
rowset of the desired result type and assign it to the destination property.

Note: Existing tables used as a destination will be overwritten without warning, regardless of the
SET SAFETY setting.

To copy all of the rows from a single table in a database to another new table in the same
database, use the Database’s copyTable() method.

copyTable()
Topic group Related topics

Makes a copy of one table to create another table in the same database.

Syntax
<oRef>.copyTable(<source table expC>, <destination table expC>)

208

Language Reference

<oRef>

The database in which you want to copy the table.
<source table expC>

The name of the table you want to duplicate.
<destination table expC>

The name of the table you want to create.

Property of
Database

Description

copyTable() copies all of the rows from a single table in a database to another new table in the
same database. The resulting destination table will be the same table type as the source table.
Use the UpdateSet’s copy() method for any other type of row copy.

The table to copy should not be open.

To make a copy of a Standard table, you can always use the default database in the default
session by referring to it through the databases array property of the _app object. For example,

_app-databases[1]-.copyTable("Stuff", "CopyOfStuff")

copyToFile()

Topic group Related topics Example

Copies the contents of a BLOB field to a new file.

Syntax

<oRef>.copyToFile(<file name expC>)

<oRef>

The BLOB field to copy.

<file name expC>

The name of the file you want to create.

Property of

Field

Description

copyToFile() copies the specified BLOB field (including memo fields) to the named file.

count()

Topic group Related topics

Returns the number of rows in a rowset, respecting any filter conditions and events.

Syntax
<oRef>.count()
<oRef>

The rowset you want to measure.

209

dBASE Plus 9 LR

Property of
Rowset

Description

count() returns the number of rows in the current rowset. For a rowset generated by a simple
guery like the following, which selects all the fields from a single table with no conditions,
count() returns the number of rows in the table:

select * from CUSTOMER

You can use count() while a filter is active—with the filter property or the canGetRow event—to
count the number of rows that match the filter condition. This may be time-consuming with large
rowsets.

createlndex()

Topic group Related topics

The createlndex() method creates an index for a specified table.

Syntax

createlndex (<tablename expC>,<oRef>)

<table name expC>

The name of the table on which you want to create the index.
<oRef>

Predefined .dbf index object

Property of
Database

Description

The createlndex() method creates an index from an instance of a database index object. Before
using createlndex():
Close all active queries.

The .dbf index object's name and expression properties must be defined (see following example), and cannot
include calculated fields, UDFs, or, since no queries are active, fields in a lookupRowset.

ex. d=new DbfIndex()
d. indexName=""indextagname"
d.expression=""indexexpression' // other properties
_app-databases[1] -createlndex(*"tablename', d)

database

Topic group Related topics

The Database object to which the query, stored procedure or table definition is assigned.

Property of
Query, StoredProc, TableDef

Description

210

Language Reference

A query or stored procedure must be assigned to the database that provides access to the
tables it wants before it is activated. When created, a Query or StoredProc object is assigned to
the default database in the default session.

To assign the object to the default database in another session, assign that session to the
session property. Assigning the session property always sets the database property to the
default database in that session.

To assign the object to another database in another session, assign the object to that session
first. This makes the databases in that session available to the object.

databaseName

Topic group Related topics

The BDE alias that the object represents.

Property of
Database

Description

To use a BDE alias, create a Database object and assign the alias to the object’s
databaseName property. Then set the active property to true to activate the database. While the
database is active, you cannot change the databaseName property.

The databaseName property for a session’s default database is always blank.

dataModClass

Topic group Related topics

The class name of the desired data module.

Property of
DataModRef

Description

After setting the filename property to the file that contains the data module class definition, set
the dataModClass property to the name of the desired class.

Note

When declaring a class name, the name may exceed 32 characters, but the rest are ignored.

When attempting to use a class, the name should not exceed 32 characters; otherwise the
named class may not be found.

decimalLength

Topic group Related topics
The number of decimal places in a DBF (dBASE) numeric or float field.

Property of
DbfField

211

dBASE Plus 9 LR

Description

The DBF (dBASE) table format supports two kinds of fields that store numbers: numeric and
float. Both field types have a fixed number of decimal places. The decimalLength property
represents the number of decimal places for any Field objects that represent a numeric or float
field. For other field types, decimalLength is zero.

default
Topic group Related topics

The default value for a field.

Property of
DbfField, PdxField
Description

default indicates the default value of the field represented by the field object. When a rowset
switches to Append mode to add a new row, the field objects take on their default values.

For date fields, the special value TODAY indicates today’s date. For timestamp fields, the
special value NOW indicates the current date and time.

delete() [Rowset]

Topic group Related topics Example

Deletes the current row.

Syntax
<oRef>.delete()
<oRef>

The rowset whose current row you want to delete.

Property of
Rowset

Description

delete() deletes the current row in the rowset. When delete() is called, the canDelete event is
fired. If there is no canDelete event handler, or the event handler returns true, the current row is
deleted, the onDelete event fires, and the row cursor moves to the next row, or to the end-of-set
if the last row was the one deleted. This movement is not considered navigation, so the rowset's
onNavigate does not fire. If you have an onNavigate event handler, call it from the onDelete
event.

While the DBF (dBASE) table format supports soft deletes, in which the rows are only marked
as deleted and not actually removed until the table is packed, there is no method in the data
access classes to recall those records. Therefore a delete() should always be considered final.

The example attached to this topic shows how to use delete(), in conjunction with the
setRange() method, to delete all rows in a range or filter.

212

Language Reference

delete() [UpdateSet]

Topic group Related topics
Deletes the rows in the destination that are listed in the source.

Syntax

<oRef>.delete()

<oRef>

The UpdateSet object that describes the delete.
Property of

UpdateSet

Description

delete() deletes the rows listed in the source rowset or table from the destination rowset or
table. The destination must be indexed.

descending

Topic group

Determines the sort order, ascending or descending, of a specified index.
Property of

DBFIndex, Index

Description

An Index object's descending property determines whether the sort order for a key field is
descending, the default setting, or ascending. In a "descending" order, character keys are
ordered from Z to A, and then z to a; numeric keys are ordered from highest to lowest; and date
keys are ordered from latest to earliest (a blank date is higher than all other dates).

destination
Topic group Related topics

The target rowset or table of an UpdateSet operation.

Property of
UpdateSet

Description

The destination property contains an object reference to a rowset or the name of a table that is
the target of an UpdateSet operation. For an append(), update(), or appendUpdate(), it refers
to the rowset or table that is changed. For a copy(), it refers to the rowset or table that receives
the copies. If a table name is specified, that table is created, or overwritten if it already exists.
For a delete(), the destination property refers to the table from which rows are deleted.

The source property specifies the other end of the UpdateSet operation.

driverName

213

dBASE Plus 9 LR

Topic group Related topics

The database driver used for the database connection.

Property of
Database

Description

The driverName property reflects the database driver used for the connection. It's determined
by the database driver for the database’s BDE alias and set automatically once the database is

successfully made active.

For default databases, the driverName matches the System setting in the BDE Administrator.

dropindex()

Topic group Related topics

The dropindex() method deletes an index for a specified table

Syntax
<oRef>.droplndex (<tablename expC>,<indexName expC>)
<oRef>

The database in which the table exists.
<table name expC>

The name of the table containing the index
<indexname expC>

The index tag name

Property of

Database
ex. _app-databases[1].-droplndex(*"tablename

dropTable()

Topic group Related topics

Deletes (drops) a table from a database.

Syntax
<oRef>.dropTable(<table name expC>)
<oRef>

The database in which the table exists.
<table name expC>

The name of the table you want to delete.

Property of
Database

Description

214

*,"indexname'™)

Language Reference

dropTable() deletes a table and any existing secondary files, like memo files and indexes.
dropTable() does not ask for confirmation; the deletion is immediate. The table cannot be open
anywhere at the time of the dropTable(); if it is, dropTable() fails.

To delete a Standard table, you can always use the default database in the default session by
referring to it through the databases array property of the _app object. For example,

_app-databases[1]-dropTable("Temp")

emptyTable()
Topic group Related topics

Deletes all the rows in a table.

Syntax

<oRef>.emptyTable(<table name expC>)

<oRef>

The database in which the table exists.
<table name expC>

The name of the table you want to empty.

Property of
Database
Description

emptyTable() deletes all of the rows in a table, leaving an empty table structure, as if the table
was just created. emptyTable() does not ask for confirmation; the deletion is immediate. The
table cannot be open anywhere at the time of the emptyTable(); if it is, emptyTable() fails.

To empty a Standard table, you can always use the default database in the default session by
referring to it through the databases array property of the _app object. For example,

_app-databases[1]-.emptyTable("YtdSales")

endOfSet

Topic group Related topics
Specifies whether the row cursor is at the end-of-set.

Property of
Rowset

Description

The row cursor is always positioned at either a valid row or the end-of-set. There are two end-
of-set positions: one before the first row and one after the last row. endOfSet is true if the row
cursor is positioned at either end-of-set position.

When you first make a query active successfully, endOfSet is true if there are no rows that
match the specified criteria in the query’s SQL SELECT statement, or simply no rows in the
tables selected.

215

dBASE Plus 9 LR

When you apply a filter by calling applyFilter() or setting the filter property, endOfSet becomes
true if there are no rows that match the filter criteria. Otherwise, the row cursor is positioned at
the first matching row.

If you navigate backward before the first row in the set or after the last row in the set, this moves
the row cursor to the end-of-set, so endOfSet becomes true. You can call the first() or last()
methods to attempt to move the row cursor to the first or last row in the set. If after calling one of
those methods, endOfSet is still true, then there are no visible rows in the current set.

Attempting to read a field value while at end-of-set returns a null value.
Attempting to change a field value while at end-of-set causes an error.

exactMatch

Topic group Related topics

Determines whether rowset searches are conducted using a partial string or an exact string
match.

Property of
Rowset

Description

exactMatch allows you to determine what constitutes "equal to" when performing rowset
searches. When exactMatch is set to "true", the default setting, field values in subsequent
searches will be evaluated as a "match" only when they are identical to your search string.

When you set exactMatch to "false”, a patrtial string, or "begins with" search is performed.
Searching for the string "S", for example, will find "Smith" and evaluate it as a match.

execute()

Topic group Related topics

Executes a query or stored procedure.

Syntax

This method is called implicitly by the Query or StoredProc object.
Property of

Query, StoredProc

Description

The execute() method executes a query or stored procedure. It is called implicitly after
prepare() when you set the object’s active property to true. In typical usage, you do not call this
method directly.

Advanced applications may override the definition of this method to perform supplementary
actions when executing the query or stored procedure. Custom data drivers must define this
method to perform the appropriate actions to retrieve a rowset or call a stored procedure.

executeSQL()

216

Language Reference

Topic group
Executes the specified SQL statement.

Syntax

<oRef>.executeSQL(<SQL expC>)

<oRef>

The database in which you want to execute the SQL statement.
<SQL expC>

The SQL statement.

Property of

Database

Description

Use executeSQL() to perform an SQL operation that does not have a data object equivalent, for
example, to use data definition language (DDL) SQL where no rowset is desired, and for server-
specific SQL.

fieldName

Topic group Related topics

The name of the field represented by the Field object.

Property of
Field (including DbfField, PdxField, SqlField)

Description

The fieldName property contains the name of the field that the Field object represents. The
fieldName property is automatically filled in when the rowset object is generated.

For a calculated field, the fieldName contains the name of the field assigned when the Field
object is created.

fields

Topic group Related topics

An array that contains the Field objects in a rowset.

Property of
Rowset, TableDef

Description
The fields property contains an object reference to the array of field objects in the rowset. These
fields can be accessed by their field name or their ordinal position; for example, if this refers to a
rowset:

this._fields["State™].value = "CA"™ // Assign "CA" to State field

this._fields[1].value = 12 // Assign 12 to first field

To access the value of the field, you must reference the field’'s value property. You can use the
add() method to add new Field objects to the fields array as calculated fields.

217

dBASE Plus 9 LR

filename
Topic group Related topics

The name of the file that contains the desired data module.

Property of
DataModRef

Description

After setting the filename property to the file that contains the data module class definition, set
the dataModClass property to the name of the desired class. Data modules are stored in files
with a .DMD extension.

filter

Topic group Related topics

An SQL expression that filters out rows that do not match specified criteria.

Property of
Rowset

Description

A filter is a mechanism by which you can temporarily hide, or filter out, those rows that do not

match certain criteria so that you can see only those rows that do match. The criteria is in the

form of a character string that contains an SQL expression, like the one used in the WHERE

clause of an SQL SELECT. Simple comparisons using the basic SQL comparison operators (=,

<>, <, >, <=, >=) are supported; other predicates such as BETWEEN, IS NULL, IS NOT NULL

and LIKE are not. Multiple comparisons may be joined by AND or OR. For example,
"Firstname = “Waldo™"

In this case, you would see only those rows in the current rowset whose Firstname field was
"Waldo". You can use the rowset’s Filter mode, initiated by calling the beginFilter() method, to
build the expression automatically, and then apply it with the applyFilter() method. The
alternative is to assign the character string directly to the filter property.

If the filter expression contains a quoted string that contains an apostrophe, precede the
apostrophe with a backslash. Note that the single quote used in SQL expressions for strings
and the apostrophe are represented by the same single quote character on the keyboard. For
example, if this is the rowset and you want to display rows with the Lasthame "O'Dell":

this.filter = "Lastname = "O\"Dell™"

Setting the filter property causes the row cursor to move to the first matching row. If no rows
match the filter expression, the row cursor is moved to the end-of-set; the endOfSet property is
set to true.

While a filter is active, the row cursor will always be at either a matching row or the end-of-set.
Any time you attempt to navigate to a row, the row is evaluated to see if it matches the filter
condition. If it does, then the row cursor is allowed to position itself at that row and the row can
be seen. If the row does not match the filter condition, the row cursor continues in the direction it
was moving to find the next matching row. It will continue to move in that direction until it finds a
match or gets to the end-of-set. For example, suppose that this is the rowset, and you execute

218

Language Reference

the following to your program. If no filter is active, you would move four rows forward, toward the
last row:

this.next(4)
If a filter is active, the row cursor will move forward until it has encountered four rows that match
the filter condition, and stop at the fourth. That may be the next four rows in the rowset, if they

all happen to match, or the next five, or the next 400, or never, if there aren’t four rows after the
current row that match. In that last case, the row cursor will be at the end-of-set.

In other words, when there is no filter active, every row is considered a match. By setting a filter,
you filter out all the rows that don’t match certain criteria.

To clear a filter, you can assign an empty string to the filter property, set the filter equal to null,
or call the clearFilter() method.

In addition to using an SQL expression, you can filter out rows with more complex code by using
the canGetRow event.

Note

When a field's lookupSQL property is set, and that field is referenced in the rowset's filter
property, the value being compared by the filter is the field's true value, not the lookup value.

filterOptions
Topic group Related topics

Determines how values are matched for filtering.

Property of
Rowset
Description

The filterOptions property is an enumerated property that controls how the value properties in
the field objects entered during Filter mode are matched against the values in the table. These
are the options:

Value Effect
0 Match length and case
1 Match partial length
2 Ignore case
3 Match partial length and ignore case

When matching partial length, the entire search value must match all or part of the value in the
table, starting at the beginning of the field. For example, searching for "Central Park", will match
"Central Park West", but "West" alone would not.

filterOptions also determines how fields are matched when specifying an SQL expression in the
filter property.

The filterOptions property takes effect when you assign the SQL expression to the filter property
or call applyFilter('). Changing filterOptions after activating the filter has no effect (until you
change the filter).

The default setting for filterOptions is "Match length and case".

219

dBASE Plus 9 LR

findKey()

Topic group Related topics

Finds the row with the exact matching key value.

Syntax

<oRef>.findKey(<exp> | <exp list>)

<oRef>

The rowset in which to do the search.
<exp>

The value to search for.

<exp list>

One or more expressions, separated by commas, to search for in a simple or composite key
index for non-DBF tables.

Property of

Rowset

Description

findKey() performs an indexed search in the rowset, using the index specified by the rowset’s
indexName property. It looks for the first row in the index whose index key value matches
<exp>, returning true or false to indicate whether a match is found.

findKey() is a navigation method; calling it fires the canNavigate event. If canNavigate returns
false, findKey() does not attempt a search. If canNavigate returns true, and a search is
attempted but fails, the row cursor remains at the current row and does not encounter an end-
of-set. The onNavigate event always fires after a search attempt. For more information on how
navigation methods interact with navigation events and implicit saves, see next().

findKey() always performs a partial key match with strings. For example, findKey("S") will find
"Sanders", or whatever is the first key value that starts with the letter "S". To perform a full key
match, pad <exp> with enough extra spaces to match the length of the index key value.

findKeyNearest()
Topic group Related topics

Finds the row with the nearest matching key value.

Syntax

<oRef>.findKeyNearest(<exp> | <exp list>)
<oRef>

The rowset in which to do the search.
<exp>

The value to search for.

<exp list>

One or more expressions, separated by commas, to search for in a simple or composite key
index for non-DBF tables.

220

Language Reference

Property of
Rowset

Description

findKeyNearest() performs an indexed search in the rowset, using the index specified by the
rowset’s indexName property. It looks for the first row in the index whose index key value
matches <exp>, returning true or false to indicate if an exact match is found. If an exact match is
not found, the row cursor is left at the nearest match; the row where the match would have
been. For example, if "Smith" is followed by "Smythe" in the index, and the search expression is
"Smothers", the search will fail and the row cursor will be left at "Smythe". "Smothers" comes
after "Smith" and before "Smythe", so if it was in the index, it would be where "Smythe" is.

You can think of this exact, or nearest matching, as "equal, or the one after," as long as you
remember that "after" depends on the index order. If the index is descending instead of
ascending, then in the previous example, "Smythe" would be followed by "Smith", and a search
for "Smothers"” would end up on "Smith". The row cursor will end up on the end-of-set if the
search value comes after the last value in the index.

findKeyNearest() is a navigation method; calling it fires the canNavigate event. If canNavigate
returns false, findKeyNearest() does not attempt a search. onNavigate always fires after a
search attempt. For more information on how navigation methods interact with navigation
events and implicit saves, see next().

findKeyNearest() always performs a partial key match with strings. For example,
findKeyNearest("Smi") will find "Smith". To perform a full key match, pad <exp> with enough
extra spaces to match the length of the index key value.

first()

Topic group Related topics

Moves the row cursor to the first row in the rowset.

Syntax
<oRef> first()
<oRef>

The rowset in which you want to move the row cursor.

Property of
Rowset

Description

Call first() to move the row cursor to the first row in the rowset. If a filter is active, it moves the
row cursor to the first row in the rowset matching the filter criteria.

As a navigation method, first() interacts with canNavigate, onNavigate, and implicit saves. For
more information, see next().

If a call to first() results in the endOfSet property returning true, either no rows remain that
match the filter criteria or, if no filter is in use, no rows remain in the rowset.

Note

Using the rowset's navigateByMaster property to synchronize movement in master-detail

rowsets, modifies the behavior of the atLast() method. See navigateByMaster for more
information.

221

dBASE Plus 9 LR

flush()

Topic group Related topics Example

Commits data buffers to disk.

Syntax

<oRef>.flush()

<oRef>

The rowset you want to write to disk.
Property of

Rowset

Description

When a row is saved, the changes are written to the rowset data buffer in memory. This buffer is
written to disk only as needed; for example, before another block of rows are read into the
buffer. This eliminates redundant disk writes that would slow your application.

flush() explicitly writes the rowset’s data buffers to disk. Note that if a disk cache is active, the
buffer is written to the disk cache; the cache decides when to actually write the data onto the
physical disk.

refresh() is similar to flush() because in purging cached rows, refresh() writes any rows that
have been changed but not yet committed to disk. flush(') writes the rows, but does not purge
the data buffer; the rows are still cached.

forExpression

Topic group

Limits the records included in the index to those meeting a specific condition.
Property of

Dbflndex

Description

Use the forExpression property to specify which rows in a set to include in the index by entering
a condition that restricts the operation to certain rows. For example, entering, COMPANY =
"Santa Cruz Dry Goods", restricts the index to rows for which the COMPANY field
evaluates to the string "Santa Cruz Dry Goods".

getSchema()

Topic group Related topics Example

Returns information about a database.

Syntax
<oRef>.getSchema(<item expC>)
<oRef>

222

Language Reference

The database you want to get information about.
<item expC>

The information to retrieve, which may be one of the following strings (which are not case-
sensitive):

String Information

DATABASES A list of all databases aliases

PROCEDURES A list of stored procedures defined in the database
TABLES A list of all tables in the database

VIEWS A list of all views in the database

Property of
Database

Description

Use getSchemay() to get a list of all database aliases, or to get information about a specific
database. Some databases may not support PROCEDURES or VIEWS. All lists are returned in
an Array object; if the item is not supported, the array is empty.

Custom data drivers must define this method to return the appropriate information for their
database.

goto()

Topic group Related topics Example

Moves the row cursor to a specific row in the rowset.

Syntax

<oRef>.goto(<bookmark>)

<oRef>

The rowset in which you want to move the row cursor.
<bookmark>

The bookmark you want to move to.

Property of
Rowset

Description

Call goto() to move the row cursor to a specific row in the rowset. Store the current row position
in a bookmark with the bookmark() method. Then you can return to that row later by calling
goto() with that bookmark as long as the rowset has remained open. If the rowset has been
closed, the bookmark is not guaranteed to return you to the correct row, since the table may
have changed.

The bookmark uses the current index represented by the indexName property, if any. The same
physical row in the table returns different bookmarks when different indexes are in effect. When
you goto() a bookmark, the index that was in effect when the bookmark was returned is
automatically activated.

If you attempt to goto() a row that is out-of-set, you will generate an error.

223

dBASE Plus 9 LR

As a navigation method, goto() interacts with canNavigate, onNavigate, and implicit saves. For
more information, see next().

handle [Data objects]

Topic group

The BDE handle of the object.

Property of

Database, Query, Rowset, Session, StoredProc
Description

The handle property represents the BDE handle for the object in question. The handle can be
used if you want to call BDE functions directly.

indexes
Topic group Related topics Example

An array containing the table's index objects.

Property of
TableDef

Description

The TableDef's indexes property provides a means with which to view the properties associated
with a table's array of index objects. As is true with all other TableDef properties, the indexes
property is only intended to provide information about a tables indexes, and does not provide a
means to further affect their values.

indexName [Data objects]

Topic group Related topics Example

The name of the index to use in the rowset.

Property of
Dbfindex, Index, Rowset

Description

indexName contains the name of the active controlling index tag for those table types that
support index tags. It is set automatically when the query is activated to represent the tag used
in the SQL SELECT's ORDER BY clause, if the ORDER BY is satisfied by an index. Assigning
a new value to indexName supersedes any ORDER BY designated in the SQL SELECT
statement.

For tables with primary keys, a blank indexName indicates that the primary key is the controlling
index.

The index tag is also used in a master-detail link. The index tag of the detail rowset must match
the field or fields specified in the masterFields property.

224

Language Reference

When specifying an indexName for data in a report, be sure to set the report’s autoSort property
to false to prevent the report from modifying the SQL statement. The modified SQL statement
may generate a temporary result set that has no indexes; attempting to designate an
indexName would cause an error.

indexName [UpdateSet]
Topic group Related topics

The name of the index to use for indexed UpdateSet operations.

Property of
UpdateSet

Description

The destination rowset or table must be indexed for the update(), appendUpdate(), and
delete() operations. The indexName property specifies the key or tag name that is to be used.
For tables with primary keys, the primary key is used by default. Set the indexName property
only if you want to use another key. For DBF (dBASE) tables, you must specify an index tag
name.

isolationLevel

Topic group Related topics
Determines the isolation level of a transaction.

Property of
Database
Description

The isolationLevel property is an enumerated property that determines the isolation level of a
transaction. It applies to SQL-server database transactions only. For Standard table
transactions, it has no effect. These are the options:

Value Effect
0 Read uncommitted
1 Read committed
2 Repeatable read

The default is Read committed.

iIsRowLocked()

Topic group Related topics

Returns a logical value indicating whether the current rowset has locked the current row.

Syntax
<oRef>.isRowLocked()
<oRef>

225

dBASE Plus 9 LR

An object reference to the rowset.
Property of
Rowset

Description

Use isRowLocked() to determine if the same instance of the current row, in the current rowset,
is locked before an attempt is made to edit or delete a record. isRowLocked returns true to
indicate the row is locked and false to indicate it's not.

The isRowLocked() method only returns information about the current instance of a rowset.
When dealing with multiple instances of a row or rowset, you'll need to attempt an explicit row
lock with the lockRow() method.

isSetLocked()

Topic group Related topics

Returns a logical value indicating whether the current rowset is locked.

Syntax
<oRef>.isSetLocked()
<oRef>

An object reference to the rowset.

Property of
Rowset

Description

Use isSetLocked() to determine if the same instance of the current rowset is locked before an
attempt is made to edit or delete. isSetLocked() returns true to indicate the rowset is locked and
false to indicate it isn't.

The isSetLocked() method only returns information about the current instance of a rowset.
When dealing with multiple instances of a rowset, you'll need to attempt an explicit rowset lock
with the lockSet() method.

keyViolationTableName

Topic group Related topics

Name of the table in which you want to collect rows that could not be added because they would
have caused a key violation.

Property of
UpdateSet

Description

In tables with primary keys, only one row in the table may have a particular primary key value. If
the row to be added during an append() contains a key value that is the same as an already-
existing primary key, that row cannot be added to the table, since it would have caused a
primary key violation. Instead of being added to the destination rowset or table, that row is
copied to the table specified by the keyViolationTableName property.

226

Language Reference

language
Topic group Related topics

The Language Driver currently being used to access a table

Property of
TableDef

Description

Returns a character string indicating the name of the current Language Driver. The value
returned will reflect the language version selected during installation, or specified through the
BDE. Read-only.

languageDriver
Topic group Related topics

The Language Driver currently being used to access a table

Property of

Rowset

Description

Returns a character string indicating the name of the current Language Driver. Read-only.

last()

Topic group Related topics

Moves the row cursor to the last row in the rowset.

Syntax

<oRef>.last()

<oRef>

The rowset in which you want to move the row cursor.
Property of

Rowset

Description

Call last() to move the row cursor to the last row in the rowset. If a filter is active, it moves the
row cursor to the last row in the rowset that matches the filter criteria.

As a navigation method, last() interacts with canNavigate, onNavigate, and implicit saves. For
more information, see next().

If a call to last() results in the endOfSet property returning true, either no rows remain that
match the filter criteria or, if no filter is in use, no rows remain in the rowset.

Going to the last row in a rowset may not be an optimized operation on some SQL servers. For
those servers, calling last() may take a long time for large rowsets.

227

dBASE Plus 9 LR

Note

Using the rowset's navigateByMaster property to synchronize movement in master-detail
rowsets, modifies the behavior of the atLast() method. See navigateByMaster for more
information.

length
Topic group Related topics

The maximum length of the field.

Property of
Field

Description

A field’'s length represents the number of bytes used in the table for that field, and for character
and numeric fields, the maximum length of the item that it can store.

For character fields, the length property represents the maximum number of characters in the
string. Attempting to store more characters in that field results in the string being truncated.

For numeric fields, the length property represents the maximum number of characters in the
number, including the digits, and any sign or decimal point. Attempting to store a number with
more digits than the maximum results in numeric overflow, in which the actual value of the
number is lost, and is simply considered to be bigger than the maximum allowed; it is usually
represented by a string of asterisks.

live
Topic group Related topics

Specifies whether the rowset can be modified.

Property of
Rowset

Description

Before making a query active, you can determine whether the rowset that is generated is
editable or not. You can choose to make it not editable to prevent accidental modification of the
data.

locateNext()
Topic group Related topics

Applies the locate criteria again to search for another row.

Syntax

<oRef>.locateNext([<rows expN>])

<oRef>

The rowset in which to move the row cursor.
<rows expN>

228

Language Reference

The N™ row to find. By default, the next row forward.

Property of
Rowset

Description

When the applyLocate() method is called, it moves the row cursor to the first row that matches
the locate criteria. From then on, you can move forward and backward to other rows that match
the same criteria by calling locateNext().

locateNext() takes an optional numeric parameter that specifies in which direction, forward or
backward, to look and at which match to stop, relative to the current row position. A negative
number indicates a search backward, toward the first row; a positive number indicates a search
forward, toward the last row. For example, a parameter of —3 means to look backward from the
current row to find the third matching row.

If the row cursor encounters the end-of-set before the desired match is found, the search stops,
leaving the row cursor at the end-of-set.

As a navigation method, locateNext() interacts with canNavigate, onNavigate, and implicit
saves. For more information, see next().

locateNext() returns true to indicate that the desired match was found and false to indicate that
it wasn't.

locateOptions

Topic group Related topics

Determines how values are matched for locating.

Property of
Rowset
Description

The locateOptions property is an enumerated property that controls how the value properties in
the field objects entered during Locate mode are matched against the values in the table. These
are the options:

Value Effect
0 Match length and case
1 Match partial length
2 Ignore case
3 Match partial length and ignore case

When matching partial length, the entire search value must match all or part of the value in the
table, starting at the beginning of the field. For example, searching for "Century City", will match
"Century City East", but "East" alone would not.

locateOptions also determines how fields are matched when using an SQL expression with the
applyLocate() method.

The default setting for locateOptions is "Match length and case".

229

dBASE Plus 9 LR

lock

Topic group Related topics Example

The date and time of the last successful lock made to the row.

Property of
LockField

Description

Use lock after a failed lock attempt to determine the date and time of the current lock that is
blocking your lock attempt. The date and time are represented in a string in the following format:
MM/DD/YY HH:MM:SS

This format is accepted by the constructor for a Date object, so you can easily convert the
update string into an actual date/time.

This property is available only for DBF tables that have been CONVERTed.

lockRetryCount

Topic group Related topics

The number of times to retry a lock attempt.

Property of
Session

Description

Any attempt to change the data in a row, for example, typing a letter in a dataLinked Entryfield
control, causes an automatic row lock to be attempted. In addition to the automatic row locking,
you may request an explicit row or rowset lock with the lockRow() and lockSet() methods.

If someone else already has a conflicting lock, the initial lock attempt fails. The lockRetryCount
property indicates the number of times the lock attempt will be retried, while the
lockRetryInterval indicates the number of seconds to wait between each attempt. If after all the
attempts the lock has not been secured, the lock request fails.

lockRetrylnterval

Topic group Related topics
The number of seconds to wait between each lock retry attempt.

Property of
Session

Description

Any attempt to change the data in a row, for example, typing a letter in a dataLinked Entryfield
control, causes an automatic row lock to be attempted. In addition to the automatic row locking,
you may request an explicit row or rowset lock with the lockRow() and lockSet() methods.

If someone else already has a conflicting lock, the initial lock attempt fails. The lockRetryCount
property indicates the number of times the lock attempt will be retried, while the
lockRetryInterval indicates the number of seconds to wait between each attempt. If after all the
attempts, the lock has not been secured, the lock request fails.

230

Language Reference

lockRow()

Topic group Related topics Example

Attempts to lock the current row.

Syntax
<oRef>.lockRow()
<oRef>

The rowset in which you want to lock the current row.
Property of
Rowset

Description

An automatic row lock is attempted whenever the value property of a Field object is modified,
either directly by assignment, or indirectly through a dataLinked control.

You may use lockRow() to attempt an explicit row lock. Whether the lock is automatic or
explicit, it will fail if the current row or the entire rowset is already locked.

lockRow() returns true to indicate that the lock was successful and false to indicate that it
wasn't.

Row locking support varies among different table types. The Standard (DBF and DB) tables fully
support row locking; most SQL servers do not. For servers that do not support true locks, the
Borland Database Engine emulates optimistic locking. Any lock request is assumed to succeed.
Later, when the actual attempt to change the data occurs, if the data has changed since the lock
attempt, an error occurs.

lockSet()

Topic group Related topics

Attempts to lock the entire rowset.

Syntax
<oRef>.lockSet()
<oRef>

The rowset you want to lock.
Property of

Rowset

Description

You may use lockSet() to attempt to lock the entire rowset. The rowset cannot be locked if
someone else already has any other row or set locks on the rowset.

Set locks are session-based. Once a lockSet() attempt succeeds, all other lockSet() requests
for the same set from rowsets in queries assigned to the same session will succeed. Query
objects must be assigned to different Session objects for set locking to work properly.

231

dBASE Plus 9 LR

Locking the rowset is not the same as accessing the table exclusively. Exclusive access means
that you are the only one who has the table open. In contrast, locking a rowset allows others to
view, but not modify, the rowset.

lockSet() returns true to indicate that the lock was successful and false to indicate that it wasn't.

Set locking support varies among different table types. The Standard (DBF and DB) tables fully
support set locking, as do a few SQL servers. For servers that do not support true locks, the
Borland Database Engine emulates optimistic locking. Any lock request is assumed to succeed.
Later, when the actual attempt to change the data occurs, if the data has changed since the lock
attempt, an error occurs.

lockType
Topic group Related topics

Determines whether or not explicit locks can be released by a call to rowset.save().

Property of
Rowset

Description
Allowed values for lockType are:
0 - Automatic = row locks obtained by calling rowset.lockrow() are released by calls to Save() or Abandon()
1 - Explicit = row locks obtained by calling rowset.lockrow() are NOT released by calls to Save() or Abandon()

The default for lockType is 0 - Automatic unless an overriding setting is set In plus.ini or the
application's .ini file.

ini file setting example:
[Rowset]
LockType=0 (or)
LockType=1
Allows user to set default rowset.lockType via ini setting.

logicalSubType

Topic group Related topics
A database independent name indicating the data subtype of the value stored in a field.

Property of
CalcField, DbfField, Field, PdxField, SqlField

Description

Each database engine has its own set of data types that are referred to as its native data types.
A data type in one database engine may be physically identical to a data type used by another
database engine, but have a different name.

Mapping these native types to a set of database independent (logical) data types allows
physically identical data types to have the same logicalType even when their native data types
differ.

232

Language Reference

For example, the logical type for both a Paradox table’s “Alpha” field and a dBASE table’s
“Character” field is “ZSTRING”. This indicates they are both character strings with a null byte at

the end of the string.

Some logicalTypes contain sub groupings, called logicalSubTypes, which specify further the
type of data that can be stored in each field type. It may be necessary, therefore, to also
compare logicalSubTypes when checking for data type compatibility.

For example, a BLOB logicalType may also contain one of the following logicalSubTypes:

MEMO
BINARY
FMTMEMO
OLEOBJ
GRAPHIC
DBSOLEOBJ
TYPEDBINARY
ACCOLEOBJ

The following table lists possible values for the logicalSubType property:

logicalType logicalSubType Description

FLOAT MONEY Money

BLOB MEMO Text memo
BINARY Binary data
FMTMEMO Formatted text
OLEOBJ OLE object (Paradox)
GRAPHIC Graphics object
DBSOLEOBJ dBASE OLE object
TYPEDBINARY Typed binary data
ACCOLEOBJ Access OLE object

ZSTRING PASSWORD Password
FIXED CHAR type
UNICODE Unicode

INT32 AUTOINC Auto Increment value

Tip: Using the logicalType and logicalSubType properties, you could write a dBASE Plus program to check whether
data from a table containing a DbfField data type can be copied to a table containing a PdxField data type.

logicalType

Topic group Related topics

A database independent hame indicating the data type of the value stored in a field.

Property of

CalcField, DbfField, Field, PdxField, SqlField

Description

Each database engine has its own set of data types that are referred to as its native data types.
A data type in one database engine may be physically identical to a data type used by another
database engine, but have a different name.

Mapping these native types to a set of database independent (logical) data types allows
physically identical data types to have the same logicalType even when their native data types
differ.

233

dBASE Plus 9 LR

For example, the logical type for both a Paradox table’s, “Alpha”, field and a dBASE table’s,
“Character”, field is “ZSTRING”. This indicates they are both character strings with a null byte at
the end of the string.

Note: The Field object’s type property contains the native type of a field.
The following table lists possible values for the logicalType property:

logicalType Description

UNKNOWN

ZSTRING Null terminated character string

DATE Date (32 bit)

BLOB Short for, "binary large object", a collection of binary data stored as a
single entity in a database management system.

BOOL Boolean

INT16 16 bit signed integer

INT32 32 bit signed integer

FLOAT 64 bit floating point

BCD Binary Coded Decimal

BYTES Fixed number of bytes

TIME Time (32 bit)

TIMESTAMP Time-stamp (64 bit)

UINT16 Unsigned 16 bit integer

UINT32 Unsigned 32 bit integer

FLOATIEEE 80 bit IEEE float

VARBYTES Length prefixed string of bytes

LOCKINFO Lock for LOCKINFO typedef

CURSOR For Oracle Cursor type

Tip: Using the logicalType property, you could write a dBASE Plus program to check whether data from a table
containing a DbfField data type can be copied to a table containing a PdxField data type.

login()

Topic group Related topics Example

Logs in user to DBF table security for a session.

Syntax
<oRef>.login(<group name expC>, <user name expC>, <password expC>)
<oRef>

The session to log into.
<group name expC>
The group name.
<user name expC>

The user name.
<password expC>

The password.
Property of

Session

Description

234

Language Reference

DBF table security is session-based. All queries assigned to the same session in their session
property have the same access level.

If someone attempts to open an encrypted table and has not logged in to the session, they will
be prompted for the group name, user name, and password. Responding attempts to log the
user into the session.

The login() method allows you to log in to the session directly. You can do this if you're
assigning a default access level, so that users won't be prompted; or if you're writing your own
custom login form, in which case you will need to call login(') with the returned values.

login() returns true or false to indicate whether the login was successful.

loginDBAlias

Topic group Related topics

The currently active database alias, or BDE alias, from which to obtain login credentials (user id
and password) to be used in activating an additional connection to a database.

Property of
Database

Description

The loginDBAlias property can be used to setup additional connections to a database without
having to prompt the user each time for login credentials.

The default value for the loginDBAlias property is an empty string.
Using the loginDBAlias property
1. Create a database object.
2. Set the databaseName property of the new database object to the appropriate database alias.

3. From an already active database object, assign the value from its databaseName property to the new
database object's loginDBAlias property.

4. Set active to true on the new database object.
When activating the new database object, dBASE will lookup the user id and password used to

login to the already active database object and submit them to the database engine in the same
way it submits a loginString.

If the user id and password are valid, the user will not be prompted to enter any login credentials
for the new database object.

loginString
Topic group Related topics
The user name and password to use to log in to a database.

Property of
Database
Description

Some databases require that you log in to them to access their tables. When you set the
Database object's active property to true to open the connection, a login dialog will appear,
prompting the user for the user name and password.

235

dBASE Plus 9 LR

You can prevent the login dialog from appearing by setting the loginString property to a string
containing a valid user name and password of the form "userName/password". If the user name
and password provided through loginString are not valid, the login dialog will appear when you
attempt to activate the database.

lookupRowset

Topic group Related topics Example

The rowset containing lookup values for a field.

Property of
Field

Description

Use lookupSQL or lookupRowset to implement automatic lookups for a field. For information on
how automatic lookups work, see lookupSQL.

The simpler implementation is to set the lookupSQL property. This automatically generates a
lookup rowset, which you can reference through the lookupRowset property.

The more advanced technique is to generate your own lookup rowset, which must follow the
same structure as detailed for lookupSQL. Then assign a reference to this rowset to the
lookupRowset property. Doing so releases any internal rowset generated for lookupSQL, if any.
This technique might be used if you want to use the same lookup for multiple fields.

lookupSQL

Topic group Related topics Example

An SQL SELECT statement describing a rowset that contains lookup values for a field.

Property of
Field

Description

Use lookupSQL or lookupRowset to implement automatic lookups for a field. When a control
that supports lookups, like the ComboBox control, is dataLinked to a field with either lookupSQL
or lookupRowset defined, the control will:

Populate itself with display values from the lookup rowset

Lookup the true value of the field in the lookup rowset

Display the corresponding lookup value in the control

Do the reverse lookup when the display value in the control is changed

Write the corresponding true value back to the field

If the display lookup fails, a blank is displayed in the control. If the reverse lookup fails, a null is
written to the field.

The same automatic lookups are applied when accessing the value property of the field. The
value of the field will appear to be the lookup value. Assigning to the value will perform the
reverse lookup.

Setting the lookupSQL property is the simpler way of implementing automatic lookups.
lookupSQL contains an SQL statement of the form:

236

Language Reference

SELECT <lookup field>, <display field> [,...] FROM <lookup table> [<options>]

The first two fields must be the lookup field and the display field, respectively. The display field
may be a calculated field. You may include other fields so that you can get information about the
chosen row. The SQL SELECT statement may include the usual options; in particular, you may
want the table to be ordered on the lookup field (or use a table where such an index is available)
for faster lookups. The SQL statement is executed in the same database as the query (or stored
procedure) that contains field’s rowset.

When an SQL statement is assigned to lookupSQL, the lookupRowset property will contain a
reference to the generated rowset. You may refer to the fields in the matched lookup row
through this reference. For advanced applications, you may assign your own rowset to
lookupRowset. This releases the generated rowset.

Note

When a field's lookupSQL property is set, and that field is referenced in the rowset's filter
property, the value being compared by the filter is the field's true value, not the lookup value.

lookupTable

Topic group Related topics

The table used for a DB (Paradox) field’'s lookup.

Property of
PdxField

Description

lookupTable contains the name of the lookup table used to assist in the filling in of the field
represented by the PdxField object. For more information on Paradox table lookups, see

lookupType.

lookupType

Topic group Related topics

The type of lookup used by a DB (Paradox) field.

Property of
PdxField
Description

lookupType specifies the type of lookup used to assist in the filling in of the field represented by
the PdxField object. It is an enumated property that can have one of the following values:

Value Description

No lookup
Lookup field only, no help

0
1
2 Lookup and fill all corresponding fields, no help
3 Lookup field only, with help

4

Lookup and fill all corresponding fields, with help

237

dBASE Plus 9 LR

dBASE Plus does not support the user interface required for Paradox lookup help. Also, validity
checking is not performed whenever all corresponding fields are filled; this is so that (in
Paradox) you can substitute the field value with the value of a same-named field in the lookup
table that is not the lookup field.

Therefore, the only support for Paradox lookups in dBASE Plus is for validity checking; to make
sure the value stored in the field is listed in the lookup field in the lookup table, and only when
lookupType is set to 1 or 3. For example, a Customer ID field in an Orders table can check that
the Customer ID is listed in the Customer table. An attempt to store an unlisted value in the field
results in a database engine-level exception.

Consider using the automatic lookup provided by lookupSQL and lookupRowset instead.

masterChild
Topic group Related topics

Specifies whether the rows in a child table are constrained to only those rows matching the key
value from a row in the parent table.

Property of
Rowset

Description
The masterChild property is set in the detail rowset (child table in a master-child relation).
masterChild can be set to either:

0 — Constrained (default)

1 — UnConstrained

When constrained, the child table in a relation is filtered so that only rows that match the key
value from a row in a parent table can be navigated to and displayed in a data object. If no child
rows match the current parent row, then no child rows can be navigated to or shown in a data
object.

When unconstrained, navigating in a parent table triggers any child tables to be positioned at
the first child row that matches the parent row. All child rows can still be navigated to and
displayed in a data object. If no matching child rows exist for the current parent row, the child
table is positioned to the last record for the current index order.

The masterChild property is ignored if the masterRowset and masterFields rowset properties
have not been set and a link established to the parent table.

masterFields

Topic group Related topics Example

A list of fields in the master rowset that link it to the detail rowset.

Property of
Rowset
Description

The masterFields property is set in the detail rowset. It is a string that contains a list of fields in
the master rowset that are matched against the detail rowset’s active controlling index, as

238

Language Reference

specified by the indexName property. By setting the property in the detail rowset, one master
rowset can control multiple detail rowsets.

The masterRowset property should be set before masterFields. Once masterFields is set, by
default, the detail rowset is constrained to show the detail rows that match the current row in the
master rowset. To override the constraint, set the rowset’s masterChild property to 1 —
Unconstrained.

You may cancel the master-detail link by setting either property to an empty string.

For table formats that support multi-field indexes (DBF does not—it uses expression indexes
instead), multiple fields in the masterFields list are separated by semicolons.

You may link the rowsets through an expression by creating a calculated field in the master
rowset and using that calculated field name in the masterFields list.

masterRowset

Topic group Related topics Example

A reference to the master rowset that is linked the detail rowset.

Property of
Rowset

Description

The masterRowset property is set in the detail rowset. It is an object reference to the master
rowset that constrains the detail rowset. By setting the property in the detail rowset, one master
rowset can control multiple detail rowsets.

The masterRowset property should be set before masterFields. Once masterFields is set, the
detail rowset is constrained to show the detail rows that match the current row in the master
rowset. To override the constraint, set the detail rowset’s masterChild property to 1 —
Unconstrained.

You may cancel the master-detail link by setting either property to an empty string.

masterSource

Topic group Related topics Example

A reference to the rowset that acts as the master in a master-detail link and provides parameter
values.

Property of
Query
Description

Use masterSource to create a master-detail link between two queries where parameters are
used in the detail query. masterSource is assigned a reference to the rowset in the master
query.

By setting the masterSource property, the parameters in the SQL statement are automatically
substituted with matching fields from the master rowset, thereby constraining the detail query.
Calculated fields may be used. The fields are matched to the parameters by name. The field
name match is not case-sensitive.

239

dBASE Plus 9 LR

As navigation occurs in the masterSource rowset, the parameter values are resubstituted and
the detail query is requeried.

An alternate approach to creating a master-detail link is through the masterRowset and
masterFields properties. While masterRowset and masterFields are used to link one rowset to
another using an index and matching field values, masterSource creates a query-to-rowset link
between the parameters in the detail query and the master rowset.

maximum
Topic group Related topics

The maximum allowed value of a field.

Property of
DbfField, PdxField

Description

maximum specifies the maximum allowed value of the field represented by the field object. A
blank value indicates no maximum. The maximum is the same data type as the field, except for
numeric fields that have no maximum; in that case, maximum is null.

Only character, date, and numeric fields (all variations) have a maximum. DBF tables must be
level 7 to support maximum.

If you dataLink a SpinBox component to a field with a maximum, that value becomes the default
rangeMax property of that component.

minimum
Topic group Related topics

The minimum allowed value of a field.

Property of
DbfField, PdxField

Description

minimum specifies the minimum allowed value of the field represented by the field object. A
blank value indicates no minimum. The minimum is the same data type as the field, except for
numeric fields that have no minimum; in that case, minimum is null.

Only character, date, and numeric fields (all variations) have a minimum. DBF tables must be
level 7 to support minimum.

If you datalLink a SpinBox component to a field with a minimum, that value becomes the default
rangeMin property of that component.

modified

Topic group Related topics Example

A flag to indicate whether the current row has been modified.

Property of

240

Language Reference

Rowset

Description

The modified property indicates whether the current row has been modified. It is automatically
set to true whenever the value of any Field object is changed, either directly by assignment, or
indirectly through a dataLinked control.

If modified is true, then an attempt to save the row is made if there is navigation off the row or a
state switch in the rowset. If modified is false, then this implicit save is not attempted.

modified is set to false whenever a row is read into the row buffer after navigating to it, is
refreshed by refreshRow() or refresh(), or is saved. You may also set the modified property to
true or false manually. For example, you can set modified to false after assigning some value
properties during an onAppend event. This makes the values you filled in default values, and
the row will not be automatically saved if the user does not add more information.

In addition to tracking changes during normal data entry, the modified property is also set to true
during Filter and Locate modes. This allows you to determine if any criteria have been specified
before attempting an applyFilter() or applyLocate(). When in either of these modes, navigation
cancels the mode and moves the row cursor relative to the last row position, but no save is
attempted, even if modified is true.

name [Data object]

Topic group

claThe name of a custom data object
Property of

All Data object classes

Description

The Data object name property simply identifies the name associated with a particular Data
Object. This property is read-only and is assigned when the object is created.

navigateByMaster

Topic group Related topics

Use the navigateByMaster property to flag a detail rowset to move when its master rowset is
moved. The navigateByMaster property allows detail rowsets and a linked master rowset to be
navigated as though they were part of a single, combined rowset (similar to the xDML SET SKIP
command).

Property of
Rowset

Description

When set to true in a detail rowset, navigateByMaster signals the linked master rowset to
navigate through any matching detail rows before moving to a new master row.

More specifically, navigateByMaster :

Flags a detail rowset so its row cursor is moved when its master rowset’s next(), first(), or last() methods are
called

241

dBASE Plus 9 LR

Flags a detail rowset so its atFirst() or atLast() methods are called when its master rowset’s atFirst() or atLast()
methods are called.
When a master rowset has one or more detail rowset’s with navigateByMaster set to true, the
behavior of the following rowset methods is modified as follows:

first() Ensures that linked detail rowsets are positioned to the first row matching the first master
row. After positioning a master rowset to its first row, the masters first() method positions any
linked detail rowsets to their first matching row, which in turn position any linked grandchild
rowsets to their first row matching their master rowsets. This process continues recursively
through the entire tree of linked rowsets.

next() Attempts to move detail and master rowsets such that they appear to have moved one
or more rows relative to their starting positions, as if they were a single combined rowset. next()
can be called with an optional numeric parameter specifying the direction (positive to move
forward, negative to move backward) and number of rows to move. If no parameter is specified,
next() defaults to moving one row forward. next() will return true if it is able to move the number
of rows specified, otherwise it returns false.

next() moves the row cursors according to the following rules:

next() will only move linked detail rowsets that have their navigateByMaster property set to true.
next() will attempt to move these linked detail rowsets before moving the master rowset.

If a rowset has more than one linked detail rowset, next() will attempt to move them in the order in which they were
linked to the master rowset. In addition, only detail rows matching the current master row will be moved (i.e.
navigation occurs as if the master-detail link is constrained)

When moving in a detail rowset, next() will continue moving in the same detail rowset until it moves the number of
rows requested, or it reaches end-of-set (i.e. no more detail rows are found matching the current master row). If
the detail rowset has reached end-of-set, and there are still more rows to be moved, next() will continue with the
next linked detail rowset or, if there are no other linked detail rowsets, next() will move the master rowset one
row and synchronize the linked detail rowsets to:

their first matching row (if moving forward)

their last matching row (if moving backward)

end-of-set (if no matching row is found).

If there are still more rows to be moved to, next() will repeat this process starting once again with the first linked
detail rowset.

If a linked detail rowset , for example d1, is itself a master rowset and has its own detail rowset , d2, (with
navigateByMaster set to true), it will act as a master rowset and follow the same sequence of events described
above. The net result of this sequence is that the lowest detail rowset (d2 in this example) will be moved first.
When d2 reaches end-of-set, its master rowset, d1, will be moved. When d1 reaches end-of-set, its master
rowset will be moved.

last() Ensures that linked detail rowsets are positioned to the last row matching the last master
row. After positioning a master rowset to its last row, the master’s last() method positions any
linked detail rowsets to their last matching row, which in turn position any linked grandchild
rowsets to their last row matching their master rowsets. This process continues recursively
through the entire tree of linked rowsets.

atFirst() Returns true when a master rowset is at the first row and all linked detail rowsets,
whose navigateByMaster properties are set to true, are at their first matching rows. Otherwise
returns false.

atLast() Returns true when a master rowset is at the last row and all linked detail rowsets,
whose navigateByMaster properties are set to true, are at their last matching rows. Otherwise
returns false.

The navigateByMaster property’s default is false.
To use this property:
In the detail rowset, set navigateByMaster to true

242

Language Reference

Specify the master rowset for the form.rowset (using the standard toolbar’s navigation buttons).

Specify the master rowset as the grid's datalink if you want to setup a grid containing columns from both the master
and linked detail rowsets.

Set the grandchild rowset's navigateByMaster to true to add additional master detail levels (such as parent, child,
grandchild):

Grid and Browse classes

dBASE Plus's Grid class now provides correct rowset navigation when datalinked to a master
rowset with at least one detail rowset whose navigateByMaster is set to true.

Similarly, dBASE Plus’s Browse class provides correct navigation when controlled by a table
using XDML SET RELATION and SET SKIP commands.

navigateMaster

Topic group Related topics

Allows a linked-detail rowset to affect movement in its master rowset so that master and detail
rowsets are navigated as though they were part of a single, combined rowset (similar to the
XDML SET SKIP command).

Property of
Rowset

Description

When a detail rowset’s next() method reaches end-of-set, after having been called explicitly
with it's navigateMaster property set to true, it will move its master rowset to the next row in the
master rowset’s current order.

The navigateMaster property’s default is false.

next()

Topic group Related topics

Moves the row cursor to another row relative to the current position.

Syntax

<oRef>.next([<rows expN>])

<oRef>

The rowset in which you want to move the row cursor.

<rows expN>

The number of rows you want to move. By default, the next row forward.

Property of
Rowset
Description

next() takes an optional numeric parameter that specifies in which direction, forward or
backward, to move and how many rows to move through, relative to the current row position. A
negative number indicates a search backward, toward the first row; a positive number indicates
a search forward, toward the last row. For example, a parameter of 2 means to move forward
two rows.

243

dBASE Plus 9 LR

If a filter is active, it is honored.

If the row cursor encounters the end-of-set while moving, the movement stops, leaving the row
cursor at the end-of-set, and next() returns false. Otherwise next() returns true.

Navigation methods such as next() will cause the rowset to attempt an implicit save if the
rowset’s modified property is true. The order of events when calling next() is as follows:
1. If the rowset has a canNavigate event handler, it is called. If not, it's as if canNavigate returns true.
0 If the canNavigate event handler returns false, nothing else happens and next() returns false.
0 If the canNavigate event handler returns true, the rowset’s modified property is checked.
0 If modified is true:

= The rowset'scanSave event is fired. If there is no canSave event, it's as if canSave
returns true.

= |f canSave returns false, nothing else happens and next() returns false.

= |f canSave returns true, dBASE Plus tries to save the row. If the row is not saved,
perhaps because it fails some database engine-level validation, a DbException occurs—
next() does not return.

= |f the row is saved, the modified property is set to false, and the onSave event is fired.
0 After the current row is saved (if necessary):

= The row cursor moves to the designated row.

= The onNavigate event fires.

= next() returns true (if the navigation did not end up at the end-of-set).

Other navigation methods go through a similar chain of events.
Note

Using the rowset's navigateByMaster property to synchronize movement in master-detalil
rowsets, modifies the behavior of the next() method. See navigateByMaster for more
information.

notifyControls

Topic group Related topics

Specifies whether dataLinked controls are updated as field values change or the row cursor
moves.

Property of
Rowset

Description

notifyControls is usually true so that dataLinked controls are automatically updated as you
navigate from row to row or when you directly assign values to the value property of Field
objects.

You may set notifyControls to false if you are performing some data manipulation and don’t
want the overhead of constantly updating the controls.

When notifyControls is set to true, the controls are always refreshed, as if refreshControls() was
called.

onAbandon

Topic group Related topics Example

244

Language Reference

Event fired after the rowset is successfully abandoned.

Parameters
none

Property of
Rowset

Description

A rowset may be abandoned explicitly by calling its abandon() method, or implicitly via the user
interface by pressing Esc or choosing Abandon Row from the default Table menu or toolbar
while editing table rows. While the canAbandon event fires first to see if the abandon actually
takes place, onAbandon fires after the abandon occurs.

If you are abandoning changes made to a row, the row is automatically refreshed, so there is no
need to call refreshRow() in the onAbandon. However, this is not considered navigation, so if
you have an onNavigate event handler, you should call it from onAbandon.

onAppend
Topic group Related topics Example

Event fired after the rowset successfully enters Append mode.

Parameters
none

Property of
Rowset

Description

A rowset may be put in Append mode explicitly by calling its beginAppend() method, or
implicitly via the user interface by choosing Append Row from the default Table menu or toolbar
while editing table rows. While the canAppend event fires first to see if the new append actually
takes place, onAppend fires after the row buffer has been cleared and is ready for new values.

You can use onAppend to do things like automatically time stamp the new row or fill in default
values. If you use onAppend to set field values, set the modified property to false at the end of
the event handler to indicate that the row hasn’t been changed by the user. This way, if the user
does not add any more data, the row will not be saved automatically if they navigate to another
row or try to append another.

onChange
Topic group Related topics Example

Event fired after a field's value property is successfully changed.

Parameters
none

Property of
Field (including DbfField, PdxField, SqlField)

245

dBASE Plus 9 LR

Description

A Field object’s value property may be changed directly by assigning a value to it, or indirectly
through a dataLinked control. When assigning a value, the change occurs during the
assignment statement. When using a dataLinked control, the change doesn’t happen until the
user tries to move the focus to another control. In both cases, canChange fires first to see if the
change can actually take place. If it does, the value is changed and then onChange is fired.

onClose
Topic group Related topics

Event fired after a query or stored procedure is successfully closed.

Parameters
none

Property of
Query, StoredProc

Description

An attempt to close a query or stored procedure occurs when its active property, or the active
property of the object’s database, is set to false. If the object’s rowset has been modified,
dBASE Plus will try to save it, so the close attempt can be canceled by the rowset’s canSave
event handler. If not, the row is saved.

The close can also be prevented by the Query or StoredProc object’s canClose event handler. If
not, the object is closed, and its onClose event fires.

Because onClose fires after the rowset has closed, you can no longer affect its fields. If you
want to do something with the rowset’s data when the rowset closes, use the canClose event
instead, and have the event handler return true.

onDelete

Topic group Related topics

Event fired after a row is successfully deleted.

Parameters
none
Property of
Rowset
Description

A row may be deleted explicitly by calling the delete() method, or implicitly via the user interface
by choosing Delete Rows from the default Table menu or toolbar while editing table rows. While
the canDelete fires first to determine if the row is actually deleted, onDelete fires after the row
has been removed.

Because the row has been removed by the time onDelete fires, the row cursor is at the next row
or the end-of-set when onDelete fires. However, this movement is not considered navigation, so
if you have an onNavigate event handler, you should call it from onDelete.

246

Language Reference

onEdit

Topic group Related topics

Event fired after the rowset successfully enters Edit mode.

Parameters
none

Property of
Rowset

Description

The beginEdit() method is called (implicitly or explicity) to put the rowset in Edit mode. While
the canEdit event fires first to see if the switch to Edit mode actually takes place, onEdit fires
after the rowset has switched to Edit mode.

You can use onEdit to do things like automatically record when edits take place, or to save
original values for auditing.

onGotValue

Topic group Related topics

Event fired after a field’s value property is successfully read.

Parameters
none

Property of
Field (including DbfField, PdxField, SqlField)

Description

onGotValue is fired when reading a field’'s value property explicitly and when it is read to update
a dataLinked control. It does not fire when the field is accessed internally for SpeedFilters, index
expressions, or master-detail links, or when calling copyToFile().

onNavigate

Topic group Related topics Example

Event fired after successful navigation in a rowset.

Parameters
<method expN>
Numeric value that indicates which method was called to fire the event:

Value Method
1 next()
2 first()
3 last()

247

dBASE Plus 9 LR

4 All other navigation
<rows expN>
Number of rows next() method was called with. Zero if next() was not used.

Property of
Rowset

Description

Navigation in a rowset may occur explicitly by calling a navigation method like next() or goto(),
or implicitly via the user interface by choosing a navigation option from the default Table menu
or toolbar while viewing a rowset. While canNavigate fires first before the row cursor has moved
to see if the navigation actually takes place, onNavigate fires after the row position has settled
on the desired row or end-of-set.

Because onNavigate fires when moving to the end-of-set and you cannot access field values
when you’re at the end-of-set, you may want to test the rowset’s endOfSet property before you
attempt to access field values in your onNavigate handler.

You can use onNavigate to update non-dataLinked controls or calculated fields. In that case,
you may want to call your onNavigate handler from the onOpen event as well, so that these
objects are up-to-date when the rowset first opens.

When navigation occurs because a row has been abandoned or deleted, onNavigate does not
fire. Call the onNavigate event handler from the onAbandon and onDelete event handler.

onOpen
Topic group Related topics Example

Event fired after query or stored procedure is opened successfully.

Parameters

none

Property of
Query, StoredProc

Description

onOpen fires after the Query or StoredProc object has successfully opened after its active
property has been set to true.

onProgress

Topic group Example

Event fired periodically during long-running data processing operations.
Parameters

<percent expN>

The approximate percent-complete of the operation, from 0 to 100. When a message is passed,
<percent expN> is the value -1.

<message expC>

248

Language Reference

A text message from the database engine.

Property of
Session

Description

Use onProgress to display progress information during data processing operations such as
copying or indexing.

onProgress fires for the following operations:

Database::copyTable() COPY TABLE All UpdateSet methods APPEND FROM

Database::createlndex() COPY TO INDEX ON SORT

The onProgress event handler receives two parameters, but only one of them is valid for any
given event. You may get either:

1. A percent-complete from 0 to 100 in <percent expN>, in which case <message expC> is a blank string,
or

0 A message in <message expC>, in which case <percent expN> is -1.

onSave
Topic group Related topics
Event fired after successfully saving the row buffer.

Parameters
none
Property of
Rowset

Description

The row buffer may be saved explicitly by calling save(), or implicitly by navigating in the rowset
or closing the rowset. While canSave is fired first to verify that data is good before allowing it to
be written, onSave fires after the row has been saved.

open()

Topic group Related topics

Opens a database connection.

Syntax

This method is called implicitly by the Database object.
Property of

Database

Description

The open() method opens the database connection. It is called implicitly when you set the
Database object’s active property to true. In typical usage, you do not call this method directly.

249

dBASE Plus 9 LR

Advanced applications may override the definition of this method to perform supplementary
actions when opening the database connection. Custom data drivers must define this method to
perform the appropriate actions to open their database connection.

packTable()

Topic group Related topics

Packs a Standard table by removing all deleted rows.

Syntax
<oRef>.packTable(<table name expC>)
<oRef>

The database in which the table exists.
<table name expC>

The name of the table you want to pack.

Property of
Database

Description

For DBF (dBASE) tables, packTable() removes all the records in a table that have been marked
as deleted, making all the remaining records contiguous. As a result, the records are assigned
new record numbers and the disk space used is reduced to reflect the actual number of records
in the table. Adding an autoincrement field will automatically pack the DBF table.

For DB (Paradox) tables, packTable() removes all deleted records and redistributes the
remaining records in the record blocks, optimizing the block structure.

To refer to a Standard table, you can always use the default database in the default session by
referring to it through the databases array property of the _app object. For example,

_app-databases[1]-.packTable("Customer")

A couple observations regarding the packTable() method:
The packTable() method returns true or false to indicate whether the packing operation was succesfull.

Packing is a maintenance operation that requires exclusive access to the table. The packTable() method will fail -
return false - if someone else has the table open.

The packTable() method can return a value of true without any records actually being deleted. A return value of
true only indicates the operation encountered no errors. It does not imply that records were deleted. If no records
were marked as deleted, the packTable() method will return true as long as it does not encounter any errors.

In order to catch any errors that might occur, it is recommended that packTable() be used in a try/endtry construct.

params

Topic group Related topics Example

Parameters for an SQL statement or stored procedure call.

Property of
Query, StoredProc
Description

250

Language Reference

The params property contains an associative array that contains parameter names and values,
if any, for an SQL statement in a Query object or a stored procedure call in a StoredProc object.

For a Query object, assigning an SQL statement with parameters to the sql property
automatically creates the corresponding elements in the params array. Parameters are
indicated by colons. The values you want to substitute are then assigned to the array elements
in one of two ways:

1. Manually, before the query is activated or requeried with requery().

0 By assigning a masterSource to the query, in which case parameters are substituted with the
matching fields from the fields array of the masterSource’s rowset. Parameters are matched
to fields by name.

For a StoredProc object, the Borland Database Engine will try to get the names and types of
any parameters needed by a stored procedure, once the procedure name is assigned to the
procedureName property. This works to varying degrees for most SQL servers. If it succeeds,
the params array is filled automatically with the corresponding Parameter objects. You must
then assign the values you want to substitute to the value property of those objects.

For SQL servers that do not return the necessary stored procedure information, include the
parameters, preceded with colons, in parentheses after the procedure name. The corresponding
Parameter objects in the params array will be created for you; then you must assign the
necessary type and value information.

picture

Topic group Related topics

A template that formats input to a DB (Paradox) field.

Property of
PdxField

Description

A picture uses special template symbols to format data entry into a field. However, many
Paradox template symbols do not match dBASE Plus template symbols, so a picture for a DB
field probably won't work as-is in the picture property of a control unless it's very simple, for
example "999.99".

dBASE Plus does not enforce the DB field template. The picture property is informational only.

precision
Topic group Related topics

The number of digits allowed in an SQL-based field.

Property of
SqlField
Description

The precision property specifies the maximum number of digits that can be stored in a field
represented by the SqlField object. The more digits allowed, the greater the precision or
accuracy of a number.

251

dBASE Plus 9 LR

prepare()

Topic group Related topics Example

Prepares an SQL statement or stored procedure.

Syntax
<oRef>.prepare()
<oRef>

The object you want to prepare.

Property of
Query, StoredProc

Description

prepare() prepares the stored procedure named in the procedureName property of a
StoredProc object or the SQL statement stored in the sql property of a Query object. If the
object is connected to an SQL-server-based database, the prepare message is passed on to
the server.

Preparing an SQL statement or stored procedure call includes compiling the statement and
setting up any optimizations. If the statement includes parameters, the statement can be
prepared first, and, sometime later, you can get the parameter values from the client. Then the
prepared statement and its parameters are ready for execution. By separating the client and
server activities, things run a bit faster.

Preparing is part of the process that occurs when you set an object’s active property to true, so
you're never required to call prepare() explicitly.

problemTableName

Topic group Related topics

Name of the table in which you want to collect rows that could not be used during an update
operation because of some problem other than a key violation.

Property of
UpdateSet
Description

In addition to key violations, problems during update operations are often caused by things like
mismatched fields. If a row could not be transferred from the source to the destination because
of a problem, it is instead copied to the table specified by the problemTableName property.

procedureName

Topic group Related topics Example

The name of the stored procedure to call.

Property of
StoredProc

252

Language Reference

Description

Set the procedureName property to the name of the procedure to call. The Borland Database
Engine will try to get the names and types of any parameters needed by the stored procedure.

The following databases return complete parameter name and type information:
InterBase
Oracle
ODBC, if the particular ODBC driver provides it

The following databases return the parameter name but not the type:

Microsoft SQL Server
Sybase

The following database does not return any parameter information:
Informix

If the BDE can get the parameter names, the params array is filled automatically with the
corresponding Parameter objects. You must then assign the values to substitute to the value
property of those objects.

For SQL servers that do not return the necessary stored procedure information, include the
parameters, preceded with colons, in parentheses after the procedure name. Empty Parameter
objects will be created.

If the type of the parameter or the data type of the value for output parameters is not provided
automatically, it must be set before calling the stored procedure, in addition to any input values.

readOnly

Topic group Related topics

Whether a DBF (dBASE) or DB (Paradox) field is read-only.

Property of

DbfField, PdxField

Description

readOnly indicates whether the field represented by the Field object is read-only or not.

ref
Topic group Related topics Example

A reference to the active data module object.

Property of
DataModRef

Description

After activating the DataModRef object, you may reference the data module object through the
DataModRef object’s ref property.

refresh()

253

dBASE Plus 9 LR

Topic group Related topics

Refreshes data in the entire rowset.

Syntax
<oRef>.refresh()

<oRef>

The rowset you want to refresh.

Property of
Rowset

Description

To increase performance, rows are cached in memory as they are encountered. If the row
cursor revisits a cached row, it can be reread quickly from memory instead of the disk. refresh()
purges all cached rows—not to be confused with cached updates—for the rowset, forcing
dBASE Plus to reread the data from disk. It discards any changes to the row buffer, so a row
that has been modified is not saved. When the rowset is refreshed, any dataLinked controls are
also refreshed with values for the current row if notifyControls is true.

refresh() does not regenerate the rowset. If the rowset is not live, refresh() has no effect. Use
requery() to regenerate the rowset.

refreshControls()

Topic group Related topics

Refreshes any controls that are dataLinked to the current row.

Syntax
<oRef>.refreshControls()
<oRef>

The rowset you want to refresh.

Property of
Rowset

Description

refreshControls() updates any controls that are dataLinked to Field objects in the rowset,
regardless of the setting of the notifyControls property. The controls are updated with the values
in the row buffer, not the values on disk.

Use refreshRow() first to refresh the fields in the row buffer with the values on disk if desired.

refreshRow()

Topic group Related topics

Refreshes data in the current row.

Syntax
<oRef>.refreshRow()
<oRef>

254

Language Reference

The rowset you want to refresh.

Property of
Rowset

Description

refreshRow() rereads the data for the current row from disk. It discards any changes to the row
buffer, so a row that has been modified is not saved. When the row is refreshed, any dataLinked
controls are also refreshed if notifyControls is true.

Use refresh() to refresh the entire rowset.

reindex()

Topic group

Rebuilds a Standard table’s indexes from scratch.
Syntax

<oRef>.reindex(<table name expC>)

<oRef>

The database in which the table exists.

<table name expC>

The name of the table you want to reindex.

Property of
Database

Description

Indexes can become unbalanced during normal use. Occasionally, they can also be corrupted.
In both cases, you can fix the problem by using reindex(), which rebuilds the indexes from
scratch.

Reindexing is a maintenance operation and requires exclusive access to the table; no one else
may have it open at the time, or reindex() will fail.

To refer to a Standard table, you can always use the default database in the default session by
referring to it through the databases array property of the _app object. For example,

_app-databases[1]-reindex("Customer™)

renameTable()

Topic group Related topics

Renames a table in a database.

Syntax

<oRef>.renameTable(<old nhame expC>, <new name expC>)
<oRef>

The database in which to rename the table.

<old name expC>

The current name of the table.

255

dBASE Plus 9 LR

<new name expC>
The new name of the table.

Property of
Database
Description

renameTable() renames a table in a database, including all secondary files such as index and
memo files.

The table to rename should not be open.

By specifying a path in <new name expC>, the table, together with its' associated files, is moved
to that destination and renamed <new name expC>. Associated files are moved regardless of
whether <old name expC> uses the .dbf designation.

If a path is specified in <old name expC>, and no path is specified in <new name expC>, the
table is moved to the location of the <oRef> database or (in the case of the default
database_app.databases[1]) to the default directory.

To rename a Standard table, you can always use the default database in the default session by
referring to it through the databases array property of the _app object. For example,

_app.databases[1].renameTable('""Before', "After™)

replaceFromFile()

Topic group Related topics Example

Copies the contents of a file into a BLOB field.

Syntax

<oRef>.replaceFromFile(<file name expC> [,<append expL>])
<oRef>

The BLOB field you want to copy into.

<file name expC>

The name of the file you want to copy.

<append expL>

Whether to append the new data or overwrite.

Property of
Field

Description
replaceFromFile() copies the contents of the named file into the specified BLOB field.

By specifying <append expL> as true, the contents of the file are added to the end of the current
contents of the BLOB field. If the parameter is specified as false or left out, the BLOB field will
be overwritten and end up containing only the contents of the file.
If you don't include an extension for <file name expC>, dBASE Plus assigns a .TXT extension. If
you don't wish to pass a file extension, follow <file name expC> with a dot.

myfilename.

256

Language Reference

requery()

Topic group Related topics Example

Re-executes the query or stored procedure, regenerating the rowset.

Syntax
<oRef>.requery()

<oRef>

The query or stored procedure you want to re-execute.

Property of
Query, StoredProc

Description

requery() re-executes a stored procedure or a query’'s SQL statement, generating an up-to-date
rowset. Calling requery() is similar to setting the object’s active property to false and back to
true, except that requery() does not prepare the SQL statement. This includes attempting to
save the current row if necessary and closing the object, firing all the events along the way. If
those actions are halted by the canSave or canClose event handlers, the requery() attempt will
stop at that point.

Use requery() when a parameter in the SQL statement has changed to re-execute the query
with the new value.

Use refresh() to refresh the rowset without re-executing the query, which is faster. But refresh()
has no effect on a rowset that is not live; use requery() instead.

requestLive

Topic group Related topics

Specifies whether the query should generate an editable rowset.

Property of
Query
Description

Before making a query active, you can determine whether the rowset that is generated is
editable or not. You can choose to make it not editable to prevent accidental modification of the
data.

requestLive defaults to true.

required
Topic group Related topics
Whether a field is required to be filled in and not left blank.

Property of
DbfField, PdxField
Description

257

dBASE Plus 9 LR

required indicates whether the field represented by the Field object is a required field; that is,
whether it must be filled in.

rollback()

Topic group Related topics
Cancels the transaction by undoing all logged changes

Syntax
<oRef>.rollback()
<oRef>

The database whose changes you want to rollback.

Property of
Database

Description

A transaction works by logging all changes. If an error occurs while attempting one of the
changes, or the changes need to be undone for some other reason, the transaction is canceled
by calling the rollback() method. Otherwise, commit() is called to clear the transaction log,
thereby indicating that all the changes in the transaction were committed and that the
transaction as a whole was posted.

Since new rows have already been written to disk, rows that were added during the transaction
are deleted. In the case of DBF (dBASE) tables, the rows are marked as deleted, but are not
physically removed from the table. If you want to actually remove them, you can pack the table
with packTable(). Rows that were just edited are returned to their saved values.

All'locks made during a transaction are maintained until the transaction is completed. This
ensures that no one else can make any changes until the transaction is committed or
abandoned.

rowCount()

Topic group Related topics

Returns the logical row count.

Syntax
<oRef>.rowcount()
<oRef>

The rowset you want to count.
Property of
Rowset

Description

rowCount() returns the logical row count of the rowset, if known. The logical row count is the
number of rows in the rowset, using the rowset's current index and filter conditions.

Determining the logical row count is often an expensive operation, requiring that the rows
actually be counted individually. When the count is not known, rowCount() returns the value -1;

258

Language Reference

it does not attempt to get the count. If your application requires the actual row count, use the
count() method to count the rows if rowCount() returns -1.

Note

rowCount() is different from the function RECCOUNT(). RECCOUNT() returns the number of
physical records in a table. rowCount() returns the logical count in a rowset. These numbers
are not guaranteed to be the same, even with a SELECT * query of a DBF table, because

rowCount() must consider deleted records—it does not know if there are any unless it actually
looks—while RECCOUNT() does not.

rowNo()
Topic group Related topics

Returns the current logical row number in the rowset.

Syntax
<oRef>.rowno()

<oRef>
The rowset containing the current row.

Property of
Rowset

Description

rowNo() returns the current logical row number in the rowset, if known. The logical row humber
is the relative row number, using the rowset's current index and filter conditions. The first row is
row number 1 and the last row is equal to the number of rows in the current rowset.

In some cases, for example scrolling with the scrollbar in a grid to an arbitrary location and
clicking on a row, the logical row number is not known, and would have to be calculated. In
contrast, if you were to page down repeatedly to that same location, the row number is known,
because it is updated as you move from page to page in the grid. When the row number is not
known, rowNo() returns the value -1.

Note

rowNo() is different from the function RECNO(). RECNO() returns the physical record number
of the current row in a DBF table, which never changes (unless the table is PACKed). rowNo()
returns the logical row number; the same physical record will have a different logical row
number, depending on the current index and filter.

rowset

Topic group Related topics

A reference to the query’s or stored procedure’s rowset, or a data module’s primary rowset.

Property of
DataModule, Query, StoredProc
Description

A Query object always contains a rowset property, but that property does not refer to a valid
Rowset object until the query has been activated and the rowset has been opened.

259

dBASE Plus 9 LR

Some stored procedures generate rowsets. If that is the case, the StoredProc object’s rowset
property refers to that rowset after the stored procedure is executed.

A data module may designate a primary rowset. This rowset is assigned to a form’s rowset
property by the Form designer when the data module is used in the form.

The rowset property is read-only for Query and StoredProc objects.
For more information, see class Rowset.

save()
Topic group
Saves the current row buffer.

Syntax
<oRef>.save()
<oRef>

The rowset you want to save.

Property of
Rowset

Description

After a row has been modified, you must call save() to write the row buffer to a rowset or table.
By design, save() has no effect if the rowset’s modified property is false, because supposedly
there are no changes to save; and a successful save() sets the modified property to false,
indicating that values in the controls do not differ from those on the disk. You can manipulate
the modified property to control this designed behavior.

The canSave event fires after calling save(). If there is no canSave event handler, or canSave
returns true, then the row buffer is saved, the modified property is set to false, and the onSave
event fires.

The row cursor does not move after a save() unless the values saved cause the row to become
out-of-set. In that instance, the row cursor is moved to the next available row or, if there are no
more available rows, the end-of-set .

Changes are written to disk unless the cacheUpdates property is set to true, in which case the
changes are cached. Whether the changes are actually written to a physical disk depends on
the operating system and its own disk caches, if any.

scale
Topic group Related topics

The number of digits, to the right of the decimal point, that can be stored in an SQL-based field

Property of
SqlField
Description

The scale property specifies the number of digits, to the right of the decimal point, that can be
stored in the SqlField object

260

Language Reference

session
Topic group Related topics

The Session object to which the database, query, or stored procedure is assigned.

Property of

Database, Query, StoredProc

Description

A database must be assigned to a session. When a Database object is created, it's
automatically assigned to the default session.

A query or stored procedure must be assigned to a database, which in turn is assigned to a
session. When created, a Query or StoredProc object is assigned to the default database in the
default session.

To assign either the Query, or StoredProc, object to the default database in another session,
assign that session to their session property. Assigning a Query or StoredProc's session
property always sets their database property to the default database in that session.

To assign either the Query, or StoredProc, object to another database in another session,
assign the object to that session first. This makes the databases in that session available to the
object.

To enable the Session object's security features, the database the Session object is assigned to
must be active.

setRange()

Topic group Related topics

Constrains the rowset to those rows whose key field values falls within a range.

Syntax

<oRef>.setRange(<key exp>)

or

<oRef>.setRange(<startKey exp> | null, <endKey exp> | null)

<oRef>

The rowset you want to constrain.

<key exp>

Shows only those rows whose key value matches <key exp>.

<startKey exp>

Shows those rows whose key value is equal to or greater than <startKey exp>.
<endKey exp>

Shows those rows whose key value is less than or equal to <endKey exp>.
There are four ways to use setRange():

1. Exact match: setRange(<key exp>)
0 Range from start to end: setRange(<startKey exp>, <endKey exp>)
0 Range from starting value: setRange(<startkey exp>, null)

261

dBASE Plus 9 LR

0 Range up to ending value: setRange(null, <endKey exp>)

Property of
Rowset

Description

setRange() is similar to a filter; setRange() uses the rowset’s current index (represented by its
indexName property) and shows only those rows whose key value matches a single value or
falls within a range of values. This is referred to as a key constraint. Because it uses an index, a
key constraint is instantaneous, while a filter condition must be evaluated for each row. Use
clearRange() to remove the constraint.

The key range values must match the key expression of the index. For example, if the index key
is UPPER(Name), specify uppercase letters in the range expressions. For character
expressions, the key match is always a partial string match (starting at the beginning of the
expression); therefore, an exact match with <key exp> could match multiple key values if the
<key exp> is shorter than the key expression.

When you use both setRange() and a filter (and canGetRow) for the same rowset, you get
those rows that are within the index range and that also meet the filter condition(s).

Rowsets that use masterRowset for master-detail linkage internally apply setRange() in the
detail rowset. If you use setRange() in the detail rowset, it overrides the master-detail key
constraint. Navigation in the master rowset would reapply the master-detail constraint.

share

Topic group

How to share data access resources.
Property of

Database, DataModRef

Description

The share property controls how database connections and dataModules are shared. The share
property is an enumerated property that can be assigned one of the following:

Value Description
0 None
1 All

Database objects

Multiple Database objects may share the same database connection. Sharing database
connections reduces resource usage on both the client and server. Some servers have a
maximum number of simultaneous connections, so sharing connections will also allow more
users to connect to the server.

When set to All (the default), all Database objects with the same databaseName property
(running in the same instance of dBASE Plus) will share the same database connection. When
set to None, each Database object will use its own connection.

DataModref objects

262

Language Reference

When set to All, all DataModRef objects with the same dataModClass property will share the
same instance of that class; the same DataModule object. This means, for example, that
navigation performed by one user of the DataModRef is seen by all users of that same
dataModClass (if their share property is also set to All). dataModule sharing is only useful in
limited cases. For typical usage, the share property should be set to None, the default.

source

Topic group Related topics

The source rowset or table of an UpdateSet operation.

Property of
UpdateSet

Description

The source property contains an object reference to a rowset or the name of a table that is the
source of an UpdateSet operation. For an append(), update(), or appendUpdate(), it refers to
the rowset or table that contains the new data. For a copy(), it refers to the rowset or table that
is to be duplicated. For a delete(), the source property refers to the table that contains the list of
rows to be deleted.

The destination property specifies the other end of the UpdateSet operation.

sql
Topic group Related topics Example

The SQL statement that describes the query.

Property of
Query
Description

The sql property of a Query object contains an SQL SELECT statement that describes the
rowset to be generated. To use a stored procedure in an SQL server that returns a rowset, use
the procedureName property of a StoredProc object instead.

The sql property must be assigned before the Query object is activated.

The SQL SELECT statement may contain an ORDER BY clause to set the row order, a
WHERE clause to select a subset of rows, perform a JOIN, or any other SQL SELECT clause.

But to take full advantage of the data objects’ features—such as locating and filtering—with
SQL-server-based tables, the SQL SELECT used to access a table must be a simple SELECT:
all the fields from a single table, with no options. For example,

select * from CUSTOMER

If the SQL statement is not a simple SELECT, locating and filtering is performed locally, instead
of by the SQL server. If the result of the SELECT is a small rowset, local searching will be fast;
but if the result is a large rowset, local searching will be slow. For large rowsets, you should use
a simple SELECT, or use parameters in the SQL statement and requery() as needed instead of
relying on the Locate and Filter features.

263

dBASE Plus 9 LR

Master-detail linking through the masterRowset and masterFields properties with SQL-server-
based tables also requires a simple SELECT. An alternative is master-detail linking though
Query objects with the masterSource property and parameters in the SQL statement. There is
no simple SELECT restriction when using Standard tables.
Parameters in an SQL statement are indicated by a colon. For example,

select * from CUST where CUST_ID = :cust_id
Whenever the SQL property is assigned, it is scanned for parameters. dBASE Plus
automatically creates corresponding elements in the query’s params array, with the name of the
parameter as the array index. For more information, see the params property.

In addition to assigning the SQL statement directly to the sql property, you may also use an
SQL statement in an external file. To use an external file, place an "@" symbol before the file
name in the sql property. For example,

@ORDERS . SQL
The external file must be a text file that contains an SQL statement.

State

Topic group Related topics Example

An enumerated value indicating the rowset’s current mode.

Property of
Rowset
Description

The state property is read-only, indicating which mode the rowset is in, as listed in the following
table:

Value Mode
Closed
Browse
Edit
Append

Filter

a A W N P O

Locate

When the rowset’s query is not active, the rowset is Closed.
While the query is active, the rowset is in Browse mode when it's not in one of the next four modes.

The rowset is in Edit mode after a successful beginEdit() (implicit or explicit) and it stays in that mode until the row
is saved or abandoned.

After a successful beginAppend(), it is in Append mode. It stays in that mode until the new row is saved or
abandoned.

After a beginFilter(), it is in Filter mode. It stays in that mode until there is an applyFilter() or the Filter mode is
abandoned.

After a beginLocate(), it is in Locate mode. It stays in that mode until there is an applyLocate() or the Locate mode
is abandoned.

tableDriver

264

Language Reference

Topic group Related topics

The Driver currently being used to access a table

Property of
Rowset

Description

Returns a character string indicating the driver currently being used. For example, "dBASE",
"FOXPROQO" or "PARADOX" for native local tables; "Advantage 32 bit" for the Advantage ODBC
32 bit driver; "ORACLE", "INTERBASE " or "MS SQL" for a few of the SQL Link drivers.

Read-only.

tableExists()
Topic group
Checks to see if a specified table exists in a database.

Syntax
<oRef>.tableExists(<table name expC>)
<oRef>

The database in which to see if the table exists.
<table name expC>

The name of the table you want to look for.
Property of

Database

Description
tableExists() returns true if a table with the specified name exists in the database.

To look for a Standard table, you can always use the default database in the default session by
referring to it through the databases array property of the _app object. For example,
_app-.databases[1].tableExists("Billing")

If you do not specify an extension, dBASE Plus will look for both a DBF (dBASE) and DB
(Paradox) table with that name.

tableLevel

Topic group Related topics

The version of the current local table

Property of
Rowset
Description

Returns an integer indicating the version of the current local table. Currently only the BDE's
dBASE, FoxPro and Paradox provide a non-zero value for this property. tableLevel values
include; 3 for dBASE Ill, 4 for dBASE 1V, 5 for dBASE 5 (when containing OLE or BINARY
fields), 7 for Vdb7, 25 for FoxPro 2.5 and 5 for Paradox.

265

dBASE Plus 9 LR

Read-only

tableName

Topic group Related topics

The current table name

Property of

Rowset, TableDef

Description

Returns a character string indicating the name of the table a current rowset is based on.
Read-only.

tempTable

Topic group Related topics

A status of the current table

Property of
Rowset
Description

Returns a logical (True/.T.) when the current table (referenced by tableName is a temporary
table.

Read-only.

type [Field]
Topic group Related topics

The data type of the value stored in a field.

Property of
Field (including DbfField, PdxField, SqlField)
Description

The type property reflects the data type stored in the field represented by the Field object. For a
list of data types, see Field types.

type [Parameter]

Topic group Related topics
An enumerated value indicating the type of parameter.

Property of
Parameter

266

Language Reference

Description

The type property indicates the type of parameter a Parameter object represents, as listed in the
following table:

Value Type

0 Input

1 Output

2 InputOutput
3 Result

See the Parameter object’s value property for details on each type.

unidirectional

Topic group Related topics

Specifies whether to assume forward-only navigation to increase performance on SQL-based
servers.

Property of

Query
Description

If unidirectional is set to true, previously visited rows are not cached and less communication is
required between dBASE Plus and the SQL server. This results in fewer resources consumed
and better performance, but is worthwhile only if you never want to go backward in the rowset.

If unidirectional is true, you may still be able to go backward, depending on the server, but if so
it would be time-consuming.

unique

Topic group

Prevents multiple records with the same expression value from being included in the index.
Includes only the first record for each value.

Property of

Dbflndex, Index

Description

Restricts the row included in the index to those with unique key values. If two or more rows have
the same key value, only the first row with the key value is included. The "first" row is
determined by row number (the order in which you entered rows). This field does not apply to
secondary indexes on Paradox tables. A primary index in a Paradox table requires keys to be
unique.

unlock()

Topic group Related topics Example

267

dBASE Plus 9 LR

Releases row and rowset locks.
Syntax

<oRef>.unlock()
<oRef>

The rowset that contains the lock.

Property of

Rowset

Description

unlock() releases automatic row locks and locks set by lockRow() and lockSet().
You cannot release locks during a transaction.

unprepare()
Topic group Related topics

Releases the server resources used by a query or stored procedure.

Syntax
This method is called implicitly by the Query or StoredProc object.

Property of
Query, StoredProc

Description

The unprepare() method cleans up after a query or stored procedure is deactivated. It is called
implicitly when you set the object’s active property to false. In typical usage, you do not call this
method directly.

Advanced applications may override the definition of this method to perform supplementary
actions when deactivating the query or stored procedure. Custom data drivers must define this
method to perform any necessary actions to clean up when a query or stored procedure is
deactivated.

update

Topic group Related topics Example

The date and time of the last update made to the row.

Property of
LockField

Description

Use update to determine the date and time the row or table was last updated. The date and time
are represented in a string in the following format:
MM/DD/YY HH:MM:SS

This format is accepted by the constructor for a Date object, so you can easily convert the
update string into an actual date/time.

268

Language Reference

This property is available only for DBF tables that have been CONVERTed.

update()
Topic group Related topics

Updates existing rows in one rowset from another.

Syntax
<oRef>.update()
<oRef>

The UpdateSet object that describes the update.

Property of
UpdateSet

Description

Use update() to update a rowset. You must specify the UpdateSet object’s indexName property
that will be used to match the records. The index must exist for the destination rowset. The
original values of all changed records will be copied to the table specified by the UpdateSet
object’s changedTableName property.

To add new rows and update existing rows only, use the appendUpdate() method instead.

updateWhere

Topic group Related topics

Determines which fields to use in constructing the WHERE clause in an SQL UPDATE
statement. SQL-based servers only.

Property of

Query

Description

updateWhere is an enumerated property that may be one of the following values:

Value Description
0 All fields
1 Key fields
2 Key fields and changed fields
usePassThrough
Topic group

Controls whether or not a query, with a simple sql select statement (of the form "select * from
<table>), is sent directly to the DBMS for execution or is setup to behave like a local database
table.

Property of

269

dBASE Plus 9 LR

Query
Description

When the usePassThrough property is set to False (the default):

For query's using a simple sqgl select statement (in the form "select * from table") which meet the conditions listed
below in "Conditions for Dynamic Caching", the query's rowset, when activated, is setup to behave like a local,
file based database table such as a dBASE .dbf table.

The query result set is managed using a dynamic caching algorithm, as described below in Dynamic Caching
Behavior", which supports the use of index and key-oriented operations.
Query's using a complex sql select statement, or those which do not meet the conditions described below in
Conditions for Dynamic Caching, will be executed as if the usePassThrough property were set to True.
When the usePassThrough property is set to True, the query's sql statement, is passed directly
through to the database server for execution and the resulting rowset uses a more basic
caching algorithm, described below in "Basic Caching Behavior". The query result set cannot
use most index, or key oriented operations.

Conditions for Dynamic Caching

Query's sql property must contain a simple select statement ("select * from table").
The database server must support row ID's and/or the table must have a unique or primary key index defined.

Dynamic Caching Behavior

When opening a table to use dynamic caching:
The fastest index is chosen automatically if none was specified during table open.
A partial cache is kept, ordered by index.
The cache contains the current cursor row, plus the last several rows fetched.

The cache is automatically refreshed ,with up-to-date data, when row navigation occurs and can be manually
refreshed by calling the rowset's refresh() method.

The order in which a table can be navigated may be set via the rowset's indexName property.
Key-oriented operations, such as findKey() and setRange(), can be used.

Basic Caching Behavior

Basic caching is used if:
The conditions for dynamic caching are not met
or
The usePassThrough property is set to False

With basic caching:

Every row fetched is cached on the workstation in case it is needed again.

The cache is not automatically refreshed. To refresh the cache you must call the query's requery() method or re-
execute the query by setting the query's active property to False and then back to True.

The order rows are navigated must be set via the sql select statement's ORDER BY clause, rather than via the
rowset's indexName property.

Key-oriented operations such as findKey() and setRange() are not available.
However, bookmarks can be used as long as rows can be uniquely identified.

Pros and Cons of Dynamic Caching

Dynamic caching works well with tables of up to a few million rows.
Larger tables may take a considerable amount of time to open.

Pros and Cons of Basic Caching

Basic caching can be used to quickly retrieve initial results from queries on large tables (tables
with more than a few million rows) as long as no ORDER BY clause is included in the sql
statement. However, you still need to be careful to limit the number of rows retrieved to the
workstation, as every row retrieved is cached in workstation memory and can quickly use up
available memory if the result set is more than a few million rows in size.

270

Language Reference

user
Topic group Related topics Example

The name of the user that last locked or updated the row.

Property of
LockField
Description

Use user to determine the username of the person that currently has a lock when a lock attempt
fails, or the name of the user that last had a lock on the row. The maximum length of user
depends on the size of the _DBASELOCK field specified when the table was CONVERTed.

This property is available only for DBF tables that have been CONVERTed.

user()

Topic group Related topics

Returns the login name of the user currently logged in to the session.

Syntax
<oRef>.user()
<oRef>

The session you want to check.
Property of

Session

Description

user() returns the login name of the user currently logged in to a session on a system that has
DBF table security in place. If no DBF table security has been configured, or no one has logged
in to the session, user() returns an empty string.

value [Field]
Topic group Related topics Example

The value of a field in the row buffer.

Property of
Field (including DbfField, PdxField, SqlField)

Description

All of the Field objects in the rowset’s fields array property have a value property, which reflects
the value of the field in the row buffer, which in turn reflects the values of the fields in the current
row.

You may attempt to change the value of a value property directly by assignment, in which case
the attempt occurs immediately, or through a dataLinked control, in which case the attempt
occurs when the control loses focus. In either case, the field’s canChange property fires to see

271

dBASE Plus 9 LR

whether the change is allowed. If canChange returns false, then the assignment doesn't take; if
the change was through a dataLinked control, the control still contains the proposed new value.
If canChange returns true or there is no canChange event handler, the field’s value is changed
and the onChange event fires.

When a field is changed, the rowset’'s modified property is automatically set to true to indicate
that the rowset has been changed.

By using a field’s beforeGetValue event, you can make the value property appear to be
something else besides what is in the row buffer.

value [Parameter]
Topic group Related topics Example

The input, output, or result value of a stored procedure.

Property of
Parameter

Description

Values are transmitted to and from stored procedures through Parameter objects. Each object’s
type property indicates what type of parameter the object represents. Depending on which one
of the four types the parameter is, its value property is handled differently.

Input: an input value for the stored procedure. The value must be set before the stored procedure is called.

Output: an output value from the stored procedure. The value must be set to the correct data type before the stored
procedure is called; any dummy value may be used. Calling the stored procedure sets the value property to the
output value.

InputOutput: both input and output. The value must be set before the stored procedure is called. Calling the stored
procedure updates the value property with the output value.

Result: the result value of the stored procedure. In this case, the stored procedure acts like a function, returning a
single result value, instead of updating parameters that are passed to it. Otherwise, the value is treated like an
output value. The name of the Result parameter is always "Result".

If a Parameter object is assigned as the datalLink of a component in a form, changes to the
component are reflected in the value property of the Parameter object, and updates to the value
property of the Parameter object are displayed in the component.

version
Topic group Related topics

The version of the current local table

Property of
TableDef

Description

Returns an integer indicating the version of the current local table. Currently only the BDE's
dBASE, FoxPro and Paradox provide a non-zero value for this property. These values include; 3
for dBASE ll1, 4 for dBASE 1V, 5 for dBASE 5 (when containing OLE or BINARY fields), 7 for
Vdb7, 25 for FoxPro 2.5 and 5 for Paradox.

The version property is Read-only
Form Objects

272

Form objects

Topic group

Language Reference

Forms are the primary visual components in dBASE Plus applications. You can create forms
visually through the Form wizard or Form designer, or programatically by writing code and
saving your work as a .WFM file.

Common visual component properties

Topic group

These properties, events, and methods are common to many visual form components:

Property
before

borderStyle

dragEffect

enabled
fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline
form

height
helpFile
helpid
hwnd

id

left

mousePointer
name

pageno

parent
printable
speedTip
statusMessage
tabStop

Default

Default

true
false
false
Avrial
10
false

false

true

true

Description

The next object in the z-order

Specifies whether a box border appears (0O=Default, 1=Raised,
2=Lowered, 3=None, 4=Single, 5=Double, 6-Drop Shadow,
7=Client, 8=Modal, 9=Etched In, 10=Etched Out)

The type of Drag&Drop operation to be performed (0=None,
1=Copy, 2=Move)

Whether a component can get focus and operate
Whether the text in a component appears in bold face
Whether the text in a component appears italicized

The typeface of the text in a component

The point size of the text in a component

Whether the text in a component appears striked-through
Whether the text in a component is displayed underlined
The form that contains a component

Height in the form’s current metric units

Help file name

Help index topic or context number for context-sensitive help
The Windows handle for a component

Supplementary control ID number

The location of the left edge of a component in the form’s current

metric units, relative to the left edge of its container

The mouse pointer type when the pointer is over a component
The name of a component

The page of the form on which a component appears

A component’s immediate container

Whether a component is printed when the form is printed

Tool tip displayed when pointer hovers over a component
Message displayed in status bar when a component has focus

Whether a component is in the tab sequence

273

dBASE Plus 9 LR

top 0 The location of the top edge of a component in the form’s current
metric units, relative to the top edge of its container

visible true Whether a component is visible

width Width in the form’s current metric units

Event Parameters Description

canRender Reports only: before a component is rendered; return value

onDesignOpen

onDragBegin

onGotFocus

onHelp
onLeftDbIClick

onLeftMouseDown

onLeftMouseUp

onLostFocus

onMiddleDbIClick

onMiddleMouseDown

onMiddleMouseUp

onMouseMove

onOpen

onRender

onRightDbIClick

onRightMouseDown

onRightMouseUp

<from palette expL>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,
<row expN>

<flags expN>,
<column expN>,

determines whether component is rendered

After a component is first added from the palette and then every

time the form is opened in the Form Designer

When a Drag&Drop operation begins for a component
After a component gains focus

When F1 is pressed—overrides context-sensitive help

When the left mouse button is double-clicked

When the left mouse button is pressed

When the left mouse button is released

After a component loses focus

When the middle mouse button is double-clicked

When the middle mouse button is pressed

When the middle mouse button is released

When the is moved over a component

After the form containing a component is opened
Reports only: after a component is rendered

When the right mouse button is double-clicked

When the right mouse button is pressed

When the right mouse button is released

<row expN>
when <form open expL> When attempting to give focus to a component; return value
determines whether the component gets focus.
Method Parameters Description
drag() <type expC> Initiates a Drag&Drop operation for a component

274

Language Reference

<name expC>

<icon expC>
move() <left expN> Repositions and/or resizes a component
[,<top expN>

[,<width expN>
[,<height expN>]]]

release() Explicitly releases a component from memory
setFocus() Sets focus to a component

class ActiveX

Topic group Related topics
Representation of an ActiveX control.

Syntax
[<oRef> =] new ActiveX(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created ActiveX object.

<container>
The container—typically a Form object—to which you're binding the ActiveX object.
<name expC>

An optional name for the ActiveX object. If not specified, the ActiveX class will auto-generate a
name for the object.

Properties

The following table lists the properties of interest in the ActiveX class. (No particular events or
methods are associated with this class.)

Property Default Description

anchor 0— None How the ActiveX object is anchored in its container (O=None,
1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center, 6=Container)

baseClassName ACTIVEX Identifies the object as an instance of the ActiveX class

classld The ID string that identifies the ActiveX control

className (ACTIVEX) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

description A short description of the ActiveX control

nativeObject The object that contains the ActiveX control’'s own properties,

events, and methods

The following table lists the common properties, events, and methods of the ActiveX class:

Property Event Method
before pageno beforeRelease onMouseMove drag()
borderStyle parent onClose onRightDbIClick move()
dragEffect printable onDragBeqin onRightMouseDown release()
form speedTip onLeftDbIClick onRightMouseUp setFocus()
height systemTheme onLeftMouseDown

275

dBASE Plus 9 LR

left top onLeftMouseUp
name width onMiddleDbIClick
onMiddleMouseDown
onMiddleMouseUp
Description

An ActiveX object in dBASE Plus is a place holder for an ActiveX control, not an actual ActiveX
control.

To include an ActiveX control in a form, create an ActiveX object on the form. Set the classid
property to the component’s ID string.Once the classld is set, the component inherits all the
published properties, events, and methods of the ActiveX control, which are accessible through
the nativeObject property. The object can be used just like a native dBASE Plus component.

class Browse

Topic group Related topics

A data-editing tool that displays multiple records in row-and-column format.

Syntax
[<oRef> =] new Browse(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Browse object.

<container>
The container—typically a Form object—to which you're binding the Browse object.
<name expC>

An optional name for the Browse object. If not specified, the Browse class will auto-generate a
name for the object.

Properties
The following tables list the properties, events, and methods of interest in the Browse class.

Property Default Description
alias The table that is accessed
allowDrop false Whether dragged objects (normally a table or table field) can be
dropped in the browse object
anchor 0 — None How the Browse object is anchored in its container (0=None,
1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center, 6=Container)
append true Whether rows can be added
baseClassName BROWSE Identifies the object as an instance of the Browse class
className (BROWSE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName
colorHighlight WindowText The color of the highlighted cell
/Window
colorNormal WindowText The color of all other cells
/Window
cuaTab true Whether pressing Tab follows CUA behavior and moves to next

control, or moves to next cell

276

fields

frozenColumn

Language Reference

The fields to display, and the options to apply to each field

The name of the column inside which the cursor is confined.

lockedColumns 0 The number of columns that remain locked on the left side of the
browse grid as it is scrolled horizontally.
modify true Whether the user can alter data
scrollBar Auto When a scroll bar appears for the Browse object (0=0ff, 1=0n,
2=Auto, 3=Disabled)
Event Parameters Description
onAppend After a record is added to the table
onChange After the user changes a value
onDragEnter <left expN> When the mouse enters the Browse display area during a
<top expN> Drag&Drop operation
<type expC>

onDragLeave

onDragOver

<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

When the mouse leaves the Browse display area without having
dropped an object

While the mouse drags an object over the Browse display area
during a Drag&Drop operation

onDro <left expN> When the mouse button is released over the Browse display area
<top expN> during a Drag&Drop operation
<type expC>
<name expC>

onNavigate After the user moves to a different record

Method Parameters Description

copy() Copies selected text to the Windows Clipboard

cut() Cuts selected text and to the Windows Clipboard

keyboard() <expC> Simulates typed user input to the Browse object

paste() Copies text from the Windows clipboard to the current cursor

position
undo() Reverses the effects of the most recent cut(), copy(), or paste()

action

The following table lists the common properties, events, and methods of the Browse class:

Property

before

borderStyle

dragEffect
enabled

fontBold
fontltalic
fontName
fontSize
form
height
helpFile

helpid
hwnd

Event Method
id beforeRelease onMiddleMouseDown drag()
left onClose onMiddleMouseUp move()
mousePointer onDesignOpen onMouseMove release()
name onDragBegin onOpen setFocus()
pageno onGotFocus onRightDbIClick
parent onHelp onRightMouseDown
printable onLeftDbIClick onRightMouseUp
speedTip onlLeftMouseDown when
statusMessage onlLeftMouseUp
systemTheme onLostFocus
tabStop onMiddleDbIClick
top
visible
width

277

dBASE Plus 9 LR

Description

The Browse object is maintained for compatibility and is suitable only for viewing and editing
tables open in work areas. For forms that use data objects, use a Grid object instead.

Two properties specify which table is displayed in the Browse object.

The view property of the parent form
The alias property of the browse object

You can specify individual fields to display with the fields property. For example, if the browse
object's form is based on a query, you use fields to display fields from any of the query's tables.
(You must specify a file with alias before you can use fields.)

class CheckBox
Topic group Related topics

A check box on a form.

Syntax
[<oRef> =] new CheckBox(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created CheckBox object.

<container>

The container—typically a Form object—to which you're binding the CheckBox object.
<name expC>

An optional name for the CheckBox object. If not specified, the CheckBox class will auto-
generate a name for the object.

Properties

The following tables list the properties and events of interest in the CheckBox class. (No
particular methods are associated with this class.)

Property Default Description

baseClassName CHECKBOX Identifies the object as an instance of the CheckBox class

className (CHECKBOX) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal BtnText/BtnFace The color of the checkbox's text label

datal ink The Field object that is linked to the CheckBox

rouy| The group to which the check box belongs

text <same as name> The text label that appears beside the check box

textLeft false Whether the check box’s text label appears to the left or to the
right of the check box

transparent false Whether the CheckBox object has the same background color or
image as its container

value The current value of the check box (true or false)

Event Parameters Description

onChange After the check box is toggled

278

Language Reference

The following table lists the common properties, events, and methods of the CheckBox class:

Property

before

borderStyle

dragEffect
enabled

fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline

Description

Event Method
id beforeRelease onMiddleMouseDown drag()
left onClose onMiddleMouseUp move()
mousePointer onDesignOpen onMouseMove release()
name onDragBegin onOpen setFocus()
pageno onGotFocus onRightDbIClick
parent onHelp onRightMouseDown
printable onLeftDbIClick onRightMouseUp
speedTip onlLeftMouseDown when
statusMessage onlLeftMouseUp
systemTheme onLostFocus
tabStop onMiddleDbIClick
top
visible
width

Use a CheckBox component to represent a true/false value.

class ColumnCheckBox

Topic group Related topics

A checkbox in a grid column.

Syntax

These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties

The following tables list the properties of interest in the ColumnCheckBox class. (No particular
events or methods are associated with this class.)

Property

baseClassName

className

colorHighlight

colorNormal

value

Default Description

COLUMNCHECKBOX Identifies the object as an instance of the
ColumnCheckBox class

(COLUMNCHECKBOX) Identifies the object as an instance of custom class.
When no custom class exists, defaults to
baseClassName
The color of the cell containing the ColumnCheckBox
object when the cell has focus

WindowText The color of the cell containing the ColumnCheckBox

/Window object when the cell does not have focus

The current value of the check box (true or false)

The following table lists the common properties, events, and methods of the ColumnCheckBox

class:
Property Event Method
hwWnd speedTip beforeCellPaint onMiddleDbIClick none
parent statusMessage onCellPaint onMiddleMouseDown

onGotFocus onMiddleMouseU

PR onMouseMove

onLeftDbIClick

279

dBASE Plus 9 LR

onlLeftMouseDown onRightDbIClick
onLeftMouseUp onRightMouseDown
onLostFocus onRightMouseUp

Description

A ColumnCheckBox is a simplified CheckBox control in a grid column. When the enumerated
editorType property of a GridColumn control is set to CheckBox, the column uses a
ColumnCheckBox control, which is accessible through the GridColumn object’s editorControl
property.

By default, the checkbox around the checkmark is displayed for all grid cells in the column.
This can be changed by toggling the grid property alwaysDrawCheckBox to false.

When false, alwaysDrawCheckBox causes the grid to only draw the checkbox for the
columnCheckBox cell that has focus. For columnCheckBox cells that do not have focus, there is
only a checkmark if the value is true; or nothing if the value is false (the cell appears empty).
As with all column controls, the dataLink and width for the control is in the parent GridColumn
object, not the control itself. The height is controlled by the cellHeight of the grid.

If a mouse event is implemented for this control it overrides the matching grid level event.

class ColumnComboBox

Topic group Related topics
A combobox in a grid column.

Syntax
These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties

The following tables list the properties of interest in the ColumnComboBox class. (No particular
events or methods are associated with this class.)

Property Default Description

autoTrim false whether or not trailing spaces are trimmed from
character strings loaded from the control's dataSource.

baseClassName COLUMNCOMBOBOX Identifies the object as an instance of the
ColumnComboBox class

className (COLUMNCOMBOBOX) Identifies the object as an instance of a custom class.
When no custom class exists, defaults to
baseClassName

colorHighlight The color of the text in the ColumnComboBox object
when the object has focus

colorNormal WindowText The color of the text in the ColumnComboBox object

/Window when the object does not have focus

dataSource The option strings of the ColumnComboBox object

dropDownHeight The number of options displayed in the drop-down list

dropDownWidth The width of the drop-down list in the form’s current
metric units

function A text formatting function

280

Language Reference

picture Formatting template

sorted false Whether the options are sorted

value The value currently displayed in the ColumnComboBox
object

The following table lists the common properties, events, and methods of the ColumnComboBox
class:

Property Event Method
borderStyle hwnd onGotFocus onMiddleDbIClick none
fontBold mousePointer onLeftDblClick onM!ddIeMouseDown

fontltalic parent onLeftMouseDown onMiddleMouseUp

fontName speedTip onLeftMouseUp onMouseMove

fontSize statusMessage onLostFocus onR!ghtDbICIlck

fontStrikeout - onRightMouseDown

fontUnderline onRightMouseUp

Description

A ColumnComboBox is a simplified ComboBox control in a grid column. The combobox is
always the DropDownList style. When the enumerated editorType property of a GridColumn
control is set to ComboBox, the column uses a ColumnComboBox control, which is accessible
through the GridColumn object’s editorControl property.

Only the cell that has focus appears as a combobox. All other cells in the column which do not
have focus appear as ColumnEntryfield controls instead, with no drop-down control.

As with all column controls, the dataLink and width for the control is in the parent GridColumn
object, not the control itself. The height is controlled by the cellHeight of the grid.

If a mouse event is implemented for this control it overrides the matching grid level event.

class ColumnEditor
Topic group Related topics

An expandable editor object in a grid column used to enter or display data from memo, text blob
or character fields.

Syntax
These controls are created by assigning the appropriate editorType to the GridColumn object.
Properties

The following tables list the properties and events of interest in the ColumnEditor class. (No
methods are associated with this class.)

Property Default Description

baseClassName COLUMNEDITOR Identifies the object as an instance of the ColumnEditor
class

className (COLUMNEDITOR) Identifies the object as an instance of a custom class.

When no custom class exists, defaults to
baseClassName

colorHighlight The color of the text in the ColumnEdlItor object when
the object has focus

281

dBASE Plus 9 LR

colorNormal WindowText The color of the text in the ColumnEditor object when
/Window the object does not have focus
dropDownHeight 8 The height of the ColumnEditor's dropdown editing

window. The dropDownHeight property's value is in
units matching the metric of the columnEditor's parent
Form.

evalTags true Whether or not to apply embedded formatting tags
when displaying the contents of the columnEditor's
datalinked field.

value The value currently displayed in the ColumnEditor
object
wra| true Whether to word-wrap the text in the ColumnEditor
control.
Event Parameters Description
key <char expN>, When a key is pressed. Return value may change or
<position expN>, cancel keystroke.
<shift expL>,
<ctrl expL>
valid When attempting to remove focus. Must return true, or

focus remains.

The following table lists the common properties and events of the ColumnEditor class:

Property Event Method
fontBold hwnd beforeCellPaint none
fontltalic parent onCellPaint

fontName speedTip onGotFocus

fontSize statusMessage onLostFocus

fontStrikeout

fontUnderline

Description

A ColumnEditor object provides functionality similar to that of an Editor object, but in a grid cell.
A ColumnEditor may be datalinked (via its parent gridColumn object) to a memo field, a text
type blob field, or a character field.

When a ColumnEditor object has focus, a button is displayed which can be used to open an
expanded, or drop-down window, in which to view or edit data. Clicking the mouse outside the
expanded editor window, or pressing tab or shift-tab, will close the window.

When not expanded, ColumnEditor objects initially display the first non-blank line of data from
its datalinked field. This is to make it easier for a user to determine what, if any, data has been
entered into the field.

To enter or edit data in a ColumnEditor object:
1. Give it focus by clicking on it with a left mouse button, or by using the tab or arrow keys to move to it
within the grid object.

0 Position the mouse where you wish to begin typing, and again click the left mouse button to
display an insertion point. Alternatively you can just press any text key on the keyboard to
begin entering text. Once the ColumnEditor has an insertion point it is said to be in "edit
mode". When the ColumnEditor is in edit mode, the arrow keys will only work to scroll within
the ColumnEditor.

To exit the ColumnEditor:
Click outside the ColumnEditor's cell

282

Language Reference

or
Navigate your way out using the tab, or shift-tab, keys.
Altering column dimensions

You may widen a ColumnEditor by widening its grid column.
You may change the height of a ColumnEditor's grid cell, to display more than one line of data in the grid cell, by
changing the grid's cellHeight property.
You may change the height of a ColumnEditor's expanded window by changing its dropDownHeight value.
The expanded window will not expand beyond the edge of the ColumnEditor's Form or Subform.
Formatting text

When the ColumnEditor is contained within a Form whose mdi property is set to true, the
Format Toolbar may be used to apply various formatting options to the text. To access the
Format Toolbar:

2. Give the ColumnEditor focus
0 Right click on it to popup a context sensitive menu
0 Select "Show Format Toolbar"

By default, a ColumnEditor will apply any formatting embedded in its datalinked field, when
displaying data. To turn this off:

Set the ColumnEditor's evalTags property to false
or

Uncheck "Apply Formatting" via it's right-click popup menu.

class ColumnEntryfield
Topic group Related topics
A single-line text input field in a grid column.

Syntax
These controls are created by assigning the appropriate editorType to the GridColumn object.

Properties

The following tables list the properties and events of interest in the ColumnEntryfield class. (No
methods are associated with this class.)

Property Default Description

baseClassName COLUMNENTRYFIELD Identifies the object as an instance of the
ColumnEntryfield class

className (COLUMNENTRYFIELD) Identifies the object as an instance of a custom class.
When no custom class exists, defaults to
baseClassName

colorHighlight The color of the text in the ColumnEntryfield object
when the object has focus

colorNormal WindowText The color of the text in the ColumnEntryfield object

/Window when the object does not have focus

function A text formatting function

memokEditor The memo editor control used when editing a memo
field

picture Formatting template

validErrorMsg Invalid input The message that is displayed when the valid event

283

dBASE Plus 9 LR

fails
value The value currently displayed in the ColumnEntryfield
object
Event Parameters Description
key <char expN>, When a key is pressed. Return value may change or
<position expN>, cancel keystroke.
<shift expL>,
<ctrl expL>
valid When attempting to remove focus. Must return true, or

focus remains.

The following table lists the common properties, events, and methods of the ColumnEntryfield
class:

Property Event Method
borderStyle hwnd beforeCellPaint onMiddleDbIClick none
fontBold parent onCellPaint onM!ddIeMouseDown

fontltalic speedTip onGotFocus onMiddleMouseUp

fontName statusMessage onLeftDbIClick onRIghiLbIClick

fontSize onLeftMouseDown onRightMouseDown

fontStrikeout onLeftMouseUp onRightMouseUp

fontUnderline onLostFocus

Description

A ColumnEntryfield is a simplified Entryfield control in a grid column. When the enumerated
editorType property of a GridColumn control is set to Entryfield, the column uses a
ColumnEntryfield control, which is accessible through the GridColumn object’s editorControl

property.
As with all column controls, the dataLink and width for the control is in the parent GridColumn
object, not the control itself. The height is controlled by the cellHeight of the grid.

If a mouse event is implemented for this control it overrides the matching grid level event.

class ColumnHeadingControl

Topic group Related topics

A grid column heading.

Syntax
These controls are created for each GridColumn object.
Properties

The following tables list the properties of interest in the ColumnHeadingControl class. (No
particular events or methods are associated with this class.)

Property Default Description

baseClassName COLUMNHEADINGCONTROL Identifies the object as an instance of the
ColumnHeadingControl class

className (COLUMNHEADINGCONTROL) Identifies the object as an instance of a custom
class. When no custom class exists, defaults to

284

colorNormal WindowText
/Window

function

picture

value

Language Reference

baseClassName

The color of the control and its text

A text formatting function
Formatting template

The text displayed in the
ColumnHeadingControl object

The following table lists the common properties, events, and methods of the

ColumnHeadingControl class:

Property

fontBold hwnd
fontltalic parent
fontName

fontSize

fontStrikeout

fontUnderline

Description

Event Method

beforeCellPaint onMiddleMouseDown none

onCellPaint onMiddleMouseUp
onLeftDbIClick onRightDbIClick
onlLeftMouseDown onRightMouseDown
onLeftMouseUp onRightMouseUp

onMiddleDbIClick

Each column in a grid has a ColumnHeadingControl object that represents the column heading.
It is accessible through the GridColumn object’s headingControl property.

As with all column controls, the width for the control is in the parent GridColumn object, not the

control itself. The height is controlled by the

cellHeight of the grid.

If a mouse event is implemented for this control it overrides the matching grid level event.

class ColumnSpinBox

Topic group Related topics

An entryfield with a spinner for entering numeric or date values in a grid column.

Syntax
These controls are created by assigning the

Properties

appropriate editorType to the GridColumn object.

The following tables list the properties and events of interest in the ColumnSpinBox class. (No

methods are associated with this class.)

Property Default

baseClassName COLUMNSPINBOX

className (COLUMNSPINBOX)

colorHighlight

WindowText
/Window

colorNormal

function

picture

Description

Identifies the object as an instance of the
ColumnSpinBox class

Identifies the object as an instance of a custom class.
When no custom class exists, defaults to
baseClassName

The color of the text in the ColumnSpinBox object when
the object has focus

The color of the text in the ColumnSpinBox object when
the object does not have focus

A text formatting function

Formatting template

285

dBASE Plus 9 LR

rangeMax The maximum value

rangeMin The minimum value

rangeRequired false Whether the range values are enforced even when no
change has been made

step 1 The value added or subtracted when using the spinner

validErrorMsg Invalid input The message that is displayed when the valid event
fails

value The value currently displayed in the ColumnSpinBox
object

Event Parameters Description

valid When attempting to remove focus. Must return true, or

focus remains.

The following table lists the common properties, events, and methods of the ColumnSpinBox
class:

Property Event Method
borderStyle hwnd beforeCellPaint onMiddleDbIClick none
fontBold parent onCellPaint onMiddleMouseDown

fontltalic speedTip onGotFocus onMiddleMouseUp

fontName statusMessage onLeftDbIClick onMouseMove

fontSize onLeftMouseDown OnR!ghtDbIChck

fontStrikeout onLeftMouseUp onR!qhtMouseDown

fontUnderline onLostFocus onRightMouseUp

Description

A ColumnSpinBox is a simplified SpinBox control in a grid column. When the enumerated
editorType property of a GridColumn control is set to SpinBox, the column uses a
ColumnSpinBox control, which is accessible through the GridColumn object’s editorControl

property.
Only the cell that has focus appears as a spinbox. All other cells in the column which do not
have focus appear as ColumnEntryfield controls instead, with no spinner control.

As with all column controls, the dataLink and width for the control is in the parent GridColumn
object, not the control itself. The height is controlled by the cellHeight of the grid.

If a mouse event is implemented for this control it overrides the matching grid level event.

class ComboBox
Topic group Related topics

A component on a form which can be temporarily expanded to show a list from which you can
pick a single item.

Syntax
[<oRef> =] new ComboBox(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created ComboBox object.

286

<container>

Language Reference

The container—typically a Form object—to which you're binding the ComboBox object.

<name expC>

An optional name for the ComboBox object. If not specified, the ComboBox class will auto-
generate a name for the object.

Properties

The following tables list the properties, events, and methods of the ComboBox class.

Property Default Description

autoDrop false Whether the drop-down list automatically drops down when the
combobox gets focus

baseClassName COMBOBOX Identifies the object as an instance of the ComboBox class

className COMBOBOX Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorHighlight WindowText The color of the text in the ComboBox object when it has focus

/Window
colorNormal WindowText The color of the text in the ComboBox object when it does not
/Window have focus

datal ink The Field object that is linked to the ComboBox object

dataSource The option strings of the ComboBox object

dropDownHeight The height of the drop-down list in the form's current metric units.

dropDownWidth The width of the drop-down list in the form’s current metric units

maxLength Specifies the maximum number of characters allowed.

selectAll true Whether the selectAll behavior is used in the entry field portion of
the ComboBox

sorted false Whether the options are sorted

style DropDown The style of the ComboBox: 0=Simple, 1=DropDown,
2=DropDownlList

value The value of the currently selected option

Event Parameters Description

beforeCloseUp Fires just before dropdown list is closed for a style 1 or 2

beforeDropDown
beforeEditPaint

key

onChange

onChangeCancel

onChangeCommitted

<char expN>,
<position expN>,
<shift expL>,
<ctrl expL>

combobox
Fires just before dropdown list opens for a style 1 or 2 combobox

For a style 0 or 1 combobox, fires for each keystroke that
modifies the value of the combobox, just before the new value is
displayed

When a key is pressed. Return value may change or cancel
keystroke.

Fires after the string in the ComboBox object has changed and
the ComboBox object loses focus, but before onLostFocus

Fires when the user takes an action that closes the dropdown list
without choosing an item from the list for a style 1 or 2 combobox

Fires when the user takes an action to choose an item from the
list such as by left clicking the mouse on an item or pressing
Enter with an item highlighted.

287

dBASE Plus 9 LR

onEditPaint For a style 0 or 1 combobox, fires for each keystroke that
modifies the value of the combobox, just after the new value is
displayed
onKe <char expN>, After a key has been pressed (and the key event has fired), but
<position expN>, before the next keypress.
<shift expL>,
<ctrl expL>
Method Parameters Description
copy() Copies selected text to the Windows clipboard
cut() Cuts selected text to the Windows clipboard
keyboard() <expC> Simulates typed user input to the ComboBox object
paste() Copies text from the Windows clipboard to the current cursor
position
undo() Reverses the effects of the most recent cut(), copy(), or paste()
action

The following table lists the common properties, events, and methods of the ComboBox class:

Property Event Method
before id beforeRelease onMiddleMouseDown drag()
borderStyle left onClose onMiddleMouseUp move()
dragEffect mousePointer onDesignOpen onMouseMove release()
enabled name onDragBegin onOpen setFocus()
fontBold pageno onGotFocus onRightDbIClick

fontltalic parent onHelp onRightMouseDown

fontName printable onLeftDbIClick onRightMouseUp

fontSize speedTip onlLeftMouseDown when

fontStrikeout statusMessage onlLeftMouseUp

fontUnderline systemTheme onlLostFocus

form tabStop onMiddleDbIClick

height top

helpFile visible

helpid width

hwnd

Description

Use a ComboBox object when you want the user to pick one item from a list. When the user is
not choosing an item, the list is not visible. The list of options is set with the dataSource
property.

If a ComboBox is dataLinked to a field object that has implemented its lookupSQL or
lookupRowset properties, the ComboBox will automatically be populated with the appropriate
lookup values, and store the corresponding key values in the dataLinked field.

class Container
Topic group
A container for other controls.

Syntax
[<oRef> =] new Container(<container> [,<name expC>])
<oRef>

288

Language Reference

A variable or property—typically of <container>—in which to store a reference to the newly

created Container object.

<container>

The container—typically a Form object—to which you're binding the Container object.

<name expC>

An optional name for the Container object. If not specified, the Container class will auto-
generate a name for the object.

Properties

The following table lists the properties of interest in the Container class. (No particular methods
are associated with this class.)

Property Default Description

allowDrop false Whether dragged objects can be dropped in the Container

anchor 0 — None How the Container object is anchored in its container (0O=None,
1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center, 6=Container)

baseClassName CONTAINER Identifies the object as an instance of the Container class

className (CONTAINER) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal BtnFace The background color

expandable true Reports only: whether the container expands to show all its
components

transparent false Whether the container has the same background color or
image as the its own container (usually the form)

Event Parameters Description

onDragEnter <left expN> When the mouse enters the Container's display area during a

<top expN> Drag&Drop operation

onDraglLeave

onDragOver

onDro

<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

When the mouse leaves the Container's display area without
having dropped an object

While the mouse drags an object over the Container's display
area during a Drag&Drop operation

When the mouse button is released over the Container's
display area during a Drag&Drop operation

The following table lists the common properties, events, and methods of the Container class:

Property Event Method
before mousePointer beforeRelease onMiddleMouseDown drag()
borderStyle name canRender onMiddleMouseUp move()
dragEffect pageno onClose onMouseMove release()
enabled parent onDesignOpen onOpen

first printable onDragBegin onRender

form speedTip onLeftDbIClick onRightDbIClick

height systemTheme onlLeftMouseDown onRightMouseDown

289

dBASE Plus 9 LR

hwnd top onLeftMouseUp onRightMouseUp
left visible onMiddleDbIClick

width
Description

Use the Container object to create groups of controls, a custom control that contains multiple
controls, or to otherwise group controls in a form. When a control is dropped in a Container
object, it becomes a child object of the Container object. Its parent property references the
container, while its form property references the form.

To make the rectangle that contains the controls invisible, set the borderStyle property to None
(3) and the transparent property to true.

When the Container's enabled property is set to "false", the enabled properties of all contained
controls are likewise set to "false". When the Container's enabled property is set to "true", the
enabled properties of the contained controls regain their individual settings.

class Editor
Topic group Related topics

A multiple-line text input field on a form.

Syntax
[<oRef> =] new Editor(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Editor object.

<container>
The container—typically a Form object—to which you're binding the Editor object.
<name expC>

An optional name for the Editor object. If not specified, the Editor class will auto-generate a
name for the object.

Properties
The following tables list the properties, events, and methods of interest in the Editor class.

Property Default Description
anchor 0 - None How the Editor object is anchored in its container (O=None,
1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center, 6=Container)
baseClassName EDITOR Identifies the object as an instance of the Editor class
border true Whether the Editor object is surrounded by the border specified by
borderStyle
className (EDITOR) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName
colorHighlight WindowText The color of text in the Editor object that is not affected by
/Window embedded color formatting while the Editor object has focus
colorNormal WindowText The color of text in the Editor object that is not affected by
/Window embedded color formatting when the Editor object does not have
focus
columnNo 1 The current column number in the Editor

290

Language Reference

cuaTab true Whether pressing Tab follows CUA behavior and moves to next
control, or inserts tab in text
dataLink The Field object that is linked to the Editor object
evalTags true Whether to evaluate any HTML formatting tags in the text or
display them as-is
lineNo 1 The current line number in the editor
marginHorizontal The horizontal margin between the text and its rectangular frame
marginVertical The vertical margin between the text and its rectangular frame
modify true Whether the text is editable or not
popupEnable true Whether the Editor object’s context menu is available
scrollBar Auto When a scroll bar appears for the Editor object (0=0ff, 1=0n,
2=Auto, 3=Disabled)
value The string currently displayed in the Editor object
wra true Whether to word-wrap the text in the editor
Event Parameters Description
key <char expN>, When a key is pressed in the Editor. Return value may change or
<position expN>, cancel keystroke.
<shift expL>,
<ctrl expL>
onChange After the string in the Editor object has changed and the Editor
object loses focus, but before onLostFocus
onDro <left expN> When the mouse button is released over the Editor's display area
<top expN> during a Drag&Drop operation
<type expC>
<name expC>
valid When attempting to remove focus. Must return true, or focus
remains.
Method Parameters Description
copy() Copies selected text to the Windows clipboard
cut() Cuts selected text and to the Windows clipboard
keyboard() <expC> Simulates typed user input to the Editor object
paste() Copies text from the Windows clipboard to the current cursor
position
undo() Reverses the effects of the most recent cut(), copy(), or paste()

action

The following table lists the common properties, events, and methods of the Editor class:

Property

before

borderStyle

dragEffect
enabled

fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline

id

left
mousePointer
name

pageno

parent
printable
speedTip
statusMessage
systemTheme

Event Method
beforeRelease onMiddleMouseDown drag()
onClose onMiddleMouseUp move()
onDesignOpen onMouseMove release()
onDragBegin onOpen setFocus()
onGotFocus onRightDbIClick

onHelp onRightMouseDown

onLeftDbIClick

onLeftMouseDown

onLeftMouseUp
onLostFocus

onRightMouseUp
when

291

dBASE Plus 9 LR

form tabStop onMiddleDbIClick
height top

helpFile visible

helpld width

hwnd

Description

Use an Editor component to display and edit multi-line text. To display the text but not allow
changes, set the modify property to false. The Editor component understands and displays
basic HTML formatting tags. It has a context menu that is accessible by right-clicking the editor
(unless its popupEnable property is false). The context menu lets you find and replace text,
toggle word wrapping and HTML formatting, and show or hide the Format toolbar.

Supported HTML tags available in the editor:

Tag Description

br LineBreakTag

p ParagraphTag

font FontTag

[ItalicTag

b BoldTag
UnderlineTag

hl HeaderlTag

h2 Header2Tag

h3 Header3Tag

h4 Header4Tag

h5 Header5Tag

h6 Header6Tag

img ImgTag

a AnchorTag

strong StrongTag

em EmTag

big BigTag

small SmallTag

cite CiteTag

address AddressTag

strike StrikeoutTag

tt TypewriterTag

code CodeTag

sub SubscriptTag

sup SuperscriptTag

292

Language Reference

blockquote BlockQuoteTag

ul UnorderedListTag
ol OrderedListTag

li ListitemTag

pre PreformattedTag

font color FontColorTag
fontsize FontSizeTag
fontface FontFaceTag

a href HyperLinkTag

a name InternalAnchorTag
p align ParaAlignTag
hlalign HeaderlAlignTag
h2 align Header2AlignTag
h3 align Header3AlignTag
h4 align Header4AlignTag
h5 align Header5AlignTag
h6 align Header6AlignTag
img src ImgSrcTag

img width ImgWidthTag
img height ImgHeightTag
img align ImgAlignTag
img border ImgBorderTag
img alt ImgAltTag

img hspace ImgHorzSpace
img vspace ImgVertSpace

class Entryfield

Topic group Related topics

A single-line text input field on a form.

Syntax
[<oRef> =] new Entryfield(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Entryfield object.

<container>
The container—typically a Form object—to which you’re binding the Entryfield object.
<name expC>

An optional name for the Entryfield object. If not specified, the Entryfield class will auto-generate
a name for the object.

293

dBASE Plus 9 LR

Properties

The following tables list the properties, events, and methods of interest in the Entryfield class.

Property Default Description

baseClassName ENTRYFIELD Identifies the object as an instance of the Entryfield class

border true Whether the Entryfield object is surrounded by the border specified
by borderStyle

className (ENTRYFIELD) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorHighlight The color of the text in the Entryfield object when the object has
focus

colorNormal WindowText The color of the text in the Entryfield object when the object does

/Window not have focus

datalink The Field object that is linked to the Entryfield object

function A text formatting function

maxLength The maximum length of the text in the Entryfield object

memokEditor The memo editor control used when editing a memo field

phoneticLink The control that mirrors the phonetic equivalent of the current value

picture Formatting template

selectAll true Whether the entryfield contents are initially selected when the
Entryfield object gets focus

validErrorMsg Invalid input The message that is displayed when the valid event fails

validRequired false Whether to fire the valid event even when no change has been
made

value The value currently displayed in the Entryfield object

Event Parameters Description

key <char expN>, When a key is pressed. Return value may change or cancel

<position expN>,
<shift expL>,

keystroke.

<ctrl expL>
onChange After the string in the Entryfield object has changed and the
Entryfield object loses focus, but before onLostFocus
onKe <char expN>, After a key has been pressed (and the key event has fired), but
<position expN>, before the next keypress.
<shift expL>,
<ctrl expL>
valid When attempting to remove focus. Must return true, or focus
remains.
Method Parameters Description
copy() Copies selected text to the Windows clipboard
cut() Cuts selected text and to the Windows clipboard
keyboard() <expC> Simulates typed user input to the Entryfield object
paste() Copies text from the Windows clipboard to the current cursor
position
showMemoEditor() Opens the specified memoEditor
undo() Reverses the effects of the most recent cut(), copy(), or paste()

294

Language Reference

action

The following table lists the common properties, events, and methods of the Entryfield class:

Property Event Method
before id beforeRelease onMiddleMouseDown drag()
borderStyle left onClose onMiddleMouseUp move()
dragEffect mousePointer onDesignOpen onMouseMove release()
enabled name onDragBegin onOpen setFocus()
fontBold pageno onGotFocus onRightDbIClick

fontltalic parent onHelp onRightMouseDown

fontName printable onLeftDbIClick onRightMouseUp

fontSize speedTip onlLeftMouseDown when

fontStrikeout statusMessage onLeftMouseUp

fontUnderline systemTheme onLostFocus

form tabStop onMiddleDbIClick

height top

helpFile visible

helpld width

hwnd

Description

Entryfield objects are the primary data display and entry component.

class Form

Topic group Related topics

A Form object.

Syntax

[<oRef> =] new Form([<title expC>])

<oRef>

A variable or property in which to store a reference to the newly created Form object.
<title expC>

An optional title for the Form object. If not specified, the title will be "Form".

Properties

The following tables list the properties, events, and methods of the Form class. With the
exception of the onClose event, all Form events require the form to be open in order to fire.

Property Default Description

activeControl The currently active control

allowDrop false Whether dragged objects can be dropped on the Form's surface

appSpeedBar 2 Whether to hide or display the Standard Toolbar when a form recieves
focgs. O=Hide, 1=Display, 2=Use the current _app object's speedBar
setting.

autoCenter false Whether the form automatically centers on-screen when it is opened

autoSize false Whether the form automatically sizes itself to display all its components

background Background image

baseClassName FORM Identifies the object as an instance of the Form class

className (FORM) Identifies the object as an instance of a custom class. When no custom

class exists, defaults to baseClassName

295

dBASE Plus 9 LR

clientEdge
colorNormal
designView
elements
escExit

first
hWndClient
hWndParent

icon
inDesign
maximize
mdi
menuFile

metric

minimize
moveable
nextObj
persistent

popupMenu
refreshAlways

rowset
scaleFontBold
scaleFontName
scaleFontSize

scrollBar

scrollHOffset

scrollVOffset

showSpeedTip

showTaskBarButton
sizeable

smallTitle

sysMenu

text
topMost
useTablePopup

296

false

BtnFace

true

true

true

Chars

true

true

false

true

false
Avrial
10
Off

true
true
true
false

true

false

false

Whether the edge of the form has the sunken client appearance
Background color

A view that is used when designing the form

An array containing object references to the components on the form
Whether pressing Esc closes the form

The first component on the form in the z-order

The Windows handle for the form's client area

When used in conjunction with the showTaskBarButton property;
determines, or specifies, the hWnd property for the parent window of a
form

An icon file or resources that displays when the form is minimized
Whether the form was instantiated by the Form designer
Whether the form can be maximized when not MDI

Whether the form is MDI or SDI

The name of the form’s .MNU menu file

Units of measurement (O=Chars, 1=Twips, 2=Points, 3=Inches,
4=Centimeters, 5=Millimeters, 6=Pixels)

Whether the form can be minimized when not MDI
Whether the form is moveable when not MDI
The object that's about to receive focus

Determines whether custom control, datamodule, menu or procedure
files associated with a form are loaded in the persistent mode.

The form’s Popup menu object

Whether to refresh the form after all form-based navigation and
updates

The primary rowset

Whether the base font used for the Chars metric is boldface
The base font used for the Chars metric

The point size of the base font used for the Chars metric

When a scroll bar appears for the form (0=0ff, 1=0n, 2=Auto,
3=Disabled)

The current position of the horizontal scrollbar in units matching the
form or subform's current metric property

The current position of the vertical scrollbar in units matching the form
or subform's current metric property

Whether to show tool tips

Whether to display a button for the form on the Windows Taskbar
Whether the form is resizeable when not MDI

Whether the form has the smaller palette-style title bar when not MDI

Whether the form’s system menu icon and close icon are displayed
when not MDI

The text that appears in the form’s title bar
Whether the form stays on top when not MDI

Whether to use the default table navigation popup when no popup is
assigned as the form’s popupMenu.

Language Reference

view The query or table on which the form is based

windowState Normal The state of the window (0=Normal, 1=Minimized, 2=Maximized)
Event Parameters Description

canClose When attempting to close form; return value allows or disallows closure

canNavigate

onAppend
onChange

onClose

onDragEnter

onDraglLeave

onDragOver

<workarea expN>

<workarea expN>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

When attempting to navigate in work area; return value allows or
disallows leaving current record

After a new record is added
After leaving a record that was changed, before onNavigate
After the form has been closed

When the mouse enters the Form's display area during a Drag&Drop
operation

When the mouse leaves the Form's display area without having
dropped an object

While the mouse drags an object over the Form's display area during a
Drag&Drop operation

onDro <left expN> When the mouse button is released over the Form's display area
<top expN> during a Drag&Drop operation
<type expC>
<name expC>

onMove After the form has been moved

onNavigate <workarea expN> After navigation in a work area

onSelection <control ID expN> After the form is submitted

onSize <expN> After the form is resized or changes windowState

Method Parameters Description

abandonRecord() Abandons changes to the current record

beginAppend() Starts append of new record

close Closes the form

isRecordChanged() Checks whether the current record buffer has changed

open() Loads and opens the form

pageCount() Returns the highest pageno of any component

print() Prints the form

readModal() Opens the form modally

refresh() Redraws the form

saveRecord() Saves changes to the current or new record

scroll() <horizontal expN>, Programatically scrolls the client area (the contents) of a form
<vertical expN>

showFormatBar() <expL> Displays or hides the formatting toolbar

The following table lists the common properties, events, and methods of the Form class:

Property

Event

Method

297

dBASE Plus 9 LR

enabled mousePointer beforeRelease onMiddleMouseDown onRightMouseUp
height pageno onClose onMiddleMouseUp move()
helpFile statusMessage onDesignOpen onMouseMove release()
helpid systemTheme onGotFocus onMouseOut setFocus()
hwnd top onHelp onMouseOver
left visible onLeftDbIClick onOpen

width onLeftMouseDown onRightDbIClick

onLeftMouseUp onRightMouseDown

onLostFocus
onMiddleDblClick

Description

A Form object acts as a container for other visual components (also known as controls) and the
data objects that are linked to them. Consequently, releasing a form object from memory
automatically releases the objects it contains.

An object reference to all the visual components in a form is stored in its elements array. All of
the visual components have a form property that points back to the form.

The form has a rowset property that refers to its primary rowset. Components can access this
rowset in their event handlers generically with the object reference form.rowset. For example, a
button on a form that goes to the first row in the rowset would have an onClick event handler
like this:

function firstButton_onClick()

form.rowset.first()

Note: With the exception of the onClose event, all Form events require the form to be open in order to
fire.

If the form has more than one rowset, each one can be addressed through the rowset property
of the Query objects, which are properties of the form. For example, to go to the last row in the
rowset of the Query object members1, the onClick event handler would look like this:

function lastMemberButton_onClick()
form.membersl.rowset. last()

A form can consist of more than one page. One way to implement multi-page forms is to use the
pageno property of controls to determine on which page they appear, and use a TabBox control
to let users easily switch between pages. You may also use a NoteBook control to create a
multi-page container in a form.

You can create two types of forms: modal and modeless. A modal form halts execution of the
routine that opened it until the form is closed. When active, it takes control of the user interface;
users can't switch to another window in the same application without exiting the form. A dialog
box is an example of a modal form; when it is opened, program execution stops and focus can't
be given to another window until the user closes the dialog box.

In contrast a modeless form window allows users to freely switch to other windows in an
application. Most forms that you create for an application will be modeless. A modeless form
window conforms to the Multiple Document Interface (MDI) protocol, which lets you open
multiple document windows within an application window.

To create and use a modeless form, set the mdi property to true and open the form with the
open() method. To create and use a modal form, set mdi to false and open the form with the
readModal() method.

You can also create SDI (Single Document Interface) windows that appear like application
windows. To do so, set the mdi property to false and use SHELL (false). SHELL (false) hides the
standard dBASE Plus environment and lets your form take over the user interface. The dBASE
Plus application window disappears, and the form name appears in the Windows Task List.

298

Language Reference

class Grid

Topic group Related topics

A grid of other controls.

Syntax
[<oRef> =] new Grid(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Grid object.

<container>
The container—typically a Form object—to which you're binding the Grid object.
<name expC>

An optional name for the Grid object. If not specified, the Grid class will auto-generate a name
for the object.

Properties
The following tables list the properties, events, and methods of interest in the Grid class.

Property Default Description

allowAddRows true Whether navigating down past the last row automatically
calls beginAppend()

allowColumnMoving true Whether columns may be moved with the mouse

allowColumnSizing true Whether columns may be sized with the mouse

allowDrop false Whether dragged objects (normally a table or table field)
can be dropped in the Grid

allowEditing true Whether editing is allowed or the grid is read-only

allowRowsSizing true Whether rows may be sized with the mouse

alwaysDrawCheckBox true Whether columnCheckBox control is painted with a

checkbox for all checkbox cells in the Grid.

anchor 0 - None How the Grid object is anchored in its container (O=None,
1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center,
6=Container)

baseClassName GRID Identifies the object as an instance of the Grid class
bgColor gray Sets the background color for data displayed in grid cells,

as well as the empty area to the right of the last column
and below the last grid row.

cellHeight The height of each cell

className (GRID) Identifies the object as an instance of a custom class.
When no custom class exists, defaults to baseClassName

colorColumnLines silver Sets the color of the grid lines between the data columns

colorHighlight WindowText/Window Sets the text color and background color for data

displayed in a grid cell that has focus. Can be overridden
by setting the colorHighlight property of a GridColumn's
editorControl to a non-null value.

colorNormal WindowText/Window Sets the text color and background color for data
displayed in grid cells that do not have focus. Can be
overridden by setting the colorNormal property of a

299

dBASE Plus 9 LR

colorRowHeader

colorRowLines

colorRowSelect

columnCount
columns

cuaTab

currentColumn

datalink

dragScrollRate

firstColumn

frozenColumn

gridLineWidth

hasColumnHeadings

hasColumnLines
haslindicator
hasRowLines

hasVScrollHintText

headingColorNormal

headingFontBold
headingFontltalic
headingFontName

headingFontSize

headingFontStrikeout

headingFontUnderline

hScrollBar

integralHeight

lockedColumns

multiSelect
rowSelect

vScrollBar

300

WindowText/BtnFace

siilver

HighlightText/HighLight

false

300

1

true
true
true
true

true

WindowText/BtnFace

true
false

Operating system or
PLUS.ini file setting

10 pts.
false
false

Auto

false

false
false

Auto

GridColumn's editorControl to a non-null value.

Sets the color of the indicator arrow, or plus sign, and the
row header background.

Sets the color of the grid lines between the data rows

Sets the text color and background color for a row of data
selected when the rowSelect property and/or the
multiSelect property is true

The number of columns in the grid
An array of objects for each column in the grid

Whether pressing Tab follow CUA behavior and moves to
next control, or moves to next cell

The number of the column that has focus in the grid
The Rowset object that is linked to the grid

The delay time, in milliseconds, between each column
scroll when dragging columns

Sets the column to be displayed in the left-most unlocked
column position.

The name of the column inside which the cursor is
confined.

Width of grid lines in pixels (0=no grid lines)
Whether column headings are displayed
Whether column (vertical) grid lines are displayed
Whether the indicator column is displayed
Whether row (horizontal) grid lines are displayed

Whether the relative row count is displayed as the grid is
scrolled vertically

Sets the text color and background color for grid column
heading controls

Whether the current heading font style is Bold
Whether the current heading font style is Italic

Sets the font used to display data in a grid's
headingControls

Sets the character size of the font used to display data in
a grid's headingControls

Whether to display the current heading font with a
horizontal strikeout line through the middle of each
character

Whether the current heading font style is Underline

When a horizontal scrollbar appears (0=0ff, 1=0n,
2=Auto, 3=Disabled)

Whether a partial row at the bottom of the grid is
displayed

The number of columns that remain locked on the left side
of the grid as it is scrolled horizontally.

Whether multiple rows may be visually selected
Whether the entire row is visually selected

When a vertical scrollbar appears (0=0ff, 1=0n, 2=Auto,
3=Disabled)

Language Reference

Event

onDragEnter

onDraglLeave

onDragOver

onDro

onFormSize

onSelChange

Parameters

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

Description

When the mouse enters the Grid display area during a
Drag&Drop operation

When the mouse leaves the Grid display area without
having dropped an object

While the mouse drags an object over the Grid display
area during a Drag&Drop operation

When the mouse button is released over the Grid display
area during a Drag&Drop operation

After the form containing the grid is resized

After moving to another row or column in the grid

Method

firstRow()

getColumnObject()

getColumnOrder()

lastRow()

refresh()
selected()

Parameters

<expN>

Description

Returns a bookmark for the row currently displayed in the
first row of the grid.

Returns a reference to the GridColumn object for a
designated column

Returns a two dimensional array for current column
information

Returns a bookmark for the row currently displayed in the
last row of the grid.

Repaints the grid

Returns an array of bookmarks for the currently selected
rows in the grid

The following table lists the common properties, events, and methods of the Grid class:

Property

before

borderStyle

dragEffect
enabled

fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline
form

height
helpFile
helpld

Description

printable
speedTip
systemTheme

Event Method
beforeRelease onMiddleMouseDown drag()
onClose onMiddleMouseUp move()
onDesignOpen onMouseMove release()
onDragBegin onOpen setFocus()
onGotFocus onRightDbIClick

onHelp onRightMouseDown

onLeftDbIClick onRightMouseUp

onLeftMouseDown

onLeftMouseUp

onLostFocus

onMiddleDblClick

301

dBASE Plus 9 LR

The Grid object is a multi-column grid control for displaying the contents of a rowset. The
datalLink property is set to the rowset. Columns are automatically created for each field in the
rowset.

Each column is represented by a GridColumn object. If the default columns are used, these
objects are hidden, and all fields are displayed. By explicitly creating a GridColumn object for
each column as an element in the grid’s columns array, you may control the fields that are
displayed and assign different kinds of controls in different columns.

Navigation in the rowset updates any grids that are dataLinked to the rowset, and vice versa.
When you explicitly create GridColumn objects, you may set their dataLink properties to fields in
other rowsets, like the fields in a linked detail table.

Grid level mouse event handlers will fire anywhere ona grid as long as the event handler is
defined and is not overridden by a matching columnHeading or editorControl event. this
includes mouse events on a column header, row header, grid cell, or grid background.

If you wish to have the Grid level events fire along with the editorControl or columnHeading
control event, you can call the grid level event from within the editorControl or columnHeading
control event handler.

While in Desgin Mode, if columns are defined, you can:
e size columns, move columns, and set the grid's cellHeight (rowHeight) by using the mouse

e select a column's editorControl or headingControl into the inspector by left clicking them with the
mouse.

class GridColumn
Topic group Related topics

A column in a grid.

Syntax
[<oRef> =] new GridColumn(<grid>)
<oRef>

A variable or property—typically an array element of the <grid> object’s columns array—in
which to store a reference to the newly created GridColumn object.

<grid>
The Grid object that contains the GridColumn object.
Properties

The following tables list the properties of interest of the GridColumn class. (No particular events
or methods are associated with this class.)

Property Default Description

baseClassName GRIDCOLUMN Identifies the object as an instance of the GridColumn class

className (GRIDCOLUMN) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

datalink The field object that is linked to the column in the grid

editorControl Thle editable control that comprises the body of the grid in the
column

302

Language Reference

editorType Default The type of editing control (O=Default, 1=EntryField,
2=CheckBox, 3=SpinBox, 4=ComboBox, 5=Editor) in the column

headingControl The control that displays the grid column heading

The following table lists the common properties, events, and methods of the GridColumn class:

Property Event Method
parent width none none
Description

Each column in a grid is represented by a GridColumn object. Each GridColumn object is an
element in the grid’s columns array, and contains a reference to a heading control and an edit
control. You may assign different kinds of controls in different columns. The following types of
controls are supported:

Entryfield

CheckBox

SpinBox

ComboBox

Editor

When these controls are used in a grid, they have a reduced property set. Each type of field has
a default control type. Logical and boolean fields default to CheckBox. Numeric and date fields
default to SpinBox.

class Image

Topic group Related topics

A rectangular region on a form that displays a bitmap image.

Syntax
[<oRef> =] new Image(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Image object.

<container>
The container—typically a Form object—to which you're binding the Image object.
<name expC>

An optional name for the Image object. If not specified, the Image class will auto-generate a
name for the object.

Properties

The following table lists the properties of interest in the Image class. (No particular methods are
associated with this class.)

Property Default Description
alignment Stretch Determines the size and position of the graphic inside the

Image object (0O=Stretch, 1=Top left, 2=Centered, 3=Keep
aspect stretch, 4=True size)

allowDrop false Whether dragged objects (i.e. the name of a graphic image file)
can be dropped in the Image object

303

dBASE Plus 9 LR

anchor 0 - None How the Image object is anchored in its container (0=None,
1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center, 6=Container)

baseClassName IMAGE Identifies the object as an instance of the Image class

className (IMAGE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

dataSource The file or field that is displayed in the Image object

fixed false Whether the Image object’s position is fixed or if it can be
"pushed down" or "pulled up" by the rendering or suppression
of other objects

imgPixelHeight 0 Returns an image's actual height in pixels

imgPixelWidth 0 Returns an image's actual width in pixels

Event Parameters Description

onDragEnter <left expN> When the mouse enters the Image object's display area during a

<top expN> Drag&Drop operation

onDragLeave

onDragOver

<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

When the mouse leaves the Image object's display area without
having dropped an object

While the mouse drags an object over the Image object's display
area during a Drag&Drop operation

When the mouse button is released over the Image object's
display area during a Drag&Drop operation

The following table lists the common properties, events, and methods of the Image class:

Property

before

borderstyle

dragEffect
enabled

form
eight
hwnd
id
left
mousePointer

E

Description

ame
pageno
parent
printable
peedTip

systemTheme

Event Method
beforeRelease onMiddleMouseDown drag()
canRender onMiddleMouseUp move()
onClose onMouseMove release()
onDesignOpen onOpen

onDragBegin onRender

onLeftDbIClick onRightDbIClick

onlLeftMouseDown onRightMouseDown

onLeftMouseUp onRightMouseUp

onMiddleDbIClick

Use an Image object to display a bitmap image. The image can be data from a field, or a static

image like a company logo.

dBASE Plus supports the following bitmap image formats:
Graphics Interchange Format (GIF), including animated GIF
Joint Photographic Experts Group (JPG, JPEG)
Portable Network Graphics (PNG)

X BitMap (XBM)
Windows bitmap (BMP)
Windows icon (ICO)

Device Independent Bitmap (DIB)

304

Language Reference

Windows metafile (WMF)
Enhanced Windows metafile (EMF)
PC Paintbrush (PCX)

Tag Image File Format (TIF, TIFF)
Encapsulated PostScript (EPS)

dBASE Plus will resize images according to the Image object’s alignment property. When
resizing, transparent GIF backgrounds are lost. To prevent resizing, set the alignment property
to 4 (True size).

For TIFF, dBASE Plus supports uncompressed, single-bit Group 3, PackBits, and LZW
(Lempel-Ziv & Welch) compression. Group 4 compression is not supported. Color TIFF images
must have a palette. Except when rendering an EPS file on a PostScript-capable printer, dBASE
Plus uses the bitmap preview in the EPS file, which must be in TIFF or WMF format.

class Line
Topic group Related topics
A line on a form.

Syntax
[<oRef> =] new Line(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Line object.

<container>
The container—typically a Form object—to which you're binding the Line object.
<name expC>

An optional name for the Line object. If not specified, the Line class will auto-generate a name
for the object.

Properties

The following tables list the properties of interest of the Line class. (No particular events or
methods are associated with this class.)

Property Default Description

baseClassName LINE Identifies the object as an instance of the Line class

bottom The location of the bottom end of the Line in the form’s current metric
units, relative to the top edge of its container

className (LINE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal WindowText Color of the line

fixed false Whether the Line object’s position is fixed or if it can be "pushed

down" or "pulled up" by the rendering or suppression of other objects

left The location of the left end of the Line in the form’s current metric
units, relative to the left edge of its container

pen Solid The pen style used to draw the line (0=Solid, 1=Dash, 2=Dot,
3=DashDot, 4=DashDotDot)

right The location of the right end of the Line in the form’s current metric
units, relative to the left edge of its container

305

dBASE Plus 9 LR

top The location of the top of the Line in the form’s current metric units,
relative to the top edge of its container

width 1 Width in pixels

The following table lists the common properties, events, and methods of the Line class:

Property Event Method
before pageno beforeRelease release()
form parent canRender
id printable onClose
name visible onDesignOpen

onOpen

onRender
Description

Use a Line object to draw a line in a form or report. Note that the position properties—top, left,
bottom, and right—work different for the Line object than they do with other components. The
width property controls the thickness of the line.

A Line has no hwnd because it is drawn on the surface of the form; it is not a genuine Windows
control. Despite its position in the form’s z-order, a Line can never be drawn on top of another
component (other than a Line or Shape).

class ListBox
Topic group Related topics

A selection list on a form, from which you can pick multiple items.

Syntax
[<oRef> =] new ListBox(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created ListBox object.

<container>
The container—typically a Form object—to which you’re binding the ListBox object.
<name expC>

An optional name for the ListBox object. If not specified, the ListBox class will auto-generate a
name for the object.

Properties
The following tables list the properties, events, and methods of interest in the ListBox class.

Property Default Description
allowDrop false Whether dragged objects can be dropped in the ListBox object
baseClassName LISTBOX Identifies the object as an instance of the ListBox class
className (LISTBOX) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorHighlight HighlightText The color of selected options

/Highlight
colorNormal WindowText The color of unselected options

/Window

306

Language Reference

curSel The number of the option that has the focus rectangle

dataSource The options strings of the ListBox object

multiple false Whether the ListBox object allows selection of more than one option

sorted false Whether the options are sorted

transparent false Whether th(_e ListBox object has the same background color or image
as its container

value The value of the option that currently has focus

vScrollBar Auto When a vertical scrollbar appears (0=0ff, 1=0On, 2=Auto,
3=Disabled)

Event Parameters Description

key <char expN>, When a key is pressed in the ListBox. Return value may change or

onDragEnter

onDraglLeave

onDragOver

onDro

<position expN>,

<shift expL>,
<ctrl expL>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<char expN>,

<position expN>,

<shift expL>,

cancel keystroke.

When the mouse enters the ListBox display area during a
Drag&Drop operation

When the mouse leaves the ListBox display area without having
dropped an object

While the mouse drags an object over the ListBox display area
during a Drag&Drop operation

When the mouse button is released over the ListBox display area
during a Drag&Drop operation

After a key has been pressed (and the key event has fired), but
before the next keypress.

<ctrl expL>
onSelChange After the focus moves to another option in the list
Method Parameters Description
count() Returns the number of options in the list
selected() Returns the currently selected option(s) or checks if a specified

option is selected

The following table lists the common properties, events, and methods of the ListBox class:

Property

before
borderStyle

dragEffect
enabled

fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline

hwnd

id

left
mousePointer
name

pageno

parent
printable
speedTip
statusMessage

Event Method
beforeRelease onMiddleMouseDown drag()
onClose onMiddleMouseUp move()
onDesignOpen onMouseMove release()
onDragBegin onOpen setFocus()
onGotFocus onRightDbIClick

onHelp onRightMouseDown

onLeftDbIClick

onLeftMouseDown

onLeftMouseUp
onLostFocus

onRightMouseUp
when

307

dBASE Plus 9 LR

form systemTheme onMiddleDbIClick
height tabStop
helpFile top
helpid visible
width
Description

Use a ListBox object to present the user with a scrollable list of items. If the multiple property is
true, the user can choose more than one item. The list of options is set with the dataSource
property. The list of items selected is returned by calling the selected() method.

class NoteBook

Topic group

A multi-page container with rectangular tabs on top.
Syntax

[<oRef> =] new NoteBook(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created NoteBook object.

<container>

The container—typically a Form object—to which you're binding the NoteBook object.
<name expC>

An optional name for the NoteBook object. If not specified, the NoteBook class will auto-
generate a name for the object.

Properties

The following tables list the properties and events of interest in the NoteBook class. (No
particular methods are associated with this class.)

Property Default Description

allowDrop false Whether dragged objects can be dropped on the NoteBook

anchor 0 — None How the NoteBook object is anchored in its container (O=None,
1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center, 6=Container)

baseClassName NOTEBOOK Identifies the object as an instance of the NoteBook class

buttons false Whether the notebook tabs appear as buttons instead

className (NOTEBOOK) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal BtnFace Color of the notebook background

curSel The number of the currently selected tab

dataSource The tab names for the notebook

focus Normal When to give focus to the notebook tabs when they are clicked

(0=Normal, 1=On Button Down, 2=Never)

multiple false Whether the notebook tabs are displayed in multiple rows, or in a
single row with a scrollbar

visualStyle Right Justify The style of the notebook tabs (0=Right Justify, 1=Fixed Width,
2=Ragged Right)

308

Language Reference

Event

canSelChange

onDragEnter

onDragLeave

onDragOver

onDro

onSelChange

Parameters

<nNewSel expN>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

Description

Before a different notebook tab is selected; return value
determines if selection can leave the current tab.

When the mouse enters the notebook display area during a
Drag&Drop operation

When the mouse leaves the notebook display area without
having dropped an object

While the mouse drags an object over the notebook display area
during a Drag&Drop operation

When the mouse button is released over the notebook display
area during a Drag&Drop operation

After a different notebook tab is selected

The following table lists the common properties, events, and methods of the NoteBook class:

Property

before
borderStyle

dragEffect
enabled

first

fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline
form

height
helpFile

helpid
hwnd

Description

Event Method
id beforeRelease onMiddleMouseDown drag()
left onClose onMiddleMouseUp move()
mousePointer onDesignOpen onMouseMove release()
hame onDragBegin onOpen setFocus()
pageno onGotFocus onRightDbIClick
parent onHelp onRightMouseDown
printable onLeftDbIClick onRightMouseUp
speedTip onLeftMouseDown
statusMessage onlLeftMouseUp
systemTheme onLostFocus
tabStop onMiddleDbIClick
top
visible
width

The NoteBook object combines aspects of the Form, Container, and TabBox objects. It's a
multi-page control, like the Form; it acts as a container, and it has tabs, although they’re on top.
Selecting a tab automatically changes the page of the notebook to display the controls assigned
to that page. The notebook’s pageno property indicates which page of the form the notebook is
in. The notebook’s curSel property indicates the current page the notebook is displaying.

When the Notebook's enabled property is set to "false", the enabled properties of all contained
controls are likewise set to "false". When the Notebook's enabled property is set to "true"”, the
enabled properties of the contained controls regain their individual settings.

class OLE

Topic group Related topics

Displays an OLE document that is stored in an OLE field, and lets the user initiate an action in
the server application that created the document.

309

dBASE Plus 9 LR

Syntax

[<oRef> =] new OLE(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly

created OLE object.

<container>

The container—typically a Form object—to which you're binding the OLE object.

<name expC>

An optional name for the OLE object. If not specified, the OLE class will auto-generate a name

for the object.

Properties

The following tables list the properties, events, and methods of interest in the OLE class.

Property Default Description

alignment Stretch Determines the size and position of the contents of the OLE object
(O=Stretch, 1=Top left, 2=Centered, 3=Keep aspect stretch, 4=True
size)

anchor 0 - None How the OLE object is anchored in its container (0=None, 1=Bottom,
2=Top, 3=Left, 4=Right, 5=Center, 6=Container)

baseClassName OLE Identifies the object as an instance of the OLE class

border false Whether the OLE object is surrounded by the border specified by
borderStyle

className (OLE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

datal ink The Field object that is linked to the OLE object

linkFileName The OLE document file (if any) that is linked with the current OLE field.

oleType Number that reflects whether an OLE field is empty (0), contains an
embedded document (1), or contains a link to a document file (2)

serverName The server application that is invoked when the user double-clicks on
an OLE viewer object

Event Parameters Description

onChange After the contents of the OLE object have changed

onClose After the form containing the OLE object has been closed

Method Parameters Description

doVerb() <OLE verb expN>, Starts an OLE server session

<title expC>

The following table lists the common properties, events, and methods of the OLE class:

Property

before
borderStyle

dragEffect
enabled

form
height

name
pageno

parent
printable
speedTip
statusMessage

Event Method
onDesignOpen drag()
onDragBegin release()
onGotFocus setFocus()
onLostFocus

onOpen

Language Reference

hwnd systemTheme
id tabStop
left top
mousePointer visible

width
Description

Place an OLE object in a form to view and edit a document stored in an OLE field. For example,
if an OLE field contains a bitmap image created in Paintbrush, double-clicking the OLE object
linked to the field starts a session in Paintbrush and places the image in the Paintbrush work
area.

OLE stands for object linking and embedding. When you link a document to an OLE object, the
OLE field does not contain the document itself; instead, it holds a link to a file containing the
document. When you embed a document in an OLE field, a copy of the document is inserted
into the OLE field, and no connection is made to a document file.

By double-clicking the OLE object, the user can invoke the application that created the OLE
document. Therefore, if an image was created in Paintbrush and linked or embedded in the OLE
field, double-clicking on the field starts a session in Paintbrush; the image is displayed in the
Paintbrush drawing area, ready for editing. If the object was linked, any changes made in the
Paintbrush session are stored in the document file; if the object was embedded, the changes
are stored in the OLE field only.

An OLE viewer window object displays the contents of an OLE field. (Use the dataLink property
to identify the field.) Each time the record pointer is moved, the contents of the viewer window
are refreshed to display the OLE field in the current record.

class PaintBox

Topic group

A generic control that can be placed on a form.
Syntax

[<oRef> =] new PaintBox(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created PaintBox object.

<container>
The container—typically a Form object—to which you’re binding the PaintBox object.
<name expC>

An optional name for the PaintBox object. If not specified, the PaintBox class will auto-generate
a name for the object.

Properties

The following tables list the properties and events of interest in the PaintBox class. (No
particular methods are associated with this class.)

Property Default Description
allowDrop false Whether dragged objects can be dropped in the PaintBox
baseClassName PAINTBOX Identifies the object as an instance of the PaintBox class

311

dBASE Plus 9 LR

className (PAINTBOX) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName
colorNormal BtnText/BtnFace The color of the paintbox
transparent false Whether the paintbox background is the same as the background
color or image of its container
Event Parameters Description
onChar <char expN>, After a non-cursor key or key combination is pressed
<repeat expN>,
<flags expN>
onClose After the form containing the PaintBox object has been closed

onDragEnter

onDragLeave

onDragOver

onFormSize

onKeyDown

onKeyUp

onPaint

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<char expN>,
<repeat expN>,
<flags expN>

<char expN>,
<repeat expN>,
<flags expN>

When the mouse enters the paintbox display area during a
Drag&Drop operation

When the mouse leaves the paintbox display area without having
dropped an object

While the mouse drags an object over the paintbox display area
during a Drag&Drop operation

When the mouse button is released over the paintbox display
area during a Drag&Drop operation

After the form containing the paintbox is resized

After any key is pressed

After any key is released

Whenever the paintbox needs to be redrawn

The following table lists the common properties, events, and methods of the PaintBox class:

Property Event Method
before name beforeRelease onMiddleMouseDown drag()
borderStyle pageno onClose onMiddleMouseUp move()
dragEffect parent onDesignOpen onMouseMove release()
enabled printable onDragBegin onMouseOut setFocus()
form speedTip onGotFocus onMouseOver

height statusMessage onLeftDbIClick onOpen

hwnd systemTheme onlLeftMouseDown onRightDbIClick

id tabStop onLeftMouseUp onRightMouseDown

left top onLostFocus onRightMouseUp

mousePointer visible onMiddleDbIClick

width

Description

The PaintBox object is a generic control you can use to create a variety of objects. It is designed
for advanced developers who want to create their own custom controls using the Windows API.
It is simply a rectangular region of a form that has all the standard control properties such as
height, width, and before, as well as all the standard mouse events.

Language Reference

In addition to the standard events or properties, the PaintBox object has three events that let
you detect keystrokes entered when it has focus: onChar, onKeyDown, and onKeyUp. These let
you create customized editing controls. The onPaint and onFormSize events let you modify the
appearance of the object based on user interaction.

class Progress

Topic group

A progress indicator.

Syntax

[<oRef> =] new Progress(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Progress object.

<container>
The container—typically a Form object—to which you're binding the Progress object.
<name expC>

An optional name for the Progress object. If not specified, the Progress class will auto-generate
a name for the object.

Properties

The following tables list the properties of interest in the Progress class. (No particular events or
methods are associated with this class.)

Property Default Description

baseClassName PROGRESS Identifies the object as an instance of the Progress class

className (PROGRESS) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

rangeMax The maximum value

rangeMin The minimum value

value The current value

The following table lists the common properties, events, and methods of the Progress class:

Property Event Method
before pageno beforeRelease onMiddleMouseDown drag()
borderStyle parent onClose onMiddleMouseUp move()
dragEffect printable onDesignOpen onMouseMove release()
form speedTip onDragBegin onOpen

height systemTheme onLeftMouseDown onRightMouseDown

hwnd top onLeftMouseUp onRightMouseUp

left visible

mousePointer width

name

Description

Use a Progress object to graphically indicate progress during processing. For example to
display percentage completed, set the rangeMin to 0 and the rangeMax to 100. Then as the

313

dBASE Plus 9 LR

process progresses, set the value to the approximate percentage. The control will display the
percentage graphically.

class PushButton

Topic group

A button on a form.

Syntax

[<oRef> =] new PushButton(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created PushButton object.

<container>

The container—typically a Form object—to which you're binding the PushButton object.
<name expC>

An optional name for the PushButton object. If not specified, the PushButton class will auto-
generate a name for the object.

Properties

The following tables list the properties and events of interest in the PushButton class. (No
particular methods are associated with this class.)

Property Default Description

baseClassName PUSHBUTTON Identifies the object as an instance of the PushButton class

bitmapAlignment 0 (Default) Controls position of bitmaps and text on the pushButton

className (PUSHBUTTON) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal BtnText/BtnFace The color of the button

default false Whether the button is the default button on the form

disabledBitmap The bitmap to display on the button when it's disabled

downBitmap The bitmap to display on the button when it's pressed down

focusBitmap The bitmap to display on the button when it has focus

rou The group to which the button belongs

speedBar false Whether the button acts like a tool button, which never gets focus

systemTheme true Whether to use XP Visual Style button, or Windows Classic
button

text <same as name> The text that appears on the PushButton face

textLeft false When a button has both a bitmap and text label, whether the text
appears to the left or right of the bitmap

toggle false Whether the button acts like a toggle switch, staying down when
pressed

upBitmap 0 The bitmap to display on the button when it's not down and does

not have focus

value false Whether the button is pressed (used when toggle is true)

314

Language Reference

Event Parameters Description

onClick After the PushButton is clicked

The following table lists the common properties, events, and methods of the PushButton class:

Property Event Method
before id beforeRelease onMiddleMouseDown drag()
borderStyle left onClose onMiddleMouseUp move()
dragEffect mousePointer onDesignOpen onMouseMove release()
enabled name onDragBegin onOpen setFocus()
fontBold pageno onGotFocus onRightDbIClick

fontltalic parent onHelp onRightMouseDown

fontName printable onLeftDbIClick onRightMouseUp

fontSize speedTip onLeftMouseDown when

fontStrikeout statusMessage onlLeftMouseUp

fontUnderline systemTheme onLostFocus

form tabStop onMiddleDbIClick

height top

helpFile visible

helpld width

hwnd

Description

Use a PushButton object to execute an action when the user clicks it.

class RadioButton

Topic group Related topics
A single RadioButton on a form. The user may choose one from a set.

Syntax
[<oRef> =] new RadioButton(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created RadioButton object.

<container>
The container—typically a Form object—to which you're binding the RadioButton object.
<name expC>

An optional name for the RadioButton object. If not specified, the RadioButton class will auto-
generate a name for the object.

Properties

The following tables list the properties and events of interest in the RadioButton class. (No
particular methods are associated with this class.)

Property Default Description

baseClassName RADIOBUTTON Identifies the object as an instance of the RadioButton class

className (RADIOBUTTON) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal BtnText/BtnFace The color of the RadioButton’s text label

datalink The Field object that is linked to the RadioButton

315

dBASE Plus 9 LR

rouy| The group to which the RadioButton belongs

text <same as name> The text label that appears beside the RadioButton

textLeft false Whether the RadioButton’s text label appears to the left or to
the right of the RadioButton

transparent false Whether the RadioButton object has the same background
color or image as its container

value Whether the RadioButton is visually marked as selected

Event Parameters Description

onChange After the RadioButton gets selected or loses its selection

The following table lists the common properties, events, and methods of the RadioButton class:

Property Event Method
before id beforeRelease onMiddleMouseDown drag()
borderStyle left onClose onMiddleMouseUp move()
dragEffect mousePointer onDesignOpen onMouseMove release()
enabled name onDragBegin onOpen setFocus()
fontBold pageno onGotFocus onRightDbIClick

fontltalic parent onHelp onRightMouseDown

fontName printable onLeftDbIClick onRightMouseUp

fontSize speedTip onlLeftMouseDown when

fontStrikeout statusMessage onLeftMouseUp

fontUnderline systemTheme onLostFocus

form tabStop onMiddleDbIClick

height top

helpFile visible

helpld width

hwnd

Description

Use a group of RadioButton objects to present the user a set of multiple choices, from which
they can choose only one.

Each set of choices on a form must have the same group property. If there is only one group of
RadioButtons on a form, the group can be left blank. You may use any string or number as the
group property.

You may also use true and false in the group property to create RadioButton groups. Use true
for the first button in each RadioButton group, and false for the rest. For example, if you create
seven RadioButtons and set the group property of the first and fourth RadioButton to true, the
first three buttons form one group, and the last four form another. The two groups are
independent; the user can select one button in the first group and one button in the other.

class Rectangle

Topic group Related topics
A rectangle with a caption.

Syntax
[<oRef> =] new Rectangle(<container> [,<name expC>])
<oRef>

316

Language Reference

A variable or property—typically of <container>—in which to store a reference to the newly
created Rectangle object.

<container>
The container—typically a Form object—to which you're binding the Rectangle object.
<name expC>

An optional name for the Rectangle object. If not specified, the Rectangle class will auto-
generate a name for the object.

Properties

The following tables list the properties of interest of the Rectangle class. (No particular events or
methods are associated with this class.)

Property Default Description

baseClassName RECTANGLE Identifies the object as an instance of the Rectangle class
border true Whether the Rectangle object’s rectangle is visible

borderStyle Default Specifies the rectangle style (0=Default, 1=Raised, 2=Lowered,

3=None, 4=Single, 5=Double, 6=Drop Shadow, 7=Client, 8=Modal,
9=Etched In, 10=Etched Out)

className (RECTANGLE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal BtnText/BtnFace The color of the caption and the rectangle fill

patternStyle Solid The fill pattern style (0=Solid, 1=BDiagonal, 2=Cross, 3=Diagcross,
4=FDiagonal, 5=Horizontal, 6=Vertical)

text <same as name> The text caption that appears at the top right of the rectangle

transparent false Determines if the interior of rectangle is, or is not, transparent.

The following table lists the common properties, events, and methods of the Rectangle class:

Property Event Method
before hwnd beforeRelease onMiddleMouseDown drag()
borderStyle left onClose onMiddleMouseUp move()
dragEffect mousePointer onDesignOpen onMouseMove release()
fontBold name onDragBegin onOpen
fontltalic pageno onLeftDbIClick onRightDbIClick
fontName parent onLeftMouseDown onRightMouseDown
fontSize printable onLeftMouseUp onRightMouseUp
fontStrikeout speedTip onMiddleDbIClick
fontUnderline systemTheme
form top
height visible

width
Description

Use a Rectangle object to enclose an area of a form. For example, you can use a Rectangle
object to draw a border around a group of related objects, such as a group of RadioButtons.

To assign a label that describes the group of objects, use the text property. The label appears in
the top left corner of the rectangle.

A Rectangle object does not affect other objects. The user can't give focus to the Rectangle
object, and it doesn't display or modify data.

317

dBASE Plus 9 LR

class ReportViewer

Topic group

A control to display a report on a form.

Syntax

[<oRef> =] new ReportViewer(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly

created ReportViewer object.

<container>

The container—typically a Form object—to which you’re binding the ReportViewer object.

<name expC>

An optional name for the ReportViewer object. If not specified, the ReportViewer class will auto-
generate a name for the object.

Properties

The following tables list the properties, events and methods of interest in the ReportViewer

class.

Property Default Description

allowDrop false Whether dragged objects (normally an .REP file) can be
dropped in the ReportViewer

anchor 0 — None How the ReportViewer object is anchored in its container

baseClassName

REPORTVIEWER

(0=None, 1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center,
6=Container)

Identifies the object as an instance of the ReportViewer
class

className (REPORTVIEWER) Identifies the object as an instance of a custom class.
When no custom class exists, defaults to baseClassName
filename The name of the .REP file containing the report to view
arams Parameters passed to the .REP file
ref A reference to the Report object being viewed
scrollBar Auto When a scroll bar appears for the ReportViewer object
(0=0ff, 1=0n, 2=Auto, 3=Disabled)
Event Parameters Description
onDragEnter <left expN> When the mouse enters the ReportViewer display area
<top expN> during a Drag&Drop operation
<type expC>
<name expC>
onDragOver <left expN> While the mouse drags an object over the ReportViewer
<top expN> display area during a Drag&Drop operation
<type expC>

onDraglLeave

onDro

318

<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

When the mouse leaves the ReportViewer display area
without having dropped an object

When the mouse button is released over the
ReportViewer display area during a Drag&Drop operation

Language Reference

onLastPage When the last page of a report has been rendered in the
reportViewer

Method Parameters Description

reExecute() Regenerates the report

The following table lists the common properties, events, and methods of the ReportViewer
class:

Property Event Method
before name beforeRelease drag()
borderStyle pageno onClose move()
dragEffect parent onDesignOpen release()
form systemTheme onDragBegin

height top

eft width onOpen

Description

Use a ReportViewer object to view a report in a form. Assign any parameters to the params
property, then set the filename property to the name of the .REP file; this executes the named
report file. You may access the report object being viewed through the ref property.

If report parameters are assigned after setting the filename property, you must call the
reExecute() method to regenerate the report.

class ScrollBar

Topic group Related topics

A vertical or horizontal scrollbar used to represent a range of numeric values.

Syntax
[<oRef> =] new ScrollBar(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created ScrollBar object.

<container>
The container—typically a Form object—to which you're binding the ScrollBar object.
<name expC>

An optional name for the ScrollBar object. If not specified, the ScrollBar class will auto-generate
a name for the object.

Properties

The following tables list the properties and events of interest in the ScrollBar class. (No
particular methods are associated with this class.)

Property Default Description
baseClassName SCROLLBAR Identifies the object as an instance of the ScrollBar class
className (SCROLLBAR) Identifies the object as an instance of a custom class. When no

custom class exists, defaults to baseClassName

colorNormal ScrollBar The color of the scrollbar

319

dBASE Plus 9 LR

datal ink The Field object that is linked to the ScrollBar object
rangeMax The maximum value

rangeMin The minimum value

value The current value

vertical true Whether the scrollbar is vertical or horizontal

Event Parameters Description

onChange After the scrollbar value changes

The following table lists the common properties, events, and methods of the ScrollBar class:

Property Event Method
before name beforeRelease onMiddleMouseDown drag()
borderStyle ageno onClose onMiddleMouseUp move()
dragEffect parent onDesignOpen onMouseMove release()
enabled printable onDragBegin onOpen setFocus()
form speedTip onGotFocus onRightDbIClick

height statusMessage onHelp onRightMouseDown

helpFile systemTheme onLeftDbIClick onRightMouseUp

helpid tabStop onLeftMouseDown when

hwnd top onLeftMouseUp

id visible onLostFocus

left width onMiddleDbIClick

mousePointer

Description
The ScrollBar object is maintained primarily for compatibility. Use a Slider instead.

class Shape

Topic group Related topics

A simple colored geometric shape.

Syntax
[<oRef> =] new Shape(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Shape object.

<container>
The container—typically a Form object—to which you’re binding the Shape object.
<name expC>

An optional name for the Shape object. If not specified, the Shape class will auto-generate a
name for the object.

Properties

The following tables list the properties of interest of the Shape class. (No particular events or
methods are associated with this class.)

Property Default Description

baseClassName SHAPE Identifies the object as an instance of the Shape class

320

Language Reference

className (SHAPE) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName
colorNormal WindowText The pen and fill color of the shape
/Window
drawMode 0 - Normal An enumerated property used to create visual effects using the pen

and fill color of the shape, and the color of the underlying object. See
drawMode for details.

penStyle Solid The pen style used to draw the outline of the shape (0=Solid, 1=Dash,
2=Dot, 3=DashDot, 4=DashDotDot)

penWidth 1 Width of the outline in pixels

shapeStyle Circle The type of shape to draw (0=Round Rectangle, 1=Rectangle,

2=Ellipse, 3=Circle, 4=Round square, 5=Square)

The following table lists the common properties, events, and methods of the Shape class:

Property Event Method
before pageno beforeRelease drag()
dragEffect parent canRender move()
form printable onClose release()
height top onDesignOpen
left visible onDragBegin
name width onOpen

onRender
Description

Use a Shape object to draw a basic geometric shape on a form.

A Shape has no hwnd because it is drawn on the surface of the form; it is not a genuine
Windows control. Despite its position in the form’s z-order, a Shape can never be drawn on top
of another component (other than a Line or Shape).

class Slider

Topic group

A horizontal or vertical slider for choosing magnitude.
Syntax

[<oRef> =] new Slider(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Slider object.

<container>
The container—typically a Form object—to which you're binding the Slider object.
<name expC>

An optional name for the Slider object. If not specified, the Slider class will auto-generate a
name for the object.

Properties
The following tables list the properties, events, and methods of interest in the Slider class.

Property Default Description

321

dBASE Plus 9 LR

baseClassName SLIDER Identifies the object as an instance of the Slider class

className (SLIDER) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorNormal BtnFace The color of the slider

enableSelection false Whether to display the selection range

endSelection The value of the end of the selection range

rangeMax The maximum value

rangeMin The minimum value

startSelection The value of the start of the selection range

tics Auto How to display the tic marks (0O=Auto, 1=Manual, 2=None)

ticsPos Bottom Right Where to display the tic marks (0=Both, 1=Bottom Right, 2=Top
Left)

value The current value

vertical false Whether the slider is vertical or horizontal

Event Parameters Description

onChange After the slider position changes

Method Parameters Description

clearTics() <expN> If <expN> is non-zero, clears all manually-set tic marks

setTic() <expN> Manually sets a tic mark at the specified position

setTicFrequency() <expN> Sets the automatic tic mark interval

The following table lists the common properties, events, and methods of the Slider class:

Property Event Method
before name beforeRelease onMiddleMouseDown drag()
borderStyle pageno onClose onMiddleMouseUp move()
dragEffect parent onDesignOpen onMouseMove release()
enabled printable onDragBegin onOpen setFocus()
form speedTip onGotFocus onRightMouseDown

height statusMessage onHelp onRightMouseUp

helpFile systemTheme onlLeftMouseDown when

helpid tabStop onLeftMouseUp

hwnd top onLostFocus

id visible

left width

mousePointer

Description

Use a slider to let users vary numeric values visually. Unlike spinboxes, sliders don't accept
keyboard input or use a step value. Instead, the user drags the slider pointer to increase or
decrease the value.

As the user moves the slider pointer, the value is continually updated to reflect the position of
the pointer. For example, a slider that varies a numeric value between 1 and 100 sets the value
to 50 when the slider pointer is at the center of the slider.

To set a range for the slider, set rangeMin to the minimum value and rangeMax to the maximum
value.

322

Language Reference

You may also designate a separate selection region inside the slider with the startSelection,
endSelection, and enableSelection properties.

You have complete control over the tick marks that appear in the slider.

class SpinBox

Topic group Related topics

An entryfield with a spinner for entering numeric or date values.

Syntax
[<oRef> =] new SpinBox(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created SpinBox object.

<container>

The container—typically a Form object—to which you’re binding the SpinBox object.

<name expC>

An optional name for the SpinBox object. If not specified, the SpinBox class will auto-generate a
name for the object.

Properties

The following tables list the properties, events, and methods of interest in the SpinBox class.

Property Default Description

baseClassName SPINBOX Identifies the object as an instance of the SpinBox class

border true Whether the SpinBox object is surrounded by the border specified
by borderStyle

className SPINBOX Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorHighlight The color of the text in the SpinBox object when the object has
focus

colorNormal WindowText The color of the text in the SpinBox object when the object does

/Window not have focus

datalink The Field object that is linked to the SpinBox object

function A text formatting function

picture Formatting template

rangeMax The maximum value

rangeMin The minimum value

rangeRequired false Whether the range values are enforced even when no change has
been made

selectAll true Whether the entryfield contents are initially selected when the
SpinBox object gets focus

spinOnly false Whether the value may changed using the spinner only or typing is
allowed

step 1 The value added or subtracted when using the spinner

validErrorMsg Invalid input The message that is displayed when the valid event fails

323

dBASE Plus 9 LR

validRequired false Whether to fire the valid event even when no change has been
made
value The value currently displayed in the SpinBox object
Event Parameters Description
key <char expN>, When a key is pressed in the entryfield portion of the spinbox.
<position expN>, Return value may change or cancel keystroke.
<shift expL>,
<ctrl expL>
onChange After the spinner is clicked
onKe <char expN>, After a key has been pressed (and the key event has fired), but
<position expN>, before the next keypress.
<shift expL>,
<ctrl expL>
valid When attempting to remove focus. Must return true, or focus
remains.
Method Parameters Description
copy() Copies selected text to the Windows Clipboard
cut() Cuts selected text to the Windows Clipboard
keyboard() <expC> Simulates typed user input to the SpinBox object
paste() Copies text from the Windows Clipboard to the current cursor
position
undo() Reverses the effects of the most recent cut(), copy(), or paste()
action

The following table lists the common properties, events, and methods of the SpinBox class:

Property Event Method
before id beforeRelease onMiddleMouseDown drag()
borderStyle left onClose onMiddleMouseUp move()
dragEffect mousePointer onDesignOpen onMouseMove release()
enabled name onDragBegin onOpen setFocus()
fontBold pageno onGotFocus onRightDbIClick

fontltalic parent onHelp onRightMouseDown

fontName printable onLeftDbIClick onRightMouseUp

fontSize speedTip onlLeftMouseDown when

fontStrikeout statusMessage onlLeftMouseUp

fontUnderline systemTheme onLostFocus

form tabStop onMiddleDbIClick

height top

helpFile visible

helpld width

hwnd

Description

Use a spinbox to let users enter values by typing them in the textbox or by clicking the spinner
arrows.

By setting spinOnly to true, you can control the rate at which users change numeric or date
values. For example, one spin box might change an interest rate in increments of hundredths,
while another might change a date value in week increments. Set the size of each increment
with the step property; for example, if you set step to 5, each click on an arrow changes a
numeric value by 5 or a date value by 5 days.

324

Language Reference

To restrict entries to those within a particular range of values, set the rangeMin property to the
minimum value and rangeMax to the maximum value, then set rangeRequired to true.

class SubForm
Topic group Related topics

A subclassed Form which behaves as a non-mdi form. A subform can be a child of a form or
another subform object.

Syntax

[<oRef> =] new SubForm(<parent oRef>[<title expC>])

<oRef>

A variable or property in which to store a reference to the newly created SubForm object.
<parent oRef>

A variable or property containing an object reference to the form, or subform, that is to be the
parent of the new subform. Determines the read-only value of the subform's parent property.

<title expC>
An optional title for the SubForm object. If not specified, the title will be "SubForm".
Properties
The following tables list the properties, events, and methods of the SubForm class.

Property Default Description

activeControl The currently active control

allowDrop false Whether dragged objects can be dropped on the subform's surface

autoCenter false Whether the form automatically centers on-screen when it is opened

autoSize false Whether the form automatically sizes itself to display all its
components

background Background image

baseClassName SUBFORM Identifies the object as an instance of the SubForm class

className (SUBFORM) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

clientEdge false Whether the edge of the form has the sunken client appearance

colorNormal BtnFace Background color

elements An array containing object references to the components on the
subform

escExit true Whether pressing Esc closes the subform

first The first component on the subform in the z-order

hWhndClient The Windows handle for the subform's client area

icon An icon file or resources that displays when the subform is minimized

inDesign Whether the subform was instantiated by the Form designer

maximize true Whether the subform can be maximized when not MDI

metric Chars Units of measurement (O=Chars, 1=Twips, 2=Points, 3=Inches,

4=Centimeters, 5=Millimeters, 6=Pixels)

minimize true Whether the subform can be minimized when not MDI

325

dBASE Plus 9 LR

moveable true Whether the subform is moveable when not MDI

nextObj The object that's about to receive focus

persistent false Determines whether custom control, datamodule, menu or procedure
files associated with a subform are loaded in the persistent mode.

popupMenu The subform’s Popup menu object

refreshAlways true Whether to refresh the subform after all form-based navigation and
updates

rowset The primary rowset

scrollBar Off When a scroll bar appears for the subform (0=0ff, 1=0On, 2=Auto,
3=Disabled)

scrollHOffset The current position of the horizontal scrollbar in units matching the
form or subform's current metric property

scrollVOffset The current position of the vertical scrollbar in units matching the form
or subform's current metric property

showSpeedTip true Whether to show tool tips

sizeable true Whether the subform is resizeable when not MDI

smallTitle false Whether the subform has the smaller palette-style title bar when not
MDI

sysMenu true Whether the subform’s system menu icon and close icon are
displayed when not MDI

text The text that appears in the subform’s title bar

topMost false Whether the subform stays on top when not MDI

useTablePopup false Whether to use the default table navigation popup when no popup is
assigned as the subform’s popupMenu.

view The query or table on which the subform is based

windowState Normal The state of the window (0=Normal, 1=Minimized, 2=Maximized)

Event Parameters Description

canClose When attempting to close subform; return value allows or disallows

canNavigate

onAppend
onChange

onClose

onDragEnter

onDraglLeave

onDragOver

onDro

326

<workarea expN>

<workarea expN>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

closure

When attempting to navigate in work area; return value allows or
disallows leaving current record

After a new record is added
After leaving a record that was changed, before onNavigate
After the subform has been closed

When the mouse enters the subform's display area during a
Drag&Drop operation

When the mouse leaves the subform's display area without having
dropped an object

While the mouse drags an object over the subform's display area
during a Drag&Drop operation

When the mouse button is released over the subform's display area
during a Drag&Drop operation

Language Reference

onMove After the subform has been moved

onNavigate <workarea expN> After navigation in a work area

onSelection <control ID expN> After the subform is submitted

onSize <expN> After the subform is resized or changes windowState

Method Parameters Description

abandonRecord() Abandons changes to the current record

beginAppend() Starts append of new record

close Closes the subform

isRecordChanged() Checks whether the current record buffer has changed

open() Loads and opens the subform

pageCount() Returns the highest pageNo of any component

print() Prints the subform

refresh() Redraws the subform

saveRecord() Saves changes to the current or new record

scroll() <horizontal expN>, Programatically scrolls the client area (the contents) of a subform
<vertical expN>

showFormatBar() <expL> Displays or hides the formatting toolbar

The following table lists the common properties, events, and methods of the SubForm class:

Property Event Method
enabled pageNo beforeRelease onMiddleMouseDown onRightMouseUp
height parent onClose onMiddleMouseUp move()
helpFile statusMessage onDesignOpen onMouseMove release()
helpid systemTheme onGotFocus onMouseOut setFocus()
hwnd top onHelp onMouseOver
left visible onLeftDbIClick onOpen
mousePointer width onLeftMouseDown onRightDbIClick
onLeftMouseUp onRightMouseDown
onLostFocus

onMiddleDblClick

Description

Parenting the subform to a form, or another subform, restricts display of the subform to within
the client area of the parent form. When a parent form is closed, it allows the parent form to also
close the subform.

A form or subform, containing one or more subforms, internally tracks which subform (if any) is
currently active. When a subform is active, that subform has focus. When a form object is given
focus, the active subform will lose focus and be set to inactive. Clicking on a subform, or
subform object, will activate the subform and set focus either to the subform or the selected
object.

A form's canClose event will call the canClose event of any child subforms. If a subform's
canClose event returns false, the form's canClose event will also return false.

Subforms are not currently supported by the Form Designer. However, you can design a form in
the Form Designer and edit the streamed code to designate it a Subform.

327

dBASE Plus 9 LR

class TabBox
Topic group Related topics

A set of folder-style (trapezoidal) bottom-tabs.

Syntax
[<oRef> =] new TabBox(<container> [,<name expC>])
<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created TabBox object.

<container>
The container—typically a Form object—to which you're binding the TabBox object.
<name expC>

An optional name for the TabBox object. If not specified, the TabBox class will auto-generate a
name for the object.

Properties

The following tables list the properties and events of interest in the TabBox class. (No particular
methods are associated with this class.)

Property Default Description

anchor 1 - Bottom How the TabBox object is anchored in its container (0=None,
1=Bottom)

baseClassName TABBOX Identifies the object as an instance of the TabBox class

className (TABBOX) Identifies the object as an instance of a custom class. When no
custom class exists, defaults to baseClassName

colorHighlight BtnText/BtnFace The color of the selected tab

colorNormal BtnFace The color of the background behind the tabs

curSel The number of the currently selected tab

dataSource The tab names

Event Parameters Description

onSelChange

After a different tab is selected

The following table lists the common properties, events, and methods of the TabBox class:

Property Event Method
before id beforeRelease onMiddleMouseDown drag()
dragEffect left onClose onMiddleMouseUp move()
enabled mousePointer onDesignOpen onMouseMove release()
fontBold name onDragBegin onOpen setFocus()
fontltalic pageno onGotFocus onRightDbIClick

fontName parent onHelp onRightMouseDown

fontSize printable onLeftDbIClick onRightMouseUp

fontStrikeout speedTip onlLeftMouseDown when

fontUnderline statusMessage onlLeftMouseUp

form systemTheme onLostFocus

height tabStop onMiddleDbIClick

helpFile top

helpid visible

hwnd width

Language Reference

Description
A TabBox contains a number of tabs that users can select.

By setting the pageno property of a TabBox control to zero (the default), you can implement a
tabbed multi-page form where the user can easily switch pages by selecting tabs. Use the
pageno property of a control to determine on which page the control appears, and use the
curSel property and onSelChange event of the TabBox to switch between pages.

class Text

Topic group Related topics

Non-editable HTML text on a form.

Syntax
[<oRef> =] new Text(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created Text object.

<container>

The container—typically a Form object—to which you're binding the Text object.

<name expC>

An optional name for the Text object. If not specified, the Text class will auto-generate a name
for the object.

Properties

The following tables list the properties and methods of interest in the Text class. (No particular
events are associated with this class.)

Property Default Description

alignHorizontal Left Determines how the text displays within the horizontal
plane of its rectangular frame (0=Left, 1=Center, 2=Right,
3=Justify)

alignment Top left Combines the alignHorizontal, alignVertical, and wrap
properties (maintained for compatibility)

alignVertical Top Determines how the text displays in the vertical plane of
its rectangular frame (0=Top, 1=Center, 2=Bottom,
3=Justify)

anchor 0 — None How the Text object is anchored in its container (O=None,

1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center,
6=Container)

baseClassName TEXT Identifies the object as an instance of the Text class

border false Whether the Text object is surrounded by the border
specified by borderStyle

className TEXT Identifies the object as an instance of a custom class.
When no custom class exists, defaults to
baseClassName

colorNormal BtnText/BtnFace The color of the text

fixed false Whether the Text object’s position is fixed or if it can be
"pushed down" or "pulled up" by the rendering or
suppression of other objects

329

dBASE Plus 9 LR

function

leading

marginHorizontal

marginVertical

picture
prefixEnable

rotate

suppresslfBlank

suppresslfDuplicate

true

false

false

A text formatting function

The distance between consecutive lines; if 0 uses the
font's default leading

The horizontal margin between the text and its
rectangular frame

The vertical margin between the text and its rectangular
frame

Formatting template

Whether to interpret the ampersand (&) character in the
text as the accelerator prefix.

The text orientation, in increments of 90 degrees
(0=0, 1=90, 2=180, 3=270)

Whether the Text object is suppressed (not rendered) if it
is blank

Whether the Text object is suppressed (not rendered) if
its value is the same as the previous time it was rendered

text <same as name> The value of the Text object; the text that appears

tracking 0 The space between characters; if zero uses the font's
default

trackJustifyThreshold 0 The maximum amount of added space between words on
a fully justified line; zero indicates no limit

transparent false Whether the Text object has the same background color
or image as its container

variableHeight false Whether the Text object’s height can increase based on
its value

verticalJustifyLimit 0 The maximum additional space between lines that can be
added to attempt to justify vertically. If the limit is
exceeded the Text object is top justified. A value of zero
means no limit.

wra| true Whether to word-wrap the text in the Text object

Method Parameters Description

getTextExtent() <expC> Returns the width of the specified string using the Text

object’s font

The following table lists the common properties, events, and methods of the Text class:

Property

before
borderStyle

dragEffect
fontBold

fontltalic
fontName
fontSize
fontStrikeout
fontUnderline
form

Description

330

id

left
mousePointer
name

pageno
parent
printable
speedTip

systemTheme

Event Method
beforeRelease onMiddleMouseDown drag()
canRender onMiddleMouseUp move()
onClose onMouseMove release()
onDesignOpen onOpen

onDragBegin onRender

onLeftDbIClick onRightDbIClick

onlLeftMouseDown onRightMouseDown

onLeftMouseUp onRightMouseUp

onMiddleDbIClick

Language Reference

Use a Text component to display information in a form or report. The text property of the
component may contain any text, including HTML tags. Use a TextLabel component in forms
where the extended functionality of the Text component is not required.

The text property may be an expression codeblock, which is evaluated every time it is rendered.
Note

The properties, marginHorizontal, marginVertical, suppressfBlank, suppressfDuplicate, tracking,
trackJustify Threshold, verticalJustifyLimit and variableHeight are designed to be used only in
reports.

class TextLabel

Topic group Related topics

Non-editable text on a form.

Syntax
[<oRef> =] new TextLabel(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly
created TextLabel object.

<container>
The container—typically a Form object—to which you're binding the TextLabel object.
<name expC>

An optional name for the TextLabel object. If not specified, the TextLabel class will auto-
generate a name for the object.

Properties

The following tables list the properties and methods of interest in the TextLabel class. (No
particular events are associated with this class.)

Property Default Description

alignHorizontal Left Determines how the text displays within the horizontal plane
of its rectangular frame (0=Left, 1=Center, 2=Right)

alignVertical Top Determines how the text displays in the vertical plane of its
rectangular frame (0=Top, 1=Center, 2=Bottom)

baseClassName TEXTLABEL Identifies the object as an instance of the TextLabel class

className (TEXTLABEL) Identifies the object as an instance of a custom class. When
no custom class exists, defaults to baseClassName

colorNormal BtnText/BtnFace The color of the text

prefixEnable true Whether to interpret the ampersand (&) character in the text
as the accelerator prefix.

text <same as hame> The value of the TextLabel object; the text that appears

transparent false Whether the TextLabel object has the same background
color or image as its container

Method Parameters Description

getTextExtent() <expC> Returns the width of the specified string using the TextLabel

object’s font

331

dBASE Plus 9 LR

The following table lists the common properties, events, and methods of the TextLabel class:

Property Event Method
before id beforeRelease onMiddleMouseDown drag()
borderStyle left onClose onMiddleMouseUp move()
dragEffect mousePointer onDesignOpen onMouseMove release()
fontBold name onDragBegin onOpen

fontltalic pageno onLeftDbIClick onRightDbIClick

fontName parent onlLeftMouseDown onRightMouseDown

fontSize printable onLeftMouseUp onRightMouseUp

fontStrikeout speedTip onMiddleDbIClick

fontUnderline systemTheme

form top

height visible

hwnd width

Description

Use a TextLabel component to display information on a form or report, wherever features such
as word-wrap and HTML formatting are not required. TextLabel is a simple, light-duty object
which consumes fewer system resources than the Text component.

The TextLabel component does not support in-place editing on design surfaces.
The text property of the TextLabel component may contain character string data only.

class Treeltem

Topic group Related topics

An item in a TreeView.

Syntax
[<oRef> =] new Treeltem(<parent> [,<name expC>])

<oRef>

A variable or property—typically of <parent>—in which to store a reference to the newly created
Treeltem object.

<parent>

The parent object—a TreeView object for top-level items, or another Treeltem—to which you're
binding the Treeltem object.

<name expC>

An optional name for the Treeltem object. If not specified, the Treeltem class will auto-generate
a name for the object.

Properties

The following tables list the properties and methods of interest in the Treeltem class. (No
particular events are associated with this class.)

Property Default Description

baseClassName TREEITEM Identifies the object as an instance of the Treeltem class

bold false Whether the text label is bold

checked false Whether the item is visually marked as checked

className (TREEITEM) Identifies the object as an instance of a custom class. When no

332

expanded false
firstChild

handle

mage

level
nextSibling
noOfChildren
prevSibling
selectedimage

Language Reference

custom class exists, defaults to baseClassName
Whether the item’s children are shown or hidden
The first child tree item

The Windows tree item handle (similar to hWnd)

Image displayed between checkbox and text label when item
does not have focus

The tree level of the item

The next tree item with the same parent
The number of child tree items

The previous tree item with the same parent

Image displayed between checkbox and text label when item
has focus

text The text label of the tree item

Method Parameters Description

ensureVisible() Expands the tree and scrolls the tree view if necessary to make
the tree item visible

select() Makes the tree item the selected item in the tree

setAsFirstVisible() Expands the tree and scrolls the tree view if necessary to try to

sortChildren()

make the tree item the first (ftopmost) visible tree item

Sorts the child tree items

The following table lists the common properties, events, and methods of the Treeltem class:

Property

name
parent

Description

Method

beforeRelease release()

Each item in a tree view can contain text, an icon image that can change when the item is
selected, and a checkbox. You can replace the checkbox images with a different pair of images

to represent any two-state condition.

A Treeltem object can contain other Treeltem objects as child objects in a subtree, which can

be expanded or collapsed.

class TreeView

Topic group Related topics

An expandable tree.

Syntax

[<oRef> =] new TreeView(<container> [,<name expC>])

<oRef>

A variable or property—typically of <container>—in which to store a reference to the newly

created TreeView object.
<container>

333

dBASE Plus 9 LR

The container—typically a Form object—to which you're binding the TreeView object.

<name expC>

An optional name for the TreeView object. If not specified, the TreeView class will auto-generate

a name for the object.

Properties

The following tables list the properties, events, and methods of interest in the TreeView class.

Property
allowDrop
allowEditLabels
allowEditTree

anchor

baseClassName
checkBoxes

checkedimage

className

colorNormal

disablePopup
firstChild
firstVisibleChild

hasButtons

hasLines

image

imageScaleToFont

imageSize
indent
linesAtRoot

selected

selectedimage

showSelAlways

toolTips

trackSelect

uncheckedimage

334

Default

false
true
true

0 — None

TREEVIEW

true

(TREEVIEW)

WindowText
/Window

false

true

true

true

true

true

true

true

Description

Whether dragged objects can be dropped on the TreeView
Whether the text labels of the tree items are editable
Whether items can be added or deleted from the tree

How the TreeView object is anchored in its container
(0=None, 1=Bottom, 2=Top, 3=Left, 4=Right, 5=Center,
6=Container)

Identifies the object as an instance of the TreeView class
Whether each tree item has a checkbox

The image to display when a tree item is checked instead of a
checked check box

Identifies the object as an instance of a custom class. When
no custom class exists, defaults to baseClassName

The color of the text labels and background

Whether the tree view’s popup menu is disabled
The first child tree item
The first Treeltem that is visible in the TreeView area

Whether + and - icons are displayed for Treeltems that have
children

Whether lines are drawn between Treeltems

Default image displayed between checkbox and text label
when a Treeltem does not have focus

Whether Treeltem images automatically scale to match the
text label font height

The height of Treeltem images in pixels

The horizontal indent, in pixels, for each level of Treeltems
Whether a line connects the Treeltems at the first level
The currently selected Treeltem

Default image displayed between CheckBox and TextLabel
when a Treeltem has focus

Whether to highlight the selected item in the tree even when
the TreeView does not have focus

Whether to display TextLabels as tooltips if they are too long
to display fully in the TreeView area as the mouse passes
over them

Whether to highlight and underline Treeltems as the mouse
passes over them

The image to display when a Treeltem is not checked instead
of an empty check box

Language Reference

Event

canChange

canEditLabel

canExpand

onChange
onCheckBoxClick

onDragEnter

onDraglLeave

onDragOver

Parameters

<oltem>

<left expN>
<top expN>
<type expC>
<name expC>

<left expN>
<top expN>
<type expC>
<name expC>

Description

Before selection moves to another Treeltem; return value
determines if selection can leave current Treeltem

When attempting to edit text label; return value determines
whether editing is allowed

When attempting to expand or collapse a Treeltem; return
value determines whether expand/collapse occurs

After the selection moves to another Treeltem
After a checkbox in a Treeltem is clicked

When the mouse enters the TreeView display area during a
Drag&Drop operation

When the mouse leaves the TreeView display area without
having dropped an object

While the mouse drags an object over the TreeView display
area during a Drag&Drop operation

onDro <left expN> When the mouse button is released over the TreeView
<top expN> display area during a Drag&Drop operation
<type expC>
<name expC>

onEditLabel <text expC> After the TextLabel in a Treeltem is edited; may optionally

return a different label value to save

onExpand <oltem> After a Treeltem is expanded or collapsed

Method Parameters Description

count() Returns the total number of Treeltems in the tree

getlitemByPos() <col expN> Returns an object reference to a Treeltem object located at a
<row expN> specified position

loadChildren()

releaseAllChildren()

sortChildren()
streamChildren()
visibleCount()

<filename expC>

<filename expC>

Loads and instantiates child Treeltems from a text file
Deletes all Treeltems in the tree

Sorts child Treeltems

Streams child Treeltems out to a text file

Returns the number of Treeltems visible in the tree view area

The following table lists the common properties, events, and methods of the TreeView class:

Property

before

borderStyle

dragEffect
enabled

fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline
form

Event Method
hwnd onClose onMiddleDbIClick drag()
id onDesignOpen onMiddleMouseDown move()
left onDragBegin onMiddleMouseUp release()
mousePointer onGotFocus onMouseMove setFocus()
name onHelp onOpen
pageno onLeftDbIClick onRightDbIClick
parent onLeftMouseDown onRightMouseDown
printable onLeftMouseUp onRightMouseUp
statusMessage onLostFocus
systemTheme
speedTip

335

dBASE Plus 9 LR

height tabStop
helpFile top
helpld visible

width
Description

A TreeView displays a collapsible multi-level tree. There are four ways to create the tree:

Explicitly add items with code, like the code generated by the Form Designer.

Interactively through the TreeView’s runtime user interface (right-clicking or pressing certain keys).
Data-driven code that reads a table and dynamically creates the tree items.

Use the TreeView's loadChildren() method to add items previously saved to a text file using streamChildren().

The TreeView object acts as the root of the tree. It contains the first level of Treeltem objects,
which can contain their own Treeltem objects, thus forming a tree.

Unlike the deeper levels of the tree, you cannot collapse the first level of a tree. Therefore, you
may want to use only one item at the first level of the tree to make the entire tree collapsible.

abandonRecord()

Topic group Related topics Example

Abandons changes to the current record.

Syntax
<oRef>.abandonRecord()
<oRef>

An object reference to the form.

Property of
Form, SubForm

Description

Use abandonRecord() for form-based data handling with tables in work areas. When using the
data objects, abandonRecord() has no effect; use the rowset’s abandon() method instead.

Form-based data buffering lets you manage the editing of existing records and the appending of
new records. The temporary record created by beginAppend() and editing changes to the
current record are not written to the table until there is navigation off the record, or until
saveRecord() is called. Each work area has its own separate edit buffer. For example, if you
beginAppend() in two separate work areas, you must call abandonRecord() while each work
area is selected to abandon the changes.

Before calling abandonRecord(), you can use isRecordChanged() to determine if changes
have been made. If so, you may want to confirm the action before proceeding.

activeControl

Topic group Related topics
Contains a reference to the object that currently has focus.

Property of
Form, SubForm

336

Language Reference

Description
Use the activeControl property to reference the object that currently has focus.

An object gets focus in three ways:

The user tabs to the object.
The user clicks the object.
The setFocus() method of the object is executed.

Note

When a PushButton's speedBar property is set to true, and therefore a PushButton cannot get
focus, the form's activeControl property does not show the PushButton as being the current
activeControl.

alias

Topic group Related topics

Determines the table that is accessed by a Browse object.

Property of
Browse

Description

Use the alias property to identify a table to display in a browse object. For example, when the
form is based on a .QBE query that opens two or more files in a parent-child relation, you use
alias to determine which table appears in the Browse object.

Aliases are used for tables open in work areas, not data objects. When the form uses data
objects, use a Grid control, which can dataLink directly to a Rowset object.

alignHorizontal

Topic group Related topics

Determines the horizontal alignment of text in a Text or TextLabel component.

Property of
Text, TextLabel

Description

alignHorizontal determines the way the text displays within the horizontal plane of its rectangular
frame. Set it to one of the following:

Value Alignment
0 Left
1 Center
2 Right
3 Justify (Text component only)

alignment [Image]

337

dBASE Plus 9 LR

Topic group Related topics

Determines the size and position of the graphic inside an Image object.

Property of
Image
Description

If a graphic is smaller than the Image object that displays it, it can be stretched to fill the Image
object or positioned inside the Image object with empty space around it. Assign one of the
following settings to the alignment property of an Image object to determine how the graphic is
aligned.

Setting Description

0 (Stretch) Enlarge graphic to fill the entire Image object

1 (Top Left) In the top left corner of the Image object

2 (Center) Centered in the Image object

3 (Keep Aspect Stretch) Maintains the original height/width (aspect) ratio when
stretching the graphic until it fills either dimension of the
Image object

4 (True Size) No changes to the graphic

If the graphic is larger than the Image object, both Stretch and Keep Aspect Stretch will reduce
the graphic to fit the Image object so that the entire image is visible. Top Left and Center will
both display whatever fits in the Image object.

True Size does not change the graphic at all. The Image object is dynamically resized to display
the graphic. This is the fastest option, because dBASE Plus doesn’t have to do any stretching or
shrinking.

alignment [Text]
Topic group Related topics

Positions text in a Text object.

Property of
Text

Description

The Text object’s alignment property is maintained primarily for compatibility. It is an
enumerated property that can have the following values:

Setting Description

0 (Top Left) Adjacent to the top edge and the left edge

1 (Top Center) Adjacent to the top edge and centered horizontally

2 (Top Right) Adjacent to the top edge and the right edge

3 (Center Left) Centered vertically and adjacent to left edge

4 (Center) Centered horizontally and vertically

5 (Center Right) Centered vertically and adjacent to right edge

6 (Bottom Left) Adjacent to the bottom edge and the left edge

7 (Bottom Center) Centered horizontally and adjacent to the bottom edge

338

Language Reference

8 (Bottom Right) Adjacent to the bottom edge and the right edge
9 (Wrap Left) Same as Top Left

10 (Wrap Center) Same as Top Center

11 (Wrap Right) Same as Top Right

The Text object’s alignHorizontal and alignVertical properties control the alignment in the
horizontal and vertical plane separately. They also include options to justify the text. When
either property is set, the alignment property is also changed to match (justify becomes top or
left). When the alignment property is set, the other two properties are changed to match.

Text wrapping is controlled by the wrap property.

alignVertical

Topic group Related topics

Determines the vertical alignment of text in a Text or TextLabel component.

Property of
Text, TextLabel
Description

alignVertical determines the way the text displays within the vertical plane of its rectangular
frame. Set it to one of the following:

Value Alignment
0 Top
1 Middle
2 Bottom
3 Justify (Text component only)

allowAddRows

Topic group Related topics

Whether rows can be added directly through a Grid object.

Property of
Grid
Description

allowAddRows determines whether moving down past the last row in a grid starts the append of
a new row. It has no control over adding row in other ways, like by calling the rowset’s
beginAppend() method. If the rowset switches to Append maode, the grid will synchronize itself
with the rowset and display the new row.

Set allowAddRows to false to prevent the accidental appending of new rows when navigating
through a grid.

allowColumnMoving

339

dBASE Plus 9 LR

Topic group Related topics

Whether the user may rearrange the columns in a grid with the mouse.

Property of
Grid
Description

By default, allowColumnMoving is true, which means that the user can rearrange the columns in
a grid by clicking and dragging the column headings. Set allowColumnMoving to false to disable
this ability. Since rearranging columns requires column headings, hasColumnHeadings must be
set to true for allowColumnMoving to have any affect.

allowColumnSizing

Topic group Related topics

Whether the user may resize the columns in a grid with the mouse.

Property of
Grid
Description

By default, allowColumnSizing is true, which allows the user to resize columns in a grid by
clicking and dragging between the column headings. Set allowColumnSizing to false to disable
this feature. Since resizing columns requires column headings, hasColumnHeadings must be
set to true for allowColumnSizing to have any affect.

allowDrop

Topic group Related topics

For Drag&Drop operations; determines if an object will allow dragged objects to be dropped on
it.

Property of

Browse, Container, Form, Grid, Image, ListBox, NoteBook, PaintBox, ReportViewer,
SubForm,TreeView

Description

Set the allowDrop property to true when you want to enable an object’s ability to be a Drop
Target. The default is false.

An object becomes an active Drop Target when its allowDrop property is set to true. Similarly,
an object becomes an active Drop Source when the value of its dragEffect property is set
greater than 0. Except for forms, all Drop Target objects may also be Drop Sources.

allowEditing
Topic group Related topics

Whether a grid is read-only.

Property of

340

Language Reference

Grid
Description
By default, allowEditing is true. Set allowEditing to false to make the grid read-only.

allowEditLabels

Topic group Related topics

Whether the text labels of the tree items are editable.

Property of
TreeView
Description

When allowEditLabels is true, the user can edit the text of the tree items in a tree by pressing F2
or clicking on a tree item a second time with a tree item selected.

Set allowEditLabels to false to prevent the user from editing all the items in a tree, or use the
canEditLabel event to conditionally allow or prevent editing.

allowEditTree

Topic group Related topics

Whether items can be added or deleted from the tree.

Property of
TreeView
Description

When allowEditTree is true, the user can add another leaf node to a tree item by pressing Ins,
or delete a tree item by pressing Del when the tree item is selected.

Set allowEditTree to false to prevent the user from inserting or deleting items in the tree.

allowFullScrollRange

Topic group Related topics Example

Can be used to prevent a grid's vertical scrollbar from being used to jump to the bottom of a
rowset (via rowset.last()) due to dragging the scrollbar's thumb to the bottom of its range or
when clicking the scrollbar near the bottom of its range. Instead, the grid will perform a Page
Down and position the scrollbar thumb near the middle of its range.

Property of
Grid
Description

When set to True, the default, allowFullScrollRange allows the grid to scroll to the last row of a
table when the scrollbar is dragged to the bottom of its range.

341

dBASE Plus 9 LR

When set to False, allowFullScrollRange limits the grid to navigating forward one page full of
rows when the scrollbar is dragged to the bottom of its range. When released the scrollbar
thumb *bounces* back to the middle position of the scroll range.

Set allowFullScrollRange to False if you are datalinking a grid to a very large database table
from a DBMS server containing millions or rows or more.

This will prevent inadvertently triggering a call to rowset.last() which can result in a long delay
and or cause dBASE to become unresponsive while the server attempts to send millions of rows
to the workstation.

allowRowsSizing
Topic group Related topics

Whether the user may resize the rows in a grid with the mouse.

Property of
Grid
Description

By default, allowRowSizing is true, which means that the user can resize the rows in a grid by
clicking and dragging between the row indicator in the left column. Set allowRowsSizing to false
to disable this ability.

alwaysDrawCheckBox
Topic group Related topics

Determines if a columnCheckBox control is painted with a checkbox for all checkBox cells in the
Grid.

Property of
Grid
Description

By default, alwaysDrawCheckBox is set to true, the checkbox is drawn for all checkBox cells.
When alwaysDrawCheckBox is set to false, the checkbox is only drawn in a cell if it has focus.

anchor
Topic group Related topics

Specifies whether an object stays in the same relative position when its container is resized.

Property of

ActiveX, Browse, Container, Editor, Image, Grid, NoteBook, OLE, ReportViewer, TabBox, Text,
TreeView

Description

Use anchor to specify whether a control should maintain its location and resize itself to match its
container, which is usually the form. Anchored controls claim space in the order in which they

342

Language Reference

are created (the z-order). Once an anchored control claims space in its container, that space
cannot be used by another anchored control.

anchor is an enumerated property and, with the exception of TabBox controls, accepts the
following values:

Value Description

None, do not anchor
Bottom

Top

Left

Right

Center

o g A W N BB O

Container

When anchored to the bottom or top, the width of the control resizes to match the width of its
container. When anchored to the left or right, the height of the control resizes to match the
height of its container. Center and container anchors behave identically: the control fills the
center of the container, sizing itself to fill all the space not claimed by another anchored control;
if there are no other anchored controls in the container, the control resizes to fill its container.

When used with TabBox controls, the anchor property accepts only these values,
0 - Do not anchor
1 - Bottom

append

Topic group Related topics

Whether records can be added directly through a Browse object.

Property of
Browse
Description

append determines whether moving down past the last record in a browse starts the append of
a new record. It has no control over adding records in other ways, like by calling the form’s
beginAppend() method. If a new record is added, the browse will show it.

Set append to false to prevent the accidental appending of new records when navigating
through a browse.

appSpeedBar

Topic group Related topics

Determines whether the built-in toolbar is displayed while the form has focus.

Property of
Form

Description

343

dBASE Plus 9 LR

Use the Form's appSpeedBar property to hide or display the Standard Toolbar when a form
receives focus.

Value Mode
0 Hide
1 Display
2 Use the current _app object's speedBar setting.

The Form's appSpeedBar property does not change the _app object's current speedBar setting.
Instead, when appSpeedBar is setto 0 or 1, it overrides _app.speedBar when the form receives
focus. To change the _app object's speedBar setting See speedBar [_app]. The default setting
for appSpeedBar is 2.

Setting form.appSpeedBar to 0 (zero), hides the built-in toolbars while a form has focus. Any
application toolbars (toolbars built from class Toolbar) that are attached to the form will display if
they are not hidden.

Setting form.appSpeedBar to 1 allows the built-in toolbars to be displayed while a form has
focus. If there are any application toolbars attached to the form they will display as well unless
they are hidden.

autoCenter
Topic group Related topics

Determines if a form is automatically centered when it is opened.

Property of
Form, SubForm

Description

Use autoCenter to automatically center a form when it is opened. If autoCenter is true, MDI
forms are centered in the MDI frame window; SDI forms are centered on-screen. If autoCenter
is false, the form is positioned according to its top and left properties.

autoDrop

Topic group Related topics

Determines if the drop-down list drops automatically when the combobox gets focus.

Property of
ComboBox
Description

Set autoDrop to true to make the drop-down list portion of a combobox drop automatically when
the combobox gets focus. Whenever the combobox loses focus, its drop-down list is always
closed, no matter how it was opened.

autoDrop has no effect when the style of the combobox is Simple (0).

autoSize

344

Language Reference

Topic group Related topics

Determines if a form is automatically sized to contain its objects when the form is opened.

Property of
Form, SubForm

Description
Use autoSize to determine how a form is sized and proportioned.

If you set the autoSize property of a form to true, the form is automatically adjusted to contain its
objects when it is opened. If you set autoSize to false, the form assumes its assigned height and
width when it is opened.

When you set the autoSize property of a form to true, the default dimensions are ignored. The
user can still move or resize the form, but if the form is closed and reopened it is automatically
resized again to contain its objects.

autoTrim

Topic group Related topics

Controls whether or not trailing spaces are trimmed from character strings loaded from the
control's dataSource.

Property of
columnComboBox, ComboBox

Description

When True, enables automatic trimming of trailing spaces from option strings as they are loaded
into a combobox's dropdown list in the following circumstances:

- the combobox is datalinked to a field object that has a lookupSQL and/or lookupRowset
defined.

- the combobox's datasource specifies a FIELD in a table
The default for autoTrim is False.

background

Topic group Related topics

A form’s background image.

Property of
Form, SubForm

Description

Set the background property to the file hame of a bitmap you want tiled in the background of
your form. See class Image for the list of bitmap formats supported by dBASE Plus.

You may use any dBASE Plus-supported bitmap format.

345

dBASE Plus 9 LR

Setting a background image supersedes the background color designated by the form’s
colorNormal property.

before

Topic group Related topics Example

The next object in the z-order of the form.

Property of
All form components and menus

Description

An object’s before property contains a reference to the next object in the z-order, in other words,
the object the current object comes before. The z-order is the order in which controls are
created on the form. It is the same order in which they are created; the same order as they are
listed in the .\WFM file. If objects overlap, the one that is later in the z-order is drawn on top, with
the exception of Line and Shape objects, which are always drawn on the form surface.

The form’s first property contains a reference to the first control in the z-order. The z-order is a
closed loop. The before property of the last control in the z-order points back to the first control.

The form'’s tab order is related to the z-order. The objects are in the same order, but only those
objects that can receive focus are in the tab order. All visual components in the form are
somewhere in the z-order. Non-visual components, such as Query objects, are not in the z-
order.

You must reorder the objects in the form’s class definition, by editing the code in the WFM file
or using the Form designer to visually reorder the objects.

beforeCellPaint
Topic group Related topics Example

An event fired just before a grid cell is painted.

Parameters

<bSelectedRow>

bSelectedRow is true if the grid cell being painted is part of a selected row. Otherwise bSelectedRow is false
Property of

ColumnCheckBox, ColumnComboBox, ColumnEditor, ColumnEntryField,
ColumnHeadingControl, ColumnSpinBox

Description

Use the beforeCellPaint event to change the settings of a GridColumn's editorControl or
headingControl just before the control is used to paint a grid cell.

After the grid cell has been painted, the onCellPaint event will fire. You must use the
onCellPaint event to set the control back to it's prior, or it's default, state. Otherwise, the
changes made in the beforeCellPaint event will affect the other cell's within the same grid
column.

Using beforeCellPaint

346

Language Reference

In order to use beforeCellPaint, a grid must be created with explicitly defined GridColumn
objects (accessible through the grid's columns property).

In a beforeCellPaint event handler, you can change an editorControl's or headingControl's
properties based (optionally) on the current value of the cell. Within beforeCellPaint, the current
cell value is contained in this.value.

Initializing a Grid that uses beforeCellPaint

When a form opens, a grid on the form is usually painted before the code setting up any
beforeCellPaint event handlers is executed. Therefore, you should call the grid's refresh()
method from the form's onOpen event to ensure the grid is painted correctly when the form
opens.

Warning: The grid's painting logic is optimized to only load an editorControl's value when it
needs to paint it, or give it focus. This means the value loaded into other column's
editorControls may not be from the same row as the one used for the currently executing
beforeCellPaint event. You should instead, therefore, use the values from the appropriate
rowset field objects in order to ensure you are using values from the correct row.

beforeCloseUp

Topic group Related topics

Fires just before dropdown list is closed for a style 1 or 2 combobox.

Parameters
none

Property of
ComboBox

Description
beforeCloseUp fires just before the dropdown list is closed for a style 1 or 2 combobox.

It can be used, in combination with beforeDropDown, to track when a combobox's dropdown
list is open or closed.

beforeRelease

Topic group

fires before the object has been released and is about to be destroyed.
Property of

Most dBASE form and data objects.

Description

Use beforeRelease to perform any extra manual cleanup, if necessary, before an object is
released. beforeRelease fires when an object is about to be destroyed.

347

dBASE Plus 9 LR

beforeRelease will fire under the following conditions:
= When calling the release() method of an object
= When issuing the RELEASE command

= When an object is run without being assigned to a memVar then closing the object. This will destroy the
object from memory causing the the beforeRelease event to fire.

= when using a memVar that is assigned to one of these objects and subsequently releasing the memVar.
Simply closing the object in this instance does not fire beforeRelease.
The beforeRelease event will fire in this case only when the memVar itself is destroyed either by using
the RELEASE command, when the application is closed, or any other circumstance that results in the
memVar being released from memory.
The order in which beforeRelease() fires for a Form and its contained objects is not strictly in the
order in which these objects are released. In some cases, beforeRelease() will fire sooner than
an object's actual release when it is notified by its parent object or by its associated datamodule,

database, query, or storedproc object that it will soon be released.
The order in which objects on a form are actually released has not been changed from earlier

versions of dBASE Plus except for subforms. Subform release has been moved from near the
end of the release process up to the beginning of the release process.

One other change made is that removal of a form's code from memory has been moved later in
the release process so that it occurs after all objects on the form have been released.
This is to prevent CLASS NOT FOUND errors that would otherwise occur if an object's
beforeRelease property is set to a method of its form.
Here is the firing order for beforeRelease() when a form (or subform) is being released:

1. Subforms (if any)

2. Form Components contained in the form's elements array property (this includes any Contaner and
Notebook objects and their contained objects)

Menubar assigned to Form's menufile property
Popup assigned to Form's popupmenu property
Form

I

Database (parented by the form). Each Database object (in turn) notifies any associated Query and
StoredProc objects which in turn, notify their Rowset objects.

7. Any other objects assigned to properties or custom properties of the form and that are not in the
form's elements array property. This includes:

e Query or StoredProc objects parented directly to a form and NOT assigned to a database object

e Datamodule objects on the form

Session objects on the form

Popup and menu objects parented by the form

Toolbar objects parented by the form

Arrays and other non-visual objects parented by the form

beforeDropDown

Topic group Related topics

Fires just before dropdown list is opened for a style 1 or 2 combobox.

Parameters
none

348

Language Reference

Property of
ComboBox

Description
beforeDropDown fires just before the dropdown list is opened for a style 1 or 2 combobox.
It can be used, in combination with beforeCloseUp, to track when a combobox's dropdown list is open or closed.

beforeEditPaint
Topic group Related topics

For a style 0 or 1 combobox, fires for each keystroke that modifies the value of the combobox, just before the new
value is displayed

Parameters
none

Property of
ComboBox

Description
For a style 0 or 1 combobox, fires for each keystroke that modifies the value of the combobox, just before the new
value is displayed

beginAppend()
Topic group Related topics
Creates a temporary buffer in memory for a record that is based on the structure of the current

table, letting the user input data to the record without automatically adding the record to the
table.

Syntax

<oRef>.beginAppend()

<oRef>

An object reference to the form.

Property of
Form, SubForm
Description

Use beginAppend() for form-based data handling with tables in work areas. When using the
data objects, beginAppend() has no effect; use the rowset’s beginAppend() method instead.

beginAppend()creates a single record buffer in the current table, without actually adding the
record to the table until saveRecord() is issued. While this buffer exists, the user can input data
to the record with controls such as an entry field or a check box. Use saveRecord() to append
the record to the currently active table, and use abandonRecord() to discard the record. Calling
beginAppend() instead of saveRecord() will write the new record and empty the buffer again so

349

dBASE Plus 9 LR

you can add another record. Use isRecordChanged() to determine if the record has been
changed since the beginAppend()was issued.

When appending records with beginAppend() the new record will not be saved when you call
saveRecord() unless there have been changes to the record; the blank new record is
abandoned. This prevents the saving of blank records in the table. (If you want to create blank
records, use APPEND BLANK). You can check there have been changes by calling
isRecordChanged(). If isRecordChanged() returns true, you should validate the record with
form-level or row-level validation before writing it to the table.

Using beginAppend() has different results than using either BEGINTRANS() and APPEND
BLANK or APPEND AUTOMEM. With these commands, if you cancel the append operation,
you have a record marked as deleted added to the table. If you use abandonRecord() to cancel
the beginAppend() operation, a new record is never added to the table.

bgColor
Topic group Related topics

The background color of data displayed in grid cells, as well as the empty area to the right of the
last column and below the last grid row.

Property of
Grid
Description

You may specify any single color for the background color. For a list of valid colors, see
colorNormal.

The effect of the bgColor property on grid cells can be overridden by the background color
specified in the Grid object's colorNormal property by setting it to a valid non-null string. In
addition, the bgColor property can be overridden by setting the bgColor property of a
GridColumn's editorControl to a valid non-null string.

The bgColor property defaults to "gray".

bitmapAlignment
Topic group Related topics

Specifies the arrangement of bitmap and text, on a pushButton, when both exists.

Property of

PushButton
Description

Supported options include:
0 Default.

1 Left

2 Top

3 Right

4 Bottom

350

Language Reference

When the bitmapAlignment property is set to 0, Default, the bitmap is positioned as follows:
If the pushButton does not contain text, the bitmap is centered.

If the pushButton contains both text and a bitmap, the text is positioned according to the setting
of the textLeft property.

If the textLeft property is set to false, the text is positioned to the right, and the bitmap to the left.

If the textLeft property is set to true, the text is positioned to the left, and the bitmap to the right.

When the bitmapAlignment property is set to 1, 2, 3, or 4, it overrides the textLeft property's setting as
follows:

1 Left Positions the bitmap to the left, and any text to the right.
2 Top Positions the bitmap at the top, and any text at the bottom.
3 Right Positions the bitmap to the right, and any text to the left.
4 Bottom Positions the bitmap at the bottom, and any text at the top.

Additional considerations:

When the textLeft property is overridden, by setting the bitmapAlignment property to 1, 2, 3, or
4, it will still affect the alignment when the text occupies more than one line, as follows:

When the textLeft property is set to true, the text lines are left aligned

When the textLeft property is set to false, the text lines are centered.

The text and bitmap may overlap when using a setting other than 0 — Default.

bold

Topic group Related topics
Whether the text of an object is bold.

Property of

Treeltem

Description

Set bold to true to make the text of a Treeltem object bold.

border

Topic group Related topics

Determines whether an object is surrounded with a border.

Property of
Editor, Entryfield, OLE, Rectangle, SpinBox, Text
Description

The border property is maintained primary for compatibility. Every object that has a border
property also has a borderStyle property. One of the choices for borderStyle is None, while
border can be either true or false. Both these properties apply.

If you pick an actual border with borderStyle, border determines whether that border is
displayed. If you choose the None borderStyle, no border will appear, even if border is true.

351

dBASE Plus 9 LR

borderStyle

Topic group Related topics

Determines the border around the object.

Property of
Most form components
Description

borderStyle determines the display style of an object’s rectangular frame. Set it to one of the
following:

Value Style

Default
Raised
Lowered
None

Single
Double

Drop shadow
Client

Modal

© 00 N O 00~ W N BB O

Etched in

=
o

Etched out

The border is drawn inside the bounds of the object; therefore for thick borders like Drop
shadow, there is noticeably less space in the object for the actual contents.

The border is not drawn if border is false. If borderStyle is None, no border appears even if
border is true.

bottom
Topic group Related topics

The vertical position of the lower end of a Line object.

Property of
Line
Description

Use the bottom property in combination with the right, left, and top properties to determine the
position and length of a line object.

The unit of measurement in a form or report is controlled by its metric property. The default
metric for forms is characters, and for reports it's twips.

buttons

352

Language Reference

Topic group Related topics

Whether a notebook’s tabs appear as buttons

Property of
NoteBook

Description

Set buttons to true if you want the notebook tabs to appear as separate buttons instead of tabs
attached to the notebook page.

canChange

Topic group Related topics Example

Event fired before selection moves to another tree item; return value determines if selection can
leave current tree item.

Parameters
none

Property of
TreeView

Description

Use canChange to prevent focus from moving to another item in the tree unless certain
conditions are met. The canChange event handler can either return a value of true, which allows
the focus to move, or false, which prevents the focus change.

The event handler usually uses the tree view's selected property to get the currently selected
tree item. Note that if no tree item is selected, the property contains null, so your event handler
must check for that. In particular, when deleting a tree item, the focus must move to another tree
item, and the currently selected item has just been deleted, and therefore selected will be null.

canClose

Topic group Related topics Example

Event fired when an attempt is made to close the form; return value determines if the form can
be closed.

Parameters

none

Property of

Form, SubForm

Description

Use canClose to prevent a form from closing until certain conditions are met.

The canClose event handler can either return a value of true, which allows the form to close, or
false, which prevents the form from closing.

When a form is closed by calling close() or clicking the Close icon, pending changes in the data
buffer are saved. When attempting to close, the form fires the current control's valid event, if

353

dBASE Plus 9 LR

any, so there’s no need to verify individual controls if they have valid event handlers. However,
you should always perform form- or row-level validation to check controls that you have not
visited.

canEditLabel

Topic group Related topics Example

Event fired when attempting to edit text label; return value determines if editing is allowed.

Parameters
none
Property of
TreeView
Description

Use canEditLabel to conditionally allow editing of a tree item’s text label. The canEditLabel
event handler can either return true to allow editing, or false to prevent it.

Set allowEditLabels to false to prevent all label editing. In that case, canEditLabel will never fire.

canExpand

Topic group Related topics Example

Event fired when attempting to expand or collapse a tree item; return value determines whether
expand/collapse occurs.

Parameters

<oltem>

The Treeltem whose + or - has been clicked.
Property of

TreeView

Description

Use canExpand to conditionally allow the expansion or collapsing of a tree item’s subtree. The
canExpand event handler can either return true to allow the action, or false to prevent it.

The canExpand event only affects the user interface. You can still expand or collapse a tree
item programmatically by setting the item’s expanded property, in which case canExpand does
not fire.

canNavigate

Topic group Related topics

Event fired when an attempt is made to navigate in a table; return value determines if the record
pointer moves.

Parameters
<workarea expN>

354

Language Reference

The work area number where the navigation is attempted.
Property of
Form, SubForm

Description

The form’s canNavigate event is used mainly for form-based data handling with tables in work
areas. It also fires when attempting navigation in the form’s primary rowset.

Use canNavigate to prevent navigation until certain conditions are met. Navigation saves
pending changes in the data buffer, so you should call row- or form-level validation in the
canNavigate to make sure data should be saved.

Because canNavigate fires while still on the current record, you may also use it to perform some
action just before you leave. In this case, the canNavigate would always return true to allow the
navigation.

When using tables in work areas, canNavigate will not fire unless the form is open and has
controls dataLinked to fields. For example, if you USE a table, create and open an empty Form,
assign an canNavigate event handler, and SKIP in the table, the canNavigate will not fire simply
because the form is open.

When attempting navigation in the form’s primary rowset, the form’s canNavigate fires before
the rowset’s canNavigate, and the <workarea expN> parameter is zero. If the form’s
canNavigate returns false, nothing further happens; the rowset’s canNavigate does not fire, and
no navigation occurs.

canSelChange

Topic group Related topics Example

Event fired before another NoteBook tab is selected; return value determines if the new tab is
selected.

Parameters
<nNewSel expN>

The number of the tab about to be selected.

Property of
NoteBook

Description

Use canSelChange to prevent the user from selecting another NoteBook tab until certain
conditions are met. The parameter passed by the event, nNewSel, is an integer value
representing the number of the NoteBook tab to be selected. The tabs are numbered (beginning
with 1) according to the order of the array elements in the NoteBook’s dataSource property.

Because canSelChange fires while still on the current NoteBook tab, you may also use it to
perform some action just before you allow the new tab to be selected. In this case, the
canSelChange event handler would always return true to allow selection of the new tab.

cellHeight

Topic group Related topics

355

dBASE Plus 9 LR

The height of each cell in the grid.

Property of

Grid

Description

The cellHeight property reflects the height of the cells in the body of the grid.

checkBoxes
Topic group Related topics

Whether each tree item has a checkbox.

Property of
TreeView

Description

When checkBoxes is true, each tree item has a checkbox to the left of the text label and
optional icon image. This checkbox is linked to the tree item’s checked property. Whenever a
checkbox is checked or unchecked, the tree’s onCheckBoxClick event fires.

Use the checkedimage and uncheckedimage image properties to specify alternate images
instead of the standard checkbox. Set checkBoxes to false to hide and disable the checkboxes
in the tree.

checked

Topic group Related topics

Whether the item is visually marked as checked.

Property of
Treeltem
Description

Treeltem objects may be visually checked and unchecked by the user, or by assigning a value
to the checked property. If checked is true, the tree item’s checkbox is checked, or its
checkedlmage is displayed. If checked is false, the tree item’s checkbox is unchecked, or its
uncheckedlmage is displayed.

checkedlmage

Topic group Related topics

The image to display when a tree item is checked instead of a checked check box.

Property of
TreeView
Description

Use checkedIimage to display a specific icon instead of the standard checked checkbox for the
tree items in the tree that are checked. uncheckedimage optionally specifies the icon to display

356

Language Reference

for tree items that are not checked. The tree must have its checked property set to true to
enable checking; each tree item has a checked property that reflects whether the item is
checked.

The checkedlmage property is a string that can take one of two forms:

RESOURCE <resource id> <dIl name>
specifies an icon resource and the DLL file that holds it.

FILENAME <filename>
specifies an ICO icon file.

classld

Topic group Related topics

The ID string of an ActiveX control.

Property of

ActiveX

Description

To use an ActiveX control in a form, set the classld property to the control's ID string.

clearTics()
Topic group Related topics

Clears manually-set tic marks in a Slider object.

Syntax

<oRef>.clearTics(<expN>)

<oRef>

The Slider object whose tics to clear.

<expN>

A numeric value, or an expression which evaluates to a numeric value.
Property of

Slider

Description

Call clearTics() to clear all tic marks set by setTic(). <expN> can be any expression which
evaluates to a positive, negative or fractional numeric value (fractional values are truncated). If
<expN> is zero, no tic marks are cleared. If it is non-zero, all manually set tic marks are cleared.

clientEdge
Topic group Related topics

Whether an object appears to have a beveled inside edge.

Property of
Form, SubForm

357

dBASE Plus 9 LR

Description
Set clientEdge to true to bevel a form’s inside edge.

close()

Topic group Related topics

Closes a form.

Syntax
<oRef>.close([expX])
<oRef>

An object reference to the form to close.

<expX>

An optional value to be returned by a form opened with readModal()
Property of

Form, SubForm

Description

Use close() to close an open form or report. Modal forms (forms opened using the readModal()
method) may optionally return a value to the calling form or program. The returned value may
be of any data type.

When you try to close a form, dBASE Plus does the following:

1. Fires the valid event of the current object. If it returns a value of false, the form doesn't close.
0 Fires the onLostFocus event of the current object.
Fires the canClose event of the form. If it returns false, the form doesn't close.
Fires the onLostFocus event of the form.
Removes the form and the objects it contains from the screen.
Fires the onClose event of the form.
0 Removes the form from memory if there are no other object references pointing to the form.

When a form is closed with close() or by clicking the Close icon, any pending changes in the
record buffer are saved, as if saveRecord() was called. Closing a form by pressing Esc
abandons changes before closing (if escExit is true).

close() returns false if the form was not closed successfully. If the form definition is not removed
from memory, you can open the form again with open().

OO0 oo

colorColumnLines

Topic group Related topics

The color of the lines that separate the columns in a Grid object.

Property of
Grid

Default
silver
Description

358

Language Reference

The colorColumnLines property controls the color of the lines that separate columns in a Grid
object. When the colorColumnLines property is set to null, the value of the colorColumnLines
property will be restored to its default value. The color of the lines in a Grid Object's top and left
headers is not affected by this property.

colorHighlight
Topic group Related topics

Sets the color of the object that has focus.

Property of
Browse, ColumnEditor, ComboBox, Editor, Entryfield, Grid, ListBox, SpinBox, TabBox
Description

Use the colorHighlight and colorNormal properties of an object so users can visually
differentiate between an object that has focus, and one that doesn't. You may choose from the
same color settings as the colorNormal property.

The colorHighlight of most controls defaults to an empty string, meaning it is colored no
differently when it has focus. For this reason, you may set a particular color in the control's
colorNormal property without having to override a default colorHighlight color as well.

For Grid objects, the colorHighlight property sets the text, and background, color for data
displayed in a grid cell that has focus. It can be overridden by setting the colorHighlight property
of a GridColumn's editorControl to a non-null value. The default setting for Grid objects is
"WindowText/Window".

The color scheme in a TabBox is different. There, the colorNormal designates the color of the
background behind the tabs, and the colorHighlight is the color of the selected tab. The
unselected tabs are a fixed color, WindowText/Window.

colorNormal

Topic group Related topics Example

The color of an object.

Property of
Most form objects

Description

Use the colorNormal and colorHighlight properties of an object so users can differentiate
visually when an object has focus and when it doesn't.

For some controls, in particular background colors, you specify a single color. For other
controls, you specify two color settings with colorNormal: a foreground color (for text), and a
background color. Color settings must be separated with a forward slash (/). Each color may be
one of the following five color types, in any combination:

Windows-named color

Basic 16-color color code

Hexadecimal RGB color triplet

User-defined color name

JavaScript color name

359

dBASE Plus 9 LR

Color settings are not case-sensitive.

For Grid objects, the colorNormal property sets the text, and background, color for data
displayed in grid cells that do not have focus. It can be overridden by setting the colorNormal
property of a GridColumn's editorControl to a non-null value. The default setting for Grid objects
is "WindowText/Window".

Windows-named colors are taken from the settings in the Display Properties. If the colors are
changed in the Display Properties while a form is open, the form and any controls that use these
values will change automatically. You can use any of the following Windows-named color
settings for either the foreground or background color:

Color Corresponding Display Properties Appearance Color
ActiveBorder Active window border
ActiveCaption Active title bar

AppWorkspace Application background
Background Desktop

BtnFace 3D objects

BtnHighlight A shade lighter than 3D objects
BtnShadow A shade darker than 3D objects
BtnText 3D objects font

CaptionText Active title bar font

GrayText preset gray—not available
Highlight Selected items

HighlightText Selected items font
InactiveBorder Inactive window border
InactiveCaption Inactive title bar
InactiveCaptionText Inactive title bar font

InfoText ToolTip

InfoBk ToolTip font

Menu Menu

MenuText Menu font

Scrollbar A shade lighter than 3D objects
Window Window

WindowFrame preset drop shadow—not available
WindowText Window font

The following one- and two-letter basic color codes (with an optional + or * for brightness) are
provided primary for compatibility with earlier versions of dBASE.

Color Foreground Background
name code code

Black N N

Dark Blue B B

Green G G

Cyan GB or BG GB or BG

360

Dark Red
Purple
Brown

Light Gray
Dark Gray
Blue

Bright Green
Bright Cyan
Red
Magenta
Yellow

White

R

RB or BR
RG or GR
W

N+

B+

G+

GB+ or BG+
R+

RB+ or BR+
RG+ or GR+
W+

R

RB or BR
RG or GR
W

N*

B*

G+

GB* or BG*
R*

RB* or BR*
RG* or GR*
W*

Language Reference

Hexadecimal RGB (Red Green Blue) color triplets are expressed backwards in dBASE Plus;
that is, Blue, Green, Red. You may specify one of approximately 16 million colors using a triplet.

The color will be displayed as well as the settings of the display allow.

You may create your own RGB combinations and give them a name with the DEFINE COLOR

command.

Finally, dBASE Plus supports JavaScript-standard color names. The following table lists those

colors and their corresponding RGB values.

Color

aliceblue
antiquewhite
aqua
aguamarine
azure

beige
bisque

black

blanchedalmond

blue

blueviolet
brown
burlywood
cadetblue
chartreuse
chocolate
coral
cornflowerblue
cornsilk

crimson

Red

FO
FA
00
7F
FO
F5
FF
00
FF
00
8A
A5
DE
5F
7F
D2
FF
64
FF
DC

Green

F8
EB
FF
FF
FF
F5
E4
00
EB
00
2B
2A
B8
9E
FF
69
7F
95
F8
14

Blue

FF
D7
FF
D4
FF
DC
ca
00
cD
FF
E2
2A
87
AO
00
1E
50
ED
DC
3C

361

dBASE Plus 9 LR

cyan
darkblue
darkcyan
darkgoldenrod
darkgray
darkgreen
darkkhaki
darkmagenta
darkolivegreen
darkorange
darkorchid
darkred
darksalmon
darkseagreen
darkslateblue
darkslategray
darkturquoise
darkviolet
deeppink
deepskyblue
dimgray
dodgerblue
firebrick
floralwhite
forestgreen
fuchsia
gainsboro
ghostwhite
gold
goldenrod
gray

green
greenyellow
honeydew
hotpink
indianred
indigo

ivory

khaki
lavender

lavenderblush

362

00
00
00
B8
A9
00
BD
8B
55
FF
99
8B
E9
8F
48
2F
00
94
FF
00
69
1E
B2
FF
22
FF
DC
F8
FF
DA
80
00
AD
FO
FF
cD
4B
FF
FO
E6
FF

FF
00
8B
86
A9
64
B7
00
6B
8C
32
00
96
BC
3D
aF
CE
00
14
BF
69
90
22
FA
8B
00
DC
F8
D7
A5
80
80
FF
FF
69
5C
00
FF
E6
E6
FO

FF
8B
8B
0B
A9
00
6B
8B
2F
00
cc
00
7A
8F
8B
aF
D1
D3
93
FF
69
FF
22
FO
22
FF
DC
FF
00
20
80
00
2F
FO
B4
5C
82
FO
8C
FA
F5

lawngreen
lemonchiffon
lightblue
lightcoral
lightcyan
lightgoldenrodyellow
lightgreen
lightgrey

lightpink
lightsalmon
lightseagreen
lightskyblue
lightslategray
lightsteelblue
lightyellow

lime

limegreen

linen

magenta

maroon
mediumaquamarine
mediumblue
mediumorchid
mediumpurple
mediumseagreen
mediumslateblue
mediumspringgreen
mediumturquoise
mediumvioletred
midnightblue
mintcream
mistyrose
moccasin
navajowhite

navy

oldlace

olive

olivedrab

orange
orangered

orchid

7C
FF
AD
FO
EO
FA
20
D3
FF
FF
20
87
77
BO
FF
00
32
FA
FF
80
66
00
BA
93
3C
7B
00
48
c7
19
F5
FF
FF
FF
00
FD
80
6B
FF
FF
DA

FC
FA
D8
80
FF
FA
EE
D3
B6
AO
B2
CE
88
ca
FF
FF
cD
FO
00
00
cD
00
55
70
B3
68
FA
D1
15
19
FF
E4
E4
DE
00
F5
80
8E
A5
45
70

00
cD
E6
80
FF
D2
90
D3
c1
7A
AA
FA
99
DE
EO
00
32
E6
FF
00
AA
cD
D3
DB
71
EE
9A
cc
85
70
FA
E1
B5
AD
80
E6
00
23
00
00
D6

Language Reference

363

dBASE Plus 9 LR

palegoldenrod
palegreen
paleturquoise
palevioletred
papayawhip
peachpuff
peru

pink

plum
powderblue
purple

red
rosybrown
royalblue
saddlebrown
salmon
sandybrown
seagreen
seashell
sienna

silver
skyblue
slateblue
slategray
snow
springgreen
steelblue

tan

teal

thistle
tomato
turquoise
violet

wheat

white
whitesmoke
yellow

yellowgreen

colorRowHeader

364

EE
98
AF
DB
FF
FF
cD
FF
DD
BO
80
FF
BC
41
8B
FA
F4
2E
FF
AO
co
87
6A
70
FF
00
46
D2
00
D8
FF
40
EE
F5
FF
F5
FF
9A

E8
FB
EE
70
EF
DA
85
co
A0
EO
00
00
8F
69
45
80
A4
8B
F5
52
co
CE
5A
80
FA
FF
82
B4
80
BF
63
EO
82
DE
FF
F5
FF
cD

AA
98
EE
93
D5
B9
3F
cB
DD
E6
80
00
8F
El
13
72
60
57
EE
2D
co
EB
CcD
90
FA
7F
B4
8C
80
D8
47
DO
EE
B3
FF
F5
00
32

Language Reference

Topic group

Specifies the color of the indicator arrow or plus sign, and of the row header background.
Property of

Grid

Default

WindowText/BtnFace

Description

Use the colorRowHeader property to set the color of the row header. The foreground color
specifies the color of the indicator arrow or plus sign. The background color specifies the row
header background color.

Values for this property are can be set using the Color Property Builder in the Form Designer.
You can access this dialog box by clicking the wrench tool next to the colorRowHeader property
in the Inspector.

For more information on the Color Property Builder, see the topic, Color Property Builder dialog
box.

colorRowLines

Topic group Related topics
The color of the lines that separate the rows in a Grid object.

Property of
Grid
Default
silver

Description

The colorRowLines property controls the color of the lines that separate rows in a Grid object.
When the colorRowLines property is set to null, the value of the colorRowLines property will be
restored to its default value. The color of the lines in a Grid object’s top and left headers is not
affected by this property.

colorRowSelect

Topic group

Text and background color for visually selected rows of data.
Property of

Grid

Description

When the rowSelect property and/or the multiSelect property is true, the colorRowSelect
property sets the text color and background color for a row of data that has been selected. The default
for colorRowSelect is HighlightText/HighLight.

365

dBASE Plus 9 LR

Values for this property are set in the Color Property Builder. You can access the dialog box by
clicking the wrench tool next to the colorRowSelect property in the Inspector.

For more information on the Color Property Builder, see the topic, Color Property Builder dialog
box.

columnCount

Topic group Related topics

The number of columns in the grid.

Property of
Grid
Description

columnCount is a read-only property that contains the number of columns in the grid; either the
number of columns that are automatically created when no GridColumn objects are specified, or
the number of GridColumn objects explicitly added.

columnNo
Topic group Related topics

The current position of the cursor in a line of text.

Property of
Editor

Description

Use the columnNo property to find the position of the cursor in the current line of text in an
Editor window. When the Editor window is empty, columnNo will be 1.

The columnNo property can be used with the lineNo property to identify the character at the
cursor by indexing into the contents of the Editor’s value property.

The columnNo property is read-only.

columns
Topic group Related topics

An array of objects for each column in the grid.

Property of
Grid
Description

A grid's columns array contains explicitly created GridColumn objects, one for each column. If
no GridColumn objects are created, the grid automatically creates columns, but the columns
array is empty.

366

Language Reference

contextHelp

Topic group Related topics Example

Displays a context help question mark (?) next to the form or subform's close button.

Property of
Form, SubForm

Description

When contextHelp is set to true and mdi, maximize, and minimize are set to False, a button
displaying a question mark (?) will display to the left of the form or subform's Close button in the
top right portion of the form's title bar.

Clicking the mouse on the contextHelp button starts contextHelp mode which changes the
mouse pointer and allows the user to click on a form component to trigger the component's
onHelp() event. Note: clicking on the form itself will do nothing at this point.

onHelp() can be used to perform a context sensitive help lookup for the component.
The default for contextHelp is false.

copy()

Topic group Related topics
Copies selected text to the Windows clipboard.

Syntax

<oRef>.copy()

<oRef>

An object reference to the control from which to copy the text.

Property of
Browse, ComboBox, Editor, Entryfield, SpinBox

Description
Use copy() when the user has selected text and wants to copy it to the Windows clipboard.

When calling this method from a pushbutton’s onClick event, the pushbutton should have its
speedBar property set to true, so that it doesn’t get focus. Otherwise, the edit control loses
focus when the button is clicked, and there’s nothing to copy.

If you have assigned a menubar to the form, you can use a menu item assigned to the
menubar's editCopyMenu property instead of using the copy() method of individual objects on
the form.

count()

Topic group Related topics
Returns the number of prompts in a listbox, or the number of items in a tree.

Syntax

367

dBASE Plus 9 LR

<oRef>.count()
<oRef>

An object reference to the listbox or tree whose items to count.
Property of
ListBox, TreeView

Description

Use a listbox’s count() method when you can't anticipate the number of prompts a listbox might
have at runtime. For example, when you specify "FILE *.*" for the dataSource property, the
number of prompts depends on the number of files in the current directory.

When using an array as the dataSource for a listbox, you can check the array’s size property to
get the number of items.

The tree view's count() method returns the total number of items in the entire tree, even if they
are not displayed or hidden in a collapsed subtree. Use the visibleCount() method to count the
items that are visible in the tree view.

cuaTab

Topic group Related topics

Determines cursor behavior when you press Tab while a control has focus.

Property of
Browse, Editor, Grid

Description

When cuaTab is true, pressing Tab moves to the next control in the form's tab order. When
cuaTab is false, pressing Tab moves to the next field in a Grid or Browse object or moves the
cursor to the next tab stop in an Editor object.

The same applies to pressing Shift+Tab, except that the movement is in reverse.

currentColumn
Topic group Related topics

The number of the column that has focus in the grid.

Property of
Grid
Description

Use the currentColumn property as an index into the columns array to refer to the GridColumn
object that represents the column that currently has focus.

curSel

Topic group Related topics Example

Determines which prompt is selected in a component.

368

Language Reference

Property of
ListBox, NoteBook, TabBox

Description

Use curSel to get or set which prompt in a ListBox, NoteBook, or TabBox is highlighted. The
prompts are determined by the component’s dataSource property. The first prompt is prompt
number 1.

Assigning a value to curSel fires the control's onSelChange event, as if the change was made
manually.

cut()

Topic group Related topics
Cuts selected text and places it on the Windows Clipboard.

Syntax

<oRef>.cut()

<oRef>

An object reference to the control from which to cut the text.

Property of
Browse, ComboBox, Editor, Entryfield, SpinBox

Description
Use cut() when the user has selected text and wants to remove it from the edit control and
place it on the Windows clipboard.

When calling this method from a pushbutton’s onClick event, the pushbutton should have its
speedBar property set to true, so that it doesn’t get focus. Otherwise, the edit control loses
focus when the button is clicked, and there’s nothing to cut.

If you have assigned a menubar to the form, you can use a menu item assigned to the
menubar’s editCutMenu property instead of using the cut() method of individual objects on the
form.

dataLink

Topic group Related topics Example

The Field object that is linked to the component.

Property of
Many form components
Description

You link a form component to a table’s field by assigning a reference to the dataLink property of
the component. The reference you assign is to the Field object that represents the field in an
open query. This assignment is called dataLinking. When a form component and Field object
are linked in this way, they are said to be datalLinked.

Exception: a Grid object is dataLinked to a rowset, not a field.

369

dBASE Plus 9 LR

For compatibility with earlier versions of dBASE, you may also assign the field name in a string.
This technique is used for form-based data handling with tables open in work areas only.

Both field and component objects have a value property. (Fields in a table open in a work area
do not have any properties, but they have a value; the concept is the same.) When they are
datalLinked, changes in one object’s value property are echoed in the other. The form
component’s value property reflects the value displayed in the component at any given moment.
If the component’s value is changed, it is copied into the field after the component loses focus.

The value property for all fields in a rowset are set when you first open a query and updated as
you navigate from row to row. The value properties for components dataLinked to those fields
are also updated at the same time, unless the rowset’s notifyControls property is set to false.
You can also force the components to be updated by calling the rowset’s refreshControls()
method, which is useful if you have set a field’s value property through code.

Form-based data events such as onNavigate will not work unless the form has controls
datalinked to fields. For example, if you USE a table, create and open an empty Form, assign
an onNavigate event handler, and SKIP in the table, the onNavigate will not fire simply because
the form is open.

The dataLink property is similar to the dataSource property used for Image objects, except that
data displayed through the dataLink property can be changed, while data displayed through the
dataSource property is always read-only.

A component’s dataLink is automatically set when you use the Form wizard or use a field in the
Field palette.

dataSource [options]

Topic group Related topics Example

The options that are displayed in a ComboBox, ListBox, NoteBook, or TabBox object.

Property of
ComboBox, ListBox, NoteBook, TabBox

Description

Use the dataSource property to set the options that are displayed in a ComboBox, ListBox,
NoteBook, or TabBox object. The dataSource property for a ComboBox or ListBox is a string in
one of the following five forms:
ARRAY <array>
creates prompts from elements in an array object.
FIELD <field name>
creates prompts from all the values in a field in a table file.
FILENAME [<filename skeleton>]
creates prompts from file names in the current default directory that match the optional filename skeleton.
STRUCTURE
creates prompts from all the field names in the currently selected table.
TABLES
creates prompts from the names of all tables in the currently selected database. For the default database, this is
all the .DBF and .DB files in the current directory.
For a NoteBook or TabBox, only the ARRAY dataSource is allowed. The dataSource string in
general is not case-sensitive, except that if you specify a literal array, the array contents will
appear as specified.

370

Language Reference

Adding elements to an array after it has been assigned as a component’s dataSource may not
automatically update the component’s options. Files added to the directory after the dataSource
property has been set to a file mask will not automatically appear either.

To update the dataSource, you need to reassign the dataSource property. In most cases, you
can simply reassert the property by assigning its current value to itself. For example, if you had
originally specified all the GIF files in the current directory, the dataSource property assignment
would look like this:

with (this.fileCombobox)
dataSource = "FILENAME *.GIF"
endwith

To update the file list when you press an Update button on your form, the button’s onClick would
look like this:

function updateButton_onClick()
form.fileCombobox.dataSource += ***

You don't have to specify what the dataSource string is again, since it's already contained in the
dataSource property. The += operator adds an empty string to reassign the value, which
reasserts the dataSource. This makes your code easier to maintain, since the dataSource string
is specified in only one place.

When using a FIELD as the datasource string, you can use the fields
value:
form.rowset.fields["myFfield"].value
Or a reference to a field object:
form.rowset.fields["myfield']
When using an array in the dataSource string, you can use a literal array, for example,
array {"Chocolate', "Strawberry', "Vanilla"}
Or you can use a reference to an array object, for example,
array aFlavors
If you use a reference, that array must exist at the time the dataSource property is assigned.
Since the dataSource property contains that string (in this example, array aFlavors), if you
reassert the dataSource property as shown above, an updated version of the named array must

exist. In this example, the array aFlavors must be accessible in the method
updateButton_onClick().

For this reason, when using an updatable array as the dataSource property, the array is usually
created as a property of the form. This makes the array equally accessible from the component
that uses the array and from any other component that tries to reassert the dataSource
property. In this example, the array aFlavors would be created as a property of the form, and the
dataSource string would contain:

array form.aFlavors

The reference form.aFlavors is valid from the event handler of any component on the form.

dataSource [Image]

Topic group Related topics Example

The bitmap that is displayed in an Image object.

Property of

371

dBASE Plus 9 LR

Image
Description

An Image object can display either a static file from disk, a resource image, or a bitmap stored
in a table. Set the dataSource property to either one of the following:
A string containing the word FILENAME, a space, and the name of a file. The string is not case-sensitive.

A string of the form "RESOURCE <resource id> <dIl name>", which specifies a bitmap resource and the DLL file
that holds it.

A string containing the form BINARY, a space, and the name of a binary field in a table open in a work area that
contains bitmapped images.

A reference to a field object in an open query that contains bitmapped images.

If you assign a field object (or a field in a work area) as the dataSource, the Image object will
automatically update as you navigate from row to row, unless the rowset’s notifyControls
property is set to false.

The dataSource property is similar to the dataLink property used for Field objects, except that
data displayed through the dataLink property can be changed, while data displayed through the
dataSource property is always read-only.

An Image object’s dataSource is automatically set when you use the Form Wizard or use a
bitmap image field in the Field Palette.

default

Topic group Related topics

Determines if a pushbutton is the form’s default pushbutton.

Property of
PushButton

Description

Use the default property to make a pushbutton the default pushbutton when the user submits a
form by pressing Enter. This behavior is used primarily for dialog boxes, when either the OK or
Cancel button being the default, whichever is more appropriate. Setting the default property of a
pushbutton to true gives the pushbutton a visual highlight that identifies it as the default.

Setting the default property to true causes two things to happen when the user presses Enter
when the focus is not on a pushbutton:

The onClick subroutine of the default pushbutton executes.
The id property of the default pushbutton is passed to the form’s onSelection event handler.

However, if the user clicks on any pushbutton, the onClick event handler of that pushbutton
executes. The id value of that pushbutton is passed to the onSelection event, even if the default
property of another pushbutton is true.

If you give more than one pushbutton a default value of true, the last pushbutton to get the value
is the default.

The default property will only work when SET CUAENTER is set to ON. When CUAENTER is
OFF, the Enter key emulates the Tab key and merely shifts focus to the next control.

description

372

Language Reference

Topic group

A short description for an ActiveX control.
Property of

ActiveX

Description

An ActiveX object’s description property contains a short description of the ActiveX control it
represents. The description is provided by the control and is read-only.

designView

Topic group Related topics

Designates a .QBE query or table that is used when designing a form.

Property of
Form, SubForm

Description

Use designView to facilitate creating and dataLinking a form that uses form-based data handling
with tables in work areas. The value in designView is ignored at runtime. When using the data
objects, do not use designView or view.

There are two main instances in which you may want to use designView instead of view.

If you know which tables will be open when the form is opened at runtime, use designView to avoid opening the
tables again with view when the form is opened.

If you don't know which tables will be open when the form is opened at runtime, but need certain tables open to
design the form, use designView to automatically open the tables at design time, regardless of the tables needed
at runtime.

If you specify a view property for a form, you should not also specify a designView property.

disabledBitmap

Topic group Related topics

Specifies the graphic image to display in a pushbutton when the pushbutton is disabled.

Property of
PushButton

Description

Use disabledBitmap to indicate visually when a pushbutton is not available for use. A
pushbutton is disabled when its enabled property is set to false.

The disabledBitmap setting can take one of two forms:

RESOURCE <resource id> <dIl name>
specifies a bitmap resource and the DLL file that holds it.
FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.
When you specify a character string for the pushbutton with text and an image with
disabledBitmap, the image is displayed with the grayed-out character string

373

dBASE Plus 9 LR

disablePopup
Topic group Related topics

Whether the tree view’s popup menu is disabled.

Property of
TreeView

Description

The tree has a right-click popup menu that allows the user to insert, delete, and edit items. Set
disablePopup to true to disable this popup menu.

Even if the popup is disabled, the user can still edit the items by clicking twice or pressing F2,
and insert and delete items by pressing Ins and Del. Set allowEditLabels and allowEditTree to
false to prevent these actions.

doVerb()

Topic group Related topics Example

Starts an action in an OLE server application.

Syntax

<oRef>.doVerb(<verb expN> [, <title expC>])

<oRef>

The OLE control that contains the linked or embedded object.

<verb expN>

The numeric value of the OLE verb.

<title expC>

An optional text string to display in the title bar of the server window.

Property of
OLE

Description

Use doVerb() to initiate an action from an OLE document stored in an OLE field and to specify
what action to take.

Every OLE object accepts one or more verbs. Each verb determines which actions are taken,
and each is represented by a number.

downBitmap

Topic group Related topics

Specifies the graphic image to display in a pushbutton when the user presses the button.

Property of
PushButton

Description

374

Language Reference

Use downBitmap to give visual confirmation when the user clicks a pushbutton. When the user
releases the mouse button or moves the pointer off the pushbutton, the image and/or text
specified by focusBitmap and text is displayed.

The downBitmap setting can take one of two forms:

RESOURCE <resource id> <dIl name>
specifies a bitmap resource and the DLL file that holds it.

FILENAME <filename>
specifies a bitmap file. See class Image for a list of bitmap formats supported by dBASE Plus.

When you specify a character string for the pushbutton with text and an image with
downBitmap, the image is displayed with the character string.

drag()

Topic group Related topics Example

Initiates a Drag&Drop Copy or Move operation for a dBASE Plus Ul object.

Syntax

<oRef>.drag(<type expc>, <name expC>, <icon expC>)

<oRef>

The object to be copied or moved.

<type expc>

A string, typically identifying the object's type.

<name expC>

A string, typically containing the name of the object.

<icon expC>

The filename of a cursor icon to be displayed while the object is being dragged. This parameter
is required, but is currently unused. The default Windows OLE cursor will be displayed.
Property of

Many Form objects

Description

Use drag() to initiate a Drag&Drop operation for a Drop Source object. Drop Source objects
may only be dropped upon “active” Drop Target objects; that is, any object whose allowDrop
property is set to true. The drag() method is typically called from within the Drop Source’s
onLeftMouseDown event handler.

drag() returns true or false, according to the success of the drop operation.

For Copy operations, <type expC> and <name expC> are passed directly from a Drop Source’s
drag() method to a Drop Target’s onDragEnter, onDragOver, and onDrop events. Other than a
length restriction of 260 characters, these parameters have no mandatory format and may be
used to communicate any information.

The type of operation initiated is determined by the object’s dragEffect property, and the state of
the Control key when the mouse button is pressed. The following table shows the possible
settings and resulting operations:

dragEffect Control key Operation type
0 - None (ignored) None (dragging disabled)

375

dBASE Plus 9 LR

1 - Copy (ignored) Copy
2 - Move up Move
2 - Move down Copy

For a Move operation, the dragged object moves with the mouse and may only be dropped
wi