User’s Guide

0dBASE
SE

release 2 O
- for Windows® 95, 98, 2000

NT, ME and XP

dBASE, Inc. Vestal, NY
http://www.dbase.com news://news.dbase.com

dBASE Inc. or Borland International may have patents and/or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1996 Borland International, 2000 dBASE Inc. All rights reserved. All dBASE product names are
trademarks or registered trademarks of dBASE Inc. All Borland product names are trademarks or registered
trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks
of their respective holders.

Printed in the U.S.A.

Contents

Chapter 1
Introduction to dBASE SE 1-1
Welcometo dBASESE!. 1-1
WhatisdBASESE? 1-1
dBASE Newsgroups oo 1-2
The dBASE SE Knowledgebase: 1-2
Overview of dBASESE 1-2
Report objects and the integrated Report designer1-3
Project Explorer 1-3
Dataobjects. 1-3
Visual designers L 1-3
ActiveX integration. L. 1-3
Thelnspector. 1-3
Full-featured Source editor 1-4
SQLdesigner. 1-4
BDE Administrator and database support 1-4
DBFT7 file format features 1-4
Samples and sample viewer 1-4
Source Aliasing. oL 1-5
Dynamic External Objects (DEO) 1-5
dBASE SE documentation 1-5
Typographical conventions. 1-6
Documentation updates and additional information
FESOUICES . . v v v v e e e e e e e e e e e e 1-6
Software registration. L. 1-6
Chapter 2
Installing dBASE SE and connecting
to an SQL database server 2-1
WhatyouneedtorundBASESE 2-1
HARDWARE. 2-1
OPERATING SYSTEM 2-1
NETWORKS. 2-1
Products and programs in your dBASE SE package. 2-1
InstallingdBASESE 2-2
What happens during installation 2-2
Un-installingdBASESE 2-3
How to connect to an SQL database server 2-3
Install and configure the server software. 2-3
Configure the Borland Database Engine (BDE) 2-4
Listing SQL tables in the Navigator 2-4
Chapter 3
dBASE dQuery/Web 3-1
What isdQuery/Web? 3-1
Basic functionality of dQuery/Web: 3-1
dQuery Components and Navigation 3-2
The Live DataArea 3-2
The EasyStartMenu 3-2
The Navigator 3-3
Menusand Toolbars 3-3
Opening, Saving and Creating a New dataModule 3-4
Creating a Database object 3-4
Aliases 3-4
Creating a Database object. 3-5
Saving a Database object. 3-7
Creating Queryobjects 3-7

Setting Active Indexes. L. 3-10

Creating a Parent-Child Link 3-11
EnteringData. 3-12
FilteringData. 3-14
Working With Custom Views. 3-16
No-Click Reports 3-17
One-Click Windows 3-19
Chapter 4
Introduction to programming in dBL4-1
"Hard coding" vs. visual programming. 4-1
Advantages of event-driven programs 4-1
How event-driven programswork 4-2
Developing event-driven programs. 4-4
Chapter 5
Creating an application 5-1
Creating an application (basicsteps) 5-1
Project files (overview) 5-2
Creatingaprojectfile. 5-2
Adding filestoaproject. 5-3
Notes on the Project Explorer. 5-3
Building the user interface 5-3
Form design guidelines. 5-4
Goal of formdesign. 5-4
Purposeofaform. 5-4
Some guidelines for dataentry forms. 5-4
Designing the formlayout. 5-5
Guidelines for using the z-order. 5-5
Creatingaform. 5-6
Using the Formwizard 5-6
Using the Formdesigner 5-6
WFM file structure. 5-7
Form class definition 5-8
How the contents are generated. 5-8
Editinga WFMfile. L. 5-8
Editing the header and bootstrap 5-8
Editing properties in the WFM file. 5-9
Types of formwindows. 5-9
MDI and SDI applications 5-9
Modal and modeless windows 5-10
Customizing the MDI form window 5-10
Standard features of MDI windows:. 5-10
Using multi-page forms. 5-10
Global page (forms). 5-11
Navigation buttons (formpages) 5-11
Creating a custom form, report, or data module class 5-11
Usingacustomeclass 5-12
Creating custom components. 5-13
Creating customcomponents 5-13

Adding custom components to the Component palette . . .5-14
Removing custom components from the Component

palette 5-14
Chapter 6
Accessing and linking tables 6-1
The dBASEdatamodel. 6-1
Queryobjects 6-1
SQLproperty 6-2

rowsetproperty
Rowsetobjects
The row cursor and navigation.
Rowset modes
Rowsetevents.
Rowhbuffer

Field objects
valueproperty.

Using dataLinks
Database objects L.
Accessingadatabase L.
Database-level security
Database-level methods
Default Database object
Sessionobjects.
StoredProcobjects L
DataModRef objects
Linking a formorreporttotables
Linking to a table automatically
Linking to a table manually
Procedure for using a Session object.
Calling astored procedure
Using local and remote tables together
Creating master-detail relationships (overview).
Using an SQL JOIN statement
Linking master-detail in local tables

Using the masterSource property.

What is a dataModule?
CreatingadataModule.
Creating business rules in a dataModule

Using a dataModule

Chapter 7
Using the Form and Report

designers
The designerwindows.
Design and Run modes
The Form Design Window
The Report Design window
The visual design is reflected in your code
Componentpalette.
Standard page
Data Accesspage. v oo i i
Data Buttons page (forms)
Reportpage.
Custompageo
Using ActiveX (*.0CX) controls
TheFieldpalette.
The Inspector
Properties page of the Inspector
Events page of the Inspector
Methods page of the Inspector
The Method menu
Manipulating components.
Placing components on a formorreport.
Special case: container components
Selecting components
Movingcomponents
Cutting, copying, pasting, deleting components.
Undoing and redoing in the designers
Aligning components.
Resizing components.

Spacingcomponents 7-16
Setting a scheme (Form designer) 7-16
Editing a Textobject 7-17
Saving, running, and printing formsand reports 7-17

Opening a formor reportinRunmode 7-18

Printingaformorreport 7-18
Chapter 8
Creating menus and toolbars 8-1
Attaching pulldown menustoforms 8-1
Attaching popup menustoforms. 8-1
Creating toolbars and attaching themto forms. 8-2

Creatingareusabletoolbar 8-2

Attaching areusable toolbar 8-2

Creatingacustomtoolbar. 8-3
Creating menus with the designers 8-4

Thedesignermenu 8-4

Buildingblocks 8-4

Adding, editing and navigating 8-5

Features demonstration 8-5
Examining menu filecode 8-6

Changing menu propertiesonthefly 8-7
Menu and menu item properties, events and methods 8-8
Toolbar and toolbutton properties, events and methods 8-9
Chapter 9
Using the Source editor and other
code tools 9-1
Using the Source editor. 9-1

Two-pane window with tree view. 9-2

Notes on the Source editor 9-2
Creatinganewmethod 9-3
The Code Block Builder for editing code blocks. 9-3

To create or editacodeblock 9-3

Editing an existing code block. 9-4
The Commandwindow. 9-4
Typing and executingcommands 9-5
Executing a block of commands. 9-5
Reusingcommands 9-5
Editing in the Command window. 9-5
Saving commands into programs 9-6
Chapter 10
Debugging applications 10-1
Typesofbugs. 10-1
Using the Debugger to monitor execution 10-1
General debugging procedure 10-2
Debugging runtime applications 10-3
The Source window. 10-3
To locate and move to a line number in the Source
window 10-4
To find a text string in the current program file 10-4
The Debugger tool windows 10-4
Variables. 10-4
Watches 10-4
CallStack 10-4
Trace. 10-4
Docking the Debugger tool windows 10-4
Excluding variable types. 10-4
Controlling program execution. 10-5
Stepping inthe Debugger 10-6

Using breakpoints 10-6 Including Unmatched Rows. 11-11

Setting and removing breakpoints 10-6 Joinlisthox, 11-11
Working with breakpoints 10-7 Joinsgrid 11-12
Running a program at full speed from the Debugger . . . 10-7 Deletingajoin. 11-12
Running to cursor position 10-8 Deletingarow. 11-12
Stopping program execution. 10-8 Creating joins in the SQL designer. 11-12
Debuggingeventhandlers 10-8
Viewing and using the Call Stack 10-8 Chapter 12
Watching expressions 109 Designing reports 12-1
Addingwatchpoints 10-9 Reportwizard. 12-1
Editing watch points 10-9 To use the Reportwizard 12-2
Changing watchpointvalues 10-9 Example of a report created with the Report wizard 12-3
Wizard-generated Summary Report. 12-4
Chapter 11_ Report designerelements. 12-5
SQL deS|g ner 11-1 The Reportand Grouppanes 12-5
Opening the SQL designer. 11-1 Modifying report in the Report designer 12-6
Fornewqueries 11-1 Deleting columns (fields) fromareport. 12-6
SQL designerelements L. 11-1 Adding columns (fields) toareport. 12-6
Interacting with the Source editor 11-2 Suppressing duplicate field values 12-7
Entering data in the SQL designer. 11-2 Displaying default values in a blank report field 12-7
Running a query from the SQL designer 11-2 Adding a floating dollar sign to field values in reports . . .12-7
Putting your queriestowork. 11-2 Adding pagenumbers 12-8
Using your .SQL files with the SQL Property Builder . . 11-3 Drill-downreports. 12-8
Looking at the tablepane 11-3 Adding standard componentstoareport 12-9
About thetableboxes 11-3 Changing the report’s appearance. 12-9
Adding tables in the SQL designer 11-3 Creating reportborders 12-9
Renamingatable. 11-3 Setting background colorinreports. 12-10
Removingatable. 11-3 Setting background image inreports 12-10
Selecting fields in the SQL designer. 11-4 Performing aggregate (summary) calculations. 12-10
Selecting all fieldsinatable 11-4 Designing a report with multiple streamFrames 12-11
Selecting individual fieldsinatable. 11-4 Creating printed labels 12-11
Reordering selected fields 11-4
Criteria page (SQL designer) 11-4 Chapter 13
Deletingarow 115 Introduction to designing tables
Adding selection criteria in the SQL designer. 11-5 in dBASE SE 13-1
Specifying selection criteria 11-5
: . Termsandconcepts. 13-1
Simple Equation oL 11-5 - S
. Table design guidelines. 13-2
SQL Expression 11-6 e . .
Identifying the informationtostore. 13-2
EXISTSClause. 11-6 LS -
- . L Classifying information. 13-3
Combining selection criteria. 11-6 L - .
. Determining relationships among tables 13-3
Rowinfo 11-6 . -
L Single versus multiple tables 13-3
Criteriacombobox. 11-6 ; .
. . A . One-to-one and one-to-many relationships 13-3
Grouping selection criteria in the SQL designer 11-7 .
. Parentand childtables. 13-4
Drill-downcolumn. 11-7 S
Query operators 11-8 Minimizing redundancy. 13-4
ry. perafors Sy Choosing index fields. 13-4
Selection page of the SQL designer 11-8 A -
. . Defining individual fields. 13-5
Selectingafield 11-9
e Table structure concepts 13-5
Specifyingan outputname. 11-9 Table names 135
Producing summarydata. 6
. . Tabletypes 13-5
Removing duplicaterows 11-9 Field tvnes 135
Deletingarow 11-9 YPES: v
Grouping page of the SQL designer. 11-9 Chapter 14
Creatingagrouped query 11-9 .
Group criteria page of the SQL designer 11-9 Creati ng tables 14-1
Adding group selection criteria 11-10 Supported tabletypes. 14-1
SQL EXPIESSION .« o v o oo oo 11-10 Us!ng the Table W|z§rd 14-2
Simple Having Summary Expression 11-10 Using the Table designer 14-2
Two Summary EXpression 11-10 Table designer tips. R 14-3
Combining group criteria 11-10 User-m_te_rface elements in the Table designer 14-3
DEletiNngarow v v oo 11-11 ReS|_Z|ng columps e 14-4
Sorting page of the SQL designer 11-11 Gettlng around in the Table deSIQner """""" 14-4

Joins page of the SQL designer 11-11 Adding and inserting fields 14-4

Moving fields. 14-4
Deletingfields 14-4
Saving the table structure L. 14-5
Abandoningchanges. 14-5
Restructuring tables (overview) 14-5
Important guidelines for restructuring 14-5
Modify structurerules L. 14-6
Changing thestructure 14-6
Printing the table structure 14-7
Table access passwords 14-7
Creating custom field attributes 14-7
Specifying data-entry constraints 14-8
Creating and maintaining indexes 14-8
Indexing versussorting. 14-8
Sorting or exportingrows 14-9
dBASE index concepts. 14-10
Planningindexes 14-10
Using indexesindataentry. 14-10
Using indexesinqueries 14-11
Using indexesinreports 14-11
Using indexes to link multiple tables. 14-11
Creatingasimpleindex 14-12
Using the Table designer to create a simple index . . 14-12

Using the Manage Indexes dialog box to create a
simpleindex 14-12
Selecting anindex forarowset 14-12
Indextasks L 14-13
Modifyingindexes 14-13
Deletingindexes 14-13
Indexing on a subset of rows for dABASE tables . . . 14-13
Hiding duplicate values. 14-13
Creating complex indexes for ABASE tables 14-14
Rules for dBASE complex indexes. 14-14
Creating the dBASE complexindex 14-14
Keyexpressions 14-15
Primary and secondary indexes 14-15
Uniquekeys. 14-15

Secondary indexes, maintained and non-maintained. 14-15

Creating primary indexes. 14-16
Creating secondary indexes. 14-16
Referential integrity 14-16
Defining referential integrity. 14-16
Update and delete behavior 14-17
Changing or deleting referential integrity 14-18
Chapter 15
Editing table data 15-1
A fewwordsof caution 15-1
Runningatable 15-1
Protected tables. 15-2
Tabletoolsand views 15-2
Tableand queryviews 15-2
Adjustingtheview L. 15-3
Viewing only selected tabledata 15-3
Table navigation. L. 15-4
Data entry considerations 15-4
Finding and replacingdata. 15-5
Searchingtables 15-5
Replacingdatainrows. 15-6
Addingrowstoatable. 15-7
Deletingrows 15-7
Saving or abandoning changes 15-8

Performing operations on a subset ofrows. 15-8
Selecting rows by setting criteria 15-8
Setting For conditions 15-9
Setting While conditions. 15-9
Counting rows. 15-9
Performing calculations on a selection of rows. 15-9
Viewing and editing special fieldtypes. 15-10
Viewing the contents of special field types. 15-11
Memofields. L. 15-11
Binary fields. L. 15-11
Importing an image or sound into a binary field . . . 15-11
OLEfields. 15-12
Adding an OLE objecttoan OLE field 15-12
Removing an OLE object from an OLE field 15-12
Chapter 16
Setting up security 16-1
Setting up security strategies 16-1
Individual login via automatic password dialogs 16-2
Preset access via Database and Session objects. 16-2
Preset access for Standard table types. 16-2
Preset access for SQL and other table types 16-3
Table-level security for DBF tables. 16-3
About groups and useraccess 16-4
Tableaccess. 16-4
User profiles and user access levels. 16-4
About privilegeschemes L. 16-4
Table privileges L. 16-5
Fieldprivileges L. 16-5
About dataencryptiono 16-5
Planning your security system 16-5
Planningusergroups 16-6
Planning useraccess levels 16-6
Planning DBF table privileges 16-6
Planning field privileges 16-7

Setting up your DBF table security system. 16-7

Defining the database administrator password 16-7
Creatinguserprofiles 16-8
Changing user profiles 16-8
Deleting user profiles 16-8
Establishing DBF table privileges 16-8
Selectingatable. 16-9
Assigning the tabletoagroup. 16-9
Setting DBF table privileges 16-9
Setting field privileges 16-9
Setting the security enforcement scheme. 16-10
Table-level security forDB tables 16-10
Removing passwords fromDB tables 16-11
Chapter 17
Character sets and Language
drivers 17-1
Determining the language displayed by the User Interface . .17-1
About charactersets 17-2

About language drivers. oL 17-3
Performing exact and inexact matches
Using global language drivers

Using table language drivers 17-5
Identifying a table language driver and code page 17-6
Non-English Character Display Issues 17-6
Selecting Specialized ProductFonts 17-6

Table language drivers versus global language drivers 17-7

Handling character incompatibilities in field names 17-7
Converting between OEM and ANSI Text 17-8
Converting from OEMto ANSI 17-8
Converting from ANSItoOEM 17-8
How to convert and view your sourcecode 17-8
Chapter 18
Converting prior version dBASE
Applications to dBASE SE 18-1
Converting a dBASE 111+/1V Application to Visual
dBASEDS.7. . . . 18-1
Installing Visual dBASES5.7 18-1
OVerview 18-2
Suggested Steps 18-2
Sample 18-2
RecreatingMenus 18-2
Create a sample menu in Visual ABASE5.7 18-2
Converting VUE Files. 18-3
ConvertingForms 18-4
Using The Component Builder to Convert a Form
froma.PRG 18-5
Fine-Tuning TheForm. 18-6
Notes about Memo and Logical fields 18-7
Runningthe Form 18-8
Using ACCEPTor INPUT? 18-8
Reportsand Labels. 18-10
Converting dBASE 5.0 for DOS Screens/Menus to
dBASESE. 18-12
Setting up for Conversion 18-12
Converting screens or menus to dBASE SE: 18-13
Conversion considerations 18-13
AnOption. 18-14

Converting dBASE 5.0 for DOS Reports and Labels . . 18-14
Converting Visual dBASE 5.7 Applications to dBASE SE . 18-15

ConvertingForms 18-15
Converting Reportsand Labels 18-16
Converting QBE Files to Datamodules 18-16

Updating Forms to Use Datamodules 18-17

vi

7.1
7.2
7.3
7.4
7.5
8.1

8.2
8.3
8.4
10.1

111
12.1
13.1
14.1
14.2
15.1

Standard controls 7-4
Data ACCESS v v v v 7-6
Shading Properties in the Form Designer . . . 7-7
Components specifictoreports 7-7
Method menu commands 7-12
Menubar and popup root properties, events

andmethods 8-8
Item properties, events and methods 8-8
Toolbar properties, events and methods. . . .8-10

Toolbutton properties, events and methods . .8-10
Methods of controlling execution in the

Debugger 10-5
Queryoperators 11-8
Values for the drilldown property 12-9
dBASE field types for level 7 tables 13-6
Data-entry constraints 14-8
Sample dBASE key expressions 14-15
Navigating rows using the menu, mouse or

keyboard. L. 15-4

Tables

vii

15.2
15.3
16.1
16.2
16.3
16.4
16.5
16.6
17.1

17.2

17.3

Types of calculations
Field selection keyboard shortcuts 15-11

Settingusergroups 16-6
Setting user access levels. 16-6
Setting table privileges 16-7
Setting field privileges 16-7
Setting DBF table privileges 16-9
Setting field privileges 16-10
European language drivers available in

dBASESE. 17-3
Automatic assignment of language drivers
bydBASESE 17-5
Language drivers: Table versus Global. . . . 17-7

viii

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
311
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
4.1

5.1
5.2
53
5.4
5.5

6.1
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
9.1
9.2

The dBASE SE dQuery/Web start screen . . . 3-2
EasyStartMenu 3-3
The Navigator 3-3
Speedtipexample 3-4
Database Alias dialog box. 3-5
Select/Add dialogbox. 3-5
Create Alias dialogbox 3-6
Create Folder dialogbox 3-6
Displayed dataModule. 3-7
Save dataModule dialogbox 3-7
Create Tabledialog 3-8
The Table Designer 3-8
Table Designer. 3-9
dQuery/Web design surface 3-9
Table Designer. 3-10
Set Index dialog box. 3-11
Edit Reportdialogbox. 3-18
Report Designsurface. 3-18
One-Click Windows dialog box 3-19
Sample event handler for a "Hello world"

form 4-3
Project Explorer displaying a view of afile. . 5-3
Sample MDIwindow 5-10
Savingacustomeclass 5-12
Set Custom form Class Dialog Box 5-13
Save as Custom dialog box; saving Custom
Components 5-14

Drag&Drop. i 6-10
Form Designer with a wizard-created form . . 7-2
Report Designer with a wizard-created report. 7-3

FieldPalette 7-8
Using the Inspector 7-10
Events page of The Inspector 7-11
Methods page of The Inspector 7-12
Layout | Align commands 7-15
Layout | Size commands. 7-16
Layout | Spacing commands. 7-16
Set Scheme dialogbox 7-17
Formattoolbar. 7-17
Code Block Builder 9-3
The Command window 9-4

Figures

10.1
10.2
10.3
10.4
10.5
10.6
111
11.2
11.3
11.4
12.1
12.2
12.3
124

12.5
12.6
12.7
131
13.2
15.1
15.2
15.3
154
155
15.6
15.7
15.8
15.9
17.1
18.1
18.2
18.3
18.4

185
18.6
18.7
18.8

Source Window. 10-3
Debugger tool windows, docked 10-5
Breakpoint window. 10-7
Breakpoint Condition dialog box. 10-7
Call Stack window 10-9
Watchwindow 10-9
SQL Designer CriteriaPage 11-5
SQL Designer: Group selection 11-7
SQL Designer: Grouped 11-7
SQL Designer: Drill-down 11-8
Wizard-generated report on a GOODS table. 12-3
Wizard-generated Summary Report 12-4
Adding grand total in the Report wizard . . . 12-4
Report in Design mode with Group view

displayed 12-5
Selecting a column to delete from a report. . 12-6
Field Palette containing active fields. 12-7
Aggregate calculation on a Report 12-10
ComponentsofaTable. 13-2
One-to-many relationships 13-4
Table-editing toolbar 15-2
Columnarview 15-3
Navigating rows using the toolbar 15-4
Find Rows dialogbox 15-5
Replace Rows dialog box. 15-7
Delete Rows dialogbox 15-8
Count Rows dialogbox. 15-9
Calculate Aggregates dialog box. 15-10
Calculation Results dialog box 15-10

Setting LDRIVER in the dBASE_SE.INI . . 17-5

SampleMenu. 18-3
SampleForm 18-4
The Component Builder 18-5
Component Builder window with displayed

sourcecode 18-6
ARunningForm 18-8
Form with PushButton 18-10
The dBASE 1V for DOS Report designer . .18-11
Crystal Reports for dBASE. 18-12

Introduction to dBASE SE

Welcome to dBASE SE !

dBASE SE is another milestone in the evolution of dBASE - one led, staffed and supported by users and
developers like yourselves. With the advent of the dQuery/Web dataModule designer, combined with the
legendary power of dBASE, dBASE SE represents the most state-of-the-art data manipulation tool on the market
today. For Legacy users the message is simple: OOP is now, and making the jump just got a whole lot easier.

What is dBASE SE?

dBASE SE is a 32-bit rapid application development (RAD) environment for the creation of powerful database
applications and data-driven web applications. It features flexible interactive database administration tools, an
advanced third-generation object-oriented programming model, and a high level of backward compatibility.

Its rich assortment of powerful Windows tools, including Table, Form, Menu and Report designers makes
modeling, managing, retrieving and reporting information easier and faster than ever before. dQuery/Web,
dBASE SE’s radical new interactive live-data tool makes it extraordinarily easy to visualize, enter, edit and
retrieve information, regardless of its source. The Borland Database Engine (BDE) included with your package
allows easy connectivity to dBASE tables—including the new DBF7 file format—and provides native support
for Paradox, Microsoft Access, and Microsoft FoxPro formats, as well as any 32-bit ODBC-supported data
source. A set of high performance SQL Links drivers extend support to the most popular enterprise database
formats, including Oracle, Sybase, InterBase, MS SQL Server, IBM DB2, and Informix. dBASE SE also allows
you to create links to other data sources through custom data objects.

With dBASE SE you can:

» Work in SQL Server data and save it as Informix

» Work in DB2 and save it as dBASE

» Import data from other applications

* Run reports against almost any database

» Automatically generate applications that work with multiple sources simultaneously.

All this is possible because dBASE SE is totally object-oriented. Information is treated as fully inheritable,
reusable objects, not as separate, incompatible, difficult-to-convert databases and tables. Want to link a form or a
report to your data? Just drop a data object on the appropriate designer and dBASE SE handles the rest.

The expert developer will love dBASE SE’s object-oriented dBL programming language. Sporting full
inheritance for an incredible level of reusability, dBASE SE also provides the first drag-and-drop distributed
object model with full inheritance. Never has it been easier to update and upgrade. Never has it been more
efficient to provide remote technical support.

Introduction to dBASE SE 1-1

Overview of dBASE SE

dBASE SE is also a great second tool for developers working in other languages, environments and databases.
From its ad-hoc data-query tools to its built-in Report Classes, dBASE SE provides the functionality missing
from other, popular, single-purpose tools. Writing an application in Delphi or Visual Basic? Need to see the
results immediately? Just fire up dBASE SE and browse the data in real-time. Need to kick out a report in
minutes? dQuery/Web’s No-Click reports require virtually no work at all. Need to model your data, view
relationships, check out the results of a SQL Query? Just a few mouse clicks and you’ve got a real-time result.

This section introduces you to the dBASE SE development environment and provides examples and tips that will
help you get started quickly. It also describes features introduced in versions prior to dBASE SE as well as those
new to this release.

dBASE Newsgroups

The dBASE Newsgroups, located at news://news.dBase.com, are a place where dBASE users and developers
can obtain peer support and exchange information, tips and techniques. We encourage members of the dBASE
community to assist each other with technical questions. Please read the Newsgroup Guidelines before
participating.

For more information about Newsgroup Guidelines and configuring your newsreader, visit the dBASE website
at www.dBase.com.

The dBASE SE Knowledgebase:

Your dBASE SE package also contains a full copy of the new Knowledgebase in HTML format. To use the
Knowledgebase, double-click on the file "kbmenu.htm" in the \KB folder on your installation CD.

Topics and information include:

* Newsgroups Support

« FAQs

e Programming how-to articles

» The dBASE User’s Function Library Project files (dUFLP)
» A complete list of changes and bug-fixes

The dBASE SE Knowledgebase is also available on the dBASE Inc. website; http://www.dbase.com. The
Knowledgebase is an ever expanding repository of all things dBASE. Check our website frequently for updates!

Note This site can also be accessed through the dBASE SE Help menu.

Overview of dBASE SE

dBASE SE provides dozens of new features and language elements to provide you with a more productive,
efficient work environment. Among these enhancements:

Report objects and the integrated Report designer
Project Explorer

Data objects

ActiveX integration

Visual designers

The Inspector

Full-featured Source editor

SQL designer

BDE utility and database support
DBF7 file format

Dynamic External Objects (DEO)
Source Aliasing

1-2 dBASE SE User’s Guide

Overview of dBASE SE

Report objects and the integrated Report designer

You can create reports and labels using native Report objects and the Report designer (similar to the Form
designer). The classes use the full power of the object-oriented programming model, with objects that offer such
sophisticated features as:

Complex expression support
Conditional rendering
Flexible grouping

Inheritance

Report viewing within a form

Project Explorer

A few of the features The Project Explorer provides include:

» Automatic file viewers
« Instant switching between visual preview and source code views
* Project-based compiler directives

Note that the Project Explorer replaces the Catalog functionality available in earlier versions. A conversion
utility, CAT2PRJ.PRG, is available in your \Bin directory to let you easily convert Catalogs to Projects.

Data objects

Data access classes merge the SQL and object-oriented paradigms. You can use queries within databases within
sessions. Sessions provide independent connections to tables. Each database can then connect to a different data
source. The queries connect to one or more tables and provide table navigation capability. The objects let you

» Use Query, Rowset, Field, Database, Session, StoredProc, and other classes to access tables and stored
procedures. (Data objects use only SQL to gather data.)

» Use DataModule and DataModRef objects to represent multiple data objects and their relationships. These
objects take the place of form.view and old QBE files.

» Create custom data objects to access specialized, third party, and future data formats.

Visual desighers

The visual designers feature numerous usability and productivity enhancements, including

* Win32 controls

» Grid and Browse controls, which are faster and offer more functionality than the table browsing functionality
in earlier versions

» Complete ActiveX control integration

» Live Two-Way-Tool® editing: changes made in visual designers are immediately reflected in the source code
and vice versa; to switch between the two, press F12

* File drag-and-drop capability lets you easily link tables and pull files onto a form or report from the

Navigator, Project Explorer, Windows Explorer, or even the Windows Find results window

Dockable toolbars

A text-formatting palette, featuring industry-standard HTML tags

In-place editing for Text components

Automatic labeling for fields dragged from the Field palette

Versatile form/report metrics (chars, twips, pixels, millimeters and more)

Expanded image format support. The list now includes support for BMP, GIF (including animated GIF), ICO,

JPEG, PNG, XBM, WMF, EMF, TIFF, PCX, and EPS formats

ActiveX integration

You may add ActiveX (OCX) controls directly into your forms and reports. You can either inspect ActiveX
controls directly, or right-click a control to access its internal configuration dialog.

The Inspector

A few of the features offered by The Inspector include:

Introduction to dBASE SE 1-3

Overview of dBASE SE

Single-click list expansion

Advancement or toggling of a selection with Ctrl-Enter (an alternative to double-clicking)
A tool button on the Methods page to let you write method overrides

Bold highlighting on changed and non-default values

A property type chooser and history list

Access to a codeblock builder and long string editor tool

Full-featured Source editor

A fully-customizable ASCII Source editor is available for writing programs and methods. It features

Instant access (F12) from visual designers, with immediate updating between source and design modes

A tree view of classes, objects, and methods

Tabbed pages

Syntax highlighting and a customizable color scheme

Drag-and-drop editing, including the ability to drag code snippets onto the desktop or into another editor

page, and drag them back into any page

« Multiple-level grouped undo

» Keystroke macro recording and playback

» An automatic file-open feature: If another file name appears in your source code, you can set your cursor on
the name and press Ctrl-Enter to open the file

» Easy commenting and comment removal on selected blocks

SQL designer

The SQL designer lets you create, edit, and execute SQL queries. You can use the tool to test and apply the
simplest SELECT statements to the most advanced queries on data in any supported data source. You can then
view the results and save your query for inclusion in your programs.

BDE Administrator and database support

The BDE Administrator utility helps you create aliases and test and configure your database connections and
settings. The BDE engine also offers a significant number of database objects that can be opened in each BDE
session.

The SQL Links high-performance drivers for dBASE SE support most popular enterprise database formats
including Oracle, Sybase, InterBase, MS SQL Server, IBM DB2 and Informix.

dBASE SE includes native (non-ODBC) Microsoft Access and Microsoft FoxPro table support, along with Local
SQL (for DBF and DB tables) and support for the DBF7 table format.

DBF7 file format features

A few of the features included are:

Long field names

New field types: TimeStamp, Double, Autolncrement, Long

Field constraints: minimum, maximum, required, and default

Null character fields

Distinct indexes; user gets a key violation when attempting to add a duplicate

Primary distinct index

Referential integrity

Table constraints: an array of strings containing logical dBASE SE expressions that act as row-level
constraints when attempting to save a row

» Custom field attributes that comprise an active data dictionary that works at runtime as well as design time.
These attributes are named properties with string values and are created in the Table designer.

Samples and sample viewer

Sample forms, reports, menus and other files are located in the SAMPLES directory of your main dBASE SE
directory.

1-4 dBASE SE User’s Guide

dBASE SE documentation

The directory features a form called SAMPLE GUIDE.WFM, which gives you a visual preview and description
of the purpose of each sample form or applet.

Source Aliasing

What is Source Aliasing?

Source Aliasing is a new feature in dBASE SE that provides true source-code portability by referencing files
indirectly - through an Alias. Just as the BDE allows you to define an Alias to represent a database or a
collection of tables, Source Aliases let you define locations for your various files without using explicit paths -
which often differ from machine to machine.

Note Source Aliasing works only in the dBASE SE design environment or when running programs from within the
dBASE SE shell. It is not a runtime feature. To access files indirectly in deployed applications, use Dynamic
External Objects (DEO) instead of Source Aliasing.

Dynamic External Objects (DEO)

dBASE SE features a brand new external object model that, if used consistently, promises the lowest total-cost-
of-ownership in the industry.

DEO is a unique technology that allows not just users, but applications, to share classes across a network (and
soon, across the Web). Instead of linking your forms, programs, classes and reports into a single executable that
has to be manually installed on each workstation, you deploy a shell - a simple dBASE SE executable that calls
an initial form, or provides a starting menu from which you can access your forms and other dBASE SE objects.

Dynamic Objects can be visual, or they can be classes containing just "business rules", that process and post
transactions, or save and retrieve data. Each of these objects may be shared across your network by all users, and
all applications that call them.

Tips You'll have to experiment with DEO to discover the best approach for the way you write and deploy
applications. However, here are some interesting subtleties you might leverage to your benefit:

Unanticipated updates: Assume you already shipped a dBASE SE application as a full-blown executable.
Now you want to make a change to one module. No problem, just copy the object file to the home directory of
the application and it'll be used instead of the one built in to the executable. You don't need to redeploy the
full application the way you do in most other application development products. Just the changed object.

Reports: You can deploy reports or even let your users create reports (using dQuery/Web) and add them to
their applications by designing a report menu that checks the disk for files with an .reo extension. Let the
menu build itself from the file list. Here we have true dynamic objects - the application doesn't even know
they exist until runtime. DEO supports real-time dynamic applications.

Dynamic Update Support: Want to try out some code or deploy a fix to a customer site or a remote branch
office? No problem, just FTP the object file to the remote server and the update is complete.

Remote Applications: If you have VPN support (or any method of mapping an Internet connection to a drive
letter), you can run dBASE SE DEO applications remotely over the Internet. A future version of dBASE SE
will include resolution of URLs and IP addresses so you can access remote objects directly through TCP/IP
without middleware support.

Distributed Objects: Objects can be in a single folder on your server, in various folders around your
network, or duplicated in up to ten folders for fail-over. If one of your servers is down, and an object is
unavailable, dBASE SE will search the next locations on the list until it finds one it can load. Objects can be
located anywhere they can be found by the workstation.

dBASE SE documentation

Your dBASE SE Help system offers full context sensitive help, examples, expanded and updated conceptual and
training material, plus a full Language Reference with code samples you can cut and paste directly from the Help
window.

Introduction to dBASE SE 1-5

dBASE SE documentation

Typographical conventions

The following typographical conventions used in this Help system will help you distinguish among various
language and syntax elements.

Convention Applies to Examples
Italic/Camel cap Property names, events, methods, arguments length property, lockRow() method, <start
expN> argument

ALL CAPS Legacy dBASE commands and other language elements ~ APPEND BLANK, CUSTOMER.DBF
from previous versions. Also used in file and directory
references.

Roman/Initial cap/ Class names (including legacy classes), table names, field class File, class OleAutoClient, Members

Camel cap names, menu commands table, Price field

Monospaced font Code examples a=new Array(5,6)

Documentation updates and additional information resources

The dBASE Inc. home page on the World Wide Web, at http://www.dbase.com, helps you find the most current
information about dBASE SE. Periodic updates to the dBASE SE Help system, as well as technical notes, tips,
and other materials that will further your understanding of the program, will be posted on the dBASE Inc.
website.

Your dBASE SE CD also contains a full copy of the new Knowledgebase in HTML format. To use the
Knowledgebase, double-click on the file "kbmenu.htm" in the \KB folder on your installation CD. The dBASE
SE Knowledgebase is also available on the dBASE Inc. website, and through the Help menu. The
Knowledgebase is an ever expanding repository of all things dBASE. Check our website frequently for updates!

The BDE Administrator, and other included applications and controls, offer their own Help systems. They can
be run from disk, from within the applications, or by pressing F1 while an application is open or the control is
selected.

For tips on using Windows Help, choose Help | How To Use Help from the main dBASE SE menu.

Software registration

To register your product with dBASE Inc. and qualify for support, use the registration card included in your
dBASE SE package or register at our Web site: http://www.dbase.com

dBASE Inc. offers developers high-quality support options. These include free services on the Internet, where
you can search our extensive information base and connect with other users of dBASE products. In addition to
this basic level of support, you can choose from several categories of telephone support, ranging from support on
installation of your dBASE product to fee-based consultant-level support and detailed assistance. To obtain
pricing information for dBASE technical support services, please visit our Web site at http://www.dbase.com.

To request assistance, call:

dBASE Call Center Toll free (USA and Canada only)
607-729-0960 888-dBASE-32
(888-322-7332)

The call center is open from 9:00 AM to 5:00 PM eastern time USA.

1-6 dBASE SE User’s Guide

Installing dBASE SE and connecting
to an SQL database server

This chapter tells you what you need to run dBASE SE and lists the products and programs in you dBASE SE
package. Then it shows

» How to install and uninstall dBASE SE
» What happens during installation
e How to connect to an SQL server

What you need to run dBASE SE

To run dBASE SE you need the following:

HARDWARE

All of the following are required

Intel 486D X2 or higher

CD-ROM drive

16MB RAM

35 MB hard disk space

VGA or higher resolution (SVGA recommended)
Microsoft mouse or compatible pointing device

OPERATING SYSTEM

Microsoft Windows® 95/98/2000
Microsoft Windows® NT 4.0
Microsoft Windows® ME
Microsoft Windows® XP

NETWORKS

It runs on all Windows-compatible networks, including NT networks, Novell networks and peer-to-peer
networks, such as Lantastic and Netbeui.

Products and programs in your dBASE SE package

These are the products and programs that come with dBASE SE:
+ dBASE SE

Installing dBASE SE and connecting to an SQL database server 2-1

Installing dBASE SE

» dQuery dataModule designer.
» The dBASE SE debugger.

» The 32-bit Borland Database Engine (BDE) and configuration utility (BDE Administrator), with native
drivers for dBASE, Paradox, Microsoft Access 95/97, and Microsoft FoxPro databases.

 Integrated Help system, including a full Language Reference.
» The dBASE Knowledgebase.
» Sample tables, forms, reports, and other files you can learn from, use or adapt.

» A selection of custom controls and graphics (backgrounds, cursors, and other images) for use in forms and
reports.

» A utility for converting Crystal reports to dBASE SE reports.
A utility for converting Visual dBASE 5.x forms to dBASE SE forms.

* A dBASE 5.0 for DOS Form/Menu Converter to assist with the conversion of object-based forms and menus created in
dBASE 5.0 for DOS.

» ODBC connectivity and Local InterBase.

» A full set of high performance SQL Links drivers for connecting to: Oracle, Sybase, InterBase, MS SQL
Server, IBM DB2 and Informix databases.

Installing dBASE SE

The target for the installation of dBASE SE will default to a folder where dBASE SE may already be installed.
You can install dBASE SE to a folder location of your own choosing, however installing to the same folder
maintains your current dBASE_SE.INI settings. If dBASE SE is not presently installed, the target folder will be
c:\Program Files\dBASE\SE.

If the BDE is already installed on your machine, the existing folder location will be selected by default. It is
recommended that you continue using this location. Current BDE settings and any new BDE settings are merged
during the install, so you don’t lose any prior BDE configuration.

To install dBASE SE,

1 Insert your dBASE SE CD into your CD-ROM drive.
If Autorun fails to start:
1 Choose Run from the Start menu.

2 Inthe Run box, type the letter of your CD ROM drive followed by a colon and the word setup. For
example,

D:\dBASE_SE\setup
2 Follow the directions that appear onscreen.

At the end of the installation process, you are given the option to read the "readme" file. You can read it then or
open it later from your dBASE SE root directory or program group.

What happens during installation

In addition to installing the options you selected, the following occurs during setup:

* dBASE System-Level files (.DLL, .OCX, etc.) are installed and registered as required in the Windows, or Windows\
System, directory.

» The dBASE registry settings are written to HKEY_LOCAL_MACHINE\SOFTWARE\dBASE\SE.

 In addition to the usual subdirectories, like BIN, a subdirectory named My Projects is created off the dBASE
SE home directory, by default C:\Program Files\dBASE\SE\My Projects.

» The Language of the installer will attempt to match the Windows system language setting. This can be set via
the Control Panel | Regional Setting. During the install process, you are given the option of selecting

2-2 dBASE SE User’s Guide

Un-installing dBASE SE

additional languages. For example, if you select English and German, the User Interface resources and
documentation (as available) will be installed for both languages

» The User Interface language resources installed for the BDE Administrator, the BDE Online Help, and the
User Interface resources for the Project Explorer, will match the language of the Installer itself. Multi-
language installs are not supported for these components.

Un-installing dBASE SE

Note

To un-install dBASE SE, use the Add/Remove Programs dialog box in the Windows Control Panel.

During un-installation, you also have the option of keeping any shared program libraries on your disk that may
be needed by other programs. Even if you choose to remove the shared files, other files and directories may
remain on your disk after un-installation. These remaining files are usually forms, applications, directories or
other items you created while using dBASE SE.

For other issues that may affect dBASE SE removal, see README.TXT (normally stored in your dBASE SE root
directory or program group).

How to connect to an SQL database server

Note

If you are connecting your dBASE SE application to an SQL database, you need to configure your SQL Links
Driver and the BDE to access your SQL database. In this procedure, you create an alias that BDE uses to locate
the SQL database. You then add this alias to the Database object on your dBASE SE form or report.

The following instructions apply to users of the high performance SQL Links drivers for dBASE SE.

Install and configure the server software

Consult the documentation for your SQL database management system product for specific guidance on the
initial steps of the following general procedure (specific product requirements may differ).

1 Make sure you have properly installed the client software for the database management system product to
which you want to connect (Oracle, Sybase, InterBase, MS SQL Server, IBM DB2 or Informix).

2 Define server names or other connection strings in the product’s required configuration files. For example, in
Oracle, TNSNAMES.ORA, or in Sybase, SQL.INI, and so on.

3 Test the connection by using the database vendor’s connection utility (such as Sybase’s SYBPING.EXE). If
you cannot "ping" the server with this utility, BDE and dBASE SE will probably not be able to access it either.

4 Make sure both the BDE and the SQL Links drivers are properly installed. If properly installed, the SQL
Links drivers for Oracle, Sybase, Interbase, MS SQL Server, IBM DB2 and Informix appear on the
Configuration page of the BDE Administrator (available from the dBASE SE program group off the Start
menu).

Installing dBASE SE and connecting to an SQL database server 2-3

How to connect to an SQL database server

Note

Configure the Borland Database Engine (BDE)

The Borland Database Engine (formerly called IDAPI) allows dBASE SE to share data with supported SQL
databases, Access 95/97, and FoxPro. If you’ll be connecting to any of these databases, you must assign them
aliases and otherwise configure the BDE with the parameters of the database.

#: BDE Administrator C:\Program Files\Common Files\Borland\BDEXDAPI.CFG
Object Edit Yiew Optionz Help

& X < s
| Al Database Aliases | Defirition of dB2KS ample

Databazes | I:anigu[atignl Drefinition |

EI% Databazes E Type STAMDARD

; Contax DEFALLT DRIVER DEASE

HBLSE Sample EMABLE BCD FALSE

cBASE Temp PATH CAProgram Files\dBASBEVSE\Samples
dBASE Files
duenytest
Eucel Files

FowPro Files -
L D

| 4
To create an alias and configure the BDE,

1 Open the BDE Administrator (BDEADMIN.EXE), available from your dBASE SE program group.

2 Click the Databases tab.

3 Right-click and choose New to create a new alias

cm o om om o
ol ol 564 G

4 Enter the full path to the database, including the file name when appropriate.
5 Click the Configuration tab and set the appropriate parameters in the Definition panel:
» Parameters may vary according to vendor.
» Parameters in bold cannot be changed.
» To accommodate record locking in a Windows NT server environment, it is necessary to set the BDE's
localShare parameter to "true".
If you're creating a new ODBC alias, you must define its DSN before you can connect to that database.

You’ll find complete instructions in the BDE Administrator Help system. Press F1 with the cursor in any
parameter for information on that parameter.

Listing SQL tables in the Navigator

To see SQL tables listed in the Navigator,

1 Open the Navigator, and click the Tables tab.

2 Select the SQL server database alias from the Look In drop-down list (at the top of the Navigator).
3 At the prompt, enter your login name and password to connect to that SQL server database.

4 Once you’re connected, you will see the tables in that database in the Navigator.

2-4 dBASE SE User’s Guide

dBASE dQuery/Web

What is dQuery/\Web?

dQuery/Web is the data center of dBASE SE. It’s a drag-and-drop tool that provides easy, intuitive data-
modeling, filtering, data-entry, reporting and automatic application generation. It’s both an interactive tool and a
development tool. Want to enter, retrieve, or edit data? Drag tables to the design surface. Want to create a
persistent data relationship including multiple tables, joins, filters and relationships? Click Save and dQuery/
Web creates a custom, reusable dataModule Class. Want to work both visually and in code? Like all other tools
in dBASE SE, dQuery/Web is a Round-Trip Tool. This means you can write code, drag-and-drop, or switch back
and forth at will.

Basic functionality of dQuery/Web:

» Create and manage tables

» Data entry, edit and delete

* Query data

» Data Pump from different formats
 Parent-child relationships

* Filter data

» Search data

* Summarize Data

» Global Search and Replace

» Custom Views of Data

» No-Click Reports

e Customize Reports

e Generate One-Click Windows apps

This list, like most others, doesn’t really do justice to dQuery/Web. Take “Filter Data” for example. There are at
least six different ways to filter data in dQuery/Web - some persistent, some temporary - for use while doing
calculations or exporting data to other formats and tools. In fact, dQuery/Web is particularly notable for the
many ways it offers to perform almost any operation. We’ll point some of these out as we work our way through
this chapter.

dBASE dQuery/Web 3-1

dQuery Components and Navigation

Double-Click the dBASE SE icon to start dBASE SE. Figure 3.1 shows the dBASE SE dQuery/Web screen on
startup.

Figure 3.1 The dBASE SE dQuery/Web start screen

]
[= EE (Mo go [Sta @< 0 ganMew ol
& Toolbars

[Jositin [Lamisme it [Rt [y
L[1 Smih Johe 107 Main Johagon Gy
2 Dew Jurm 223 Fiml fom Eirghamizn

1] rgh

dQuery Components and Navigation

The Design Surface at the top of the dQuery/Screen is used for modeling data — for creating Query, Database,
Session and Stored Procedure objects that describe your databases, tables and queries and the relationships
between them.

The Live Data Area

The First Tab of the Live Data Area is used for entering, editing, and deleting data. The data in this section of
dQuery/Web changes in real-time to reflect the currently selected Query object, and any filters or parent-child
relationships you’ve set up for them.

The Second Tab of the Live Data Area is the Custom View tab. dQuery/Web allows you to drag-and-drop fields
from any combination of Query objects to create a new, combined View of your data.

The Third Tab is the Current Report tab, which displays either an automatic No-Click report, or any other report
you choose to associate with this dataModule.

The EasyStart Menu

EasyStart is a dedicated menu designed to assist you in becoming familiar with dQuery/Web. The six steps go
from a Database object, to a complete, fully-functional, Windows application.

3-2 dBASE SE User’s Guide

dQuery Components and Navigation

Figure 3.2 EasyStart Menu

E azyStart Navigator

Properties

v [Open Automatically
v Show Help Screens
Alwayz On Top

When installed, EasyStart is “Always on top”, which may become a
bit annoying when you’ve got lots of Query objects displayed on the
screen.

2 Query Objects
o, To change the behavior of EasyStart, click on the “Properties” menu
3 Add or Edit Data at the top of the EasyStart window. You can change it to appear only
. when wanted, as well as turn its help screens off and on.
4 Filter Data
5 E’ Parent/Child You can turn EasyStart back on at any time by right-clicking

anywhere on dQuery/Web and selecting “EasyStart” from the popup
menu.

6 ReportsifApplications

The Navigator

There are many ways of getting around dBASE SE. The easiest is drag-and-drop - using your mouse to grab a
component or file and drop it on the Design Surface - which is used when you’re working with existing data.
When you’re creating new tables from scratch, dQuery/Web provides a set of dialog boxes and tools that help
you through each process.

Take a minute to familiarize yourself with the Navigator. This is an extremely useful tool for opening files
(including dataModules), and serves as the primary source for dragging existing tables and other files to dQuery/
Web.

Figure 3.3 The Navigator

] -
2+ Navigator

10

Form Files [* wim, * cfm, *mnu, * pop]
[ritleed] BT [Untitled] g [Untitled) -
Calculator wim Charge. wim Custedit. wm
D .wifmn B Fizh.mir g Fish.pop
Fishguide. wfm Generic.wim E™ Repview.mnu
B FRepview pop Repview.wim Sample guide.wim Sample mdi form.wim
=] Test table. wfm B Uzerguide. mnu =] win32api.wim =

The Navigator can be called up from the “View” menu on most dBASE SE screens or by right-clicking on many
components and tools throughout the program. If you click on “Untitled”, dBASE SE will bring up the
appropriate tool and get you started on a new form, report, program or dataModule.

Menus and Toolbars

There are two kinds of menus supported in Windows. Main menus appear at the top of each screen. Pop-up or
Context menus are brought up by right-clicking on a component. These menus supply only the options
appropriate to the item you clicked on. For example, right-clicking on the Design Surface allows you to add new

dBASE dQuery/Web 3-3

Opening, Saving and Creating a New dataModule

components. Right click on the Live Data Area, and you get options to navigate, add, save and delete rows of
data. Almost every option that appears on a right-click menu also appears on the Main Menu or the Toolbar. The
advantage of right-click menus is that they save you a lot of navigation across the expanse of dQuery/Web and
you don’t have to look through every single option in the Main menu to find the one you want.

dQuery/Web always offers multiple ways of accomplishing a task. You want to add a new Query data object to
your dataModule? Here are some of the possibilities:

» Right-click on the Design Surface

» Drag a table from the Navigator

» Draga.SQL file from the Navigator

» Double click on “Untitled” on the Navigator Tables Tab
* File | New | Table

» File | New | Query Object from Table

» File | New | Query Object from SQL File

» EasyStart | Query Objects

» Click on a Query Toolbar Button

Opening, Saving and Creating a New dataModule

Tip

Every time you open dQuery/Web, you’ve got a brand new dataModule to work with. Alternatively, you can
double-click on “Untitled” in the dataModule tab of the Navigator, or select File | New | Datamodule from the
dQuery/Web Main Menu.

To open an existing dataModule - select File | Open. Select the desired dataModule and click Open, or Double-
click on the desired dataModule in the DataModule tab of the Navigator.

A dataModule can be saved by - Select File | Save, File | Save As, or Click the Save toolbar button.

All toolbars have a “Speedtip” that defines the operation
they perform. Leave your mouse over a toolbar button for

approximately one half second and the tip will appear. M

File Edit “ew Tables Filter Find Rows Bepor
"B b e KE | & O
4:'* Create Mew Datamu:udule_

Figure 3.4 Speedtip example

Creating a Database object

If EasyStart is not currently displayed on your screen, right-click on the Design Surface and then click on
EasyStart.

dBASE SE uses Database objects to represent your database — your collection of tables that will define the
information you wish to get from your system. In SQL databases, a database is a file. In other database engines,
such as dBASE, Paradox, Fox and Advantage, the database is a folder containing related tables of data. dQuery/
Web uses the Database object to link your data to applications, reports and dQuery/Web itself. Though not
strictly required for non-SQL tables, we highly recommend that you always start with a Database object.

Aliases

The Database object is based on an alias — a specialized Path statement that tells dBASE SE where to find your
data. Aliases offer many advantages. Their primary benefit is portability. Each machine on the network can use a
different drive letter to find shared data. Using an alias allows you to point to the same location regardless of the
path required to get there. Another advantage of aliases is they allow you to move your data from one place to

3-4 dBASE SE User’s Guide

Creating a Database object

another without having to rebuild your application. If data is moved from drive H to drive L, change your alias to

point to the new drive.

Creating a Database object

To create a Database object in dQuery/Web, select an existing alias, or create a new one, and dQuery/Web will
generate a Database object automatically. Although we can choose aliases from many other databases such as
Paradox, Fox, ODBC, Interbase, SQL Server, Infomix, Oracle, Sybase, DB2, and Access, select one from

dBASE.

Begin by clicking on the “Database Objects” listed as number 1 on the EasyStart menu. A help dialogue like that
shown in the picture below will appear. These informative help dialogues will appear when using various tools

in dQuery/Web.

Figure 3.5 Database Alias dialog box

Database Alias

database.

S0L database tables reguire an Alias.

An Afiasis used to link d2uertdel (and yvour applications) to a

Although an Alias is not absolutely required with dBASE or Paradosx
tables, itis Righiy recomimended! An Alias makes vour data portable
and much easierto access over a netwark - where the path to your
data files may be different on each workstation.

Click "Continue" and the Select/Add Alias dialog box appears . . .

Figure 3.6 Select/Add dialog box

Select/Add Alas

Allas Select or Create Alias for Database Objech

dBASESample
dBASE Temp
dBASE Files
dCluertest

Excel Files

FoxPro Files
GuidedTourExample
MC1S
|ru15 Access 97 Database
MYBOEAlIas

Signup

contee B

Create Mew Alias |

x|

dBASE dQuery/Web 3-5

Creating a Database object

If the database you wish to connect to is not on the Alias list, click the create New Alias button. The Create Alias
dialog box will appear.

Figure 3.7 Create Alias dialog box

Easy Alias |
Create Alias {Connects your database to dBASE SE)
Assign Mame To Alias | GuidedTour

dBASE |F'arad|:|}{| Fox | ODEIC' InterElasel Sl Eewer' Infarmi ‘I *|
Database Folder:

| o

Click the vellow file folder buttan to select the source folder where
the tables are located.

Create Folder |

0] Cancel |

In the first field enter the name of the Alias you wish to create. Then click “Create Folder”.
Figure 3.8 Create Folder dialog box

Create Folder {Creates new folder
Create folder under

[ca [E

Mew folder name
| Customer

(0] | cancel |

Some database engines use a folder to identify the location of your data. Others, such as SQL server, Informix,
Oracle, Sybase, and Interbase access your tables through a single file or connection. dQuery/Web will ask for the
appropriate information depending upon which database engine you select.

Click on the button with the yellow folder icon to locate the “parent” folder of the one you’re going to create
(usually C:\).

Enter “Customer” as the new folder name and click OK. The “Create Alias” dialogue will appear again,
displaying the folder you just created. Click OK.

This will bring you back to the “Select/Add Alias” dialogue. Your new alias should be highlighted. To continue,
double-click on your alias or click OK.

The new Database object will appear, automatically, on the Design Surface of dQuery/Web.

3-6 dBASE SE User’s Guide

Creating Query objects

Figure 3.9 Displayed dataModule

#| dBASE SE

File Edit “iew Tablez Filter Find Rows Heports: Application: Window Help

4 dQuery/Web dataModuld EasyStart Navigator x|
FProperties

Easy

1 Database Objects
p Query Objects

3 Add or Edit Data

4 Filter Data

5 [5] Pparentchilg

6 Reports/Applications

Data |Custnm view | Current Report |

Saving a Database object

It is always advisable to save your work as you go along (by clicking File | Save or the Save toolbar button).
However, the first time you save, you’ll have to tell dQuery/Web where you want to save this dataModule and
what you want to call it.

Figure 3.10 Save dataModule dialog
Click File/Save from the Main
menu.

Click the “Save in” button to
locate your Customer folder.
Double click the folder to open
it.

Enter “Customer” into the file
name field.

Click “Save”.

Save Datamodule

Savejn:la'ﬁustnmer j i| =

Filz name: |Custumer.dmd Save

Save as type: |DataModule (*.dmd) = Cancel

Help

Pl

Creating Query objects

A Query object is a representation of your data. It may represent all the rows and columns in a single table; a
combination of rows and fields from multiple tables (a "Join™) or a subset of rows from a table or combination of
tables.

dBASE dQuery/Web 3-7

Creating Query objects

The following example uses Query objects to represent all the columns and rows of the Customer and Invoice
tables. A Query is not a table, since it doesn't necessarily reflect everything that's stored in the table. It is an
object that represents the selected rows only.

You don't have any tables or data yet. dQuery/Web will generate Query Objects automatically when you create
the Customer and Invoices tables in the following steps.

Tip Query objects use SQL Statements to define subsets and Joins. When you select “all” rows and columns,
dQuery/Web generates the following statement:

Select * from <Tablename>

The dBASE SE SQL Query Designer as well as the dQuery/Web SQL Statement dialog let you easily and
quickly design and implement much more complex SQL statements.

Bring up EasyStart and click on “Query objects” (option 2). The Add Query dialogue box will now appear with
the option “Create Query from new table” selected (figure not shown).

Click Continue to bring up the Create Table dialog.
Figure 3.11 Create Table dialog

Enter “CUSTOMERS” into the File name
field. Note that the dialog already came up
] — with your current database (Customer)
Save Ia Customer [—l !l —l = selected. Ignore the “Save In” at the top.
Whenever a database is selected, the “Save
in” is ignored and tables are stored
wherever the Database object is set up to

look for them.

File name: | CUSTOMERS Save I Click Save to continue. Two new windows
will appear: the “Table Designer” and the

Save az ype: | j Cancel | “Inspector” (If the Inspector does not

o appear, toggle the Inspector ON and OFF
. =y Relp i .
Databaze: I CUSTOMER j | using the F11 key)

Tip You may have any number of Database objects open simultaneously. If you intend to use dissimilar tables (such
as combining Access and Oracle tables), you’ll need a Database object to represent each database of dissimilar

type.
Figure 3.12 The Table Designer

B8] Customers.dbf - Table Designer Mi=] E3
Field Name Type AT P P e Customers.dbf - InspectorEd
1 Custia Autalnerement | 4 0 Azcend ‘—l -‘l | |EE' |
2 | | Character 20 1 fzcend Iq,-,EW field= j
Froperties I
| default i @1
MnaxImum
FRiFirL
required falze

Close the Inspector if it is open, since it will not be used at this time.

In the Table Designer, enter CustNo for the first Field Name. The Field Type will be Autoincrement, which
automatically generates the next number in sequence whenever a new record is added.

To select the field type, arrow down and select Autolncrement. The width will be set to 4. Autoincrements are
actually 10 digits long, thought they're represented externally by a width of four positions.

3-8 dBASE SE User’s Guide

Note

Creating Query objects

The CustNo field will also have an index to provide fast lookups and allow you to change the search and display

order of your query.

dBASE, Paradox, Foxpro, and Advantage tables allow you to explicitly select an index. Doing so can improve
performance by 1000% or more. SQL database engines such as Oracle, SQL server, and Informix also use
indexes, although you may not select them explicitly. The engine itself determines whether a helpful index
exists, and then selects it automatically. Therefore it makes sense to add an index on any field on which you

expect to search or filter, regardless of database engine type.

Click on the Index column and select “Ascend”, to indicate the order (ascending) in which you will want to see
this data.

Figure 3.13 Table Designer

88 Customers_dbf - Table Dezigner O] x|
Field| Hame Type Width | Decimal | Index |
1 Cusztho Autolncrement | 4 1] Ascend
2 Lazthamme Character 20 1] Azcend
3 Firgttd ame Character 15 1] Mane
4 Addreszs Character ia] 1] Mohe
L] ity Character 20 1] MHone
b State Character 2 1] Mohe
Fi Zip Character 10] Agcend
B SalesyTD Murmeric 10 2 Mohe

Hit Enter and you’re ready to
create the next field. Continue on
until your Table Designer includes
all the fields defined in the
illustration below.

Since the SalesYTD field
represents currency, be sure to set
the decimal to “2” places. You
should end up with three indexes,
one each on the CustNo,
LastName, and Zip fields. All of
these should be set to “Ascend”.

Double-Check your entries and
close the Table Designer to
continue.

A dialogue box will appear asking you to save the changed information. Click Yes.
You now see a “CUSTOMERS1” Query object on the dQuery/Web Design Surface.

Figure 3.14 dQuery/Web design surface

[l Eob e [sblss Flm Fing Fpss [apoks fopkosions ‘ginsss e

Ao - U

£, CRSTEOM. F|

LI N N

S | ErvREE e ED

nl =

[

=
Dt | urihom v | Cumant Fagon |
CUETOMERE

Use your mouse to slide the new Query object toward the center of the screen. You can move any of the
components to any section of the screen you desire. You can also grab the “splitter” - the line that crosses the

dBASE dQuery/Web 3-9

Setting Active Indexes

middle of the screen - and drag it up or down to change the size of the Design Surface relative to the Live Data
Area. This is convenient when you have many Query objects in a dataModule.

Figure 3.15 Table Designer Now that we’ve created one Query
object for our customer data, we can

B8l : Guided T ourE xample:invoices. dbf - Table Designer [=] quickly add another for our invoice data.
... . . . | Startwith EasyStart, click on Queries
Field |Hame Type Width | Decimal | Index | and repeat the same process we used to
1 Custha MuTEiE 10 i Ascend 2| create the Customers table. Only, this
2 TR ol 7 0 N time, name the table “Invoices” and use
| v | utalnerement one the field definitions in the illustration
3 Diate Diate a8 1] Azcend that follows.
4 Amounk Murenc 10 2 Maone
i} Balancelue | Mumernic : 10 : 2 : MHone ~|

Double-check your entries. The Amount and BalanceDue fields are both for currency, so you need to set the
decimal places to “2” for each of them. Both the “CustNo” and “Date” indexes must be set to ascend.

Click the “X” to close the Table Designer.
Click Yes when asked to save current changes to the Invoices table.
The second Query object is complete.

The Database object and the two Query objects (CUSTOMERS1 and INVOICES1) will now be displayed on the
dQuery/Web design surface.

Use your mouse to slide the new INVOICES1 Query object over to the right of your screen.
Your dQuery/Web screen should look something like this.

B L[4 Yew D P Frg Pges [t fpplcsios. wines |dp
AR R T LR o

Db | Cupsinm v | Cavend Repert|
WS

Setting Active Indexes

The “active” index determines the display order and search order for the Query. Right-click on the
CUSTOMERSL1 Query object and select the “Set Index™ option from the menu.

3-10 dBASE SE User’s Guide

Creating a Parent-Child Link
Figure 3.16 Set Index dialog box
B2 customersz1 |

SetIndex (Key) Active Indesx: Natural Order
Indexes | DetailEdit

Index Marne |Key

IIF Tip The Set Index (Key) dialog box will
LASTHAME Lasthame appear listing the available keys.
Select LASTNAME, then click Set
Index. The Active Index: Natural
Order will change to LASTNAME.

Setlndex | Clear Index Add | Eemwel

zlose |

Right-click on the INVOICES1 Query object and select the "Set Index" option from the menu. Set the Index to
“CUSTNO”. Click Set Index.

B invoices] |
Set Index (Key) Active Index Matural Order
Indexes | Modify Index |

Index Marrne | ey

DATE Date
Custha

SetIndex | Clear Index Add | Eemuve'

Close |

When your data is entered or reported, it will be in the order specified.

Tip When using SQL database engines, setting index may not make any difference. Remember that those database
engines usually select the appropriate index files automatically.

Creating a Parent-Child Link

A parent-child link is a way of associating two Queries objects so that, as you move from row to row in the
parent query, the child query automatically filters itself to show only the rows that match the current row in the
parent query. Parent-child relationships are an extremely useful way to organize information.

Left click on the CustNo field of the CUSTOMERS1 Query object, hold the mouse down, and drag the field to
the INVOICES1 Query object. Release the left mouse button and the two tables are linked! This is one of the
many drag-and-drop features of dQuery/Web.

dBASE dQuery/Web 3-11

Entering Data

P e .] 4
Ela Ed ‘e Jablez Fllw Frd Apsc Bwpofs detodors Siedow bk

NE W | s okE O RD | S| 0 rH TR

Whenever you navigate through the CUSTOMERS1 Query, the INVOICES1 Query will be filtered
automatically to display only invoices belonging to the currently selected Customer!

Entering Data

Look at the bottom half of the dQuery/Web screen. This is the Live-Data Area. There are three tabs: “Data”,
“Custom View”, and “Current Report”. First, make sure the Data tab is selected.

Now select the CUSTOMERS1 Query object by clicking anywhere on the body of the Query object.

Tip When you select a Query, by clicking on a Query object on the Design Surface, the data in the Live Data Area
below changes to reflect the currently selected Query object.

Eirst Fow
Data | Custom View | Current REPD Wt Raw Right-click in the data area (the
Erewious Faw open area at the bottom of the
CUSTOMERS1 = Data tab). A menu will appear
Last Row —
Add Row
Delete Row

Save Baw Ehanges Select the “Add row”.

Abandon Bow Changes

B ey e el

A blank row is added to the
Customer table. Add the
following field information.

Save Curent Bepart s,

EazyStart

Enter “Taylor” “Paul’ “222 Sunrise Drive” “Endwell” “NY” and “13760” in the appropriate fields. Enter a
SalesYTD of *10000.00".

3-12 dBASE SE User’s Guide

Note

Entering Data

The CustNo field is left empty. This field is set to Autolncrement. dBASE SE will assign the number
automatically.

Data | Custom View | Current Repart

CLISTOMERST

CustNo |LastHame [FirstName |Address City |State|Zip [SalesYTD
Taylor Faul 222 Sunrise Drive WY (NY 137600 10000.00

]

Hit the <Enter> key and a new blank row will appear. The first customer’s data is complete.
Add two more customers to the table.

Data | Custom Yiew | Current Repart

CLISTOMERS1
CustNo |LastName |FirstHame |Address City State(fip (SalesYTD
Taylor Faul 222 Sunrise Drive |NY MY 13760 10000.00
- =mith Anne 1980 Park Avenue Endwell MY 18911 15000.00
| Jones Bill 2135 Bay Avenue Vestal NY 17555 [EEAAN

After the data is all entered, right-click in the data area and select Save Row Changes.
The three customers are ordered by last names. The active index key is set to LastName. To display the
customers by CustNo order or ZIP order, set the active index to CustNo or ZIP.

Before continuing, make sure that Taylor, or CustNo 1, is the currently selected customer. You can do this by
selecting any of the fields in Taylor’s row.

Select the INVOICES1 Query object by right-clicking on the INVOICES1 Query object on the Design Surface.
Note that dQuery/Web indicates the current Query by changing its display to a “highlight” color. The name is
also changed at the top of the Data tab on the Live Data Area.

Right-click in the Live Data Area. The context menu will appear.
Select the Add Row option.

Note that the first CustNo is already entered as “1”. That’s because CustNo 1 (Taylor) is the currently selected
row in the CUSTOMERS] table. Because of the parent-child link, any invoices added will automatically be
displayed for the current customer.

Create the first invoice.

dBASE dQuery/Web 3-13

Filtering Data

Filterin

Data | custom Yiew | Current Repart Enter “12/25/00” as the
Date, “300.00” as the
INVDICES1 Amount, and “300.00” as

the BalanceDue. The actual
CustNo Date Amount BalanceDue values are not important

1 12/252000 30000 30000 here, so any variations will
] work. Add one more invoice

| 3 1 12202000 a00.00 100.00 ﬁ for Tay|or so that your
screen resembles the picture
on the left.

Hit the <Enter> key to start a third row.

This time enter “2” as the CustNo value. You’re now entering an invoice for a different customer (in this case,
Jones). Enter “12/26/00” as the date, “300.00” as the amount, and “300.00” as the balance due.

When you’re finished adding this invoice, right-click in the live-data area.
Select the Save Row Changes from the menu to save your work.

Notice what has happened in the live-data area. The invoice with CustNo “2” has disappeared. Because of our
parent-child link, only invoices for the currently selected customer are displayed. The invoices for CustNo 2
(Jones) will be displayed when CustNo 2 (Jones) is the currently selected customer in the CUSTOMERSLI table.

To view Jones’ invoices, select the CUSTOMERS1 Query object and change the currently selected customer to
Jones (CustNo 2) by clicking on that row. Then select the INVOICES1 Query object again and note that Jones’
invoice is now showing in the live-data area.

g Data

A filter changes how data is displayed. For example, you can set conditions for a date range (last week, this
week, etc.), or for amount ranges on numeric fields like SalesYTD. This allows for full flexibility in viewing
your data, live and on-the-fly.

Adding a filter is a simple task in dBASE SE. First select the CUSTOMERSL1 Query object so that the customer
data is showing in the live-data area.

Click on the Main Menu’s filter “dBASE Filter - Non-Indexed” to open the dBASE Filter dialog box.

3-14 dBASE SE User’s Guide

Filtering Data

CUSTOMERS1 E3
. , Note that the Option “Include
dBASE Filter (Sets a dBASE Filter for the current guend A\ Rows” is currently set.
- . Select the option “Build List
_; Inu:.lude.ﬁll Fiows - Type: 0B 2K of Conditions”. This makes
Build L|§t Of Conditions the “Field”, “Operator”, and
Field Operator Value “Value” options available.

Custho j | j |

The first condition will be
where “CustNo = 1”. The
Field CustNo is already
displayed (it’s the first field
on the list). Set the Operator
to “=" and enter “1” for the

Must match |4l ofthe conditions 7] ST E | Value.

. Click on the “+” (Plus)
— Edit Code Manually button to add the condition to

ﬂ the list.

=

Ml S

-

The next condition will be where “CustNo = 2”. Again, the Field is correct as is. Set the Operator to “=" and
enter “2” for the Value, then click the “+” button.

To see all records where the value of CustNo is either “1” OR *“2”, change the “Must Match” field to “Any of the
Conditions”.

Finally, click the "Build Code" button to see the code for your list of conditions in the bottom pane. This last
feature is useful for learning how these conditions are represented in the code.

Select the “Edit Code Manually” option. The code area of the screen will now be accessible. This is useful for
building or altering code if desired.

The dialogue box will contain the following information. . .

CUSTOMERS1 %]
dBASE Filter [Sets a dBASE Filter for the current queny)
T Include All Rows Type: dB2K
—{ Build List Of Conditions
Field Cperator Walue

|CuatN|:| j = j I j
Custho ll
=

Must match JAny ofthe conditions 7] SN |

—{% Edit Cade Manually
|(urm.rnwset.ﬁeIds["CuatNu"].value =1 ar forrm. ﬂ
=

rowset fieldsMCostMo™ value = 2

] 4 cancel |

dBASE dQuery/Web 3-15

Working With Custom Views

Tip

Click OK. Now only customers Jones (CustNo=2) and Taylor (CustNo=1) appear in the data area.

Filters such as the ones we just added are simple, effective methods for reducing large data sets to more
meaningful subsets. Filters are just one more way that dQuery/Web allows you to control information.

Select File | Clear All Filters to remove all filters. All the customer records now appear in the data area.

Take a few moments to experiment with the Filter By Grid options under the Filter menu. When you Begin Filter
By Grid, a row clears on the data tab of the Live Data Area. Type data into any fields you want to match. Click
on Apply Filter By Grid to execute the search. Your live-data grid now displays only rows that exactly match the
data you entered. Keep in mind that Filter By Grid only works for exact matches, not partial matches or ranges.

Working With Custom Views

Tip

Custom Views are one of dQuery/Web’s most innovative features. They allow you to select and display specific
fields from Query objects for custom views of your data. Once you’ve selected the fields you need, you can use
the custom view to generate No-Click Reports, which will be illustrated in the next step. You can have any
number of custom views (represented by reports) all associated with a single dataModule.

Since we’re working with Query objects, and not tables, dQuery/Web offers the unique ability to combine fields
from dissimilar database engines into a single view. For example, you can take the first column in your custom
view from an Oracle field, the second column from an SQL Server field, and the third column from a dBASE
field.

Select the CUSTOMERS1 Query object.
Select the “Custom View” tab on the Live Data Area. It should be empty.

Drag-and-drop the LastName field down to the live-data area. Note that we now have all our customers’ last
names showing in a single column.

Drag-and-drop the FirstName and CustNo fields from CUSTOMERSLI onto the data area.
Select the INVOICES1 Query object.
Drag-and-drop the Date, Amount, and BalanceDue fields onto the data area.

The Custom View will contain the following information.

Data Custom View | current Report

Mawigation Query [CUSTOMERSH =
LastName |FirstName [CustNo Date Amount BalanceDue
Bill 21124262000 300.00 300.00
Smith Anne 3 S . .
_Taylnr Faul 11242552000 300.00 300.00

The view you’ve created will automatically be saved with the dataModule. It contains data from two related
tables: CUSTOMERS and INVOICES.

This tool lets you drag-and-drop any of the Query object fields to relate your data in any way you see fit. The
real benefit of the Custom View becomes apparent when you need to combine information from a variety of
sources in a single report or application.

3-16 dBASE SE User’s Guide

No-Click Reports

No-Click Reports

Click the Current Report tab to see the results of the Custom View and the power of dQuery/Web No-Click
Reports.

Diata |Cust|:|m Yiew Current Report

Cutrent Repart |N|:|-Click Report j
_ =
Custom View:Customer.dmd
Run 02182002 12:27 Page 1
LastHame Firstdame CustMo Date
Amount BalanceDue
Jones Bill 2 12r6iz0oon
300.00 300.00
Smith Anne 3
Taylor Faul 1 1252452000
300.00 300.00
Taylor Faul 1 1252002000
A00.00 100.00 =
‘| | -

By switching to the Current Report tab, you’ve caused dQuery/Web to generate a No-Click Report from the data
you dragged and dropped into the Custom View. This data reflects all the invoices entered for all the customers.
You entered one invoice for Jones, two for Taylor, and none for Smith. Note that if the data had been filtered, the
report would have reflected the filters.

In a matter of seconds, your custom view selections have been organized and listed into a report that can be
saved, edited, sent to the printer, to an HTML file or directly to the Web!

You can change how you navigate the data in your new report. You're currently navigating by customers. To
navigate by invoices, select the Custom View tab.

Change the Navigation Query field (located at the top of the live-data area) from CUSTOMERSLI to
INVOICESL.

Select the Current Report tab once more and you'll see only the invoices for Taylor, the currently selected
customer.

Before proceeding, go back to the Custom View tab and set the Navigation Query back to CUSTOMERSL1.
Click, once again, on the Current Report tab.

To save this report select File | Save Current Report As.

If asked to save the dataModule, select Yes.

Enter “CustomerSales” as the report name and make sure to save it in the Customer folder.

If you drop down the field-list of Current Reports (located at the top of the live-data area) you'll see that you now
have two reports: one called No-Click Report and one called CUSTOMERSALES.REP.

Change the CUSTOMERSALES report to illustrate how you can have multiple reports associated with a single
dataModule.

Make certain the “No-Click Report” is the currently selected report.

Select Reports | Edit Reports. The following dialogue box will open.

dBASE dQuery/Web 3-17

No-Click Reports

Figure 3.17 Edit Report dialog box

Cumrent Query | x|
Edit Repgrt {Opens an existing report in the Report Designer)

& Associated Report

CAcustomencustomerSales.rep

™ Other Repart

| [

] 4 cancel |

The Edit Report dialog allows you to edit any reports associated with the current dataModule. If you want to edit
other reports there’s an option near the bottom of the window that allows you to select any dBASE SE report on
your network.

The CustomerSales report is highlighted, so click OK.

The dBASE SE Report Designer will now appear with the Component Palette, the Inspector, and the formatting
toolbar at the top. Your screen will be similar to Figure 3.18.

The Component Palette provides a full range of objects that may be required to create a report.

Because you closed it earlier, the Inspector may not appear at this point. If it’s not on the screen, right-click on
the Report Designer and select “Inspector” from the context menu.

Figure 3.18 Report Design surface

Fis Edt Yew Laou Fgmst Melod Popmies Window Hebo
NES | 4o EFE Mo Se s | 0w [T F

_m [CUSTOMEASALES REF - Aepont Dietignai -
e " S e | oAy i | e e sk Py
Comgonen: Follids &l
Standesd | Biatmocess | A4 E]
[A e~ D@ O
I xH {Custom View:Customer DMD !
Run DT0ATH 1533
Lasthanme TSR T i TOIME RGALE S, REF - kupacs
M Baecele e|=] [0 =
r g g =] [femi pametmrpste) sepattiiatel =
2_ ao0.oo 000 z
Emth Tanna Propetinz | Events | Method: |
oata | customview || - | —— o [&
= Taylor T +Font Fl
Currs nf Foepon . == e
A00.00 T o dldetlleshn M
Tawlor TPau = Hincellarmos
500.00 ! 100100 all * bl CusTEEr pMn B3| —
e~ - = - — Pogdton
hegd LA i
* el om
Custom Y W AThii S B e ke om
Fun 01085 | S T Sl Lmdh 1AM =
Lasibame || +Wiaual H i et (=
A G ; : i -
4 | H

REPORTTITLELABE Pege: 1 [Top: 001 Lelt 001 Heght 027 widthe 3.74
The dBASE SE Report Designer is a full-blown design tool. With it you can modify all aspects of your reports.

For this example you will make one change, the report title. Select the report title. Click on the Inspector,
Properties tab.

3-18 dBASE SE User’s Guide

One-Click Windows

Tip To see all available properties, right click on any blank grey area of the Inspector and click on “Expand All
Categories™) on the context menu.

Scroll down to the “text” property underneath Miscellaneous and change the value entered to “Customer Sales
Report”. As you type, note that the title in the report design surface also changes. Press Enter to save the change.

Close the report.
Click Yes when prompted to save it.

Now drop down the list of reports on the Current Report tab and select CUSTOMERSALES. Note that the title
in the displayed report changes. Going back and forth between the two reports demonstrates how dQuery/Web
and the dBASE SE Information Toolset can quickly and easily create, modify, and display a variety of reports
associated with a single dataModule.

One-Click Windows

You have created a Database object, tables, Query objects, custom views, and custom reports. These are the
building blocks of an application. The next logical step is to assemble these components and deploy them as an
application. dQuery/Web provides the tools to automatically generate both Windows and Web applications
based on your dataModule design. In this step you will quickly create a Windows application with just a single
click of the mouse.

Select Applications | One-Click Windows.

Click Yes to save the DataModule. The One-Click Windows dialog box will open.
Figure 3.19 One-Click Windows dialog box

B Windows Application E3

One-Click Windows

General | Field Atiibutes |
Eelact Fields

customers1.Custho
—— [|customers1.Lasthame
== customers1 . Firsthlame
customers1. Address
= custormers1. City
customers1.State
invoicest.Custho

—Application
Mame of program
|Customer

~Generation options
& Use External Ohjects " Build object cade into EXE
Folder far pragram

|C'PROGRAM FILES\DBASEISE\dGuerioutout D|
Folder for objects

QK
|COPROGRAM FILES\DBASE\SE\Querioutout Cl| ——l

Close |

Two tabs are accessible: “General” and “Field Attributes”. The first time this window is opened you'll have to
set your folders for both program files and object files on the “General” tab. Use the two folder pushbuttons to
change both fields to C:\Customer.

dBASE dQuery/Web 3-19

One-Click Windows

dQuery/Web will remember the settings you’ve made so in the future you only need to click the OK button to
generate your Windows application.

Note that all the fields for your two tables are pre-selected. By selecting the Field Attributes tab you can modify
how the field labels appear on data entry screens, and whether or not a given field is required during data entry.
Accept the default settings.

Make sure your folder settings point to the Customer folder and click OK. The Application Built Successfully!
dialog box opens. Click the Run Application button to see your application in action.

E= Help - Running and Deploying One-Click Application

Application Built Successfully!

—To Run Application Locally

LIzing the Windows Explorer, go to the destination folderyou specified and double-click an
the file named "Customers.exe”. To test your application, click on the "Run Application”
button belowy.

—To Deploy To & Network Using DEQ

1.5et Up Server Mo Server setup ar installation is normally required, unless you wish to
place your objects aon mare than one server for failover protection. if so, simply copy your
nhjects and resources (such as image files) to the servers you wish to use for this
application.

2. 5et Up Workstations |f dBASE SE is not already installed on your workstations, install
the "Runtime Onk" components from the dBASE SE CD.The Runtime components are
royalty free. Do not install dBASE SE ftaalf Uniess ol havie g valic license for egch Waar,

Copy the files"Customers.exe” and "Customers.ini® to a folder on each workstation

Llge Windows Motepad to customize each copy of "Customers.ini"to reflect the path to find
vour objects in up to 10 different locations. Example:

[OhjectPath}

DhjPath0=fimyobjects

ChjFath1=fimyobjectsimyimanes

ChiPath2=himvbackupns

Bun Application Finished

3-20 dBASE SE User’s Guide

One-Click Windows

Data |View | Current Report | Index Order | LASTMAME | Speed Search |

CustHo |LastHame |FirstName (Address City State |Zip SalesYTD

[Jones Bill 2135 Bay Avenue Mestal MY 17555 33000.00
R Smith Anne 1980 Park Avenue Endwell |NY 18911 15000.00
1 Taylor Faul 22 Sunrise Drive |MY MY 13760 10000.00

Customers | Invoicesd

LastMarme

|Jnnes
FirstMarme
IEIiII
Address
{2135 Bay Averue
City

|VEstaI
otate

IN“r‘

ip

|1 7855
SalesyTD

| 33000.00

Without entering a line of code, you now have a stand-alone, royalty-free, executable application. Do the
following to test the capability of your application.

The data-entry screen for the Customers table is displayed. Clicking on the INVOICESLI tab will display the data
entry screen for the Invoices table.

If you select Taylor in the Customers table and select the INVOICES1 tab, you'll be looking at the live data—the
invoices—for Taylor.

You can edit existing data and enter new data using the Edit menu.

You can locate data by opening the Rowset menu and selecting the Begin Locate by Form option. This option
will allow you to locate data by entering data in any field.

Similarly, by opening the Filter menu and selecting the Begin Filter by Form option you can set a variety of
filters simply by entering data into the form.

To perform a fast index speed search: Select the customer table in the view tab.

Switch to the Data tab.

With the Index Order set to LASTNAME, type "t" in the Speed Search field.

The first customer that begins with "t" (Taylor) is now highlighted.

Finally, all the reports associated with your dataModule are available in the Current Report tab.
Close the application. Click Finished. The dQuery/Web Design Surface appear.

dBASE dQuery/Web 3-21

3-22 dBASE SE User’s Guide

Introduction to programming in dBL

dBL is an object-oriented, event-driven programming language that allows developers to create sophisticated,
scalable applications using objects and classes.

Objects are a means of encapsulating collections of variables, some containing data, others referencing code.
Classes are a mechanism for creating reusable groups of objects. In dBASE SE, you can

 Create objects from standard classes or custom classes you declare

» Add custom properties to an object with a simple assignment statement

» Declare custom classes

» Declare classes that are based on other classes and inherit their properties and methods
» Write highly reusable code by building hierarchies of classes

"Hard coding" vs. visual programming

Using a text editor, you can write programs from scratch by typing each command, line after line. That’s how
most programmers used to write programs: the hard way. With dBASE SE, you use design tools to generate the
program code for you. The most painstaking requirement of traditional user-interface programming—guessing
how fields and menus will appear after positioning them with coordinates—is obsolete. You place objects on a
form exactly where you want them, and let dBASE SE figure out the coordinates. That’s visual programming.

But there’s more to visual programming than just laying out forms. The objects you place on your forms have a
built-in ability to respond to a user’s actions. A pushbutton automatically recognizes a mouse click. A form
"knows" when the user moves or resizes it. You don’t need to figure out what the user does and how it happens.
dBASE SE handles that. You just tell the objects how to respond to these events by assigning procedures that will
execute when the events occur.

The results of programming visually are applications that are easy to create and easy to use. They’re easy to use
because they’re event-driven.

Advantages of event-driven programs

The three major kinds of user interfaces are

» Command-line, where the user types commands at a prompt. The MS-DOS operating system, the dBASE Dot
Prompt (in DOS versions) and Command window (in Windows versions), are examples of command-line
interfaces.

» Menu-driven, where the user selects choices from a hierarchy of menu items. Most applications written using
prior versions of dBASE provide menu-driven interfaces.

Introduction to programming in dBL 4-1

How event-driven programs work

» Event-driven, where the user interacts with visible objects, such as forms containing pushbuttons and list
boxes, in any sequence. The user interface is event-driven, and you can create event-driven applications using
dBL.

Using traditional programming techniques, you can build menu-driven user interfaces. In these applications, the
program dictates the sequence of events. If the user selects Order Entry from a menu, the program typically
walks through a series of screens asking the user for information: enter the customer name, enter the date and
purchase order number, enter the line items, enter the shipping charge.

These menu-driven techniques are not well-suited for programming in event-driven environments such as
Windows. In an event-driven application, the user controls program flow. A user can click a button, activate a
window, or select a menu choice at any time, and the program must respond to these events in whatever
sequence they occur.

In a well-designed event-driven application,

» The user can focus on the task, not on the application. The user doesn’t have to learn a complex hierarchy of
menu choices. Rather, when choosing to enter an order, the user sees an order form similar to a familiar paper
form.

» The user doesn’t need to re-learn how to perform tasks. Because you create an application’s interface using
familiar objects such as pushbuttons and list boxes, common operations—opening a file, navigating a form,
and exiting the application—are more consistent across applications.

Most important, event-driven interfaces reflect the way people work in the real world. When clerks write up
orders, they pick up forms and fill them out. When they receive checks for orders, they pick up the invoices and
mark them as paid. This natural flow of work follows an object-action pattern. That is, a clerk selects an object
(an order form, an invoice) and performs some action with it (fills out the order, posts the check).

Likewise, in an event-driven application, the user selects objects (forms, entry fields, pushbuttons) and performs
actions with them.

How event-driven programs work

In an application, the form is the primary user-interface component. Forms contain components, or controls,
such as entry fields and pushbuttons, with which the user can interact. The controls recognize events, such as
mouse clicks or key presses.

You attach code to event handlers of controls, such as OnClick or OnLeftMouseDown (most begin with On), that
correspond to specific events. For instance, when a user clicks a pushbutton, the OnClick event handler executes.

Specifying event handlers for forms is similar to using the ON commands in dBASE DOS, such as ON KEY
LABEL or ON ERROR. Like an event handler, the ON command designates some program code to execute
when an event, such as a keypress or a run-time error, occurs. However, the events handled by the ON
commands are limited and are not associated with user-interface objects.

In a typical event-driven application,

1 The application automatically displays a start-up form.

2 The form, or a control on the form, receives an event, such as a mouse click or keystroke.
3 An event handler associated with the event in step 2 executes.

4 The application waits for the next event.

Figure 4.1 shows a sample "Hello world!" form with one pushbutton on it that is labeled "Goodbye". After
displaying the form, dBASE SE waits for an event. The user can move, resize, minimize, or maximize the form.
When the user clicks the pushbutton, dBASE SE executes the OnClick event.

4-2 dBASE SE User’s Guide

How event-driven programs work

Figure 4.1 Sample event handler for a "Hello world" form

B= My first dBASE SE form [[=]

Hello world!

The onClick, event handler
for the puzhbutton
exgcutes when the uzer
clicks it

The following code, a. WFM file generated by the Form designer, creates the form just described. This code
follows the general structure of all forms generated by the Form designer. For now, don’t try to understand every
line. Just look at the general structure to get a sense of how forms are created, properties are set, and event
handlers are assigned to events.

parameter bModal

local f

f=new Hello()

if (bModal)
f.mdi = .F. && ensure not MDI
f.ReadModal()

else
f.Open()

endif

CLASS Hello OF FORM
with (this)
Height = 16
Left =30
Top=0
Width = 40
Text = "My first iIBASE SE form"
EndWith

this. TEXT1 = new TEXT(this)
With (this. TEXT1)
Height = 3
Left =11
Top=3
Width = 33
Metric =0
ColorNormal = "N/W"
FontSize = 23
Text = "Hello world!"
EndWith

this.BUTTON1 = new PUSHBUTTON(this)
With (this.BUTTON1)
onClick = class::BUTTON1_ONCLICK
Height = 2
Left =19
Top=9
Width = 13
Text = "Goodbye"
Metric = 0
StatusMessage = "Click button to exit"
Group = True
EndWith

/I {Linked Method} Form.button1.onClick
Function Button1_OnClick
DO WHILE (Form.Height > 0) .AND. (Form.Width > 0)
Form.Textl.Text = "Goodbye"
Form.Height = Form.Height - 1
Form.Width = Form.Width -1
Form.Top =Form.Top +.5
Form.Left = Form.Left +.5
ENDDO

Introduction to programming in dBL 4-3

Developing event-driven programs
Form.Close()

return
ENDCLASS

Developing event-driven programs

All you really need to develop event-driven programs is the Form designer and Menu designer. Using the
designers and their tools, you can build data-entry forms, dialog boxes, menus—all the visible components of an
application. Then use the built-in Source editor to tie the components together by writing procedures to execute
when events occur.

Projects that are more complex, however, require planning and a good design. That’s where object-orientation
helps. Using object-oriented techniques, you can group related information into your own objects, build classes
of related objects, and create new objects by making easy modifications to existing ones.

4-4 dBASE SE User’s Guide

Creating an application

Using dBASE SE design tools, you can create the visual elements of an application quickly, in a manner that
promotes reuse of design elements rather than repeated reinvention. Using the Component palette, you simply
drag and drop both the visible user-interface components (also known as controls or objects) and the invisible
data objects onto forms. The Inspector gives you an easy way to set an object’s attributes, or properties, and
access its event handlers and methods directly, without hunting.

As you work with the design tools, dBASE SE writes the corresponding dBL code for you. If you prefer to do
most of your developing in the Source editor, the code you write is reflected in the designer, and you can see
immediately what your form looks like and how it runs. In either case, the entire source code for your form is

available to you in the Source editor at all times. Press F12 to toggle between the source code and the visual
designer.

This section discusses the basic steps of creating an application in dBASE SE. It includes information on

Creating projects and using the Project Explorer to manage them
Planning and creating forms

Code generated by the Form designer

Types of form windows (MDI, SDI, modal, modeless)

Using ActiveX controls, container components, and multi-page forms

Creating custom classes, custom components, and data modules and using them in a form or report.

Menus are created separately with the Menu designer. You program a form to display a pull-down menu by
referencing it in the form’s menuFile property; a popup menu you reference manually in the Source editor.

Creating an application (basic steps)

At the simplest level, designing an application in dBASE SE consists of these steps:

1

Create a project that will hold all your application’s files (and any other files you need to have handy while
you’re developing). Files you create while the project is open will be added to the project automatically. You
may also add to the project any relevant files you’ve already created.

2 If you’re creating tables from scratch, plan your tables so you can link them to one another.

3 Plan your directory structure. For example, you may want to put tables in a DATA subdirectory and images in

an IMAGES subdirectory.

Use the BDE Administrator to create Borland Database Engine (BDE) aliases for all SQL databases and local
tables. You can then access those databases through the BDE and through your application. This procedure is
described in “How to connect to an SQL database server” on page 2-3.

If several forms (or reports) will be using the same data-source setup (table relationships, SQL statements,
methods, and so on) create a data module so you only need to create the data-source setup once. The "dBASE

Creating an application 5-1

Project files (overview)

data model" and how to access tables using Data Access components is described in Chapter 6. "Creating
dataModules" is described on page 6-10.

Create custom form and report classes to give your application a unified look (see page 5-11).

7 Create the forms (data entry forms, dialog boxes, and so on) that make up the user interface of your

application.

Create any reports that your forms will link to or run, using the dBASE SE Report wizard and integrated
Report designer (see Chapter 7, “Using the Form and Report designers”, and Chapter 12, “Designing
reports”).

Test and debug, using the dBASE SE debugger (see Chapter 10, “Debugging applications™).

Project files (overview)

Every application should have a project (.PRJ) file. The project file contains pointers to all your application files
(tables, forms, queries, bitmaps, and so on). In addition to keeping things organized, having a project file lets you

Set properties for the project as a whole; for example, you can set compile options, like preprocessor
directives.

Set properties for individual files.

Designate which file should be the first to open when your executable file is run.

See instant previews of your files in the Project Explorer.

Open several files at once.

And if you create a file while a project is open, the file is automatically added to the project.

Creating a project file

1

Choose File | New Project.

2 In the New Project dialog box, type a name for the project.

3

This name will become the name of the project folder and the project file.

The Project Location text box updates to show your project name at the end of the path, in a subdirectory
called My Projects (which is created during Setup). All of your projects will go in this directory, unless you
specify otherwise. If you want to specify a different location, leave the Project Name text box blank, and add
your new project name (directory) to the end of your specified Project Location path. A new directory is
created at that location.

Choose OK.

The Project Explorer opens, displaying a tree view of several empty folders on the left and a viewing panel on
the right. The left panel looks and acts much like the Windows Explorer. Files have context (right-click) menus
that let you open, run, compile, create something new, and so on.

When you have files in your project, the right-hand pane displays read-only views of a file you select. A file may
have more than one view, in which case more than one tabbed page may appear. For example, one tab may show
source code for a custom control, another, the visual object.

5-2 dBASE SE User’s Guide

Building the user interface

Figure 5.1 Project Explorer displaying a view of a file

Airline.prj - Project Explorer O] =]

Ela Project Files Form Yigw | Source Yiew I
B3 Fom

Trip facts

-5 Deskiop Table Airline IOn Tirne Airways
..... [C3 56L Departure |12-2E|

..... [C7 Data Module " P

----- 23 Image Arrival I :

----- [Z3 Other et

Seat [15A

A topical project tree displaving a view of the zelected file. Clicking the Source Yiew tab
dizplays the code for thiz file,

Adding files to a project

You can add files to a project in three ways:
1 Create a file while a project is open. The file is added to the project automatically.

2 Drag files to the Project Explorer from the Navigator or Windows Explorer. You don’t have to aim them at a
particular folder; they will automatically drop into the correct folder. File types are assigned to folders in the
Windows registry. If a file extension is not registered, dBASE SE places it in the Other folder (at the bottom of
the tree).

3 Choose Project | Add Files To Project. You can select as many files as you want and choose Open to add them
to the project. dBASE SE places them in the correct folders.

Notes on the Project Explorer

» To save a project, choose File | Save Project (Ctrl+S).

* You can create your own folders (Project | Folder, or use the context menu). In the dialog box that appears,
give the folder a name and assign extensions to it. The folder and its associated extensions are added to the
registry.

 Clicking on a folder in the left pane gives you a List view in the right pane. Right-click for a menu. You can
multi-select files in the right pane and perform the same operation on them as a group: open, compile, delete,
and so on.

* You can have only one project open at a time.

» The BIN directory contains a utility (CAT2PRJ) that converts your Visual dBASE 5.x Catalog files to Project
files.

Building the user interface

dBASE SE forms (and the menus and toolbars you create for them) make up the user interface of an application.
The forms you design become the windows and dialog boxes of your application. Some of the components you
place on a form are the controls that let a user operate the application. Other components are data objects that are
invisible when the application runs but that link the application with data in tables.

Creating an application 5-3

Form design guidelines

Components contain three kinds of information:

 State information. Information about the present condition of a component is called a property of the
component. Properties are named attributes of a component that a user or an application can read or set.
Examples of properties are Height and Color.

 Action information. Components generally have certain actions they can perform on demand. These actions
are defined by methods, which are procedures and functions you call in code to tell the component what to do.
Examples of component methods are Move and Refresh.

» Feedback information. Components provide opportunities for application developers to attach code to
certain occurrences, or events, making components fully interactive. By responding to events, you bring your
application to life. Examples of component events are OnClick and OnChange.

Form design guidelines

The process of designing forms involves clarifying the specific needs of your application, identifying the
information you want to work with, and then devising a design that best meets your needs. This section briefly
describes the process.

Goal of form design

The goal of form design is to display and obtain the information you need in an accessible, efficient manner. The
form should encapsulate data so that it may be run without affecting other forms that use the same data. dBASE
SE makes this simple.

It’s important for your design to provide users with the information they need and clearly tell them what they
need to do to successfully complete a task. A well-designed form has visual appeal that motivates users to use
your application. In addition, it should use limited screen space efficiently.

Purpose of a form

Each form in your application should serve a clear, specific purpose. Forms are commonly used for the
following purposes:

» Data entry forms provide access to data in one or more tables. Users can retrieve, display, and change
information stored in tables.

» Dialog boxes display status information or ask users to supply information or make a decision before
continuing with a task. A typical feature of a dialog box is the OK button, which the user clicks to process the
selected choices.

» Application windows contain an entire application that users can launch from an icon off the Windows Start
menu.

You should be able to explain the purpose of a form in a single sentence. If a form serves multiple purposes,
consider creating a separate form for each.

Some guidelines for data entry forms

When designing data entry forms, consider the following guidelines:
« If data resides in multiple tables, use a query or data module that defines the relationships among tables.

 If users need access to only some of the information in a table, use a query or data module that selects only the
records and fields you want.

» Determine the order in which users will want to display records, for example, alphabetically, chronologically,
or by customer number. Use a query with indexes that arrange records in the order the users will want.

« Identify tasks users will perform when working with data on the form, and provide menus, pushbuttons, and
toolbar buttons that users can choose to initiate tasks.

5-4 dBASE SE User’s Guide

Form design guidelines

When designing a form, you can provide validation criteria on a field-by-field basis. Use the following questions
to help decide which criteria you need.

» Do you require an entry for the field, or can users leave it blank?

e Are duplicate entries allowed?

e Must the data fall within a valid range?

« Must the data appear in a specific, fixed format, such as a phone number?

» Are valid entries limited to a list of values? If valid entries are not limited to a list of values, you can speed
up data entry by compiling and displaying a list of frequently entered values, which also allows users to
enter companies not on the list?

You can also provide form-level validation in a canClose event. This event returns True or False based on a
condition you specify. If the condition is not met, the form will not close. For example, you could use canClose
if a user has not saved the last row entered. In the method you write for this event, you would ask if the user
wants to save the data and, if yes, allow the user to do so.

You can associate some field types with particular controls. By default, each dBASE SE field type is associated
with a specific control type. For example, a Numeric field type uses a spin box control by default. You can
change these associations to make data entry easier and more efficient in your particular application. Right-click
the Field palette, and choose Associate Component Types.

If your form needs to contain many fields or controls, consider using the Notebook component. Divide controls
into related groups and list each group on a separate page of the notebook. Or use a multi-page form with buttons
for page navigation. Or, instead of buttons, add a TabBox component and set various TabBox properties to
create page tabs and name each page.

Designing the form layout

You can put controls anywhere on a form. However, the layout you choose determines how successfully users
can enter data using the form. Here are a few guidelines to consider:

» Putsimilar or related information together in a group, and use visual effects to emphasize the grouping. For
example, put a company’s billing and shipping address information in separate groups. To emphasize a
group, enclose its controls in a distinct visual area using a rectangle, lines, alignment, and colors.

» On aform, the Tab key moves the focus from one control to another. Think about the order in which the user
will be moving (tabbing) through these controls on the form. The basic pattern is from left to right, top to
bottom. However, users may want to jump from one group of controls to the beginning of another group,
skipping over individual controls.

» Users are typically more productive when a screen is clean and uncluttered. If it appears you're trying to cram
too much information onto a single form screen, consider using a form with multiple pages, or a main form
with optional smaller forms that users can display on demand.

Guidelines for using the z-order

All objects on a form exist in layers. When a form contains two or more controls, the plane in which a control
exists always lies in front of or behind the plane in which another control exists. This affects two aspects of the
form:

* Visual layers, or the z-order, which indicates the z-axis (depth) of the layout. This determines what appears
in front of (or on top of) what. Even when controls are laid out side-by-side, each control is in a unique plane
of the form. That is, each control occupies a unique position in the z-order.

» Tabbing order, which determines the order in which controls receive focus when a user presses Tab.

Each control is numbered to indicate its z-order position. The item in the back is number 1. The next item in
front of the first item is number 2, and so on. By default, the z-order is the same as the order in which you added
controls to the form. However, this is probably not the tab order you want. By choosing View | Order View, you
can see the order of controls on a form and change the order by clicking on the numbers. Another way to change
the order is to choose Layout | Set Component Order.

Another need for z-ordering is when you use a rectangle control, for example, to group a series of RadioButtons.
The RadioButtons must appear on top of the rectangle, so you need to place the rectangle behind them in the z-
order.

Creating an application 5-5

Creating a form

Creating a form

You can create a form in two ways:

1 Use the Form wizard. The Form wizard creates a data-entry form. It presents you with a series of options,
and based on your selections, creates the form. It saves time, and you can modify and further develop the
form in the Form designer (see "Using the Form wizard’ on page 5-6).

2 Use the Form designer. Here you can create a form from scratch, by dragging components onto the form and
specifying their properties. Since components have built-in functionality, you can actually create very simple
applications with little or no coding. However, to create more complex and highly customized applications,
you need to write your own event handlers and methods for various components.

During form creation, press F12 to open the Source editor, where you can see and edit the dBL code generated
by dBASE SE as you design your form. Pressing F12 toggles you between the visual design view and the
integrated Source editor.

Using the Form wizard

To use the Form wizard,

1 Choose File | New | Form. Or double-click the leftmost Untitled icon on the Forms page of the dBASE SE
Navigator. Then choose Wizard.

2 Go through the steps of the wizard, clicking the Next button when you’re finished with each step. You can
specify these things:

e The table or query that contains the data you want to use in the form
» The table fields you want to include in the form
* The layout for fields on the form

« Whether you want excess fields to spill over onto tabbed pages (using the TabBox component) or remain
on the same page with a vertical scroll bar.

» The colors and font for the elements on the form, including the form itself, push buttons, editing and
nonediting components. You can select a preset scheme of colors and patterns or define your own and save
it, making it available for future use.

The Form wizard generates the form you specify. At the end of the wizard, you have the choice of running the
form or opening the form in design mode to further customize it (adding components, changing properties,
writing event handlers, and so on).

Using the Form designer

To modify a wizard-created form or to design a form from scratch, use the Form designer (File | New | Form).
These are the basic steps to follow in designing a form;

1 Place components on the form. To do so, drag files (including data modules, if you’re using them) from the
Navigator or Windows Explorer to automatically link a table or database to a form, and drag the objects you
need from the Component and Field palettes onto the design surface.

Note If you drag tables onto the form, the fields that are available on the Field palette are already linked to data. To
link any other component to a field, set its dataLink property. see “Linking a form or report to tables” on page 6-
5 for more information.

2 Set component properties, using the Inspector (or the Source editor, if you prefer).

3 Attach code to component events and write the methods you need.

4 Create menus, as necessary, using the Menu designer (see Chapter 8, “Creating menus and toolbars”).
5 Create toolbars and tool buttons, as necessary (see Chapter 8, “Creating menus and toolbars™).

The Form designer creates a .WFM file.

5-6 dBASE SE User’s Guide

WFM file structure

The components available in dBASE SE and the mechanics of using the Form designer, including the Inspector,
are discussed in Chapter 7, "Using the Form and Report designers™ Also see the samples that come with dBASE
SE, installed by default in the dBASE\SE\Samples directory.

The following sections give you an orientation to the code generated by the Form designer.

WFM file structure

The following code was generated by

1 Dragging a table from the Navigator table’s page onto the Form design surface
2 Adding a pushbutton from the Component palette

3 Selecting the onClick event in the Inspector and clicking its tool button

4 Writing simple code for an event handler that tells how many rows are in the table when the form is run and
the button is clicked.

Here is the code:
** END HEADER -- do not remove this line
*

* Generated on 08/24/00
*

parameter bModal

local f

f = new UntitledForm()

if (bModal)
f.mdi = .F. && ensure not MDI
f.ReadModal()

else
f.Open()

endif

CLASS AnatomyForm OF FORM
this.Height = 12
this.Left = 30
this.Top =0
this.Width = 40
this. Text =""
this.animals1 = new Query()
this.animalsl.parent = this
with (this.animalsl)
Left =10
Top=4
SQL ='SELECT * FROM "C:\PROGRAM FILES\dBASE\SE\Samples\Animals.dbf"
Active = True
endwith

this.pushbuttonl = new pushbutton(this)
with (this.pushbutton1)

onClick = class::PUSHBUTTON1_ONCLICK

Height = 1.1176

Left =20

Top=3

Width = 15.875

Text = "PUSHBUTTONL1"

Metric = 0

FontBold = False

Group = True

endwith

this.Rowset = this.animals1l.Rowset

/I {Linked Method} Form.pushbuttonl.onClick
function PUSHBUTTON1_onClick
this.text = form.rowset.count()

ENDCLASS
There are four major sections in a .WFM file:

1 The first part is the optional Header section. This is any code above the ** END HEADER line. Comments
that describe the file are usually put here.

2 Between the header and the beginning of the CLASS definition is the standard bootstrap code. This code
instantiates and opens a form when you run the form, similar to the way the boot sector of a disk starts the

Creating an application 5-7

Editing a .WFM file
system when you turn on your computer. The standard bootstrap code allows you to open the form in two
ways:

* If you DO the .WFM with no parameters, the form is opened with the open() method. The form is
modeless.

 Ifyou DO the WFM with the parameter True, the form is opened with the readModal() method. The form
is modal. A modal form cannot be MDI, so the form’s MDI property is set to False first.

3 The main CLASS definition constitutes the bulk of most .WFM files. This is the code representation of forms
designed visually in the Form designer.

4 Everything after the main class definition, if anything, makes up the General section. This is a place for other
functions and classes.

Form class definition

Like any other CLASS definition, the main one in the .WFM file can be further broken down into two parts:

1 The constructor is the code that is run every time a NEW object of that class is instantiated. It creates, or
constructs, an object of that class. Class constructors created by the Form designer are divided into four parts:

« Assignments to the stock properties of the Form object.
 data objects in the form, each with its own WITH block.
« All the controls in the form, each with its own WITH block.

» Housekeeping code; specifically to assign the rowset of one of the queries in the form to the form’s rowset
property as the form’s primary rowset.

2 Class methods, if any, follow. This is usually event handler code, but can also contain other methods that
pertain to the form and which often are called by the event handlers.

How the contents are generated

The contents of the class constructor reflect the work you’ve done in the visual development environment. You
can create and edit class methods in the Source editor. Both the Header and General sections are also editable in
the Source editor. You have no control over the bootstrap code generated by the Form designer.

Editing a .WFM file

As you become more proficient in dBASE SE, you will find that it is sometimes more convenient to edit a form
directly in source code without opening the form in the Form designer. To edit the form file directly, right-click
the .WFM file in the Project Explorer or Navigator and choose Open In Source Editor. This will open the WFM
file in the built-in Source editor or another programmer’s editor you specified in the Desktop Properties dialog
box.

One advantage to using the built-in Source editor is that you can run the WFM file directly by pressing the F2
key. No matter which editor you choose, you must save and close the .WFM file if you want to edit the form in
the Form designer.

When editing the .WFM file directly, you want to preserve the two-way nature of the Form designer so that any
changes you make manually will not be lost the next time you save the form from the Form designer.

Editing the header and bootstrap

The first "safe .WFM" rule involves the line that says:
** END HEADER -- do not remove this line

Don’t remove or modify it! If you do, you might lose the contents of the header or prevent the Form designer
from being able to read the form from the WFM file.

5-8 dBASE SE User’s Guide

Types of form windows
The next rule is about the standard bootstrap code: don’t bother changing it. Every time the WFM file is written
the same standard bootstrap is rewritten anew, so any changes you make will be lost.

If you want to change the way the form is instantiated and opened when you run the form, instead of changing
the bootstrap code, you need to add to it or replace it by placing your own bootstrap code in the header.

The key is to realize that a .WFM file is just a program file with a different extension. When you run the form,
the code at the top is run just like when you run a program. To put it another way, there is nothing magical about
the standard bootstrap code—it just happens to be the first code that is found at the top of a plain WFM file. If
there are some comments in the header they have no effect.

You can place any code you want in the header. The Form designer will ignore it.

Editing properties in the WFM file

Inside a WITH block, you may assign values to existing properties only. Therefore, you are free to edit the
values assigned to any of the properties in the class constructor, or add assignments to the objects’ stock
properties.

Most properties must be of a particular data type. For example, pageNo is a number and sql is a string. If you
change the property, you must maintain the correct type.

One notable exception is the value property. If a component is dataLinked to a field, the type of that field
determines the type of the value. But if the component is not dataLinked, its type can be any of the simple data
types. In the Inspector, you can use the Type button to select the type of the value you’re assigning to the
property if the property can accept multiple types.

The Form designer leans toward literals as opposed to expressions. For example, suppose you want a Text
component to default to the current date. You could edit the .WFM file so that the assignment reads:
value = date()

That would work fine until the next time you edit the form in the Form designer. The expression gets evaluated
when the form is loaded so that the value property has an actual date. Then that date gets saved to the WFM file
which causes the date that you last edited the form to be hard-coded into the form.

The simplest way to solve the problem is to set the value property programmatically, which puts it outside the
reach of the Form designer. The most convenient place is the component’s onOpen event. A simple codeblock
like this will do it:

{;this.value = date()}

When the form is run, the form’s onOpen event and each component’s onOpen event, if any, is called in turn.
This codeblock updates the value to the current date. The Form designer knows that a codeblock is attached to
the onOpen event, and reads and writes it, but it doesn’t bother with what’s inside it, and doesn’t change it.

Types of form windows

dBASE SE lets you create windows that are standard features of the Windows environment:

MDI windows

SDI windows
Modal windows
Modeless windows

The following sections briefly describe these form types.

MDI and SDI applications

You can create windows that conform to the Windows Multiple Document Interface (MDI). MDI is a Windows
standard that allows an application to manage multiple windows or multiple views of the same document within
the main application window. In dBASE SE, for example, you can have multiple windows (Command window,
Navigator, Table designer, and so on) open at the same time. You can also open the same document (form, table,
report) multiple times.

Creating an application 5-9

Using multi-page forms

You can also create Single Document Interface (SDI) windows with dBASE SE. Unlike an MDI window, an SDI
window does not contain any child windows.

MDI windows are the most appropriate for data entry forms. Forms that you create with the Form designer are
MDI windows by default.

Modal and modeless windows

dBASE SE lets you create both modal and modeless windows.

A modeless window does not take control of the user interface. A user can switch between modeless windows
while an application is running. For example, the various windows that appear in the dBASE SE Form designer,
such as the Control palette, the Field palette, and the Inspector, are modeless windows.

A modal window takes control of the user interface. A user cannot switch to another window without exiting a
modal window. A dialog box is an example of a modal window; when it’s open, users cannot take any other
actions outside the dialog box until it is closed. Modal forms are most appropriate as dialog boxes in
applications.

Customizing the MDI form window

The following sample MDI window shows required and optional window properties you can set for your form.
Figure 5.2 Sample MDI window

E= Sample MDI Form _[Ol kinimize and b aximize

Syzmenu property
[required] — Contral menu
box

properties [required] —
kinimize and b aximize
buttans

boveable property [required)
—"'ou can move the window
by dragging the title bar

Text property [required] — ||
title test default iz “Form!

. ScrallBar property [optinal] -
windowState property zomll bars

[required). O=Mormal, ok
ririmized ar maximized

|7l Sizeable property [required]
| | M resize handler

Standard features of MDI windows:

» They are moveable and sizeable.

» They have a window title, a Control-menu box, Maximize and Minimize buttons.
» When active, their menus replace the menus in the application menu bar.

e They are bounded by the MDI parent window’s frame.

If the MDI property is set to true, those features are automatically applied to the form. Accordingly, the
following form properties are automatically set to true: Minimize, Maximize, Sizeable, Moveable, and SysMenu.
Changing the MDI-required properties will have no effect until you change the MDI property itself to false. For
more information about any of these properties, press F1 when the property in the Inspector is highlighted.

Using multi-page forms

If your form needs to contain many fields or controls, you’ll want to use a Notebook component or a multi-page
form. Using either one, you can divide controls into related groups, with each group presented on a separate

page.
It is easy to create forms with several pages and navigation buttons.

5-10 dBASE SE User’s Guide

Important

Creating a custom form, report, or data module class

When you create a new form, the Form designer opens it on the first page. To create a multi-page form, choose
the Next Form Page button on the toolbar. The Form designer appends a page each time you click the button.

To navigate between pages in the Form designer, use any of these techniques:
» Use the Next Form Page and Previous Form Page toolbar buttons.

e Choose View | Previous Form Page or View | Next Form Page.

» Use the PgUp and PgDn keys.

 In the Inspector, select the form object in the top selection box, and on the Properties page, change the
numeric value of the pageNo property. Notice that as you change this value, the pages of the form change on
the design surface.

Global page (forms)

In a multi-page form, page 0 is a "global" page. Controls you place on page 0 are visible on every page of the
form.

To open page 0,
1 Select the form object in the Inspector’s top selection box.
2 On the Properties page, change the numeric value of the pageNo property to 0.

Page 0 displays a composite view of all controls from all pages to help you position global controls so they will
not interfere on the other pages. If you have several pages, naturally the various components of those pages may
overlap in this composite view. To reposition the controls on other pages, you must navigate to the appropriate

page.

When you save a multi-page form, the page that is active becomes the default page at run time. Therefore, make
sure you return to page 1 before clicking Run.

Navigation buttons (form pages)

If you create a multi-page form, you will probably want to provide buttons to enable users to navigate between
form pages. A simple solution is to create buttons at the top of the global page (pageNo=0) of the multi-page
form.

To create one set of navigation buttons for a multi-page form,
1 Go to the global page, page 0 of the form (View | Go To Form Page Number).
2 Select the form itself in the Inspector’s top selection box, and make sure the pageNo property is 0.

3 From the Component palette drag as many button components as you need to the visual design surface.
Ensure that the buttons will not overlap controls appearing on other pages.

4 Select each button and set its pageNo property to 0 (the global page) so that it will appear on all pages. (Or
multi-select the buttons and set the property once.)

5 Select each button’s text property and change its value to whatever you want on the button, for example Next
Page or Previous Page.

6 For each button, on its Events page, select onClick and click the tool button to display the Source editor.
You’ll see a comment for an onClick method. Write the code that will send the user to the appropriate page.
Return to page 1 before running the form.

Creating a custom form, report, or data module class

When you use the designers in dBASE SE, by default the Form designer uses the Form class, the Report designer
uses the Report class, and the dQuery/Web dataModule Designer uses the DataModule class.

However, you can create custom classes and use them as templates (both for new forms, reports, and data
modules and those already created). For example, if you want many forms in your application to have a similar

Creating an application 5-11

Using a custom class

Note

look, you can specify all the common attributes for those forms, such as colors, size, controls, event handlers,
and so forth, once. When you have established all the common attributes, save that form as a custom form class.
Then you can specify that class to be a template for forms. Changes you subsequently make to the custom form
class will be reflected in all its derived forms.

To create a custom form, report, or data module class,
1 Use the appropriate designer to create the form, report, or data module template you want.
2 Choose File | Save As Custom to display the Save As Custom dialog box.

3 Choose Save Form (or Report or Data Module) As Custom, then complete the rest of the dialog box as
described in Figure 5.3.

Figure 5.3 Saving a custom class

Save az Custom

—Save as custom

Select thiz option [t
reflects whatewver " Selected compaonents
designer you're o i
wiorking in). e
Clazs name: [f wou want to store
Type a class name —— the file in a directon
I other than the cument
Custorn formm fil : directon, type a path
.00 WSO 1S (=it before the file name.
Type the name of a fileﬂ CProgram FileswBasESESamples\custedit.cfm ﬂ—-ﬂr click the tacl
where pau want to button to locate the

ghare the custom class. directony.

bare than one class

may be stored ina
given file. 0K I Cancel | Help |

The new custom class file will be saved with the .CFM (custom form) extension if it’s a form or .CRP (custom
report) extension if it’s a report or .CDM extension if it’s a data module. Custom classes for forms, reports, and
data modules are available from their respective pages in the Navigator. Their icons are yellow.

¥ Elace it Companent Falstie

An alternate way to create a custom class is to double-click the yellow, “Untitled” icon on the Forms, Reports, or
Data Modules page of the Navigator. This opens the appropriate Custom Class designer, which is almost
identical to the Form or Report designers. Then add the common features you want to appear on all derived
forms, reports, or data modules.

You can’t run a file you’ve developed in this way; it is simply a template from which other forms, reports, or
data modules can be derived.

Using a custom class

5-12

To use a custom form, report, or data module class,
1 Open a new or existing form or data module to which you want to apply a custom class.

» Setting a custom report always causes a new report to be created. To apply a custom class to an existing
report, open the report in the source code editor and change the CLASS statement:

CLASS MyReport OF Report
to read:
CLASS MyReport OF "MyCustomReport" FROM "MyCustomRep.CRP"
2 From the designer, choose File | Set Custom Form (or Report or Data Module) Class.

dBASE SE User’s Guide

Creating custom components

3 Complete the Set Custom Class dialog box and choose OK.
Figure 5.4 Set Custom form Class Dialog Box

Set Custom Form Class | x|

File name containing clazs:

I ﬁ Enter a file name, or click the
tool button to display a list of

Clazz name: exizting class files. One file
can contain mare than one
To restore the default I j class.

Form Class as the |
sefting, choose Clear ——— Clear Cugtomn Faorm Clazs |

Custom Form Class
0k, I Cancel | Help |

Your custom class now applies to the current file in the designer. In addition, subsequent new files of that type
will use the current setting in the Set Custom Class dialog box. To change this, choose File | Set Custom Class,
and either enter a new form or report custom class, or choose the Clear Custom Class button to restore the
default class as the setting.

Chooze the name of the clasz
vou want touse, or type a
narme,

Creating custom components

You can create your own customized components and add them to the Component palette for easy reuse. A
custom component is based on one or more of the components already on the Component palette. You arrange
these components, as you want them in the Form or Report designer, and set their properties, event handlers, and
methods, as you desire.

Then you save your work into a custom component file (with the .CC extension) and optionally add it to the
Component palette for convenient access.

Creating custom components

To create custom components that you can use again,

1 Drag a component or components to the Form or Report design surface, and arrange them the way you want
them.

2 Set each component’s properties, events, and methods.

3 Select the component or group of components.

4 Choose File | Save As Custom to display the Save As Custom dialog box, then complete the dialog box:
e Type a class name for the customized component.

« Specify an entire path name and the file (with the .CC extension) in which you want to store this
component. Note that the components in a .CC file are treated as a group, and although you can add them
to the palette individually in this dialog box (by checking the appropriate check box), you can remove
them from the palette only as a group. So, if you want to be able to add and remove custom components
from the palette separately, put each in its own file.

» Check the Place In Component Palette check box, if you want this component to appear on the Component
palette. If you are putting the component in an existing .CC file whose components are already on the

Creating an application 5-13

Creating custom components

palette, and you don’t check this box, then later, if you want to add the component to the palette, you’ll
have to remove the .CC file from the Set Up Custom Components dialog box, and then add it anew.

Figure 5.5 Save as Custom dialog box; saving Custom Components

Save ag Custom
Click here to specify Zave as custom
acustom —— % Selected components
component. % i
Clazs name: . .
[f your are zaving a single
I ———— compohent, specify a
clazs name.
Custam component file narme:
Check here to place I ﬂ—' Enter the file name, or
the campanent in the use the tool to display a
Component palette. — W Place in Companent Palette list of existing component
files. vou can save mone
0K I Cancel | Help | tham one component in
— the same file.

5 Click OK.
The custom component is now stored in the .CC file you specified. You can open the file in the Source editor.

Adding custom components to the Component palette

If you have designed a custom component yourself, the simplest way to add it to the Component palette is to
check the Place In Component Palette check box in the Save As Custom dialog box (File | Save As Custom) at
the time you are saving your custom component. If you didn’t do this, or if you have a custom component from
someone else, here’s what to do:

1 Choose File | Set Up Custom Components (or right-click in the Component palette for access to the same
command).

2 The Set Up Custom Components dialog box appears. It lists paths to custom component files whose
components already appear on the Component palette.

3 Choose Add to open the Choose Custom Component dialog box.

4 In the Choose Custom Component dialog box, locate the custom component file (with the .CC extension) that
contains the component you want to put on the Component palette. Choose Open.

5 The path name to the selected custom component file now appears in the Set Up Custom Components dialog
box.

6 With the desired .CC file selected, choose OK. The custom components you have saved in the .CC file appear
on the Custom page of your Component palette (in both the Form and Report designers), ready to use just like
any other component.

Removing custom components from the Component palette

To remove a custom component from the Component palette,
1 Choose File | Set Up Custom Components.
2 In the dialog box that appears, select the file that contains the custom component, and choose Delete.

All the custom components in that file are removed from the Component palette. The .CC file is not deleted from
disk.

5-14 dBASE SE User’s Guide

Note

Accessing and linking tables

To link your forms and reports to the data in tables, dBASE SE provides a set of data objects. In the designers,
these objects are available on the Data Access page of the Component palette. These components make
specialized database access functionality available to your dBASE SE applications.

This section discusses the following topics:

» The dBASE SE data model

 Linking a form or report to tables

» Creating master-detail relationships

 Creating and using a dataModule

Before you use the data objects, you should understand the dBASE SE data model, described in the next section.
Although the old dBASE Data Manipulation Language (DML) still exists for backward compatibility, those

methods are no longer recommended. The new data object model is recommended because it utilizes the full
power of object-oriented programming.

The dBASE data model

Note

dBASE SE’s advanced, event-driven data model is implemented entirely in a handful of classes:
+ Session

+ Database

* Query

 StoredProc

* Rowset

* Field

This section gives you a sense of how these classes fit together. It introduces each object and explains how its
primary properties relate to the other objects.

Query objects

Query objects are the center of the data model. In most cases, if you want to access a table, you must use a Query
object.

Alternatively, you could use a StoredProc object that returns a rowset from an SQL database, or a DataModRef

object that points to a data module containing the appropriate data access code, including at least a Query or
StoredProc object.

Accessing and linking tables 6-1

The dBASE data model

Note

The Query object’s main job is to house two important properties: SQL and rowset.

SQL property

The SQL property’s value is an SQL statement that describes the data to be obtained from the table. For example,
select * from BIOLIFE

The * means all the fields and BIOLIFE is the name of the table, so that statement would get all the fields from
the BIOLIFE table.

The SQL statement specifies which tables to access, any tables to join, which fields to return, the sort order, and
so on. This information is what many people think of when they hear the word query, but in dBASE SE, SQL
statements are only one of many properties of the Query object.

SQL is a standard, portable language designed to be used in other language products to access databases. When
you use the Form and Report wizards or drag a table from the dBASE SE Navigator, dBASE SE builds the SQL
statement for you. Once a table has been accessed by the SQL statement, you can do almost anything you want
with dBASE SE’s data objects, including navigating, searching, editing, adding, and deleting.

Although knowing SQL is useful for initially configuring data objects for your databases, once these are
complete and saved as custom components or in data modules, they can be reused without modification. Then
others can create complete Windows database applications without knowing a word of SQL.

rowset property

A Query object is activated when its active property is set to true. When this happens, the SQL statement in the
sql property is executed. The SQL statement generates a result: a set of rows, or rowset.

A rowset represents some or all the rows of a table or group of related tables.

Each Query object generates only one rowset, but you can add multiple Query objects to a form to use multiple
rowsets from the same table, or from different tables. Using multiple Query objects also allows you to take
advantage of dBASE SE’s built-in master-detail linking. See “Creating master-detail relationships (overview)”
on page 6-7

The Query object’s rowset property refers to the Rowset object that represents the query’s results.

Rowset objects

While you must use a Query object to get access to data, you must use the Query object’s resulting rowset to do
anything with the data. All navigation methods for getting around in tables depend on the query’s rowset.

The row cursor and navigation

The rowset maintains a row cursor that points to the current row in the rowset. When the Query object is first
activated, the row cursor points to the first row in the rowset.

Synchronizing cursor movement in master-detail rowsets

Enabling a linked-detail rowset's navigateMaster and navigateByMaster properties allows master-detail rowsets
to be navigated as though they were part of a single, combined rowset (similar to the xDML SET SKIP
command).

Using these properties will modify the behavior of the first(), next(), last(), atfirst() and atlast() methods. For
more information, see Help and choose, navigateByMaster.

You can get and store the cursor's current position by calling the rowset’s bookmark() method.

To move the row cursor, call the rowset’s navigation methods:

 next() moves the cursor a specified number of rows relative to its current position.

« first() goes to the first row in the rowset.

* last() moves to the last row.

6-2 dBASE SE User’s Guide

Important

The dBASE data model

» goto() uses the value returned by bookmark() to move back to that specific row.

Because each rowset maintains its own row cursor, you can open multiple queries—each of which has its own
rowset—to access the same table and point to different rows simultaneously.

Master-detail rowset synchronization can be overridden by using the _app object’s detailNavigationOverride
property. For more information on these properties, see Help.

Rowset modes

Once a Query object has been activated, its rowset is always in one of the following five modes (indicated by the
rowset’s state property):

» Browse mode, which allows navigation only.
» Edit mode, the default, which allows changes to the row.

» Append mode, in which the user can type values for a new row, and if the row is saved, a new row is created
on disk.

* Filter mode, used to implement Filter-By-Form, in which the user types values into the form and dBASE SE
filters out all the rows that do not match.

» Locate mode, similar to Filter mode, except that it searches only for the first match, instead of setting a filter.

Rowset events

A rowset has many events used to control and augment its methods. These events fall into two categories:

 can- events, so named because they all start with the word can—which are fired before the desired action to
see whether an action is allowed to occur; and

» on- events, which fire after the action has successfully occurred.

Row buffer

The rowset maintains a buffer for the current row. It contains all the values for all the fields in that row.
You access the buffer by using the rowset’s fields property, which refers to an array of Field objects.

Field objects

The rowset’s fields array contains a Field object for each field in the row. In addition to static information, such
as the field’s name and size, the most important property of a Field object is its value.

value property

A Field object’s value property reflects the value of that field for the current row. It is automatically updated as
the rowset’s row cursor is moved from row to row.

To change the value in the row buffer, assign a value to the value property and set the rowset’s modified property
to "true". This signals the rowset that values have been changed. If the row is saved, those changes are written to
disk.

When referring to the contents of a field, don’t forget to use the value property. For example,
this.form.rowset.fields["Species"].value

If you leave out value,
this.form.rowset.fields["Species"]

you are referring to the Field object itself, which is rarely intentional—except for dataLinks, explained next. Get
in the habit of including value when referring to a field; if you don’t, the code doesn’t work.

Accessing and linking tables 6-3

The dBASE data model

Using dataLinks

Just as a Field object’s value property is linked to the actual value in a table, a visual object on the form (such as
an EntryField or RadioButton) can be linked to a field object through the visual object’s dataLink property. This
property is assigned a reference to the linked Field object. When connected in this way, the two objects are
referred to as dataLinked.

As the rowset navigates from row to row, the Field object’s value is updated, which in turn updates the
component on the form. If a value is changed in the form component, it is reflected in the dataLinked Field
object. From there, the change is saved to the table.

Database objects

Database objects are one level up from Query objects in the object hierarchy. Database objects have three main
functions:

» To access a database
» Database-level security
» Database-level methods

Accessing a database

A Database object is needed to access SQL databases, ODBC databases, and any other tables you are accessing
through a BDE alias.

Before you can use a Database object, you must set up BDE to access the database by using the BDE
Administrator (available from the dBASE SE program group). See “How to connect to an SQL database server”
on page 2-3.

To connect a Database object to a database, set the Database object’s databaseName property to the BDE alias
for the database.

Database-level security

Many SQL and ODBC databases require the user to log in to the database. You can preset the Database object’s
loginString property with a valid user name and password to log in to the database automatically.

Because each Database object represents access to a database, you can have multiple Database objects that are
logged in as different users to the same database.

Database-level methods

The Database object contains methods to perform database-level operations such as transaction logging and
rollback, table copying, and re-indexing. Different database formats support each method to varying degrees.
Before accessing the methods of a Database object, the Database object itself must be active. The methods of a
Database object will not function properly when it's active property is set to "false".

Default Database object

To provide direct, built-in access to the BDE-standard table types (ABASE and Paradox), each session includes a
default Database object that does not have a BDE alias. When you create a Query object, it is initially assigned to
the default Database object. Thus, if you’re accessing dBASE or Paradox tables without an alias, you don’t need
to use a Database object.

If you’re accessing other table types, you need to use the Database object. See “Linking to a table manually” on
page 6-6.

Session objects

At the top of the object hierarchy is the Session object. Each session represents a separate user.

6-4 dBASE SE User’s Guide

Linking a form or report to tables

Each session contains one or more Database objects. A session always contains at least the default Database
object, which supports direct access of dBASE and Paradox tables.

Session objects are important for dBASE and Paradox table security. Multiple users each have their own session,
so that different users can be logged in with different levels of access, or they may share a single session, so that
all users have the same level of access. For the Session object's security features to work, the session property of
an active database object must be set to the session object.

A default Session object always exists whenever you run dBASE SE (either the environment or an application,
sometimes referred to as a dBASE SE executable). In most cases, the default Session is all you need. There is
usually no need to add a Session component to your forms or reports. dBASE SE’s App object has a property that
points to the default session object and the default database object. Thus, when you create a Query object, it is
automatically assigned to both the default Session object and the default Database object.

The Session object has an event called onProgress that you can use to display progress information on database
operations.

StoredProc objects

The StoredProc object is used for calling a stored procedure in SQL databases. When you’re calling a stored
procedure, the StoredProc object takes the place of the Query object in the class hierarchy; it is attached to a
Database object that gives access to the SQL database, and it can result in a Rowset object that contains Field
objects.

The stored procedure can:
» Return values, which are read from the params array
» Return a rowset, which is accessed through the rowset property, if the server supports this capability

DataModRef objects

The DataModRef object points to preprogrammed data access components stored in a dataModule. If you
maintain data access code in a dataModule, then you can use a DataModRef object to return rowsets in place of
a Query or StoredProc component.

Data modules offer convenient reusability and easy maintenance of data access code. By storing custom or
preset data access components in a dataModule, it is easy to maintain them (change links to changing databases,
for example). Then, you can use just the DataModRef component (or custom class) to instantly implement the
full set of current data access components.

To set a DataModRef object to point to a dataModule, set its filename property to the path name of the data
module.

Note The DataModRef object is maintained for backward compatibility. Enhancements to the DataModule class make
it a more desirable method of storing data objects.

Linking a form or report to tables

The Query object links a form or report to a table, making the table’s fields available to the controls on the form
or report. One Query object can refer to multiple tables in its SQL statement, or you can use multiple Query
objects with an appropriate query statement in each.

If you need to link to table data in an SQL or ODBC database, you must first assign the database a BDE alias in
the BDE Administrator. If you haven’t done this yet, see "How to connect to an SQL database server" on page 2-
3. Then, to see your tables listed in the Navigator:

1 Click the Navigator’s Tables tab.

2 From the Look In drop-down list, select the alias of the database you want to access. Tables from the selected
database appear listed on the Navigator Tables page.

If you are linking to BDE-standard tables, use the Navigator Look In drop-down list to select the directory that
contains your tables. (Click the Tables tab to see the tables listed.)

Accessing and linking tables 6-5

Linking a form or report to tables

From there, you can link to a table in two ways:
1 Automatically, by dragging from the Navigator or using a wizard

2 By dragging data access components from the Component palette to the design surface and setting linking
properties

Linking to a table automatically

The easiest way to use table data in a form or report is to drag the table from the Navigator onto the form or
report design surface.

» For BDE-standard tables that you’re accessing without a BDE alias, this creates a Query object.

» For SQL, ODBC, and other tables you’re accessing through a BDE alias, this automatically creates both the
Database object, which is required to connect to the database, and the Query object for the table.

The SQL and rowset properties of the Query object, and the dataBaseName property of the Database object are
both set automatically, and the active property of both objects is set to true. The link is complete, and fields of
the table are available from the Field palette.

The SQL statement in the SQL property selects all the fields of the table. You can modify this statement in the
Inspector. Click the tool beside the SQL property.

Linking to a table manually

Instead of dragging a table from the Navigator, you can use data objects from the Component palette.
For SQL, ODBC, and other tables you’re accessing through a BDE alias,

1 Drag a Database object from the Component palette to the form or report design surface. (One Query object is
added along with it.)

» Assign the BDE alias to the databaseName property.
» Set its active property to true.

2 For databases that require a login, you must either log in or set the Database object’s loginString property, so
that the table will open without requiring a password or ID to be entered. (Your login name and password
must be set up by your database administrator.)

3 Select the Query object.

» Type the SQL query statement you want in the Query object’s SQL property. Your SQL query can access
any number of tables in the database. Some servers are case-sensitive for the table name; some may
require quotation marks (Oracle, for example).

» Assign the Database object to the Query object’s database property. This must be done before activating
the query.
» Set the Query object’s active property to true.
4 Add additional Query objects, if needed for other tables, and set their properties as in step 2. (If you want to
drag a table from another database, be sure to first select the desired alias from the Navigator’s Look In drop-

down list, or in the case of BDE-standard tables without an alias, use the Navigator to locate the desired
directory.)

For BDE-standard tables without a BDE alias, you do not need the Database object. Use only Query objects, and
follow the instructions in steps 2 and 3.

To use tables accessed through a BDE alias, you must create new Database objects. Provided that you have
created the BDE alias for your database, you need only activate the database object (and login if required) to
have access to that database’s tables. You may also log transactions or buffer updates to each database to allow
you to rollback, abandon, or post changes.

Note A table’s fields do not appear on the Field palette until the Query object’s active property is set to true.

6-6 dBASE SE User’s Guide

Using local and remote tables together

Procedure for using a Session object

All database applications are automatically provided with a Session object that encapsulates the default BDE
session. You can create, and manipulate additional session components as needed.

If you intend to add another Session object, follow the sequence in this procedure for adding data objects to the
design surface:

1 Add the Session object.

2 Add a Database object to your form (if accessing tables through a BDE alias). It is automatically linked to the
Session object already on the form.

3 Set the Database object’s databaseName property to the name of the BDE alias, and set its active property to
true.

4 Add a Query object. It is automatically linked to the Session and Database objects already on the form or
report.

5 Set the Query object’s SQL property, then set its active property to true.

Calling a stored procedure

When you want to call a stored procedure, use the StoredProc object. When a stored procedure returns a rowset,
it can take the place of a Query object.

To call a stored procedure,

1 Drag a StoredProc object from the Component palette onto the design surface.
2 Setits procedureName property to the name of the stored procedure.

3 Set any parameters that are passed to the stored procedure in the params array.
4 Set its active property to true.

Using local and remote tables together

If you use both local dBASE or Paradox tables as well as client/server databases, it’s a good idea to create a BDE
alias for the local dBASE or Paradox table directories and any other directories containing tables as well. There
are two reasons for this:

1 All your table connections will be listed in the dBASE SE Navigator Look In box when the Tables tab is
selected.

2 Using a BDE alias for BDE-standard tables makes it easier to move them to another directory; only the alias
in the BDE configuration need be updated, and not the source code for all the forms and reports.

Creating master-detail relationships (overview)

A master-detail form or report displays information selected from one or more related tables in a relational
database. It groups the detail rows from the detail tables in relation to an associated row from the master table.

In a relational database, a master table can be linked to one or more related (detail) tables by key fields. A detail
table may in turn act as a master table, with other key fields linked to other detail tables. Each detail table
contains a masterRowset property pointing to its master table. You can implement a master-detail relationship
between tables by setting this property in the detail tables.

A typical example isa CUSTOMER table with a key field called Orders. You could link it to an ORDERS table
by setting the ORDERS table’s masterRowset property to the master CUSTOMER table. You could then
generate a report on a selection of customers (from the master table CUSTOMER) that lists the rows of each
customer’s orders (from the detail table ORDERS). The result groups each customer’s orders with each
customer’s name.

Accessing and linking tables 6-7

Creating master-detail relationships (overview)

Note

By creating a master-detail relationship and adding SQL statements to the Rowset or Query object properties,
you can create forms and reports that group detail rows from detail tables with a selection of rows from the
master table. For example, a report could include a filter on the ORDERS rowset to display a customer’s orders
only for the month of March. You can create complex filtered joins and perform virtually any programmatic
operation on a database.

This section includes three different procedures to link master and detail tables:

1 Use an SQL JOIN statement to generate a rowset from two or more tables. This procedure is often the fastest
and easiest. It is illustrated in the AIRCRAFT.REP report in the SAMPLES directory.

2 For local BDE-standard tables, use the Rowset object’s masterRowset and masterFields properties.

3 For client/server databases, use the Query object’s masterSource property. (You can also use this in local
tables.)

In general, for any procedure, you begin with these steps:
1 Make sure each pair of tables is indexed on a common field.

2 Drag the tables from the Navigator to the visual design surface of the designer you’re working in. This creates
a Query object for each table.

Using an SQL JOIN statement

The sample report FLIGHT.REP (located in your dBASE SE SAMPLES\FLEET directory) uses a single Query
object whose SQL property contains an SQL JOIN statement linking the master table AIRCRAFT.DBF and the
detail table FLIGHT.DBF. Both tables are indexed on a common field.

In the resulting report, each aircraft (stored in the master AIRCRAFT.DBF table) is displayed in the headerBand,
followed by a list of flights for that aircraft (stored in the detail FLIGHT.DBF table) in the DetailBand.

This technique is usually faster and easier than adding and linking two Query objects. (However, in some cases,
with BLOB fields, for example, it might be faster to use two Query objects.) You should also be aware that
rowsets resulting from an SQL JOIN statement are read-only, and therefore cannot be edited.

By using two joined tables, you gain several advantages:
* You can use the data as if it were all in one table.
» Separately the tables can be more easily maintained.

 If you have bitmaps, you need store them in only the master table, rather than duplicating the image in every
row of the detail table.

» This method does not require an index (although with indexes it is much faster).
To create a master-detail relationship by using an SQL JOIN statement,
1 Add a Query object to the design surface.

2 Select the Query object. In the Inspector, click the wrench tool beside the SQL property to display the SQL
Property Builder.

3 Do one of the following:
« Write an SQL JOIN query in the SQL Property Builder
» Locate a query you’ve already written

Including image fields slows performance.

1 If you’re designing a report, after the SQL property is set, choose Layout | Add Groups And Summaries. In
the Groups And Summaries dialog box, all the fields from both tables appear in the Available Fields pane.

2 Select the field on which you want to group the detail rows.

Linking master-detail in local tables

Creating a master-detail relationship by using the properties masterRowset and masterFields is the most efficient
technique when working with local .DBF tables. It is similar to the older technique of using the SET
RELATION and SET INDEX commands, but that technique is no longer recommended.

6-8 dBASE SE User’s Guide

What is a dataModule?

To link local master-detail tables,

1
2

Drag the two tables onto the design surface of the designer you’re working in.

Select the Query object of the detail table and set its masterRowset property to the name of the master table’s
Query object. To do this, select the name of the Query object from the property’s drop-down list (the down-
arrow button, not the tool button).

With the Query object of the detail table still selected, click the rowset property’s tool button to display the
rowset properties.

Click the rowset’s masterFields property and from the drop-down list select the fields you want to link from
the master table.

Set the indexName property to the same field as the masterFields property. If the field names between the two
tables are not identical, then in the indexName property select the index that corresponds to the masterFields
setting.

If you’re designing a report, choose Layout | Add Groups And Summaries, and in the dialog box group the
detail fields under the appropriate master-table field.

Using the masterSource property

By using the masterSource property to create master-detail relationships you do not need an index, although it
would improve performance. You might choose to use the masterSource property when

You can improve performance, for example, in cases where large BLOB fields would be copied to temporary
files

You are working with client/server databases
You are working with a one-to-many relation in a form, and you want the form to be updateable
You want the order of the "many" table to be different from that of the linked fields.

To create a master-detail relationship by using the masterSource property,

1
2
3

Drag the two tables onto the design surface of the designer you’re working in.
Select the Query object of the detail table and set its active property to false.

Change the SQL statement in the Query object’s SQL property to use host variables. For example, in a
master-detail report on CUSTOMERS and ORDERS, you might use this:

SELECT * FROM ORDERS WHERE ORDERNO = :ORDERNO
assuming that ORDERNO is the exact field name in the table.

Set the detail table’s Query object’s masterSource property to the name of the master table’s Query object. To
do this, select the name of the Query object from the property’s drop-down list (the down-arrow button, not
the tool button).

Set the detail table’s Query object’s active property back to true.

6 This creates a parameter using the key fields from the master table.

What is a dataModule?

A dataModule is a dBASE SE class for centralized handling of data access objects (Query, Database, StoredProc,
and Session). A dataModule enables you to:

Place all your data access objects in a single container instead of duplicating them on each application form.
Design queries once for use with many forms and reports instead of recreating them separately for each one.

Create business rules—using object events, and additional methods you add to the source code for a
dataModule—that can be shared across an entire application.

Separate business logic and data access from user interface code for easier maintenance.

After you’ve set up data access objects in a dataModule, it’s easy to maintain them (change links to changing
databases, for example).

Accessing and linking tables 6-9

What is a dataModule?

Creating a dataModule

To create a dataModule,

1 Open the dQuery/Web dataModule designer by choosing File | New | Data Module, and select Designer from
the New Data Module window.

2 From the Navigator, drag the components you need onto the design surface, set their properties (SQL and so
on), and write their event handlers.

Press F12 to toggle between the Source editor and the visual designer.

3 When everything is set up as you want it, save the dataModule (File | Save). It is saved with a .DMD
extension.

Figure 6.1 Drag & Drop

& JBASE SE |0l

File Edt Yiew Froperties “Window Help
W e R

4 =
<+ Navigator

Loaak ir: IE:hGuidedT oL

&I.ﬁ.ll |% F'ru:uien:l Fu:urmsl Hepn‘@ Progr: Tab'# E:,_n SE!L"% Datai@ ImagEI D Otk

Table Files [*.dbf, *.db)

(Untitled)] Customers2. dbf Irrvoices. dbf

Left-click on the component and,
wehile holding doven the mouse
button, drag to the design
surface.

Data | Custom Wiew | Current Repar |

Creating business rules in a dataModule

Besides writing event handlers for the components in a dataModule, you can code methods directly in the source
file for a dataModule. These methods can be applied to the forms that use the dataModule as business rules. For
example, you might write a procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the dataModule.

Using a dataModule

To use a dataModule in a form or report, do one of the following:

» Add a DataModRef object from the Component palette and link it to the desired dataModule file by setting
the DataModRef’s filename property to the path and filename of the dataModule.

« Drag the dataModule file from the Navigator or Project Explorer to a form or report design surface. This adds
a dataModule object to the form.

The properties, event handlers, and methods you set for components in a dataModule apply consistently to all
forms and reports that use the module. For a demonstration of how to create and use dataModules, see “Opening,
Saving and Creating a New dataModule” on page 3-4.

6-10 dBASE SE User’s Guide

Using the Form and Report
designers

This section shows you the common elements you have to work with in the Form and Report designers. Other
designers—for data modules, labels, and custom classes—are variations on the Form and Report designers. Their
menus and tools vary, and they might look a little different, but otherwise they all work basically the same. This
section refers to the Form and Report designers, but the information applies to the other designers, as well. The section
includes the following:

e A description of the Form and Report designer windows

» What’s available on the Component palette for use in your forms and reports (this is an overview in table
form; see Help for more detailed information on how to use specific components)

» A discussion of the Field palette and how to populate it with components linked to fields in a table

» How to change component properties and create event handlers and other methods by using the Inspector

« How to manipulate components (change alignment, spacing, formatting, and so on)

You can open any of the designers from the File menu (File | New) or from the Navigator or Project Manager.

Note The yellow untitled icon on the Form and Report pages of the Navigator is for creating a custom class that you
can use as a template.

The designer windows

The form and report windows are visual design surfaces on which you position the components you need for
your application. These can be invisible components, like data objects (queries, stored procedures, databases,
sessions, and data module references) and visible components, like text, graphics, list boxes, check boxes, and so
on.

In both designers, the work you do with the visual design elements is reflected in the underlying code and vice
versa. Press F12 to switch between the design surface and code.

You can change the size and position of a designer window either by dragging the edges of the window or, if you
need to be precise, by changing the values of height, left, top, and width in the Inspector.

By default, a grid appears when you start the Form and Report designers, and objects are constrained to line up
along the grids (Snap To Grid). In addition, vertical and horizontal rulers appear.

Both designers have the following tools:

» Component palette for dragging user-interface elements and data-access objects to the design surface
 Field palette for dragging linked fields to the design surface

* Inspector for setting properties and writing event handlers and other methods

Using the Form and Report designers 7-1

Design and Run modes

» Format toolbar for formatting Text objects
» Alignment toolbar for aligning objects
« Layout, Format, and Method menus

« Status bar to show you your location on the design surface, show you what object is selected, and to give you
instructions and other information

To display a tool window that’s not open, choose View | Tool Windows.

Design and Run modes

You can view forms and reports (and other files) in Design mode and Run mode.

Fun » Use Design mode to design the appearance and behavior of the form or report and the components you put on
it.
| oF » Use Run mode to see how a form or report looks when running. In Run mode, the components become active.

—'— For example, you can enter data into an entryField control and edit data that’s already there.

Design Yse the Design and Run toolbar buttons, or choose the appropriate command from the View menu, to switch
between modes.

The Form Design Window

A form in the Form Designer appears on the desktop a shown in Figure 7.1

Figure 7.1 Form Designer with a wizard-created form

) JBASE SE =]
File Edit “iew Lavout Fommat Method Properties Window Help
NEW S mH| ka0 2wz |
- Alignment toolbar
= | R W T .
B custedit.wim - Form Design] custedit-wim - Inspecis
Data dccess | De 4 C E— e The Inzpector: for
_ | ; I$+ tlil zetting properties,
IE = &8 s If':'rm events and methods
Gy SRRl e Froperties I Eveant I ¥ The Format toolbar iz
""" — m WEMnLE available when the
Field Palette 3 [LN [actvatanial Tl text in a Texst object is
Customer! | City o I E alowDiop fakse selected,
[+ Fointer = | Soottsdale I.-i'-.rial j | appSpeedBar |2 - Defa
ét.at;a : menc autoCenter {brue
I iocanpoas I j ”] j | autoSize falze
M ame IP'Z __ backaground
Ctrest Gemimy < B U | baseClasshan: FORRM
| e o CAMCELEUTY: Object
= Ciy [= e e = e ElisTE
[Z]State Prowie | oo - clientEdge ifalze
T | Courtiu 1| D colarMarmal — {BtnFace _
L | o
\FORM (Order: 0 |Page: 1 |Top: 93 Left: 124 Height: 268 ‘width: 266/
I . [|
Shows which obiectis Shows in what order the Shows the position and size of the
selected. object was added to the form selected object.

7-2 dBASE SE User’s Guide

Component palette

The Report Design window

A report in the Report designer appears on the desktop as shown in Figure 7.2
Figure 7.2 Report Designer with a wizard-created report

dBASE SE i [=]

File Edit “iew Lapout Format Method Properties 'Window Help

DE WS 20| 2l

= — —
- -

Fish_rep - Inspector 3| 3 T A RN Y Ficld Palette]
=T - E : I
ol B = el Fish1 |
Fa }
. i g Pairt -
If':"m = | Fish # 1-Clown & Bl 3
Properties | Events I 1|} E : Al20 known as the AD .
: A Name
autaSart true - h v | crustaceans and n _ I
bazeClazsMan BEFORT o | eaters, and divers A Species E
g:ﬁ?:?jnm EIEEEEF' g P Pl Component Palette =] r
e || uponthe nervo Standerd | Data Access | L] |
slerne P | shorthr afterwal 1
endP I j | : " | spasms, the tol IE A oo s L g E
firztP. r | expires ina par "
T FISH | HI - =X —
E inDes b | (1| Mot edible.
Al E| = '
d i
ﬁ ze::ric | | o i [Range is Indo-Pacific and East Africa to Samoa.
g BT =
P - : : :
_l = o= | = t= mml | | Figh#: 2 Giant Maori Wrasse . Specie
= : | This is the largest of all the wrasse. R is found in de/x
4] |
4 [

|F'age: 1 | 4

‘ | repork

The Group Pane iz initially hidden. Drag the

i ; - Indicates the report has focusz. In the Form and
zplit bar to dizplay it.

Repart, and related designerz, the top object in
the hierarchy iz always called "'Form'™.

The report design surface has several objects the form design window does not, for example, pagetemplate and

streamframe. These objects are necessary for formatting report pages. See Chapter 12, "Designing reports", for
information on working in the report design window.

The visual design is reflected in your code

In both designers, the work you do with the visual design elements is reflected in the underlying code and vice
versa. Press F12 to switch between the design surface and code.

Component palette

The Component palette displays the components and data objects you can add to the form or report you’re
designing.

To open the Component palette, do one of the following:

Using the Form and Report designers 7-3

Component palette

» Choose View | Component Palette.

» Right-click anywhere on the form or report window and choose Tool Windows | Component Palette from the
context menu.

Depending on which designer has focus, or whether you have installed the dBASE SE samples (which include a
number of custom components that appear automatically on the Component palette), you’ll see a selection of the

following pages on the Component palette:

Common user interface controls, such as list components, buttons, text and image components, and so on.
Database access objects required to connect to a table, group of tables, or to ensure record-locking
Buttons and toolbars (both image-style and text-labeled) for navigating through data. Installed with the dBASE

Custom components that you create yourself (or obtain from a third party) or that appear in applications in the

Tab name What's on the page
Standard
Data Access
Data Buttons
SE samples
Report The streamframe and group objects used to lay out reports
Custom
dBASE SE samples
ActiveX ActiveX applications from third-party developers.

Standard page

This table briefly describes the standard user-interface controls appearing on the Standard page of the
Component palette. For more details, select the component and click the Question Mark button on the toolbar.

Table 7.1 Standard controls

Component Useto...

Display text that cannot be edited by users.
The text can be any alphanumeric characters
allowed in a character expression

=] ¢

TextLabel Display information on a form or report,
wherever features such as word-wrap and

HTML formatting are not required.

EntryField

PushButton

Let a user enter a single value, text or
numbers, into a data-entry field

Let a user perform a task with a single
mouse-click.

]

CheckBox Let a user toggle between two choices of a
logical value. Or choose a number of

options that are not mutually exclusive.

[}

RadioButton Let a user select one choice among a group

of mutually-exclusive possible values.

Organize elements visually

m
: A5 =
5

Display the contents of a text file or memo
field.

ListBox Display values in a fixed-size, scrollable list
box, from which a user can select one or

more items.

=]

7-4 dBASE SE User’s Guide

Example/Explanation

Use for a field label, heading, instruction, prompt, or any other
non-editable display text. Format with the Format menu or
Format toolbar.

TextLabel is a simple, light-duty object which consumes fewer
system resources than the Text component. The TextLabel
component does not support in-place editing on design
surfaces. The text property of the TextLabel component may
contain character string data only.

Example: Data entry area for entering a value for a particular
field of a table. Must be DataLinked to the table field.

A control that a user can click to execute code that you attach.
(Sometimes called a command button.)

Check boxes often are arranged in groups to present choices or
options a user can turn on or off. Any number of check boxes in
a group can be checked at a time

Example: A group of buttons labeled Credit, Cash, Check,
Visa, and MC to choose among for entering only one of those
values ina PAY_METHOD field of a table.

The line is a divider that may be extended vertically,
horizontally, or diagonally to visually divide a form into
sections. Users cannot edit or manipulate it.

Text exceeding the size of the box causes a scrollbar to appear.
You can choose to allow users to edit this text.

The values in a list can be file names, records, array elements,
table names, or field names.

Table 7.1 Standard controls

Component
ComboBox

B E: =

Container

Browse

H
Grid

Rectangle

[

Progress

(=]

PaintBox

NoteBook

TreeView

Slider

Vertical scroll
bar

Horizontal
scroll Bar

Useto...

Combine an entry field and a drop-down list
box. A user clicks the down-arrow button to
display the list.

Display an image.

Visually divide a form into sections, for
example, to place related RadioButtons
within a box.

Create moveable panels that can contain
other components on a form.

Display multiple records in row-and-column
format.

Display live table data in row/column
format in a programmable component.

Organize elements visually into boxes or
create custom buttons.

Provide visual feedback to the user about
the progress of long operations or
background processes.

Create custom form controls

Make a multipage dialog box, with labeled
tabs to display sections of information or
groups of controls within the same window.
See TabBox for full-size tabbed forms.

Display and control a set of objects as an
indented outline based on their logical
hierarchical relationships. The control
includes buttons that allow the outline to be
expanded and collapsed.

Define the extent or range of values. By
moving the slider along the trackbar, the
user can change the current value for the
control

Allow users to vertically scroll a grouping
of controls, or a large control that has no
integrated scroll bars

Allow users to horizontally scroll a
grouping of controls, or a large control that
has no integrated scroll bars

Component palette

Example/Explanation

A ComboBox accepts a value typed into the entry field or
selected from the drop-down list box.

Display area for a bitmap image stored in a binary field,
resource file, or graphic file.

A visual appearance element. By setting the component’s
shapeStyle property you can create rounded rectangles,
rectangles, ellipses, circles, rounded squares, and squares. You
can also set the line style, weight, and interior color.

Example: Moveable toolbars and palettes.

The Browse component is maintained for compatibility and is
suitable for viewing and editing tables open in work areas. For
forms that use Data Access, use a Grid object instead.

The Grid object is a multi-column grid control for displaying
the contents of a rowset. The dataLink property is set to the
rowset. Columns are automatically created for each field in the
rowset

A graphic element for boxing objects. You can set the size, line
weight, and fill of the box. It can respond to mouse clicks and
other events.

A rectangular bar that "fills" from left to right, like that shown
when you copy files in the Windows Explorer.

Use position to set a default position for the progress bar. At
run time, position tracks the exact location as values increment.

Use max and min to set the range of position.
By default, the progress meter advances by a value of one.

The PaintBox provides a window space in which you can call
API functions in Windows. Users never interact with it directly.
dBASE SE does not paint the area.

You might use the Notebook control to create a tabbed dialog
box with different groups of controls on each tabbed page. The
Desktop Properties dialog box is a good example of this. Use
the DataSource Property Builder to name or add tabbed pages
to the window. Then drag the components you want to each
tabbed page.

Use a tree view component to display the relationship between
a set of containers or other hierarchical elements. You might
use the TreeView as a way to select items from nested lists,
much like the hierarchical view in the left pane of the Windows
Explorer.

You can set the trackbar orientation as vertical or horizontal,
define the length and height of the slide indicator and the slide
bar component, define the increments of the trackbar, and
whether to display tick marks for the control. Examples: A
volume control to play back sound files, or a color saturation
adjuster for an image viewer

Example: A custom dialog box containing an area filled with
many file icons.

Example: A custom dialog box containing an area filled with
many file icons.

Using the Form and Report designers 7-5

Component palette

Table 7.1 Standard controls

Component Useto...
TabBox Group rglated data items on overlapping
pages with labeled tabs
SpinBox Provid_e up and do_wn arrows to assist
changing a numeric value.
OLE Create an object linking and embedding

ReportViewer

another application

(OLE) client area in a form, in which you
can embed, or link to, a document from

Displays a report in a sizeable frame

Example/Explanation

Use a TabBox to display multiple pages the full size of the
form. A user selects a tab to display the items on the TabBox.
Similar to Notebook, except for the full form size.

You can type a number into the numeric entry field or can
increment or decrement the number by clicking the up and
down arrows.

Using an OLE control, a document from another application,
for example, a sound file from a sound recorder application, can
be opened from your dBASE SE application

The report is executed when the form is opened.

Data Access page

Data objects provide live connections and session control to tables and databases. A form or report that accesses
a table must have at least one Query object on it, returning a rowset from the table. A StoredProc object that
returns a rowset (as a query would) can be used in place of the Query object.

Note

Once you have set up a group of data objects to return rowsets, you can save that group in a data module for easy

reuse in other forms and reports or other applications.

This table describes the data objects available from the Data Access page of the Component palette. For details
on the dBASE SE Data Model and use of the Data objects, see Chapter 6, "Accessing and linking tables".

Table 7.2 Data Access

Object Lets you...
Query Run an SQL query on any table,
= including local .DBF and .DB tables.
BT Query objects enable components to
display data from tables on forms and
reports.
StoredProc Run a stored procedure on an SQL
= server. This capability is available only
when accessing tables on a server that
supports stored procedures.
Database Set up a persistent connection to a

database, especially a remote client/
server database requiring a user login
and password.

Session

8.2

Session objects enable basic record-
locking, so that multiple users do not
modify the same record at the same
time. Session objects also help to
maintain security logins for local .DBF
or .DB tables.

Use a preset data access setup stored in
a data module.

DataModRef

7-6 dBASE SE User’s Guide

Explanation

You set a Query object’s SQL property to the SQL statement that
selects a rowset. In addition to linking a table to a form or report, this
populates the Field palette.

You must use a Query object containing an appropriate SQL statement
to connect to a table or database (unless you are using a StoredProc
object to return a rowset from an SQL database).

Place the StoredProc control on a form or report and link the control to
a stored procedure by setting its procedureName property. If the stored
procedure returns a rowset, it may be used in place of a Query object.

Gives dBASE SE forms and reports access to SQL databases (or
another group of tables identified by an alias). To add connections to
SQL databases or other multiple tables via a BDE alias, add a Database
object to your form.

You must have first created a BDE alias for the database by using the
BDE Administrator.

Use only if you are creating a multithreaded database application.
When you open a form, a default session is created, linking the form to
the BDE and connected tables. If you need separate threads for each
user (to ensure record-locking), add a Session object to your form. A
unigue session number is assigned to track each user’s connection to
the table.

Use to give a form or report access to a set of data access components
you’ve programmed and stored in a data module.

Data Buttons page (forms)

Component palette

If you installed the dBASE SE samples, the Component palette in the Form designer displays a page of buttons
that let users navigate through records, locate and filter data, edit data, and so on.

Both standard and image-style buttons with identical functionality are available. The names of standard button
components begin with button, and the names of image-style components begin with bitmap. In addition, you

can choose a VCR-like control panel including a full set of navigational buttons, a report page-number object,
and a rowstate object. This table describes the components available for working with data.

Table 7.3 Shading Properties in the Form Designer

Component

ButtonAppend
BitmapAppend

ButtonDelete
BitmapDelete

ButtonSave
BitmapSave

Buttonabandon
Bitmapabandon

ButtonLocate
BitmapLocate

ButtonFilter
BitmapFilter

ButtonEdit
BitmapEdit

ButtonFirst
BitmapFirst

ButtonPrevious
BitmapPrevious

ButtonNext
BitmapNext

ButtonLast
BitmapLast
BarDataVCR
BarDataEdit

Rowstate

What it is

An append-record control.

A delete-record control.

A save-record control.

An abandon-changes control.

A search-records control.

A filter-records control.

An edit record control.

A first-record control.

A previous-record control.

A next-record control.

A last-record control.

A set of navigational controls.

A set of edit controls.

Displays the state property of a

given rowset, for example,
whether it is Read-Only.

Report page

What is does

Lets users put the table that is linked to the form into Append mode to
enter a new record. Clicking the Append button again adds the new
record to the table and keeps the table in Append mode.

Lets users delete the current row from the table that is linked to the form.
Lets users save the current row.

Lets users abandon any changes made to the current row and return to the
last saved contents of the row.

Lets users go to the first row that matches the criteria. When the user
clicks the Locate control, the form goes blank. The user then types in the
criteria for the search and clicks the Locate control again.

Lets users display records that meet a specific criteria. When the user
clicks the Filter control, the form goes blank. The user then types in the
criteria for the filter and clicks the Filter control again.

Lets users edit the current row. (Required only when AutoEdit is false.)
Displays the first record in the table that is linked to the form.

Displays the previous record in the table that is linked to the form.
Displays the next record in the table that is linked to the form.
Displays the last record in the table that is linked to the form.

Contains the bitmap versions of the First, Previous, Next and Last

buttons listed earlier in the table.

Contains the bitmap versions of the Append, Delete, Save, Abandon,
Locate, and Filter buttons listed earlier in the table.

The other controls update this control.

This page of the Component palette contains the data formatting components required for reports.

Table 7.4 Components specific to reports

Component

What it is

What it does

Using the Form and Report designers 7-7

The Field palette

Table 7.4 Components specific to reports

StreamFrame The StreamFrame object receives and displays rowset data Dropping a component, such as a check box,
streamed from linked tables (specified in its streamSource into the streamFrame area of a report will
property). One or more streamFrame objects may be cause that object to be printed as part of the
contained within the pageTemplate object. report’s row data.
Group The Group object is descended from the streamFrame object ~ Groups the display of rowsets by the value of
= that contains data from the query’s rowset. By dropping a a selected field. For example, in a "Sales by
= Group object on a report’s streamframe, a Headerband and District" report, you might have a Group

Footerband are created, with editable placeholder text for the object for each District to display sales
group’s heading. A streamFrame may contain several Group rowsets for that district.
objects.

Custom page

The Custom page of the Component palette contains custom-built components. If you didn’t install the dBASE
SE samples, you won’t see the Custom page until you create your first custom component and assign it to the
palette. If you did install the samples, you’ll see that the Custom page already contains custom components that
are used in the sample applications.

You can build new components from scratch, and you can alter existing components and save them as custom
components. See “Creating custom components” on page 5-13 for instructions.

Using ActiveX (*.OCX) controls

To use an ActiveX control in your forms and reports,
1 Inthe Form or Report designer, choose File | Set Up ActiveX Components.

The dialog box that appears shows all available controls registered on your system.
2 Select the desired controls.

Selected controls appear on the ActiveX page of the Component palette, ready for use. After placing a
component on a form, the Inspector shows the properties of the ActiveX control. To use the control’s own
property dialog box, right-click the control and choose ActiveX Properties from the context menu.

The Field palette

The Field palette displays fields for each Query object that’s linked to an existing table, as long as the Query
object’s active property is set to true. Fields available on the Field palette are linked to a table through the
datalLink property.

To open the Field palette, either

e Choose View | Tool Windows | Field Palette (it’s a toggle).

* Right-click anywhere in the designer and choose Tool Windows | Field Palette from the context menu.
Figure 7.3 Field Palette

Field Palette %]

Cuztomer |

| [+ Painter D [f you haven't checked Revert Cursor To Painter in the Customize

T ool Windows dialog bowx, click the Pointer button to returm the
Name Strest cursar to a standard paointer after you have uzed it to place a fisld.
City State_Province Fields shown are friom a table named "Customer. Each figld iz ' live"
Countr PostalCode and will show data in the dezigner. All data will be available when
¥ wou ran the form or report,

Contact Phane
Fax E rail

7-8 dBASE SE User’s Guide

The Inspector

Dragging a field from the Field palette onto a form or report saves you the work of having to set its dataLink or
text property manually for each component you want to link to a field in a table, although you can do it manually,
if you want to.

If no active Query object exists on the form or report, the Field palette is empty, showing only the Pointer button.
When you begin to design a data-aware form or a report, first add a Query object and set its sql property to the
appropriate SQL statement and its active property to true. If you drag a table from the Navigator to the design
surface, this automatically creates a Query object that selects all the records in that table and links the table to the
form or report. See Chapter 6, "Accessing and linking tables", for more details.

Once an active Query object exists on the form or report with its active property set to true, its fields appear on
the Field palette as linked components. The type of the component depends on the data type of the field. For
example, a Boolean field appears on the Field palette as a CheckBox control. To change the control type of a
field, right-click the Field palette, and choose Associate Component Types from its context menu, or choose File
| Associate Component Types.

If more than one Query object exists on the form or report, each table’s fields are displayed on a separate page of
the Field palette.

The Inspector

You can change a component’s properties in the Inspector. When you select a component in a form or report, the
Inspector displays the component’s properties. If the Inspector is not open, do one of the following, all of which
toggle the view of the Inspector:

* Press F11.
» Choose View | Inspector (this command is a toggle).
» Right-click the selected component and choose Tool Windows | Inspector from the context menu.

When you have selected multiple components, you can change their common properties simultaneously. When
you change a property value or link code to an event for a multiple selection, the change affects all components
in the selection.

Using the Form and Report designers 7-9

The Inspector

Note You cannot change methods for multiple selections.
Figure 7.4 Using the Inspector

Fizh.wim - Inspector x|
- | *I I Tl EEI‘l CollapzedllCategones ExpandAlCategones Categondiew
If-:urm | [! _!
Properties | E\.‘Entgl Methgdgl —— Click Properties, Events or Methods
+ ACoEss Properties are organized into categornies in the default
C i Inzpector view. 'ou can expand or collapze any categony by
+ Lantiols chcking the plugs or minus sign. To expand or collapze all
+ Fant cateqories at once, right click anywhere on the Inspector
+ Help and chooze vour preference from the popup menu. To see
— Pzt properties Ii_stec! itv gtraight alphabetical order, uncheck
- basellassl FORM Cateqary Wiew in the popup menu.
» clazsMame! FISHFORR
= hwind 52
= hwndClier: 952

— benu

Imm 1 When clicked, a property may dizplay a tool. Ik this caze, the wrench tool

lets wou change the menu file linked to the contral.
= popupbder: Ml

- sysMenu tue If highlighted in vellow, the value is not yet committed or not yet evaluated.
+ Mizcelaneou Press Enter to commit the walue.
+ Puazition
+ Uzer-defined
+ Yizual
+ "wind o

The Inspector has three tabbed pages that show the properties, events, and methods of the selected object. The
name of the currently selected object appears in the drop-down list box at the top of the Inspector. Click the
Down arrow of this box to select a different object, or select the object on the form or report, itself.

Properties, methods and events set by you, or that have no default value, are shown in bold. (Bold properties are
ones that will be streamed out.)

Properties page of the Inspector

The Inspector’s Properties page displays the properties of the current object. The right column shows the current
value for each property.

You can set a property value in any of the following ways:
» Type the value into the column to the right of the property name.

Note Yellow highlighting of an entry means that it’s not yet committed or not yet evaluated. Press Enter to commit
a change.

 Press Ctrl+Enter in the value column to rotate through a list of properties or to toggle logical values, or
double-click the value column to do the same.

 Select a value from a history list or other drop-down list, when available.

 Click the wrench tool button that appears to the right of the property value. Tools are not available for every
property.
The tool button may produce

e A property builder in which you can build or select a value. For example, you can display the Color
property builder to set the color for an object.

» The String Builder dialog box, which makes it more convenient to type a long string.

7-10 dBASE SE User’s Guide

The Inspector

Events page of the Inspector

The Inspector’s Events page displays the events to which the current object can respond. When you select an
event, its value area becomes a text box with a tool button.

Figure 7.5 Events page of The Inspector

Fizh.wim - Inzpector x|
:lil I_Llil Towrite an event handler, do one of the fallowing:

Ifu:urm. buttanadd j

Type a code black ik the value calumi.

Properties Events | Methods I Click the wrench tool to dizplay the Source Editor.

|- anClick {.appendRow(}[Z]%] <
Rl ot Mull
e alrre e Codeblock

Click the Type tool and zelect CodeBlock, and click
the wrench tool to open the Code Block, Builder.

- ohGotFocus | Mull The method you enter will be linked to this event
= onHelp Hull
= onLeftDbIClic: Mull
= ohLeftbouze! Mull
= ohLeftbouze! Mull
» ohLoztFocus | Mull
+ onbdiddlelibli Hull
= ohtiddlebdo Mull
= ohtiddlebdo Mull
= ohtdousehdon Mull =

To specify what you want to happen when an event occurs, you can do one of the following:

1 Type a code block into the text box for the event. Or, if you want to use the Code Block Builder,
» Click the Type drop-down list beside the text box, and select CodeBlock.
* Click the wrench tool beside the text box.

This opens the Code Block Builder. Type parameters, if any, in the Parameters text box, and type the code
block in the Commands Or Expression box. It’s okay to put only one statement on each line, and end it
with a semicolon, where appropriate. When you click OK, the code block becomes a one-line code block
in the event’s value text box and in your code. See "The Code Block Builder" on page 9-3 for more
information.

. 2 Write a method to link to the event. Click the tool button to display the Source editor with the cursor inside
the skeleton of a new method, ready for you to type.

For information about code block syntax and writing a method, see Help.

You can also link and unlink events by using the Method menu from within the Source editor. See "The Method
menu”, on page 7-12.

Methods page of the Inspector

The Inspector’s Methods page displays the current object’s built-in methods, that is, the methods pre-defined for
the component. You can call these methods with methods you create in the Source editor. Methods you create in
the Source editor can be inspected on the Methods page.

To delete a method in code, you must be in the Source editor. Then, with the cursor in the method you want to
delete, choose Method | Delete Method.

Using the Form and Report designers 7-11

Manipulating components

Note A function inside a class is a "method." The keyword for method is "function."

Figure 7.6 Methods page of The Inspector

1-|-b||_I|EE-|

Ifurm.buttnnadd j
Propert b ethods
— I Exlfents I Click. the tool buttarn to open the
|+ drag iFISHFDHH::BUTTﬂ@i— Source Editar. IF it's a new Methad, dBi2K.
* MNOWE FUSHBUTTOM: :MOWE creates the skeleton code for you,
= release PUSHBUTTOM::RELEASE
= zetFocus PUSHBUTTOM::SETFOCU

The Method menu

You can use commands on the Method menu when working with code. The last three commands open dialog
boxes that can simplify writing methods.

Table 7.5 Method menu commands

Command
New Method

Delete Method
Verify Method

Edit Event
Link Event

Unlink

What it does
Creates dBL skeleton code for a new method in the Source editor:
/I {Linked Method} Form.OnOpen
function Form_OnOpen
You can do the same thing by clicking the tool beside an event in the Inspector.
Deletes the method that has the cursor in it and all references to the method from the code.

Attempts to compile the method, to make sure there are no syntax errors. This also happens when you switch
focus from the Source editor to the designer.

Displays a dialog box that allows you to select objects in the left pane and, in the right pane, select one of the
available events for editing. The selected event is then displayed in the Source editor for editing.

Displays a dialog box similar to the Edit Events dialog box. You choose a control from the left pane and one of
its events in the right pane. When you click OK, the new event is linked to that event.

Displays a dialog box that allows you to view multiple events linked to a method and to remove any or all of
them. When you click OK, the selected link is unlinked from that event.

Manipulating components

This section describes how to work with components: placing them, resizing, aligning, and so on.

Placing components on aform or report

You can place a component on a form or report by selecting its icon from the Component palette or from the

Field palette.

Note To see fields on the Field palette, you must have first placed an active Query object on the form. See page 7-8.
Fields represented on the Field palette are already linked to the fields of the table(s) specified in the Query

object.

To place a component,

1 Click the component on the palette to select it.

7-12 dBASE SE User’s Guide

Note

Note

Note

2 Drag on the design surface until the component is the size you want, or click on the design surface without
dragging to add a component in its default size.

If you’re placing a field, simply click the form window; dragging will not size the field while you’re adding it,
although you can size it by dragging it after you’ve dropped it on the form or report.

Alternatively, you can add a component in these ways:

» Double-click the component in the palette; it appears at a default position on the design surface.

» Drag the component from the palette to the design surface.

By default, the mouse reverts to a pointer after you place a component on the design surface. If you want to place
multiple instances of a component without having to return to the Component palette to select the component
anew each time, uncheck the Revert Cursor To Pointer option in the Customize Tool Windows dialog box (View
| Tool Windows | Customize Tool Windows). If you’ve unchecked this option, then before you select another
component you have to first click the Pointer icon on the Component palette.

Special case: container components

Besides the form itself, dBASE SE provides other components that themselves contain components. Examples
are the Container and Notebook components. You can use these components to group other components so that
they behave as a unit at design time. For instance, you might group pushbuttons and check boxes that provide
related options to the user.

When you place components within container components, you create a new parent-child relationship between
the container and the components it contains. Design-time operations you perform on these "container" (or
parent) components, such as moving, copying, or deleting, also affect any components grouped within them.

The form remains the owner for all components, regardless of whether they are parented within another
component.

You generally want to add container components to the form before you add the components you intend to
group, because it's easiest to add components that you want grouped directly from the Component palette into the
container component. However, if a component is already in the form, you can add it to a container component
by cutting and then pasting it. If you drag it in, it does not become a child to the container, and will not act as part
of the container unit.

Selecting components

To work with a component once you’ve placed it on the form, first select it. Once you select a component, you
can resize it, move it, or delete it. You can also change its properties.

To select a component, do one of the following:

 Click the component.

* Press Tab or Shift+Tab until it’s selected.

 Select it from the drop-down list at the top of the Inspector.

When a component has focus, its handles—small, black squares around the periphery—are visible.

If it is a component that is part of a custom form or report class, the handles are white to remind you that you
have selected such a component, because you may not want to change it.

Moving components

To move a component, select it, and then do one of the following:

» Drag the component to the position you want. As soon as you move the mouse, the pointer becomes a hand.
This indicates you’re moving the component.

 Press any of the arrow keys to move the component in the direction of the arrow. If Snap To Grid is turned on,
the object moves one gridline at a time.

Using the Form and Report designers 7-13

Manipulating components

» Change the object’s position properties in the Inspector.

To move a multiple selection of components, put the mouse cursor within the borders of one of the components,
and then either drag or press the appropriate arrow key to move your selection in the direction you want.

If Snap To Grid is checked in the Properties dialog box of the designer you’re working in, then components align
to the grid.

Cutting, copying, pasting, deleting components

You can access the cut, copy, and paste commands from the Edit menu, the context (right-click) menu, or the
toolbar buttons. Select the component or components, and then choose the appropriate command. To delete a
selected component or multiple selection of components, choose Edit | Delete (or press Del).

Undoing and redoing in the designers

You can undo operations on a form or report. Once you undo an operation, the previous action is available to
Undo.

You can undo and redo values that you set in the Inspector. Once you undo a value, the Undo command on the
Edit menu becomes Redo.

To undo an operation, choose Edit | Undo (or press Ctrl+Z). To redo an operation, Choose Edit | Redo (or press
Ctrl+2).

Aligning components

You can align one or more selected components by using the Layout | Align menu commands or the
corresponding toolbar buttons (to display the Alignment toolbar, choose View | Tool Windows, and check
Alignment Toolbar.) These commands adjust the position of objects in relation to each other or in relation to the
form or report. To find out what each option does, highlight it and read the explanation in the status bar, or press
F1. Here’s a summary

7-14 dBASE SE User’s Guide

Figure 7.7 Layout | Align commands

Aligrment toolbar buttons corezponding to these menu zelections are shown below.

File Edit Wiew | Lapout Format Method Properties Window Help
bln L
Size Align Right
Spacing Align Top
i Align Bottam

Bring to Front Al e B Moves selected

Send to Back - DI:_:iEu:ts: b the nearest

Ering Closer LCerter Harizontally grid point(s]

Send Farther Center Wertically

Set Companent Order. .. Center Harizantally in Sfindow

Center Yertically in WWindow
Places the selected contral after the nest contral in the tabbing order. o
Places the selected contral before the previous control in the tabbing order. T
b akes the selected control the final contral in the tabbing order.
Makes the selected contral the first contral in the tabbing arder. T
Alignment and Resizing Toolbar
EdTLT=8F bk
Sy Y ey s S

Aligr Lefth!ig“ht: toves selected objects Grows the selected DI:_uiects {u] th!e height of
Honizontally to the pozition of the leftmost, the tallest zelected object, or shiinks them to
ar rightmost, zelected object the height of the smallezt selected object
Align Top/Bottam: Moves selected L Grows selected objects to the size of the
objects Vertically ta the position of the largest selected abject, ar shrinks therm ta

higheszt, or lowest, selected object the size of the zmallest zelected object

Center HorizontallpMertically, Centers
zelected objects within their rectangles

Resizing components

To resize a component, select it and do one of the following:

 Place the mouse pointer on one of its handles. When the pointer turns into a double-headed arrow, drag the
handle to size the component the way you want.

» Press Shift+any arrow key to resize it in the direction of the arrow.

You cannot resize a multiple selection of components with the mouse; however, you can press Shift+an arrow
key to resize a multiple selection in the direction of the arrow.

To change the sizes of multiple objects to conform to one size, choose an option from the Layout | Size menu or
the corresponding button in the Alignment toolbar. (To display the Alignment toolbar, choose View | Tool

Using the Form and Report designers 7-15

Setting a scheme (Form designer)

Windows, and check Alignment Toolbar.) To find out what each option does, highlight it and read the
explanation in the status bar.

Figure 7.8 Layout | Size commands

File Edit Wiew | Layout Format Method Properties Window Help

Align AT
Grow to Largest width For a description of these
Spacing b Shink to Smallest Width - EEE";féirf;‘?rﬁg?b”aTﬁgtf‘E”d
Bring to Front Growe to Largest Height ahowe
= Shiink to Smallest Height
Send to Back Size to Grid
Bring Clozer =1
Send Farther

Realignz all edges of the zelected companent to the nearest grid
Set Component Order. . mark. Resizes the component az needed. [Mat available in the
Report Designer]

Spacing components

To change the spacing of multiple components in the Form designer, select the components, and choose an
option from the Layout | Spacing menu.

Note The Spacing menu is not available in the Report designer.

To find out what each command does, highlight it and read the explanation in the status bar.
Figure 7.9 Layout | Spacing commands

File Edit “iew | Layowt Fomat Method Properties Window Help Maoves the selected
" companents haorizantaly b
3 a 1 k| ; !
g!lgn E s | a4 | S £ B £ allow for an equal spacing
Size | between them. This common
Cpacing Make Equal Harizontal Spacing zpacing can then be
i Increaze Honzontal Spacing increased or decreased
Bring ta Front : .
£ o to Back Decrease Honizontal Spacing Maoves the selected
) = : ; components vertically to
Ering Closer M ake Equal Yertical Spacing allaw for an equal spacing
Send Farther Increasze Wertical Spacing between them. This
Set Component Drder... Decreaze Yertical Spacing common spacing can them
be increazed or decreased

Setting a scheme (Form designer)

The Format | Set Scheme command displays the Set Scheme dialog box, which lets you set colors and
background images and save them as a reusable scheme (you can do this in the Form wizard, as well—it uses the

same dialog box). This is useful for maintaining a consistent look over several pages of a form or across related
applications. You can either

e Choose a predefined scheme
« Set your own scheme

7-16 dBASE SE User’s Guide

Figure 7.10 Set Scheme dialog box

Set Scheme
Sample:

Title

P Select from the list of schemes o create pour aw.
Specify fontz and colorg, then save your scheme.

O

Click. here to zelect a
predefined color and font

Scheme

Abc |
L DKl | dB2K Default
Def |455

Bezet

j Delete
Save ba. |

zcheme

Rezets to the list of
— zchemes that originally
ghipped with dBASE SE

Saves your curment

Title |N|:-n-E|:Iiting Enmpunentsl Editing Eu:umpu:unentsl F'ushButtu:unsI Shapesl 1 | *I
Eont; Foreground color: B ackground calar;
[erial, 18 Bold | Il Highlight | SameasFom

Ok

Click here to specify thal the current zcheme should be uzed
for all new forms

Cancel |

Help doply |

curent farm anly

Editing a Text object

scheme under a name
you provide

Click here to apply the curent scheme to the

You can change the words, font properties, and color of an entire Text object by selecting the object and setting
the desired properties in the Inspector. Use the text property to specify the words. (Click the wrench tool beside

the text property to open a string-builder dialog box.)

To edit directly on the design surface, or to format parts of a Text object individually, or to format in ways not
available in the Inspector (for example, to specify a list format), select the Text object, and then select the text to

get an insertion point. After you have an insertion point, you can drag over words to s
to select one word. Then you can edit the words in-place, or format, as desired, using

» Format toolbar (View | Tool Windows | Format toolbar)
Format menu
Figure 7.11 Format toolbar

elect them or double-click
either of the following:

Format x|
IF'aragraph ,I | —— Chaose a heading gize in HTML farmat and a typeface
I"ﬁ" - j | Choose a font gize in HTRL format and a colar. wWhen the size you chooze iz
rna different fram that specified for the farm, this setting i relative tothe paint size
for the farm or individual Test object.
[«o =] |[mm |
B / H | T Choosge bold, italic and underline
i= 1= | i +E Choose a nurnbered or bulleted list
s — — — Decreaze, or increse, the indentation
| Align Left, Center, or Right
Saving, running, and printing forms and reports

To save a form or report design, either

» Click the Save toolbar button.

Using the Form and Report designers 7-17

Saving, running, and printing forms and reports

» Choose File | Save or File | Save As.

Enter a file name and specify a directory location. A form is given the extension .WFM; a report is given the
extension .REP. A new file is placed into the current project, if a project is open.

Opening a form or report in Run mode

To open a form or report in Run mode, do one of the following:

» Choose File | Open. If you’re opening a form, in the Open File dialog box, choose the form you want to run,
select the Run Form button at the bottom of the dialog box, and choose OK. If you’re opening a report,
running it is your only choice from this dialog box.

« In the Navigator, double-click the form or report you want to run. Or select it and press F2.

e Type DO Formname.wfm in the Command window, where Formname is the name of your form, or DO
ReportName.rep, where ReportName is the hame of your report.

Printing a form or report

Print a form or report in Design or Run mode by doing one of the following:

» Click the Print toolbar button.

e Choose File | Print.

7-18 dBASE SE User’s Guide

Creating menus and toolbars

Most Windows applications offer menus of some kind—standard pulldown menus, popup menus, or both. Most
also feature static or detachable toolbars.

This section describes how to create these objects and integrate them into your dBASE SE applications.

Like all other objects in an object-oriented environment, menus and toolbars can be designed to be completely
reusable by any number of forms. For that reason, we’ll start with the task you’ll face most often—attaching
objects to forms.

Attaching pulldown menus to forms

To attach a pulldown menu to a form, choose your form’s menuFile property, click the tool button, then locate
the .MNU file you want on the form.

If you haven’t already created a .MNU file or don’t have a sample installed, you can create one using the Menu
designer (described later in this section).

Note that at design time, menus don’t appear on your forms. To see an attached menu in action, you have to run
the form. If the menu you’re attaching is also open in the Menu designer, you must close that as well before
running the form.

Also note that if the MDI property of your form is set to true (the default), your pulldown menu appears on the
parent window or application frame, not on the form itself.

Attaching popup menus to forms

Popup menus normally appear when a user right-clicks a form or control. Like dropdown menus, popup menu
files (extension .POP) can be created using a special designer, also described later in this chapter.

However, popups are attached to forms in a different manner than pulldown menus.

To attach a popup menu, you must assign the popup object to your form’s PopupMenu property. Unlike
pulldown menus, however, you can’t make the connection with the popup menu file name alone. To attach a
popup, you need to add some code, either through a codeblock or within a form or control event handler.

The simplest and most common means of attaching a popup to a form is through a form’s onOpen event. If, for
example, you create a popup menu file called MYPOPUP.POP, you can make the menu available to any form by
typing a codeblock like this into the form Inspector’s onOpen event:

{;do mypopup.pop with this, "popup"; this.popupmenu = this.popup}
Alternatively, you can click the onOpen event’s tool button and apply the same code as a linked method:

/I {Linked Method} Form.onOpen
function Form_onOpen
do mypopup.pop with this, "popup"
this.popupmenu = this.popup

Creating menus and toolbars 8-1

Creating toolbars and attaching them to forms

Creating toolbars and attaching them to forms

Note that this topic covers both object creation and attachment. That’s because, like popup menus, you need to
add some code to attach toolbars to your forms. However, unlike pulldown or popup menus—which you can
create using special visual designers—you also have to define your toolbars programmatically, either in a
reusable program or within your form’s code.

Like any other object, toolbar and toolbutton classes have a number of properties that allow you to modify the
behavior and appearance of a toolbar. These properties, some of which are illustrated in the following code
examples, will be described later in this chapter and are covered in detail in the printed and online Language
Reference.

Creating a reusable toolbar

Here’s an example of an object definition program, MYTOOLBR.PRG, which defines a basic two-button
toolbar for use in any form or application.

parameter FormObj
if pcount() <1
msgbox("DO mytoolbr.prg WITH <form reference>")
return
endif
t = findinstance("myTBar")
if empty(t)
? "Creating toolbar"
t = new myTBar()
endif
try
t.attach(FormObj)
catch (Exception e)
/I lgnore already attached error
? "Already attached"
endtry

class myTBar of toolbar
this.imagewidth = 16
this.flat = true
this.floating = false
this.b1 = new toolbutton(this)
this.bl.bitmap = ‘filename ..\artwork\button\dooropen.bmp'
this.b1.onClick = {msgbox("door is open")}
this.b1.speedtip = 'buttonl'
this.b2 = new toolbutton(this)
this.b2.bitmap = 'filename ..\artwork\button\doorshut.bmp'
this.b2.onClick = {msgbox("door is shut")}
this.b2.speedtip = 'button2'

endclass

Note The toolBar and toolButton properties used above - as well as other properties for the ToolBar and ToolButton
classes - are covered in detail in the Language Reference and Help (search for "class ToolBar" or "class
ToolButton™.

Attaching a reusable toolbar

As with popup menus, you can attach a reusable toolbar definition file to your forms with a simple DO
command. However, since forms don’t have a toolbar property, the connection is defined in the toolbar’s own
attach() property. Thus, if you choose to connect the program described above through a form’s onOpen event,
the integration codeblock is simply this:

{;do mytoolbr.prg with this}
Or, if you prefer the linked method approach, click the onOpen event’s tool button and add the integration code:

/I {Linked Method} Form.onOpen
function Form_onOpen
do mytoolbr.prg with this

Of course, you also need to provide a way to restore the toolbar if the user has closed it. You can do that by also
adding the integration code (or codeblock) to the onClick event of another control, such as a menu item or

8-2 dBASE SE User’s Guide

Creating toolbars and attaching them to forms

button. Should the toolbar already be running when it is summoned, findinstance(_) will let you know and let
you block the creation of a new instance.

As is the case with pulldown menus, keep in mind that if your form’s MDI property is set to True, your toolbar is
owned by (and may only be docked to) the form’s parent window or application frame.

Creating a custom toolbar

Defining a custom toolbar within a form uses much of the same basic code described above for defining and
creating a reusable toolbar. The primary difference is that the toolbar is available only to the form in which it is
defined.

Here’s how the same toolbar described above could be adapted for use within a single form:
** END HEADER -- do not remove this line
*

* Generated on 08/20/00
*

parameter bModal

local f

f = new tooltestForm()

if (bModal)
f.mdi = .F. // ensure not MDI
f.ReadModal()

else
f.Open()

endif

CLASS tooltestForm OF FORM
with (this)
onOpen = class::show_toolbar
height = 8.6471
left = 3.625
top = 1.7059
width = 23.75
text=""
endwith

this PUSHBUTTON1 = new PUSHBUTTON(this)
with (this.PUSHBUTTON1)
onClick = class::show_toolbar
height = 1.1176
left=4
top =2
width = 15.875
text = "PUSHBUTTON1"
metric = 0
fontBold = false
group = true
endwith

/I {Linked Method} Form.onOpen
function Form_onOpen

/I {Linked Method} Form.pushbuttonl.onClick
function PUSHBUTTON1_onClick

function show_toolbar
t = findinstance("myTBar")
if empty(t)
? "Creating toolbar"
t = new myTBar()
endif
try
t.attach(form)
catch (Exception e)
/I lgnore already attached error
? "Already attached"
endtry

ENDCLASS

class myTBar of toolbar
this.imagewidth = 16
this.flat = true
this.floating = false
this.b1 = new toolbutton(this)
this.b1.bitmap = 'filename ..\artwork\button\dooropen.bmp'
this.b1.onClick = {;msgbox("door is open")}

Creating menus and toolbars 8-3

Creating menus with the designers

this.bl.speedtip = 'buttonl'
this.b2 = new toolbutton(this)
this.b2.bitmap = 'filename ..\artwork\button\doorshut.bmp'
this.b2.onClick = {;msgbox("door is shut")}
this.b2.speedtip = 'button2'

endclass

Note that the only change to the contents of the earlier program is the removal of the FormObj parameter
definition (and related change to the referenced form object, the form, in the new method called show_bar) and
the removal of the unneeded pcount() parameter check at the top of the file.

Otherwise, the code was simply partitioned and placed in the appropriate areas of the form source, and the new
method, show_bar, was created to hold the instance-checking and toolbar creation/attachment code.

Creating menus with the designers

Two designers are available for creating menus—one for pulldown menus and one for popup menus. To open
them, do one of the following:

» From the main menu, choose File | New | Menu (Alt+FNM) for the pulldown Menu designer, File | New |
Popup (Alt+FNP) for the Popup Menu designer.

» From the Navigator, select the Forms tab, then double-click the Untitled menu icon for the pulldown Menu
designer or the Untitled popup icon for the Popup Menu designer.

¢ From the Command window: enter CREATE MENU or CREATE POPUP.

Note that the only difference in appearance between the two designers is that the pulldown Menu designer
contains a horizontal rule. This rule is the top-level menu border.

The designer menu

When you use either designer, a number of shortcuts are available through the main dBASE SE menu. These
options are available by choosing Menu when either designer has focus.

You can use these shortcuts to insert an item before the current item (Insert Menu Item, Alt+NM or Ctrl+N),
start a new submenu (Insert Menu, Alt+NM or Ctrl+N) or insert a separator (Alt+NT or Ctrl+T) before the
current item in a pulldown or submenu. You can also delete the current item with Alt+ND or Ctrl+U (also see,
"Adding, editing and navigating", on page 8-5.

If you’re designing a pulldown menu, two preset menus are available for insertion anywhere on your menu bar
with the Insert "Edit" Menu (Alt+NE) and Insert "Window" Menu (Alt+NW) choices.

The last item on the Menu list—Toggle Type (Alt+NO)—is available for use on those occasions when you
change your mind about the type of menu you want. It automatically switches the currently selected designer and
converts its contents from pulldown style to popup style—or vice versa—any time.

Building blocks

Building basic menus through the designers is a simple two-step process of adding items, then adding code to
make the items do what you want them to do.

Like any other object, each menu item has its own set of properties available through the Inspector (F11 to
view). The "action" code is applied through an item’s onClick event.

Not all items need to perform an action, however. Some, like top-level items, normally only serve as entry points
to additional menu choices. Lower-level items, and any item in a popup menu, can also serve as entry points to
additional menus. These types of menus are called submenus (also known as "cascading" or "flyout" menus).
File | New on the main dBASE SE menu is an example of this type of menu. And any submenu item can be
specified as an entry point to another submenu.

Another type of "non-action" item is the separator bar, a horizontal line that lets you group items within menus.
You specify a separator anywhere except in a top-level item. To make a separator, set an item’s Separator
property to True.

8-4 dBASE SE User’s Guide

Creating menus with the designers

To provide further visual cues and functionality, you can add graphics, mnemonics, check marks, shortcut keys,
and conditionally enable or disable any item in any menu.

Adding, editing and navigating

To create a new menu, open a new Menu designer or Popup Menu designer window, type the name of your first
item, and press Enter.

The cursor automatically drops a level and opens an editing block for the next item. Use the same sequence for
entering additional items.

To edit items above or below the current item, use your Up and Down arrow keys. Tab and Shift+Tab lets you
navigate left and right through your structure.

To add a submenu, select the item that will be the entry point to your submenu and press Tab. A new editing
block appears to the right of the current item.

To add a new top-level item in a pulldown menu, select the rightmost existing top-level item and press Tab.

Note that other pulldown and submenus are hidden while you create new ones. You can return to view or edit the
others any time by selecting the root item for each.

To insert a top-level or submenu root item in front of an existing one, choose an item, then choose Menu | Insert
Menu (Ctrl+N or Alt+NM) from the main dBASE SE menu.

To delete an item, select the item and choose Menu | Delete Current (Ctrl+U or Alt+ND) from the main dBASE
SE menu. Be aware, however, that deleting a top-level or submenu root item also removes all items and
submenus below the item you are deleting.

You can also perform structural changes by dragging items and entire root/submenu systems from one location
to another within your menus. To move items, just click, hold, drag, and release onto another item. Note that if
you drag a held item onto another top-level or submenu entry point, the pulldown or submenu open up to allow
you to relocate your dragged item.

To see your menus in action, you have to attach your menus to a form (as instructed earlier in this chapter), and
save and close the designer that contains the menu you want to test. You can reopen saved menus for editing or
redesign from the Forms page in the Navigator. As noted earlier, pulldown menus carry the extension .MNU,
and popups are saved as .POP files.

Features demonstration

The following exercise demonstrates a number of menu creation principles and features, including preset menus.
1 Open a new pulldown Menu designer window.

2 Type &File (including the ampersand) at the cursor, then press Enter. Type &Form into the new item entry
box, then press Tab. A new item entry box appears to the right of the current entry. Type &Close into this
box.

3 Ifitisn’t already open, press F11 to open the Inspector. Choose the Events tab, then type form.close() into
your Close item’s onClick event. Press Enter to save the change.

4 Back at the Menu designer, select the top-level "&File" item.

5 Press Tab. A new top-level item entry box appears. Press Alt+NE to insert a complete menu of basic editing
commands. Now press the Tab key again for one more top-level item entry box.

6 Press Alt+NW. This time, a new top-level "&Window" item is created. This item has no subentries yet, but it
will later.

7 Save the menu as MTEST.MNU, then close the Menu designer.
8 Open a new form in the Form designer. Add an entryfield control to the form.

9 Click on the form background. If it’s not already in view, press F11 to view the Inspector. Click the tool
button on the form’s MenuFile property (Menu category), choose your MTEST.MNU file, and click OK.
Keep other form properties at their default settings.

Creating menus and toolbars 8-5

Examining menu file code

10 Press F2 to save (MTEST.WFM, for example) and run the form.

Because this is an MDI form (the default setting), the menu appears on the application frame, replacing the
dBASE SE menu while the form has focus.

Click the Windows menu item; you should see a selectable list of other active dBASE SE windows. Now try the
Edit menu commands. You should be able to use all of these standard Windows text editing commands on the
text in your form’s entryfield control.

The reason these two menus provide full functionality without any coding on your part is that the items use built-
in menubar objects. You’ll see how these objects work in the next topic when we examine the code behind the
menu.

Note Since the properties used to create these preset menus belong only to the menubar class and are not available to
the popup class, you can’t use the properties in a popup menu.
Finally, try your File | Form | Close item to test your first piece of menu action code by closing the form.

Now let’s go to the Source editor to examine the code structure of this menu.

Examining menu file code

The model for building menus is based on the hierarchy and containership of menu objects, not the kind of
menu. You don’t explicitly define menu bars, pulldown menus, or submenus. Instead, you build a hierarchy of
menu objects, where each menu object contains another menu object or executes an action.

Just as a form contains controls, menus objects contain other menu objects. dBASE SE automatically determines
where menus appear based on their level in the hierarchy.

The code below is the source for the menu file described in the previous topic, and illustrates how dBASE SE
interprets and implements a menu structure.

(To view the source for any other menu file, choose a .MNU or .POP file on the Navigator’s forms page, then
choose Open In Source Editor from the file’s context menu. Or you can type modi comm <filename.ext> in the
Command window, where filename.ext is the .MNU or .POP file you want to examine.)

** END HEADER -- do not remove this line
1

/I Generated on 10/24/00

Il

parameter formObj
new mtestMENU(formObj, "root")

class mtestMENU(formObj, name) of MENUBAR(formObj, name)

this. MENU2 = new MENU(this)
with (this.MENU2)

text = "&File"
endwith

this. MENU2.MENU3 = new MENU(this.MENU2)
with (this.MENU2.MENU3)

text = "&Form"
endwith

this. MENU2.MENU3.MENU7 = new MENU(this. MENU2.MENU3)
with (this. MENU2.MENU3.MENU7)

onClick = {;form.close()}

text = "&Close"
endwith

this. MENU12 = new MENU(this)
with (this.MENU12)

text = "&Edit"
endwith

this. MENU12.UNDO = new MENU(this. MENU12)
with (this.MENU12.UNDO)

text = "&Undo"
shortCut = "Ctrl+2"
endwith

this. MENU12.CUT = new MENU(this. MENU12)
with (this.MENU12.CUT)

text = "Cué&t"

shortCut = "Ctrl+X"

8-6 dBASE SE User’s Guide

Examining menu file code

endwith

this. MENU12.COPY = new MENU(this. MENU12)
with (this. MENU12.COPY)

text = "&Copy"
shortCut = "Ctrl+C"
endwith

this. MENU12.PASTE = new MENU(this. MENU12)
with (this.MENU12.PASTE)

text = "&Paste”

shortCut = "Ctrl+V"
endwith

this. MENU17 = new MENU(this)
with (this.MENU17)

text = "&Window"
endwith

this. MENU11 = new MENU(this)
with (this.MENU11)

text =""
endwith

this.windowMenu = this.menul7
this.editCutMenu = this.menul2.cut
this.editCopyMenu = this.menul2.copy
this.editPasteMenu = this.menul2.paste
this.editUndoMenu = this.menul2.undo

endclass
In the code above, after the menus are defined, certain key menus are assigned to menubar properties which

automatically give the menus their required functionality. For example, when this.menul2.copy is assigned to
the menubar’s editCopyMenu property, the copy menu takes on the following characteristics:

» The Copy item remains dimmed unless there is highlighted text in an appropriate object on the form, such as
an Entryfield or Editor object.

» When text is highlighted, the Copy item is enabled.
» When the Copy item is selected, the highlighted text is copied to the Windows clipboard.
The remaining Editmenu properties function in a similar fashion.

You can modify the preset Edit menu by adding, inserting, or changing item characteristics from the pulldown
Menu designer properties sheet.

The windowMenu property is useful only with top-level menus on MDI forms. The menu assigned to
windowMenu will automatically have a menu added to it for each open child window (such as all other active
dBASE SE windows). This feature provides a means for the user to easily switch windows.

Another important menubar feature is the onInitMenu event, which is fired when the menu system is opened.
You can use this event to check for certain conditions and then modify your menus accordingly.

If, for example, you offer a Clear All item on your Edit menu, you can set an onlnitMenu(_) event to disable the
item if no tables are open when your form opens. To do that, you could add a pointer to the top of your menu file:
NEW MTESTMENU(FormObj,"Root")

CLASS MTESTMENU(FormObj,Name) OF MENUBAR(FormObj,Name)
this.onInitMenu = class::chkClearAll

And then create a method to handle the event:

function chkClearAll
if alias() ==""
this.edit.clear_all.enabled = false
endif
return

Changing menu properties on the fly

You’ll often need to modify menu properties while a form is open and your application is running.

For example, you might want to change what menu items are offered based on the currently selected control. The
following are two event handlers for the OnGotFocus and OnLostFocus properties of a grid object, respectively.
When the grid gets focus, the previously defined Edit menu is enabled; when the grid loses focus, the menu is
disabled.

Creating menus and toolbars 8-7

Menu and menu item properties, events and methods

function GridMenus

/I Assign to OnGotFocus of grid object

form.Root.Edit.Enabled = true

return

PROCEDURE NoGridMenus

/I Assign to OnLostFocus of grid object

form.Root.Edit.Enabled = false

return

Menu and menu item properties, events and methods

Note

Each menu (choose form.root in the Inspector’s drop-down object selector list) and menu item
(form.root.itemname) has its own set of properties, events and methods, only a few of which were applied in the
samples above. The following tables describe the primary elements you’ll use to define your menus.

Where an element is available to only one of the menu classes, the class is noted in the tables below. Otherwise,
the element is available to both menubar and popup classes.

Table 8.1 Menubar and popup root properties, events and methods

Property
Alignment (popup only)

EditCopyMenu,
EditCutMenu,

EditPasteMenu,
EditUndoMenu
(menubar only)

Description

Lets you align items on your popup menus and submenus. Options are left-aligned, centered, and
right-aligned. Default is left-aligned.

These four built-in objects are available for assignment to items on a preset Edit menu on a pulldown
menu (menubar class). To access properties for these objects, click the object’s Tool button.

Left (popup only) Sets the position of the left border of the popup. Default is 0.00.

Name String used to reference the root menu object. Except for Edit and Window menu names (which use
the defaults EDIT and WINDOW), default for custom menus is ROOT. A reference to a default item
would thus be this.root.menuNN, where NN is a system-assigned item number.

Top (popup only) Sets the position of the top border of the popup. Default is 0.00.

TrackRight (popup only)

WindowMenu (menubar
only)

Logical value (default true). Determines whether popup menu items can be selected with a right
mouse click. If set to false, the popup menu is still opened with a right-click, but items must be
selected with a left-click.

This built-in object is available for assignment to items on a preset Window menu on a pulldown
menu (menubar class). To access properties for the WindowMenu object, click the object’s Tool
button.

Event Description

onlnitMenu Codeblock or reference to code that executes when the menu is initialized (when its parent form is
opened).

Method Description

Open (popup only) Opens the popup menu.

Release Removes the menu object definition from memory.

Table 8.2 Item properties, events and methods

Property Description
Checked Logical value (default false). Adds or removes a checkmark next to the item text.
CheckedBitmap Graphic file (any supported format) or resource reference. When the menu is run, the graphic you

COPY, CUT, PASTE, or

specify appears next to an item to indicate that it is currently selected. Alternative to the Checked
property. Works with UncheckedBitmap to offer visual cues to the current "on/off" state of an
item.

If using a preset Edit menu, these references offer a Tool button to let you view or modify

UNDO (dBASE SE. variable
properties; available only to
menubar class if preset Edit
menu is in place)

Enabled

properties for the selected item.

Logical value (default true) that dims or activates this item.

8-8 dBASE SE User’s Guide

Toolbar and toolbutton properties, events and methods

Table 8.2 Item properties, events and methods

Property
HelpFile

Helpld

Name

Separator

ShortCut

StatusMessage

Text

UncheckedBitmap

Description

Specifies the Windows Help file that provides additional information about this item. If you
choose to use a Help file, you must also specify a Help topic reference in the Helpld property.

Specifies a Help topic that you want to appear when the user presses F1 while selecting this item.
If you specify a Windows Help file in the HelpFile property, Helpld is a topic reference within
that Help file. You can either specify a context ID number (prefaced by #) or a Help keyword.

String used to reference the item object. Except for Edit and Window menu names, default is
MENUnNN, where nn is a system-assigned number.

Designates a menu item as a separator bar. A separator bar appears as a horizontal line with no
text; a user can’t choose or give focus to a separator bar. Use separator bars to begin a group of
related menu items. You can also define a separator in the Menu or Popup Menu designers by
choosing Menu | Insert Separator from the main dBASE SE menu.

Specifies a keystroke or keystroke combination the user can press to choose the menu item.
Shortcuts, also known as accelerators, provide quick keyboard access to a menu item. For
example, you can set the ShortCut for an "Exit without saving" menu item to Ctrl+Q.

To define a shortcut key for a menu item, enter it in the Shortcut property. For example, to specify
the key combination Ctrl+X to exit a menu, enter CTRL-X. Thereafter, when the user presses
Ctrl+X, the OnClick event occurs automatically. This key combination also appears in the menu
title.

Type text here to display a message in the status bar (if a status bar object is included) of your non-
MDI form, or, if you are attaching the menu to an MDI form, in the status bar of your application
frame.

Item name, as it appears on the menu. You can also define item names directly in the Menu
designer. To specify a letter as the mnemonic key that will be used to access the item, precede the
letter in the text string with an ampersand (&). For example, Help menus are usually defined as
&Help.

Graphic file (any supported format) or resource reference. When the menu is run, the graphic you
specify appears next to the item to indicate that it is not currently selected. Works with
CheckedBitmap to offer visual cues to the current "on/off" state of an item.

Event Description

onClick "Action code" that executes when the item is clicked. If the item is an entry point to a pulldown or
submenu, then no code is required for this event. Nor is code required for the items in the preset
Edit or Window menus (described earlier in this chapter).

onHelp Optional code that executes when the user presses F1. Use this to provide user information as an
alternative to using the HelpFile and Helpld properties to define an online Help topic.

Method Description

Release Removes the object definition from memory.

Toolbar and toolbutton properties, events and methods

Each toolbar and toolbutton has its own set of properties, events and methods, only a few of which were applied
in the samples above. The tables on the next few pages describe the primary elements you’ll use to define your
toolbars.

You can find additional toolBar examples in the samples that come with dBASE SE and more detailed coverage
of ToolBar class elements, with examples, in Help (search for "class ToolBar" or "class ToolButton™).

Tip To inspect all toolbar and toolbutton properties, methods and events, as well as the defaults for each, type four
lines like this into the Command window:

t1 = new toolbar()
t2 = new toolbutton(t1)
inspect(t1) // opens the Inspector with toolbar properties visible

Creating menus and toolbars 8-9

Toolbar and toolbutton properties, events and methods

inspect(t2) // opens the Inspector with toolbutton properties visible

Table 8.3 Toolbar properties, events and methods

Property
Flat

Floating

imageHeight

imageWidth
Left

Text

Top

Visible
Event
onUpdate

Method
Attach

Detach

Description

Logical value (default true) which toggles the appearance of buttons on the toolbar from always
raised (false) to only raised when the pointer is over a button (true).

Logical value (default false) that lets you specify your toolbar as docked (false) or floating
(true).

Adjusts the default height for all buttons on the toolbar. Since all buttons must have the same
height, if ImageHeight is set to 0, all buttons will match the height of the tallest button. If
ImageHeight is set to a non-zero positive number, images assigned to buttons are either padded
(by adding to the button frame) or truncated (by removing pixels from the center of the image or
by clipping the edge of the image).

Specifies the width, in pixels, for all buttons on the toolbar.

Specifies the distance from the left side of the screen to the edge of a floating toolbar.

String that appears in the title bar of a floating toolBar.

Specifies the distance from the top of the screen to the top of a floating toolbar.

Logical property that lets you hide or reveal the toolbar. Default is true.
Description

Fires when the application containing the toolbar is idle, intended for simple routines that
enable, disable or otherwise update the toolbar. Because this event fires continuously when the
application is idle, you should avoid coding elaborate, time-consuming routines in this event.

Description

Attach(<form object reference>) establishes communication between the toolbar and the
specified form and sets the Form property of the toolbar. Note that a toolbar can be attached to
multiple MDI forms or to a single SDI form. For examples, see Help (search for “class
ToolBar").

Detach(<form object reference>) ends communication between the toolbar and the specified
form, and closes the toolbar if it is not attached to any other open form.

Table 8.4 Toolbutton properties, events and methods

Property
Bitmap

BitmapOffset

BitmapWidth

Checked
Enabled
Separator

SpeedTip
TwoState

Visible
Event
onClick

8-10 dBASE SE User’s Guide

Description

Graphic file (any supported format) or resource reference that contains one or more images that
are to appear on the button.

Specifies the distance, in pixels, from the left of the specified Bitmap to the point at which your
button graphic begins. This property is only needed when you specify a Bitmap that contain a
series of images arranged from left to right. Use with BitmapWidth to specify how many pixels to
display from the multiple-image Bitmap. Default is O (first item in a multiple-image Bitmap).

Specifies the number of pixels from the specified Bitmap that you want to display on your
button. This property is only needed when you specify a Bitmap that contain a series of images
arranged from left to right. Use with BitmapOffset, which specifies the starting point of the image
you want to display.

Returns true if the button has its TwoState property set to true. Otherwise returns false.

Logical value (default true) that specifies whether or not the button responds when clicked.
When set to false, the operating system attempts to visually change the button with hatching or a
low-contrast version of the bitmap to indicate that the button is not available.

Logical value that lets you set a vertical line on the toolbar to visually group buttons. If you
specify a separator button, only its Visible property has any meaning.

Specifies the text that appears when the mouse rests over a button for more than one second.

Logical value that determines whether the button displays differently when it has been depressed
and consequently sets the Checked property to true. Default is true.

Logical value that lets you hide (false) or show (true) the button. Default is true.
Description
"Action code" that executes when the button is clicked.

Using the Source editor and other
code tools

This chapter introduces three tools for working with code in dBASE SE:

The Source editor

A full-featured, customable ASCII text editor, the main window for editing dBL code (both .PRG files and
other project-related files, such as form, report, menu, query, and data module files). The Source editor
displays all the code in a file. To view or edit code in the Source editor, press F12 when a design window has
focus, or right-click a file in the Navigator, and choose Open In Source Editor. (Not all files have this
command available).

You can have several files open in the editor; each opens on a separate page of the editor, with its name on the
page tab. Menus and the toolbar change, as appropriate, depending on the type of file you are editing.

The Code Builder

A dialog box available from the Inspector, that lets you conveniently edit code blocks (either commands or
expressions). Since code blocks must be on one line, they can be cumbersomely long when you’re editing in
the Source editor. The Code Block Builder displays the line of code set up in a dialog box, command by
command, for easy editing without horizontal scrolling.

The Command window

A two-paned command-line interface that lets you experiment with dBASE SE commands and expressions,
instantly viewing results. You can use the Command window freely at any time. To open it, choose View |
Command Window. Your work in the Command window is not saved.

Using the Source editor

Note

The Source editor contains the entire source code for the form, report, menu, query, or data module you’re
designing. If you’re designing several files, the source for each one appears on a different tabbed page. Likewise
for a .PRG file, which appears in the same editor.

If you want, you can choose not to have tabbed pages in the editor but to open more than one instance of the
Source editor, instead. Set this preference in the Editor Properties dialog box, Display page (Properties | Editor
Properties).

To open the editor, do one of the following:

Design a new or existing form, report, menu, query, or data module. Both the design view and the editor open,
with the design view having focus. Press F12 to switch focus to the editor. (If in a prior session you closed the
editor, it does not open automatically with the design view, but pressing F12 will open it.)

Right-click a file in the Navigator, and choose Open In Source Editor. (Not all files have this choice.)

Press F12 when you have a designer open (except the Table designer).

Using the Source editor and other code tools 9-1

Using the Source editor

Thereafter, use F12 to toggle between design view and the code page for any given designer file. Changes made
in either the Source editor or visual designer are reflected by the other when you move focus between them.
Code is automatically compiled when you shift focus to the designer. If an error occurs during compilation,
dBASE SE displays an error message and points to the offending line in the file.

If an error occurs during runtime, dBASE SE displays a dialog box, giving you the opportunity to fix the error. If
you cancel the Fix dialog box, then the only copy of the work is in a temporary disk file which is placed on
another page (or another instance) of the editor. You can do with this as you wish.

Two-pane window with tree view

The Source editor is a two-pane window:

» The left pane is a tree view showing the hierarchy of the current file (including the this object for classes with
a constructor). You can enlarge the pane, or you can hide it. To do either one, move the split bar to the left or
right, using the mouse. The tree view is dynamically updated during program editing, unless the tree view is
closed.

You can expand the nodes in the tree view pane by clicking the plus signs and collapse the nodes by clicking
the minus signs, same as in the Windows Explorer. The expanded or collapsed state of nodes and the selected
item are maintained in the tree-view pane when you take actions in the right-hand pane.

The tree view displays object bitmaps for the standard controls. You can turn this off in the Editor Properties
dialog box, Display page (Properties | Editor Properties).

» The right pane contains the code. Click an item in the tree view to highlight the first line of that object in
code. Double-click an item in the tree view (or select it and press Tab) to jump to the start of that object in the
code.

You cannot use the Source editor to select an object in the Inspector. You must do that in the design window or
in the Inspector, itself.

Notes on the Source editor

Here are additional comments on the Source editor. For more information on editing, including keystroke
commands, see Help.

e Compared to the former Method editor:

During stream-out, procedures have a comment generated inline which identifies all methods linked to them.
This plus the hierarchy visible in the tree view replaces the function of the "linktext" static text control that
appeared in the former Method editor.

The tree view points at the top and bottom of the source files, showing the equivalent of "header" and
"general" in the former Method editor.

» When editing a .PRG file, the Method menu’s New Method, Delete Method, and Verify Method commands
are available. They work on whatever "method" is at the current cursor position. If no method can be
identified, the menu commands are unavailable.

» When designing a form, report, menu, or data module file, three more commands are available on the Method
menu: Edit Event, Link Event, and Unlink. Edit Event can generate wrappers for functions or procedures that
are not yet part of the source, useful with the new tree view.

 If you attempt to edit a method in a base class, and you elect not to override that method in the derived class,
dBASE SE opens the source file for that base class in the designer. If it is already opened, it is given focus, and
the cursor is positioned at the method.

» When you switch focus from the designer to the editor, it purges the editor’s Undo buffers.
* Opening a file named in code:

Choosing Edit | Open File At Cursor opens a highlighted file, or the file at the cursor position. If no matching
file is found, the Open File dialog box appears.

Choosing Edit | Open File At Cursor when a block of selected text includes more than just the file name, or no
file name at all, opens the Open File dialog box.

9-2 dBASE SE User’s Guide

Creating a new method

Files with WFM, .CFM, .REP, .CRP, .PRG, .CC, and .H extensions are opened in another instance of the

editor. Other files are opened in their specific visual designer (for example, .DBF files are opened in the Table
designer).

File names with extensions unknown to dBASE SE and not registered with Windows produce an error.

Creating a new method

To create a new method, select an event in the Inspector, then click the tool button to the right of the text box.
This creates the skeleton of a new method and links it to the event. The Source editor receives focus.

You can write a new method to link to the current event in the Inspector, or you can display the Edit Event dialog
box to link the event to an existing method.

Note A method is a function defined in a class. The Form and Report designers are object-oriented; forms and reports
are classes. Therefore all methods are defined and appear in the Source editor with the reserved word function,
and are sometimes (loosely) referred to as functions.

The Code Block Builder for editing code blocks

A code block is a data type that can be stored in a variable or property. Code blocks are used in forms and reports
to define events or text properties.

Because code blocks cannot span multiple lines, using the Source editor to edit a long code block can be
cumbersome. So, when you choose to, you can open the Code Block Builder, which temporarily lays out the
code one command per line, with the parameters in a separate text box.

Figure 9.1 Code Block Builder

Build Codeblock
Parameters:
— Body
Commands ar Expreszion;
Th_e_ code is laid aut neatly for 2azy iF[NOT this.form. rowset. nesti-1]) =
editing. hen you close the dialog thiz. form. rowzet. nest] |
box, it becomes one line again endif -
super:RefreshRowState(] =
When entering new code, choose ~ Type
Command or E spression ' Command " Expression
2k, I Cancel | Help |

Edit what you need to, and choose OK. The code block appears in your code as one line again.

You don’t have to open the Code Block Builder if you don’t want to. You can edit directly in the Inspector or the
Source editor.

To create or edit a codeblock

To create a new codeblock for an event,

1 Select CodeBlock from the event’s drop-down Type list.

2 Click the wrench tool beside the event to open the Code Block Builder.
To create a new codeblock for a Text control,

1 Select its text property in the Inspector.

Using the Source editor and other code tools 9-3

The Command window

2 Select CodeBlock from the text property’s drop-down Type list.
3 Click the wrench tool beside the property to open the Code Block Builder.

Editing an existing code block

If you have an existing code block you want to edit (it will be in an event or the text property of a Text control),
you can open the Code Block Builder dialog box in these ways:

¢ Foran event,
» Select the event in the Inspector, and then select the wrench tool beside it, or

» Choose Method | Edit Event, and if a code block is already associated with the event, the Code Block
Builder opens (otherwise, the Source editor opens).

» For a Text control, select its text property in the Inspector, and then select the wrench tool beside it.
Make your changes in the Parameters text box and in the Commands Or Expression text box.

When you click OK, dBASE SE checks the syntax of the code block. If an error exists, dBASE SE attempts to
repair the error. If it can’t, a warning message box notifies you of the error, and the Code Block Builder stays
open so you can fix the error. Focus is placed on the text box where the error occurs: Parameters or Commands
Or Expression. If you don’t know how to fix the error, you can choose Cancel and dBASE SE keeps the previous
code.

If the code block is error-free, then the Code Block Builder closes. The code block is condensed back into one
line and displayed in the appropriate line in the Inspector. The indentations and carriage returns are removed.

The Command window

The Command window is used to directly execute one-line dBASE SE commands. It is handy for testing simple
expressions and immediately seeing the results in the results pane. (It is the dBASE SE counterpart to the dot
prompt found in dBASE 1V and earlier DOS versions of dBASE.)

Note The Command window is for temporary work only; you cannot save your work. However, you can copy the
contents of the window or drag and drop to a source file. You can also print the contents (select what you want to
print, and choose File | Print).

To use your own functions in the Command window, you must first load them:
set procedure to <filename> additive

To open the Command window, choose View | Command Window.

The Command window has two panes, as shown in Figure 9.2

Figure 9.2 The Command window

¢ Command =]

| Input Pane. Type one-line
——— commands here.

To change the relative size of the
panes, drag the center divider. To
4 bl restare them to equal size,
double-click the divider

Resultz Pane

[+ | 2P

Command window panes have specific functions:

9-4 dBASE SE User’s Guide

The Command window

» The input pane is where you enter interactive commands You might use the input pane in this way if you find
typing commands easier or faster than using the mouse and menus.

The input pane echoes your actions in the dBASE SE interface, keeping a history of the commands you’ve
executed. For example, when you create a new table by double-clicking the Untitled table icon, the Command
window shows that you’ve executed a CREATE command.

» The results pane is where your command output appears, unless your commands create or call separate
windows. It is also the default destination for the output of many programs. The results pane retains the last
100 lines.

To change the relative size of the two panes, drag the center divider. To restore them to equal sizes, double-click
the divider.

To clear the contents of the input pane, close the window and select View | Command Window. To clear the
results pane, choose Edit | Clear All Results.

Typing and executing commands

To execute a command, type it in the input pane and press Enter. You can also click the Execute Selection button
on the toolbar or choose Edit | Execute Selection. You can delete commands like any other text. The commands
you enter in the Command window remain there until you close the window or exit dBASE SE.

Because pressing Enter executes the command line, you must press the down-arrow key to enter more than one
line into the Command window. The maximum number of characters per line is configurable in the Editor
Properties dialog box. The maximum number of lines the input pane can hold is limited by virtual memory.

The command line defaults to insert mode, as indicated in the status bar. To switch between insert and overwrite
modes, press the Ins key.

Executing a block of commands

In addition to typing multiple command lines, you can paste lines of command text from another source. You
can also execute a block of command lines, provided the block does not contain nested structures or methods.

To execute more than one line of text in the input pane, select the lines with the mouse or use Shift and the arrow
keys. Press Enter, or click the Run button on the toolbar, or choose Edit | Execute Selection.

Reusing commands

To reuse commands you’ve already entered in the input pane,
1 Scroll the window, if necessary, to display the commands you want.
2 Click the command line you want, or select a block of commands.

3 Execute the command (or commands) by pressing Enter, clicking the Run button, or choosing Edit | Execute
Selection.

Editing in the Command window

Edit text in the input pane as you would in a text editor, using standard editing keys such as Backspace and
Delete, and the Edit menu commands. Use the Edit | Search commands to search for and replace text in the input
pane.

The command line is the line in the input pane containing the insertion point.

You can cut or paste code from Help or use commands from a program file by opening the file, copying the
commands, and pasting them into the Command window. After the commands are in the Command window,
you can test or modify them. The sample files provided with dBASE SE are a good source of working
commands.

Using the Source editor and other code tools 9-5

The Command window

Saving commands into programs
If the input pane contains dBL code you want to use again, you can copy and paste it into a new program (.PRG)
file or insert it into an existing program file.

You can also mark a block and choose Edit | Copy To File. dBASE SE displays the Copy To File dialog box so
you can name the new file for the selected text. By default, the file has a .PRG extension, but you can change it
to another extension. If a block is not marked, the Edit | Copy to File is grayed out.

9-6 dBASE SE User’s Guide

Debugging applications

Debugging is the process of locating and eliminating errors—bugs—from an application. Use the dBASE SE
Debugger to repair broken code and resolve problems in your forms, reports and programs.

With the Debugger you can:
» Load and debug multiple files.

 Control program execution by stepping through an entire program line by line or skipping to defined
breakpoints.

» Monitor the values of variables, fields, and objects. You can even make temporary changes for testing
purposes, and then update your code using the dBASE SE Source editor.

» View subroutines (methods, procedures, and functions) that the main program calls, and track the points at
which each is called.

» Stop program execution at any point, or run full-speed to the cursor position.

* Run the Debugger as a standalone application to debug compiled programs.

Types of bugs

The two most common types of bugs are syntactical and runtime errors.

Errors in syntax include such oversights as misplaced braces or endif statements, and are generally caught by the
compiler before you even get to the debug stage. If you run uncompiled code through the Debugger, however, it
will easily catch any syntactical errors.

Runtime errors, such as calls to non-existent tables, are also quickly exposed by the Debugger, which
automatically halts at the offending reference.

When you are stopped by any error, you can either cancel or suspend further execution of the program, ignore the
error and continue running the code through the Debugger, or note the problem, open your dBASE SE Source
editor, fix the code, and then return to the Debugger to check for additional errors.

The third, and least obvious type of bug is an error in program logic, and these are not detected so easily. If, for
example, your program includes a method that is supposed to execute after a certain event, but the event is
bypassed, you may need to use all the debugging power described in this chapter to track down and correct the
problem.

Using the Debugger to monitor execution

There are three ways you can use the Debugger to monitor how your program executes:

* Run the program locally from the dBASE SE integrated development environment (IDE). Running from the
IDE is convenient for checking code syntax or various parts of your program while you develop it.

Debugging applications 10-1

General debugging procedure

» Compile your application, then debug it by typing debug <programname.exe> into the Command window.
This method provides a "real world" test, showing how your program accesses tables, for example. After
running your tests, you can use the dBASE SE Source editor to make any needed adjustments.

» Runthe Debugger as a standalone application, set breakpoints, then run your program from dBASE SE. When
the program reaches a breakpoint, control is handed over to the Debugger.

General debugging procedure

This section gives you a quick overview of debugging procedures. The process is examined in greater depth in
subsequent sections.

The Debugger is always available whenever you run into an error when in Run mode. To open the Debugger and
deal with the error on the spot, you only need to click the Debug button in the error dialog. When the Debugger
opens, you can then proceed from step 2 in the instructions below.

Alternatively, you can run it before running your program, then choose a program to debug. Here’s how:

1 Start the dBASE SE Debugger by right clicking on a source file in the Navigator and choosing Debug. The
program’s code appears in the Debugger’s Source window, under a tab with the file’s name. If you open
multiple programs, each appears under its own labeled tab.

2 You can then configure a number of options:

» If you intend to pause the execution of the program at certain points or isolate a section of the code for test-
fix-test cycles, set breakpoints by double-clicking the Stop Hand pointer at the left of the line before which
you want a breakpoint.

* Open any tool windows you intend to use, for example, to watch variables.
3 If you set breakpoints, or if any kind of error occurs
e The Error Message box displays the dBASE SE error message. Click OK.

e The Debugger’s Source window appears. The offending line immediately precedes the blue-highlighted
line.

» Check for the more obvious and typical errors: a misspelling or missing punctuation or spaces.

 Inspect your public or private variables and expressions by holding the cursor over a variable until a
speedtip appears with the variable’s current value. This can give you a clue about what went wrong. You
can also view all variables in the Variable tool window or set watchpoints for particular expressions and
monitor these in the Watch tool window. The debugger, however, won't find the value of a LOCAL
variable.

 If the form does not appear quite the way you intended when you created it in the Designer, try adjusting
some of the display parameters in one of the tool windows. If this works, make the same changes
permanently in the code by editing the program in the dBASE SE Source editor.

 For other types of errors, return to the main dBASE SE Source editor, locate the offending line and make
your corrections. Save the file, then restart your program to check the results.

4