User’s Guide

dBASE
Plus

release) 1.5 for Windows® 98,2000, NT
ME, XP and Vista

dataBased Intelligence, Inc. ~ Vestal, NY
http://www.dbase.com ~ news://news.dbase.com

dataBased Intelligence, Inc. or Borland International may have patents and/or pending patent applications
covering subject matter in this document. The furnishing of this document does not give you any license to
these patents.

COPYRIGHT © 2008 dataBased Intelligence, Inc. All rights reserved. All dBASE product names are
trademarks or registered trademarks of dataBased Intelligence, Inc. All Borland product names are
trademarks or registered trademarks of Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

Contents

il

Chapter 1 Source Editor behavior 10
Introduction to dBASE Plus 1 Table Designer behavior. 11
Welcome to dBASEPlus!., 1 Optimized ReportViewer 1
What is dBASE Plus?) Overview of dBASE Plus version2.5. 11
dBASE Newsgroupso 2 Mouse events . ..o 1
The dBASE Plus Knowledgebase:. 2 GridClass . . .o 1
Changes from earlier versions 2 Project Explorer 1
Visual dBase 5.x through Visual dBase 7.0 2 TreeView. ... 12
Report objects and the integrated Report designer 3 ArmayClass 12
Project Explorer, 3 Report .o 12
Dataobjects. 3 Inspector. ... 12
Visual designers 3 app Object 12
ActiveX integration. 4 _app-frameWin ... 12
The TOSPECIOT « + « « v o v v e e e e e e e e s s 4 Procedurefiles. 12
Full-featured Source editor 4 Report Designer 12
SQL designer . . . « o o oo 4 Error Handling. 12
BDE Administrator and database support 4 CHOOSEPRINTER() and choosePrinter() 13
DBF7 file format features 4 Overview of dBASE Plus version2.6. 13
Samples and sample viewer 5 Windows XP Themes 13
Changes since Visual dBASE7.0 5 ABASEIDE .. 13
Form class Propertios . .« » » o+ v v v v e v e e e s 6 FormControls, 13
Rowset class properties and methods. 6 New Image Class properties. 13
app object properties 6 PushButton. 14
app object property used to override Rowset SET SKIP Mouse Wheel Support.o 14
behavior. oo 6 Grid ..o 14
Date Functions 6 Rectangle 14
New Preprocessor identifier 6 MousePointero 14

A few words about Source Aliasing and Dynamic External GETFONT() ... 14
OBICCES © + + o oo 6 ReportViewer 14
DEO - Dynamic External Objects 7 Error Dialog 14
Rowset class enhanced to support OODML version of SET Exception Handling 14
SKIP behavior . . . o oo 7 Reports. . . v 14
New _app object property used to override Rowset SET LISBOX . v e 14
SKIP behavior 7 Enhanced Version Info in core product files. 14
New error handling properties 7 Project Explorer 15
Starting dBASE Plus or application .exe without using the dBASE Plus Installer. 15
BDE. . .] Apache Configuration Wizard. 15
Startup optimizations for Web applications] Overview of dBASE Plus version2.61 15
Change to command line for PLUSRun.exe 8 New Bundled ODBC Drivers 15
Overview of dBASE Plus version 2.0 . - . 9 Streamlined client application deployment 15
dBASE Plus Server Side Web Components 9 Database Class. 15
New Class. . 9 Entryfield and SpinBox Classes. 15
Changes to the Command Line for PLUSrun.exe 9 Exception Handling/Security 15
Array class properties, events and methods 9 Grid Class 15
Form class properties, events and methods. 9 Project Explorero 16
Grid class properties, events and methods 9 Query Class ... o 16
Overview of dBASE Plus version2.2 10 Rowset Class. 16
New Project Explorer. 10 Source Editor 16
New Class. 10 Variant Support Lo 16
Designer class properties, events and methods. 10 dQuery (Developer's Edition v3.03). 16
Existing property now included in the ComboBox and Editor AgSUIM() o 16
classes. 10 ArgVector()o 17
Existing property now included in the Listbox class. . . 10 Editor Class """""""""""" 17
GETFILE(), PUTFILE() functions, and getFile () method EntryField Class 17

10 FormClass., 17
onNotifyevent 10 Form Designer. 17
CditOrTYpe PrOPerty . « « « « + o o e e e 10 mousePointer Property 17
Gridbehavior. 10 MSGBOX(). .. oo 18
Grid and Browse object behavior. 10 onMouseOver [onMouseQut Events - .. 18

Printer Support 18

Project Explorer 18
QueryClass. o oo o 18
QUITCommand 18
Report Designer 18
RowsetClass 19
Runtime Application 19
SAVE ... LIKE/LIKE()/LIKEC() 19
Source Editor 19
SpinBoxClass 19
StreamSource Class. 19
SubformClass 20
Table View - Context Menu 20
TreeView 20
XP Theme Support 20
Create Table. 20
Database Connection Wizard. 20
Datamodule Code Generation 20
Export Wizard 21
Import Wizard 21
Miscellaneous. 21
Multi-Table View. 22
One-Click Windows Application. 22
Parent/Child Wizard 22
Reports 22
SetOrderDialog 22
SQL Expression Generation 22
StarFilter 23
WebWizards 23
XP Theme Support, 23
Overview of dBASE Plus version 2.61.1 23
ListBoxClass. oo ... 23
ArraydirandDIR. o Lo 23
PushButtonClass 23
GridClass. e 23
Overview of dBASE Plus version2.61.2 23
ComboBOX 23
Notebook, 24
Project Explorer 24
Overview of dBASE Plus version2.61.3 24
ComboBox 24
GetDirectory() 25
GetFile() / array.getFile() / PutFile() 25
Project Explorer 25
Overview of dBASE Plus version2.61.4 25
GridClass. 25
Grid editorControls. 26
Form and SubForm Class. 26
New systemTheme properties 26
CodeSigning oo v v 27
Overview of dBASE Plus version2.61.5 27
RowsetClass 27
dBASE Plus documentation. 27
Typographical conventions. 28
Documentation updates and additional information resources28
Software registration 28
Chapter 2
Installing dBASE Plus and connecting
to an SQL database server 29
What youneedtorun dBASEPlus 29
HARDWARE. 29

OPERATINGSYSTEM. 29
NETWORKS 29
Products and programs in your dBASE Plus package 30
InstallingdBASE Plus, 30
What happens during installation. 30
Vista compatibility for dBASEPlus 31
Vista Security modes and Manifest files 31
Running dBASE Plus IDEin Vista. 31
Windows XP SP2 compatibilitymode 33
Running a deployed .exein Vista. 33
Running a deployed .exe in Vista across a network. 34
HELPFiles 34
Un-installingdBASEPlus 34
How to connect to an SQL database server. 34
Install and configure the server software 34
Configure the Borland Database Engine (BDE) 35
Listing SQL tables in the Navigator 35
Chapter 3
Introduction to programming in dBL 37
"Hard coding" vs. visual programming. 37
Advantages of event-driven programs 37
How event-driven programs work 38
Developing event-driven programs. 40
Chapter 4
Creating an application 41
Creating an application (basicsteps) 41
The Project Explorer 42
Starting a New Project 42
Adding anexisting file: L. 44
Creating a new file to add to the Project: 44
A few thingstoconsider. 44
Translating the Project Fileline 45
Converting the pathnames 45
Converting relative pathnames: 45
Opening a .PRJ file in the dBASE Plus Source Editor: . .45
OpeningaProject. 46
The Detailstab. 46
The Sourcetab. 46
The Viewertab. 46
Creating an Application. 46
Creating a DEO Application 47
DEOFolders. 47
Selecting the DEO Folder For Each File 47
Selecting the DEO folder foreach file 47
Building the Executable. 48
INIfiles. oo 48
Encrypted Tables 49
OCXandDLLcontrols 49
Usinglnno. 49
The Defaultstab 50
TheFilestab. 50
Flags Parameter (Filestab) 51
The Menu Grouptab. 54
The Runtimetab. 55
The Licensetab 55
The BDE Settingstab 56
The INItab. 56
The Scripttab 57
Building the user interface 57

Form design guidelines. 58

Goal of formdesign 58

Purposeofaform 58
Some guidelines for data entry forms 58
Designing the form layout 59
Guidelines for usingthe z-order 59
Creatingaform 60
Using the Form wizard 60
Using the Form designer. 60
WFM filestructure 61
Form class definition. 62
How the contents are generated 62
Editinga WFMfile 62
Editing the header and bootstrap. 63
Editing properties in the WFMfile 63
Types of formwindows 63
MDI and SDI applications 64
Modal and modeless windows 64
Customizing the MDI form window. 64
Standard features of MDI windows: 64
Using multi-page forms 65
Global page (forms) 65
Navigation buttons (form pages). 65
Creating a custom form, report, or data module class. 66
Usingacustomeclass., 66
Creating custom components 67
Creating custom components 67
Adding custom components to the Component palette . . . 68
Removing custom components from the Component palette 68
Chapter 5
Accessing and linking tables 70
The dBASEdatamodel 70
Queryobjects. 70
SQLoproperty 71
rowsetproperty 71
Rowsetobjects 71
The row cursor and navigation. 71
Rowsetmodes 72
Rowsetevents. 72
Rowbuffer 72
Fieldobjects 72
value property. Lo 72
Using datalinks 73
Databaseobjects L. 73
Accessingadatabase 73
Database-level security 73
Database-level methods 73
Default Database object 73
Sessionobjects 73
StoredProc objects 74
DataModRefobjects 74
Linking a form orreporttotables 74
Linking to a table automatically 75
Linking toatablemanually 75
Procedure for using a Session object. 76
Calling a stored procedure 76
Using local and remote tables together 76
Creating master-detail relationships (overview). 76
Using an SQL JOIN statement 77
Linking master-detail in local tables 78
Using the masterSource property. 78

What is a DataModule? 78

Creatinga DataModule 79
Creating business rules in a DataModule 80
UsingaDataModule 80
Chapter 6
Using the Form and Report designers81
The designer windows 81
Designand Runmodes 82
The Form Design Window 82
The Report Design window. 83
The visual design is reflected inyourcode 83
Componentpalette 83
Standardpage 84
Data Accesspage oo 86
Data Buttons page (forms) 86
Reportpage, 87
Custompage. 87
Using ActiveX (*.OCX)controls 87
The Fieldpalette 88
Thelnspector 88
Properties page of the Inspector. 89
Events page of the Inspector 90
Methods page of the Inspector 91
The Methodmenu. 91
Manipulating components L 91
Placing components on a formorreport 92
Special case: container components. 92
Selecting components. 92
Moving components. 93
Cutting, copying, pasting, deleting components 93
Undoing and redoing in the designers. 93
Aligning components 93
Resizing components 93
Spacing components e e .. 95
Setting a scheme (Form designer) 95
Editinga Textobject, 96
Saving, running, and printing forms and reports 96
Opening a form or report in Runmode 96
Printing a formorreport 96
Chapter 7
Creating menus and toolbars 98
Attaching pulldown menus to forms 98
Attaching popup menus to forms. 98
Creating toolbars and attaching them to forms. 99
Creating areusable toolbar 99
Attaching a reusable toolbar 99
Creating a customtoolbar. 100
Creating menus with the designers 101
The designermenu 101
Buildingblocks o o000 101
Adding, editing and navigating 102
Features demonstration 102
Examining menu filecode 103
Changing menu propertiesonthefly 105
Menu and menu item properties, events and methods 105
Toolbar and toolbutton properties, events and methods 107
Chapter 8

Using the Source editor and other code
tools 109

Using the Source editor 109
Two-pane window with tree view 110
Notes on the Source editor 110

Creatinganewmethod 111

The Code Block Builder for editing code blocks 111

To create or edit a codeblock. 111

Editing an existing code block 112
The Command window 112
Typing and executing commands 113
Executing a block of commands 113
Reusingcommands. 113
Editing in the Command window 113
Saving commands into programs. 114
Chapter 9
Debugging applications 115
Typesofbugs, 115
Using the Debugger to monitor execution. 115
General debugging procedure 116
Debugging runtime applications. 117
The Source window 117

To locate and move to a line number in the Source window
118

To find a text string in the current program file 118
The Debugger tool windows 118
Variables oo 118
Watches. 118
CallStack. 118
Trace 118
Docking the Debugger tool windows. 118
Excluding variable types 118
Controlling program execution 119
Stepping in the Debugger 120
Using breakpoints 120
Setting and removing breakpoints 120
Working with breakpoints 121
Running a program at full speed from the Debugger . . . 122
Running to cursor position 122
Stopping program execution 122
Debugging eventhandlers 122
Viewing and using the Call Stack 122
Watching expressions 123
Adding watchpoints 123
Editing watchpoints. 123
Changing watchpoint values 123
Chapter 10

SQL designer

Opening the SQL designer. 125
Fornew queries 125
SQL designerelements 125
Interacting with the Source editor 126
Entering data in the SQL designer. 126
Running a query from the SQL designer 127
Putting your queriestowork. 127
Using your .SQL files with the SQL Property Builder . . 127
Looking atthe tablepane 127
About the tableboxes 127
Adding tables in the SQL designer 128
Renamingatable. 128
Removingatable. 128
Selecting fields in the SQL designer. 128

vi

Selecting all fieldsinatable 128
Selecting individual fieldsinatable 128
Reordering selected fields. 129
Criteria page (SQL designer) 129
Deletingarow. 129
Adding selection criteria in the SQL designer 129
Specifying selection criteria. 130
Simple Equation. 130
SQL Expression. vv v v v 130
EXISTSClause 130
Combining selection criteria 131
Rowinfo. 131
Criteriacombobox 131
Grouping selection criteria in the SQL designer 131
Drill-downcolumn 132
Queryoperators. 132
Selection page of the SQL designer 133
Selectingafield. 133
Specifying anoutputname 133
Producing summarydata 133
Removing duplicaterows 133
Deletingarow. 133
Grouping page of the SQL designer 133
Creatinga groupedquery 133
Group criteria page of the SQL designer. 134
Adding group selection criteria 134
SQLExpression 134
Simple Having Summary Expression 134
Two Summary Expression. 134
Combining group criteria 135
Deletingarow. 135
Sorting page of the SQL designer 135
Joins page of the SQL designer. 135
Including Unmatched Rows. 136
Joinlistbox L 136
Joinsgrid 136
Deletingajoin. 136
Deletingarow. 136
Creating joins in the SQL designer. 136
Chapter 11
Designing reports 137
Reportwizard. 137
To use the Report wizard 138
Example of a report created with the Report wizard 138
Wizard-generated Summary Report. 139
Report designerelements. 140
The Report and Group panes 140
Modifying report in the Report designer 141
Deleting columns (fields) fromareport. 141
Adding columns (fields) toareport. 141
Suppressing duplicate field values 142
Displaying default values in a blank report field 142
Adding a floating dollar sign to field values in reports . . . 142
Adding pagenumbers. 142
Creating a page number from scratch 143
Drill-downreports. 143

Controlling drill-down reports in the Report designer . 143

The drillDown property 144
Adding standard components toareport 144
Changing the report’s appearance. 144

Creating reportborders 144

Setting background color in reports 145
Setting background image inreports 145
Performing aggregate (summary) calculations 145
Designing a report with multiple streamFrames. 146
Creating printed labels. 146

Chapter 12
Introduction to designing tables in
dBASE Plus

Termsandconcepts 147
Table design guidelines 148
Identifying the information to store 148
Classifying information 148
Determining relationships among tables. 149
Single versus multiple tables 149
One-to-one and one-to-many relationships. 149
Parentand childtables 150
Minimizing redundancy 150
Choosing index fields 150
Defining individual fields 150
Table structure concepts 151
Tablenames 151
Tabletypes 151
Fieldtypes, 151
Chapter 13
Creating tables 153
Supported table types L. 153
Using the Table wizard 154
Using the Table designer. 154
Table designertips 155
User- interface elements in the Table designer 155
Resizingcolumns. 156
Getting around in the Table designer. 156
Adding and inserting fields 156
Moving fields. oo oo 156
Deleting fields 156
Saving the table structure 157
Abandoning changes 157
Restructuring tables (overview) 157
Important guidelines for restructuring 157
Changing the structure 158
Printing the table structure 158
Table accesspasswords 158
Creating custom field attributes 158
Specifying data-entry constraints 159
Creating and maintaining indexes 159
Indexing versus sorting. 160
Sorting or exporting rows 160
dBASE index concepts. 161
Planning indexes 162
Using indexes indataentry. 162
Using indexes inqueries 162
Using indexes inreports 162
Using indexes to link multiple tables. 163
Creating a simpleindex 163
Using the Table designer to create a simple index . . . 163

Using the Manage Indexes dialog box to create a simple

index 163
Selecting an index forarowset 164
Indextasks 164

Modifyingindexes 164

vii

Deletingindexes. 164
Indexing on a subset of rows for dBASE tables. 165
Hiding duplicate values 165
Creating complex indexes for dBASE tables 165
Rules for dBASE complex indexes 165
Creating the dBASE complex index. 166
Keyexpressions 166
Primary and secondary indexes 166
Uniquekeys 167
Secondary indexes, maintained and non-maintained . . 167
Creating primary indexes 167
Creating secondary indexes 167
Referential integrity. 167
Defining referential integrity 168
Update and delete behavior 168
Changing or deleting referential integrity. 169

Chapter 14
Editing table data

A fewwordsof caution. L. 170
Runningatable. 170
Protectedtables 171
Table toolsand views. 171
Table and query views. 171
Adjustingthe view. 171
Viewing only selected tabledata 172

Table navigation 172
Data entry considerations. 173
Finding and replacingdata 174
Searchingtables. 174
Replacing datainrows 175
Addingrowstoatable 176
Deleting rows. 176
Saving or abandoning changes 176
Performing operations on a subset of rows. 177
Selecting rows by setting criteria 177
Setting For conditions 177
Setting While conditions. 177
Counting rows. 177
Performing calculations on a selection of rows. 178
Viewing and editing special field types. 179
Viewing the contents of special field types 179
Memofields. 179
Binary fields. 0. 179
Importing an image or sound into a binary field 180
OLEfields. 180
Adding an OLE object toan OLE field 180
Removing an OLE object from an OLE field 181

Chapter 15
Setting up security

Setting up security strategies 182
Individual login via automatic password dialogs 183
Preset access via Database and Session objects. 183
Preset access for Standard table types. 183
Preset access for SQL and other table types 184

Table-level security for DBF tables. 184

About groups and user access 185
Tableaccess 185
User profiles and user access levels. 185

About privilege schemes 185
Tableprivileges, 186

Field privileges. 186
Aboutdataencryption. 186
Planning your security system. 186

Planninguser groups. 187

Planning user access levels. 187

Planning DBF table privileges 187

Planning field privileges 188
Setting up your DBF table security system 188

Defining the database administrator password. 188

Creating user profiles 189

Changing userprofiles 189

Deleting user profiles 189
Establishing DBF table privileges. 189

Selectingatable 190

Assigning the tabletoagroup 190

Setting DBF table privileges. 190

Setting field privileges 190
Setting the security enforcement scheme 191
Table-level security for DB tables. 191
Removing passwords from DB tables. 192

Chapter 16
Character sets and Language drivers
193

Determining the language displayed by the User Interface . . 193
About charactersets L. 194
About language drivers L 195
Performing exact and inexact matches 195
Using global language drivers. 196
To set the Idriver option in PLUS.ini: 196
Using table language drivers. 197
Identifying a table language driver and code page 198
Non-English Character Display Issues 198
Selecting Specialized Product Fonts. 198
Table language drivers versus global language drivers 199
Handling character incompatibilities in field names 199
Converting between OEM and ANSI Text 200
Converting from OEMto ANST 200
Converting from ANSItoOEM 200
How to convert and view your sourcecode 200
Chapter 17
Converting prior version dBASE
Applications to dBASE Plus 202

Converting a dBASE III+/IV Application to Visual dBASE 5.7202

Installing Visual dBASES.7 202
OVEIVIEW v v vt e e e 203
Suggested Steps 203

Sample 203
RecreatingMenus, 204

Create a sample menu in Visual d(BASES.7 204
Converting VUEFiles. 204
Converting Forms 205

Using The Component Builder to Convert a Form from a

PRG . ..o 206
Fine-Tuning The Form. 207
Notes about Memo and Logical fields 207
Running the Form 208
Using ACCEPT or INPUT? 209
Reportsand Labels. 211

Converting dBASE 5.0 for DOS Screens/Menus to dBASE Plus212

viii

Setting up for Conversion. 212
Converting screens or menus to dBASE Plus 212
Conversion considerations 213

AnOption 214
Converting dBASE 5.0 for DOS Reports and Labels. . . . 214

Converting Visual dBASE 5.7 Applications to dBASE Plus . . 214

ConvertingForms. 215
Converting Reportsand Labels 215
Converting QBE Files to Datamodules 216
Updating Forms to Use Datamodules. 217

Chapter 18
dQuery/Web Server Side Components
218

Installation and Configuration 218
Requirements 218
Installing the dBASE Plus Runtime 218
Installing the dQuery/Web Server Side Components 219
Web Server Configuration. 219

Apache. L 219
Security 219
Configuring the dQuery/Web Server Side Components . . 220

Using the dQuery/Web Server Side Components 220

dQuery/Web Query(dataModule) 220
dataModule MenuBar. 220
Database MenuBar, 221
QueryMenuBar. 221
QueryOptionso v v v 222
Custom View 223

Run Data-Entry Application 224

RunReport 224

Administration L 224

Customizing the dQuery/Web Server Side Components 225

ix

6.1
6.2
6.3
6.4
6.5
7.1
7.2
7.3
7.4
9.1
10.1
11.1
12.1
13.1
13.2
14.1
14.2
143
15.1

Tables

Standard controls Lo 84
DataAccess o o oo 86
Shading Properties in the Table Designer 86
Components specific toreports 87
Method menu commands 91

Menubar and popup root properties, events and methods 105

Item properties, events and methods 106
Toolbar properties, events and methods. 107
Toolbutton properties, events and methods 108
Methods of controlling execution in the Debugger . . . 119
Queryoperators 132
Values for the drillDown property. 144
dBASE field types for level 7 tables 151
Data-entry constraints 159
Sample dBASE key expressions 166
Navigating rows using the menu, mouse or keyboard . 172
Types of calculations 178
Field selection keyboard shortcuts 179
Setting user groups 187

15.2
153
15.4
15.5
15.6
16.1
16.2

16.3

Setting user access levels 187
Setting table privileges 188
Setting field privileges 188
Setting DBF table privileges 190
Setting field privileges 191

European language drivers available in dBASE Plus . . 195

Automatic assignment of language drivers by dBASE Plus
197

Language drivers: Table versus Global 199

3.1
4.1
4.2
43
44
4.5
4.6
5.1
52
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
8.1
8.2
9.1
9.2
9.3
9.4
9.5
9.6
10.1
10.2
10.3
10.4
10.5
10.6
11.1
11.2
11.3
11.4
11.5
11.6
12.1
12.2
14.1
14.2
143
14.4
14.5
14.6
14.7
14.8
14.9
16.1
17.1
17.2
17.3

Figures

Sample event handler for a "Hello world" form. 39
Project Explorer: The Project Page 43
Project Explorer: Adding files. 44
Sample MDI window 64
Savingacustomeclass 66
Set Custom form Class DialogBox 67
Save as Custom dialog box; saving Custom Components 68
dQuery Design Surface with default Session object . . . 79
Design surface after Drag&Drop of Query object 80
Form Designer with a wizard-created form 82
Report Designer with a wizard-created report. 83
FieldPalette 88
Using the Inspector 89
Events page of The Inspector 90
Methods page of The Inspector 91
Layout | Aligncommands 94
Layout | Sizecommands. 94
Layout | Spacing commands. 95
Set Scheme dialogbox 95
Formattoolbar. 96
Code BlockBuilder 111
The Command window 112
Source Window 117
Debugger tool windows, docked 119
Breakpointwindow L. 121
Breakpoint Condition dialogbox 121
Call Stack window. 123
Watchwindow. 123
SQL Designer: Table pane. 126
SQL Designer: Query notebook. 126
SQL Designer Criteria Page. 129
SQL Designer: Adding criteria 129
SQL Designer: Group selection. 131
SQL Designer: Grouped. 132
Wizard-generated report on a GOODS table 138
Wizard-generated Summary Report. 139
Adding grand total in the Report wizard 140
Report in Design mode with Group view displayed . . 140
Field Palette containing active fields 142
Aggregate calculationonaReport 145
ComponentsofaTable 148
One-to-many relationships 149
Table-editing toolbar. 171
Columnarview 172
Navigating rows using the toolbar. 173
Find Rows dialogbox 174
Replace Rows dialogbox 175
Delete Rows dialogbox 176
Count Rows dialogbox 178
Calculate Aggregates dialogbox 178
Calculation Results dialogbox 179

Setting LDRIVER in the PLUS.ini 197

Sample Menu. 204
Sample Form. 205
The Component Builder 205

Xi

17.4
17.5
17.6
17.7
17.8

Component Builder window with displayed source code206

ARunning Form, 208
Form with PushButton 210
The dBASE IV for DOS Report designer. 211
Crystal Reports fordBASE 212

xil

Chapter

Introduction to dBASE Plus

Welcome to dBASE Plus !

Welcome to dBASE Plus, the revolutionary, integrated, Information Toolset. Designed from the ground up to
provide all the features, functionality and tools required to create and manage the information that fuels today’s
businesses, dBASE Plus has something for everyone — from the novice information user to the expert developer.

What is dBASE Plus?

dBASE Plus is a 32-bit rapid application development (RAD) environment for the creation of powerful database
applications and data-driven web applications. It features flexible interactive database administration tools, an
advanced third-generation object-oriented programming model, and a high level of backward compatibility.

Its rich assortment of powerful Windows and Web tools, including Table, Form, Menu and Report designers
makes modeling, managing, retrieving and reporting information easier and faster than ever before. dQuery/
Web, dBASE Plus’s radical new interactive live-data tool makes it extraordinarily easy to visualize, enter, edit
and retrieve information, regardless of its source. The Borland Database Engine (BDE) included with your
package allows easy connectivity to dBASE tables—including the new DBF7 file format—and provides native
support for Paradox, Microsoft Access, and Microsoft FoxPro formats, as well as any 32-bit ODBC-supported
data source. A set of high-performance SQL Links drivers, which are native to the BDE, extend support to the
most popular enterprise database formats, including Oracle, Sybase, InterBase, MS SQL Server, IBM DB2, and
Informix. dBASE Plus also allows you to create links to other data sources through custom data objects.

With dBASE Plus you can:

* Work in SQL Server data and save it as Informix

* Work in DB2 and save it as dBASE Plus

* Tie your legacy systems to your Web Site

* Import data from other applications

* Run reports against almost any database

* Automatically generate applications that work with multiple sources simultaneously.

All this is possible because dBASE Plus is totally object-oriented. Information is treated as fully inheritable,
reusable objects, not as separate, incompatible, difficult-to-convert databases and tables. Want to link a form or
a report to your data? Just drop a data object on the appropriate designer and dBASE Plus handles the rest.

The expert developer will love dBASE Plus’s object-oriented dBL programming language. Sporting full
inheritance for an incredible level of reusability, dBL also provides the first drag-and-drop distributed object
model with full inheritance. Never has it been easier to update and upgrade. Never has it been more efficient to
provide remote technical support.

Introduction to dBASE Plus 1

Changes from earlier versions

dBASE Plus is also a great second tool for developers working in other languages, environments and databases.
From its ad-hoc data-query tools to its built-in Report Classes, dBASE Plus provides the functionality missing
from other, popular, single-purpose tools. Writing an application in Delphi or Visual Basic? Need to see the
results immediately? Just fire up dBASE Plus and browse the data in real-time. Need to kick out a report in
minutes? dQuery/Web’s No-Click reports require virtually no work at all. Need to model your data, view
relationships, check out the results of a SQL Query? Just a few mouse clicks and you’ve got a real-time result.
Need to get your data out on the Web right now? You’re just seconds away from a dBASE Plus One-Click Web
application, or a live, direct-connect Web report.

This section introduces you to the dBASE Plus development environment and provides examples and tips that
will help you get started quickly. It also describes features introduced in versions of dBASE prior to dBASE
Plus as well as those new to the latest releases.

dBASE Newsgroups

The dBI Newsgroups, located at news://news.dBase.com, are a place where dBASE users and developers can
obtain peer support and exchange information, tips and techniques. We encourage members of the dBASE
community to assist each other with technical questions. Please read the Newsgroup Guidelines before
participating.

For more information about Newsgroup Guidelines and configuring your newsreader, visit the dBASE website
at www.dbase.com.

The dBASE Plus Knowledgebase:

Your dBASE Plus package also contains a full copy of the new Knowledgebase in HTML format. To use the
Knowledgebase, double-click on the file "kbmenu.htm" in the \KB folder on your installation CD.

Topics and information include:

* Newsgroups Support

* FAQs

* Programming how-to articles

* The dBASE User’s Function Library Project files (dUFLP)
* A complete list of changes and bug-fixes

The dBASE Plus Knowledgebase is also available on the dataBased Intelligence, Inc. website; http://
www.dbase.com. The Knowledgebase is an ever expanding repository of all things dBASE. Check our website
frequently for updates!

Note This site can also be accessed through the dBASE Plus Help menu.

Changes from earlier versions

This section tracks the evolution of dBASE Plus, from Visual dBase 5.x to the present, and is grouped as
follows:

* Visual dBase 5.x through Visual dBase 7.0
» Changes since Visual dBASE 7.0

¢ Overview of dBASE Plus version 2.0

¢ Overview of dBASE Plus version 2.2

¢ Overview of dBASE Plus version 2.5

¢ Overview of dBASE Plus version 2.6

Visual dBase 5.x through Visual dBase 7.0

Visual dBASE 7 introduced dozens of new features and language elements to provide you with a more
productive, efficient work environment. Among these enhancements:

» Report objects and the integrated Report designer
* Project Explorer

2 dBASE Plus User’s Guide

Changes from earlier versions

» Data objects

* ActiveX integration

* Visual designers

* The Inspector

» Full-featured Source editor

* SQL designer

» BDE utility and database support
» DBF7 file format

Report objects and the integrated Report designer

You can create reports and labels using native Report objects and the Report designer (similar to the Form
designer). The classes use the full power of the object-oriented programming model, with objects that offer such
sophisticated features as:

* Complex expression support
* Conditional rendering

» Flexible grouping

* Inheritance

* Report viewing within a form

Project Explorer

A few of the features The Project Explorer provides include:

* Automatic file viewers

* Instant switching between visual preview and source code views
* Project-based compiler directives

* The ability to compile, build, and deploy entire projects

Note that the Project Explorer replaces the Catalog functionality available in earlier versions. A conversion
utility, CAT2PRIJ.PRG, is available in your dBASE Plus/bin directory to let you easily convert Catalogs to
Projects.

Data objects

Data access classes merge the SQL and object-oriented paradigms. You can use queries within databases within
sessions. Sessions provide independent connections to tables. Each database can then connect to a different data
source. The queries connect to one or more tables and provide table navigation capability. The objects let you

» Use Query, Rowset, Field, Database, Session, StoredProc, and other classes to access tables and stored
procedures. (Data objects use only SQL to gather data.)

» Use DataModule and DataModRef objects to represent multiple data objects and their relationships. These
objects take the place of form.view and old QBE files.

» Create custom data objects to access specialized, third party, and future data formats.

Visual designers

The visual designers feature numerous usability and productivity enhancements, including

* Win32 controls

» Grid and Browse controls, which are faster and offer more functionality than the table browsing functionality
in earlier versions

+ Complete ActiveX control integration

* Live Two-Way-Tool® editing: changes made in visual designers are immediately reflected in the source code
and vice versa; to switch between the two, press F12

* File drag-and-drop capability lets you easily link tables and pull files onto a form or report from the
Navigator, Project Explorer, Windows Explorer, or even the Windows Find results window

* Dockable toolbars

* A text-formatting palette, featuring industry-standard HTML tags

* In-place editing for Text components

* Automatic labeling for fields dragged from the Field palette

* Versatile form/report metrics (chars, twips, pixels, millimeters and more)

Introduction to dBASE Plus 3

Changes from earlier versions

Expanded image format support. The list now includes support for BMP, GIF (including animated GIF),
ICO, JPEG, PNG, XBM, WMF, EMF, TIFF, PCX, and EPS formats

ActiveX integration

You may add ActiveX (OCX) controls directly into your forms and reports. You can either inspect ActiveX
controls directly, or right-click a control to access its internal configuration dialog.

The Inspector

A few of the features offered by The Inspector include:

Single-click list expansion

Advancement or toggling of a selection with Ctrl-Enter (an alternative to double-clicking)
A tool button on the Methods page to let you write method overrides

Bold highlighting on changed and non-default values

A property type chooser and history list

Access to a codeblock builder and long string editor tool

Full-featured Source editor

A fully-customizable ASCII Source editor is available for writing programs and methods. It features

Instant access (F12) from visual designers, with immediate updating between source and design modes
A tree view of classes, objects, and methods

Tabbed pages

Syntax highlighting and a customizable color scheme

Drag-and-drop editing, including the ability to drag code snippets onto the desktop or into another editor
page, and drag them back into any page

Multiple-level grouped undo

Keystroke macro recording and playback

An automatic file-open feature: If another file name appears in your source code, you can set your cursor on
the name and press Ctrl-Enter to open the file

Easy commenting and comment removal on selected blocks

SQL designer

The SQL designer lets you create, edit, and execute SQL queries. You can use the tool to test and apply the
simplest SELECT statements to the most advanced queries on data in any supported data source. You can then
view the results and save your query for inclusion in your programs.

BDE Administrator and database support

The BDE Administrator utility helps you create aliases and test and configure your database connections and
settings. The BDE engine also offers a significant number of database objects that can be opened in each BDE
session.

The SQL Links high-performance drivers for dBASE Plus, supports most popular enterprise database formats
including Oracle, Sybase, InterBase, MS SQL Server, IBM DB2 and Informix.

dBASE Plus includes native (non-ODBC) Microsoft Access and Microsoft FoxPro table support, along with
Local SQL (for DBF and DB tables) and support for the DBF7 table format.

DBF7 file format features

A few of the features included are:

Long field names

New field types: TimeStamp, Double, AutoIncrement, Long

Field constraints: minimum, maximum, required, and default

Null character fields

Distinct indexes; user gets a key violation when attempting to add a duplicate
Primary distinct index

4 dBASE Plus User’s Guide

Changes from earlier versions

Referential integrity

Table constraints: an array of strings containing logical dBASE Plus expressions that act as row-level
constraints when attempting to save a row

Custom field attributes that comprise an active data dictionary that works at runtime as well as design time.
These attributes are named properties with string values and are created in the Table designer.

Samples and sample viewer

Sample forms, reports, menus and other files are located in the SAMPLES directory in your main dBASE Plus
directory.

The directory features a form called SAMPLE GUIDE.WFM, which gives you a visual preview and description
of the purpose of each sample form or applet.

Changes since Visual dBASE 7.0

dBASE Plus supports StdIn and StdOut in the built-in File class, allowing Web servers to communicate
directly to dBASE Web applications without the "middleware" required in earlier versions. Direct
connection dramatically improves already-fast dBASE Web performance.

The dBASE Plus Report Class supports StdOut as a native output option, allowing reports to be streamed
directly out to Web servers. Reports can be called and run directly from a URL typed into the Web browser.
The dBASE Plus Web Classes, written in dBASE, allow very rapid black-box code-level development of
database-oriented eCommerce applications.

The dBASE Plus Web Wizards were updated to utilize the new dBASE Plus Web Classes and support for
StdIn and StdOut.

dBASE Plus ships with a royalty-free distributable ODBC driver/engine for Extended Systems highly-
scalable Advantage Database Server.

DataModules have been simplified for use with Forms. Dropping a DataModule onto a form creates a
DataModule object, not a DataModRef object as occurred in earlier versions.

DataModules have a Parent property that allows you to navigate up the object hierarchy from a Field, Rowset
or Query to the Form that contains the DataModule.

DataObject icons display their Name property on all visual design tools, including the Form Designer and
DataModule Designer, making identification much easier.

The dBASE Plus CD includes the dBASE Plus Knowledgebase in HTML format.

The Rowset class has a new property called masterChild that allows you to set a dBASE parent-child relation
as "Constrained" or "Unconstrained". In prior versions, the dBASE data classes only supported constrained
parent-child relations.

The new TextLabel base class is a low-resource text class for labeling objects on a form. Forms paint faster
and use fewer resources.

The TreeView class surfaces new capabilities through it's new streamChildren() and loadChildren()
methods. These methods allow TreeViews to be saved to and loaded from disk.

In the Report Designer, Text objects that are DataLinked to an empty table field display asterisks allowing
the Text object to be visible and selectable.

A new onKey event was added for Entryfields, Comboboxes and SpinBoxes.

A new focusBitmap property was added to the Pushbutton class that allows you to change the bitmap when
the pushbutton gets focus.

A new canSelChange event was added to the Notebook class that lets you validate before a page change
takes effect and prevent or allow the page change to execute. The event passes the number of the Notebook
tab to be changed to as a parameter.

A new drawMode property was added to the Shape class.

All new real-world sample applications were included in dBASE Plus, including a Contact Manager and
eMail Client.

Find and Find-and-Replace dialogs are no longer Modal. You may now access the code underneath these
dialogs while they are on-screen.

COPY TO ARRAY is no longer limited to 32,767 array elements.

You can select the FoxPro table type from the Inspector when using the Table Designer.

All version information (d{BASE Plus version and build, BDE version) is displayed in the Help | About
dialog.

All valid file types are supported in the Open Table dialog called by the DO and MODIFY COMMAND
commands.

Introduction to dBASE Plus 5

Changes from earlier versions

Starting dBASE Plus or application .exe without using the BDE (see below).
Startup optimizations for Web applications (see below).

Change to command line for PLUSRun.exe (see below).

onDrop event added to Editor class (see below).

» New dBASE Plus Web and "Powered by" bitmaps are included on the dBASE Plus install CD.
* A new multi-language single-CD install.

* The Designer class

* Source Aliasing

¢ Dynamic External Objects - DEO

* TableDef class

* DBFIndex class

+ DBASE SUPPRESS STARTUP DIALOGS

» baseClassName property

Form class properties

* appSpeedBar
e persistent

Rowset class properties and methods

autoNullFields property
exactMatch
isRowLocked()
isSetLocked()

_app object properties

allowDEOExeOverride
allowYieldOnMsg
databases
ddeServiceName
sourceAliases
speedBar
terminateTimerInterval
web

app object property used to override Rowset SET SKIP behavior

+ detailNavigationOverride

Date Functions

DATETIME() function
DTTOD() function
DTTOT() function
DTODT() function

New Preprocessor identifier

e version

A few words about Source Aliasing and Dynamic External Objects

‘What is Source Aliasing?

Source Aliasing is a new feature in dBASE Plus that provides true source-code portability by referencing files
indirectly - through an Alias. Just as the BDE allows you to define an Alias to represent a database or a
collection of tables, Source Aliases let you define locations for your various files without using explicit paths -
which often differ from machine to machine.

6 dBASE Plus User’s Guide

Note

Tips

Changes from earlier versions

Source Aliasing works only in the dBASE Plus design environment or when running programs from within the
dBASE Plus shell. It is not a runtime feature. To access files indirectly in deployed applications, use Dynamic
External Objects (DEO) instead of Source Aliasing.

DEO - Dynamic External Objects

dBASE Plus features a brand new external object model that, if used consistently, promises the lowest total-
cost-of-ownership in the industry.

DEO is a unique technology that allows not just users, but applications, to share classes across a network (and
soon, across the Web). Instead of linking your forms, programs, classes and reports into a single executable that
has to be manually installed on each workstation, you deploy a shell - a simple dBASE Plus executable that calls
an initial form, or provides a starting menu from which you can access your forms and other dBASE Plus
objects.

Dynamic Objects can be visual, or they can be classes containing just "business rules", that process and post
transactions, or save and retrieve data. Each of these objects may be shared across your network by all users,
and all applications that call them.

You'll have to experiment with DEO to discover the best approach for the way you write and deploy
applications. However, here are some interesting subtleties you might leverage to your benefit:

Unanticipated updates: Assume you already shipped a dBASE Plus application as a full-blown executable.
Now you want to make a change to one module. No problem, just copy the object file to the home directory
of the application and it'll be used instead of the one built in to the executable. You don't need to redeploy the
full application the way you do in most other application development products. Just the changed object.

Reports: You can deploy reports or even let your users create reports (using dQuery/Web) and add them to
their applications by designing a report menu that checks the disk for files with an .reo extension. Let the
menu build itself from the file list. Here we have true dynamic objects - the application doesn't even know
they exist until runtime. DEO supports real-time dynamic applications.

Dynamic Update Support: Want to try out some code or deploy a fix to a customer site or a remote branch
office? No problem, just FTP the object file to the remote server and the update is complete.

Remote Applications: If you have VPN support (or any method of mapping an Internet connection to a
drive letter), you can run dBASE Plus DEO applications remotely over the Internet. A future version of
dBASE Plus will include resolution of URLs and IP addresses so you can access remote objects directly
through TCP/IP without middleware support.

Distributed Objects: Objects can be in a single folder on your server, in various folders around your
network, or duplicated in up to ten folders for fail-over. If one of your servers is down, and an object is
unavailable, dBASE Plus will search the next locations on the list until it finds one it can load. Objects can be
located anywhere they can be found by the workstation.

Rowset class enhanced to support OODML version of SET SKIP behavior

* navigateMaster
* navigateByMaster

New _app object property used to override Rowset SET SKIP behavior

* detailNavigationOverride

New error handling properties

e errorAction

e errorLogFile

» errorLogMaxSize
e errorHTMFile

* exeName

Introduction to dBASE Plus 7

Changes from earlier versions

Starting dBASE Plus or application .exe without using the BDE

For applications that do not require access to data contained in databases or tables, are built as web applications,
or run from a CD, dBASE Plus offers an option which will bypass connecting to the BDE when starting dBASE
Plus.exe or a dBASE Plus application .exe.

To configure dBASE Plus, or a dBASE Plus application, to load without connecting to the BDE, add the
following lines to the PLUS.INI or the application's .INI file:

[DataEngine]
DefaultEngine=NONE

Once PLUS.EXE or PLUSRun are started, they will read this setting from the .INI file and bypass the BDE
startup code.

Using this procedure will make your current Windows language setting the default language driver.

Startup optimizations for Web applications

PLUSRun has been optimized to load web applications faster, use less memory and avoid initializing objects
that would normally be visible on screen (in a non-web application).

These optimizations make it possible for web applications to handle heavier loads than previous releases and
make them much less likely to crash or leave processes stranded in memory.

However, these changes also mean that web applications can no longer create or access objects that would
normally have a visual component, such as, Forms, Menus, Toolbars, Entryfields, etc. Only non-visual
components such as data modules, queries, rowsets, non-visual user defined classes, etc. should be used.

Change to command line for PLUSRun.exe

PLUSRun will now start a dBASE Plus application .exe passed to it as a command line parameter.
Syntax

PLUSRun [switches] [application path & name] [parameters for application]

switches

The currently available switch, -c<.ini file name>, specifies an alternate .ini file to be used in place of the
default.

application path & name

The name and location of the application .exe. Designating a path is optional, however, when a path is not
specified, PLUSRun will assume the current drive and directory. Application path & name parameters
containing spaces must be enclosed in quotes.

The following sample code attempts to launch someapp.exe, pass it 2 parameters and use myini.ini instead of
someapp.ini:
PLUSRun -cmyini.ini someapp.exe someparml someparm2

Description

PLUSRun.exe will determine if it was called from a currently launched application .exe. When this is not the
case, PLUSRun.exe checks to see if a file name, and optional path, were passed as parameters on the command
line. If they were, PLUSRun.exe fills in the full path, extension, and opens the file.

The runtime will then begin execution if the file is found to contain dBASE Plus compiled code. If the file
cannot be found, or does not contain dBASE Plus compiled code, an error is generated and the PLUSRun.exe
exits.

This feature results in only one operating system process being launched for each dBASE Plus application .exe,
rather than the two processes that result when running an application .exe directly. This becomes important for
web applications, as it reduces the chance that a crash would result in one of the processes becoming stranded in
memory.

In order to best use this feature, it will be necessary to configure your web server so it builds an appropriate
command line for all dBASE Plus web applications.

8 dBASE Plus User’s Guide

Changes from earlier versions

Overview of dBASE Plus version 2.0

dBASE Plus Server Side Web Components

e The dBASE Plus Server Side Web Components and dQuery/Web Queries deliver capabilities very similar to
dQuery/Web on the desktop, but deliver them in your browser, securely over the Web. You can get live data
on-the-fly, run an existing DataModuleDataModule, run reports created in dBASE Plus, even run One-Click
Web and Web Wizard data-entry applications created in dBASE Plus.

New Class
¢ class SubForm

Changes to the Command Line for PLUSrun.exe
* dBASE Plus Web Application Mapping

Array class properties, events and methods
» getFile() method

Form class properties, events and methods

hWndParent

scrollHOffset (also in the SubForm class)
scrollVOffset (also in the SubForm class)
showTaskBarButton

scroll() method

Grid class properties, events and methods

New in dBASE Plus version 2

colorRowSelect
headingColorNormal
headingFontBold
headingFontltalic
headingFontName
headingFontSize
headingFontStrikeout
headingFontUnderline

Existing properties now included in the Grid Class

colorHighlight
colorNormal
colorRowSelect
fontBold
fontltalic
fontName
fontSize
fontStrikeout
fontUnderline

bgColor property

* Previously, the bgColor property set the background color for data displayed in grid cells. The bgColor
property can also now be used to set the background color for the empty area within a grid (the area to the
right of the last column and below the last grid row).

Introduction to dBASE Plus 9

Changes from earlier versions
speedTip property

* The speedTip property has been added to the following classes: Image, TreeView, Text, TextLabel,
ListBox,Rectangle,Container,Browse, PaintBox, TabBox, OLE, ActiveX.

Overview of dBASE Plus version 2.2

New Project Explorer
« dBASE Plus will now open the new Project Explorer (if available) instead of the old Project Manager.

Note: If the new Project Explorer is not available, the old Project Manager will be opened.

The following means of accessing the old Project Manager will now direct you to the new Project Explorer:

CREATE PROJECT

MODIFY PROJECT

File | New Project...

File | Open Project...

Navigator | Projects Tab | (Untitled)

New Class
¢ class ColumnEditor

Designer class properties, events and methods
* isInherited()

Existing property now included in the ComboBox and Editor classes
* colorHighlight

Existing property now included in the Listbox class
* transparent

GETFILE(), PUTFILE() functions, and getFile () method

* Modified to accept a string parameter containing a list of File Types to use to populate the "Files of Type"
combobox in their respective dialogs.

onNotify event

 In addition to firing when a Table or SQL Designer closes, the onNotify event can now fire upon the closing
of a Source Editor or Report Designer.

editorType property

¢ Includes a value, 5, that enables the selection of the "ColumnEditor" control.

Grid behavior

* Clicking on a Grid Row Indicator changes the currently selected row.
* Clicking on a Grid Column Header gives focus to the field in the selected column.

Grid and Browse object behavior

* Columns containing memo fields, or text blob fields, will default to using the new columnEditor object,
instead of a columnEntryfield object, when default columns are created for a grid or browse object.

Source Editor behavior

* Jumps to the method icon, in the left (object) pane, when cursor position is changed in the right (source code)
pane.
» Respects remark-block markers (/* */) when adding items to its object pane.

10 dBASE Plus User’s Guide

Changes from earlier versions

Clicking on a method in the object pane moves the cursor to the first line of the method in the source code
pane, even if the cursor is already somewhere within the selected method.

Table Designer behavior

(0

Returns an error message if you have attempted to create more than one Autolncrement (or AutoNumber)
field.
Returns an error message which displays any invalid fieldname characters.

ptimized ReportViewer
Speedier rendering of report pages.

Overview of dBASE Plus version 2.5

Mouse events

G

New onMouseOver() and onMouseOut() events for all form components, Form and Subform.
Both events receive the following parameters: flags, col, row

The onMouseOver() event fires when the mouse enters a control, form, or subform

The onMouseOut() event fires when the mouse leaves a control, form, or subform

col and row values for all mouse events

The col and row values passed to all mouse events have been changed to use standard signed mouse
coordinates instead of unsigned values. dBL Code to adjust unsigned values to signed values is no longer
needed.

rid Class
New grid column control events: beforeCellPaint() and onCellPaint()

These events allow a grid cell's color, font, and other attributes to be modified on a cell by cell basis. The
value to be displayed is accessible within these events and can be used to modify the cell conditionally.

These events are available for each of the GridColumn editor and heading controls:

* columnEntryField

* columnSpinBox

¢ columnComboBox

* columnCheckBox

* columnEditor

* columnHeadingControl

New grid property: grid.colorRowHeader to set the color of the row header.
The foreground color specifies the color of the indicator arrow or plus sign.
The background color specifies the row header background color.

The default setting is: WindowText/BtnFace

Grid can now be scrolled at design time.

This speeds grid design by making it possible to scroll a grid horizontally to bring a particular column into
view. Once in view, if columns have been defined, you can click on the column to select it into the Inspector
and directly modify the columns properties, methods, and events.

Project Explorer

dBASE Plus Project Explorer now supports creating deployers for dBASE applications using Inno Setup and
Inno Script Generator.

An "Inno" tab is now surfaced in the Project Explorer for non-web projects that can be used to create Inno
Setup installers using Inno Script Generator.

Introduction to dBASE Plus 11

Changes from earlier versions

TreeView

* Modified TreeView so that expanding or collapsing a tree node (clicking on + or -) does not change the
currently selected item (unless the currently selected item is among those being collapsed).

* Modified canExpand and onExpand events

» treeview.canExpand and treeview.onExpand events now receive a parameter, oltem, providing an object
reference for the treeitem whose + or - has been clicked.

» Expanding or collapsing a Treeltem

* Expanding or collapsing a Treeltem by clicking on its + or - no longer selects the item that is expanded or
collapsed. THIS MAY REQUIRE CHANGES TO EXISTING CODE.

* TreeView control can now display images using more than 16 colors.

Images using anywhere from 4 bit color up to 32 bit color are now supported.

Array Class

* Array.dir() and array.dirext() can now return a file count greater than 32K

Report

* The default value of the report autoSort property has been changed to 'false'. Previously, it was 'true'. THIS
MAY REQUIRE CHANGES TO EXISTING REPORTS

Inspector
* Inspector defaults changed to increase size and expand categories

_app Object
* New _app method:.ExecuteMessages()

Allows a dBASE Plus program to respond to mouse, keyboard, and other events while running a lengthy
process instead of having to wait until the process completes

_app-frameWin
* New methods: hasHScrollBar() and hasVScrollBar().

These methods allow a form to more accurately determine how much room is available within the frame
window.

The hasHScrollBar() method returns True if the frame window has a horizontal scrollbar.

The hasVScrollBar() method returns True if the frame window had a vertical scrollbar.

Procedure files
* SET PROCEDURE TO <procedurefile> has been changed to assume ADDITIVE was specified.

Report Designer

The detailBand, headerBand, and footerBand are now visible in the Report Designer when they are empty (if
their height is not zero).

* The margins are now painted accurately to show the page edge.

* In the left outline view the rectangle that used to be labeled as pageTemplatel is now correctly labeled as:
Available Page (report.pageTemplate] margins)

* The stream frame is no longer allowed to be resized larger that the margins of the pageTemplate.

* A page-template margins rubber band is now available when clicking on the page-template area to allow
setting the margins by resizing the rubber band rectangle.

* Re-sizing the pageTemplate margins with the mouse now correctly sets the pageTemplate's margin
properties rather than its height and width properties.

Error Handling

» dBASE Plus now prevents inappropriate "Insufficient Disk Space" errors from occurring due to the BDE
using truncated disk free space data.

12 dBASE Plus User’s Guide

Changes from earlier versions

+ Error handling in the dBASE Plus byte code interpreter has been enhanced to catch Memory Access
Violation errors and provide file name, procedure, and line number information. Previously, these kinds of
exceptions were triggering critical errors which displayed a message that dBASE or Windows had
encountered an internal error. The additional information is helpful when diagnosing the source of the error.

CHOOSEPRINTER() and choosePrinter()

The CHOOSEPRINTER() function and method have been enhanced to accept a second parameter which
allows you to choose between displaying the Print Setup dialog and the standard windows Print dialog.

The default behavior of the printer object's choosePrinter() method has been changed so that when it is attached
to a report object, it will default to displaying the standard Windows print dialog instead of the "Print Setup"
dialog. In addition, choosePrinter() will now default any start and end page settings from the report object into
the Print dialog. Any start and end page settings made in the dialog will be carried back into the report object.

Overview of dBASE Plus version 2.6

Windows XP Themes
This version of dBASE Plus is the first to support Windows XP Themes and Visual Styles.

Upon opening dBASE, you should immediately notice its improved, more modern-looking interface -
notebooks have a subtle gradient background, buttons are rounded instead of squared and colors generally
appear more coordinated throughout the entire environment.

Your applications can also employ Windows XP Themes, lending a more up-to-date and consistent appearance
when running under Windows XP.

This is accomplished through the use of a manifest file, a special XML-based file that enables System Themes
in Windows XP.

For all dBASE Plus applications, the name of this file is "PlusRun.exe.manifest", and it must reside in the same
folder as the dBASE runtime executable (PlusRun.exe)

To disable the XP look in dBASE Plus, simply remove or rename the “Plus.exe.manifest” file in Plus/Bin folder.
To disable the XP look in applications you created in dBASE Plus, remove the “PlusRun.exe.manifest” file from
the runtime folder.

The dBASE Plus Project Explorer can be used to deploy the manifest file for you by checking the, “Generate
and include Windows XP manifest file”, checkbox on the Inno | Files tab.

We strongly recommend you use Windows System Themes. XP System Themes give your users enhanced
control over the look-and-feel of your application and show your programs in their best light when running in
Windows XP.

The System Themes feature is ignored under earlier versions of Windows.

dBASE IDE

» Updated to use Windows XP Visual Styles in built-in tools and dialogs when running on Windows XP.

Form Controls

» Form controls have been upgraded to auto-detect if Windows XP Visual Styles are being used and to adjust
accordingly.

+ Ability to automatically match the background of form components to the XP Style background of Notebook
controls when their colorNormal property settings match.

New Image Class properties

» The imgPixelHeight and imgPixelWidth properties can be used to retrieve the actual size of an image in
pixels. The image object's height and width properties can then be set to display the image at its actual size
without clipping part of the image, or scaling the image to fit the image object.

Introduction to dBASE Plus 13

Changes from earlier versions

PushButton

* Ability to override automatic behavior of PushButton to use Classic or XP style via the new systemTheme

property.
» Ability to specify how to align an image and text on a PushButton via the new bitmapAlignment property
+ Ability to place both text and an image on an XP style PushButton.

Mouse Wheel Support

¢ Added mouseWheel support in: Source Editor, Grid, Listbox, Browse, Editor, ReportViewer, Navigator and
ComboBox.

Grid

+ Ability to differentiate between selected and unselected rows in the beforeCellPaint() and onCellPaint()
events via the new bSelectedRow parameter

» Ability to set color of lines between rows and columns via the new colorRowLines and colorColumnLines
properties

» Ability to determine and set the current leftmost grid column via the new firstColumn property

+ Ability to set the color of the checkmark in a columnCheckbox control

* Grid’s columnCheckbox control now displays the checkbox in all rows of the grid, not just the current row

Rectangle
* Added the transparent property to Rectangle

MousePointer

* Added additional built-in mousepointer settings to include the vertical and horizontal splitter mousepointers.
» Updated mousePointer option 5 - Size to use the standard Windows crossed arrows (IDC_SIZEALL) mouse
Cursor.

GETFONT()

 Ability to send default values to GETFONT() function. This allows you to initialize the GETFONT dialog
with current settings.

ReportViewer

» Ability to detect when a report has reached its last page in the ReportViewer class via the new onLastPage()
event.

Error Dialog
» Enhanced error dialog to support long error messages.

Exception Handling

* Enabled ability to catch Memory Access Violations in dBL code using try...catch blocks.
* Added ability to turn off enhanced Memory Access Violation trapping for applications where this caused
compatibility problems.

Reports

* Improved setting of default band height and of autoSort to improve backward compatibility.

ListBox
* Added the vScrollBar property to turn on, or off, the vertical scrollbar

Enhanced Version Info in core product files

* Added the build number, date, and optional comments to the version information viewable via Windows
Explorer, "Properties" option.

* Made version information viewable directly in Windows Explorer’s Details View via the “View Menu/
Choose Details...” option.

14 dBASE Plus User’s Guide

Changes from earlier versions

Project Explorer

* Added ability to create and deploy a Windows XP manifest file with an application.
* Added ability to choose which runtime engine installer files to include with a deployed application.

dBASE Plus Installer

* Improved setting of defaults for BDE maxFileHandles and for default dBASE table level:
* Now sets BDE maxFileHandles to 255 on new installs or, if it is less than 255 at install time, sets the default
dBASE table level to level 7 when the BDE is not already installed.

Apache Configuration Wizard
» Upgraded Apache Configuration Wizard to work with the newest version of Apache Web Server v2.x

Overview of dBASE Plus version 2.61

New Features

New Bundled ODBC Drivers

* dBASE Plus now ships with a bundle of branded Data-Direct ODBC drivers to make it simpler to connect to:
Oracle
SQL Server
Sybase ASE
DB2
Informix
FoxPro
Visual FoxPro
Clipper
Pervasive SQL (formerly Btrieve)

Streamlined client application deployment

* The new bundled ODBC drivers for Oracle, SQL Server, Sybase ASE, DB2 and Informix not only handle the
ODBC level processing, they also manage the sending and receiving of network packets between client
workstations and database servers thus streamlining the configuration of client workstations by eliminating
the need to install additional database communciations software on each client (as is required when using
BDE SQL Link drivers).

Database Class

* Added new property loginDBAlias, which allows a second database connection to be made to a database
using the login credentials from an existing database connection.

Entryfield and SpinBox Classes

* Added ability to use a percent sign (%) placeholder in the right-most position of the picture property (when
datalinked to a numeric field), so that the percent sign can be displayed at the right end of numeric fields.

Exception Handling/Security

* Enhanced execution time validity checks to prevent execution of invalid or corrupted instructions by the
dBASE virtual machine interpreter.

Grid Class

* Added new method firstRow() - returns bookmark for first visible row in the grid.
* Added new method lastRow() - returns bookmark for last visible row in the grid.

Introduction to dBASE Plus 15

Changes from earlier versions

Project Explorer

* Added new "Ini" tab to the Inno section of the Project Explorer that allows a user to indicate whether or not a
default ini file should be generated for a deployed application. If the user chooses to create the ini file, they
can include a settings to use the BDE or not and to enable/disable the _app.ErrorTrapFilter flag.

Query Class

* Added new property usePassThrough. The usePassThrough property is checked during query activation.

If true, the query's sql statement is passed through directly to the database server for execution. When
opening very large tables this allows for very fast retrieval of the initial query result rows.

If false and a query's sql statement is a simple "select * from table" statement, dBASE Plus attempts to open
the table using "table style" semantics. For tables up to a few million rows, this usually works well. For larger
tables, this can result in a very time-consuming query operation.

Rowset Class
* Added new property autoLockChildRows

When true (the default), child rows are automatically locked when a parent row is locked. This corresponds
to previous behavior.

When false, child rows are not locked when a parent row is locked

Source Editor

* When commenting (or uncommenting) multiple lines of code, the Source Editor will no longer comment (or
uncomment) the last line if the cursor is in the first column

Variant Support

» Upgraded built-in COM and ActiveX support for variants so that most data types allowed in variants can be
converted into dBASE variable or property values or into dBASE arrays (for COM SafeArrays).

dQuery (Developer's Edition v3.03)

» Upgraded Database Connection Wizard to use new branded ODBC drivers and to simplify database
connection process.

* Most of the new dQuery branded ODBC drivers can communicate with your DBMS without having to install
additional client side software.

* Added ability to drag and drop large database tables to the design surface and to adjust dQuery's available
options and behavior when using a large table

» Implemented ability for dQuery to detect if a table is large or not. to optimize how it submits query.

* Added ability to customize query before opening a table via a new "Write SQL before opening..." popup
menu option. This option is available on the right click menu for the Databases and Tables Treeview and on
the fly-out Select Table dialog.

» Disabled ability to add, edit, or delete rows for a query if table has no indexes or if rowset is read only. Also
changed background color of query object to make it appear pale blue instead of white when add or edit rows
is not allowed.

* Made Multi-Table View grid read only to prevent data entry errors when working with rows in parent/child
relationships. User should use the Single Table View for any needed data entry.

Updates and Fixes

AgSum()

* Changed the report AgSum() function to return a variable of the same type as the field being summed
instead of always returning a variable type of float. In reports, this caused the sum of an integer field to be
displayed with decimal digits (.00) instead of as an integer. However, a float type value will still be returned
by the AgSum() function if the sum of an integer field is outside the range of a long integer (-2,147,483,648

16 dBASE Plus User’s Guide

thru 2,147,483,647). This case can happen if the integer field contains very large positive or negative values,
or a large number of rows are included in the sum.

ArgVector()

» Fixed Memory Access Violation that occurred when ARGVECTOR() was called within a procedure to
retrieve an argument whose name was declared PRIVATE prior to calling ARGVECTOR(). This condition
now triggers the following new error (Error code 403):

Error: Argument out of scope or hidden by a PRIVATE command: <varName>

Editor Class

* Fixed firing of a field object's onChange() event when an Editor is datalinked to a memo field and a change
is made via the Editor object and a rowset navigation is triggered.

EntryField Class

* Modified Entryfield component to check if the framewindow is visible before opening a viewer for a
datalinked blob field. If the framewindow is visible, then the viewer form will be opened as an mdi form (i.e.
inside the framewindow). If the framewindow is not visible, the viewer form will now be opened as a non-
mdi window (i.e. without any framewindow).

* Fixed a problem when using the 'R' formatting code in the function property and a picture property template
0f'99999', in which a 1 in the leftmost position of the field would be lost when tabbing to next field. The
resulting value would display as '00000'".

» Fixed two problems that occurred when using the 'R’ formatting code in the function property:

1 Fixed problem where digits entered in a numeric entryfield were lost because the actual characters
displayed during data entry were not a valid numeric value. The entryfield was changed so that if the 'R’
formatting code is specified and the picture property contains a valid template for a numeric value, then
numeric data entry rules are enforced.

For example, with 'R' in the function property, and '999.99' in the picture property, entering the four
characters, '9.12", from the left end of the entryfield would display as '9.1.2', which becomes 9.10 when it
is converted to a numeric value (after pressing the enter key or tabbing to the next field). This happened
because the entered decimal point did not automatically align with the placeholder decimal point from the
picture property, so the second decimal point and all characters to the right of it were ignored when the
string was converted to a numeric value.

2 Fixed the processing of numeric picture characters '9', '#, '*', '$' to only allow '-' or '+' to be entered at the
left end of an entryfield or spinbox value.

Form Class

» Fixed the form's nextObj property so it only returns objects in the tab order.

Form Designer

* Fixed Source Alias substitution, which is used when code is streamed from the Form Designer (and other
places), so the longest matching Source Alias path is used instead of a Source Alias to a higher level sub-
path.

» Fixed painting of line objects so that the ends of the lines do not bleed-through to a new page when changing
the current page for a form or notebook.

mousePointer Property

» Fixed a problem that occurred when a non-default mouse pointer (also called the mouse cursor) was chosen
for a form. Clicking any mouse button on the form surface (not on a component on the form) caused the
mouse pointer to change to an arrow until the mouse was moved. This problem could also be seen when any
of the mouse buttons was released (mouse up) after holding a button down, moving the mouse slightly to
restore the selected pointer, and then releasing the button.

Introduction to dBASE Plus 17

MSGBOX()

* Fixed a problem where a modal message box dialog would be assigned an incorrect parent window if its
parent form is not the foreground application when MSGBOX() is executed.

onMouseOver | onMouseOut Events

» Fixed onMouseOver and onMouseOut events so they do not fire for components on non-visible form pages.
» Improved firing sequence of onMouseOver and onMouseQOut events as follows:

+ Fixed firing sequence when the mouse was moved quickly from one grid to another and the two grids
were close to each other. The onMouseOver event of the entered grid was fired before the onMouseOut
event of the grid that was left.

» When several crossing events occurred at once, their order is now as expected - First out of one
component and then over another component, first over the form and then over the form child windows,
first out of the child window and then out of the form.

» The events are now fired at the outer border of a notebook.

* A form component no longer fires the events, when the mouse crosses sibling form components that are
inside it. For example, if there is a button within a rectangle, the rectangle over/out events are not fired
when the button is crossed.

* The events now fire for disabled and invisible components.

Printer Support

» Fixed GPF that occurred when changing the PrinterName property of a printer, or after selecting a specific
printer with a print dialog

* Fixed lockup that occurred if printer.choosePrinter() was called more than once after changing
printer.printerName.

Project Explorer

» Fixed CURSOR::BEGINWAIT error that sometimes occurred when opening the Project Explorer.
» Explorer.dll, which contains graphic files for the Project Explorer, has been renamed to ProjExp.dll to
prevent it from being improperly labeled as spyware or a virus by some anti-spyware and anti-virus utilities.

Query Class

» Corrected the query activation code so that if the query's canOpen() event returns False, query.active will be
set to False instead of being left True.

QUIT Command

* Fixed QUIT WITH <expN> so that <expN> (a return code) is correctly passed back to the operating system.
When calling a dBASE Plus application .exe from another program or batch file, the return code can now be
tested to determine if an error occurred or if some other action is required.

Report Designer

* Corrected Group Pane of Report Designer so that clicking on an object in the Group Pane correctly selects
the object in the Report Pane.

* Corrected indentation of the group bands in the Group Pane of the Report Designer, so that when multiple
group bands are present the outermost group has the smallest indent, the next group has a bigger indent and
so on. Also, moved the text that labels the pageTemplate so it displays vertically along the left side instead
of along the top.

* Objects in the Group Pane of the Report Designer are now drawn with the same width as their corresponding
object in the Report Pane.

18 dBASE Plus User’s Guide

Rowset Class

» Fixed "Capability Not Supported" error that could occur when automatically unlocking a row after issuing a
beginTrans(). The BDE would return this error if beginTrans() has been called and a user does the
following:

1 Edits a field in a row in a grid

2 Edits a second row

3 Goes back and edits the same field in the first row again
4 Then clicks on a different row

Runtime Application

» Fixed GPF that occurred when invoking a deployed application .exe using a UNC path.

SAVE ... LIKE / LIKE() / LIKEC()

» Fixed regression that caused SAVE TO <mem file> ALL LIKE <memvar skeleton> to save variables that
should have been excluded by the LIKE clause.

Also fixed related problems in the LIKE() and LIKEC() functions that could lead to these functions
reporting incorrect matches between a supplied skeleton expression and a test string.

Source Editor

» Fixed "dQuery.wfo does not exist" error that occurred when using the Fix option from a previous error
dialog. With dQuery loaded, when certain errors occurred the following would trigger a secondary error:

+ Pressing Fix to open the Source Editor
* Correcting the error
* Closing the Source Editor

» Fixed GPF that would occur when setting rowset.masterFields to a memo field when the child table's current
index is based on a character field. This will now generate a Type Mismatch error.

SpinBox Class

» Fixed regression that caused the the spinbox to initially increment a value when its down arrow is clicked.

* Fixed a problem when using the 'R' formatting code in the function property and a picture property template
0f'99999', in which a 1 in the leftmost position of the field would be lost when tabbing to next field. The
resulting value would display as '00000'".

* Fixed two problems that occurred when using the R' formatting code in the function property:

1 Fixed problem where digits entered in a numeric entryfield were lost because the actual characters
displayed during data entry were not a valid numeric value. The entryfield was changed so that if the 'R’
formatting code is specified and the picture property contains a valid template for a numeric value, then
numeric data entry rules are enforced.

For example, with 'R' in the function property, and '999.99' in the picture property, entering the four
characters, '9.12', from the left end of the entryfield would display as '9.1.2', which becomes 9.10 when it
is converted to a numeric value (after pressing the enter key or tabbing to the next field). This happened
because the entered decimal point did not automatically align with the placeholder decimal point from the
picture property, so the second decimal point and all characters to the right of it were ignored when the
string was converted to a numeric value.

2 Fixed the processing of numeric picture characters '9', '#', '*', '$' to only allow '-' or '+' to be entered at the
left end of an entryfield or spinbox value.

StreamSource Class

* Fixed problem with streamSource's rowset property. Setting it to a different rowset now, correctly, turns off
notifications from the previous rowset to the streamsource object.

Introduction to dBASE Plus 19

Subform Class

» Fixed the excessively slow grid scrolling (on a subform) and the frame title bar blinking that was related to it.

Table View - Context Menu

* Fixed problem that caused the wrong context menu to display when running dBASE Plus with a manifest
file, opening a table from the Tables tab of the Navigator, and right-clicking on the Table View window.

TreeView

1 Fixed regression to treeview's borderStyle property so that changing it from its default value no longer causes
flickering. Also fixed lockup that occurred when changing it via the Inspector in the Form Designer. This
problem was caused by the fix for QAID: 5287.

2 Fixed Memory Access Violation that sometimes occurred when a treeView's releaseAllChildren () method
was called, and a tree item was selected.

XP Theme Support

* Fixed copy(), cut(), and paste() methods when called from an XP themed pushButton. Previously, these
methods failed to work when using an XP theme.
* Fixed the following XP theme issues:

1 EntryField, SpinBox, Editor, ListBox and Rectangle now support XP styles, when XP theme is active and
with default properties.

2 Fixed position of text for a rectangle object when XP themes are used.

* When the mouse enters an XP style push button (turning it orange), XP sends a paint message to the form
text component. The painting of non-transparent text was done directly to the screen and caused flickering.
The text painting code is now changed to do most painting operations off screen.

» Disabled combobox (simple or dropDown styles) with XP style had black background behind the list items.
The background brush and text background of a disabled combobox are now white.

* Fixed systemTheme speedBar pushButton so that clicking it with the mouse does not take focus from control
that currently has focus. This occurred with editor and entryField components among others..

» Fixed problem in the Form Designer, when pasting a shape or line component onto an XP themed notebook,
the pasted shape or line were invisible.

» Corrected text and group box background colors to match containing window for various core product
dialogs when XP Themes are enabled.

* Fixed a regression in the Form Designer Properties dialog that caused the OK, Cancel, Help and Apply
buttons to be positioned incorrectly when XP Themes were not enabled.

» Fixed regression that caused rectangle components to ignore mouse events and not fire their mouse event
handlers that was due to changes to support XP Themes.

» Corrected overlapping of some controls in Project Explorer when using XP Themes.

dQuery
Create Table

* Added new form for selecting database and table name for "create table".

Database Connection Wizard

» Fixed the Delete Database Connection option in the dQuery Database Connection Wizard so that it can
delete connections made using an ODBC System DSN as well as ODBC User DSN's.

Datamodule Code Generation

* The order in which database objects are written to the datamodule file has been changed to match the order in
which the database's where added to the datamodule at design time.

20 dBASE Plus User’s Guide

Export Wizard

Corrected spelling of "Unable" in Export Wizard.

Fixed "Value out of range" error that occurred when exporting a Sybase ASE table to a comma separated text
file (.csv).

Updated dQuery Export Wizard to disable the Multi-Table View option if the Multi-Table View has not been
setup yet.

Updated Export Wizard so it no longer allows user to click Next to move to the Destination Table page after
user cancels from destination database login dialog.

Fixed "Data Type Mismatch Error. Expecting: Logical" that occurred when attempting to export a table in a
DBMS database to a new table in the same database.

Modified dQuery's Export Wizard so it disables the Current Query option if no query is available to export
from.

Updated export wizard to correctly export data from temporary tables (PASS THROUGH SQL tables)
generated by executing queries via .sql files. Also added tests to prevent exporting a field from a PASS
THROUGH SQL table as part of the Multi-Table View as this is not currently supported.

Import Wizard

Fixed "Database Not Opened" error that occurred in the Import Wizard when canceling out of the database
login dialog when choosing a table to import.

Miscellaneous

Fixed a "variable undefined" error when deleting a session object from the design surface that the user had
added.

Fixed table or view not found error that occurred when opening a SQL Server table with spaces in the name.
Fixed Memory Access Violation that occurred after attempting to use the Rows | Replace Field Values menu
option when the currently selected query is a table that cannot be edited due to it being opened via ODBC
and not having any indexes.

Removed the extra back-slash in the default dQuerySamples alias path created by dQuery when the alias
doesn't already exist.

Fixed "Index Does Not Exist" error when clearing index for a Non-Indexed Parent/Child Link when using a
MySQL database.

Removed "Include all rows" option from Standard Filter and Non-Indexed Search dialogs.

Fixed "Database Engine Error: Index does not exist" that occurred when closing the Table Designer after
opening some DBMS tables that have no indexes.

Added code to prevent user from closing dQuery form while dQuery is in the middle of running processes
that require controlled exits. Processes modified are: Load current report, Calculate sum, Calculate count,
Calculate minimum, Calculate maximum, Calculate average, Open fly-out tables list.

Fixed "Value out of Range" error and other potential errors that could occur when dragging splitter bar past
bottom of dQuery form window and when maximizing dQuery form within its frame window. Added code to
prevent dQuery from using splitter position values that are too large or too small from .ini file.

Removed access to right-click popup menus for editor controls in the following dQuery Business User
dialogs: Filter Properties, Field Detail, Table and Query Properties, Rowset Properties.

Fixed "Variable Undefined: QLANG" error when canceling a search run via the Search | Non-Indexed
Search menu option.

Fixed the Set Order dialog, which has the wrong name for the second tab when there is no current index or no
index is selected.

Fixed "Database Engine Error: Table does not exist: t" when using Filter | SQL Select Filter dialog.
Corrected use of table alias "t" in the generated SQL Select statement when reserved words are used for
fieldnames in a field list.

Fixed incorrect font size problem that sometimes occurred in the Multi-Table View grid's rightmost column
where the font size of this column would become larger than in the other columns.

Disabled the Filter | SQL Select menu option for inactive queries.

Prevent error that occurred when right-clicking on dQuery design surface, choosing "Add Table" and then
canceling out of the database login dialog.

Modified the dQuery Tables menu to enable the "Encrypt table" option only for dBASE or Paradox tables.
Corrected the Fly-out Table list window's resize routine so that it correctly positions and sizes all of the
window's components.

Disabled menu and toolbar options to Add Row and Goto Last Row for large DBMS tables.

Introduction to dBASE Plus 21

» Fixed regression in Filters | SQL Select... dialog that prevented the full list of fields from showing when
modifying a query that retrieved a subset of fields from a table.

* Fixed "Invalid Object Name" error that occurred after using the Table Wizard's Modify Table Structure
option to view the structure of DBMS tables from SQL Server or Oracle.

» Fixed Filter | Clear All Filters and Filter | Clear Any SQL Filter menu options so that they also clear a "T"
alias definition if it is present in the filter SQL statement. This can occur in SQL statements created by the
Star Filter.

» Updated dQuery wizards to prevent them from responding to multiple clicks, by the user, of the Finish
button. Now only responds if Finish has not already been clicked.

» Fixed error that occurred if user cancels out of database login dialog when selecting a source or destination
table in:

Table | Create Table From, Table | Copy Table To, Table | Copy Structure To.

* Improved ability of Hand-Edit SQL dialog to preserve Parent/Child links including non-indexed Parent/
Child links.

* Updated dQuery's Database Connection Wizard's DB2 option to default to supporting the IBM Client Access
ODBC driver for DB2 on the AS/400.

» Prevented display of incorrect child row data when using dBASE tables in a non-indexed parent/child
relationship and a parent row has no matching child rows.

» Fixed a GPF caused by clearing rowset.masterFields in the Inspector for a child rowset.

* Fixed "Index does not exist" error that occurred when loading an existing datamodule into dQuery for DB2
and some versions of Oracle when an explicit index was set within the datamodule.

» Fixed "Database Engine Error" that occurred when opening some DB2 for Windows system tables including:
SYSCAT.TABLES, SYSCAT.INDEXES, SYSCAT.EVENTS.

* Fixed Memory Access Violation that occurred when switching dQuery's report view from the Automatic
Report to a saved report when the datamodule contains a Standard (CanGetRow) filter on the rowset.

Multi-Table View

* Mouse pointer now changes to an hour glass when dropping a field onto the Multi-Table view and changes
back once the view has been updated.
* Fixed a problem where Multi-Table View column width changes are lost the first time a datamodule is saved.

One-Click Windows Application

» Fixed "Data type mismatch: Expecting Object" error that occurred when selecting the Multi-Table View tab
on a dQuery deployed Windows application when no Multi-Table View was defined before the application
was created by dQuery.

» Disabled the Index Order and Speed Search comboboxes on a dQuery deployed Window's application when
there are no indexes defined. Changed the background color of the comboboxes from yellow to white.

» Corrected typo on the first page of the dQuery deployed application Filter Wizard, changed "expressiont" to
"expression".

Parent/Child Wizard

» Fixed "Index does not exist" error after using Parent/Child Wizard to setup a non-indexed link, choosing to
enforce one-to-one relationship, and then clicking on each query object on design surface.

Reports

» Upgraded report totals so that they will not include a decimal point and additional digits to the right of the
decimal point unless absolutely necessary.

Set Order Dialog

* Fixed "Index does not exist" error when setting index order to natural order.

SQL Expression Generation

* Corrected SQL expression generated for the "None of the conditions" option in the dQuery expression
builder, which is used in the SQL Select filter, the Filter Wizard and elsewhere. Previously, the logic

22 dBASE Plus User’s Guide

generated was NOT "All of the conditions" instead of the logic for "None of the conditions", which is
different.

Star Filter

» Fixed Server Error with the Star Filter's "Apply to Datamodule" option when the query's requestLive
property is set to false. Also fixed problems with recovery of the datamodule rowset state after this error
occurred. Fixed the right-click Requery option to handle the case where query.requestLive=false and there is
a "T" alias in the SQL statement from a Star Filter generated WHERE clause.

Web Wizards

» Fixed "In use by another: ...\dBLCore\temp\Wiztemp1" error dialog that could occur when choosing
Applications | Web Wizards a second time in dQuery standalone.

» Fixed "Unknown database name: dQueryTemp" error that occurred when selecting Applications | Web
Wizards a second time.

XP Theme Support

* The current Windows XP Theme is now used by form components in dQuery dialogs and One-Click
Window applications including: EntryFields, SpinBoxes, Editors, ListBoxes and Rectangles.

Overview of dBASE Plus version 2.61.1

ListBox Class

* Added a rowHeight property to class listBox which works similarly to grid.cellHeight.

Array.dir() and DIR
» Upgraded array.dir() and the DIR command to handle file sizes greater than 2GB.

PushButton Class

* Added the ability to change XP themed push buttons color beyond the border. A thin area around the button
can be painted with the color of your choice, using the colorNormal property of the push button.

Grid Class

» Updated Grid so the mouse wheel events will be ignored if the grid's vertical scroll bar is turned off or
disabled.

Overview of dBASE Plus version 2.61.2

ComboBox

The ComboBox has been overhauled to fix many long standing bugs and to make it simpler and easier to
enhance in the future.

* Added new ComboBox events, beforeDropDown and beforeCloseUp
* beforeDropDown() - Fires just before dropdown list opens for a style 1 or 2 ComboBox
* beforeCloseUp() - Fires just before dropdown list is closed for a style 1 or 2 ComboBox

* Added new ComboBox events: onChangeCommitted(), onChangeCancel(), beforeEditPaint(), and
onEditPaint()

» onChangeCommitted() - Fires when the user takes an action indicating that they are choosing a value for
the ComboBox. onChangeCommitted will fire in the following cases:

- Left click on an item in the listbox (all styles) when the item is different from the current ComboBox value.

Introduction to dBASE Plus 23

= Press Enter with an item highlighted in the dropdown list (style 1 or 2) when the item is different from the
current ComboBox value.

= For style 0 or for style 1 or 2, with dropdown list closed, press the Up Arrow, Down Arrow, PgUp, or
PgDn keys.

= Left click on the ComboBox button for a style 1 or 2 ComboBox when the dropdown list is open and the
highlighted item in the dropdown list is different from the current ComboBox value.

= onChangeCommitted() fires only after the ComboBox's value property has been updated with the selected
value.

= onChangeCommitted() will not fire for a style 1 or 2 ComboBox when the dropdown list is open and the
Up Arrow, Down Arrow, PgUp, or PgDn keys are pressed.

» onChangeCancel() - Fires if the user takes an action that closes the dropdown list without actually choosing
an item. For example, clicking on the form surface or on another component or some other window entirely.
onChangeCancel() can be used to implement logic to change the ComboBox value back to some other value,
perhaps the value it had just before the dropdown opened.

» beforeEditPaint() - In a style 0 or 1 ComboBox - fires for each keystroke that modifies the value of a
ComboBox. beforeEditPaint() fires just before displaying the new value for a ComboBox. It does not fire if
the keystroke does not modify the ComboBox.

» onEditPaint() - In a style 0 or 1 ComboBox - fires for each keystroke that modifies the value of a ComboBox.
onEditPaint() fires just after displaying the new value for a ComboBox. It does not fire if the keystroke does
not modify the ComboBox.

Notebook

» Upgraded the Notebook to paint the area to the right of its tabs to match the background of its parent
container when the Notebook's borderStyle is set to 0 - Default or 3 - None.

Project Explorer

» Updated Project Explorer to build pe1028, which includes the new ability to hide the Project Explorer logo
graphic at the left of the form, as well as support for Inno Script Generator, which replaces ScriptMaker as
the supporting tool for creating Inno installers. More details are included below.

» Changed Project Explorer to support Inno Script Generator instead of ScriptMaker.

* Added a new menu item, Build->Compile script and execute, to directly compile the Inno script and run
the compiled setup.exe.

* Fixed a Run menu text error for non-English dBASE languages.

+ Fixed a problem that occurred when creating a new project, where an error dialog displayed if the
Windows X button is used to close the project after only entering a project name.

* Changed Inno [Code] lines output to support Runtime Uninstall call, and to add a function call for the
dBASE Runtime Engine.

* Added support for new Inno languages, Danish and Polish.

* Added new fields (ComboBox and entryfield (ComboBox-Result) on the bottom of the Inno Default Tab
at bottom) to include Inno [Languages] section entries only for languages chosen by the user and not
always all (Default _app.Language). Also added text and Speedtips to the DTF (language translation) files
for these new fields.

Overview of dBASE Plus version 2.61.3

ComboBox

* Added selectAll property to ComboBox to allow developer to disable automatic select all behavior and
automatic horizontal scrolling of wide combobox value.

24 dBASE Plus User’s Guide

* Added autoTrim property to ComboBox to allow developer to enable automatic trimming of trailing spaces
from option strings as they are loaded from a datasource field object or from a lookupRowset's field object
into a combobox listbox. The default for autoTrim is False - which matches previous behavior.

GetDirectory()

Upgraded the getDirectory() dialog to the newer user interface offerred by Windows XP.
* The GetDirectory() dialog has the following new features:

+ getDirectory() dialog is now resizeable

» aMake New Folder button is available

* a Directory edit control shows the currently highlighted folder name

+ right clicking the mouse on a folder opens the standard Windows context menu which includes many
options for working with folders

The Navigator and other built-in dialogs within dBASE Plus will also use the upgraded dialog.

GetFile() / array.getFile() / PutFile()

Upgraded the getFile() and putFile() dialogs to make them resizable.
* This includes array.getFile() and all dialogs within dBASE Plus that trigger an Open File or Save File dialog.

Project Explorer

Added support for Windows XP / Vista manifest files.
* Enabled a combination XP / Vista checkbox
* Added radio buttons to choose what level of security to use for the Vista manifest files.

e This will add the needed manifest files for PlusRun.exe and BDEAdmin.exe to the installer.

Overview of dBASE Plus version 2.61.4

Grid Class

* Enhanced design time functionality of the grid. When designing a Grid in the Form Designer, if custom
columns are defined, you can now:

* size columns, move columns, and set the grid's cellHeight (rowHeight) by using the mouse
 select a column's editorControl or headingControl into the inspector by left clicking them with the mouse.
» Updated the Grid to support passing correct mouse coordinates to columnHeader mouse events.

* Grid level mouse event handlers will now fire anywhere on a grid as long as the event handler is defined and
is not overridden by a matching columnHeading or editorControl event. This includes mouse events on a
column header, row header, grid cell, or grid background

e Added a new Grid property : alwaysDrawCheckbox

* The default value for alwaysDrawCheckbox is True which causes any columnCheckBox controls to be
painted with a checkbox for all cells in the column.

* When alwaysDrawCheckbox is set to False, the checkbox is only drawn in a cell if it has focus.
* Added a new Grid event: onHelp()
+ onHelp() can be fired in two ways:

= by clicking the F1 function key on the keyboard, while the Grid has focus.

= Dby using the context help question mark (?) in the title bar of the form. Clicking on the context question
mark (?) starts the context help mode which changes the mouse pointer and allows the user to click on a
form component (in this case a Grid) to trigger it's onHelp() event.

Introduction to dBASE Plus 25

Grid editorControls

* Added a full set of mouse events for the Grid editorControls (columnEntryfield, columnSpinBox,
columnCheckBox, columnComboBox, columnEditor). Mouse events include:

onLeftDblClick
onLeftMouseDown
onLeftMouseUp
onMiddleDblClick
onMiddleMouseDown
onMiddleMouseUp
onRightDblClick
onRightMouseDown
onRightMouseUp

onMouseMove

* The columnComboBox control has been enhanced to have the following properties and events to match the
comboBox control:

Style (with options of 0-DropDown OR 1-DropDownList)
AutoTrim
MaxLength
SelectAll
BeforeDropDown
BeforeCloseUp
OnChange
OnChangeCancel
OnChangeCommitted
BeforeEditPaint
OnEditPaint

* The columnComboBox control now auto adjusts it's height to match the current grid cellHeight

Form and SubForm Class

* Added new contextHelp property to the Form Class and the SubForm Class.

When contextHelp is set to true and mdi, maximize, and minimize are set to false, a button displaying a
question mark (?) will display to the left of the form or subform's close button in the rop right portion of
the form's titlebar.Clicking the mouse on the context help button starts context help mode which changes
the mouse pointer and allows the user to click on a form component to trigger the component's onHelp()
event.

When contextHelp is set to false (the default) no context help type question mark is displayed in the
form's title bar.

New systemTheme properties

* Added a new systemTheme property to:

_app.frameWin
Form class

Subform class

26 dBASE Plus User’s Guide

« All Form control classes that have their own window.

* When systemTheme is True (the default), when running on XP or Vista, and with a manifest file installed
that instructs Windows to load the version 6 common controls, windows and controls are painted using the
current Visual Style set in the operating system.

* When systemTheme is False, the version 5 common controls are used and windows and controls are painted
using the classic Windows look.

Code Signing
* dBASE has been upgraded so it can build .exe's that can be code signed.

* New executables built with dBASE Plus will contain some additional information that will allow them to be
loaded successfully with the newruntime engine whether or not they are signed with a digital signature.

* The new dBASE runtime will check a dBASE built .exe for the new data. If found, it will be loaded using the
digital signature safe way. If not found, it will be loaded the old way which will not support digital
signatures.

* The new runtime is therefore, backward compatible with executables built with prior versions of dBASE
Plus.

» Inaddition, executables built with the new version of dBASE Plus will work with older dBASE Plus runtime
engines unless it requires features available only in the newer runtime engine.

Overview of dBASE Plus version 2.61.5

Rowset Class

Added new rowset property: lockType to determine if explicit locks can be released by a call to rowset.save() or
not. Allowed values for lockType are:

* 0 - Automatic = row locks obtained by calling rowset.lockrow() are released by calls to Save() or Abandon()

» 1 - Explicit = row locks obtained by calling rowset.lockrow() are NOT released by calls to Save() or
Abandon()

The default for lockType is 0 - Automatic unless an overriding setting is set in plus.ini or the application's .ini
file. Added support for new ini file setting:

* [Rowset]
LockType=0
or
LockType=1

Allows user to set default rowset.lockType via ini setting..

dBASE Plus documentation

Your dBASE Plus Help system offers full context sensitive help, examples, expanded and updated conceptual
and training material, plus a full Language Reference with code samples you can cut and paste directly from the
Help window.

Introduction to dBASE Plus 27

Typographical conventions

The following typographical conventions used in this Help system will help you distinguish among various
language and syntax elements.

Convention Applies to Examples
Italic/Camel cap Property names, events, methods, arguments length property, lockRow() method, <start
expN> argument

ALL CAPS Legacy dBASE commands and other language elements =~ APPEND BLANK, CUSTOMER.DBF
from previous versions. Also used in file and directory
references.

Roman/Initial cap/ Class names (including legacy classes), table names, field class File, class OleAutoClient, Members

Camel cap names, menu commands table, Price field

Monospaced font Code examples a=new Array(5,6)

Documentation updates and additional information resources

The dBASE home page on the World Wide Web, at http://www.dbase.com, helps you find the most current
information about dBASE Plus. Periodic updates to the dBASE Plus Help system, as well as technical notes,
tips, and other materials that will further your understanding of the program, will be posted on the dBASE Inc.

website.

Your dBASE Plus CD also contains a full copy of the new Knowledgebase in HTML format. To use the
Knowledgebase, double-click on the file "kbmenu.htm" in the \KB folder on your installation CD. The dBASE
Plus Knowledgebase is also available on the dataBased Intelligence, Inc. website. The Knowledgebase is an
ever expanding repository of all things dBASE., check our website frequently for updates!

The BDE Administrator and other included applications and controls offer their own Help systems, which can
be run from disk, from within the applications, or by pressing F1 while an application is open or control is
selected.

For tips on using Windows Help, choose Help | How To Use Help from the main dBASE Plus menu.

Software registration

To register your product with dataBased Intelligence, Inc. and qualify for support, use the registration card
included in your dBASE Plus package or register at our Web site at http://www.dbase.com dBASE technical
support services

dataBased Intelligence, Inc. offers developers high-quality support options. These include free services on the
Internet, where you can search our extensive information base and connect with other users of dBASE products.
In addition to this basic level of support, you can choose from several categories of telephone support, ranging
from support on installation of your dBASE product to fee-based consultant-level support and detailed
assistance. To obtain pricing information for dBASE technical support services, please visit our Web site at
http://www.dbase.com.

To request assistance, call:

dataBased Intelligence, Inc. Call Center Toll free (USA and Canada only)
607-729-0960 888-dBASE-32
(888-322-7332)

The call center is open from 9:00 AM to 5:00 PM eastern time USA.

28 dBASE Plus User’s Guide

Chapter

Installing dBASE Plus and
connecting to an SQL database
server

This chapter tells you what you need to run dBASE Plus and lists the products and programs in you dBASE Plus
package. Then it shows

* How to install and uninstall dBASE Plus
* What happens during installation
* How to connect to an SQL server

What you need to run dBASE Plus

To run dBASE Plus you need the following:

HARDWARE

All of the following are required

* Intel 486DX2 or higher

¢ CD-ROM drive

+ 16MB RAM

* 35 MB hard disk space

* VGA or higher resolution (SVGA recommended)
* Microsoft mouse or compatible pointing device

OPERATING SYSTEM

Microsoft Windows® 95/98/2000
Microsoft Windows® NT 4.0
Microsoft Windows® ME
Microsoft Windows® XP

NETWORKS

It runs on all Windows-compatible networks, including NT networks, Novell networks and peer-to-peer
networks, such as Lantastic and Netbeui.

Installing dBASE Plus and connecting to an SQL database server 29

Products and programs in your dBASE Plus package

Products and programs in your dBASE Plus package

The following products and programs come with dBASE Plus:
* dBASE Plus, including integrated compiler/runtime system.
* dQuery DataModule designer.

* The dBASE Plus debugger.

* The 32-bit Borland Database Engine (BDE) and configuration utility (BDE Administrator), with native
drivers for dBASE, Paradox, Microsoft Access 95/97, and Microsoft FoxPro databases.

» Integrated Help system, including a full Language Reference.
* The dBASE Plus Knowledgebase.
» Sample tables, forms, reports, and other files that you can learn from, use or adapt.

* A selection of custom controls and graphics (backgrounds, cursors, and other images) for use in forms and
reports.

» A utility for converting Crystal reports to dBASE Plus reports.
+ A utility for converting Visual dBASE 5.x forms to dBASE Plus forms.

* A dBASE 5.0 for DOS Form/Menu Converter to assist with the conversion of object-based forms and menus created in
dBASE 5.0 for DOS.

* ODBC connectivity and Local InterBase.

* The SQL Links high-performance drivers allow you to connect directly to Oracle, Sybase, InterBase, MS
SQL Server, IBM DB2 and Informix databases.

Installing dBASE Plus

The target for the installation of dBASE Plus will default to a folder where dBASE Plus may already be
installed. You may wish (but you are not required) to install the new dBASE Plus into the same folder. Installing
into the same folder maintains the PLUS.INI settings that you may have set. If dBASE Plus is not presently
installed, the target folder will be C:\Program Files\dBASE\Plus, but you can install dBASE Plus to a folder
location of your own choosing.

If the BDE is already installed on your machine, the existing folder location will be selected by default. It is
recommended that you continue using this location. Current BDE settings and any new BDE settings are
merged during the install, so you don’t lose any prior BDE configuration.

To install dBASE Plus,

1 Insert your dBASE Plus CD into your CD-ROM drive.

2 Choose Run from the Start menu.

3 In the Run box, type the letter of your CD ROM drive, followed by a colon and the word setup, for
example,

D:\Plus_Plus\setup
4 Follow the directions that appear onscreen.

At the end of the installation process, you are given the option to read the "readme" file. You can read it then or
open it later from your dBASE Plus root directory or program group.

What happens during installation

In addition to installing the options you selected, the following occurs during setup:

* The BFX.0CX and PROJECT.OCX ActiveX controls are installed and registered (Project Explorer controls
installed with the dBASE program).

* The dBASE registry settings are written to HKEY LOCAL MACHINE\SOFTWARE\dBASE\PLUS.

30 dBASE Plus User’s Guide

Vista compatibility for dBASE Plus

 In addition to the usual subdirectories, like BIN, a subdirectory named My Projects is created off the dBASE
Plus home directory, by default C:\Program Files\dBASE\Plus\My Projects.

» The Language of the installer will attempt to match the Windows system language setting. This can be set via
the Control Panel | Regional Setting. During the install process, you are given the option of selecting
additional languages. For example, if you select English and German, the User Interface resources and
documentation (as available) will be installed for both languages

* The User Interface language resources installed for the BDE Administrator, the BDE Online Help, and the
User Interface resources for the Project Explorer, will match the language of the Installer itself. Multi-
language installs are not supported for these components.

Vista compatibility for dBASE Plus

There are several differences using dBASE Plus in Windows Vista vs. Windows XP. These differences are laid
out here in the following categories:

Vista Security modes and Manifest files

(Overview of basic information on the new security settings in Windows Vista.)

In Windows Vista, Microsoft has made substantial changes in how Windows handles security when starting a
program.

In older versions of Windows, programs ran all the time with whatever security level the logged in user
possessed.

In addition, it was possible to startup Windows with a workstation only login that, by default, gave the user full
access (i.e. administrator access) to everything on a workstation.

In Windows Vista, Microsoft has substantially tightened security as follows:

* Vista defaults to running a program with a fairly low privilege level even if the user logs in with a higher
security level.

» using Vista manifest files or embedded manifest resources, Vista can be told the privilege level a program
requires, in order to run properly.

* The action Vista takes when a program attempts to perform an action that requires elevated privileges can be
configured via workstation or domain level security policies to:

* Prompt a user to login with elevated rights or administrator level rights when needed
» Terminate a program that attempts to perform an action that requires higher level rights
* Automatically elevate a program to a higher level if the logged in user has sufficient rights

More detailed information about Vista security and other compatibility issues is available at: http://
msdn2.microsoft.com/en-us/library/aa480152.aspx

Running dBASE Plus IDE in Vista

Generally, setting the requested execution level to 'run as Administrator' will allow existing dBASE and BDE
Admin executables to run properly.

There are two ways this can be done :

1 - Using the Manifest file's 'requestedExecutionLevel’ setting.

dBASE Plus can be run successfullly in Vista by installing the application manifest file that contains the
appropriate requestedExecutionLevel setting. When using this method, the BDE Administrator must also have a
manifest file installed for it to run on Vista.

Instructions ...

» All Manifest files must be installed in the same folder as the executable it is intended for.

Installing dBASE Plus and connecting to an SQL database server 31

Vista compatibility for dBASE Plus

* The 'Administrator rights' manifest files for dBASE can be downloaded here : http://www.dbase.com/
Manifests/ManifestAdminRights.zip

+ Save the plus.exe.manifest file in the same folder as the plus.exe file. (Default folder is C:\Program Files\
dBASE\PLUS\BIN)

» Save the plusrun.exe.manifest file in the same folder as the plusrun.exe file.(Default folder is C:\Program
Files\dBASE\PLUS\Runtime)

* Save the bdeadmin.exe.manifest file in the same folder as the bdeadmin.exe file.(Default folder is C:\
Program Files\Common Files\Borland\BDE)

* NOTES:
It is recommended that you re-boot your computer after adding the manifest files

* When you install dBASE Plus (from dBASE Plus version 2.60 ... up to 2.61.4) a Manifest file is
automatically installed under the bin folder. This Manifest file has the settings to allow the use of the
Version 6 common controls in Windows XP (and Vista). If you already have this file make sure you
delete it before installing the replacement Manifest file since the Vista manifest file will also include these
settings and you do not want to accidentally rename the new manifest file.

Example: If you'd like to take a look, This is what the Vista Manifest file for Plus.exe looks like. NOTE: the
section within the <trustinfo>|</trustinfo> tags is where the administrator settings are provided. Also, take out
the <trustInfo> tags, and everything in between, and this is the same as the XP manifest file that is currently
shipped with dBASE for PLUS.exe.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlIns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
<assemblyldentity

version="1.0.0.0"

processorArchitecture="X86"

name="PLUS.EXE"

—n

type=
/>

win32"

<description>PLUS.EXE Manifest</description>
<dependency>
<dependentAssembly>
<assemblyldentity
type="win32"
name="Microsoft. Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="X86"
publicKeyToken="6595b64144ccf1df"
language="*"
/>
</dependentAssembly>
</dependency>
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">

<security>

32 dBASE Plus User’s Guide

<requestedPrivileges>
<requestedExecutionLevel level="requireadministrator" uiAccess="false"/>
</requestedPrivileges>
</security>
</trustInfo>

</assembly>

2 - Using the .exe's 'privilege Level’ setting.

If you do not wish to use the manifest file’s security settings, this can be done by setting the Privilege Level
setting in the .exe’s property dialog.

Instructions ...

PLUS.EXE

+ Right click PLUS.exe (Default folder is C:\Program Files\dBASE\PLUS\BIN)
* Choose 'Properties’

» under the 'Compatibility' tab .. 'Privilege Level' setting - click on the checkbox next to 'Run this program as
an administrator' to turn it on.

PLUSRUN.EXE and BDEADMIN.EXE

» Right click plusrun.exe (Default folder is C:\Program Files\dBASE\PLUS\Runtime) (follow instructions for
plus.exe)

» Right click bdeadmin.exe (Default folder is C:\Program Files\Common Files\Borland\BDE)(follow
instructions for plus.exe)

Windows XP SP2 compatibility mode

Another option that is available in Vista is the "Windows XP SP2 compatibility mode'.

This is created to prevent the "This program might not have installed correctly" dialog box that shows for
applications that are hard coded to look for the XP version.

If you are installing from the plus-setup.exe file then you should set the 'Windows XP SP2 compatibility mode'
as detailed below for the plus-setup.exe file.

Also, The bdeadmin.exe file should be set to use the 'Windows XP SP2 compatibility mode'. If you do not set
the 'Windows XP SP2 compatibility mode' for the bdeadmin.exe, the manifest file (bdeadmin.exe.manifest)
may be ignored when trying to run the BDE Administrator. This may cause any changes to be saved incorrectly
when modifying the BDE Config file directly.

Right-click on an .exe name or shortcut - goto Properties - under the Compatibility tab - apply the Windows XP
SP2 compatibility mode.

Running a deployed .exe in Vista

When deploying executables built with dBASE Plus you can again use option #1 or #2 under the Running
dBASE Plus IDE in Vista heading above.

When using option #1:

* You must create a manifest file for your executable as well as for PLUSRUN.EXE.

* The manifest file used for the app.exe can simply be the Plusrun.exe.manifest with...
* afile name change, (<appname>.exe.manifest) and

+ within the manifest file text, replace the two instances of 'plusrun.exe' to '<app>.exe'

Installing dBASE Plus and connecting to an SQL database server 33

When using option #2:

* You must make sure to set the properties for your executable as well as for PLUSRUN.EXE.Otherwise you
will get an error: Could not load PLUSRUN.EXE (code 740)

Running a deployed .exe in Vista across a network

When launching an .exe built with dBASE Plus that is stored across the network on another workstation or
server you may get the 'Unknown Publisher' warning. At this time, the following options are available to
suppress this warning:

1. Rename your executable's file extension from .exe to .dbw and then make sure that the .dbw extension has a
file association setup with PLUSRUN.EXE. (This should be setup at install time for dBASE Plus).

OR

2. In Internet Explorer from the Toolbar goto Tools | Internet Options. Under the 'Security' tab highlight the
Local Intranet section. Click the 'Sites' button. Click 'Advanced' and add the server's address to the list of trusted
Zones.

For future versions of dBASE Plus we are looking into alternatives for ensuring they are installed as trusted
applications on Vista.

HELP Files

Microsoft has released a Windows Help Program (WinHIp32.exe) for Windows Vista. This will allow Vista to
display 32-bit Help files that have the ".hlp" file name extension.

To download this program go to http://www.microsoft.com/downloads and do a search for WinHIp32.

Un-installing dBASE Plus

Note

To un-install dBASE Plus, use the Add/Remove Programs dialog box in the Windows Control Panel.

During un-installation, you also have the option of keeping any shared program libraries on your disk that may
be needed by other programs. Even if you choose to remove the shared files, other files and directories may
remain on your disk after un-installation. These remaining files are usually forms, applications, directories or
other items you created while using dBASE Plus.

For other issues that may affect dBASE Plus removal, see README.TXT (normally stored in your dBASE
Plus root directory or program group).

How to connect to an SQL database server

If you are connecting your dBASE Plus application to an SQL database, you need to configure your SQL Links
Driver and BDE to access your SQL database. In this procedure, you create an alias that BDE uses to locate the
SQL database. You then add this alias to the Database object on your dBASE Plus form or report.

Install and configure the server software

Consult the documentation for your SQL database management system product for specific guidance on the
initial steps of the following general procedure (specific product requirements may differ).

1 Make sure you have properly installed the client software for the database management system product to
which you want to connect (Oracle, Sybase, InterBase, MS SQL Server, IBM DB2 and Informix).

2 Define server names or other connection strings in the product’s required configuration files. For example, in
Oracle, TNSNAMES.ORA, or in Sybase, SQL.INI, and so on.

34 dBASE Plus User’s Guide

Note

3 Test the connection by using the database vendor’s connection utility (such as Sybase’s SYBPING.EXE). If
you cannot "ping" the server with this utility, BDE and dBASE Plus will probably not be able to access it
either.

4 Make sure that both BDE and the SQL Links drivers are properly installed. If properly installed, the SQL
Links drivers for Oracle, Sybase, Interbase, MS SQL Server, IBM DB2 and Informix appear on the
Configuration page of the BDE Administrator, which is available from the dBASE Plus program group off
the Start menu.

Configure the Borland Database Engine (BDE)

The Borland Database Engine (formerly called IDAPI) allows dBASE Plus to share data with supported SQL
databases, Access 95/97, and FoxPro. If you’ll be connecting to any of these databases, you must assign aliases
to them and otherwise configure BDE with the parameters of the database.

#:BDE Administrator C:\Program Files\Common Files... Q@PZI

Chject Edit Yiew Options Help

=
Al Databaze Aliazesz Drefinition of dBASESamples

D atabazes l Configuration D efinition
% Databazes Y Type STAMNDARD

+- B8 Customer DEFAULT DRIVER DBASE

+-"g dBASE Files ENABLE BCD FAaLSE

+ Sé dBASE Contay PATH C:%Program Filez\dBASE\PLUSAS amples

+- 28 dRASESigrup
+- 2% dBASEtemp b

0 itemz in dBASES amples.

To create an alias and configure the BDE,

1 Open the BDE Administrator (bdeadmin.exe) located at;
C:\Program Files\Common Files\Borland\BDE

Click the Databases tab.

Right-click and choose New to create a new alias

Enter the full path to the database, including the file name when appropriate.

a A WD

Click the Configuration tab and set the appropriate parameters in the Definition panel. Parameters may vary
according to vendor. (Parameters in bold cannot be changed.) To accommodate record locking in a Windows
NT server environment, it is necessary to set the BDE's localShare parameter to "true".

If you're creating a new ODBC alias, you must define its DSN before you can connect to that database.

You’ll find complete instructions in the BDE Administrator Help system. Press F1 with the cursor in any
parameter for information on that parameter.

Listing SQL tables in the Navigator

To see SQL tables listed in the Navigator,
1 Open the Navigator, and click the Tables tab.
2 Select the SQL server database alias from the Look In drop-down list (at the top of the Navigator).

3 At the prompt, enter your login name and password to connect to that SQL server database.

Installing dBASE Plus and connecting to an SQL database server 35

4 Once you’re connected, you will see the tables in that database in the Navigator.

36 dBASE Plus User’s Guide

Chapter

Introduction to programming in dBL

dBL is an object-oriented, event-driven programming language that allows developers to create sophisticated,
scalable applications using objects and classes.

Objects are a means of encapsulating collections of variables, some containing data, others referencing code.
Classes are a mechanism for creating reusable groups of objects. With dBL, you can

* Create objects from standard classes or custom classes you declare

* Add custom properties to an object with a simple assignment statement

* Declare custom classes

* Declare classes that are based on other classes and inherit their properties and methods

e Write highly reusable code by building hierarchies of classes

"Hard coding"” vs. visual programming

Using a text editor, you can write programs from scratch by typing each command, line after line. That’s how
most programmers used to write programs: the hard way. With dBASE Plus, you use design tools to generate
the program code for you. The most painstaking requirement of traditional user-interface
programming—guessing how fields and menus will appear after positioning them with coordinates—is
obsolete. You place objects on a form exactly where you want them, and let dBASE Plus figure out the
coordinates. That’s visual programming.

But there’s more to visual programming than just laying out forms. The objects you place on your forms have a
built-in ability to respond to a user’s actions. A pushbutton automatically recognizes a mouse click. A form
"knows" when the user moves or resizes it. You don’t need to figure out what the user does and how it happens.
dBASE Plus handles that. You just tell the objects how to respond to these events by assigning procedures that
will execute when the events occur.

The results of programming visually are applications that are easy to create and easy to use. They’re easy to use
because they’re event-driven.

Advantages of event-driven programs

The three major kinds of user interfaces are

* Command-line, where the user types commands at a prompt. The MS-DOS operating system, the dBASE
Dot Prompt (in DOS versions) and Command window (in Windows versions), are examples of command-
line interfaces.

* Menu-driven, where the user selects choices from a hierarchy of menu items. Most applications written using
prior versions of dBASE provide menu-driven interfaces.

Introduction to programming in dBL 37

How event-driven programs work

» Event-driven, where the user interacts with visible objects, such as forms containing pushbuttons and list
boxes, in any sequence. The user interface is event-driven, and you can create event-driven applications
using dBL.

Using traditional programming techniques, you can build menu-driven user interfaces. In these applications, the
program dictates the sequence of events. If the user selects Order Entry from a menu, the program typically
walks through a series of screens asking the user for information: enter the customer name, enter the date and
purchase order number, enter the line items, enter the shipping charge.

These menu-driven techniques are not well-suited for programming in event-driven environments such as
Windows. In an event-driven application, the user controls program flow. A user can click a button, activate a
window, or select a menu choice at any time, and the program must respond to these events in whatever
sequence they occur.

In a well-designed event-driven application,

* The user can focus on the task, not on the application. The user doesn’t have to learn a complex hierarchy of
menu choices. Rather, when choosing to enter an order, the user sees an order form similar to a familiar paper
form.

* The user doesn’t need to re-learn how to perform tasks. Because you create an application’s interface using
familiar objects such as pushbuttons and list boxes, common operations—opening a file, navigating a form,
and exiting the application—are more consistent across applications.

Most important, event-driven interfaces reflect the way people work in the real world. When clerks write up
orders, they pick up forms and fill them out. When they receive checks for orders, they pick up the invoices and
mark them as paid. This natural flow of work follows an object-action pattern. That is, a clerk selects an object
(an order form, an invoice) and performs some action with it (fills out the order, posts the check).

Likewise, in an event-driven application, the user selects objects (forms, entry fields, pushbuttons) and performs
actions with them.

How event-driven programs work

In an application, the form is the primary user-interface component. Forms contain components, or controls,
such as entry fields and pushbuttons, with which the user can interact. The controls recognize events, such as
mouse clicks or key presses.

You attach code to event handlers of controls, such as OnClick or OnLeftMouseDown (most begin with On),
that correspond to specific events. For instance, when a user clicks a pushbutton, the OnClick event handler
executes.

Specifying event handlers for forms is similar to using the ON commands in dBASE DOS, such as ON KEY
LABEL or ON ERROR. Like an event handler, the ON command designates some program code to execute
when an event, such as a keypress or a run-time error, occurs. However, the events handled by the ON
commands are limited and are not associated with user-interface objects.

In a typical event-driven application,

1 The application automatically displays a start-up form.

2 The form, or a control on the form, receives an event, such as a mouse click or keystroke.
3 An event handler associated with the event in step 2 executes.

4 The application waits for the next event.

Figure 4.1 shows a sample "Hello world!" form with one pushbutton on it that is labeled "Goodbye". After
displaying the form, dBASE Plus waits for an event. The user can move, resize, minimize, or maximize the
form. When the user clicks the pushbutton, dBASE Plus executes the OnClick event.

38 dBASE Plus User’s Guide

Figure 3.1 Sample event handler for a "Hello world" form

& My first Plus form [= |[B|X]

Hello World |

The anClick, event handler
fian the pushbutton
execules when the user
clicks it

How event-driven programs work

The following code, a .WFM file generated by the Form designer, creates the form just described. This code
follows the general structure of all forms generated by the Form designer. For now, don’t try to understand
every line. Just look at the general structure to get a sense of how forms are created, properties are set, and event

handlers are assigned to events.

parameter bModal

local f

f=new Hello()

if (bModal)
f.mdi = .F. && ensure not MDI
f.ReadModal()

else
f.Open()

endif

CLASS Hello OF FORM
with (this)
Height =16
Left=30
Top=0
Width = 40
Text = "My first Plus form"
EndWith

this. TEXT1 = new TEXT (this)
With (this. TEXT1)
Height =3
Left=11
Top=3
Width = 33
Metric =0
ColorNormal = "N/W"
FontSize = 23
Text = "Hello world!"
EndWith

this. BUTTON1 = new PUSHBUTTON(this)
With (this. BUTTON1)
onClick = class::BUTTON1_ ONCLICK
Height =2
Left=19
Top=9
Width =13
Text = "Goodbye"
Metric =0
StatusMessage = "Click button to exit"
Group = True
EndWith

// {Linked Method} Form.buttonl.onClick

Introduction to programming in dBL 39

Developing event-driven programs

Function Buttonl _OnClick

DO WHILE (Form.Height > 0) .AND. (Form.Width > 0)
Form.Text].Text = "Goodbye"
Form.Height = Form.Height - 1
Form.Width = Form.Width - 1
Form.Top =Form.Top +.5
Form.Left =Form.Left +.5

ENDDO

Form.Close()

return

ENDCLASS

Developing event-driven programs

All you really need to develop event-driven programs is the Form designer and Menu designer. Using the
designers and their tools, you can build data-entry forms, dialog boxes, menus—all the visible components of an
application. Then use the built-in Source editor to tie the components together by writing procedures to execute
when events occur.

Projects that are more complex, however, require planning and a good design. That’s where object-orientation
helps. Using object-oriented techniques, you can group related information into your own objects, build classes
of related objects, and create new objects by making easy modifications to existing ones.

40 dBASE Plus User’s Guide

Chapter

Creating an application

Using dBASE Plus design tools, you can create the visual elements of an application quickly, in a manner that
promotes reuse of design elements rather than repeated reinvention. Using the Component palette, you simply
drag and drop both the visible user-interface components (also known as controls or objects) and the invisible
data objects onto forms. The Inspector gives you an easy way to set an object’s attributes, or properties, and
access its event handlers and methods directly, without hunting.

As you work with the design tools, dBASE Plus writes the corresponding dBL code for you. If you prefer to do
most of your developing in the Source editor, the code you write is reflected in the designer, and you can see
immediately what your form looks like and how it runs. In either case, the entire source code for your form is
available to you in the Source editor at all times. Press F12 to toggle between the source code and the visual
designer.

This section discusses the basic steps of creating an application in dBASE Plus. It includes information on
* Creating projects and using the Project Explorer to manage them

+ Using the Project Explorer

* Planning and creating forms

* Code generated by the Form designer

* Types of form windows (MDI, SDI, modal, modeless)

» Using ActiveX controls, container components, and multi-page forms

* Creating custom classes, custom components, and data modules and using them in a form or report.

Menus are created separately with the Menu designer. You program a form to display a pull-down menu by
referencing it in the form’s menuFile property; a popup menu you reference manually in the Source editor.

Creating an application (basic steps)

At the simplest level, designing an application in dBASE Plus consists of these steps:

1 Create a project that will hold all your application’s files (and any other files you need to have handy while
you’re developing). Files you create while the project is open will be added to the project automatically. You
may also add to the project any relevant files you’ve already created.

2 If you’re creating tables from scratch, plan your tables so you can link them to one another.

3 Plan your directory structure. For example, you may want to put tables in a DATA subdirectory and images
in an IMAGES subdirectory.

4 Use the BDE Administrator to create Borland Database Engine (BDE) aliases for all SQL databases and
local tables. You can then access those databases through the BDE and through your application. This
procedure is described in “How to connect to an SQL database server” on page 34.

Creating an application 41

The Project Explorer

5 If several forms (or reports) will be using the same data-source setup (table relationships, SQL statements,
methods, and so on) create a data module so you only need to create the data-source setup once. The "Plus
data model" and how to access tables using Data Access components is described in Chapter 5, "Creating
DataModuleDataModules" is described on page 79.

6 Create custom form and report classes to give your application a unified look (see page 66).

7 Create the forms (data entry forms, dialog boxes, and so on) that make up the user interface of your
application.

8 Create any reports that your forms will link to or run, using the dBASE Plus Report wizard and integrated
Report designer (see Chapter 6, “Using the Form and Report designers”, and Chapter 11, “Designing
reports”).

9 Compile and build your project (choose Build | Compile from the Project Explorer).
10 Test and debug, using the dBASE Plus debugger (see Chapter 9, “Debugging applications”).

The Project Explorer

Every application should have a project (.PRJ) file. The project file contains pointers to all your application files
(tables, forms, queries, bitmaps, and so on). In addition to keeping things organized, having a project file lets
you

* Compile and build a project.

» Set properties for the project as a whole; for example, you can set compile options, like preprocessor
directives.

* Set properties for individual files; for example, you can specify which files you don’t want to include in the
build.

» Designate which file should be the first to open when your executable file is run.
» See instant previews of your files in the Project Explorer.

* Open several files at once.

* And if you create a file while a project is open, the file is automatically added to the project.
This section discusses the following topics:

» Starting a New Project

» Creating a 'Basic' Application (Non-DEO)

* Creating a 'DEO' Application

* BDE Settings

» INI Files

* ActiveX and DLL Deployment

» Using Project Files From Earlier Versions

Starting a New Project

You can start a New Project by selecting the File | New Project option from the Main menu, or by clicking an
Untitled icon on the Project tab of the Navigator. The Project Explorer window is comprised of four pages,
accessed by the tabs on the right, and a Treeview along the left side. On the Project Page, you’ll define
properties that will determine how, and where, your application will be built

The Project Page

Project Name The name you give your project will become the default name for the resulting executable.
If, for example, you entered, “MyStuff”, as a project name, the name, “MyStuff.exe”, will appear as the Target
EXE Filename.

42 dBASE Plus User’s Guide

The Project Explorer

DEO Application Check this box if you want your entire application to be a Dynamic External Object
based application. Leave this box unchecked if you only want part, or none, of an application to be DEO. More
will be said on DEO later in this section.

Web Application This tells the Project Explorer to use the WEB option during the BUILD process. It
restricts a web application from containing code to create, or use, visual components such as forms, buttons,
toolbars, status bars, and other form components, which allows the dBASE Runtime to load faster.

Main Program File The file that starts your application. This option cannot be set until the project
contains at least one program (.prg or .wfm) file.

Main Program Parameters Used only when you are requiring parameters for startup of the application.
Parameters assign data passed from a calling routine to private variables.

Target EXE Filename The name of the executable resulting from the build process.
Figure 4.1 Project Explorer: The Project Page

2 Project Explorer: C:\Customer\Customer.prj

A ORI ~ | Frowect |Fisg Datalls | Log | DEO | Inna

u8 Famm
= I3 Rapan FProjoct Fropartios
[E] custard | Penjecl Narms Cuslomare
B Customers DED Applicalion?

B o ||| s D
@ s B Wain Frogram Filg TnGE w
=) Crperimmic Main Frogram Parametkes A
& Program
= 23 Degkiop Tatie
] tustomers Tatgei E¥E Filsname Cuslomars gu =
T amegaoass
[T irvnices. OE
:I orderiemms Petigramm leon hong=

rojects

Eplash Bimap “fibnes

{5 onders DBF Livg Fisgriaeng CiCusismenCustoman lag
[0 parts.DEF
5 13 5L Sasbus
T test oy
= 0 Datamreduls
I Brackup of ¢ Authar
,-‘ BB Custome, Descriphon A
R CUSTOMES

BR cissTomer =

oddd

¢ »
Splash Bitmap The name of the bitmap to be used as the splash screen of your application. This option
cannot be set until the project contains a bitmap (.bmp) file.

ﬁ
JS
@«

)

Finject File ganaraed 117004 134448

Program Icon The name of the icon file to be used as the titlebar of your application. This option cannot
be set until the project contains an icon (.ico) file.

Log Filename A text (.txt) file that lists errors or warnings generated during the BUILD process.
Status Shows the most recent Date and Time the file was created or modified.

Author The Project developer.

Description A name or phrase that serves as the Project identifier.

Adding files to a project

Whether you want to use existing files, or create new ones, the Project Explorer offers several ways to add files
to your project.

Creating an application 43

The Project Explorer

Adding an existing file:

* Multi-select files from the Add Files dialog by selecting the Project | Add files to project option from the
Main menu , or by right-clicking a folder in the Treeview section

Note Multi-select files by holding down the Ctrl key and clicking on the desired files

* Drag&Drop individual files from the Navigator..
Figure 4.2 Project Explorer: Adding files

Look it | C:hCustome L D

Bian | B Projects B Foms | [E) Repors @@ program [Tatles| TP 0L |5R DatoMc [Images| [Othes
Repoit Files ["rep, ".cap, *.lab]

Cuslomersales_teprep

E [irithed] [2) (Untithed] [Uinfithed] Cusstomerumber rep [) Cist pren |

< Project Explorer: C:\Customer\Customer.prj

= 7 Project Filgs - Project| FileBatails |Lag | DEO | Inno

& Form

= &3 Report Detaffs | Source | Viewer |
[F) Customar Listrip
[=) Customerren |
| B customermp
' Customadny.reo
[customedaw.rep

CusiomerSales.rep

File Propertias
File Mame | CiCustomenCustomerSales.rep
File Size 11011 Bytes

q-) OpeninvoicesEyblts.reg Created 05722003 08:37:52
» — @ Program Modified DS/21003 16:25.04
- = i3 Deskiop Tables
O H customers.DEF Bulld Options

Creating a new file to add to the Project:

» Right-click on the Project Files folder in the Treeview, scroll to the New menu option, and select the desired
file type.

* Right-click on any of the other folders in the Treeview and scroll to the New menu option.

In either case, the Project Explorer opens the appropriate designer in which to create the file.

A few things to consider

» If you are adding the Source Code for a file, you do NOT need to add the compiled object for that file. The
only reason to add a dBASE object file is if you do not have, or do not wish to use, the source code for that
file

« If you add tables to a project, you do not need to add the auxiliary files (the .MDX and/or .DBT files in the
case of DBFs), just the table itself. The only reason to add a dBASE object file is if you do not have, or do
not wish to use, the source code for that file.

 Files that don’t have an designated folder should be placed in the folder marked “Other.”

* Don't forget to add tems that are in other libraries. These might include files from the dUFLP code library,
Seeker.cc and Report.cc, etc.. You may want to go through your source code and check for references to code
in other libraries. You should also check the source code for files you may have from the different libraries,
as some of them may have dependencies that are not obvious (for example: :dUFLP:ini.cc depends on code
in :dUFLP:StringEx.cc and :dUFLP:SetProc.prg).

44 dBASE Plus User’s Guide

The Project Explorer

Converting Project Files from earlier versions

The current Project Explorer can be used to handle previous generation Project files by making a few basic
modifications.

Translating the Project File line

If you use a language other than English as your default, the first line of the file needs to be translated to
English. The line should look something like:

Project File generated 03/23/2004 16:25:28
To do this you’ll need to edit this line in the Source Editor:
1 Open the Navigator and select the Project tab
2 Right-click on the project file and select, “Open in Source Editor”.
3 Replace the Project File line with the translated text

Converting the pathnames

All relative paths currently used by your project must be converted to full pathnames.
“.. Abandon.bmp”

must be converted to it’s full path equivalent
C:\ProgramFiles\dBASE\Plus\Media\Images\Abandon.bmp

Converting relative pathnames:

1 Clicking the filename in the TreeView changes the Project Explorer tab to File Details. If the Project
Explorer is unable to locate the file, only the File Name entryfield will display showing the incorrect, or
relative pathname.

2 Click the wrench tool next to the pathname.

3 Inthe Open File dialog, navigate to the file and click Open. The correct pathname and other file information
will display in the File Properties section.

You could also modify the pathnames, before bringing the files into the Project Explorer, by using the Source
Editor.

Opening a .PRJ file in the dBASE Plus Source Editor:

» Right click on the file in the Navigator, and select "Open in Source Editor" (or press F12)
or

* In the Command Window, type: MODIFY COMMAND projectname.prj (where “projectname” is the name
of your file).

Entries, such as those below from the [Contents] section, will display in the source code.

[Contents]

inventor.wfm,0,0

Library.wtm,0,0

roster.rep,0,0

.\dUFLP\custbutt.cc,0,0

vesper.ini,0,0

.\dUFLP\preview.wfm,0,0

..\Program Files\dBASE\Plus\dBLClasses\FormControls\Seeker.cc,0,0

Note Relative pathnames "..\dUFLP\custbutt.cc,0,0" and “.\dUFLP\preview.wfm,0,0” must be converted to their
fullpath equivalents. See “Converting the pathnames” above. Once you have completed this, save the changes
you just made and exit the Source Editor (Ctrl+W will accomplish both of these steps at one time).

Creating an application 45

The Project Explorer

Opening a Project

To open a project in the Project Explorer, do one of the following:
» Open the Navigator (View | Navigator), select the Project tab, and double click on the project file.

* Select File | Open Project from the Main menu, and navigate to the file in the Open Project dialog.

The File Details Page

To view or edit the details associated with a file, click on it in the Treeview. The Project Explorer opens the File
Details page with information displayed about the selected file. The File Details page contains three tabs:

¢ Details
¢ Source

e View

The Details tab

File Properties This section displays the files full pathname, size and dates it was created and last
modified

Build Options This section contains two checkboxes
* “File is Main Startup Program” designates a file as the first to be run when the application is run

» "Include file with executable" tells the Project Explorer whether or not to include the file during the Build
process.

If the file is a Source Code file (Forms, Custom Forms, Reports, Custom Reports, Labels, Programs,
Datamodules, Custom Classes): dBASE Plus will compile the file and include it when the .EXE is built.,

For an Object file: If the file is a dBL object file (a compiled form, etc.), the Project Explorer will build the
object file, “as is”, into the .EXE.

For Other Files (ActiveX, DLL files, header files, etc.): The Project Explorer will, if this checkbox is
checked, build (or Bind) the file into the executable. This ensures you will have a non-corrupted file
available that a user could obtain through the use of the dBASE COPY command.

Object File Target Location “Copy File to Separate DEO Folder” designates that a file should to be
copied to a folder, and not included in the .EXE during the build process.

* “DEO Folder” is simply the folder where the files will be moved.

The Source tab

For dBL Source code, the Source tab allows you to view the source code for your file. This viewer is read-only.
To edit the source code it is necessary to use the Source Editor. To open the file in the Source Editor:

+ Right click on the file in the Treeview

* Select the Open in Source Editor option

The Viewer tab

This tab allows you to view your Form, Report, Labels, and Image files, depending on the file type(s).

Creating an Application

Once all the necessary files have been included in a project, creating a dBASE application is quite simple using
the Project Explorer.

* Complete the Project page
* Add your files

46 dBASE Plus User’s Guide

The Project Explorer

» Designate a Main Start program by checking the, “File is Main Startup Program?”, box in the Build Options
section of the file’s Detail tab.

* Compile and Build the Application

Creating a DEO Application

* Check the box marked, “DEO Application?”, on the Project page.
* Click “Yes” on the ensuing dialog.

After designating a project as a DEO application, you need to assign the project files to DEO folders.

DEO Folders
1 Select the DEO tab

2 If you have existing folders you wish to use for your DEO deployment, you can select them by clicking on
the 'folder' icon. This will open the Choose Directory dialog, allowing you to browse to a folder. Once you
have located the desired folder, click OK and the file will be added to the DEO folder list.

3 Ifyou wish to create new folders, type the full path into the entryfield and press the ENTER key. The Project
Explorer will create the folder.

4 Repeat this for each folder you wish to create by selecting the next numbered line in the listbox, and
designating a path and name in the entryfield.

5 Toremove a folder from the list you must first remove any files assigned to it. Once it is empty, select it from
the list and click the “Clear a Target Folder” icon on the right.Selecting the DEO Folder For Each File

Selecting the DEO Folder For Each File

Once you have created the DEO folders we need to designate which files the Project Explorer will place in the
various folders.

1 In the TreeView, select the file you want assigned to a particular folder. The Project Explorer switches the
view to the Details tab of the File Details page.

2 Uncheck the, “Include file within executable”, box
3 Check the,” Copy File to Separate DEO Folder", box.
4 Repeat this process for each file that can be compiled.

The Project Explorer will not allow you to set the DEO location for a file you have designated as the Main
Startup Program in the Build section. The application needs that file compiled and built into the executable
itself.

Selecting the DEO folder for each file

Once you have created the DEO folders we need to designate which files the Project Explorer will place in the
various folders.

1 In the TreeView, select the file you want assigned to a particular folder. The Project Explorer switches the
view to the Details tab of the File Details page.

2 Uncheck the, “Include file within executable”, box
3 Check the,” Copy File to Separate DEO Folder", box.
4 Repeat this process for each file that can be compiled.

The Project Explorer will not allow you to set the DEO location for a file you have designated as the Main
Startup Program in the Build section. The application needs that file compiled and built into the executable
itself.

Creating an application 47

The Project Explorer

Building the Executable

Select Build | Build or Build | Rebuild All from the Project Explorer’s Main menu.

* Build assumes that all of your files have been compiled, and just builds the executable. It will return an error
if an object file cannot be found.

» Rebuild All recompiles all compilable files. If you designated files to be moved to a DEO folder in the
Object Folder File Location section of their File Details, the Project Explorer copies the appropriate files to
their designated folders, and builds the .EXE file.

Errors occurring during the build process will result in an “Error Message” that will be written to the project’s
Logfile you designated on the Project page.

Once a build has been successfully completed, you can run the .EXE by navigating to it with Windows Explorer
or by selecting the Build | Execute (filename) option from the Project Explorer’s Main menu.

Suggestion If you run your executable in the same folder that contains your source code, and you have made changes that
have yet to be built (bound) into the executable, add the following line to the startup code for the main program:

_app.allowDEOExeOverride := false

This will prevent dBASE Plus from assuming this is a DEO Application. Basically, this line tells the dBASE
Plus runtime to reverse the order normally used when looking for object files. For more information on DEO,
see the topics Dynamic External Object (DEO) and allowDEOExeOverride in Help .

NI files

To insure your deployed application performs as intended, you MUST deploy an .INI file of the same name as
the .EXE.

Some settings you should consider (see online help in dBASE for details for SET EPOCH, SET CENTURY,
SET LDCHECK, etc.) adding as an example below:

[CommandSettings]
EPOCH=1950
LDRIVER=WINDOWS

[OnOffCommandSettings]
CENTURY=ON
LDCHECK=OFF
BELL=OFF

TALK=OFF

[CommandWindow]
Open=1
Maximized=0
Minimized=1

[ComponentTypes]
ComponentTypeNumeric=1
ComponentTypeDate=1
ComponentTypeLogical=0
ComponentTypeMemo=0
ComponentTypeBinary=0
ComponentTypeOLE=0
ComponentTypeNumericForTables=1
ComponentTypeDateForTables=1
ComponentTypeLogicalForTables=0
ComponentTypeMemoForTables=0
ComponentTypeBinaryForTables=0
ComponentTypeOLEForTables=0

[Grid]
DefaultMemoEditor=0

[Toolbars]
Format=0

[ObjectPath]

48 dBASE Plus User’s Guide

The Project Explorer
objPathO=c:\path
objPath9=c:\anotherpath

[IDAPI]
CONFIGFILEO1=mycustom.cfg

The LDRIVER=WINDOWS setting ensures that no matter what your application's BDE Driver, your source
code will be saved as ANSIL

Setting TALK=0ON will cause dBASE Plus to constantly echo commands to the command window, and may
cause performance degradation. In dBASE Plus, the Runtime Engine automatically assumes talk is OFF

The ComponentTypes settings reduce the likelyhood of datatype mismatches, particularly if you are using the
grid component on your forms. You should copy the section shown above from your own PLUS.INI, as you
may have different settings than those shown above.

Grid was new to dBASE Plus in version 2.21, and is used to set the default columnEditor type for memo fields
in a grid. If DefaultMemoEditor is set to zero, the default (columnEditor) is used, if set to one (1), the
columnEntryfield is used.

Toolbars: When the Format option is set to "1", the Format Palette is displayed when a form with an editor
control is opened. The Format Palette does not display when this is set to “0”.

ObjectPath: This is how DEO is handled. Briefly, when you run an executable built with dBASE, it checks:
1 It looks in the "home" folder from which the application was launched.

2 Ttlooks in the .ini file to see if there's a series of search paths specified. It checks all the paths in the list
looking for the object file requested by the application.

3 It looks inside the application's .exe file, the way Visual dBASE did in the past.

IDAPI is only really necessary if you are using a custom configuration file for the BDE. This may cause a
problem if multiple programs on the same computer try to use the BDE with different configuration files. It is
recommended that other methods of modifying the BDE's setup are used, such as running code in the dBASE
Users' Function Library (dUFLP) that will modify the BDE’s registry settings.

Encrypted Tables

If you are working with tables encrypted using the dBASE PROTECT command, you will need to:
* Deploy the DBSYSTEM.DB file
* Have an entry in your .INI that looks like:

[CommandSettings]
DBSYSTEM=D:\PATH

Where, D:\PATH, is the path to the directory where you are deploying this file.
If you already have a "[CommandSettings]" section, just add the "DBSYSTEM" entry.

If you are deploying the DBSYSTEM file to the same as your application, set this to ".
DBSYSTEM="." //the "." stands for "current directory"

OCX and DLL controls

OCX and some DLL Controls require some registry settings. You can make these with your install software, or
you can code them in your own application.

Using Inno

To make an installer for a project, use the Inno tab on the Project Explorer to create an installation script. Using
Inno Setup and Inno Script Generator, the generated script can then be used to create the installer. This section
discusses the basic steps of creating an installer using the Project Explorer. It includes information on:

o Setting defaults

Creating an application 49

The Project Explorer

* Including files

* Windows Start Menu settings

* Including the Runtime

» Setup a License agreement

* Including the BDE and required aliases
* Naming the Script

The Defaults tab

Installer name This field should automatically use the project name indicated under the Project tab. If the
name has been changed the Installer name field can be reset to the Project name by clicking on the Refresh
button.

Application version The version number of your project.

Destination folder The location where the project files will be saved to during the installation process.
Folders 3 and 4 are optional.

Source folder The root location of the project files.b

- Project Explorer: C:ACustomer\Customer.prj

= 8 Propac Fites -~ Project | File Detaits | Log | DEQ | Iano
& Fams
= =) Repor Deliyls Filgs | Meny Frp | Rustime | Lenes | BDE Selnngs | Nl Senpl
B Custome Listreg
% Cuslom rag tstalor name Customirs @
Cusiomer rp
- " 1
h E Cute Apphcation verson: | 1000 -
[Customrin rap Seurce felder (Rost]| C1Customer =)
E CustomerSaias rep Initallatgn dmactony
| q_J [ooenimmices Bt Root talder Pragram Files) w
[o — il Progeam Folderlovel 1: | IMAogHame)
= 3 Deskiop Tatles -
G B tustomers DB Falder breel 2
| ; i B0 ervplovans DEF Fialder bevel 3
[towoices DEF Nepsad ampty sublzider S
1 E 1 B orceriteens 0EF lapph [
1 N wrgers DBF . g ey
1 pasts DaF = &
= = EoL
|| ¥ 3 destagl
F = 3 Datamiodube
""".. By Backup of CUSTOMERS
CrinrmedL i deng
CLISTOMERSANDINGDI u
PR 4 T BE Lk
€

Needed empty subfolder Specify the name of any empty folders that will be needed within the
destination folder when the program is installed. Click the plus sign to add a subfolder, and click the minus sign
to remove one.

The Files tab

Destination folder Set the installation location of the file that is chosen in the source list. Click the button
to the right of the field to update the source list.

Source The list of files that will be included in the installation, showing the local project file on the left and
the installation path on the right

Flags Click this button to set various attributes for each file.

50 dBASE Plus User’s Guide

The Project Explorer

= Project Explorer: C:A\Customer\Customer.prj

1) empievwes DBF -
B imezicon DEF
[erdeinams oes
0 ergurs oEF
r ﬂﬁ.u DBF
: '{,d = £ 2oL
= ¥ Mwacg
w0 Datamodus
ER Backup of CUSTOMERS
%cuslzrulLuLdmd

: CLUSTOMERSANDRNVOI
. F-'h} E{L?.’DHEHS&HDM‘DI
D’ %WENH‘MFEEH?D&TE
5;_1 R OF BN DI ESBYTIATE
& Graphac
;__'! ¥ &2 OLLoeH
}_ S
Vi T Cusiomar s

| customers WD

”, v [#mpieyues Wi
d“‘. " L imecicas MOK
“ [ersamems nOx
[erirs M
L s MK 4
~ WE: »

Progact | File Datails | Log

DED -In"-ci
]

D s3nation Salder
tapp)

[Genrate and inciude Windows XP mantes! e

Sourca (sl »» inglallabiang

& Yetgram AlEmidguinis gl eilamers dbd « = DEsiler (g

Calusiamantkioma s MO == Desilor (8pp)
ChaCuslamanimeoicas MOW => DestOir (sgp)

Melsiny Grp | Funlisng | Licesia | BDE Sextings | INI

Sergl]

=)

E &

-

(Eisgs |

- e

Flags Parameter (Files tab)

This page displays options for the Inno script [Files] section Flags Parameter. Selected options will be applied to
the current file. To select an option, click in the checkbox to it’s left. To access the flag options page, click the
"Flags" button located in the bottom right-hand corner of the Files page. See Inno Script Generator Help for
additional details on Inno Script Generator program options.

< Project Explorer: C:A\Customer\Customer.prj

= e Prcject | File Dadails | Lo DEGQ | Find
mgm g
Fam —
= i) Report Diefaults | Fies | Meny Grp | Runtimo | License | BOE Seftings |N Scnpt
Cushones Listrap)
Cusbimes.reo E y *x
- = ompareTimeStamp wlednal
B | R, Cnpuars e ens
r [Customesim rep [ondfimCrvariiinite
= [2 oeremicesEvDate rag [Deteteafionnet sl [OveswritaR e sdOnly
q_} @ Program [l RegSamer [OndyEDestFileExists
= 23 Desklop Tablasg [RegTypeLib Only#D E
2 r] customers DBF [CIHoRegErmor ﬁﬁe:: n;:m :51
o = : placeSameVersion
% IATEE Sl [SharadFile
&.-q] ordertioms.DEF [IReztatReplace
A 20 oruers 0BF [JUninzRestanDalete [WeEncryption
&-P | T parts DEF [Uinima MevarUrinstall FltcCompression
-] Uinirve RemioveRead Only
& 8oL O RemoveRead0
J' iy ﬂ"if" I__}EEI'W:: [IRecurseSubDirs DOiTouch
"‘I 1 =1 alarmodule
Backup of CUSTOMERS
“" % Customerlist dmd [SortFile=ByExtension LAl
[Clignore'ersion
q ER CUSTOMERSANDRYI ClFonttsntTrueType
% CUSTOMERSAMNDRMWOI A lEl
J m MEBER AN ECEYTHATE v |
< »

The following options are supported:

CompareTimeStamp (Special-purpose)

Instructs Setup to proceed to comparing time stamps.

When a file being copied already exists on the user's system, and has the same version info, selecting this
option.instructs Setup to overwrite the existing file only if it has an older time stamp than the version of the file

Creating an application 51

The Project Explorer

Setup is trying to install. When this option is left unchecked, Setup would not try to overwrite the existing file.
This flag has no effect if the copy mode isn't either normal or AlwaysSkiplfSameOrOlder.
This flag is left in for backward compatibility only, and we recommend that you not use it.

* NT users may encounter false "existing file is newer" messages when they change their system's time zone,
or when daylight savings time goes into effect.

* A similar problem can occur if an installation was compiled on an NTFS partition and the files are installed
to a FAT partition, because times only have a 2-second resolution.on FAT partitions

ConfirmOverWrite Instructs Setup to ask for user confirmation before overwriting an existing file.

CreateAllSubDirs Instructs Setup to create subdirectories, associated with a file, when they don't
currently exist. Has an effect only when used in combination with RecurseSubDirs.

DeleteAfterinstall Instructs Setup to copy the file as usual, but delete it once the installation is completed
or aborted. This can be useful for extracting temporary data needed by a program executed in the script's [Run]
section.

This flag will have no affect on existing files that weren't replaced during installation.

This flag cannot be combined with the IsReadMe, RegServer, RegTypeLlib, RestartReplace, SharedFile, or
UninsNeverUninstall flags.

DontCopy Setup will not copy the file to the user's system. This flag is useful if the file is handled by the
[Code] section exclusively.

DontVerifyChecksum Prevents Setup from attempting to verify the checksum of the file. This flag must
be used in combination with the NoCompression flag to have an effect.

External Instructs Setup to copy the file, specified by the Source parameter, from an existing file on the
distribution media, or the user's system. If left unchecked, Setup will, instead, statically compile the file into the
installation files.

FontlsntTrueType Specify this flag if the entry is installing a non-TrueType font with the FontInstall
parameter.

IgnoreVersion Setup will not compare any version info, and existing files will be overwritten regardless of
their version number. This flag should only be used on files private to your application - never on shared system
files.

IsReadMe Instructs Setup that this is the "README" file. Only one file in an installation can have this flag.
When a file is designated a README, users will be given the option to view the README file after installation
has been completed. If so desired, Setup will open the file with the default program the user has designated for
that file type. For this reason, the README file should always end with an extension like .txt, .wri, or .doc.

Note: The user will not be given an option to view the README file.when Setup has been instructed to restart the
computer (as a result of installing a file with the flag RestartReplace, or if the AlwaysRestart [Setup] section
directive is yes).

NoCompression Prevents the compiler from attempting to compress the file.
NoEncryption Prevents the file from being stored encrypted.

NoRegError When used in combination with either the RegServer or RegTypeLib flags, instructs Setup
not to display an error message if the registration fails.

OnlylfDestFileExists Instructs Setup to copy a file only when a file of the same name exists on the user's
system. This flag may be useful if your installation is a patch to an existing installation, and you only want to
replace files currently residing on the user's system.

OnlylfDoesntExist Instructs Setup to install a file only when it does not currently reside on the user's
system.

OverWriteReadOnly Instructs Setup to always overwrite a read-only file. Without this flag, Setup will
give the user the option to overwrite existing read-only files.

PromptlfOlder When a file being installed has an older version number (or older time stamp, when the
CompareTimeStamp flag is used) than an existing file, instructs Setup to give the user the option to replace the
existing file. See the Remarks section at the bottom of this topic for more details.

52 dBASE Plus User’s Guide

Important:

Note:

The Project Explorer

RecurseSubDirs Instructs the compiler to search for the Source <filename><wildcard> in the
subdirectories as well as the Source directory.

RegServer Instructs Setup to register the OLE server (a.k.a. ActiveX control), by locating and executing
the DLL/OCX's DIIRegisterServer export. The uninstaller calls DIlUnregisterServer. When used in combination
with SharedFile, the DLL/OCX will be unregistered only when the reference count reaches zero.

See the Remarks at the bottom of this topic for more information.

RegTypeLib Instructs Setup to register the type library (.tlb). The uninstaller will unregister the type
library (unless the flag UninsNeverUninstall is specified). When used in combination with SharedFile, the file
will be unregistered by the uninstaller only when the reference count reaches zero.

See the Remarks at the bottom of this topic for more information.

ReplaceSameVersion Instructs Setup to replace current files even when they appear to be the same
version as the newer files. The default behavior is to retain the current files.

RestartReplace Instructs Setup to register locked files, designated for replacement, in either
WININIT.INI or MOveFileEx for Windows and Windows NT respectively. These files will be replaced during
the next system startup. When such files are encountered, the user will be prompted to restart the computer at
the end of installation.

This flag is generally useful when replacing core system files.

To maintain compatibility with Windows 95/98 and Me, long filenames should not be used on an entry with this
flag. Only "8.3" filenames are supported. (Windows NT platforms do not have this limitation.)

The RestartReplace flag will only successfully replace an "in-use" file on Windows NT platforms when the user
has administrative privileges. If the user does not have administrative privileges, the following message will be
displayed;

"RestartReplace failed: MoveFileEx failed; code 5."

Therefore, when using RestartReplace it is highly recommended that your installation require administrative
privileges, by setting "PrivilegesRequired=admin" in the [Setup] section.

SharedFile (Windows 95/NT 4+ only) This flag uses Windows' shared file counting feature, located
in the registry at:

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs)

It enables a file to be shared between applications, without worrying about it being inadvertently removed. Each
time the file is installed, the reference count for the file is incremented. When an application using the file is
uninstalled, the reference count is decremented. If the count reaches zero, the file is deleted (with the user's
confirmation, unless the UnlnsNoSharedFilePrompt flag is also specified).

Most files installed to the Windows System directory should use this flag, including .OCX, BPL, and .DPL
(Delphi 3 package) files. One of the few exceptions is MFC DLLs, which should use the OnlylfDoesntExist
copy mode, in conjunction with the UninsNeverUninstall flag.

SkiplfSourceDoesntExist Instructs the installer, or Setup, if the external flag is also used, to silently
skip over an entry, and not display an error message, when the source file does not exist. Has effect only when
used in combination with the External flag.

SortFilesByExtension Instructs the compiler to compress the found files, sorted by extension before
being sorted by path name. This potentially decreases the size of Setup if SolidCompression is also used.

Touch Instructs Setup to set the time/date stamp of the installed file(s) to that which is specified by the
TouchDate and TouchTime [Setup] section directives.

This flag has no effect if combined with the external flag.

UninsNeverUninstall Instructs the uninstaller to never uninstall this file. Never remove the file. This flag
can be useful when installing very common shared files that shouldn't be deleted under any circumstances, such
as MFC DLLs.

If this flag is combined with the SharedFile flag, the file will never be deleted at uninstall time but the reference
count will still be properly decremented.

Creating an application 53

The Project Explorer

Note:

UninsNoSharedFilePrompt Instructs Setup to automatically remove a shared file, during
uninstallation, whose reference count has reached zero. No user prompt will be displayed.

This flag must be used in combination with the SharedFile flag to have an effect.

UninsRemoveReadOnly Instructs Setup to remove a files' read-only attribute before attempting to
delete it. during uninstallation

UninsRestartDelete Instructs the uninstaller to queue a file, currently in use, to be deleted when the
system is restarted. When such files are encountered, the user will be prompted to restart the computer at the end
of uninstallation.

This flag can be useful when uninstalling files such as shell extensions which cannot be programmatically
stopped.

Administrative privileges are required on Windows NT/2000/XP for this flag to have an effect.

Remarks Setup registers all files with the RegServer or RegTypeLib flags as the last step of installation.
However, if the [Setup] section directive AlwaysRestart is yes, or if there are files with the RestartReplace flag,
all files get registered on the next reboot (by creating an entry in Windows' RunOnce registry key).

When files with a .HLP extension (Windows help files) are uninstalled, the corresponding .GID and .FTS files
are automatically deleted as well.

The Menu Group tab

< Project Explorer: C:\Customer\Customer. prj

) epinwis DOF - Projec! | Film Dwelails | Leg | DEQ | nno
|5 inwrices DEF
crdaritems DEF Dufachts | Fren | Menu Grp | Rustima | Licanss | BDE Sattings | 1Nl Sengt
[E) eesars CEF
[l parts DEF P, —_ ~ &
=18 .
- & wilsg S Mo Giong: | Iprowpd v
Q = &3 Datamadute
By Backup of CUSTOMERS My Labal (Mpph TS
q-) By Cunloreaiiist smd
. % CUSTOMERSAHDRM Exrsiing Muny Groug Hams
r BN CUBTOMERSANDRYOI grove MFAgeHame) == [appRGusiom e e
Q By DPENINOICEREYTIATE

% OFENBMHCESENDWTE
2 Graah
£ DLLIgCH
= 2 Oher
T Cutlorear g] Supeeit Dasbied bt
o tustomers WD
| ,_] errplme s Wl

____\
1.9 4

[] Euppert quicklsench icon

l & L irvepicas MO [F] i njete urenszai gea
ol ol Dedariems MO -
|] ovsars iy =]inciuse program b modiy, repadr o remaoes installation
o s MO v [F] Ditnplay graup wirdre &t and of §ep
€ *

@ @ d

Menu Group File The file to show in the Start Menu.
Start Menu Group Where to show the application in the Start Menu.
Menu Label Name of the Start Menu item.

Existing Menu Group Items List of the current Start Menu items, with the Start Menu location on the
right and local location on the right.

Include uninstall icon Indicate if the user should be able to uninstall the application from the Start
Menu

Include program to modify, repair or remove installation When checked, a program
maintenance application is installed and listed in the Start Menu that allows the user to modify, repair or remove
the installation.

Display group window at end of setup Choose this option to open the Start Menu folder when the
installation completes.

54 dBASE Plus User’s Guide

The Project Explorer

The Runtime tab

Include Runtime Engine Includes the dBASE Runtime Engine in the installation. Options such as
language, progress indicators and destination folder can be set up in this section.

Include Runtime Files Use this option if an update to the application is being made, not requiring the
entire Runtime Engine to be included. Indicate the language and destination folder for the Runtime files.

Do not include runtime When selected, the dBASE Runtime will not be included in the installation.

% Project Explorer: C:\Customer\Customer. prj

B ermplevors DOF - Freject | Fie Dutaits | Log | DEO | Inno
i revicas DEF
) eraerems 0es Oufalis | Files | Mesw Gep | Rusbime | Lizanga | EDE Setliegs | 1N Scrpl
E] orgara D@F
1 paris OBF (®1inciude Runme Engina 7
¢ P, = S Crinthude RunBime tles?
I wstae 1 D ol il Rusitisret?
= 3 Datamadule
By Bathup of CUSTOMERS
q.) CustteimarList amd
2 CUETOMEREANDINX Clisciude EOE grovp entries
| By COUETONERSANDRVGI =5 - e
O ER OPENPOAOICESEDATE CProgim FletaBASEPLL iRenima
% OFENPMOICEBBTIATE
&-I & drigh [] Btua i gulgsnd wvezdin
f' 1 E3 pLLDCH [Disaibda thas progress bar
i = =) Other [l Disabie he progress b
| Jif Cuviomar g
d customers MO [Epeciy destinabion fatders
P ""—".ﬂl_ | ermplovie s Wb A fokde
*r,d‘ [renicas MO
‘. o ordariems MOH
[ergars st
L paris MO =
€ ¥

The License tab

% Project Explorer: C:A\Customer\Customer.prj

B #mplome DOF - Peojrl | Fis Dwtsils | Lag | DEQ | 0o
£ i as DEF
ﬂ cedarfierns DEF Dafwglia | Fdes | Mans Gop | Rusbime | Licenss | BOE Seflings | INI St
B eegars Di@F
1 parts DEF
ekl = 2 50L Languige Emglsh ¥
B s sy
= £ Dalamadue Licensa e i
: BRy Batiup of CUSTOMERS =
CuilomarList dmd
3 q.) E S TOMERSANDENI Tel bafors installation bage =
=7 CUATOMERSAND RO &
O OPEMBAOICESBTATE Teat afier mestallation compleies ok
L: 4 % DPEMPNOICESEYDATE
i s e Seipcted heanse s
] ! = =) Other ~
| T Complorar g #n Hed
i - _d tustomers WO AL
|__.; d ';"I-j o erploees WO L
"J‘ ' [i as MO ‘f":ﬂ"'
' o Cedariiems MO ;::‘":
| orders i B
L parts MO i it =
l : »

Language Select a language for the text files. Files can be set for more than one language.
License file Choose a text file that contains the License Agreement.

Text before installation begins Choose a text file that contains any text or messages that should
display in the installation window before the installation begins.

Creating an application 55

The Project Explorer

Text after installation completes Choose a text file that contains any text or messages that should
display in the installation window after the installation completes.

Selected license files Lists the files that are currently set for the license and messages during the
installation

The BDE Settings tab

Folder The root folder in the installation where the database alias should link to. Use the dropdown to
choose {app} for the application root folder. If a subfolder is needed, choose {app}\<sub_folder>.

Name The name of the alias to include.
Driver The database driver that should be used..

% Project Explorer: C:\CustomeriCustomer.prj

o] eplenwei DOF - Feojec! | File Details | Lag | DEQ | Iano
] inwricas DEF
3?':".|r||rr':-flal-' Dafuglis | Files | Mesa Gop | Rusbime | Licanss EDE Sethings | M1 Sergt
B cegara DiF Database Aliase
1 parts DEF Foider | tsop} ~ g
= oL -
k: @ witsg Mami | Custamis

= 2 Calarraduls Diriwir DEASE w
I!E Backup of CUSTOMERS

‘:L) BBy CuslemaiLiitama] Delute before creals

B CUSTOMEREANDRMI Cutshase alages bo craale o inalal lime
CUSTOMERSANDIRYOI iy <Ceslomes; Dover, DEASE. Folsar [appl;

O By CPENINVOICESETDATE

% OPENBNWOICESEYDATE

i | edgh
r" \ u DLLIDCK Clupdats BOE Setings
| = i) Tihes
T Cunlomar g Pz Ble bands -

ol customers MO0

Lang dree
| ,_] ermplmes WlE Sy
| & L irpicas MO Lovtl
al ol Cedariiams MO Mamo black size
9 o cears Ml ML Black gize -
o parts MO 3
€ »

@ 2 d

Delete before create If checked, an existing alias with the specified name will be removed before setting
up the new database alias.

Database aliases to create at install time The list of aliases that will be created during the
installation. To add an alias, click the plus sign; to remove an alias, click the minus sign.

The INI tab

Include INI with standard entries Includes an INI file containing default entries.
Include error handling Includes the INI entry for error handling.
Trap all errors: Includes the INI error handling option to trap all errors

Ignore interpreter memory access violations: Includes the INI error handling option to ignore interpreter
memory access violations.

BDE not required Check this box to include an INI file entry which indicates the Borland Database
Engine (BDE) is not required by this application. When an INI file contains this entry, the application will run
without trying to load the BDE, making it unnecessary to install the BDE on the target system

The remaining fields will set the BDE driver properties. The fields are initially set to the default BDE dBASE
driver values

56 dBASE Plus User’s Guide

Building the user interface

= Project Explorer: C:\Customer\Customer.prj

% wmpayees DEF -~
1 irwaives DBF

T ordestemns DBF

T nrdess DBF

{0 pants.caF

&J 5 2 L
id 0 teitagl
U = = Datamodule
- B Buciap of CUSTOMERS
@ Cuskomeslisl dmd
% CUSTOMERBANDIMYH
CLISTOMERBANMNW
OFERIMNVICEEENTDATE
q OPERINVACESEWONTLE
3 Grapnic
S DLLDCE
= 3 Char
" F Ji Cushamed ani
[customans Mow
¢ JI [wenpurpess M
Lol drvvoices MO
‘ L ordestems WOx
L ordess uind
L paris WD

Propct | File Detads | Log | DED | Inea

Dedaiiks | Filgs | Manu Gip | Rurtiss | Liceass | BOE Seiengs | ™ Senpt

= inckade I with standssd anines

Flinchde ene handlng
& Trap all ermory
o Igiveng ilipealar Aamnny BECaEE viokliinad

CIBDE not regumad

The Script tab

= Project Explorer: C:\CustomeriCustomer.prj

g anmplrpees DF -
Inwvices DEF
T ordestems. DBF
T onders DBF
% parts CF
= = BaL
0 et agi
= 3 Datamodule
B Biciap of CUSTONERS
& Customelisl dmd
% CUBTOMERBANDINGG
B CUSTOMER AN
B OFENINVDICESENDATE
% QFEMNINYIICESEVDATE
_;j ChiapRic
I3 DLLAOCE
= 2 e
) J@ cusmomes exe
L cuslemans MOK
L amparpees MOx
Lol irbe e MO
“ L andestems WO
L andess Wb
Lol parts M0

Projct | File Detads | Log | DEOQ | Inea

Dedauks | Files | Manu Grp | Runties | License | BDE Ssitngs | Ba Scnpt

&) - 7
Scnpd has boen wpdaed

L TopdiGenp] -
This is @ nnoscepl genarales for Scripiiaker by dBASE PLUIS ProjciEspianar

ChRousiametiss

L Prajery

Projecthir=1.00.0

Projecthames Cushomers

PropctExeF ileMames CACusomenGusiomens e
Propie thln FiletdimaeeC Pogres Flesileng Setup fExmpliEasalet g
ProeciuthorC apghl - 005 Uitk Aulsar
ProjciCoateDatos 11005 145414
ProjctAccassDate=1 103005 145495

Proj tdBasesasions-SBASE PLUES 161 b1833
ProjeciLasinDase Rurlmeiensianz 2500
ProjeciLasinbaseRurlmeLanguage=EN

P B s P RIF il EAa e O 50 LSSl U stami

LISPF|
FEragm Opis v
dpragmavertaseleeel 8 Macro and fencans succossiull call acknowededgermsent 3

L] *

-

To specify the name of the script, click on the folder icon. The script should have an .iss extension.

To generate and save the script, click on the disk icon. The script can then be seen in the large box below the
icons. The text line above the script will indicate if the script is current with the latest settings or not.

Once the script and project exe are generated, the installer can be created by launching Inno Script Generator
with the lightning bolt icon. Once Inno Script Generator is open, create the installer by clicking on the Inno
button under compile. By default, the installer will be in a folder called Output, located in the source directory

Building the user interface

dBASE Plus forms (and the menus and toolbars you create for them) make up the user interface of an
application. The forms you design become the windows and dialog boxes of your application. Some of the

Creating an application 57

Form design guidelines

components you place on a form are the controls that let a user operate the application. Other components are
data objects that are invisible when the application runs but that link the application with data in tables.

Components contain three kinds of information:

« State information. Information about the present condition of a component is called a property of the
component. Properties are named attributes of a component that a user or an application can read or set.
Examples of properties are Height and Color.

* Action information. Components generally have certain actions they can perform on demand. These actions
are defined by methods, which are procedures and functions you call in code to tell the component what to
do. Examples of component methods are Move and Refresh.

* Feedback information. Components provide opportunities for application developers to attach code to
certain occurrences, or events, making components fully interactive. By responding to events, you bring your
application to life. Examples of component events are OnClick and OnChange.

Form design guidelines

The process of designing forms involves clarifying the specific needs of your application, identifying the
information you want to work with, and then devising a design that best meets your needs. This section briefly
describes the process.

Goal of form design

The goal of form design is to display and obtain the information you need in an accessible, efficient manner.
The form should encapsulate data so that it may be run without affecting other forms that use the same data.
dBASE Plus makes this simple.

It’s important for your design to provide users with the information they need and clearly tell them what they
need to do to successfully complete a task. A well-designed form has visual appeal that motivates users to use
your application. In addition, it should use limited screen space efficiently.

Purpose of a form

Each form in your application should serve a clear, specific purpose. Forms are commonly used for the
following purposes:

» Data entry forms provide access to data in one or more tables. Users can retrieve, display, and change
information stored in tables.

» Dialog boxes display status information or ask users to supply information or make a decision before
continuing with a task. A typical feature of a dialog box is the OK button, which the user clicks to process the
selected choices.

* Application windows contain an entire application that users can launch from an icon off the Windows Start
menu.

You should be able to explain the purpose of a form in a single sentence. If a form serves multiple purposes,
consider creating a separate form for each.

Some guidelines for data entry forms

When designing data entry forms, consider the following guidelines:
 If data resides in multiple tables, use a query or data module that defines the relationships among tables.

» Ifusers need access to only some of the information in a table, use a query or data module that selects only
the records and fields you want.

* Determine the order in which users will want to display records, for example, alphabetically,
chronologically, or by customer number. Use a query with indexes that arrange records in the order the users
will want.

58 dBASE Plus User’s Guide

Form design guidelines

 Identify tasks users will perform when working with data on the form, and provide menus, pushbuttons, and
toolbar buttons that users can choose to initiate tasks.

When designing a form, you can provide validation criteria on a field-by-field basis. Use the following
questions to help decide which criteria you need.

* Do you require an entry for the field, or can users leave it blank?

* Are duplicate entries allowed?

¢ Must the data fall within a valid range?

* Must the data appear in a specific, fixed format, such as a phone number?

+ Are valid entries limited to a list of values? If valid entries are not limited to a list of values, you can speed
up data entry by compiling and displaying a list of frequently entered values, which also allows users to
enter companies not on the list?

You can also provide form-level validation in a canClose event. This event returns True or False based on a
condition you specify. If the condition is not met, the form will not close. For example, you could use canClose
if a user has not saved the last row entered. In the method you write for this event, you would ask if the user
wants to save the data and, if yes, allow the user to do so.

You can associate some field types with particular controls. By default, each dBASE field type is associated
with a specific control type. For example, a Numeric field type uses a spin box control by default. You can
change these associations to make data entry easier and more efficient in your particular application. Right-click
the Field palette, and choose Associate Component Types.

If your form needs to contain many fields or controls, consider using the Notebook component. Divide controls
into related groups and list each group on a separate page of the notebook. Or use a multi-page form with
buttons for page navigation. Or, instead of buttons, add a TabBox component and set various TabBox properties
to create page tabs and name each page.

Designing the form layout

You can put controls anywhere on a form. However, the layout you choose determines how successfully users
can enter data using the form. Here are a few guidelines to consider:

* Put similar or related information together in a group, and use visual effects to emphasize the grouping. For
example, put a company’s billing and shipping address information in separate groups. To emphasize a
group, enclose its controls in a distinct visual area using a rectangle, lines, alignment, and colors.

* On a form, the Tab key moves the focus from one control to another. Think about the order in which the user
will be moving (tabbing) through these controls on the form. The basic pattern is from left to right, top to
bottom. However, users may want to jump from one group of controls to the beginning of another group,
skipping over individual controls.

» Users are typically more productive when a screen is clean and uncluttered. If it appears you're trying to cram
too much information onto a single form screen, consider using a form with multiple pages, or a main form
with optional smaller forms that users can display on demand.

Guidelines for using the z-order

All objects on a form exist in layers. When a form contains two or more controls, the plane in which a control
exists always lies in front of or behind the plane in which another control exists. This affects two aspects of the
form:

* Visual layers, or the z-order, which indicates the z-axis (depth) of the layout. This determines what appears
in front of (or on top of) what. Even when controls are laid out side-by-side, each control is in a unique plane
of the form. That is, each control occupies a unique position in the z-order.

* Tabbing order, which determines the order in which controls receive focus when a user presses Tab.

Each control is numbered to indicate its z-order position. The item in the back is number 1. The next item in
front of the first item is number 2, and so on. By default, the z-order is the same as the order in which you added
controls to the form. However, this is probably not the tab order you want. By choosing View | Order View, you
can see the order of controls on a form and change the order by clicking on the numbers. Another way to change
the order is to choose Layout | Set Component Order.

Creating an application 59

Creating a form

Another need for z-ordering is when you use a rectangle control, for example, to group a series of RadioButtons.
The RadioButtons must appear on top of the rectangle, so you need to place the rectangle behind them in the z-
order.

Creating a form

You can create a form in two ways:

1 Use the Form wizard. The Form wizard creates a data-entry form. It presents you with a series of options,
and based on your selections, creates a form It saves time, and you can modify and further develop the form
in the Form designer (see ”Using the Form wizard’ on page 60).

2 Use the Form designer. Here you can create a form from scratch, by dragging components onto the form
and specifying their properties. Since components have built-in functionality, you can actually create very
simple applications with little or no coding. However, to create more complex and highly customized
applications, you need to write your own event handlers and methods for various components.

During form creation, press F12 to open the Source editor, where you can see and edit the dBL code generated
by dBASE Plus as you design your form. Pressing F12 toggles you between the visual design view and the
integrated Source editor.

Using the Form wizard

To use the Form wizard,

1 Choose File | New | Form. Or double-click the leftmost Untitled icon on the Forms page of the dBASE Plus
Navigator. Then choose Wizard.

2 Go through the steps of the wizard, clicking the Next button when you’re finished with each step. You can
specify these things:

* The table or query that contains the data you want to use in the form
+ The table fields you want to include in the form
* The layout for fields on the form

* Whether you want excess fields to spill over onto tabbed pages (using the TabBox component) or remain
on the same page with a vertical scroll bar.

» The colors and font for the elements on the form, including the form itself, push buttons, editing and
nonediting components. You can select a preset scheme of colors and patterns or define your own and
save it, making it available for future use.

The Form wizard generates the form you specify. At the end of the wizard, you have the choice of running the
form or opening the form in design mode to further customize it (adding components, changing properties,
writing event handlers, and so on).

Using the Form designer

60

Note

To modify a wizard-created form or to design a form from scratch, use the Form designer (File | New | Form).
These are the basic steps to follow in designing a form:

1 Place components on the form. To do so, drag files (including data modules, if you’re using them) from the
Navigator or Windows Explorer to automatically link a table or database to a form, and drag the objects you
need from the Component and Field palettes onto the design surface.

If you drag tables onto the form, the fields that are available on the Field palette are already linked to data. To
link any other component to a field, set its dataLink property. See “Linking a form or report to tables” on
page 74. for more information.

2 Set component properties, using the Inspector (or the Source editor, if you prefer).

3 Attach code to component events and write the methods you need.

dBASE Plus User’s Guide

WFM file structure

4 Create menus, as necessary, using the Menu designer (see Chapter 7, “Creating menus and toolbars”).
5 Create toolbars and tool buttons, as necessary (see Chapter 7, “Creating menus and toolbars”).
The Form designer creates a .WFM file.

The components available in dBASE Plus and the mechanics of using the Form designer, including the
Inspector, are discussed in Chapter 6, “Using the Form and Report designers”. Also see the samples that come
with dBASE Plus, installed by default in the Plus\Plus\Samples directory.

The following sections give you an orientation to the code generated by the Form designer.

\WFM file structure

The following code was generated by

1 Dragging a table from the Navigator table’s page onto the Form design surface
2 Adding a pushbutton from the Component palette

3 Selecting the onClick event in the Inspector and clicking its tool button

4 Writing simple code for an event handler that tells how many rows are in the table when the form is run and
the button is clicked.

Here is the code:

** END HEADER -- do not remove this line
%

* Generated on 08/24/97
%
parameter bModal
local f
f=new UntitledForm()
if (bModal)
f.mdi = .F. && ensure not MDI
f.ReadModal()
else
f.0pen()
endif

CLASS AnatomyForm OF FORM
this.Height = 12
this.Left = 30
this.Top =0
this.Width = 40
this. Text=""
this.animals1 = new Query()
this.animals1.parent = this
with (this.animals1)
Left=10
Top=4
SQL ='SELECT * FROM "C:\PROGRAM FILES\dBASE\Plus\Samples\Animals.dbf"
Active = True
endwith

this.pushbutton] = new pushbutton(this)
with (this.pushbuttonl)

onClick = class::PUSHBUTTON1_ONCLICK

Height=1.1176

Left =20

Top=3

Width = 15.875

Text ="PUSHBUTTONI1"

Metric =0

FontBold = False

Group = True

endwith

this.Rowset = this.animals1.Rowset

Creating an application 61

Editing a .WFM file

/I {Linked Method} Form.pushbuttonl.onClick
function PUSHBUTTONT1_onClick
this.text = form.rowset.count()

ENDCLASS
There are four major sections in a .WFM file:

1 The first part is the optional Header section. This is any code above the ** END HEADER line. Comments
that describe the file are usually put here.

2 Between the header and the beginning of the CLASS definition is the standard bootstrap code. This code
instantiates and opens a form when you run the form, similar to the way the boot sector of a disk starts the
system when you turn on your computer. The standard bootstrap code allows you to open the form in two
ways:

+ Ifyou DO the .WFM with no parameters, the form is opened with the open() method. The form is
modeless.

* Ifyou DO the .WFM with the parameter True, the form is opened with the readModal() method. The
form is modal. A modal form cannot be MDI, so the form’s MDI property is set to False first.

3 The main CLASS definition constitutes the bulk of most .\WFM files. This is the code representation of forms
designed visually in the Form designer.

4 Everything after the main class definition, if anything, makes up the General section. This is a place for other
functions and classes.

Form class definition

Like any other CLASS definition, the main one in the .WFM file can be further broken down into two parts:

1 The constructor is the code that is run every time a NEW object of that class is instantiated. It creates, or
constructs, an object of that class. Class constructors created by the Form designer are divided into four parts:

+ Assignments to the stock properties of the Form object.
 data objects in the form, each with its own WITH block.
* All the controls in the form, each with its own WITH block.

* Housekeeping code; specifically to assign the rowset of one of the queries in the form to the form’s rowset
property as the form’s primary rowset.

2 Class methods, if any, follow. This is usually event handler code, but can also contain other methods that
pertain to the form and which often are called by the event handlers.

How the contents are generated

The contents of the class constructor reflect the work you’ve done in the visual development environment. You
can create and edit class methods in the Source editor. Both the Header and General sections are also editable in
the Source editor. You have no control over the bootstrap code generated by the Form designer.

Editing a .WFM file

As you become more proficient in dBASE Plus, you will find that it is sometimes more convenient to edit a
form directly in source code without opening the form in the Form designer. To edit the form file directly, right-
click the .WFM file in the Project Explorer or Navigator and choose Open In Source Editor. This will open the
.WFM file in the built-in Source editor or another programmer’s editor you specified in the Desktop Properties
dialog box.

One advantage to using the built-in Source editor is that you can run the .WFM file directly by pressing the F2
key. No matter which editor you choose, you must save and close the .WFM file if you want to edit the form in
the Form designer.

62 dBASE Plus User’s Guide

Types of form windows

When editing the .WFM file directly, you want to preserve the two-way nature of the Form designer so that any
changes you make manually will not be lost the next time you save the form from the Form designer.

Editing the header and bootstrap

The first "safe .WFM" rule involves the line that says:
** END HEADER -- do not remove this line

Don’t remove or modify it! If you do, you might lose the contents of the header or prevent the Form designer
from being able to read the form from the .WFM file.

The next rule is about the standard bootstrap code: don’t bother changing it. Every time the .WFM file is written
the same standard bootstrap is rewritten anew, so any changes you make will be lost.

If you want to change the way the form is instantiated and opened when you run the form, instead of changing
the bootstrap code, you need to add to it or replace it by placing your own bootstrap code in the header.

The key is to realize that a .WFM file is just a program file with a different extension. When you run the form,

the code at the top is run just like when you run a program. To put it another way, there is nothing magical about
the standard bootstrap code—it just happens to be the first code that is found at the top of a plain .WFM file. If
there are some comments in the header they have no effect.

You can place any code you want in the header. The Form designer will ignore it.

Editing properties in the .WFM file

Inside a WITH block, you may assign values to existing properties only. Therefore, you are free to edit the
values assigned to any of the properties in the class constructor, or add assignments to the objects’ stock
properties.

Most properties must be of a particular data type. For example, pageNo is a number and sq/ is a string. If you
change the property, you must maintain the correct type.

One notable exception is the value property. If a component is dataLinked to a field, the type of that field
determines the type of the value. But if the component is not dataLinked, its type can be any of the simple data
types. In the Inspector, you can use the Type button to select the type of the value you’re assigning to the
property if the property can accept multiple types.

The Form designer leans toward literals as opposed to expressions. For example, suppose you want a Text
component to default to the current date. You could edit the .WFM file so that the assignment reads:

value = date()

That would work fine until the next time you edit the form in the Form designer. The expression gets evaluated
when the form is loaded so that the value property has an actual date. Then that date gets saved to the .WFM file
which causes the date that you last edited the form to be hard-coded into the form.

The simplest way to solve the problem is to set the value property programmatically, which puts it outside the
reach of the Form designer. The most convenient place is the component’s onOpen event. A simple codeblock
like this will do it:

{;this.value = date()}

When the form is run, the form’s onOpen event and each component’s onOpen event, if any, is called in turn.
This codeblock updates the value to the current date. The Form designer knows that a codeblock is attached to
the onOpen event, and reads and writes it, but it doesn’t bother with what’s inside it, and doesn’t change it.

Types of form windows

dBASE Plus lets you create windows that are standard features of the Windows environment:

* MDI windows

« SDI windows

¢ Modal windows

¢ Modeless windows

Creating an application 63

Types of form windows

The following sections briefly describe these form types.

MDI and SDI applications

You can create windows that conform to the Windows Multiple Document Interface (MDI). MDI is a Windows
standard that allows an application to manage multiple windows or multiple views of the same document within
the main application window. In dBASE Plus, for example, you can have multiple windows (Command
window, Navigator, Table designer, and so on) open at the same time. You can also open the same document
(form, table, report) multiple times.

You can also create Single Document Interface (SDI) windows with dBASE Plus. Unlike an MDI window, an
SDI window does not contain any child windows.

MDI windows are the most appropriate for data entry forms. Forms that you create with the Form designer are
MDI windows by default.

Modal and modeless windows

dBASE Plus lets you create both modal and modeless windows.

A modeless window does not take control of the user interface. A user can switch between modeless windows
while an application is running. For example, the various windows that appear in the dBASE Plus Form
designer, such as the Control palette, the Field palette, and the Inspector, are modeless windows.

A modal window takes control of the user interface. A user cannot switch to another window without exiting a
modal window. A dialog box is an example of a modal window; when it’s open, users cannot take any other
actions outside the dialog box until it is closed. Modal forms are most appropriate as dialog boxes in
applications.

Customizing the MDI form window

The following sample MDI window shows required and optional window properties you can set for your form

Standard features of MDI windows:

* They are moveable and sizeable.
* They have a window title, a Control-menu box, Maximize and Minimize buttons.
* When active, their menus replace the menus in the application menu bar.

* They are bounded by the MDI parent window’s frame..
Figure 4.3 Sample MDI window

il Minimize and Maximize
B Sam plE MDI Form g@ properties [required) —
Minimize and Maximize
- bLttons

Syzmenu property
[required] — Control mer
box

b ovweable property [required]
Pushhuttonli —"“'ou can move the windaw
by dragging the fitle bar

Text property [required) — |
bitle text default iz "Farm'' —

] - SerollBar property [optinal] -
windowState property ——4—— zoroll bars

[required]. O=Marmal, not
rinimized ar magimized

Sizeable property [required]
< » il g h
_— resize handler

If the MDI property is set to true, those features are automatically applied to the form. Accordingly, the
following form properties are automatically set to true: Minimize, Maximize, Sizeable, Moveable, and SysMenu.

64 dBASE Plus User’s Guide

Using multi-page forms

Changing the MDI-required properties will have no effect until you change the MDI property itself to false. For
more information about any of these properties, press F1 when the property in the Inspector is highlighted.

Using multi-page forms

Important

If your form needs to contain many fields or controls, you’ll want to use a Notebook component or a multi-page
form. Using either one, you can divide controls into related groups, with each group presented on a separate
page.

It is easy to create forms with several pages and navigation buttons.

When you create a new form, the Form designer opens it on the first page. To create a multi-page form, choose
the Next Form Page button on the toolbar. The Form designer appends a page each time you click the button.

To navigate between pages in the Form designer, use any of these techniques:
+ Use the Next Form Page and Previous Form Page toolbar buttons.

* Choose View | Previous Form Page or View | Next Form Page.

* Use the PgUp and PgDn keys.

* In the Inspector, select the form object in the top selection box, and on the Properties page, change the
numeric value of the pageNo property. Notice that as you change this value, the pages of the form change on
the design surface.

Global page (forms)

In a multi-page form, page 0 is a "global" page. Controls you place on page 0 are visible on every page of the
form.

To open page 0,
1 Select the form object in the Inspector’s top selection box.
2 On the Properties page, change the numeric value of the pageNo property to 0.

Page 0 displays a composite view of all controls from all pages to help you position global controls so they will
not interfere on the other pages. If you have several pages, naturally the various components of those pages may
overlap in this composite view. To reposition the controls on other pages, you must navigate to the appropriate
page.

When you save a multi-page form, the page that is active becomes the default page at run time. Therefore, make
sure you return to page 1 before clicking Run.

Navigation buttons (form pages)

If you create a multi-page form, you will probably want to provide buttons to enable users to navigate between
form pages. A simple solution is to create buttons at the top of the global page (pageNo=0) of the multi-page
form.

To create one set of navigation buttons for a multi-page form,
1 Go to the global page, page 0 of the form (View | Go To Form Page Number).
2 Select the form itself in the Inspector’s top selection box, and make sure the pageNo property is 0.

3 From the Component palette drag as many button components as you need to the visual design surface.
Ensure that the buttons will not overlap controls appearing on other pages.

4 Seclect each button and set its pageNo property to 0 (the global page) so that it will appear on all pages. (Or
multi-select the buttons and set the property once.)

5 Select each button’s text property and change its value to whatever you want on the button, for example Next
Page or Previous Page.

Creating an application 65

6 For each button, on its Events page, select onClick and click the tool button to display the Source editor.
You’ll see a comment for an onClick method. Write the code that will send the user to the appropriate page.
Return to page 1 before running the form.

Creating a custom form, report, or data module class

Note

When you use the designers in dBASE Plus, by default the Form designer uses the Form class, the Report
designer uses the Report class, and the dQuery/Web DataModule Designer uses the DataModule class.

However, you can create custom classes and use them as templates (both for new forms, reports, and data
modules and those already created). For example, if you want many forms in your application to have a similar
look, you can specify all the common attributes for those forms, such as colors, size, controls, event handlers,
and so forth, once. When you have established all the common attributes, save that form as a custom form class.
Then you can specify that class to be a template for forms. Changes you subsequently make to the custom form
class will be reflected in all its derived forms.

To create a custom form, report, or data module class,
1 Use the appropriate designer to create the form, report, or data module template you want.
2 Choose File | Save As Custom to display the Save As Custom dialog box.

3 Choose Save Form (or Report or Data Module) As Custom, then complete the rest of the dialog box as
described in Figure 5.3

The new custom class file will be saved with the .CFM (custom form) extension if it’s a form or .CRP (custom
report) extension if it’s a report or .CDM extension if it’s a data module. Custom classes for forms, reports, and
data modules are available from their respective pages in the Navigator. Their icons are yellow.

An alternate way to create a custom class is to double-click the yellow, “Untitled” icon on the Forms, Reports,
or Data Modules page of the Navigator. This opens the appropriate Custom Class designer, which is almost
identical to the Form or Report designers. Then add the common features you want to appear on all derived
forms, reports, or data modules.

You can’t run a file you’ve developed in this way; it is simply a template from which other forms, reports, or
data modules can be derived.

Figure 4.4 Saving a custom class

Save as Custom E|

Select the option Savie 28 CUEEm

far whichever 0 | T Selected components
designer you're * Fam
wrarking in. =

Clazz name:

Type a clazs name — —|

Custom form file name;

Type the name of a file If wou want to store the

where pou want to - _| —|E:"~F'rn:|gram Files\dBASEWPLUSAS ampleshS ampleF arm. cfm —file in a directary ather

gtore the custom class. than the current

Mare than one class directary, tupe a path

may be stored ina r before the file name, or
iven file. click the taol buttan ta

? Ok Cancel Help locate the directary.

Using a custom class

To use a custom form, report, or data module class,

66 dBASE Plus User’s Guide

1 Open a new or existing form or data module to which you want to apply a custom class.

 Setting a custom report always causes a new report to be created. To apply a custom class to an existing
report, open the report in the source code editor and change the CLASS statement:

CLASS MyReport OF Report
to read:
CLASS MyReport OF "MyCustomReport" FROM "MyCustomRep.CRP"
2 From the designer, choose File | Set Custom Form (or Report or Data Module) Class.
3 Complete the Set Custom Class dialog box and choose OK.

Figure 4.5 Set Custom form Class Dialog Box

Set Custom Form Class E|

Eile name containing clas::

Enter a file name, or click the
ﬂ— -tool button to display a hist of
existing clazs files. One file

Clazs name; can contain more than one
| classz.
-
To restore the Farm clazs Choose the name of the class
as the zetting, choose 41— | ‘Clear Custom Form Clazs: | - ol want bo uze, or bype a

Clear Cusgtam Form Class NAme.

(] 4 Cancel | Help |

Your custom class now applies to the current file in the designer. In addition, subsequent new files of that type
will use the current setting in the Set Custom Class dialog box. To change this, choose File | Set Custom Class,
and either enter a new form or report custom class, or choose the Clear Custom Class button to restore the
default class as the setting.

Creating custom components

You can create your own customized components and add them to the Component palette for easy reuse. A
custom component is based on one or more of the components already on the Component palette. You arrange
these components, as you want them in the Form or Report designer, and set their properties, event handlers,
and methods, as you desire.

Then you save your work into a custom component file (with the .CC extension) and optionally add it to the
Component palette for convenient access.

Creating custom components

To create custom components that you can use again,

1 Drag a component or components to the Form or Report design surface, and arrange them the way you want
them.

2 Set each component’s properties, events, and methods.

3 Select the component or group of components.

4 Choose File | Save As Custom to display the Save As Custom dialog box, then complete the dialog box:
* Type a class name for the customized component.

* Specify an entire path name and the file (with the .CC extension) in which you want to store this
component. Note that the components in a .CC file are treated as a group, and although you can add them

Creating an application 67

to the palette individually in this dialog box (by checking the appropriate check box), you can remove
them from the palette only as a group. So, if you want to be able to add and remove custom components

from the palette separately, put each in its own file.

* Check the Place In Component Palette check box, if you want this component to appear on the
Component palette. If you are putting the component in an existing .CC file whose components are
already on the palette, and you don’t check this box, then later, if you want to add the component to the
palette, you’ll have to remove the .CC file from the Set Up Custom Components dialog box, and then add

it anew.

Figure 4.6 Save as Custom dialog box; saving Custom Components

Click here to specify
& cugkorm
component.

Check here to place
the component in the
Component palette. —

Save as Custom

Save as custom

{* Selected components
" Farm

Clazz name:

X

Custam cormpanent file name:

IF you are zaving a single

— v Place in Comporent Palette

o]

Cancel |

Help |

component, specify a
clazz name.

- Enter the file name, or
uze the tool to dizplay a
izt of existing component
filez. *rou can zave more
than ohe componeit in
the same file.

5 Click OK.

The custom component is now stored in the .CC file you specified. You can open the file in the Source editor.

Adding custom components to the Component palette

If you have designed a custom component yourself, the simplest way to add it to the Component palette is to

check the Place In Component Palette check box in the Save As Custom dialog box (File | Save As Custom) at
the time you are saving your custom component. If you didn’t do this, or if you have a custom component from
someone else, here’s what to do:

1 Choose File | Set Up Custom Components (or right-click in the Component palette for access to the same

command).

2 The Set Up Custom Components dialog box appears. It lists paths to custom component files whose

components already appear on the Component palette.

3 Choose Add to open the Choose Custom Component dialog box.

4 1In the Choose Custom Component dialog box, locate the custom component file (with the .CC extension)
that contains the component you want to put on the Component palette. Choose Open.

5 The path name to the selected custom component file now appears in the Set Up Custom Components dialog

box.

6 With the desired .CC file selected, choose OK. The custom components you have saved in the .CC file
appear on the Custom page of your Component palette (in both the Form and Report designers), ready to use

just like any other

component.

Removing custom components from the Component palette

To remove a custom component from the Component palette,

68 dBASE Plus User’s Guide

1 Choose File | Set Up Custom Components.
2 In the dialog box that appears, select the file that contains the custom component, and choose Delete.

All the custom components in that file are removed from the Component palette. The .CC file is not deleted
from disk.

Creating an application 69

Note

Chapter

Accessing and linking tables

To link your forms and reports to the data in tables, dBASE Plus provides a set of data objects. In the designers,
these objects are available on the Data Access page of the Component palette. These components make
specialized database access functionality available to your dBASE Plus applications.

This section discusses the following topics:
* The dBASE Plus data model

* Linking a form or report to tables

* Creating master-detail relationships

* Creating and using a DataModule

Before you use the data objects, you should understand the dBASE Plus data model, described in the next
section.

Although the old dBASE Data Manipulation Language (DML) still exists for backward compatibility, those
methods are no longer recommended. The new data object model is recommended because it utilizes the full
power of object-oriented programming.

The dBASE data model

Note

dBASE Plus’s advanced, event-driven data model is implemented entirely in a handful of classes:
* Session

» Database

* Query

+ StoredProc

* Rowset

+ Field

This section gives you a sense of how these classes fit together. It introduces each object and explains how its
primary properties relate to the other objects.

Query objects

Query objects are the center of the data model. In most cases, if you want to access a table, you must use a
Query object.

Alternatively, you could use a StoredProc object that returns a rowset from an SQL database, or a DataModRef
object that points to a data module containing the appropriate data access code, including at least a Query or
StoredProc object.

70 dBASE Plus User’s Guide

Note

The dBASE data model

The Query object’s main job is to house two important properties: SQL and rowset.

SQL property

The SQL property’s value is an SQL statement that describes the data to be obtained from the table. For
example,

select * from BIOLIFE

The * means all the fields and BIOLIFE is the name of the table, so that statement would get all the fields from
the BIOLIFE table.

The SQL statement specifies which tables to access, any tables to join, which fields to return, the sort order, and
so on. This information is what many people think of when they hear the word query, but in dBASE Plus, SQL
statements are only one of many properties of the Query object.

SQL is a standard, portable language designed to be used in other language products to access databases. When
you use the Form and Report wizards or drag a table from the dBASE Plus Navigator, dBASE Plus builds the
SQL statement for you. Once a table has been accessed by the SQL statement, you can do almost anything you
want with dBASE Plus’s data objects, including navigating, searching, editing, adding, and deleting.

Although knowing SQL is useful for initially configuring data objects for your databases, once these are
complete and saved as custom components or in data modules, they can be reused without modification. Then
others can create complete Windows database applications without knowing a word of SQL.

rowset property

A Query object is activated when its active property is set to true. When this happens, the SQL statement in the
sql property is executed. The SQL statement generates a result: a set of rows, or rowset.

A rowset represents some or all the rows of a table or group of related tables.

Each Query object generates only one rowset, but you can add multiple Query objects to a form to use multiple
rowsets from the same table, or from different tables. Using multiple Query objects also allows you to take
advantage of dBASE Plus’s built-in master-detail linking. See “Creating master-detail relationships (overview)”
on page 76

The Query object’s rowset property refers to the Rowset object that represents the query’s results.

Rowset objects

While you must use a Query object to get access to data, you must use the Query object’s resulting rowset to do
anything with the data. All navigation methods for getting around in tables depend on the query’s rowset.

The row cursor and navigation

The rowset maintains a row cursor that points to the current row in the rowset. When the Query object is first
activated, the row cursor points to the first row in the rowset.

Synchronizing cursor movement in master-detail rowsets

Enabling a linked-detail rowset's navigateMaster and navigateByMaster properties allows master-detail rowsets
to be navigated as though they were part of a single, combined rowset (similar to the xXDML SET SKIP
command).

Using these properties will modify the behavior of the firs«(), next(), last(), atfirst() and atlast() methods. For
more information, see Help and choose, navigateByMaster.

You can get and store the cursor's current position by calling the rowset’s bookmark() method.
To move the row cursor, call the rowset’s navigation methods:

* next() moves the cursor a specified number of rows relative to its current position.

» first() goes to the first row in the rowset.

e last() moves to the last row.

Accessing and linking tables 71

The dBASE data model

Important

» goto() uses the value returned by bookmark() to move back to that specific row.

Because each rowset maintains its own row cursor, you can open multiple queries—each of which has its own
rowset—to access the same table and point to different rows simultaneously.

Master-detail rowset synchronization can be overridden by using the app object’s detailNavigationOverride
property. For more information on these properties, see Help.

Rowset modes

Once a Query object has been activated, its rowset is always in one of the following five modes (indicated by
the rowset’s state property):

* Browse mode, which allows navigation only.
» Edit mode, the default, which allows changes to the row.

* Append mode, in which the user can type values for a new row, and if the row is saved, a new row is created
on disk.

 Filter mode, used to implement Filter-By-Form, in which the user types values into the form and dBASE
Plus filters out all the rows that do not match.

» Locate mode, similar to Filter mode, except that it searches only for the first match, instead of setting a filter.

Rowset events

A rowset has many events used to control and augment its methods. These events fall into two categories:

* can- events, so named because they all start with the word can—which are fired before the desired action to
see whether an action is allowed to occur; and

* on- events, which fire after the action has successfully occurred.

Row buffer

The rowset maintains a buffer for the current row. It contains all the values for all the fields in that row.

You access the buffer by using the rowset’s fields property, which refers to an array of Field objects.

Field objects

The rowset’s fields array contains a Field object for each field in the row. In addition to static information, such
as the field’s name and size, the most important property of a Field object is its value.

value property

A Field object’s value property reflects the value of that field for the current row. It is automatically updated as
the rowset’s row cursor is moved from row to row.

To change the value in the row buffer, assign a value to the value property and set the rowset’s modified
property to "true". This signals the rowset that values have been changed. If the row is saved, those changes are
written to disk.

When referring to the contents of a field, don’t forget to use the value property. For example,
this.form.rowset.fields["Species"].value

If you leave out value,
this.form.rowset.fields["Species" |

you are referring to the Field object itself, which is rarely intentional—except for dataLinks, explained next. Get
in the habit of including value when referring to a field; if you don’t, the code doesn’t work.

72 dBASE Plus User’s Guide

The dBASE data model

Using datalLinks

Just as a Field object’s value property is linked to the actual value in a table, a visual object on the form (such as
an EntryField or RadioButton) can be linked to a field object through the visual object’s dataLink property. This
property is assigned a reference to the linked Field object. When connected in this way, the two objects are
referred to as dataLinked.

As the rowset navigates from row to row, the Field object’s value is updated, which in turn updates the
component on the form. If a value is changed in the form component, it is reflected in the dataLinked Field
object. From there, the change is saved to the table.

Database objects

Database objects are one level up from Query objects in the object hierarchy. Database objects have three main
functions:

« To access a database
» Database-level security
¢ Database-level methods

Accessing a database

A Database object is needed to access SQL databases, ODBC databases, and any other tables you are accessing
through a BDE alias.

Before you can use a Database object, you must set up BDE to access the database by using the BDE
Administrator (available from the dBASE Plus program group). See “How to connect to an SQL database
server” on page 34.

To connect a Database object to a database, set the Database object’s databaseName property to the BDE alias
for the database.

Database-level security

Many SQL and ODBC databases require the user to log in to the database. You can preset the Database object’s
loginString property with a valid user name and password to log in to the database automatically.

Because each Database object represents access to a database, you can have multiple Database objects that are
logged in as different users to the same database.

Database-level methods

The Database object contains methods to perform database-level operations such as transaction logging and
rollback, table copying, and re-indexing. Different database formats support each method to varying degrees.
Before accessing the methods of a Database object, the Database object itself must be active. The methods of a
Database object will not function properly when it's active property is set to "false".

Default Database object

To provide direct, built-in access to the BDE-standard table types ({(BASE and Paradox), each session includes
a default Database object that does not have a BDE alias. When you create a Query object, it is initially assigned
to the default Database object. Thus, if you’re accessing dBASE or Paradox tables without an alias, you don’t
need to use a Database object.

If you’re accessing other table types, you need to use the Database object. See “Linking to a table manually” on
page 75.

Session objects

At the top of the object hierarchy is the Session object. Each session represents a separate user.

Accessing and linking tables 73

Linking a form or report to tables

Note

Each session contains one or more Database objects. A session always contains at least the default Database
object, which supports direct access of dBASE and Paradox tables.

Session objects are important for dBASE and Paradox table security. Multiple users each have their own
session, so that different users can be logged in with different levels of access, or they may share a single
session, so that all users have the same level of access. For the Session object's security features to work, the
session property of an active database object must be set to the session object.

A default Session object always exists whenever you run dBASE Plus (either the environment or an application,
sometimes referred to as a dBASE Plus executable). In most cases, the default Session is all you need. There is
usually no need to add a Session component to your forms or reports. dBASE Plus’s App object has a property
that points to the default session object and the default database object. Thus, when you create a Query object, it
is automatically assigned to both the default Session object and the default Database object.

The Session object has an event called onProgress that you can use to display progress information on database
operations.

StoredProc objects

The StoredProc object is used for calling a stored procedure in SQL databases. When you’re calling a stored
procedure, the StoredProc object takes the place of the Query object in the class hierarchys; it is attached to a
Database object that gives access to the SQL database, and it can result in a Rowset object that contains Field
objects.

The stored procedure can:
* Return values, which are read from the params array

* Return a rowset, which is accessed through the rowset property, if the server supports this capability

DataModRef objects

The DataModRef object points to preprogrammed data access components stored in a DataModule. If you
maintain data access code in a DataModule, then you can use a DataModRef object to return rowsets in place of
a Query or StoredProc component.

Data modules offer convenient reusability and easy maintenance of data access code. By storing custom or
preset data access components in a data Module, it is easy to maintain them (change links to changing databases,
for example). Then, you can use just the DataModRef component (or custom class) to instantly implement the
full set of current data access components.

To set a DataModRef object to point to a DataModule, set its filename property to the path name of the data
module.

The DataModRef object is maintained for backward compatibility. Enhancements to the DataModule class
make it a more desirable method of storing data objects.

Linking a form or report to tables

The Query object links a form or report to a table, making the table’s fields available to the controls on the form
or report. One Query object can refer to multiple tables in its SQL statement, or you can use multiple Query
objects with an appropriate query statement in each.

If you need to link to table data in an SQL or ODBC database, you must first assign the database a BDE alias in
the BDE Administrator. If you haven’t done this yet, see "How to connect to an SQL database server" on
page 34. Then, to see your tables listed in the Navigator:

1 Click the Navigator’s Tables tab.

2 From the Look In drop-down list, select the alias of the database you want to access. Tables from the selected
database appear listed on the Navigator Tables page.

If you are linking to BDE-standard tables, use the Navigator Look In drop-down list to select the directory that
contains your tables. (Click the Tables tab to see the tables listed.)

74 dBASE Plus User’s Guide

Linking a form or report to tables

From there, you can link to a table in two ways:
1 Automatically, by dragging from the Navigator or using a wizard

2 By dragging data access components from the Component palette to the design surface and setting linking
properties

Linking to a table automatically

The easiest way to use table data in a form or report is to drag the table from the Navigator onto the form or
report design surface.

* For BDE-standard tables that you’re accessing without a BDE alias, this creates a Query object.

» For SQL, ODBC, and other tables you’re accessing through a BDE alias, this automatically creates both the
Database object, which is required to connect to the database, and the Query object for the table.

The SQL and rowset properties of the Query object, and the dataBaseName property of the Database object are
both set automatically, and the active property of both objects is set to #rue. The link is complete, and fields of
the table are available from the Field palette.

The SQL statement in the SQL property selects all the fields of the table. You can modify this statement in the
Inspector. Click the tool beside the SQL property.

Linking to a table manually

Instead of dragging a table from the Navigator, you can use data objects from the Component palette.
For SQL, ODBC, and other tables you’re accessing through a BDE alias,

1 Drag a Database object from the Component palette to the form or report design surface. (One Query object
is added along with it.)

+ Assign the BDE alias to the databaseName property.
+ Set its active property to true.

2 For databases that require a login, you must either log in or set the Database object’s loginString property, so
that the table will open without requiring a password or ID to be entered. (Your login name and password
must be set up by your database administrator.)

3 Select the Query object.

» Type the SQL query statement you want in the Query object’s SQL property. Your SQL query can access
any number of tables in the database. Some servers are case-sensitive for the table name; some may
require quotation marks (Oracle, for example).

+ Assign the Database object to the Query object’s database property. This must be done before activating
the query.

* Set the Query object’s active property to true.

4 Add additional Query objects, if needed for other tables, and set their properties as in step 2. (If you want to
drag a table from another database, be sure to first select the desired alias from the Navigator’s Look In drop-
down list, or in the case of BDE-standard tables without an alias, use the Navigator to locate the desired
directory.)

For BDE-standard tables without a BDE alias, you do not need the Database object. Use only Query objects,
and follow the instructions in steps 2 and 3.

To use tables accessed through a BDE alias, you must create new Database objects. Provided that you have
created the BDE alias for your database, you need only activate the database object (and login if required) to
have access to that database’s tables. You may also log transactions or buffer updates to each database to allow
you to rollback, abandon, or post changes.

Note A table’s fields do not appear on the Field palette until the Query object’s active property is set to true.

Accessing and linking tables 75

Using local and remote tables together

Procedure for using a Session object

All database applications are automatically provided with a Session object that encapsulates the default BDE
session. You can create, and manipulate additional session components as needed.

If you intend to add another Session object, follow the sequence in this procedure for adding data objects to the
design surface:

1 Add the Session object.

2 Add a Database object to your form (if accessing tables through a BDE alias). It is automatically linked to the
Session object already on the form.

3 Set the Database object’s databaseName property to the name of the BDE alias, and set its active property to
true.

4 Add a Query object. It is automatically linked to the Session and Database objects already on the form or
report.

5 Set the Query object’s SQL property, then set its active property to true.

Calling a stored procedure

When you want to call a stored procedure, use the StoredProc object. When a stored procedure returns a rowset,
it can take the place of a Query object.

To call a stored procedure,

1 Drag a StoredProc object from the Component palette onto the design surface.
2 Set its procedureName property to the name of the stored procedure.

3 Set any parameters that are passed to the stored procedure in the params array.

4 Set its active property to true.

Using local and remote tables together

If you use both local dBASE or Paradox tables as well as client/server databases, it’s a good idea to create a
BDE alias for the local dBASE or Paradox table directories and any other directories containing tables as well.
There are two reasons for this:

1 All your table connections will be listed in the dBASE Plus Navigator Look In box when the Tables tab is
selected.

2 Using a BDE alias for BDE-standard tables makes it easier to move them to another directory; only the alias
in the BDE configuration need be updated, and not the source code for all the forms and reports.

Creating master-detail relationships (overview)

A master-detail form or report displays information selected from one or more related tables in a relational
database. It groups the detail rows from the detail tables in relation to an associated row from the master table.

In a relational database, a master table can be linked to one or more related (detail) tables by key fields. A detail
table may in turn act as a master table, with other key fields linked to other detail tables. Each detail table
contains a masterRowset property pointing to its master table. You can implement a master-detail relationship
between tables by setting this property in the detail tables.

A typical example is a CUSTOMER table with a key field called Orders. You could link it to an ORDERS table
by setting the ORDER table’s masterRowset property to the master CUSTOMER table. You could then
generate a report on a selection of customers (from the master table CUSTOMER) that lists the rows of each
customer’s orders (from the detail table ORDERS). The result groups each customer’s orders with each
customer’s name.

76 dBASE Plus User’s Guide

Note

Creating master-detail relationships (overview)

By creating a master-detail relationship and adding SQL statements to the Rowset or Query object properties,
you can create forms and reports that group detail rows from detail tables with a selection of rows from the
master table. For example, a report could include a filter on the ORDERS rowset to display a customer’s orders
only for the month of March. You can create complex filtered joins and perform virtually any programmatic
operation on a database.

This section includes three different procedures to link master and detail tables:

1 Use an SQL JOIN statement to generate a rowset from two or more tables. This procedure is often the fastest
and easiest. It is illustrated in the AIRCRAFT.REP report in the SAMPLES directory.

2 For local BDE-standard tables, use the Rowset object’s masterRowset and masterFields properties.

3 For client/server databases, use the Query object’s masterSource property. (You can also use this in local
tables.)

In general, for any procedure, you begin with these steps:
1 Make sure each pair of tables is indexed on a common field.

2 Drag the tables from the Navigator to the visual design surface of the designer you’re working in. This
creates a Query object for each table.

Using an SQL JOIN statement

The sample report FLIGHT.REP (located in your dBASE Plus SAMPLES\FLEET directory) uses a single
Query object whose SQL property contains an SQL JOIN statement linking the master table AIRCRAFT.DBF
and the detail table FLIGHT.DBF. Both tables are indexed on a common field.

In the resulting report, each aircraft (stored in the master AIRCRAFT.DBEF table) is displayed in the
headerBand, followed by a list of flights for that aircraft (stored in the detail FLIGHT.DBF table) in the
DetailBand.

This technique is usually faster and easier than adding and linking two Query objects. (However, in some cases,
with BLOB fields, for example, it might be faster to use two Query objects.) You should also be aware that
rowsets resulting from an SQL JOIN statement are read-only, and therefore cannot be edited.

By using two joined tables, you gain several advantages:
* You can use the data as if it were all in one table.
» Separately the tables can be more easily maintained.

» Ifyou have bitmaps, you need store them in only the master table, rather than duplicating the image in every
row of the detail table.

» This method does not require an index (although with indexes it is much faster).
To create a master-detail relationship by using an SQL JOIN statement,
1 Add a Query object to the design surface.

2 Select the Query object. In the Inspector, click the wrench tool beside the SQL property to display the SQL
Property Builder.

3 Do one of the following:
* Write an SQL JOIN query in the SQL Property Builder
* Locate a query you’ve already written
Including image fields slows performance.

1 Ifyou’re designing a report, after the SQL property is set, choose Layout | Add Groups And Summaries. In
the Groups And Summaries dialog box, all the fields from both tables appear in the Available Fields pane.

2 Select the field on which you want to group the detail rows.

Accessing and linking tables 77

What is a DataModule?

Linking master-detail in local tables

Creating a master-detail relationship by using the properties masterRowset and masterFields is the most
efficient technique when working with local .DBF tables. It is similar to the older technique of using the SET
RELATION and SET INDEX commands, but that technique is no longer recommended.

To link local master-detail tables,
1 Drag the two tables onto the design surface of the designer you’re working in.

2 Select the Query object of the detail table and set its masterRowset property to the name of the master table’s
Query object. To do this, select the name of the Query object from the property’s drop-down list (the down-
arrow button, not the tool button).

3 With the Query object of the detail table still selected, click the rowset property’s tool button to display the
rowset properties.

4 Click the rowset’s masterFields property and from the drop-down list select the fields you want to link from
the master table.

5 Set the indexName property to the same field as the masterFields property. If the field names between the
two tables are not identical, then in the indexName property select the index that corresponds to the
masterFields setting.

6 If you’re designing a report, choose Layout | Add Groups And Summaries, and in the dialog box group the
detail fields under the appropriate master-table field.

Using the masterSource property

By using the masterSource property to create master-detail relationships you do not need an index, although it
would improve performance. You might choose to use the masterSource property when

* You can improve performance, for example, in cases where large BLOB fields would be copied to temporary
files

* You are working with client/server databases

* You are working with a one-to-many relation in a form, and you want the form to be updateable
* You want the order of the "many" table to be different from that of the linked fields.

To create a master-detail relationship by using the masterSource property,

1 Drag the two tables onto the design surface of the designer you’re working in.

2 Select the Query object of the detail table and set its active property to false.

3 Change the SQL statement in the Query object’s SQL property to use host variables. For example, in a
master-detail report on CUSTOMERS and ORDERS, you might use this:

SELECT * FROM ORDERS WHERE ORDERNO = :ORDERNO
assuming that ORDERNO is the exact field name in the table.

4 Set the detail table’s Query object’s masterSource property to the name of the master table’s Query object.
To do this, select the name of the Query object from the property’s drop-down list (the down-arrow button,
not the tool button).

5 Set the detail table’s Query object’s active property back to true.

6 This creates a parameter using the key fields from the master table.

What is a DataModule?

A DataModule is a dBASE Plus class for centralized handling of data access objects (Query, Database,
StoredProc, and Session). A DataModule enables you to:

» Place all your data access objects in a single container instead of duplicating them on each application form.

» Design queries once for use with many forms and reports instead of recreating them separately for each one.

78 dBASE Plus User’s Guide

What is a DataModule?
* Create business rules—using object events, and additional methods you add to the source code for a
DataModule—that can be shared across an entire application.
* Separate business logic and data access from user interface code for easier maintenance.

After you’ve set up data access objects in a DataModule, it’s easy to maintain them (change links to changing
databases, for example).

Creating a DataModule

To create a DataModule,
1 Open the dQuery DataModule Designer by choosing File | New | Data Module.

Figure 5.1 dQuery Design Surface with default Session object

2 dBASE PLUS - [dQuery dataModule Designer Untitled1.dmd:]
§ Ble Edit Yww Tables Fifter Lookyp Rgws Beports applications Broperties Window el
HE e SRRy RS0y ol g~ T Y S T T e T

i

A

< =
_-AV
L [oasvasesanaTaces =] | # o
E —.ﬂ.m Data | CustomView | Cusent Repor |
D w E Files
s n
" % 2
T)
i oo
Eﬂtl:'. Y= il
% Bimg
0 Fouro Faes _*" 5 I%|

2 From the Drag & Drop area, drag the components you need onto the design surface, set their properties (SQL
and so on), and write their event handlers

Press F12 to toggle between the Source editor and the visual designer.

3 When everything is set up as you want it, save the DataModule (File | Save). It is saved with a .DMD
extension.

Accessing and linking tables 79

‘What is a DataModule?

Figure 5.2 Design surface after Drag&Drop of Query object

[dBASE PLUS - [dQuery dataModule Designer Untitledi.dmd:CUSTOMERS1]
g Ble Edt Vew Isbles Filer Lockup Rgws Beports Applcatins Properties Window ol
NE & O M B S = R [I T] e

_ E
L)
S
=
IHI
e
& | Canegory [Lastiisme :..J
b 1 Regigeniial Marnzone
o 2 Educational Hurtingion Sckaool District
Q ¥ Comimsenial Soffvares Inc
= L) Ragidentis AAL

Creating business rules in a DataModule

Besides writing event handlers for the components in a DataModuleDataModule, you can code methods directly
in the source file for a DataModule. These methods can be applied to the forms that use the DataModule as
business rules. For example, you might write a procedure to perform month-, quarter-, or year-end bookkeeping.
You might call the procedure from an event handler for a component in the DataModule.

Using a DataModule

To use a DataModule in a form or report, do one of the following:

* Add a DataModRef object from the Component palette and link it to the desired DataModule file by setting
the DataModRef’s filename property to the path and filename of the DataModule.

* Drag the DataModule file from the Navigator or Project Explorer to a form or report design surface. This
adds a DataModule object to the form.

The properties, event handlers, and methods you set for components in a DataModule apply consistently to all
forms and reports that use the module.

80 dBASE Plus User’s Guide

Chapter

Using the Form and Report
designers

This section shows you the common elements you have to work with in the Form and Report designers. Other
designers—for DataModules, labels, and custom classes—are variations on the Form and Report designers.
Their menus and tools vary, and they might look a little different, but otherwise they all work basically the
same. This section refers to the Form and Report designers, but the information applies to the other designers, as
well. The section includes the following:

* A description of the Form and Report designer windows

* What’s available on the Component palette for use in your forms and reports (this is an overview in table
form; see Help for more detailed information on how to use specific components)

» A discussion of the Field palette and how to populate it with components linked to fields in a table

* How to change component properties and create event handlers and other methods by using the Inspector

* How to manipulate components (change alignment, spacing, formatting, and so on)

You can open any of the designers from the File menu (File | New) or from the Navigator or Project Manager.

Note The yellow untitled icon on several pages of the Navigator is for creating a custom class that you can use as a
template.

The designer windows

The form and report windows are visual design surfaces on which you position the components you need for
your application. These can be invisible components, like data objects (queries, stored procedures, databases,
sessions, and data module references) and visible components, like text, graphics, list boxes, check boxes, and
o on.

In both designers, the work you do with the visual design elements is reflected in the underlying code and vice
versa. Press F12 to switch between the design surface and code.

You can change the size and position of a designer window either by dragging the edges of the window or, if
you need to be precise, by changing the values of height, left, top, and width in the Inspector.

By default, a grid appears when you start the Form and Report designers, and objects are constrained to line up
along the grids (Snap To Grid). In addition, vertical and horizontal rulers appear.

Both designers have the following tools:

» Component palette for dragging user-interface elements and data-access objects to the design surface
» Field palette for dragging linked fields to the design surface

* Inspector for setting properties and writing event handlers and other methods

» Format toolbar for formatting Text objects

Using the Form and Report designers 81

Design and Run modes

» Alignment toolbar for aligning objects
» Layout, Format, and Method menus

* Status bar to show you your location on the design surface, show you what object is selected, and to give you
instructions and other information

To display a tool window that’s not open, choose View | Tool Windows.

Design and Run modes

You can view forms and reports (and other files) in Design mode and Run mode.

» Use Design mode to design the appearance and behavior of the form or report and the components you put on

Fiun it.

| ¥ B2 [« Use Run mode to see how a form or report looks when running. In Run mode, the components become
—'— active. For example, you can enter data into an entryField control and edit data that’s already there.

Design Use the Design and Run toolbar buttons, or choose the appropriate command from the View menu, to switch
between modes.

The Form Design Window

A form in the Form Designer appears on the desktop a shown in the following figure.

Figure 6.1 Form Designer with a wizard-created form

M dBASE PLUS
File Edit Yiew Layoust Format Method Froperties Window Heb

OFE@S BO&[ke 00 &7

e ———————
Customers o0 S IR
D e

|Manzone

LastMame "= s sraseiet
Jaima

e
[512 Main A
S O S

[yen Cove NV 2400 e
City [ooiiiiiziniiiiii Siste C CumentBalDue o
£ *

SPIMNBOXMCURRENTEAL Order: 15 Page: 1 Tep: 10.00 Left: 31.00 Height: 1.00'Wid

82 dBASE Plus User’s Guide

Component palette

The Report Design window

A report in the Report designer appears on the desktop as shown in Figure 6.2
Figure 6.2 Report Designer with a wizard-created report

l ort Uesigne . > . =
/ -~

PPN AP .| TP O L P TP, PO vt (vl (i (T P T L.
@ Standard | Data Access 4|

7 b A~ @i E
by 1 Customers o5 O X @

=4 111204

7 BrnEeatensetanenanneagesnte e s g e spntsiusaseirnessad
3 ‘

] Customerno: 1 - - = x: 3

_ : Customerne Category Lastname Firstname = Address

1 | _Residential ‘Manzone “Jaims _ 512 Main Aya:
]] |

] ; t

2l Customerno: 2 i - i = :

d [2 Educstional ‘Huntinglon | T S04 Block =
b | s TR T L Schonl District EEEEEEEEE R4 :

1 T e D o P T e e e eV Uy |

o Customerno: 3 i _ _ _ :
B | i 3 Commencial ‘SoftWares Inc | | E3E9 :

d o PR v Pere e it b g TR T D O P e Y ., . Harbinger

] : LT —
L b T ! o
4 »

FPAGETEMPLATEL Page: 1

The report design surface has several objects the form design window does not, for example, pagetemplate and
streamframe. These objects are necessary for formatting report pages. See Chapter 11, “Designing reports”, for
information on working in the report design window.

The visual design is reflected in your code

In both designers, the work you do with the visual design elements is reflected in the underlying code and vice
versa. Press F12 to switch between the design surface and code.

Component palette

The Component palette displays the components and data objects you can add to the form or report you’re
designing.

To open the Component palette, do one of the following:
* Choose View | Component Palette.

* Right-click anywhere on the form or report window and choose Tool Windows | Component Palette from the
context menu.

Depending on which designer has focus, or whether you have installed the dBASE Plus samples (which include
a number of custom components that appear automatically on the Component palette), you’ll see a selection of
the following pages on the Component palette:

Tab name What’s on the page

Standard Common user interface controls, such as list components, buttons, text and image components, and so on.

Data Access Database access objects required to connect to a table, group of tables, or to ensure record-locking

Data Buttons Buttons and toolbars (both image-style and text-labeled) for navigating through data. Installed with the
dBASE Plus samples

Report The streamframe and group objects used to lay out reports

Using the Form and Report designers 83

Component palette

Tab name

Custom

ActiveX

What’s on the page

Custom components that you create yourself (or obtain from a third party) or that appear in applications in the

dBASE Plus samples

ActiveX applications from third-party developers.

Standard page

This table briefly describes the standard user-interface controls appearing on the Standard page of the
Component palette. For more details, select the component and click the Question Mark button on the toolbar.

Table 6.1 Standard controls

Component
Text

TextLabel

EntryField

PushButton

]

CheckBox

]

of

RadioButton

oy
=
[¢]

/]

Editor

ListBox

=

ComboBox

B E: |

Container

Browse

84 dBASE Plus User’s Guide

Useto...

Display text that cannot be edited by users.
The text can be any alphanumeric characters
allowed in a character expression

Display information on a form or report,
wherever features such as word-wrap and
HTML formatting are not required.

Let a user enter a single value, text or
numbers, into a data-entry field

Let a user perform a task with a single
mouse-click.

Let a user toggle between two choices of a
logical value. Or choose a number of
options that are not mutually exclusive.

Let a user select one choice among a group
of mutually-exclusive possible values.

Organize elements visually

Display the contents of a text file or memo
field.

Display values in a fixed-size, scrollable list
box, from which a user can select one or
more items.

Combine an entry field and a drop-down list
box. A user clicks the down-arrow button to
display the list.

Display an image.

Visually divide a form into sections, for
example, to place related RadioButtons
within a box.

Create moveable panels that can contain
other components on a form.

Display multiple records in row-and-column
format.

Example/Explanation

Use for a field label, heading, instruction, prompt, or any other
non-editable display text. Format with the Format menu or
Format toolbar.

TextLabel is a simple, light-duty object which consumes fewer
system resources than the Text component. The TextLabel
component does not support in-place editing on design
surfaces. The text property of the TextLabel component may
contain character string data only.

Example: Data entry area for entering a value for a particular
field of a table. Must be DataLinked to the table field.

A control that a user can click to execute code that you attach.
(Sometimes called a command button.)

Check boxes often are arranged in groups to present choices or
options a user can turn on or off. Any number of check boxes in
a group can be checked at a time

Example: A group of buttons labeled Credit, Cash, Check,
Visa, and MC to choose among for entering only one of those
values in a PAY_METHOD field of a table.

The line is a divider that may be extended vertically,
horizontally, or diagonally to visually divide a form into
sections. Users cannot edit or manipulate it.

Text exceeding the size of the box causes a scrollbar to appear.
You can choose to allow users to edit this text.

The values in a list can be file names, records, array elements,
table names, or field names.

A combo box accepts a value typed into the entry field or
selected from the drop-down list box.

Display area for a bitmap image stored in a binary field,
resource file, or graphic file.

A visual appearance element. By setting the component’s
shapeStyle property you can create rounded rectangles,
rectangles, ellipses, circles, rounded squares, and squares. You
can also set the line style, weight, and interior color.

Example: Moveable toolbars and palettes.

The Browse component is maintained for compatibility and is
suitable for viewing and editing tables open in work areas. For
forms that use Data Access use a Grid object instead.

Table 6.1 Standard controls

Component
Grid
B

Rectangle

-

Progress

]

PaintBox

NoteBook

TreeView

Slider

Vertical scroll
bar

(8]

Horizontal
scroll Bar

[E]

TabBox

[T

SpinBox

[E]

o
es]

L

ReportViewer

Useto...

Display live table data in row/column
format in a programmable component.

Organize elements visually into boxes or
create custom buttons.

Provide visual feedback to the user about
the progress of long operations or
background processes.

Create custom form controls

Make a multipage dialog box, with labeled
tabs to display sections of information or
groups of controls within the same window.
See TabBox for full-size tabbed forms.

Display and control a set of objects as an
indented outline based on their logical
hierarchical relationships. The control
includes buttons that allow the outline to be
expanded and collapsed.

Define the extent or range of values. By
moving the slider along the trackbar, the
user can change the current value for the
control

Allow users to vertically scroll a grouping
of controls, or a large control that has no
integrated scroll bars

Allow users to horizontally scroll a
grouping of controls, or a large control that
has no integrated scroll bars

Group related data items on overlapping
pages with labeled tabs

Provide up and down arrows to assist
changing a numeric value.

Create an object linking and embedding
(OLE) client area in a form, in which you
can embed, or link to, a document from
another application

Displays a report in a sizeable frame

Component palette

Example/Explanation

The Grid object is a multi-column grid control for displaying
the contents of a rowset. The dataLink property is set to the
rowset. Columns are automatically created for each field in the
rowset

A graphic element for boxing objects. You can set the size, line
weight, and fill of the box. It can respond to mouse clicks and
other events.

A rectangular bar that "fills" from left to right, like that shown
when you copy files in the Windows Explorer.

Use position to set a default position for the progress bar. At
run time, position tracks the exact location as values increment.

Use max and min to set the range of position.
By default, the progress meter advances by a value of one.

The PaintBox provides a window space in which you can call
API functions in Windows. Users never interact with it directly.
dBASE Plus does not paint the area.

You might use the Notebook control to create a tabbed dialog
box with different groups of controls on each tabbed page. The
Desktop Properties dialog box is a good example of this. Use
the DataSource Property Builder to name or add tabbed pages
to the window. Then drag the components you want to each
tabbed page.

Use a tree view component to display the relationship between
a set of containers or other hierarchical elements. You might
use the TreeView as a way to select items from nested lists,
much like the hierarchical view in the left pane of the Windows
Explorer.

You can set the trackbar orientation as vertical or horizontal,
define the length and height of the slide indicator and the slide
bar component, define the increments of the trackbar, and
whether to display tick marks for the control. Examples: A
volume control to play back sound files, or a color saturation
adjuster for an image viewer

Example: A custom dialog box containing an area filled with
many file icons.

Example: A custom dialog box containing an area filled with
many file icons.

Use a TabBox to display multiple pages the full size of the
form. A user selects a tab to display the items on the TabBox.
Similar to Notebook, except for the full form size.

You can type a number into the numeric entry field or can
increment or decrement the number by clicking the up and
down arrows.

Using an OLE control, a document from another application,
for example, a sound file from a sound recorder application, can
be opened from your dBASE Plus application

The report is executed when the form is opened.

Using the Form and Report designers 85

Component palette

Data Access page

Data objects provide live connections and session control to tables and databases. A form or report that accesses
a table must have at least one Query object on it, returning a rowset from the table. A StoredProc object that
returns a rowset (as a query would) can be used in place of the Query object.

Note

Once you have set up a group of data objects to return rowsets, you can save that group in a data module for

easy reuse in other forms and reports or other applications.

This table describes the data objects available from the Data Access page of the Component palette. For details
on the dBASE Plus Data Model and use of the Data objects, see Chapter 5, “Accessing and linking tables”.

Table 6.2 Data Access

Object Lets you...
Query Run an SQL query on any table,
=3 including local .DBF and .DB tables.
o Query objects enable components to
display data from tables on forms and
reports.
StoredProc Run a stored procedure on an SQL
= server. This capability is available only
when accessing tables on a server that
supports stored procedures.
Database Set up a persistent connection to a

database, especially a remote client/
server database requiring a user login
and password.

Session Session objects enable basic record-
o locking, so that multiple users do not
|:|..} modify the same record at the same

time. Session objects also help to
maintain security logins for local .DBF
or .DB tables.

Use a preset data access setup stored in
a data module.

DataModRef

Data Buttons page (forms)

Explanation

You set a Query object’s SQL property to the SQL statement that
selects a rowset. In addition to linking a table to a form or report, this
populates the Field palette.

You must use a Query object containing an appropriate SQL statement
to connect to a table or database (unless you are using a StoredProc
object to return a rowset from an SQL database).

Place the StoredProc control on a form or report and link the control to
a stored procedure by setting its procedureName property. If the stored
procedure returns a rowset, it may be used in place of a Query object.

Gives dBASE Plus forms and reports access to SQL databases (or
another group of tables identified by an alias). To add connections to
SQL databases or other multiple tables via a BDE alias, add a Database
object to your form.

You must have first created a BDE alias for the database by using the
BDE Administrator.

Use only if you are creating a multi-threaded database application.
When you open a form, a default session is created, linking the form to
the BDE and connected tables. If you need separate threads for each
user (to ensure record-locking), add a Session object to your form. A
unique session number is assigned to track each user’s connection to
the table.

Use to give a form or report access to a set of data access components
you’ve programmed and stored in a data module.

If you installed the dBASE Plus samples, the Component palette in the Form designer displays a page of buttons
that let users navigate through records, locate and filter data, edit data, and so on.

Both standard and image-style buttons with identical functionality are available. The names of standard button
components begin with button, and the names of image-style components begin with bitmap. In addition, you

can choose a VCR-like control panel including a full set of navigational buttons, a report page-number object,
and a rowstate object. This table describes the components available for working with data.

Table 6.3 Shading Properties in the Table Designer

Component Whatitis What is does

ButtonAppend An append-record control. Lets users put the table that is linked to the form into Append mode to

BitmapAppend enter a new record. Clicking the Append button again adds the new
record to the table and keeps the table in Append mode.

ButtonDelete A delete-record control. Lets users delete the current row from the table that is linked to the form.

BitmapDelete

ButtonSave A save-record control. Lets users save the current row.

BitmapSave

Buttonabandon An abandon-changes control. Lets users abandon any changes made to the current row and return to the
Bitmapabandon last saved contents of the row.

86 dBASE Plus User’s Guide

Component palette

Table 6.3 Shading Properties in the Table Designer

Component

ButtonLocate
BitmapLocate

ButtonFilter
BitmapFilter

ButtonEdit
BitmapEdit
ButtonFirst
BitmapFirst
ButtonPrevious
BitmapPrevious

ButtonNext
BitmapNext

ButtonLast
BitmapLast
BarDataVCR
BarDataEdit

Rowstate

What it is

A search-records control.

A filter-records control.

An edit record control.

A first-record control.

A previous-record control.

A next-record control.

A last-record control.

A set of navigational controls.
A set of edit controls.

Displays the state property of a
given rowset, for example,
whether it is Read-Only.

Report page

What is does

Lets users go to the first row that matches the criteria. When the user
clicks the Locate control, the form goes blank. The user then types in the
criteria for the search and clicks the Locate control again.

Lets users display records that meet a specific criteria. When the user
clicks the Filter control, the form goes blank. The user then types in the
criteria for the filter and clicks the Filter control again.

Lets users edit the current row. (Required only when autoEdit is false.)
Displays the first record in the table that is linked to the form.
Displays the previous record in the table that is linked to the form.
Displays the next record in the table that is linked to the form.
Displays the last record in the table that is linked to the form.

Contains the bitmap versions of the First, Previous, Next and Last

buttons listed earlier in the table.

Contains the bitmap versions of the Append, Delete, Save, Abandon,
Locate, and Filter buttons listed earlier in the table.

The other controls update this control.

This page of the Component palette contains the data formatting components required for reports.

Table 6.4 Components specific to reports

Component

StreamFrame

Group

=
gl

What it is What it does

The StreamFrame object receives and displays rowset data Dropping a component, such as a check box,
streamed from linked tables (specified in its streamSource into the streamFrame area of a report will
property). One or more streamFrame objects may be cause that object to be printed as part of the
contained within the pageTemplate object. report’s row data.

The Group object is descended from the streamFrame object ~ Groups the display of rowsets by the value of
that contains data from the query’s rowset. By dropping a a selected field. For example, in a "Sales by
Group object on a report’s streamframe, a Headerband and District" report, you might have a Group

Footerband are created, with editable placeholder text for the object for each District to display sales
group’s heading. A streamFrame may contain several Group ~ rowsets for that district.

objects.

Custom page

The Custom page of the Component palette contains custom-built components. If you didn’t install the dBASE
Plus samples, you won’t see the Custom page until you create your first custom component and assign it to the
palette. If you did install the samples, you’ll see that the Custom page already contains custom components that
are used in the sample applications.

You can build new components from scratch, and you can alter existing components and save them as custom
components. See “Creating custom components” on page 67 for instructions.

Using ActiveX (*.OCX) controls

To use an ActiveX control in your forms and reports,

1 In the Form or Report designer, choose File | Set Up ActiveX Components.

Using the Form and Report designers 87

The Field palette

The dialog box that appears shows all available controls registered on your system.
2 Select the desired controls.

Selected controls appear on the ActiveX page of the Component palette, ready for use. After placing a
component on a form, the Inspector shows the properties of the ActiveX control. To use the control’s own
property dialog box, right-click the control and choose ActiveX Properties from the context menu.

The Field palette

The Field palette displays fields for each Query object that’s linked to an existing table, as long as the Query
object’s active property is set to true. Fields available on the Field palette are linked to a table through the
dataLink property.

To open the Field palette, either
* Choose View | Tool Windows | Field Palette (it’s a toggle).

» Right-click anywhere in the designer and choose Tool Windows | Field Palette from the context menu.
Figure 6.3 Field Palette

Customersl

£ Pointer

A Cistomeria [f pou haven't checked Rewvert Curzor To Painter in the Customize
A Catagory T ool "Windowsz dialog bow, click the Pointer button to return the
P curzor to a standard pointer after you have uzed it to place a field.
A Firsthlame Figlds shown are from a table named "Customer. Each field iz Mlive"
A Arddress and will show data in the designer. &l data will be available when
Aciy wou run the form or report,

A stae

Azp

A FirstPurchasaDate

A TotalPurchasesyTD

A Current@alDue

Dragging a field from the Field palette onto a form or report saves you the work of having to set its dataLink or
text property manually for each component you want to link to a field in a table, although you can do it
manually, if you want to.

If no active Query object exists on the form or report, the Field palette is empty, showing only the Pointer
button. When you begin to design a data-aware form or a report, first add a Query object and set its sq/ property
to the appropriate SQL statement and its active property to true. If you drag a table from the Navigator to the
design surface, this automatically creates a Query object that selects all the records in that table and links the
table to the form or report. See Chapter 5, “Accessing and linking tables”, for more details.

Once an active Query object exists on the form or report with its active property set to true, its fields appear on
the Field palette as linked components. The type of the component depends on the data type of the field. For
example, a Boolean field appears on the Field palette as a CheckBox control. To change the control type of a
field, right-click the Field palette, and choose Associate Component Types from its context menu, or choose
File | Associate Component Types.

If more than one Query object exists on the form or report, each table’s fields are displayed on a separate page
of the Field palette.

The Inspector

You can change a component’s properties in the Inspector. When you select a component in a form or report,
the Inspector displays the component’s properties. If the Inspector is not open, do one of the following:

¢ Press F11.

88 dBASE Plus User’s Guide

The Inspector

Choose View | Inspector (this command is a toggle).

Right-click the selected component and choose Tool Windows | Inspector from the context menu.

When you have selected multiple components, you can change their common properties simultaneously. When
you change a property value or link code to an event for a multiple selection, the change affects all components
in the selection.

Note You cannot change methods for multiple selections.

Note

Figure 6.4 Using the Inspector

ustomers1.wfm - Inspector

-

3 5=
[1

CollapzeiliCategonies ExpanddliCategaories Categoniew

|f|:|rm

Propetties | Events | Methads |

- scaleFontt false ~
- zcaleFonth Arial
- gcaleFontt 10.00
+ Help
— |dentification
- bazellasz
- clazzh ame
= hwind
= hvwndClier
= hvwrdPare: 0
— Menu

+ menuFil

« popuphtder
= zpzhdenu
+ Mizcellaneou
+ Position
+ Uzer-defined
+ Yizual
+ "Windom w

trie

~ Click Properties, Events or Methodz

Froperties are organized into categaries in the default
[nzpectar wiew. v'ou can expand or collapze any categony by
clicking the plus or minuzs =ign. To expand or collapze all
cateqaries at once, right click anpwhere on the Ihspectar
and chooze your preference from the popup menu. To zee
properties izted in straight alphabetical order, uncheck
Categary Wiew in the popup menL.

Wwhen clicked, a property may dizplay a tool. [n thiz caze, the wrench toal
letz your change the menu file linked to the contral,

If highlighted in pellow, the value iz not pet committed or not yet evaluated.
Press Enter to cormmit the value.

The Inspector has three tabbed pages that show the properties, events, and methods of the selected object. The
name of the currently selected object appears in the drop-down list box at the top of the Inspector. Click the
Down arrow of this box to select a different object, or select the object on the form or report, itself.

Properties, methods and events set by you, or that have no default value, are shown in bold. (Bold properties are
ones that will be streamed out.)

Properties page of the Inspector

The Inspector’s Properties page displays the properties of the current object. The right column shows the current value for
each property.

You can set a property value in any of the following ways:

Type the value into the column to the right of the property name.

Yellow highlighting of an entry means that it’s not yet committed or not yet evaluated. Press Enter to commit

a change.

Press Ctrl+Enter in the value column to rotate through a list of properties or to toggle logical values, or
double-click the value column to do the same.

Select a value from a history list or other drop-down list, when available.

Using the Form and Report designers 89

The Inspector

» Click the wrench tool button that appears to the right of the property value. Tools are not available for every
property.

The tool button may produce

* A property builder in which you can build or select a value. For example, you can display the Color
property builder to set the color for an object.

* The String Builder dialog box, which makes it more convenient to type a long string.

Events page of the Inspector

The Inspector’s Events page displays the events to which the current object can respond. When you select an
event, its value area becomes a text box with a tool button.

Figure 6.5 Events page of The Inspector

Customers1.wifm - Inspectnr@

- | | £E| [| o) Toowrite an event handler, do ane of the fallawing:
|f':'"'"I ﬂ Type a code block in the value column.
Properties Events l MEthDdSl Click the wrench toaol to dizplay the Source Editar,

+ canCloge CUSTOMERST
« cani avigate: Hull
» ondppend | MHull
» orChange | Mull The method you enter will be linked to thiz event

[+ orCloze Hull L&]%7]
« onDesignOpm Em]"
« onDiragE nter Codeblock
= onDragleaw: Hull
= onDragdywer | Hull

Click the Type tool and zelect CodeBlock, and click
the wrench tool to open the Code Block, Builder.

= onDrop Hull
= onlaotFocus | Hull
» onHelp Hull w

To specify what you want to happen when an event occurs, you can do one of the following:

1 Type a code block into the text box for the event. Or, if you want to use the Code Block Builder,
 Click the Type drop-down list beside the text box, and select CodeBlock.
* Click the wrench tool beside the text box.

This opens the Code Block Builder. Type parameters, if any, in the Parameters text box, and type the code
block in the Commands Or Expression box. It’s okay to put only one statement on each line, and end it
with a semicolon, where appropriate. When you click OK, the code block becomes a one-line code block
in the event’s value text box and in your code. See "The Code Block Builder" on page 111 for more
information.

2 Write a method to link to the event. Click the tool button to display the Source editor with the cursor inside
the skeleton of a new method, ready for you to type.

For information about code block syntax and writing a method, see Help.

You can also link and unlink events by using the Method menu from within the Source editor. See "The Method
menu", on page 91.

90 dBASE Plus User’s Guide

Manipulating components

Methods page of the Inspector

The Inspector’s Methods page displays the current object’s built-in methods, that is, the methods pre-defined for
the component. You can call these methods with methods you create in the Source editor. Methods you create in
the Source editor can be inspected on the Methods page.

To delete a method in code, you must be in the Source editor. Then, with the cursor in the method you want to
delete, choose Method | Delete Method.

Note A function inside a class is a "method." The keyword for method is "function."

Figure 6.6 Methods page of The Inspector

Customersl.wfm - Inspectur@

e~ 3 5=

|f|:|rm ﬂ

F'ru:uperties] Events Methods l

- abandonRec FORM:ABANDO A

= begindppenc: FORM::BEGIMNAF

- cloze FORM::CLOSE

- isRicordCha FORM:1SRECOF Cick the tool button |2 1o open the
|+ move FORi:: MOV | Source Editar. If it's & new Method, dBASE

- open FORM::OPEM Plus creates the skeleton code for you

= pageCount | FORM::PAGECO

= print FORM::FRINT »

The Method menu

You can use commands on the Method menu when working with code. The last three commands open dialog
boxes that can simplify writing methods.

Table 6.5 Method menu commands

Command What it does
New Method Creates dBASE Plus. skeleton code for a new method in the Source editor:
// {Linked Method} Form.OnOpen
function Form_OnOpen
You can do the same thing by clicking the tool beside an event in the Inspector.
Delete Method Deletes the method that has the cursor in it and all references to the method from the code.

Verify Method Attempts to compile the method, to make sure there are no syntax errors. This also happens when you switch
focus from the Source editor to the designer.

Edit Event Displays a dialog box that allows you to select objects in the left pane and, in the right pane, select one of the
available events for editing. The selected event is then displayed in the Source editor for editing.

Link Event Displays a dialog box similar to the Edit Events dialog box. You choose a control from the left pane and one of
its events in the right pane. When you click OK, the new event is linked to that event.

Unlink Displays a dialog box that allows you to view multiple events linked to a method and to remove any or all of
them. When you click OK, the selected link is unlinked from that event.

Manipulating components

This section describes how to work with components: placing them, resizing, aligning, and so on.

Using the Form and Report designers 91

Manipulating components

Note

Note

Note

Placing components on a form or report

You can place a component on a form or report by selecting its icon from the Component palette or from the
Field palette.

To see fields on the Field palette, you must have first placed an active Query object on the form. See page 88.
Fields represented on the Field palette are already linked to the fields of the table(s) specified in the Query
object.

To place a component,
1 Click the component on the palette to select it.

2 Drag on the design surface until the component is the size you want, or click on the design surface without
dragging to add a component in its default size.

If you’re placing a field, simply click the form window; dragging will not size the field while you’re adding it,
although you can size it by dragging it after you’ve dropped it on the form or report.

Alternatively, you can add a component in these ways:
* Double-click the component in the palette; it appears at a default position on the design surface.
* Drag the component from the palette to the design surface.

By default, the mouse reverts to a pointer after you place a component on the design surface. If you want to
place multiple instances of a component without having to return to the Component palette to select the
component anew each time, uncheck the Revert Cursor To Pointer option in the Customize Tool Windows
dialog box (View | Tool Windows | Customize Tool Windows). If you’ve unchecked this option, then before
you select another component you have to first click the Pointer icon on the Component palette.

Special case: container components

Besides the form itself, dBASE Plus provides other components that themselves contain components. Examples
are the Container and Notebook components. You can use these components to group other components so that
they behave as a unit at design time. For instance, you might group pushbuttons and check boxes that provide
related options to the user.

When you place components within container components, you create a new parent-child relationship between
the container and the components it contains. Design-time operations you perform on these "container" (or
parent) components, such as moving, copying, or deleting, also affect any components grouped within them.

The form remains the owner for all components, regardless of whether they are parented within another
component.

You generally want to add container components to the form before you add the components you intend to
group, because it's easiest to add components that you want grouped directly from the Component palette into
the container component. However, if a component is already in the form, you can add it to a container
component by cutting and then pasting it. If you drag it in, it does not become a child to the container, and will
not act as part of the container unit.

Selecting components

To work with a component once you’ve placed it on the form, first select it. Once you select a component, you
can resize it, move it, or delete it. You can also change its properties.

To select a component, do one of the following:

* Click the component.

e Press Tab or Shift+Tab until it’s selected.

» Select it from the drop-down list at the top of the Inspector.

When a component has focus, its handles—small, black squares around the periphery—are visible.

92 dBASE Plus User’s Guide

Manipulating components

Note Ifitis a component that is part of a custom form or report class, the handles are white to remind you that you
have selected such a component, because you may not want to change it.

Moving components

To move a component, select it, and then do one of the following:

* Drag the component to the position you want. As soon as you move the mouse, the pointer becomes a hand.
This indicates you’re moving the component.

* Press any of the arrow keys to move the component in the direction of the arrow. If Snap To Grid is turned
on, the object moves one gridline at a time.

» Change the object’s position properties in the Inspector.

To move a multiple selection of components, put the mouse cursor within the borders of one of the components,
and then either drag or press the appropriate arrow key to move your selection in the direction you want.

If Snap To Grid is checked in the Properties dialog box of the designer you’re working in, then components
align to the grid.

Cutting, copying, pasting, deleting components

You can access the cut, copy, and paste commands from the Edit menu, the context (right-click) menu, or the
toolbar buttons. Select the component or components, and then choose the appropriate command. To delete a
selected component or multiple selection of components, choose Edit | Delete (or press Del).

Undoing and redoing in the designers

You can undo operations on a form or report. Once you undo an operation, the previous action is available to
Undo.

You can undo and redo values that you set in the Inspector. Once you undo a value, the Undo command on the
Edit menu becomes Redo.

To undo an operation, choose Edit | Undo (or press Ctrl+Z). To redo an operation, Choose Edit | Redo (or press
Ctrl+2Z).

Aligning components

You can align components by using the Layout | Align menu commands or the corresponding toolbar buttons
(to display the Alignment toolbar, choose View | Tool Windows, and check Alignment Toolbar.) These
commands adjust the position of objects in relation to each other or in relation to the form or report. To find out
what each option does, highlight it and read the explanation in the status barer press F1. See Figure 6.7 for a
summary.

Resizing components

To resize a component, select it and do one of the following:

* Place the mouse pointer on one of its handles. When the pointer turns into a double-headed arrow, drag the
handle to size the component the way you want.

* Press Shift+any arrow key to resize it in the direction of the arrow.

You cannot resize a multiple selection of components with the mouse; however, you can press Shift+an arrow
key to resize a multiple selection in the direction of the arrow.

To change the sizes of multiple objects to conform to one size, choose an option from the Layout | Size menu or
the corresponding button in the Alignment toolbar. (To display the Alignment toolbar, choose View | Tool
Windows, and check Alignment Toolbar.) To find out what each option does, highlight it and read the
explanation in the status bar

Using the Form and Report designers 93

Manipulating components

Figure6.7L
Alignment toolbar buttons comezponding to these menu selections are shown below.,

FE dBASE PLUS
_File Edit View NETNE Format Method Properties ‘Window Help

EE ot

Size ¥ Align Right

Spacing *align Top

Bring to Front Align Bottom Moves selected

Align to Grid objects to the nearest

Send to Back arid peintis]

Bring Closer Center Horizontally

Send Farther Center Vertically

Set Component Order... Center Horizontally in Window

Center Vertically in Vindow
Flaces the zelected contral after the nest contral in the tabbing order. i
Places the zelected cantral befare the previous contral in the tabbing arder. e
b akes the selected contral the final contral in the tabbing arder. i
Makes the zelected contral the first contral in the tabbing order. T
Alignment and Resizing Toolbar
= S TLT=TF 0
I T R SV A B

Align Lefta"Fligl|ht: toves zelected ohjects Grows the selected DI:_uiEn:ts to th!a height of
Horizontally to the pozition of the leftmost, the tallest zelected object, or shiinks them to
or rightmost, zelected object the height of the smallest zelected object
Align TopsBottomn; Moves selected L Grows selected cul:ui_ects [{u] thg zize of the
objectsz Yertically to the pozition of the largest selected object, or shrnks them to

highest, or lowest, selected object Center HorizontallyAVettically: Centers the gize of the smallest selected object
zelected objects within their rectangles

Figure 6.8 Layout | Size commands

E dBASE PLUS

File Edit view NEHS Format Method Properties Window Help

.ﬁ.llgn ¥ ' ‘1 T P = E‘ bt - | E‘ ?
Grow to Largest Width For a description of these
: E itemnz, 2ee Alignment and
Spacing *| Shrink to Smallest Width [Resizing Toolbar figure
G to L t Height
Bring to Front SLDI:k = ;rge: A : i above
Send to Back = [- Q’.dr‘na SR
Bring Closer == :
Send Farther Realignz all edges of the selected component to the nearest grid
Set Component Order.. rark. Fesizes the companent ag needed. [Mat available in the

Repart Designer]

94 dBASE Plus User’s Guide

Setting a scheme (Form designer)

Spacing components

To change the spacing of components in the Form designer, select the components, and choose an option from
the Layout | Spacing menu.

Note The Spacing menu is not available in the Report designer.

To find out what each command does, highlight it and read the explanation in the status bar.

Figure 6.9 Layout | Spacing commands

¥ dBASE PLUS

File Edit View QB eTl Format Method Properties Window Help Moves the selected
_ components harizontally bo

4 P g w T ova D 7 B g - allowfor an equal spacing

¥ between them. This commaon
gpacing can then be
increazed or decreazed

L Make Equal Horizontal Spacing
Increase Horizontal Spacing

Bring to Front

Decrease Horizontal Spacing _ | | Moves the selected
Send to Back components vertically to
Bring Closer Make Equal Yertical Spacing allovy for an equal spacing
Send Farther Incresse Vertical Spacing "between them. This "
Cammon spacing can them
Set Component Order... Decrease Vertical Spacing | | increasl;d Dr?:lecreased

Setting a scheme (Form designer)

The Format | Set Scheme command displays the Set Scheme dialog box, which lets you set colors and
background images and save them as a reusable scheme (you can do this in the Form wizard, as well—it uses
the same dialog box). This is useful for maintaining a consistent look over several pages of a form or across
related applications. You can either

e Choose a predefined scheme

» Set your own scheme

Figure 6.10Set Scheme dialog box

Set Scheme @

P Select from the list of schemss or create your own,

Specify fants snd colors, then save your scheme.)
Sample ech: § e Click here to zelect a

Tlt | a O predefined color and font

scheme
Scherme Resets ta the list of
Abe |123 —— zchemes that ariginall
Def ok | | |®8ASEPLUSDetadt]| —I Sgial chipmed with dBASE Plus
A56

—L 1 Sawves pour curent
scheme under a name

Tile | Non-Editing Companents | Editing Components | PushButions | Shapes | 4| wouprovide

Save fz..

Font: Foregiourd colorn Backoround cojor;
J & || Highight | SameasFom
Concel | Heb | gy |
[
Click here to specify that the curent scheme should be uzed Click here ta apply the curent scheme to the
for all nevw Forms current Farm only

Using the Form and Report designers 95

Editing a Text object

Editing a Text object

You can change the words, font properties, and color of an entire Text object by selecting the object and setting

the desired properties in the Inspector. Use the text property to specify the words. (Click the wrench tool beside
the text property to open a string-builder dialog box.)

To edit directly on the design surface, or to format parts of a Text object individually, or to format in ways not
available in the Inspector (for example, to specify a list format), select the Text object, and then select the text to
get an insertion point. After you have an insertion point, you can drag over words to select them or double-click
to select one word. Then you can edit the words in-place, or format, as desired, using either of the following:

* Format toolbar (View | Tool Windows | Format toolbar)
* Format menu
Figure 6.11Format toolbar

|F'aragraph ¥ | | ——— Choosge a heading zize in HTML format and a twpeface

|.¢.rial » || —— Chooze a font zsize in HTML format and a colar. When the size you chooze iz
different fram that zpecified far the form, this setting iz relative to the point zize

|+EI ﬂ | ﬂ for the form ar individual Tesxt object.

B I H 0 Chooze bold, italic and underline

iz iz | £ £ Choose a numbered or bulleted list

== — Cecrease, or increse, the indentation

] T T Align Left, Center, ar Right

Note Once you have used the Format toolbar or menu to change parts of a Text object, you cannot use the Inspector to
override what you have done. Use the Format toolbar or menu, instead. However, the Inspector wil/l make
changes you specify to anything you haven’t already changed by using the Format toolbar or Format menu.

Saving, running, and printing forms and reports

To save a form or report design, either

+ Click the Save toolbar button.

* Choose File | Save or File | Save As.

Enter a file name and specify a directory location. A form is given the extension .WFM; a report is given the
extension .REP. A new file is placed into the current project, if a project is open.

Opening a form or report in Run mode

To open a form or report in Run mode, do one of the following:

* Choose File | Open. If you’re opening a form, in the Open File dialog box, choose the form you want to run,
select the Run Form button at the bottom of the dialog box, and choose OK. If you’re opening a report,
running it is your only choice from this dialog box.

 In the Navigator, double-click the form or report you want to run. Or select it and press F2.

* Type DO Formname.wfm in the Command window, where Formname is the name of your form, or DO
ReportName.rep, where ReportName is the name of your report.

Printing a form or report

Print a form or report in Design or Run mode by doing one of the following:

96 dBASE Plus User’s Guide

Saving, running, and printing forms and reports

¢ Click the Print toolbar button.
* Choose File | Print.

Using the Form and Report designers 97

Chapter

Creating menus and toolbars

Most Windows applications offer menus of some kind—standard pulldown menus, popup menus, or both. Most
also feature static or detachable toolbars.

This section describes how to create these objects and integrate them into your dBASE Plus applications.

Like all other objects in an object-oriented environment, menus and toolbars can be designed to be completely
reusable by any number of forms. For that reason, we’ll start with the task you’ll face most often—attaching

objects to forms.

Attaching pulldown menus to forms

To attach a pulldown menu to a form, choose your form’s menuFile property, click the tool button, then locate
the .MNU file you want on the form.

If you haven’t already created a .MNU file or don’t have a sample installed, you can create one using the Menu
designer (described later in this section).

Note that at design time, menus don’t appear on your forms. To see an attached menu in action, you have to run
the form. If the menu you’re attaching is also open in the Menu designer, you must close that as well before
running the form.

Also note that if the MDI property of your form is set to true (the default), your pulldown menu appears on the
parent window or application frame, not on the form itself.

Attaching popup menus to forms

Popup menus normally appear when a user right-clicks a form or control. Like dropdown menus, popup menu
files (extension .POP) can be created using a special designer, also described later in this chapter.

However, popups are attached to forms in a different manner than pulldown menus.

To attach a popup menu, you must assign the popup object to your form’s popupMenu property. Unlike
pulldown menus, however, you can’t make the connection with the popup menu file name alone. To attach a
popup, you need to add some code, either through a codeblock or within a form or control event handler.

The simplest and most common means of attaching a popup to a form is through a form’s onOpen event. If, for
example, you create a popup menu file called MYPOPUP.POP, you can make the menu available to any form
by typing a codeblock like this into the form Inspector’s onOpen event:
{;do mypopup.pop with this, "popup"; this.popupmenu = this.popup}
Alternatively, you can click the onOpen event’s tool button and apply the same code as a linked method:
// {Linked Method} Form.onOpen
function Form_onOpen

do mypopup.pop with this, "popup"
this.popupmenu = this.popup

98 dBASE Plus User’s Guide

Creating toolbars and attaching them to forms

Creating toolbars and attaching them to forms

Note that this topic covers both object creation and attachment. That’s because, like popup menus, you need to
add some code to attach toolbars to your forms. However, unlike pulldown or popup menus—which you can
create using special visual designers—you also have to define your toolbars programmatically, either in a
reusable program or within your form’s code.

Like any other object, toolbar and toolbutton classes have a number of properties that allow you to modify the
behavior and appearance of a toolbar. These properties, some of which are illustrated in the following code
examples, are described later in this series of Help topics and are covered in detail in the printed and online
Language Reference.

Creating a reusable toolbar

Here’s an example of an object definition program, MYTOOLBR.PRG, which defines a basic two-button
toolbar for use in any form or application.

parameter FormObyj
if pcount() <1
msgbox("DO mytoolbr.prg WITH <form reference>")
return
endif
t = findinstance("myTBar")
if empty(t)
? "Creating toolbar"
t=new myTBar()
endif
try
t.attach(FormObyj)
catch (Exception e)
// Ignore already attached error
? "Already attached"
endtry

class myTBar of toolbar
this.imagewidth = 16
this.flat = true
this.floating = false
this.b1 = new toolbutton(this)
this.bl.bitmap = 'filename ..\artwork\button\dooropen.bmp'
this.b1l.onClick = {;msgbox("door is open")}
this.b1.speedtip = 'button1'
this.b2 = new toolbutton(this)
this.b2.bitmap = 'filename ..\artwork\button\doorshut.bmp'
this.b2.onClick = {;msgbox("door is shut")}
this.b2.speedtip = 'button2'

endclass

Note The toolBar and toolButton properties used above - as well as other properties for the ToolBar and ToolButton
classes - are covered in detail in the dBL Language Reference and Help (search for "class ToolBar" or "class
ToolButton".

Attaching a reusable toolbar

As with popup menus, you can attach a reusable toolbar definition file to your forms with a simple DO
command. However, since forms don’t have a toolbar property, the connection is defined in the toolbar’s own
attach() property. Thus, if you choose to connect the program described above through a form’s onOpen event,
the integration codeblock is simply this:

{;do mytoolbr.prg with this}
Or, if you prefer the linked method approach, click the onOpen event’s tool button and add the integration code:

// {Linked Method} Form.onOpen
function Form_onOpen

Creating menus and toolbars 99

Creating toolbars and attaching them to forms

do mytoolbr.prg with this

Of course, you also need to provide a way to restore the toolbar if the user has closed it. You can do that by also
adding the integration code (or codeblock) to the onClick event of another control, such as a menu item or
button. Should the toolbar already be running when it is summoned, findInstance(_) will let you know and let
you block the creation of a new instance.

As is the case with pulldown menus, keep in mind that if your form’s MDI property is set to True, your toolbar
is owned by (and may only be docked to) the form’s parent window or application frame.

Creating a custom toolbar

Defining a custom toolbar within a form uses much of the same basic code described above for defining and
creating a reusable toolbar. The primary difference is that the toolbar is available only to the form in which it is
defined.

Here’s how the same toolbar described above could be adapted for use within a single form:

** END HEADER -- do not remove this line
*

* Generated on 08/20/97
*
parameter bModal
local f
f = new tooltestForm()
if (bModal)
f.mdi = .F. // ensure not MDI
f.ReadModal()
else
f.0Open()
endif

CLASS tooltestForm OF FORM
with (this)
onOpen = class::show_toolbar
height = 8.6471
left = 3.625
top = 1.7059
width =23.75
text=""
endwith

this PUSHBUTTON = new PUSHBUTTON I (this)
with (this. PUSHBUTTON1)
onClick = class::show_toolbar
height=1.1176
left=4
top=2
width = 15.875
text = "PUSHBUTTON1"
metric =0
fontBold = false
group = true
endwith

// {Linked Method} Form.onOpen
function Form_onOpen

// {Linked Method} Form.pushbuttonl.onClick
function PUSHBUTTON1_onClick

function show_toolbar

t = findinstance("myTBar")

if empty(t)
? "Creating toolbar"
t=new myTBar()

endif

try
t.attach(form)

100 dBASE Plus User’s Guide

Creating menus with the designers

catch (Exception e)
// Ignore already attached error
? "Already attached"

endtry

ENDCLASS

class myTBar of toolbar
this.imagewidth = 16
this.flat = true
this.floating = false
this.b1 = new toolbutton(this)
this.b1.bitmap = 'filename ..\artwork\button\dooropen.bmp'
this.b1.onClick = {;msgbox("door is open")}
this.b1.speedtip = 'button1'
this.b2 = new toolbutton(this)
this.b2.bitmap = 'filename ..\artwork\button\doorshut.bmp'
this.b2.onClick = {;msgbox("door is shut")}
this.b2.speedtip = 'button2'

endclass

Note that the only change to the contents of the earlier program is the removal of the FormObj parameter
definition (and related change to the referenced form object, the form, in the new method called show_bar) and
the removal of the unneeded pcount() parameter check at the top of the file.

Otherwise, the code was simply partitioned and placed in the appropriate areas of the form source, and the new
method, show_bar, was created to hold the instance-checking and toolbar creation/attachment code.

Creating menus with the designers

Two designers are available for creating menus—one for pulldown menus and one for popup menus. To open
them, do one of the following:

* From the main menu, choose File | New | Menu (Alt+FNM) for the pulldown Menu designer, File | New |
Popup (Alt+FNP) for the Popup Menu designer.

* From the Navigator, select the Forms tab, then double-click the Untitled menu icon for the pulldown Menu
designer or the Untitled popup icon for the Popup Menu designer.

* From the Command window: enter CREATE MENU or CREATE POPUP.

Note that the only difference in appearance between the two designers is that the pulldown Menu designer
contains a horizontal rule. This rule is the top-level menu border.

The designer menu

When you use either designer, a number of shortcuts are available through the main dBASE Plus menu. These
options are available by choosing Menu when either designer has focus.

You can use these shortcuts to insert an item before the current item (Insert Menu Item, Alt+MN or Ctrl+N),
start a new submenu (Insert Menu, Alt+MM or Ctrl +M) or insert a separator (Alt+MT or Ctrl+T) before the
current item in a pulldown or submenu. You can also delete the current item with Alt+MD or Ctrl+U (also see,
"Adding, editing and navigating", on page 102.

If you’re designing a pulldown menu, two preset menus are available for insertion anywhere on your menu bar
with the Insert "Edit" Menu (Alt+ME) and Insert "Window" Menu (Alt+MW) choices.

The last item on the Menu list—Toggle Type (Alt+MO)—is available for use on those occasions when you
change your mind about the type of menu you want. It automatically switches the currently selected designer
and converts its contents from pulldown style to popup style—or vice versa—any time.

Building blocks

Building basic menus through the designers is a simple two-step process of adding items, then adding code to
make the items do what you want them to do.

Creating menus and toolbars 101

Creating menus with the designers

Like any other object, each menu item has its own set of properties available through the Inspector (F11 to
view). The "action" code is applied through an item’s onClick event.

Not all items need to perform an action, however. Some, like top-level items, normally only serve as entry
points to additional menu choices. Lower-level items, and any item in a popup menu, can also serve as entry
points to additional menus. These types of menus are called submenus (also known as "cascading" or "flyout"
menus). File | New on the main dBASE Plus menu is an example of this type of menu. And any submenu item
can be specified as an entry point to another submenu.

Another type of "non-action" item is the separator bar, a horizontal line that lets you group items within menus.
You specify a separator anywhere except in a top-level item. To make a separator, set an item’s Separator
property to True.

To provide further visual cues and functionality, you can add graphics, mnemonics, check marks, shortcut keys,
and conditionally enable or disable any item in any menu.

Adding, editing and navigating

To create a new menu, open a new Menu designer or Popup Menu designer window, type the name of your first
item, and press Enter.

The cursor automatically drops a level and opens an editing block for the next item. Use the same sequence for
entering additional items.

To edit items above or below the current item, use your Up and Down arrow keys. Tab and Shift+Tab lets you
navigate left and right through your structure.

To add a submenu, select the item that will be the entry point to your submenu and press Tab. A new editing
block appears to the right of the current item.

To add a new top-level item in a pulldown menu, select the rightmost existing top-level item and press Tab.

Note that other pulldown and submenus are hidden while you create new ones. You can return to view or edit
the others any time by selecting the root item for each.

To insert a top-level or submenu root item in front of an existing one, choose an item, then choose Menu | Insert
Menu (Ctrl+M or Alt+MM) from the main dBASE Plus menu.

To delete an item, select the item and choose Menu | Delete Current (Ctrl+U or Alt+MU) from the main dBASE
Plus menu. Be aware, however, that deleting a top-level or submenu root item also removes all items and
submenus below the item you are deleting.

You can also perform structural changes by dragging items and entire root/submenu systems from one location
to another within your menus. To move items, just click, hold, drag, and release onto another item. Note that if
you drag a held item onto another top-level or submenu entry point, the pulldown or submenu open up to allow
you to relocate your dragged item.

To see your menus in action, you have to attach your menus to a form (as instructed earlier in this chapter), and
save and close the designer that contains the menu you want to test. You can reopen saved menus for editing or
redesign from the Forms page in the Navigator. As noted earlier, pulldown menus carry the extension .MNU,
and popups are saved as .POP files.

Features demonstration

The following exercise demonstrates a number of menu creation principles and features, including preset
menus.

1 Open a new pulldown Menu designer window.

2 Type &File (including the ampersand) at the cursor, then press Enter. Type &Form into the new item entry
box, then press Tab. A new item entry box appears to the right of the current entry. Type &Close into this
box.

3 Ifitisn’t already open, press F11 to open the Inspector. Choose the Events tab, then type form.close() into
your Close item’s onClick event.

4 Back at the Menu designer, select the top-level "&File" item.

102 dBASE Plus User’s Guide

Examining menu file code
5 Press Tab. A new top-level item entry box appears. Press AIt+NE to insert a complete menu of basic editing
commands. Now press the Tab key again for one more top-level item entry box.

6 Press Alt+NW. This time, a new top-level "&Window" item is created. This item has no subentries yet, but it
will later.

7 Save the menu as MTEST.MNU, then close the Menu designer.
8 Open a new form in the Form designer. Add an entryfield control to the form.

9 Click on the form background. If it’s not already in view, press F11 to view the Inspector. Click the tool
button on the form’s menuFile property (Menu category), choose your MTEST.MNU file, and click OK.
Keep other form properties at their default settings.

10 Press F2 to save (MTEST.FRM, for example) and run the form.

Because this is an MDI form (the default setting), the menu appears on the application frame, replacing the
dBASE Plus menu while the form has focus.

Click the Windows menu item; you should see a selectable list of other active dBASE Plus windows. Now try
the Edit menu commands. You should be able to use all of these standard Windows text editing commands on
the text in your form’s entryfield control.

The reason these two menus provide full functionality without any coding on your part is that the items use
built-in menubar objects. You’ll see how these objects work in the next topic when we examine the code behind
the menu.

Note Since the properties used to create these preset menus belong only to the menubar class and are not available to
the popup class, you can’t use the properties in a popup menu.

Finally, try your File | Form | Close item to test your first piece of menu action code by closing the form.

Now let’s go to the Source editor to examine the code structure of this menu.

Examining menu file code

The model for building menus is based on the hierarchy and containership of menu objects, not the kind of
menu. You don’t explicitly define menu bars, pulldown menus, or submenus. Instead, you build a hierarchy of
menu objects, where each menu object contains another menu object or executes an action.

Just as a form contains controls, menus objects contain other menu objects. dBASE Plus automatically
determines where menus appear based on their level in the hierarchy.

The code below is the source for the menu file described in the previous topic, and illustrates how dBASE Plus
interprets and implements a menu structure.

(To view the source for any other menu file, choose a .MNU or .POP file on the Navigator’s forms page, then
choose Open In Source Editor from the file’s context menu. Or you can type modi comm <filename.ext> in the
Command window, where filename.ext is the MNU or .POP file you want to examine.)

** END HEADER -- do not remove this line
/

/I Generated on 10/24/97

/l

parameter formObj

new mtestMENU(formObj, "root")

class mtestMENU(formObj, name) of MENUBAR (formObj, name)

this. MENU2 = new MENU(this)
with (this. MENU2)

text = "&File"
endwith

this. MENU2.MENU3 = new MENU(this. MENU2)
with (this MENU2.MENU?3)

text = "&Form"
endwith

this. MENU2.MENU3.MENU7 = new MENU(this. MENU2.MENU3)
with (this. MENU2.MENU3.MENU?7)

Creating menus and toolbars 103

Examining menu file code

onClick = {;form.close()}
text = "&Close"
endwith

this. MENU12 = new MENU(this)
with (this MENU12)

text = "&Edit"
endwith

this. MENU12.UNDO = new MENU(this. MENU12)
with (this. MENU12.UNDO)

text = "&Undo"

shortCut = "Ctrl+Z"
endwith

this. MENU12.CUT = new MENU(this. MENU12)
with (this MENU12.CUT)

text = "Cu&et"

shortCut = "Ctrl+X"
endwith

this. MENU12.COPY = new MENU(this. MENU12)
with (this. MENU12.COPY)

text = "&Copy"

shortCut = "Ctrl+C"
endwith

this. MENU12.PASTE = new MENU(this. MENU12)
with (this. MENU12.PASTE)

text = "&Paste"

shortCut = "Ctrl+V"

endwith
this. MENU17 = new MENU(this)
with (this. MENU17)
text = "&Window"
endwith
this. MENU11 = new MENU(this)
with (this MENU11)
text=""
endwith

this.windowMenu = this.menul7
this.editCutMenu = this.menul2.cut
this.editCopyMenu = this.menul2.copy
this.editPasteMenu = this.menul2.paste
this.editUndoMenu = this.menul2.undo

endclass

In the code above, after the menus are defined, certain key menus are assigned to menubar properties which
automatically give the menus their required functionality. For example, when this.menul2.copy is assigned to
the menubar’s editCopyMenu property, the copy menu takes on the following characteristics:

* The Copy item remains dimmed unless there is highlighted text in an appropriate object on the form, such as
an Entryfield or Editor object.

* When text is highlighted, the Copy item is enabled.
* When the Copy item is selected, the highlighted text is copied to the Windows clipboard.
The remaining Editmenu properties function in a similar fashion.

You can modify the preset Edit menu by adding, inserting, or changing item characteristics from the pulldown
Menu designer properties sheet.

The windowMenu property is useful only with top-level menus on MDI forms. The menu assigned to
windowMenu will automatically have a menu added to it for each open child window (such as all other active
dBASE Plus windows). This feature provides a means for the user to easily switch windows.

Another important menubar feature is the onlnitMenu event, which is fired when the menu system is opened.
You can use this event to check for certain conditions and then modify your menus accordingly.

104 dBASE Plus User’s Guide

Menu and menu item properties, events and methods

If, for example, you offer a Clear All item on your Edit menu, you can set an onlnitMenu(_) event to disable the
item if no tables are open when your form opens. To do that, you could add a pointer to the top of your menu

file:

NEW MTESTMENU(FormObj,"Root")
CLASS MTESTMENU(FormObj,Name) OF MENUBAR (FormObj,Name)
this.onlnitMenu = class::chkClearAll

And then create a method to handle the event:

function chkClearAll
if alias() ==""

this.edit.clear_all.enabled = false

endif
return

Changing menu properties on the fly

You’ll often need to modify menu properties while a form is open and your application is running.

For example, you might want to change what menu items are offered based on the currently selected control.
The following are two event handlers for the OnGotFocus and OnLostFocus properties of a grid object,
respectively. When the grid gets focus, the previously defined Edit menu is enabled; when the grid loses focus,

the menu is disabled.

function GridMenus

/I Assign to OnGotFocus of grid object

form.Root.Edit.Enabled = true

return

PROCEDURE NoGridMenus

// Assign to OnLostFocus of grid object

form.Root.Edit.Enabled = false

return

Menu and menu item properties, events and methods

Each menu (choose form.root in the Inspector’s drop-down object selector list) and menu item
(form.root.itfemname) has its own set of properties, events and methods, only a few of which were applied in the
samples above. The following tables describe the primary elements you’ll use to define your menus.

Note Where an element is available to only one of the menu classes, the class is noted in the tables below. Otherwise,

the element is available to both menubar and popup classes.

Table 7.1

Property
alignment (popup only)

baseClassName

className

editCopyMenu,
editCutMenu,
editPasteMenu,
editUndoMenu (menubar
only)

left (popup only)

name

top (popup only)
trackRight (popup only)

Menubar and popup root properties, events and methods

Description

Lets you align items on your popup menus and submenus. Options are left-aligned, centered, and
right-aligned. Default is left-aligned.

Identifies the object as an instance of the Menu, MenuBar or Popup class.

Identifies the object as an instance of a custom class. When no custom class exists, defaults to
baseClassName

These four built-in objects are available for assignment to items on a preset Edit menu on a pulldown
menu (menubar class). To access properties for these objects, click the object’s Tool button.

Sets the position of the left border of the popup. Default is 0.00.

String used to reference the root menu object. Except for Edit and Window menu names (which use
the defaults EDIT and WINDOW), default for custom menus is ROOT. A reference to a default item
would thus be this.root.menuNN, where NN is a system-assigned item number.

Sets the position of the top border of the popup. Default is 0.00.

Logical value (default true). Determines whether popup menu items can be selected with a right
mouse click. If set to false, the popup menu is still opened with a right-click, but items must be
selected with a left-click.

Creating menus and toolbars 105

Menu and menu item properties, events and methods

Table 7.1 Menubar and popup root properties, events and methods

windowMenu (menubar This built-in object is available for assignment to items on a preset Window menu on a pulldown

only) menu (menubar class). To access properties for the WindowMenu object, click the object’s Tool
button.

Event Description

onlnitMenu Codeblock or reference to code that executes when the menu is initialized (when its parent form is
opened).

Method Description

open() (popup only) Opens the popup menu.

release() Removes the menu object definition from memory.

Table 7.2 Item properties, events and methods

Property Description
checked Logical value (default false). Adds or removes a checkmark next to the item text.
checkedBitmap Graphic file (any supported format) or resource reference. When the menu is run, the graphic you

specify appears next to an item to indicate that it is currently selected. Alternative to the Checked
property. Works with UncheckedBitmap to offer visual cues to the current "on/off" state of an
item.

COPY, CUT, PASTE, or
UNDO (dBASE Plus.
variable properties;
available only to menubar
class if preset Edit menu is
in place)

If using a preset Edit menu, these references offer a Tool button to let you view or modify
properties for the selected item.

enabled
helpFile

helpld

name

separator

shortCut

statusMessage

text

uncheckedBitmap

Event
onClick

106 dBASE Plus User’s Guide

Logical value (default true) that dims or activates this item.

Specifies the Windows Help file that provides additional information about this item. If you
choose to use a Help file, you must also specify a Help topic reference in the Helpld property.

Specifies a Help topic that you want to appear when the user presses F1 while selecting this item.
If you specify a Windows Help file in the HelpFile property, Helpld is a topic reference within
that Help file. You can either specify a context ID number (prefaced by #) or a Help keyword.

String used to reference the item object. Except for Edit and Window menu names, default is
MENUnn, where nn is a system-assigned number.

Designates a menu item as a separator bar. A separator bar appears as a horizontal line with no
text; a user can’t choose or give focus to a separator bar. Use separator bars to begin a group of
related menu items. You can also define a separator in the Menu or Popup Menu designers by
choosing Menu | Insert Separator from the main dBASE Plus menu.

Specifies a keystroke or keystroke combination the user can press to choose the menu item.
Shortcuts, also known as accelerators, provide quick keyboard access to a menu item. For
example, you can set the ShortCut for an "Exit without saving" menu item to Ctrl+Q.

To define a shortcut key for a menu item, enter it in the Shortcut property. For example, to specify
the key combination Ctrl+X to exit a menu, enter CTRL-X. Thereafter, when the user presses
Ctrl+X, the OnClick event occurs automatically. This key combination also appears in the menu
title.

Type text here to display a message in the status bar (if a status bar object is included) of your
non-MDI form, or, if you are attaching the menu to an MDI form, in the status bar of your
application frame.

Item name, as it appears on the menu. You can also define item names directly in the Menu
designer. To specify a letter as the mnemonic key that will be used to access the item, precede the
letter in the text string with an ampersand (&). For example, Help menus are usually defined as
&Help.

Graphic file (any supported format) or resource reference. When the menu is run, the graphic you
specify appears next to the item to indicate that it is not currently selected. Works with
CheckedBitmap to offer visual cues to the current "on/off" state of an item.

Description

"Action code" that executes when the item is clicked. If the item is an entry point to a pulldown or
submenu, then no code is required for this event. Nor is code required for the items in the preset
Edit or Window menus (described earlier in this chapter).

Toolbar and toolbutton properties, events and methods

Table 7.2 Item properties, events and methods

onHelp Optional code that executes when the user presses F1. Use this to provide user information as an
alternative to using the HelpFile and Helpld properties to define an online Help topic.

Method Description

release() Removes the object definition from memory.

Toolbar and toolbutton properties, events and methods

Each toolbar and toolbutton has its own set of properties, events and methods, only a few of which were applied
in the samples above. The tables on the next few pages describe the primary elements you’ll use to define your
toolbars.

You can find additional toolBar examples in the samples that come with dBASE Plus and more detailed
coverage of ToolBar class elements, with examples, in Help (search for "class ToolBar" or "class ToolButton").

Tip To inspect all toolbar and toolbutton properties, methods and events, as well as the defaults for each, type four
lines like this into the Command window:

t1 = new toolbar()

t2 = new toolbutton(t1)

inspect(t1) // opens the Inspector with toolbar properties visible
inspect(t2) // opens the Inspector with toolbutton properties visible

Table 7.3 Toolbar properties, events and methods

Property Description

baseClassName Identifies the object as an instance of the ToolBar class

className Identifies the object as an instance of a custom class. When no custom class exists, defaults to
baseClassName

flat Logical value (default true) which toggles the appearance of buttons on the toolbar from always
raised (false) to only raised when the pointer is over a button (true).

floating Logical value (default false) that lets you specify your toolbar as docked (false) or floating
(true).

form Returns the object reference of the form to which the toolbar is attached.

hWnd Returns the toolbar’s handle.

imageHeight Adjusts the default height for all buttons on the toolbar. Since all buttons must have the same

height, if imageHeight is set to 0, all buttons will match the height of the tallest button. If
ImageHeight is set to a non-zero positive number, images assigned to buttons are either padded
(by adding to the button frame) or truncated (by removing pixels from the center of the image or
by clipping the edge of the image).

imageWidth Specifies the width, in pixels, for all buttons on the toolbar.

left Specifies the distance from the left side of the screen to the edge of a floating toolbar.
text String that appears in the title bar of a floating toolBar.

top Specifies the distance from the top of the screen to the top of a floating toolbar.

visible Logical property that lets you hide or reveal the toolbar. Default is true.

Event Description

onUpdate Fires when the application containing the toolbar is idle, intended for simple routines that

enable, disable or otherwise update the toolbar. Because this event fires continuously when the
application is idle, you should avoid coding elaborate, time-consuming routines in this event.

Method Description

attach() Attach (<form object reference>) establishes communication between the toolbar and the
specified form and sets the Form property of the toolbar. Note that a toolbar can be attached to
multiple MDI forms or to a single SDI form. For examples, see Help (search for "class
ToolBar").

detach() Detach (<form object reference>) ends communication between the toolbar and the specified
form, and closes the toolbar if it is not attached to any other open form.

Creating menus and toolbars 107

Toolbar and toolbutton properties, events and methods

Table 7.4 Toolbutton properties, events and methods

Property
baseClassName

bitmap

bitmapOffset

bitmapWidth

checked

className

enabled

separator

speedTip
twoState

visible
Event
onClick

108 dBASE Plus User’s Guide

Description

Identifies the object as an instance of the ToolButton class

Graphic file (any supported format) or resource reference that contains one or more images that
are to appear on the button.

Specifies the distance, in pixels, from the left of the specified Bitmap to the point at which your
button graphic begins. This property is only needed when you specify a Bitmap that contain a
series of images arranged from left to right. Use with Bitmap Width to specify how many pixels to
display from the multiple-image Bitmap. Default is O (first item in a multiple-image Bitmap).

Specifies the number of pixels from the specified Bitmap that you want to display on your
button. This property is only needed when you specify a Bitmap that contain a series of images
arranged from left to right. Use with BitmapOffset, which specifies the starting point of the image
you want to display.

Returns true if the button has its TwoState property set to true. Otherwise returns false.

Identifies the object as an instance of a custom class. When no custom class exists, defaults to
baseClassName

Logical value (default true) that specifies whether or not the button responds when clicked.
When set to false, the operating system attempts to visually change the button with hatching or a
low-contrast version of the bitmap to indicate that the button is not available.

Logical value that lets you set a vertical line on the toolbar to visually group buttons. If you
specify a separator button, only its Visible property has any meaning.

Specifies the text that appears when the mouse rests over a button for more than one second.

Logical value that determines whether the button displays differently when it has been depressed
and consequently sets the Checked property to true. Default is true.

Logical value that lets you hide (false) or show (true) the button. Default is true.
Description

"Action code" that executes when the button is clicked.

Chapter

Using the Source editor and other
code tools

This chapter introduces three tools for working with code in dBASE Plus:

The Source editor

A full-featured, customable ASCII text editor, the main window for editing dBL code (both .PRG files and
other project-related files, such as form, report, menu, query, and data module files). The Source editor
displays all the code in a file. To view or edit code in the Source editor, press F12 when a design window has
focus, or right-click a file in the Navigator, and choose Open In Source Editor. (Not all files have this
command available).

You can have several files open in the editor; each opens on a separate page of the editor, with its name on
the page tab. Menus and the toolbar change, as appropriate, depending on the type of file you are editing.

The Code Builder

A dialog box available from the Inspector, that lets you conveniently edit code blocks (either commands or
expressions). Since code blocks must be on one line, they can be cumbersomely long when you’re editing in
the Source editor. The Code Block Builder displays the line of code set up in a dialog box, command by
command, for easy editing without horizontal scrolling.

The Command window

A two-paned command-line interface that lets you experiment with dBASE Plus commands and expressions,
instantly viewing results. You can use the Command window freely at any time. To open it, choose View |
Command Window. Your work in the Command window is not saved.

Using the Source editor

Note

The Source editor contains the entire source code for the form, report, menu, query, or data module you’re
designing. If you’re designing several files, the source for each one appears on a different tabbed page. Likewise
for a .PRG file, which appears in the same editor.

If you prefer to open instances of the Source editor in separate windows, rather than using one window with
tabbed pages, you can set this preference in the Display page of the Source Editor Properties dialog box (With
the Source Editor open, Properties | Source Editor Properties | Display).

To open the editor, do one of the following:

Design a new or existing form, report, menu, query, or data module. Both the design view and the editor
open, with the design view having focus. Press F12 to switch focus to the editor. (If in a prior session you
closed the editor, it does not open automatically with the design view, but pressing F12 will open it.)

Right-click a file in the Navigator, and choose Open In Source Editor. (Not all files have this choice.)
Open a .PRG file or text file.

Using the Source editor and other code tools 109

Using the Source editor

* Press F12 when you have a designer open (except the Table designer).

Thereafter, use F12 to toggle between design view and the code page for any given designer file. Changes made
in either the Source editor or visual designer are reflected by the other when you move focus between them.
Code is automatically compiled when you shift focus to the designer. If an error occurs during compilation,
dBASE Plus displays an error message and points to the offending line in the file.

If an error occurs during runtime, dBASE Plus displays a dialog box, giving you the opportunity to fix the error.
If you cancel the Fix dialog box, then the only copy of the work is in a temporary disk file which is placed on
another page (or another instance) of the editor. You can do with this as you wish.

Two-pane window with tree view

The Source editor is a two-pane window:

» The left pane is a tree view showing the hierarchy of the current file (including the this object for classes with
a constructor). You can enlarge the pane, or you can hide it. To do either one, move the split bar to the left or
right, using the mouse. The tree view is dynamically updated during program editing, unless the tree view is
closed.

You can expand the nodes in the tree view pane by clicking the plus signs and collapse the nodes by clicking
the minus signs, same as in the Windows Explorer. The expanded or collapsed state of nodes and the selected
item are maintained in the tree-view pane when you take actions in the right-hand pane.

The tree view displays object bitmaps for the standard controls. You can turn this off in the Editor Properties
dialog box, Display page (Properties | Editor Properties).

» The right pane contains the code. Click an item in the tree view to highlight the first line of that object in
code. Double-click an item in the tree view (or select it and press Tab) to jump to the start of that object in the
code.

You cannot use the Source editor to select an object in the Inspector. You must do that in the design window or
in the Inspector, itself.

Notes on the Source editor

Here are additional comments on the Source editor. For more information on editing, including keystroke
commands, see Help.

» Compared to the former Method editor:

During stream-out, procedures have a comment generated inline which identifies all methods linked to them.
This plus the hierarchy visible in the tree view replaces the function of the "linktext" static text control that
appeared in the former Method editor.

The tree view points at the top and bottom of the source files, showing the equivalent of "header" and
"general" in the former Method editor.

* When editing a .PRG file, the Method menu’s New Method, Delete Method, and Verify Method commands
are available. They work on whatever "method" is at the current cursor position. If no method can be
identified, the menu commands are unavailable.

* When designing a form, report, menu, or data module file, three more commands are available on the
Method menu: Edit Event, Link Event, and Unlink. Edit Event can generate wrappers for functions or
procedures that are not yet part of the source, useful with the new tree view.

» Ifyou attempt to edit a method in a base class, and you elect not to override that method in the derived class,
dBASE Plus opens the source file for that base class in the designer. If it is already opened, it is given focus,
and the cursor is positioned at the method.

* When you switch focus from the designer to the editor, it purges the editor’s Undo buffers.
* Opening a file named in code:

Choosing Edit | Open File At Cursor opens a highlighted file, or the file at the cursor position. If no matching
file is found, the Open File dialog box appears.

110 dBASE Plus User’s Guide

Creating a new method
Choosing Edit | Open File At Cursor when a block of selected text includes more than just the file name, or
no file name at all, opens the Open File dialog box.

Files with .WFM, .CFM, .REP, .CRP, .PRG, .CC, and .H extensions are opened in another instance of the
editor. Other files are opened in their specific visual designer (for example, .DBF files are opened in the
Table designer).

File names with extensions unknown to dBASE Plus and not registered with Windows produce an error.

Creating a new method

To create a new method, select an event in the Inspector, then click the tool button to the right of the text box.
This creates the skeleton of a new method and links it to the event. The Source editor receives focus.

You can write a new method to link to the current event in the Inspector, or you can display the Edit Event
dialog box to link the event to an existing method.

Note A method is a function defined in a class. The Form and Report designers are object-oriented; forms and reports
are classes. Therefore all methods are defined and appear in the Source editor with the reserved word function,
and are sometimes (loosely) referred to as functions.

The Code Block Builder for editing code blocks

A code block is a data type that can be stored in a variable or property. Code blocks are used in forms and
reports to define events or text properties.

Because code blocks cannot span multiple lines, using the Source editor to edit a long code block can be
cumbersome. So, when you choose to, you can open the Code Block Builder, which temporarily lays out the
code one command per line, with the parameters in a separate text box.

Figure 8.1 Code Block Builder

Build Codeblock X

Parameters:

|
Body

The code iz laid out reatly for easzy Cammands or Expression:

editing. ‘when you close the dialo . .

b itgl:necnmei one line again g if [_NEIT this. Farm. rowset. nest-1]]
: thiz. form. rowset nest] |

endif
super:RefreshBowState] |

YWhen entering new code, choose
Command or Expression

(" E=pression

0k, | Cancel Help

Edit what you need to, and choose OK. The code block appears in your code as one line again.

You don’t have to open the Code Block Builder if you don’t want to. You can edit directly in the Inspector or
the Source editor.

To create or edit a codeblock

To create a new codeblock for an event,

1 Select CodeBlock from the event’s drop-down Type list.

Using the Source editor and other code tools 111

The Command window

2 Click the wrench tool beside the event to open the Code Block Builder.
To create a new codeblock for a Text control,

1 Select its fext property in the Inspector.

2 Select CodeBlock from the text property’s drop-down Type list.

3 Click the wrench tool beside the property to open the Code Block Builder.

Editing an existing code block

If you have an existing code block you want to edit (it will be in an event or the text property of a Text control),
you can open the Code Block Builder dialog box in these ways:

e For an event,
* Select the event in the Inspector, and then select the wrench tool beside it, or

* Choose Method | Edit Event, and if a code block is already associated with the event, the Code Block
Builder opens (otherwise, the Source editor opens).

» For a Text control, select its text property in the Inspector, and then select the wrench tool beside it.
Make your changes in the Parameters text box and in the Commands Or Expression text box.

When you click OK, dBASE Plus checks the syntax of the code block. If an error exists, dBASE Plus attempts
to repair the error. If it can’t, a warning message box notifies you of the error, and the Code Block Builder stays
open so you can fix the error. Focus is placed on the text box where the error occurs: Parameters or Commands
Or Expression. If you don’t know how to fix the error, you can choose Cancel and dBASE Plus keeps the
previous code.

If the code block is error-free, then the Code Block Builder closes. The code block is condensed back into one
line and displayed in the appropriate line in the Inspector. The indentations and carriage returns are removed.

The Command window

Note

The Command window is used to directly execute one-line dBASE Plus commands. It is handy for testing
simple expressions and immediately seeing the results in the results pane. (It is the dBASE Plus counterpart to
the dot prompt found in dBASE IV and earlier DOS versions of dBASE.)

The Command window is for temporary work only; you cannot save your work. However, you can copy the
contents of the window or drag and drop to a source file. You can also print the contents (select what you want
to print, and choose File | Print).

To use your own functions in the Command window, you must first load them:
set procedure to <filename> additive

To open the Command window, choose View | Command Window.

The Command window has two panes, as shown in the figure below.

Figure 8.2 The Command window

» Command D@@

[rput Pane. Type ane-line
commands here,

To change the relative zize of the
panes, drag the center divider. To
restore them to equal size,
double-click the divider

—— Resultz Pane

112 dBASE Plus User’s Guide

The Command window

Command window panes have specific functions:

* The input pane is where you enter interactive commands You might use the input pane in this way if you find
typing commands easier or faster than using the mouse and menus.

The input pane echoes your actions in the dBASE Plus interface, keeping a history of the commands you’ve
executed. For example, when you create a new table by double-clicking the Untitled table icon, the
Command window shows that you’ve executed a CREATE command.

* The results pane is where your command output appears, unless your commands create or call separate
windows. It is also the default destination for the output of many programs. The results pane retains the last
100 lines.

To change the relative size of the two panes, drag the center divider. To restore them to equal sizes, double-click
the divider.

To clear the contents of the input pane, close the window and select View | Command Window. To clear the
results pane, choose Edit | Clear All Results.

Typing and executing commands

To execute a command, type it in the input pane and press Enter. You can also click the Execute Selection
button on the toolbar or choose Edit | Execute Selection. You can delete commands like any other text. The
commands you enter in the Command window remain there until you close the window or exit dBASE Plus.

Because pressing Enter executes the command line, you must press the down-arrow key to enter more than one
line into the Command window. The maximum number of characters per line is configurable in the Editor
Properties dialog box. The maximum number of lines the input pane can hold is limited by virtual memory.

The command line defaults to insert mode, as indicated in the status bar. To switch between insert and overwrite
modes, press the Ins key.

Executing a block of commands

In addition to typing multiple command lines, you can paste lines of command text from another source. You
can also execute a block of command lines, provided the block does not contain nested structures or methods.

To execute more than one line of text in the input pane, select the lines with the mouse or use Shift and the
arrow keys. Press Enter, or click the Run button on the toolbar, or choose Edit | Execute Selection.

Reusing commands

To reuse commands you’ve already entered in the input pane,
1 Scroll the window, if necessary, to display the commands you want.
2 Click the command line you want, or select a block of commands.

3 Execute the command (or commands) by pressing Enter, clicking the Run button, or choosing Edit | Execute
Selection.

Editing in the Command window

Edit text in the input pane as you would in a text editor, using standard editing keys such as Backspace and
Delete, and the Edit menu commands. Use the Edit | Search commands to search for and replace text in the input
pane.

The command line is the line in the input pane containing the insertion point.

You can cut or paste code from Help or use commands from a program file by opening the file, copying the
commands, and pasting them into the Command window. After the commands are in the Command window,
you can test or modify them. The sample files provided with dBASE Plus are a good source of working
commands.

Using the Source editor and other code tools 113

The Command window

Saving commands into programs

If the input pane contains dBL code you want to use again, you can copy and paste it into a new program (.PRG)
file or insert it into an existing program file.

You can also mark a block and choose Edit | Copy To File. dBASE Plus displays the Copy To File dialog box so
you can name the new file for the selected text. By default, the file has a .PRG extension, but you can change it
to another extension. If you don’t mark a block before you choose Edit | Copy To File, the entire contents of the
Command window is selected.

114 dBASE Plus User’s Guide

Chapter

Debugging applications

Debugging is the process of locating and eliminating errors—bugs—from an application. Use the dBASE Plus
Debugger to repair broken code and resolve problems in your forms, reports and programs.

With the Debugger you can
* Load and debug multiple files.

» Control program execution by stepping through an entire program line by line or skipping to defined
breakpoints.

* Monitor the values of variables, fields, and objects. You can even make temporary changes for testing
purposes, and then update your code using the dBASE Plus Source editor.

* View subroutines (methods, procedures, and functions) that the main program calls, and track the points at
which each is called.

» Stop program execution at any point, or run full-speed to the cursor position.

* Run the Debugger as a standalone application to debug compiled programs.

Types of bugs

The two most common types of bugs are syntactical and runtime errors.

Errors in syntax include such oversights as misplaced braces or endif statements, and are generally caught by the
compiler before you even get to the debug stage. If you run uncompiled code through the Debugger, however, it
will easily catch any syntactical errors.

Runtime errors, such as calls to non-existent tables, are also quickly exposed by the Debugger, which
automatically halts at the offending reference.

When you are stopped by any error, you can either cancel or suspend further execution of the program, ignore
the error and continue running the code through the Debugger, or note the problem, open your dBASE Plus
Source editor, fix the code, and then return to the Debugger to check for additional errors.

The third, and least obvious type of bug is an error in program logic, and these are not detected so easily. If, for
example, your program includes a method that is supposed to execute after a certain event, but the event is
bypassed, you may need to use all the debugging power described in this chapter to track down and correct the
problem.

Using the Debugger to monitor execution

There are three ways you can use the Debugger to monitor how your program executes:

* Run the program locally from the dBASE Plus integrated development environment (IDE). Running from
the IDE is convenient for checking code syntax or various parts of your program while you develop it.

Debugging applications 115

General debugging procedure

» Compile your application, then debug it by typing debug <programname.exe> into the Command window.
This method provides a "real world" test, showing how your program accesses tables, for example. After
running your tests, you can use the dBASE Plus Source editor to make any needed adjustments.

* Run the Debugger as a standalone application, set breakpoints, then run your program from dBASE Plus.
When the program reaches a breakpoint, control is handed over to the Debugger.

General debugging procedure

This section gives you a quick overview of debugging procedures. The process is examined in greater depth in
subsequent sections.

The Debugger is always available whenever you run into an error when in Run mode. To open the Debugger
and deal with the error on the spot, you only need to click the Debug button in the error dialog. When the
Debugger opens, you can then proceed from step 2 in the instructions below.

Alternatively, you can run it before running your program, then choose a program to debug. Here’s how:

1 Start the dBASE Plus Debugger by right clicking on a source file in the Navigator and choosing Debug. The
program’s code appears in the Debugger’s Source window, under a tab with the file’s name. If you open
multiple programs, each appears under its own labeled tab.

2 You can then configure a number of options:

If you intend to pause the execution of the program at certain points or isolate a section of the code for
test-fix-test cycles, set breakpoints by double-clicking the Stop Hand pointer at the left of the line before
which you want a breakpoint.

Open any tool windows you intend to use, for example, to watch variables.

3 Ifyou set breakpoints, or if any kind of error occurs

The Error Message box displays the dBASE Plus error message. Click OK.

The Debugger’s Source window appears. The offending line immediately precedes the blue-highlighted
line.

Check for the more obvious and typical errors: a misspelling or missing punctuation or spaces.

Inspect your public or private variables and expressions by holding the cursor over a variable until a
popup dialog box appears with the variable’s current value. This can give you a clue about what went
wrong. You can also view all variables in the Variable tool window or set watchpoints for particular
expressions and monitor these in the Watch tool window. The debugger, however, won't find the value of
a LOCAL variable.

If the form does not appear quite the way you intended when you created it in the Designer, try adjusting
some of the display parameters in one of the tool windows. If this works, make the same changes
permanently in the code by editing the program in the dBASE Plus Source editor.

For other types of errors, return to the main dBASE Plus Source editor, locate the offending line and make
your corrections. Save the file, then restart your program to check the results.

Restart the program to check the results of your correction.

4 1If your application initially appears stable and displays properly, proceed by testing each of its features,
entering or editing values, submitting changes to the server, or requesting updates. Click each button and
interact with the program in every possible way. Errors generated from these interactions might require you
to step into subroutines and again check variable values at each step.

Note Selecting File | Exit from the Debugger menu, the Debugger closes and program execution continues. In prior
dBASE versions, selecting File | Exit while in the Debugger, halted program execution and returned to the
Command Window. In dBASE Plus program execution is halted by using the Stop button on the Tool Bar.

Whenever you need to run the program again from the top, simply switch focus to the Debugger, then switch
back to your main program window.

116 dBASE Plus User’s Guide

Debugging runtime applications

Debugging runtime applications

To debug compiled programs, simply run the Debugger as a standalone application, set breakpoints, then run
your program from dBASE Plus (not from the Debugger).

When the program reaches a breakpoint, control is handed over to the Debugger.

The Source window

The Source window is the main Debugger window. The code is read-only. The left pane of the Source window
shows a hierarchical view of the objects in your code.

You can use the Source window to step through code execution line by line, to highlight breakpoints and
identify the location of errors.

However, you cannot edit or repair your code in the Debugger’s Source window; to do that, you have to use the
dBASE Plus Source editor.

Figure 9.1 Source Window

& 7O |5 5482
i fich.wfm fishuwim |
R op e e) -
Blrsoror || finclude VdBase h
i e
< objec sat ldCheck off
s ¥ meth: e FND HEANER —— do pnor reagove fhiz fins
+[8 battom R
At Demperaboad on 1T AA08
pe.l.:ral.n:t.:'r bBHodal
local f
f = nev FISHFORH()
if (bHodal)
f. mdi = false - saspre pot NOT
f. readHodal ()}
else
i opani)
endit
claz=z FISHFORM of FOEM
with {(this)
onlavigate = class: FORM_ONHAVIGATE
onClose = class:: FORM_ORCLOSE
open = class: FORH_OPEN
readiodal = class: FORH_READHODAL
height = 25.0
laft = 2 8571 e
£ 3 £ *
Line: 44, Col: 1

As your program runs, source code scrolls to the line about to receive program control. You can scroll the
source code without affecting program execution; the next command to be executed remains highlighted
regardless of where the cursor is in the Source window.

Your program runs in the background while the Debugger retains focus. You can interact with your program by
moving focus to it (use Alt+Tab to switch to it, or minimize the Debugger and click your program window).
While you interact with your program, its code continues to scroll in the Source window. If you close the
application, your program’s code remains open in the Source window.

You also use the Source window to locate and set breakpoints. If an error occurs, the Source window
automatically scrolls to the offending line, highlighting (in blue) the line immediately following the offending
line.

To correct any detected errors, return to the dBASE Plus Source editor, load your file, locate the offending line
(using the dBASE Plus Source editor’s line-numbering feature) and fix the error.

Debugging applications 117

The Source window

To locate and move to a line number in the Source window

1 Choose Edit | Go To Line from the Debugger menu or right-click the Source window and choose Go To Line
from the popup menu.

2 Specity the number in the Go To Line dialog box.

Using Go To Line to move to a line number in the Source window doesn’t affect program execution, which
remains paused at the last line you stepped or traced to, or at the last executed breakpoint.

To find a text string in the current program file

1 Choose Edit | Find from the Debugger menu or right-click the Source window and choose Find from the
popup menu.

2 Specify the text to find in the Find dialog box.

The search begins from the current position of the cursor and is case-insensitive. If the text is found, the Source
window scrolls to the line containing the text, and the cursor moves to the beginning of the text. To find
additional occurrences of the same text, choose Edit | Find Next from the Debugger menu or Find Next from the
Source window popup menu.

The Debugger tool windows

The Debugger’s View menu offers access to four tool windows, described below, that help you track program
elements during a debugging session.

Variables

Lists variables found in the currently selected program. You can limit the extent of the variable search by
deselecting options in the Debugger Options dialog box (File | Options).

Watches

The Watch tool window lets you specify particular variables, fields, and expressions that you would like to
watch as the program code executes. The window shows the changing values for the watched items as you test
the program (by clicking buttons, sending queries, and so on).

Call Stack

This tool window displays a list of subroutines called by the current program. Each call to a separate program
file (or module) is displayed as it occurs, showing its line number, function name, and path name.

Trace

Displays the output that appears in the Output panel of the Command window.

Docking the Debugger tool windows

To dock a tool window in the Debugger, click the frame of the window and drag to the side of the Source
window where you want to fix the window’s position. The small tool window enlarges to fit the side or bottom
of the Source window.

To undock a tool window, click the frame of the tool window and drag to the center of the screen until the small
outline appears, then release.

To disable docking, choose View | Tool Window Properties and uncheck the tool windows for which you want
to disable docking. See Figure 9.2

Excluding variable types

To exclude variable types from the tracking process, choose File | Options to open the Debugger Options dialog
box, then deselect items from the variables type group.

118 dBASE Plus User’s Guide

Controlling program execution

The Options dialog box also permits you to hide exceptions during a debugging session.
Figure 9.2 Debugger tool windows, docked

The Source window dizplays the read-only zource

: The Trace window containg the outpuk that appearz in
code of the program youte debugaing

the output panel of the Command window

FZ dBASE PLUS Debugger - fish.wfrn - [Source - fish.wfm] o =J.
y] Elle Edit Wiew Run Debug Properties W b -2 %
= R R

il fish.wim figkv e |
"B top -
T e e e e e T 11 | -
FIE-I-FDR Ilnclude '-.’dafe h
+ 49 objec =:t J.d':hl:-t:k of £
i ? meth wx FND FEADER —— do por resove fhis JJ
+El bottom i

’ {rmpers fod on JJ1-d 304

ﬁarauetcr bHodal

W
] | >
Line: 44, Col: 1
The Call Stack window keeps track. of all The Y anable vindow liztz vanables found in the currently —
program calls to ather modulez and methods. selectad program

The lazgt line dezcribes the curent subroutine

The“Watch window containg watchpoints of vanables,
fields, arrays, and objects. You zet these watchpoints

Controlling program execution

You can control program execution in the Debugger using the following commands and procedures, all of
which are available from the Run and Debug menus.

Table 9.1 Methods of controlling execution in the Debugger

Method Type of program execution control

Run Runs the program, stopping at each error to display an error message. The line after the
offending line is highlighted in blue.

Stop Stops execution of the program.

Run To Cursor Executes lines from the current position to the cursor location and stops there.

Step Over Skips subroutines (any called functions, methods, or procedures).

Step Into Shows line-by-line execution of subroutines, stopping at the end of each subroutine. You can

step into another nested subroutine.
Step Out Returns display of line-by-line execution to the preceding level of the program.

Break on next executable line Causes program execution to stop at the next executable line, regardless of where execution
starts.

Debugging applications 119

Controlling program execution

Table 9.1 Methods of controlling execution in the Debugger

Method Type of program execution control

Using breakpoints Breakpoints are specific points in the program that you set to stop execution, letting you assess
the situation. You can isolate a section of code for closer study by placing a breakpoint at the
beginning and end of the section, then running that section repeatedly. You can further
subdivide the section by adding more breakpoints.

Watching variables You can see the current real-time value of any variable by holding the cursor over it. You can
select particular variables (from the Variable tool window which shows all the variables in the
program) and watch how their values change in the Watch tool window.

Stepping in the Debugger

Stepping executes your program line by line, pausing after each line so you can evaluate the result.

If you are confident about a block of code, you don’t have to step through it again and again to get to the
uncertain areas. You can, for example, step over any lines that call subroutines (including methods and
expressions).

For example, if you have already determined that no bugs exist in a particular subroutine, select the line that
calls the subroutine, click the Step Over button in the toolbar, and run the program. The Debugger steps over the
execution of the subroutine so you can focus on the rest of the program. The call to the subroutine still occurs,
and the stepped-over subroutine still executes; you just don’t see the line-by-line execution in the Source
window. The Debugger then stops at the line following the stepped-over subroutine.

On the other hand, if you want to check out what a subroutine is doing, you can step into it, and further, step into
any nested subroutines as well. Then you can step out from the subroutine and return to the main program level.

Commands for stepping over, stepping in, and stepping out of subroutines are available from the Run menu and
toolbar.

Using breakpoints

A breakpoint stops program execution so you can evaluate variables, fields, arrays, objects, and expressions;
change the value of variables, arrays, and objects; and check what subroutine the program is in. Using
breakpoints lets you run the program at full speed until it comes to a problem area; breakpoints give you an
alternative to stepping through the entire program.

When you step or trace through a program, you’re essentially breaking at each line. However, once you are
certain that no bugs exist in certain parts of your program, there is no need to repeatedly step through each line;
instead, set breakpoints at crucial places where the code is less certain, then run the program at full speed and
evaluate program values at the breakpoints.

If, for example, you suspect a bug in occurs at one particular place, such as when a subroutine is called, you
could set a breakpoint at the line that calls the suspect subroutine. You could then step into the called method or
function.

Setting and removing breakpoints

To set a breakpoint, select a line of code in the Source window and either

* Move the pointer to the left of the command line where you want to enter a breakpoint. When the pointer
changes to a Stop sign, double-click. The line is then highlighted in red.

fish.wim |
mdi = false
menuFile = "fish mnu"
icon = “filename Fish.ico"
endwith

this DBASESAHFLES] = new DATABASE(

this DBASESANPLES] parent = this
with {(this DBASESAHPLES1)
left = -11‘1.5

120 dBASE Plus User’s Guide

Controlling program execution

To remove the breakpoint, double-click the highlighted line again.
* Press Ctrl+B to add a breakpoint to the selected line of code or to remove a breakpoint from the selected line.
* Choose Debug | Toggle Breakpoint from the Debugger menu (or from the Source window’s popup menu).

To remove all current breakpoints, choose Debug | Delete All Breakpoints.

Working with breakpoints

To see a list of breakpoints in a program, choose Debug | Breakpoints.
Figure 9.3 Breakpoint window

Breakpoints @
Breakpomts
Line File Condition Condition... |
: sprogram hles\dbase\plushsamples... Delete
& |
Delete &1 |

[v Save beeakpoints on Exit

GoTo | Cloze Help

You can use the Breakpoints list to keep track of existing breakpoints in all open modules. The line number of
each breakpoint is listed next to the path name of the program in which it appears.

To delete a breakpoint, select it and click the Delete button.
To delete all breakpoints, click the Delete All button.

To go to any breakpoint, simply double-click the line number of the desired breakpoint (or select it and click Go
To). The Breakpoint window closes and the Source window opens to the selected breakpoint.

To conditionally set breakpoints, click Condition to open the Breakpoint Condition dialog box, and type in an
expression—such as the value of a variable, a global condition, or any conditional expression that defines a
condition in which the current breakpoints should be active. If the condition is not met, breakpoints are ignored.

Figure 9.4 Breakpoint Condition dialog box

Breakpoint Condition [X]

g
i

Hew
Scope
* Line Cancel
" Global Help

» Line Click the Line radio button to specify a condition for the line currently selected in the Breakpoint
window. The conditional expression you enter applies only to the selected breakpoint line.

* Global Click the Global radio button to enter a conditional expression for the entire program. For example,
you might have noticed that when a global variable reaches a certain value, say 10, the program becomes
unstable, but until then everything works fine. To test your observation, you could set the condition x=10 to
force all breakpoints to activate when the global variable x reaches 10.

Debugging applications 121

Viewing and using the Call Stack

Running a program at full speed from the Debugger

The alternative to stepping and tracing, which examine your code line-by-line, is to debug at full speed. This lets
you skip areas that you know are bug-free and concentrate on suspected problem areas.

If you set breakpoints in your program, you can debug at full speed and execute to the first breakpoint. You can
then decide whether to continue running the program from the breakpoint or to proceed by stepping over or into
subroutines.

To debug at full speed, either

* Click the Run toolbar button

* Choose Run | Run from the Debugger menu, or
* Press F9

Running to cursor position

You can also run at full speed until execution reaches the current cursor position in the Source window. To try
this approach, choose Run | Run To Cursor.

Stopping program execution

In addition to using breakpoints and stepping techniques, you can halt execution of a running program any time
by

 Clicking the Stop button on the toolbar
* Choosing Run | Stop from the Debugger menu

Debugging event handlers

You can use the same basic techniques to debug event handlers as you do for any other code sections.
These are the general steps for approaching error handlers:

1 Open the Debugger and load the program containing the event handler code.

2 Set a breakpoint.

3 Run the program, either at full speed, or by stepping or tracing through it.

4

When the program opens a form, the form gets focus. Interact with the form to trigger the event associated
with the event handler. For example, if the event handler is an onClick method for a pushbutton, click the
pushbutton.

When the event handler reaches the line or condition specified by the breakpoint, execution stops and focus
returns to the Debugger. You can then inspect, step, or perform other debugging tasks.

Viewing and using the Call Stack

The Call Stack window tracks calls made to methods or functions, whether inside or outside of the running
program. The list includes the line number, function name, and file name to which the calls were made.

The last line in the Call Stack list is always a reference to the main program level.

Note that if you step through or over nested subroutines, calls within the nested subroutines are removed when
execution steps out again.

Otherwise, the Call Stack list is updated whenever program execution pauses.

You can also use the Call Stack list to quickly shift Source window focus to any subroutine call. To do that,
select a subroutine in the Call Stack, right-click, and choose Go To Source Line from the popup menu. Note that
though the Source window is refocused to the calling line, the current execution point remains where it was, and
will continue from that point if you resume program execution though the Source window is refocused to the

122 dBASE Plus User’s Guide

Watching expressions

calling line, the current execution point remains where it was, and will continue from that point if you resume
program execution.

Figure 9.5 Call Stack window

call Stack (%]
Line | Function | File |
21 FISH.MHUD... CYProgram Files\dBASEVPLUS Samplestfish. rnu
73 FISHFORM::... CProgram Files'\dBASEVPLUS\Samples\Fish.wim
52 FISHWFRM C\Program Files\dBASENPLUS SamplesiFish.wim

Watching expressions

Note

The Debugger’s Watch window lets you monitor expression execution and results. You can even use it to
temporarily change and retest variables. It can help you detect such problems as the assignment of incorrect
values to variables, or assignment of values at the wrong points.

Watchpoints are evaluated and their current values displayed in the Watch window whenever program
execution is paused.

Adding watchpoints

To add a watchpoint, do one of the following:
* Choose Debug | Add Watch from the Debugger menu.

» Right-click the Watch window and choose either Add Watch or Watch Variable At Cursor from the popup
menu.

¢ Press Ctrl+W.

The selected expression appears in the Watch window.

Figure 9.6 Watch window

left 2.86
temt "FishBasze 200
renufile "fish, rnu"

If you haven’t already run the program past a point where variables, fields, arrays, or objects in the selected
expression are initialized, "unknown" is displayed to the right of the expression.

Editing watchpoints
To edit an existing watchpoint,
1 Select the watchpoint in the Watch window.

2 Choose Debug | Edit Watch Value or Debug | Edit Watch Name from the Debugger menu. Alternatively,
right-click the Watch window and select one of the editing commands in the popup menu.

Changing watchpoint values

In addition to watching expressions, you can temporarily change the value of a variable. If, for example, a
variable is receiving a correct value, but at the wrong point, you could

* Add a watchpoint for the variable.

Debugging applications 123

Watching expressions
» Pause program execution by setting up a breakpoint at the line where the correct value is supposed to be
assigned to the variable.
* Use the Watch window to directly assign the correct value to the variable.

It’s important to remember that this sort of testing does not result in a permanent code change. It is only
intended to let you examine how your program behaves when the correct variable value is assigned. If the test is
successful, you can open the dBASE Plus Source editor to permanently correct the part of the program that was
responsible for returning the wrong value.

124 dBASE Plus User’s Guide

Chapter

10

SQL designer

The dBASE Plus SQL designer lets you create, edit, and execute SQL queries on any supported data source.

You needn’t be an SQL expert to use the SQL designer. In fact, you can use the tool to learn SQL by examining
the results and structure of the queries you create. You can start with simple SELECT statements and progress
to the most complex table joins and grouped queries—all of which can be easily constructed in the designer’s
table pane and notebook pages.

When your statements are structured to produce the results you want, you can save them to disk, edit them with
the Source editor, or use them as templates in the SQL Property Builder.

You can also add your saved queries to a dBASE Plus program directly by assigning an .SQL file to the SQL
property of a Query object, or by copying statements from your query files directly into your code.

Opening the SQL designer

For new queries

You can open the SQL designer to create a new query by using any of the following methods.
* Navigator: SQL tab, double-click the Untitled icon.
* Command window: Type
create query
To view or modify an existing query

You can open the SQL designer to load and review or modify an existing query by using any of the following
methods.

* Menu: Choose File | Open (Alt+FO or Ctrl+O) for the Open File dialog, then choose SQL from the Files of
Type list, and locate your saved .SQL file.

» Navigator: SQL tab, double-click the icon for an existing query file or select it and either press F2 or click
the Design button on the toolbar.

* Command window: Type
modify query <queryfile.sql>

where <queryfile.sql> is a saved query file. Note that if the file is not in the current directory (as shown in the
Look In box in the Navigator), you must also include the full path to the file.

SQL designer elements

The SQL designer is comprised of two main sections:

SQL designer 125

Interacting with the Source editor

1 The table pane, the upper portion of the designer, where tables and fields are depicted. This area lets you
select and deselect data for your queries. You can also use these table listings to quickly create joins.

Figure 10.1SQL Designer: Table pane

=1 Untitled - SQL Designer

Cugtamars
Cugtomeria (Afo-incrément)
Category (Character)
Lastidame (Characiar)
Firstiame (Characier)
Address (Character)

2 The query notebook is the tabbed lower portion of the designer. Each page of the notebook offers a grid
layout for specifying query parameters and options.

Figure 10.2SQL Designer: Query notebook

Criteria | Selection | Grouping | Group Criteria | Sorfing | Jains |

ALL ¥ | of the foliovving criteria are met:

Fieddl or iabee (Campare Field ar Yeabue

|| El-

The notebook pages are:
» Criteria. Where you specify which rows of data are to be included in the query results.

» Selection. This page enables you to create summary data. It also allows you to specify a customized output
name for a field or summary data in the query results.

* Grouping. Use this page to create a grouped query. A grouped query groups the data from the source tables
and produces a single summary row for each row group.

* Group Criteria. Enables you to specify group selection criteria used in the HAVING clause that SQL
designer adds to the query. A HAVING clause selects and rejects row groups.

* Sorting. Where you specify a sort order for the query.

+ Joins. This page lets you create multi-table SQL queries (joins).

Interacting with the Source editor

Like other dBASE Plus designers, the SQL designer is a two-way tool. If you open a saved .SQL file in the
designer, or save a new query, any change you make thereafter is immediately reflected in the source file (your
.SQL file), and vice versa.

To view or edit your source file any time, press F12. The source code appears in the Source editor.

Entering data in the SQL designer

As with data entry in the Inspector, it’s important to remember to press Enter after completing a formula or
entering data in an SQL designer grid. If you don’t, the formula or data may not register.

126 dBASE Plus User’s Guide

Running a query from the SQL designer

Running a query from the SQL designer

When you’re designing a query in the SQL designer, you can check the results of your query any time by
pressing F2 or clicking the Run Query button on the toolbar. Results are displayed in a table (default is grid
view). Press F2 again to see your results in a stacked form view. Press F2 again to see a slightly different view.
Pressing F2 once more returns to the grid display.

When viewing your query results you have all of the standard table-editing and navigational tools at your
disposal. For more information on these tools, see Chapter 14, “Editing table data”

To return to the SQL designer from the results table, press Shift+F2 or click the Design Query button on the
toolbar.

Putting your queries to work

There are a number of ways to incorporate your .SQL files into your forms, reports and applications.
The quickest way is to add the name of your .SQL file to the SQL property of a Query object.
To do that,
1 Use the Form or Report designer to open a new form or report.
2 Choose the Data Access tab on the Component palette, and drag a Query object onto your form.
3 Ifit’s not already in view, press F11 to display the Inspector.
4 In the Query object’s SQL property, type:
@mysql.sql

where mysql.sql is the name of your query file.

Using your .SQL files with the SQL Property Builder

You can use your saved SQL statements as templates in the SQL Property Builder.

To do that, use steps 1-3 from the instructions above, but this time click the tool button next to the SQL
property. This opens the SQL Property Builder.

Choose the second option in the builder, SQL Statement File, then click the tool button next to that field. A file
search dialog opens to let you locate your saved .SQL file.

When you load the file, your SQL statement appears in the builder’s edit window. You can then either edit the
statement or click OK to attach it to the Query object.

Even if you edit the statement, your original .SQL file remains intact, available for modification or updating in
the SQL designer or service as a template for another Query object.

Looking at the table pane

The upper portion of the SQL designer, the table pane, is where tables and fields are depicted. This area lets you
select and deselect data for your queries. You can also use these table listings to quickly create joins.

About the table boxes

Each table appears as a scrolling, sizable, collapsible window containing a header with the table name and a list
box containing all of the table’s fields.

Next to each field and table name is a check box. If a table name has a dark blue check mark, all fields from that
table will be in the query. Otherwise, only fields that are checked will be in the query. If at least one, but not all,
fields are checked, the table name will have a light gray check mark.

SQL designer 127

Adding tables in the SQL designer

Dragging the mouse over a table window shows you the full name of the table. For example, the full name for a
customer table might be ":mydb:Customer.dbf".

To view tables in a collapsed mode where only the table name appears, click on the minimize button next to the
table name.

Tables can be joined by dragging a field from one table window to a field in another table window. When two
tables are joined, a join line appears that links the joined tables. For more information on joins, see "Creating
joins in the SQL designer" on page 136.

Adding tables in the SQL designer

Tables are added to a query in the SQL designer by simply adding them to the table pane. In the table pane you
can select some or all fields of one or more tables to be included in the result set. You can also graphically join
one table to another. A table may be added more than once.

To add a table, either click the Add Table icon on the toolbar, either press Ctrl+A, choose SQL | Add Table, or
choose Add Table from the right-click popup menu. When the Add Table dialog appears, select a table from the
list and press Add. You may also to use the Look In list and browse folders to locate additional tables.

When you’re finished adding tables, press Close.

Renaming a table

1 Right-click on the table window and select Edit Table Alias.
2 Type an alias for the table name in the edit box.

Removing a table

1 Right-click on the table window and select Remove Table.

2 A table may also be removed by pressing the Delete button when the table window has focus.

Selecting fields in the SQL designer

In the SQL designer, each table window in the table pane has a table and field name with a check box that
allows you to select some or all fields to be included in the result set.

Selecting all fields in a table

In a table window, click on the table name’s check box to add a blue check mark. A blue check mark indicates
that all fields are selected. Uncheck this box to remove all fields from the query. If the check box has a gray
check mark, only a portion of the fields have been selected to appear in the result set.

The F6 key and spacebar also enable you to toggle field selections.
Selecting all fields automatically adds them to the Selection page.

Selecting individual fields in a table

Check each field you wish to appear in the result set. When a field is checked and unchecked, it is automatically
added to and removed from the Selection page.

Fields can also be selected by dragging them from the table window and dropping them on the Selection page
grid.

128 dBASE Plus User’s Guide

Criteria page (SQL designer)
Reordering selected fields

In the left gray column of the grid, drag the row and drop it at the new location.

Criteria page (SQL designer)

In the SQL designer, the Criteria page allows you to specify selection criteria that the query will use to include
only certain rows of data in the query results. Adding selection criteria to this page adds a WHERE clause to the
query. The criteria can be either a simple expression, an SQL expression, or an exists clause.

» The grid contains the selection criteria by which the query will exclude rows of data.

The drop-down list box specifies whether all, any, none, or not all of the criteria apply.

Figure 10.3SQL Designer Criteria Page

Criteria |se|aa:.1iun| Grouping | Group Criteria | Sorting | Joins |

ALL ¥ | of the tfolicwving criteria are met
Fiedd or 'Value Comgars Field or Yalue

] <

Deleting a row

After selecting the row to delete, right-click and choose Delete Row from the context menu.

Adding selection criteria in the SQL designer

Selection criteria in a query specifies which rows of data are included in the query results. In the SQL designer,
you enter selection criteria into the Criteria page of the Query notebook.

Figure 10.4SQL Designer: Adding criteria

Criteria | Setection | Grouping | Group Criteria | Sorting | Joins |

ALL v | of the tolowing crieria are met

[[Feid or vaiue Compare Field or Value
[-]
Cuglomers.Address A
Customers, Category

Customers. City

Customers. CurrentBaiCee

Customers. Customerhla

Customers. Firsthlame e

SQL designer 129

Adding selection criteria in the SQL designer

Specifying selection criteria

1 In the Criteria page grid, choose the type of criteria you want by right-clicking in the grid and selecting the
appropriate criteria from the grid’s context menu. You may choose from Simple Equation, SQL Expression,
and EXISTS. Each type is described below.

2 Enter criteria into the row according to the type of criteria you have chosen.

Simple Equation

A simple equation compares the values of two values for each row of data. For example,
CustNo >= 1000

The values can be either a field name, constant value or any valid SQL expression. String and date constant
values must be surrounded by single quotes.

When defining a simple equation the grid has three columns: Field or Value, Compare, and Field or Value.
To enter a simple equation:

1 Enter the first field or value you wish to compare into the first Field or Value column. This can be done by
either dragging a field from a table window in the table pane and dropping it onto the Field or Value column,
selecting a field from the drop-down list box, or entering a constant value or valid SQL expression into the
Field or Values column.

2 Select the appropriate comparison operator from the Compare column drop-down list box. You can choose
from =, >, <, >= <=, <>, LIKE, IN, BETWEEN, NOT BETWEEN, IS NULL, or IS NOT NULL.

3 Enter the field or value you wish to compare to the first into the second Field or Value column. This can be
done by either dragging a field from a table window in the table pane and dropping it onto the Field or Value
column, selecting a field from the drop-down list box, or entering a constant value or valid SQL expression
into the Field or Values column.

Remember to press Enter after entering the last element of your equation.

SQL Expression

Enter an SQL expression directly into the SQL Expression column. For example,
((CustNo < 2000) OR (CustNo > 3000))

String and date constant values must be surrounded by single quotes.

EXISTS Clause

Adding an EXISTS clause returns True when the subquery produces at least one row of query results.

When a row has this type of selection criteria, the row in the grid has two columns: Operator and SQL
Expression. Select EXISTS from the Operator column. You can now enter an SQL expression to see if any rows
are produced.

The following example returns all the companies who have placed orders:

SELECT Company FROM Customer.db WHERE EXISTS (SELECT * FROM Orders WHERE Orders.CustNo =
Customer.CustNo)

In the preceding example, you would enter the statement following the ‘EXISTS’ into the SQL Expression
column.

String and date constant values must be surrounded by single quotes.

130 dBASE Plus User’s Guide

Combining selection criteria

Combining selection criteria

Row info

In the SQL designer, when Row Info is enabled, a NOT, OR, or AND are displayed to the left of the grid next to
a row and indicates the rules for combining the criteria rows.

To enable row info, right-click on the grid and select Row Info from the grid’s context menu.

Criteria combo box

To specify how selection criteria rows are combined to form more complex selection criteria, select from the
drop-down list box above the criteria grid.

» ALL. Specifies that all selection criteria in the grid must be true for the combined criteria to be true. With
row info enabled an AND will appear next to each additional row after the first row.

* ANY. Specifies that at least one of the selection criteria in the grid must be true for the combined criteria to
be true. With row info enabled an OR will appear next to each additional row after the first row.

* NONE. Specifies that all of the selection criteria in the grid must be false for the combined criteria to be true.
With row info enabled a NOT will appear next to the first row and an OR will appear next to each additional
row after the first row.

* NOT ALL. Specifies that at least one of the selection criteria in the grid must be false for the combined
criteria to be true. With row info enabled a NOT will appear next to the first row and an AND will appear
next to each additional row after the first row.

Grouping selection criteria in the SQL designer

In the SQL designer, individual selection criteria can be grouped together to form nested selection criteria.
To group selection criteria,

1 Select the rows to group by holding down the Ctrl key and clicking each row you want to select in the drill-
down column. The drill-down column is located in the leftmost column of the grid and doesn’t have a header
description.

2 Right-click in the drill-down column and choose Group Rows from the context menu.

For example, to group the Name and Number criteria into a nested AND statement from the following rows,
hold down the Ctrl key, and click the Name and Number rows in the drill-down column. Right-click in the grid,
and choose Group Rows from the control menu.

Figure 10.5SQL Designer: Group selection
Criteria | Seleetion | Grouping | Group Criteria | Soeting | Joins |
[aLL = | of the tolawing criteria are met

Dorill-chowen
calumn

15000.00

After grouping Name and Number

SQL designer 131

Query operators

Figure 10.6SQL Designer: Grouped

=1 Untitled - 5QL Designer

ALL -;mn1mnwhnm
|5eL Exprariion
F |I,|:t‘us|.mcrs£tp"l TR OR (Customers Salesy T = 15000 000)

Drill-down column

The drill-down column is the leftmost column of the grid and doesn’t have a header description. If the query
contains a nested selection criteria, a dril/l-down arrow appears next to the nested row. Clicking this arrow "drills
down" into the expression. If a grouped expression has already been drilled down, a drill-out arrow appears in
upper left cell of the grid. Clicking this arrow "drills out" the expression.

Ctrl+U and Ctrl+D also allow you to drill up and drill down respectively.
To ungroup selection criteria,

Change the operator in the grouped expression to its opposite. For example, if you have the previous grouped
expression:

(City = ‘Freeport’) OR (Company = ‘Unisco’)
Change the OR to an AND:
(City = ‘Freeport’) AND (Company = ‘Unisco’)

Query operators

132

The following are the operators available in the SQL designer’s Criteria and Group Criteria pages. The Joins
page uses only the standard boolean operators.

Table 10.1 Query operators

Operator Description

> < >= <= <> Standard boolean operators for a comparison test.

LIKE Adds a LIKE clause to the query. Tests whether the data matches the specified pattern.

NOT LIKE Adds a NOT LIKE clause to the query. Tests whether the data value does not match the specified pattern.

IN Adds an IN clause to the query. Tests whether the data matches at least one value in the list of values. To
create this list of values, enter fields and/or values separated by commas into the second Field or Value
column.

NOT IN Adds a NOT IN clause to the query. Tests whether the data does not match any value in the list of values. To
create this list of values, enter fields and/or values separated by commas into the second Field or Value
column.

dBASE Plus User’s Guide

Selection page of the SQL designer

Table 10.1 Query operators

Operator Description

BETWEEN Adds a BETWEEN clause to the query. A BETWEEN clause tests whether the field or value falls within a
specified range of values. For example, you can use this to return the salespeople whose sales are between
$50,000 and $200,000.

NOT BETWEEN Adds a NOT BETWEEN clause to the query. A NOT BETWEEN clause tests whether the field or value is
outside a specified range of values.

IS NULL Adds an IS NULL clause to the query. Tests whether the field or value contains a NULL value.
ISNOT NULL Adds an IS NOT NULL clause to the query. Tests whether the field or value does not contain a NULL
value.

Selection page of the SQL designer

The Selection page in the SQL designer enables you to create summary data. It also allows you to specify a
customized output name for a field or summary data in the query results.

Selecting a field

Select a field from the Field drop-down list box. Fields will be available for each table that appears in the table
pane. A Field may also be dragged from a table window in the table pane and dropped onto the Field column.

Specifying an output name

In the Output Name column for a field or summary, you may enter a name you wish to appear as the title for that
field or summary data rather than using the default.

Producing summary data

Right-click in the grid and select Summary from the context menu. The grid will have three columns: Output
Name, Summary, and Field. Select the appropriate function from the Summary column’s drop-down list box.
You can also drag a field from a table window in the table pane and drop it onto the Field column.

When you add a summary, the SQL designer automatically groups on all of the non-summary fields to satisfy
SQL syntax requirements.

Removing duplicate rows

When the Remove Duplicates box is checked every row in the query results will be unique. Checking this box
adds the DISTINCT keyword to the SQL statement.

Deleting a row

After selecting the row to delete, right-click and choose Delete Row from the context menu.

Grouping page of the SQL designer

The SQL designer Grouping page enables you to create a grouped query. A grouped query groups the data from
the source tables and produces a single summary row for each row group.

Creating a grouped query

To create a grouped query,

1 Select the field or fields you wish to group by from the Output Fields list box.

SQL designer 133

Group criteria page of the SQL designer

2 Click the Add button to move the field to the Grouped On list box. The query will be grouped based on fields
that appear in the Grouped On list box.

To have a field appear in the Output Fields list box, select the field in the Table Pane.

To remove a field from the Grouped On list box, select the field and click the Remove button.

Group criteria page of the SQL designer

The SQL designer Group Criteria page enables you to specify group selection criteria used in the HAVING
clause that the SQL designer adds to the query. A HAVING clause selects and rejects row groups.

The group criteria can be a simple expression, an SQL expression, or a two summary expression. Right-click in
the grid and select the appropriate criteria type from the context menu.

Adding group selection criteria

To change the type of selection criteria, right-click in the grid on the Group Criteria page and select one of the
following from the grid’s context menu.

SQL Expression

Enter an SQL expression directly. For example,
SUM (Qty * Price) > 1000

Simple Having Summary Expression

A Simple Having Summary Expression summarizes the comparison of two fields for each row of data.

When defining a Simple Having Summary Expression the grid has four columns: Summary, Field, Operator,
and Field.

A Field may be dragged from a table window in the table pane and dropped onto a Field column.
To enter a Simple Having Summary Expression,
1 Select the appropriate summary value from the Summary column.

2 Enter the first field you wish the summary to compare. This can be done by either dragging a field from a
table window in the table pane and dropping it onto the Field column or selecting a field from the drop-down
list box.

3 Select the appropriate operator from the Compare column drop-down list box.

4 Enter the second field you wish the summary to compare as described in step 2.

Two Summary Expression

A Two Summary Expression selects and rejects row groups based on the result of the comparison of two
summaries.

When defining a Two Summary Expression, the grid has five columns: Summary, Field, Operator, Summary,
and Field.

A Field may be dragged from a table window in the table pane and dropped onto a Field column.
To enter a Two Summary Expression grouping criteria:
1 Select the appropriate summary value from the Summary column for the first summary to compare.

2 Enter the first field you wish to summarize for the comparison. This can be done by either dragging a field
from a table window in the table pane and dropping it onto the Field column or selecting a field from the
drop-down list box.

3 Select the appropriate operator from the Operator column drop-down list box. This operator defines the type
of comparison between the two summaries.

134 dBASE Plus User’s Guide

Sorting page of the SQL designer

4 Seclect the appropriate summary value from the Summary column for the second summary to compare.

5 Enter the second field you wish to summarize for the comparison as described in step 2.

Combining group criteria

To specify how the selection criteria are combined to form more complex selection criteria, select from the
drop-down list box above the criteria grid.

* ALL Specifies that all selection criteria in the grid must be true for the combined criteria to be true.

* ANY Specifies that at least one of the selection criteria in the grid must be true for the combined criteria to be
true.

* NONE Specifies that all of the selection criteria in the grid must be false for the combined criteria to be true.

* NOT ALL Specifies that at least on of the selection criteria in the grid must be false for the combined criteria
to be true.

Deleting a row

After selecting the row to delete, right-click and choose Delete Row from the context menu.

Sorting page of the SQL designer

The Sorting page enables you to specify a sort order for the query.
To sort query results

1 Select the field you wish to sort by from the Output Fields list box.
2 Click the Add button to move the field to the Sorted By list box.
Toggling the sort order

Double click on the field in the Sorted by list box. To change sort order, you may also select the field and then
to the left of the list box click on the A-Z for ascending order and Z-A for descending order.

Sorting on multiple fields

Simply add more fields to the Sorted By list box. The query will be sorted based on order of the fields that
appear in the Sort By list box.

Adding a field to the Output Fields list box
Select the field in the Table Pane.

Removing a field from the Sorted By list box
Select the field and click the Remove button.
Reordering fields in the Sorted By list box

1 Select the field to move in the Sorted By list box.

2 Click on the gray up arrow to left of the list box to move the field up in the sort order. Click on the gray up/
down arrow to the left of the list box to move the field down in the sort order.

Joins page of the SQL designer

The SQL designer Joins page lets you create multi-table SQL queries (joins). See “Creating joins in the SQL
designer” on page 136. for steps on how to create a join.

SQL designer 135

Creating joins in the SQL designer

Note

Including Unmatched Rows

These check boxes allow you to specify full, left, and right outer joins. If only the first check box is checked, a
left outer join is added to the query. If only the second check box is checked, a right outer join is added to the
query. If both check boxes are checked, a full outer join is added to the query. If neither box is checked (the
default), an inner join is added to the query.

The SQL1 standard doesn’t include an outer join in its specifications. Some SQL servers have restrictions on
outer joins and some don’t allow outer joins. Please see your server documentation for information on its
support for outer joins.

Join list box

This box appears above the grid and allows you to specify a particular join. When you select a join in this box,
both tables in the join appear. When a join is selected, the grid contains the field information for that particular
join.

Joins grid

The Joins grid contains three columns: Field, Operator, and Field.
To have a field appear as a choice in the Fields column drop-down list boxes, select the field in the Table Pane.

The operator column allows you to specify a comparison operator for the join. You may choose from =, <, >,
<=,>=, and <>.

Deleting a join

To delete a join, in the table pane, right-click on the join line between the two joined tables, and choose Delete
Join from the context menu.

Deleting a row

After selecting the row to delete, right-click and choose Delete Row from the context menu.

Creating joins in the SQL designer

In the SQL designer, fields can be linked by dragging one or more fields from one table to the fields on another
table. Graphically, a join is indicated by a single line that connects the two table windows at their table name.

Each linked field pair in the join is added as a separate row to the Joins page grid. When a join line is selected in
the table pane, the join list box (above the Join page grid) will contain the two joined tables.

To create a join
1 In the first Field column, select the field you want to match from the first table.
2 In the Op column, select the appropriate type of match. You may choose from =, <, >, <=, >=, and <>.

3 In the second Field column, select the field you want to match from the second table.

136 dBASE Plus User’s Guide

Chapter

11

Designing reports

Reports provide non-editable views of data for formatted print or screen output. You can create reports to
answer questions that may involve elaborate queries across a range of databases. A report can focus and
manipulate data in many useful ways.

Tip In addition to the Designers outlined in this chapter, dQuery/Web offers "No-Click Reports", a quick and easy
way to generate reports.

This group of topics shows you how to

* Use the Report wizard to automatically generate reports (using the wizard is the recommended way to begin
creating a report)

» Understand the Report designer structure and objects

* Modify a report, changing its appearance and functionality

* Perform aggregate calculations

* Use multiple streamFrames that point to the same or different rowsets
» Create a variety of specialty labels by using the Label wizard

For information on linking a report to tables see, “Linking a form or report to tables” on page 74. For
information on creating master-detail relationships, see, “Creating master-detail relationships (overview)” on
page 76.

Before you can link a report to a client/server database, the database must be assigned an alias in the BDE. For
details on linking dBASE Plus to a client/server database, see, “How to connect to an SQL database server” on
page 34.

Note After you have created a report with the look and functionality you want, you can save that report as a custom
report (.CRP) and use it as a template for subsequent reports. For instructions on how to create a custom report,
see, “Creating a custom form, report, or data module class” on page 66.

Report wizard

You can quickly create useful reports by using the Report wizard. You specify which table or query contains the
data you want to display in the report, and the wizard links to it automatically. The rest of the wizard’s options
let you do the following:

» Display detail rows or just summary information.

» Specify fields to be included in the report.

* Group the report by specific fields. You can nest subgroups within groups.

» Choose aggregate operations that can be applied both to a group and to the entire report.

» Specify layout style, including a drill-down option, which displays summary information at the top of the
page and details farther down.

Designing reports 137

Example of a report created with the Report wizard

» Specify a report title.
* Include the date.
* Include page numbers, which causes the report to display one screen full at a time.

The Report wizard does so much that for many reports you won’t need to go any further. You can, however, add
complex query statements to your reports by writing code or using the SQL designer to generate SQL
statements. And you can add advanced reporting capabilities, as needed, in the Report designer.

It’s easiest to begin creating a report by using the Report wizard. You can then modify the design in the Report
designer. By using code, you can add a great deal of analysis to your reports and provide more sophisticated and
useful pictures of the data in one or more tables.

To use the Report wizard

1 Choose File | New | Report. Or, double-click the leftmost Untitled icon on the Reports page of the Navigator.
The New Report dialog box appears.

2 Click the Wizard button.
For help on any wizard page, click the Help button on that page.

Example of a report created with the Report wizard

This example uses a GOODS.DBF table that might be used by a Purchasing Department to track current
inventory levels. The report answers these questions: What are the total quantities on hand of each furniture
type, and what is the cost per unit. Here is the final report:

Figure 11.1Wizard-generated report on a GOODS table

Goods
021372002
This reportis

Part Mame: BOOKCASE grouped by Part
Partild PartMName Price Qty Onhand Marne
C-300-2020 BOOKCASE 250.00 0
C-300-2040 BOOKCASE 325.00 0
C-300-4010 BOOKCASE £00.00 10
C-300-4000 BOOKCASE | £50.00 12 The unnecessary

Surn of Gty Onhand: 22.00 repetition of this field

can be carrected in
Fart Mame: CHAIR-DESK the Report Desighear.
C-222.1000 CHAIR-DESK 1750.00 2
C-222-1001 CHAIR-DESK 1750.00 1
C-222-2000 CHAIR-DESK 1300.00 3
C-222-2010 CHAIR-DESK 1300.00 0
C-222.2020 CHAIR-DESK 1200.00 0
: The agaregate

surm of Gty Onhand: 600 —3 operation, Surm. was
Part Mame: CHAIR-SIDE performed on the Gty
£-222-3000 CHAIR-SIDE 500,00 o> | Onhand field

L4 »

The report displays a heading for each furniture type, listing the individual styles below each heading. Grouping
by furniture type lets you do subtotals, and several other calculations, for each type.

Aggregate operations analyze the values of a selected summary field within a group or over the entire report.
You can use any field in a table, even if it is not included in the report. Also, you do not have to specify a field
for grouping to use it as a summary field.

138 dBASE Plus User’s Guide

Example of a report created with the Report wizard

The Qty Onhand field was selected from step 5 of the wizard, and Sum was selected as the Aggregate
Operation. This totaled the values in the Qty Onhand field for each grouping of rows, so that a total of the Qty
Onhand column appears in each Part Name group.

Because the report is grouped by Part Name, the Part Name column is redundant. To delete a column, see
“Deleting columns (fields) from a report” on page 141.

Wizard-generated Summary Report

This variation of a wizard-generated report on GOODS.DBF, is the most direct way of answering the question:
What is our inventory of each furniture type and what is our total inventory for all units. The finished report
looks like

Figure 11.2Wizard-generated Summary Report

B Goods =

Goods
21 3002

When the wizard's
Part Name: BOOKCASE SUINSr. Oply DRMQTLS
" Ao El.h 4 — chosen, field details are

um of Uiy Onhan 5 nat dizplayed.

Part Name. CHAIR-DESK)

Thiz report shows
Sum of Qty Onhand 6.00 ancther wizard option,
Part Name: CHAIR-SIDE - [eeclmnasiannlt
Sum of 1y Onhand 0.00
Part Mame: TABLE-EMD
Sum of Oty Onhand 12.00 - The wizard lets you
Grand summary: Sum of Gty Onhand 125.00 specify both group and

3 grand summary aggregate
2 3 operations.

In the wizard, the Qty Onhand field was specified as the summary field for the Part Name group. Sum was
chosen as the aggregate operation for this field.

To create the grand total, <Grand Summary> was chosen from the Group drop-down list in step 5. Qty Onhand
was selected in the Available Fields box, Sum was chosen from the Available Aggregates list, and the right
arrow (>) button was clicked to add the Qty Onhand field to the Summary box, as shown below. The Qty
Onhand field’s associated aggregate operation then appears in the Selected Summary Aggregate box

Designing reports 139

Report designer elements

Figure 11.3Adding grand total in the Report wizard

Report Wizard - Step 5of 7 D(__| Chonse «Grand

Summaty= inthe group
b Choase the summary information bo display for each gioup. a5 | boee to perform the
weell & fior the entine report.
selected aggregate

operation over all the
GroupE.

Groupe
[<Giand Summinaiys |

Sum was selected as
the available aggregate,
then QTY ORHAMD
was double clicked to
add it to the Summary
list.

Available sggregates Selecled sumemary sggregate: To change an operstion
Sum =] | Sum - "o a il in the
summary box, choose
Hel | ;g:m thiz drop-dowen

Report designer elements

The Report designer provides a visual design surface where you can modify reports created with the Report
wizard and build new reports from scratch.

The Report and Group panes

You can view the report in two panes:
* The Report pane, where you visually design the report
* The Group pane, which displays the hierarchy of the groups in the report.

When you first open the Report designer, the split bar between the panes appears at the far left edge of the
Report designer window. To open the Group pane, drag the split bar to the right..

Figure 11.4Report in Design mode with Group view displayed

& Untitled - Report Designer EI@I]ZI

L
] |Part Mame: BOOKCASE a5
] Partld “Part Name . Price Qty
J I 1C-300-2020 * BOOKCASE a 250000
I3k | 'IZ 300-2040 TBOOKCASE | | 325.00
= | C-300-4010 TBOOKCASE | | 500.00_
] |,-:-3|:mm:| _BOOKCASE : 550,007
__ 5:. o g L e Sum of Gty Onhand:
ek, |
part Name: CHAIR-DESK _ _
i |I2 -222-1000 CH-d.lR DESK | 1750.00

The Group pane shows the hierarchy of objects in the report.

140 dBASE Plus User’s Guide

Modifying report in the Report designer

* The dotted-line frame labeled Pagetemplatel is the report object that determines the appearance of the page,
such as the background color. Here is where you would place a report title. A report may include more than
one pageTemplate object, so that different pages can have different layouts.

When creating a report, you place data access components on the pageTemplate object.

* The inner dotted-line frame with the vertical label Streamframel is a streamFrame object. This object
displays rowset data that is streamed from linked tables (specified in its streamSource property). One or more
streamFrame objects may be contained within the pageTemplate object. Whatever is placed in the
streamFrame area of a report will be displayed when the report is printed.

If you’re using standard user interface components, place them on the streamFrame.

* The Groupl-Headerband displays the label of the grouped field. Groups are contained in a streamSource
object and rendered in a streamFrame object.

* The detailBands are the streamFrame objects that contain the rowsets streamed from the linked table. Each
detailBand contains data from an individual row in the table.

The Report pane shows the report appearance with the corresponding structures shown in the Group pane
marked.

» The outer dotted area represents the margins of the actual report page (the pageTemplate object).
* The inner dotted line represents the data rows of the report (the streamFrame object).

* The individual fields of the row are columns in the report (the detailBand objects).

Modifying report in the Report designer

This section illustrates how to use the Report designer to modify the design and adjust the appearance of a
report.

Deleting columns (fields) from a report

To delete a column,
1 Click in the column beneath the column heading to select the column, and press Delete.
2 Click the column heading itself, and press Delete. The remaining columns stay where they are.

If you make a mistake and delete the wrong object, choose Edit | Undo Delete.

Adding columns (fields) to a report

Once you have created a live Query object on a report (usually by dragging the desired table icon to the designer
surface), the Field palette is populated with live fields linked to the table data. When you drag a field from the
palette to the design surface, a detailBand is created to display the field as a column in the report. The column is
linked to the table’s field by a codeblock in the fext property of the detailBand’s Text object.

To add a column,

1 Make sure the report has a Query object whose active property is set to true and that returns a rowset from
the desired table.

2 Display the Field palette (View | Tool Windows, and check Field Palette—Report/Label Designer). The
palette shows the active fields of the linked table as Text components

3 Drag the desired Field component from the palette to the report.

When you drag a live Field component to a report, the field’s name is automatically added as a column heading.
To specify placement (or omission) of the automatic column label, choose Tool Windows | Customize Tool
Windows and specify your preference on the Field Palettes page.

Designing reports 141

Modifying report in the Report designer

Figure 11.5Field Palette containing active fields

ield Palette [x

Goods |
= Myhen you drag one of these fields
& Pointer A PART_ID onto & report, a column iz crested
A DATE_ORDER A PART_MAME weith its Text property set to this
A DESCRIPT A LEAD_TIME field.
A FRICE A OTv_20RDER

A OTY_ONHEND A VEMDOR_ID
A DISCOMTINU A COST
A COMMEMTS

If you need to move the added column, remember to reposition its heading, as well.

Suppressing duplicate field values

To suppress duplicate field values, set the suppresslfDuplicate property of a detailBand’s Text object to true.

Displaying default values in a blank report field

To display a default value in a report to substitute for blank values in a field,

1 Determine the field in which you want to display the default value, and select that field’s Text object in the
Inspector (streamSourcel.detailBand.<text object>). This example uses the NAME field from the query
object, queryl.

2 Enter an appropriate codeblock into the fext property of the Text object (click the tool button in the property
box). For example, the following code displays No Value for every blank value in the field:

{|Ithis.form.query1.rowset.fields["NAME"].value =="" ? "No Value":
this.form.query1.rowset.fields["NAME"].value}

Adding a floating dollar sign to field values in reports

To add a floating dollar sign to the values in a field,

1 Select the field (represented on the report by a Text object).

2 In the Inspector, select the Text object’s picture property under the Edit category.
3 Click the tool button to display the Template Property Builder.

4 Sclect the Numeric page.

5 Choose the @$ symbol from the Template Symbols box.

You can also do this by using the Code Block Builder to create the code.

Adding page numbers

To include a page number on each page of a report, drag the PageNumber component (from the Component
palette’s Custom page) to the report page, positioning it where you want the number to appear. (This is a custom
component installed with the dBASE Plus samples.)

142 dBASE Plus User’s Guide

Modifying report in the Report designer

Creating a page number from scratch

1 Place a Text component on the report's page (on the pageTemplate object).
2 Open the Inspector and make sure that the newly added Text component has focus.

3 Locate the text property in the Inspector, and click on the type selection drop-down button (Shaped like a
down arrow with the letter "T" on it) and choose Codeblock from the drop-down list.

4 Click on the wrench tool for the text property to open the Code Block Builder.
5 Delete the default text including the quotes and enter the following:
this.parent.parent.reportPage

Make sure the Expression radio button is selected, and press the OK button to close the dialog

Drill-down reports

Drill-down reports display summary information for a report at the beginning of the report. The details of the
report appear toward the bottom. Hence the name drill-down—users can drill down from the summary at the top
to the details at the bottom.

The Report wizard offers you the option to create a drill-down report. You can also create a drill-down report in
the Report designer.

Controlling drill-down reports in the Report designer

In the Report designer (or if you print the report), the summary information of the report is in the headerBand
and footerBand of the reportGroup class. The details of the report are in the detailBand.

In a non-drill-down report, the bands are rendered in this order (this example groups on STATE):

headerBand for report's reportGroup
headerBand for state of "CA"
detailBand 1 for state of "CA"
detailBand 2 for state of "CA"
detailBand n for state of "CA"
footerBand for state of "CA"
headerBand for state of "PA"
detailBand 1 for state of "PA"
detailBand n for state of "PA"

10 footerBand for state of "PA"

11 footerBand for report's reportGroup

OCONORNARWN-=

However, in the drill-down report, the bands are rendered in this order:

headerBand for report's reportGroup
footerBand for report's reportGroup
headerBand for state of "CA"
footerBand for state of "CA"
headerBand for state of "PA"
footerBand for state of "PA"
detailBand 1 for state of "CA"
detailBand 2 for state of "CA"
detailBand n for state of "CA"

10 detailBand 1 for state of "PA"

11 detailBand n for state of "PA"

OCONORNARWN-=

...and so on

Designing reports 143

Modifying report in the Report designer

Important

The drillDown property

You can control the way the drill-down feature works by setting the drillDown property on the reportGroup
class. This property is an enumerated type, with the following possible values:

Table 11.1 Values for the drillDown property

Value What happened
0 None (not a drill-down report)

1 Drilldown (standard drill-down report) All the headers and footers are rendered first, and then the details
2 Drilldown (repeat header) The same as 1, but the headers are rendered again with the details
3 Drilldown (repeat footer) The same as 1, but the footers are rendered again with the details
4 Drilldown (repeat header and footer) The same as 1, but the footers and headers are rendered again with the details

Adding standard components to a report

By adding components from the Report’s component palette, you can extend a report’s functionality so that it
can do some of the same things a form can do.

When working with components in Reports, keep these points in mind:

* Report components may be placed only on a pageTemplate, not on a band.

* When you copy and paste a component, its object hierarchy may vary in the following ways:
o Its parent will be the parent of the currently selected component; or,

+ If the currently selected object can hold a component (a pageTemplate), then that object will be the parent;
or,

» If nothing is selected, then the pageTemplate will be the parent.
* Mouse events of a component whose parent is a band are not available.
» All components available for use on reports have canRender() and onRender() events.

» Components on a pageTemplate can be referenced directly as well as through an elements array (as in
forms).

« If you do not want a report component to be printed, set the component’s printable property to false.

Changing the report’s appearance

You can place data from any source in streamFrames that can be sized and positioned anywhere on the report
page. You can create a variety of borders around streamFrames, labels, or fields. You can control all aspects of
the appearance of text. And you can specify colors for the entire report’s background, for text, and for
streamFrames.

Creating report borders

dBASE Plus offers a choice of several different styles of borders. You can create borders around all report fields
and columns and labels at once or around individual objects to set off things like grand totals. You can also
place borders around streamframes (giving groups a boxed appearance).

To set borders around each column in the report, set the report’s form.PageTemplatel gridLineWidth property
to a positive number. (gridLineWidth is in the Inspector’s Miscellaneous category.)

To create a border around an individual object, including a streamframe, select the object and set its borderStyle
property to one of the styles in the drop-down list beside the property. (borderStyle is in the Inspector’s Visual
category.)

For no border, set borderStyle to zero.

144 dBASE Plus User’s Guide

Performing aggregate (summary) calculations

Setting background color in reports

To set a report’s background color,

1 Select the report’s PageTemplate object in the Inspector (form.PageTemplatel).

2 Click the wrench tool beside the colorNormal property to display the Color Property Builder.

3 Select a color, or create your own, and choose OK.

Setting background image in reports

To set a report’s background image,

1 Select the report’s PageTemplate object in the Inspector (form.PageTemplatel).

2 Click the wrench tool beside the background property to display the Image Property Builder.

3 Click the wrench tool beside the Image box of this dialog box to browse for an image file. As soon as you
select it, you can see the background image in the Report designer.

Performing aggregate (summary) calculations

You can perform aggregate calculations (sum, minimum, maximum, count, average, standard deviation,
variance) on fields within groups in a report and for the report as a whole.

To do aggregate calculations you must first specify a group of fields on which to perform the summary
operation (unless you are summarizing data for the entire report).

To perform an aggregate operation,
1 Choose Layout | Add Groups And Summaries

2 On the Group page of the dialog box, select the field or fields on which you want to group the data. If you are
going to do only a grand summary over the entire report (such as a grand total), then skip this step.

3 Click the Summaries tab of the dialog box.
Figure 11.6Aggregate calculation on a Report

Add Groups and Summaries E
Groups Summaries |
} Chooss the summany information bo display lor each group, &5
well az fior the entre napoat.
Groups: You can always choose
[-PAHT HAME _I =iGrand Summary= here to
Available felds: Summaty: dizplay & grand total over
FRICE ¥ all groups &t the bottom of
OTY _20RDER ;I the report.
' OHHAND
WEMDOR_ID il
DISCOMTIMU :
COsT e _ﬂJ
Avalable aggegates 7 Selected summarny aggregate:
[Sum -] — [~} s box shows the
T operation selected for the
I_I field currently highlighted in
oK Cancel | Heb | the Summary ko,

4 From the Group drop-down list, select the group on which you want to perform an aggregate operation.
(Grand Summary is always available.)

5 From the Available Fields list, select the field on which you want to perform the operation.

6 From the Available Aggregates drop-down list, select an operation.

Designing reports 145

Designing a report with multiple streamFrames

7 Click the arrow button to move the field and its operation to the Summary list.
8 Repeat for as many fields as you want.

If you want to change the aggregate summary operation for a field already in the Summary box, select that field
in the Summary box and use the drop-down list below it to select a new operation.

If you need very sophisticated calculations beyond the operations offered in the Available Aggregates box, you
could also create summary calculations in fields by writing methods for their events. Select the object linked to
the field, and type your code into one of its report-specific events, such as

* onDesignOpen, activated on opening a report
» preRender, activated before a report runs

* canRender, activated before a component is rendered, to determine whether the component will be displayed.

Designing a report with multiple streamFrames

The streamFrame object makes it possible to create a rectangular area of any size or position to display data
rows from a linked rowset (which is set in the streamFrame’s streamSource’s rowset property).

For example, the Label wizard adds several streamFrames to a report, with their common streamSource
pointing to the same rowset of customer addresses. By sizing each streamFrame to match sheets of adhesive
labels, the wizard can create a report that prints a set of mailing labels.

To add a second streamFrame to an existing report,

1 From the Component palette, Report page, drag the streamFrame component to the design surface of the
report.

2 The streamFrame object appears closed, as a box. You can drag this box diagonally to any desired size.

In addition, by using the Source editor, you can create additional streamFrames and set each streamFrame’s
streamSource property to point to different rowsets. For example, you could add two streamFrame objects side-
by-side on a report, with one frame displaying sales representatives grouped by city and the adjacent frame
displaying prospective customers grouped by city.

Creating printed labels

The easiest way to create mailing labels and many other types of printed labels is by using the Label wizard.
Choose File | New | Labels or double-click the Label icon on the Reports page of the Navigator, then choose
Wizard. After you select the table or query file you want to use, the wizard does the following:

* Sets up a common address format for you, or you can create your own format
» Sorts the labels on a field you specify

» Sets up the page for the type of label sheets you have (many choices)

» Lets you create a calculated field

Labels are a type of report, given the extension .LAB. Label files you create are listed on the Reports page of the
Navigator.

If you choose to modify labels after using the wizard, or if you design them from scratch, you’ll be working in
the Label designer. The Label designer is similar to the Report designer, except that you have additional choices
on the menu.

146 dBASE Plus User’s Guide

Chapter

12

Introduction to designing tables in
dBASE Plus

The foundation of any application is the system of tables that store the data. dBASE Plus gives you powerful
tools for creating and managing databases, whether your application needs a simple table or complete access to
an enterprise client/server database system.

This section is a conceptual introduction to designing and creating tables:
* Table terms and concepts
» Table design guidelines

» Table structure concepts

Terms and concepts

You should know these essential terms:

* An application is a complete system of tables and related forms, queries, reports and other components that
handles a data management need.

* A database is a collection of one or more fables that store and classify information, plus related files such as
index, graphic, and memo files. Each dBASE table in a database is a distinct file with a .DBF extension.

* A table consists of one or more horizontal rows (sometimes known as records) that contain information
about a specific person, place, or thing.

» Each row contains one or more fields. A field contains one category of information, such as a person’s name,
a phone number, or an invoice date.

» A field type describes the kind of information stored in the field; for example, date, character, logical,
numeric.

When you first create the table, you choose a fable type. Your choices are standard tables (. DBF and .DB) and
other supported databases for which you have configured a BDE alias (see, “Supported table types” on page
153). Then you define each field’s name, field type, width, and decimal (if a numeric or float field). You can
also create an index on the field, which lets you arrange rows in a useful order.

The dBASE Plus interface adjusts automatically to accommodate the type of table you are working with. For
example, if the table you are working with supports data entry constraints, you can specify them in the Inspector
while designing a Table. Otherwise, data entry constraints are unavailable in the Table designer.

Introduction to designing tables in dBASE Plus 147

Table design guidelines

Figure 12.1Components of a Table

B :SAMPLES :customers.dbf - Table

CustomerNo :‘-‘:ate gory LastName Firsthame iAddrm

[['Residential 'Manzone Jaime 512 Kain Aye —
il 2 |Edueational Huntington Sehool District 404 Block Rd.
] 3 Commercial Sofiviares Inc. B989 Harbinger Way

4 Residential Al Delones 0B Cwerbrook Road
il 5 |Residential ooD DoD 056 Tualitin Rd
il E Educational Martin Sweet School 9055 South Bth Strest

7 Commercial EEE 55 Commercial Court
] B Residential kazherg Alan 4099 Reynolds Rd
= 9 Residential ccc ALA 33 Old Country Road

10 Residential Braveheart Oliar 204 19th Street
] 21 Commercial Katz Alan 505 Main]
Al +]
— Field name Rowws [records)

[column heading)

Table design guidelines

The following sections illustrate typical design issues using a hypothetical small business, a shop that sells
diving equipment.

Identifying the information to store

To develop a system of tables for an application, begin by identifying all of the relevant information you need to
manage—unnecessary data wastes disk space and distracts users from the task at hand.

You might start by looking at the order form you use day to day. Write down all the information you think you
need, without attempting to organize it yet, as shown in the following example:

* Products ordered

* Customer name, address, phone number, credit standing
* Order number

» Shipping information, including when it was shipped

* Products purchased

* Purchase date and time

+ Salesperson taking the order

» Customer signature

* Special notes about the customer

Next, review this list to see what’s really relevant and what you can do without. For example, the name of the
salesperson taking the order might not be important, or you might decide you don’t need to track the exact time
of purchase.

Classifying information

After you identify the information you need, review the list and begin to classify the information into distinct
groups. Identify the separate entities (such as persons, places, and things) and activities (such as events,
transactions, and other occurrences). In general, each table should contain only one kind of entity or activity.
The fields in each table identify the attributes of that entity or activity.

148 dBASE Plus User’s Guide

Table design guidelines

Reviewing the list in the previous topic reveals two separate entities (customers and products) and one separate
activity (orders). Each of these components has unique attributes. When you reorganize the list according to
these categories, you might come up with a new list similar to the following one:

» Customers, including customer name, address, city, state, postal code, phone number, credit standing,
signature, notes, and so on

* Orders, including order date, order number, sales date, amount paid, and so on

* Products ordered, including product name, sales price, quantity ordered, and so on

Determining relationships among tables

To better define your tables, you need to determine how they relate to each other.

Single versus multiple tables

Each table should have a specific purpose. It’s often better to create several small tables and link them together,
rather than try to store everything in one large table. Keeping everything in a single large table usually forces
you to store redundant data.

For example, if you stored the complete customer information with each order, you would be entering the
customer’s name and address with every order. Not only does this procedure invite errors, but it makes it
difficult to update information if something as simple as a customer’s phone number should change. In addition,
redundant data wastes disk space.

Use multiple tables to minimize the amount of data that appears more than once. By storing the name and
address information once in a Customer table, you have only one location to update if that information changes.
When a customer places an order, the order information goes in a separate table that can be linked to the name
and address table.

In our sample case, three distinct tables have emerged to contain data: one for customers, another for orders, and
one for the items ordered. We can call the tables Customer, Orders, and Lineitem.

One-to-one and one-to-many relationships

With multiple tables in an application, it’s important to understand the relationships among entities and
activities. In each relationship, is there a one-to-one correspondence, or does an entry in one correspond to many
entries in another? Or is there no direct relationship?

Figure 12.20ne-to-many relationships

Customer ID |Last Name |In'-.rui[:e ID |Item ID |l‘.]ty' |
t _he (B 7 <) 3 2
Each customer (4 can L4 4 1
biarve multiple invoices (B) __ T 14 3 12
- 23 4 4
| R
L B—43] 4 1
| 5 1
L = —
Each invoice (B) can — B8 (0] 1 1
contain mutiple tems (C) G 1

For example, a customer can place several orders, and an order can contain one or more items. These are one-to-
many relationships. Each order is associated with one customer, a one-to-one relationship.

The query might then relate three tables:
» From the Customer table comes the customer name, NAME
* From the Orders table comes the order number ORDER _NO

Introduction to designing tables in dBASE Plus 149

Table design guidelines

* From the Lineitem table comes the stock number STOCK NO and selling price, SELL_PRICE.

The query results show each customer name followed by many orders, and under the orders, a list of the items
and prices in the order (Figure 12.2).

Parent and child tables

When you relate two tables in a query, form, report, or data module, you establish one as the parent and the
other as the child table. As you select a row from the parent table, you see the corresponding child row or rows.

Linking tables in a parent-child relationship lets you easily find rows in the child table. For example, you can set
up the Customer table as the parent, and Orders as the child. Then, when you move to a new row in the
Customer table, the row pointer in the Orders table moves to the orders for that customer automatically.
Similarly, the Orders table becomes the parent to the Lineitem table, so that selecting an order also selects the
items in the order.

The parent and child tables are linked on a common field, called the linking field. In our example, a query links
the Customer and Orders tables on the CUSTOMER N (customer number) field. In dBASE Plus, the linking
field in the child table must have an index. As the example shows, a single table can be both parent and child in
the same query.

Minimizing redundancy

Using multiple tables reduces redundant information. In addition, don’t store information you can easily
calculate, unless the calculation requires excessive processing effort or you need an audit trail. For example, if
you were creating tables for our hypothetical dive shop, you might want to store the total invoice amount, but
not the total sales tax, which dBASE Plus can easily calculate.

In general, indexed fields that are used for linking should be the only fields that contain redundant information
in related tables. Identical data in index fields is necessary for linking tables. In this example, it is the way to
identify the same customer in both tables.

Choosing index fields

Indexes make it easier and faster to process information in a table. With multiple tables, indexes are also
necessary to link related tables together. Most tables should have at least one index, to organize rows and link to
related tables, but too many indexes can slow performance.

To identify which fields to index, ask the following questions:

* What will users know when they search for information? For example, in the dive shop tables, users might

want to search for a customer name, customer number, order number, or order date. Consider indexing on
these fields.

* What are the common threads that tie the information together? For example, a customer number could be a
common field between the Orders table and the Customer table, and the order number could be a common
field between the Orders table and the Lineitem table.

For more about indexes, see page 159.

Defining individual fields

For each field, you define its name, type, size, decimals (if a numeric or float field), and index (optional). The
specifics of field types are discussed in the following section. Here are some overall guidelines:

+ Use one piece of information per field. For example, put city, state, zip code, and country data into separate
fields, because you might want to process the information in each field separately. However, do not split
certain information, such as street number and street name, unless you need to process rows by street name or
street number separately.

» Keep ficld sizes to a minimum, without being excessively restrictive, to conserve disk space. If you intend to
total a numeric field, you must define a field large enough to hold the total, not just individual values.

150 dBASE Plus User’s Guide

Table structure concepts

» For indexed fields, use abbreviated codes instead of long character fields wherever possible. For example,
instead of duplicating the entire customer name in every order, use a short customer code to simplify data
entry, indexing, and linking. This results in more efficient indexes and makes it easier to update information.

* Define fields in a logical order in the table. The order you define is the default way in which users will see
the table. In general, put indexed fields toward the beginning of the table, and put similar information
together in a sensible sequence.

» Use descriptive, unique field names. Be consistent when naming fields that contain similar data. Standardize
field names shared across tables if possible (this is not permitted with some SQL databases).

Table structure concepts

This section provides a general overview of basic table structure, with specific reference to the dBASE 7 table
type.

Table names

See your database software documentation to determine valid file names for its tables. For example, an Access
table has no extension requirement because it is stored within an Access database with an .MDB extension. On
the other hand,.DB is the required extension for Paradox tables and .DBF for dBASE tables.

The table name should indicate its purpose and be easy to remember. For example, if a table contains employee
information, you might call it EMPLOYEE.DBF.

Table types

The fable type determines the file format of a table. See “Supported table types” on page 153.

The table type you define depends on the way you plan to use the table. If you expect to use the table only with
dBASE Plus applications, the dBASE Level 7 format is recommended for its flexibility and rich feature set. If
the table is to be shared with other applications, consider the most useful format for all applications involved.

The dBASE Level 7 format offers all the features of the previous dBASE file formats, including expression
indexes and extensive table-, row-, and field-level security.

The dBASE Plus interface adjusts automatically to accommodate the type of table you are using. For example, if
the table with which you are working supports it, you can specify data-entry constraints in the Inspector while
working in the Table designer. Otherwise, data-entry constraints are unavailable in the Table designer.

Field types

Each field has a defined field type, which determines the kind of information it can store. For example, a
character field accepts all printable characters including spaces. You can define up to 1,024 fields in a table.

A dBASE (.DBF) table can contain the following field types.

Table 12.1 dBASE field types for level 7 tables

Default Maximum Index
Field type size size allowed? Allowable values
Character 10 characters 254 characters Yes All keyboard characters
Numeric 10 digits, 20 digits Yes Positive or negative numbers
0 decimal
Float 10 digits, 20 digits Yes Positive or negative numbers. Identical to Numeric;
0 decimal maintained for compatibility.
Long 4 bytes N/A Yes Signed 32 bit integer, range approximately +/-2 billion.
Optimized for speed.
Double 8 bytes N/A Yes Positive or negative number. Optimized for speed.

Introduction to designing tables in dBASE Plus 151

Table structure concepts

Table 12.1 dBASE field types for level 7 tables

Default Maximum Index

Field type size size allowed? Allowable values

Autolncrement 4 bytes N/A Yes Contains long integer values in a read-only (non-editable)
field, beginning with the number 1 and automatically
incrementing up to approximately 2 billion. Deleting a row
does not change the field values of other rows. Be aware
that adding an autoincrement field will pack the table.

Date 8 bytes N/A Yes Any date from AD 1 to AD 9999

TimeStamp 8 bytes N/A Yes Date/Time stamp, including the Date format plus hours,
minutes, and seconds, such as HH:MM:SS

Logical 1 byte N/A No True (T, t), false (F, 1), yes (Y, y), and no (N, n)

Memo 10 bytes N/A No Usually just text, but all keyboard characters; can contain
binary data (but using binary field is preferred)

Binary 10 bytes N/A No Binary files (sound and image data, for example)

OLE 10 bytes N/A No OLE objects from other Windows applications

The field type determines what you can do with the information in the field. For example, you can perform
mathematical calculations on values in a numeric field, but not on values in a logical field.

The field type also determines how the data appears in the field. For example, a date field, by default, displays
dates in the MM/DD/YY format (such as 02/14/96). The display of field data is also affected by the settings of
the Windows control panel and the settings defined by using the BDE Administrator.

Other table types, such as SQL tables, may have different field types. Refer to your server documentation for
specific details.

152 dBASE Plus User’s Guide

Chapter

13

Creating tables

This chapter describes the dBASE Plus Table wizard, designer, and other tools for designing table structures.
Here you will find procedures for creating structures, indexes, and performing other database design tasks. It
assumes you are familiar with the basics of table design presented in Chapter 12, “Introduction to designing
tables in dBASE Plus”, and covers the following topics:

Supported table types

Using the Table wizard

Using the Table designer
User-interface in the Table designer
Restructuring tables (overview)
Creating custom field attributes
Specifying data constraints
Creating and maintaining indexes

Referential integrity

Supported table types

dBASE Plus provides a Table wizard and Table designer to quickly create tables in any supported table format.
Although a particular database application may provide the fullest support for its native format, you can
conveniently lay out the basic structure of its tables in the dBASE Plus Table designer and view any table in Run
mode.

All table access is handled through the Borland Database Engine (BDE), which includes drivers to support
the following table, and database formats.

BDE-standard (no other software or BDE alias required):

 dBASE
» Paradox

Other desktop database formats:

* FoxPro 2.5
* Microsoft Access 95/97

The software application must be installed and running, with aliases assigned in the BDE Administrator.
Alternatively, BDE’s ODBC socket supports any ODBC database. For example, if Microsoft Access is not
installed, you can connect to an Access database via ODBC. For details, see BDE Help (BDEADMIN.HLP).

Creating tables 153

Using the Table wizard

Note

* SQL enterprise client/server database formats:

¢ Oracle

+ Sybase

* Informix

* Microsoft SQL Server
+ IBM DB/2

* InterBase

The database server system must be installed and running, with aliases assigned in the BDE Administrator.

A BDE alias is a short name used as a shortcut to a client/server database or to a directory containing database
files. BDE aliases are required for Access, Foxpro, and all SQL client/server systems. You may also use BDE
aliases for dBASE and Paradox tables for convenience or application portability, although it is not required. See
“Configure the Borland Database Engine (BDE)” on page 35 for information on setting a BDE alias.

To create SQL tables, you must first be able to access your SQL database. See “How to connect to an SQL
database server” on page 34 for instructions.

Although you can create tables in any supported format, this section shows how to use the Table wizard and
designer to quickly create tables in the dBASE Level 7 table format, which is the most feature-rich and
convenient. Some of the dialog boxes and capabilities might not apply to a particular database you are using.
Please see the documentation for your database for guidance on implementing tables in its native format.

The terms "database" and "table" are often confused. A database consists of a set of files, including indexes,
memo, and graphics files, and one or more tables that may be related by key fields. A table consists of an
ordered set of rows (records), each row containing a set of defined data fields. The larger, client/server database
management systems are considered more database-oriented. The smaller "desktop" database applications are
sometimes said to be table-oriented, although when related tables and index files are stored in a directory, that
directory may be considered a database.

Using the Table wizard

To use the Table Wizard to create a new table,

1 If you intend to create a table type other than dBASE or Paradox, click the Tables tab in the Navigator, and
select an alias from the Look In drop-down list. Your new table will be of that alias’s database type.

2 Choose File | New | Table (or double-click the Untitled icon on the Tables page of the Navigator). The New
Table dialog box appears.

In the New Table dialog box, choose Wizard.

In step 1 of the wizard, select the fields you want from the available tables.
Click Next and select the table type.

Choose Run Table to save the table

Choose Design Table to continue the design process

o N oo a0 A~ W

In step 2, select a table format type. If you have selected a database alias in the Navigator as described in step
1 of this procedure, that alias appears as the default table type and cannot be modified. To change it, you
must exit the wizard and choose a new BDE alias from the Look In box on the Tables page of the Navigator.

Click the Help button on any step of the wizard for details about the options available with that step.

Using the Table designer

This section outlines a short procedure for creating tables in the Table designer. To create a new table by using
the Table designer,

1 Choose File | New | Table.
2 In the New Table dialog box, choose Design.
3 The Table designer appears showing a default template for the first field.

154 dBASE Plus User’s Guide

User- interface elements in the Table designer

Set the table type in the Inspector. You can select a BDE-standard table type or the table types of those
databases for which you have created BDE aliases.

In the Table designer, type a name (no spaces for dBASE files) in the Name field. (You have to name a field
before you can specify any of its other attributes.)

Specify values for the remaining attributes (Type, Width, Decimal, Index) by typing what you want, or by
selecting a value from the drop-down list, or by clicking the spinbox arrows. You can tab through these to
select the default values.

To create additional fields, press Return when you have finished specifying a field. Or press the Down arrow
key. Or right-click and choose Add Field from the context menu.

You can generate new fields in rapid succession by naming each, then pressing the Down arrow key. After
naming all the fields in your table design, you can go back and set or reset the attributes for each field.

Warning! Later on in your work, do not use functions such as CHR(_), LTRIM(), RTRIM(), TRIM(), or ITIF() that
vary the field width in the key expression.

Table designer tips

To add, insert, or delete fields, right-click in the Table designer window to display a context menu, and
choose the appropriate command. “Adding and inserting fields” on page 156.

To reorder the sequence of fields, place the insertion point in the field number box—it becomes a hand—and
move the field to the desired position in the list.

For information on .DBF field types see, Table 12.1, “dBASE field types for level 7 tables,” on page 151.

For more information on elements of the Table designer, see the next section.

User- interface elements in the Table designer

This section provides a detailed description of the user interface elements and common tasks of the Table
designer.

To open the Table designer to modify an existing table, right-click the table on the Tables page of the Navigator,
and choose Design Table from the context menu, or select the table and click the Table Design button on the
toolbar.

The Table designer lists the fields defined in the table, along with the attributes for each field.

Field contains a number that identifies the field in the table. Field numbers are consecutive, automatic, and
read-only. They determine the default order in which fields appear in the Table window.

Name is the name of the field (up to 31 characters for dBASE Plus). You can enter letters, numbers, and
underscores, but no other characters. The first character must be a letter. Paradox and most SQL tables allow
spaces; dBASE tables do not.

Note Do not use reserved words for the field name. For example, DATE.

Type is the field type. Select the type you want from the list. The type you select determines what kind of
data the field will contain. It also determines whether you can set the width, decimals, and index options for
this field.

Width is the field size. In the case of dBASE tables you can change field size for character, numeric, and
float fields only (all others have fixed width). Never use functions that vary field widths.

Decimal is the number of digits allowed to the right of the decimal point (for float and numeric fields only).
In the case of dBASE tables, float and numeric fields, by default, have no decimals selected. You can set
decimals to a maximum of 2 less than the width value you define. The total width must be 20 characters or
less. This includes decimal settings, the decimal point, and an optional minus sign.

Index determines whether to index rows using the values in this field (you can set an index on character,
date, float, and numeric fields in dBASE tables). Select Ascend to index this field in ascending order (for
character fields, this is ASCII order, or the order determined by your language driver). Selecting Descend
indexes this field in descending order, and None (the default) omits this field from indexing (or removes an
existing index associated with this field).

Creating tables 155

User- interface elements in the Table designer

Note

If you select Ascend or Descend for a dBASE table, the Table designer creates an index for the field in the
multiple index file (MDX) associated with the table.

To set a primary key on a dBASE 7 or Paradox table, choose Structure | Define Primary Key. Some SQL
types also support this.

You can also set other field attributes or create custom field attributes by selecting the field and opening the
Inspector. See Help.

Resizing columns

You can resize or move columns and move rows in the Table designer.

* To resize a column, point to the column border. When the pointer changes to a double-headed arrow, the
column is outlined and you can drag the border until the column is the size you want.

* To move columns, point to the title of the column you want to move. When the pointer changes to a hand, the
column is outlined and you can drag it to its new location.

* To set multiuser locks or default table type and other properties, choose Properties | Desktop Properties |
Table tab.

If you want to see rows that have been marked for deletion when the table is in Run mode, the Deleted option
must be unchecked in the Desktop Properties dialog box. The rows will appear and the work deleted will appear
in the status bar for those records marked for deletion. There is not a "delete flag" for each record.

Getting around in the Table designer

In the Table designer, each horizontal row of properties represents one field (or column) in the table you are
designing or modifying. To add, change, or delete data, first select the field by clicking with the mouse or by
using keyboard shortcuts.

To go to a specific field number,
1 Choose Structure | Go To Field Number or press Ctrl+G.
2 Type the number of the field to go to and click OK.

Adding and inserting fields

You can add a new field to the table by either adding a row at the end of the fields list or by inserting a row
anywhere in the list.

To add a new field to the end of the fields list, choose Structure | Add Field (or right-click anywhere in the Table
designer and choose Add Field from the context menu).

To insert a new field between other fields, select a field, and choose Structure | Insert Field, or right-click and
choose Insert Field from the context menu. The new field’s row of properties appears above the one you
selected.

Moving fields

To move a field, changing its order in a table, point to the field number in the leftmost column. When the pointer
changes to a hand, drag the row up or down to its new location.

Deleting fields

To delete fields from a table,
1 Click anywhere in the property row of the field you want to delete.

2 Choose Structure | Delete Current Field (or right-click and choose Delete Current Field from the context
menu).

156 dBASE Plus User’s Guide

Note

Note

Note

Restructuring tables (overview)

The Table designer deletes the field definition. If the table contains rows, the data in this field is deleted as soon
as you save the table structure.

Short-cut keystrokes can also be used to add (Ctrl+A), insert (Ctrl+N) and delete (Ctrl+U) fields.

Saving the table structure

Save the table design to keep the structure you’ve created. If you haven’t yet saved a new table design, doing so
creates the table and any associated files (such as .DBT and .MDX files in the case of dBASE tables).

To save changes to a table design, do one of the following:

» Ifit’s a new table, choose File | Save.

» To save an existing table under a new name, Choose File | Save As.

If you are saving for the first time, or if you choose Save As, the Save Table dialog box appears.

If you are saving an older dBASE .DBF file, it will be saved in the new dBASE Level 7 file format with all the
extended capabilities built in.

The table will no longer be usable in lower versions of dBASE.

Type a valid file name. Choose a destination drive, directory, and database, if needed, and then choose OK.
dBASE Plus creates or updates the table and any associated files.

You may not use a file-name extension ending in a "T".

Abandoning changes

Abandon changes to a table design if you want to cancel creating a new table or discard the changes you have
made to an existing table.

To abandon changes,
1 Choose File | Close to close the Table designer.

2 Choose No when asked to save changes.

Restructuring tables (overview)

Warning!

It’s easy to change the structure of a table, even if the table contains row data.

If the table is empty, you can make any valid changes you want to the table structure except change the table
type. If the table contains rows, however, you need to be more careful about the changes you make—and you
should make a backup copy of the table before attempting to change its structure.

When you change the structure of a table, the Table designer makes a backup copy of the old table, creates a
new table with the revised design, and attempts to copy all the data from the backup table to the new table.
However, each time you change the structure of this table, the backup copy that the Table designer created is
overwritten. That is why you should make your own backup copy with a unique name or in another directory.

This section assumes you are using BDE-standard table types ({BASE or Paradox). You can also change the
structure of the table types of other databases connected via BDE aliases. For information on restructuring these
tables, see the documentation of the respective manufacturer.

Important guidelines for restructuring

When you change the structure of a table, the Table designer uses the field name and field position to determine
how to transfer information to the new structure.

If it cannot find a corresponding field in the new table, the Table designer does not copy the data from the fields
in the backup table; instead, the information is lost when the backup table is deleted.

Creating tables 157

Table access passwords

To prevent losing data that you want to keep, save the table structure frequently as you make changes and
confirm that they are completed successfully.

If you change the type of a field, the Table designer does its best to convert data to the new type. Some
conversions are relatively straightforward, such as converting date, logical or numeric fields to character.
However, radical conversions (such as a memo field to a date field) might produce results you don’t want. In
addition, the Table designer does not copy data that is invalid in the new field type. For example, attempting to
copy the value "123ABC" from a character field to a numeric field fails because letters aren’t valid entries in
numeric fields.

In addition to these guidelines, remember that if you delete a field in a table that contains rows, you lose the
information in that field permanently. You can recover the information only if you have made a backup of the
table.

Changing the structure

To change the structure of a table,
1 Open a table in Design mode.

If you are working in a shared environment, you see a prompt to open the table exclusively. Choose Open
Exclusive to open the Table designer.

2 Make a working copy of the table (choose File | Save As and specify a new name for the table). The working
copy now has focus.

3 Change the field definitions you want. You cannot change the table type.

4 When you finish, choose File | Save. In addition to saving your changes, the Table designer also copies
associated files (such as .MDX and .DBT files).

Note Open the restructured table in Run mode to verify that your data is in the condition you want. If not, you can
revert to your original table if you worked from a copy.

Printing the table structure

To print the table structure for future reference,

1 Open the table in the Table designer.

2 Choose File | Print.

3 Choose the print options you want and click OK.

Table access passwords

In addition to restricting access to networks and servers, you can limit access to sensitive tables by setting
passwords directly on those files. The dBASE file format provides extensive table-,row-, and field-level access
restrictions. For more information on dBASE Plus security features, see Chapter 15, “Setting up security”.

Creating custom field attributes

Custom field attributes specify how a field will be displayed in a form or report, irrespective of the form’s
default control settings. You can create custom field attributes in the Table designer to control special properties
and events on forms and reports. Whenever a field is dataLinked to a control, all custom field attributes are
copied to the control.

Custom field attributes are named field properties that contain a string value. These attributes form an active
data dictionary that functions at both design and runtime. Attributes are listed under the Inspector’s Custom
category.

158 dBASE Plus User’s Guide

Specifying data-entry constraints

Properties assigned to fields by creating custom field attributes are not streamed. Therefore, you can change the
attribute in the table without having to change your code. If you later change the field’s attributes, the changes
are automatically applied to the control dataLinked to the field. No change to a report or form is necessary.

By using custom field attributes, you can cause a table’s field to have its own special font, color, or format that
will be reproduced on any form or report whose controls are datalinked to it. For example, you can assign a
picture attribute to a PHONE field. When you dataLink an entryfield control to the PHONE field, that entryfield
control will automatically take on the picture property that was assigned as the field’s picture attribute.

To create custom field attributes in the Table designer,
1 Select the field for which you want to create a custom attribute. Open in the Inspector.
2 Right-click and from the context menu, choose New Custom Field Property...

3 In the dialog box, enter a name for the new field attribute. For example, if your table contains a phone
number field whose data you want to appear in forms in a particular phone number format, you would type
picture to add the picture property (which provides data format templates, not images).

4 Now enter a value for the new field attribute. If you used the picture property, you might add a template
value for the property, such as 999-999-9999 for a USA phone number template.

5 The new field attribute appears in the Inspector, listed under the Custom category.
To edit or delete custom field attributes,

1 In the Inspector, select the custom field attribute.

2 Right-click to display the context menu.

3 Choose Modify or Delete Custom Field Property from the context menu.

No checks are performed on the attribute name; be sure not to create attributes, such as "Name," that will cause
undesired property name conflicts. Attributes with names not used by the component simply become custom
properties of the component.

Specifying data-entry constraints

If supported by the database type, you may be able to specify data-entry constraints—rules that govern the values you can
enter in a field. If you want to make sure that the values users enter in a field meet certain conditions, specify a data-entry
constraint for that field.

You can specify data-entry constraints for each field in the Inspector when you create or modify a table that
supports them, such as a dBASE or a Paradox table.

The Inspector displays different data-entry constraints depending on the field type.

Table 13.1 Data-entry constraints

Validity check Meaning

Required Every row in the table must have a value in this field.

Minimum The values entered in this field must be equal to or greater than the minimum you specify here.
Maximum The values entered in this field must be less than or equal to the maximum you specify here.

Default The value you specify here is automatically entered in this field. You can replace it with another value.

Creating and maintaining indexes

Rows in dBASE tables can be organized either by indexing or by sorting. Both methods arrange rows in a
specific order, but in completely different ways. Relational databases require index files; sorting creates a
separate table with a different organization.

This section describes both indexing and sorting in a dBASE table. It covers the following topics:

* Indexing versus sorting

* Simple indexes and complex indexes

» Design concepts and guidelines for indexes
* Adding, modifying, and deleting indexes

Creating tables 159

Creating and maintaining indexes

Note

Note

Tip

» Sorting data to a separate table
* Creating indexes for Paradox tables

The material in this section applies to dBASE, Paradox, and SQL indexes. However, specific guidelines and
procedures might differ. If you’re using SQL tables, see your database documentation.

Indexing versus sorting

Indexing and sorting are two approaches for establishing the order of data in a table. You use them to answer
different needs in an application. In general, you index a table to establish a specific order of the rows, to help
you locate and process information quickly. Indexing makes applications run more efficiently. Use sorting only
when you want to create another table with a different natural order of rows.

Indexing orders rows in a specific sequence, usually in ascending or descending order on one field. Indexing
creates a list of rows arranged in a logical order, such as by date or by name, and stores this list in a separate file
called an index file. A dBASE index (.MDX) file can have up to 47 indexes, but only one controls the order of
rows at any time. The index that is controlling the order is the current master index.

dBASE Plus stores indexes in multiple index (.MDX) files, and recognizes older .MDX files. You can design
and maintain multiple indexes using the Manage Indexes dialog box.

Sorting creates an entirely separate copy of the current table with the rows in a different order. You’re likely to
use sorting infrequently, only when you want to create a separate table with a different natural order.

Here is a summary of key differences between indexing and sorting:

* Creating tables. Indexing creates an index file that consists of a list of rows in a logical row order, along
with their corresponding physical position in the table. Sorting a table creates a separate table and fills it with
data from the original table, in sorted order.

* Arranging rows. Both indexing and sorting arrange rows in a specified order. However, indexing changes
only the logical order and leaves the natural order intact, while sorting changes the natural order of the rows
in the new table.

* Processing operations. Certain operations are much faster using indexes, such as searching for data, running
queries, and so on. Some operations, such as linking tables, require indexes.

+ Using functions. With indexes, you can order rows using fields and dBASE Plus methods. With sorting, you
can use fields only, in ascending or descending order.

* Adding rows. If you add rows to an indexed table, the index is updated automatically so that the rows appear
in the correct order. If you add or change rows in an already-sorted table, you might need to sort it again.

* Mixing field types. With indexing, you must convert field values to a common field type, for example,
converting the sale date to a character type. With sorting, you can order rows on fields with different field
types; for example, you can sort on customer number (a character field) and sale date (a date field), without
converting them to a common field type.

» Mixing order. With indexes, the entire index is either ascending or descending. With sorting, you can mix
fields sorted in ascending and descending order.

In general, use indexing to make processing more efficient in data entry forms, queries, and reports. The only
significant costs are that index files require extra disk space, and processing time is required for ongoing
automatic maintenance.

Sorting or exporting rows

Sorting a table copies its contents to a separate table and arranges rows in the order you specify in the new table.

In general, use sorting only when you want to export data to another application or table type. Sorting is useful
whenever you want to create a separate table for reporting or other purposes. Use indexing instead when you
want to make data entry, querying, and reporting tasks faster and more efficient.

When you sort, the source table is the table containing the rows you want to copy, and the farget table is the
new table (and new table type, if you want) to contain the copied rows. Sorting does not change the data in the
source file.

160 dBASE Plus User’s Guide

Note

Note

Creating and maintaining indexes

When you sort a table, all fields in the source table appear in the target table. You select the fields on which to
sort Tows.

dBASE Plus sorts data in case-sensitive alphabetic order, using the sort order specified by the language driver in
the BDE Administrator. Sorting starts with the first character in the key and proceeds from left to right.
Punctuation comes before numbers, numbers before letters, and uppercase letters before lowercase letters.

Make sure you have enough available disk space to store the table on the target drive.
To create a sorted table or export table data to another table type,

1 Open the table you want to sort in Run mode.

2 Choose Table | Sort Rows to Table. The Sort Rows dialog box appears.

3 Specify a target table. This is the path name of the new-sorted file. Click the Target Table name tool button to
display a Save dialog box. If you want to export the table data to another table type, choose the new table
type in the box at the bottom of the Save As dialog box.

4 Seclect the field(s) on which to sort rows, and click the > button to move them to the Order By list.

The order in which the selected fields appear in the Order By list determines the order of the sort. The target
table contains all fields from the source table.

5 Select each Order By field, then specify the sort order.

6 When you have finished, click OK. dBASE Plus creates a new table. If the target file exists, dBASE Plus asks
whether to overwrite it. The rows you selected are copied to the target table and sorted as you specified,
starting with the first Order By field.

dBASE index concepts

Before you create indexes on dBASE (.DBF) tables, you need to be familiar with a few general concepts.

* Multiple index (.MDX) files. When you create an index, it is stored in a file with the file-name
extension.MDX. Each index has a name (sometimes called a fag) that defines the index uniquely in the
.MDX file.

A table’s main .MDX file is called the production index file. The production index file opens automatically

when you open a table, so its indexes are automatically available—though no index sets the row order until

you select it as the master index. As you update rows in a table, the affected indexes in the production index
file are also updated. If you use any non-production .MDX files, they must be opened explicitly by entering
statements in the Command window.

The production index file has the same name as the table plus the .MDX extension.

» Key expressions. A key expression is a field name, or a combination of field names, functions, or operators,
that determines how an index orders rows in a table. It must be a character, numeric, date, or float field, or an
expression that evaluates to one of these types. The key expression can be up to 220 characters in length.

* Primary key. The dBASE 7 table format supports primary keys, enabling you to create primary distinct
indexes. Any field can be a primary key and you need not create the primary key before creating a secondary
maintained index.

» Simple indexes. A simple index uses a single field name for the key expression.

* Complex indexes. A complex (or composite) index uses a combination of one or more fields, or a dBASE
expression.

» Ascending and descending order. Rows can be ordered in ascending order, lowest to highest (the default),
or descending order, highest to lowest. For character fields, the order is ASCII or the order established by the
language driver installed by the BDE.

Keeping a large number of indexes affects performance, because dBASE Plus must update each one as the table
is revised. If you need to improve performance, consider removing rarely-used indexes from the production
index file.

Creating tables 161

Creating and maintaining indexes

Planning indexes

When you design indexes for a table, consider how you will use and process data. Indexes affect and support
features that an application provides: data entry, queries, and reports. Asking the right questions at the
beginning can save you redesign efforts later.

+ Using indexes in data entry
» Using indexes in queries
» Using indexes in reports

» Using indexes to link multiple tables

Using indexes in data entry

Because indexes affect the order in which rows appear, they let users find and update information quickly. To
make data entry more efficient, consider these questions:

* What is the order in which users expect to see the data? For example, they might expect to see a list of
companies in alphabetical order, a list of purchase orders by purchase order number, or a list of invoices in
chronological order. Indexes should reflect the expected order of information in a table. If users expect the
same information in different sequences, you can create multiple indexes—one for each sequence. For
example, in the Orders table, you might want separate indexes for the order number, order date, and customer
number.

* To find rows in a table, what kind of information might users know already? For example, to locate an
invoice, users might already have the invoice number, approximate date of the invoice, or the company that
submitted the invoice. To speed up the search process, you might want to create indexes for the most
common ways a user looks for information.

» What kinds of calculations are users going to perform on data in the table? For example, users might want to
calculate the average sale per state or the total sales per month. The word "per" is a clue to an index you
might want to create—in the first example, indexing the state field and, in the second example, indexing the
sales date field. An index can put similar rows in consecutive order so that users can quickly search for the
first row in the series and stop processing after the last row in the series. For example, if users want to
calculate the total payments to a vendor, consider creating an index for the vendor number or name.

Using indexes in queries

Indexes can increase the speed at which a query is processed. Indexes are also required for defining links among
related tables. To make queries more efficient, consider the following issues:

* What kinds of questions are users going to ask? For example, will they want to know the number of items in
stock for a particular product? If so, consider creating an index for the product name or identification
number.

« What kind of information might a user know before attempting the query? For example, a user might know
the name of the product, its identification number, or its type. Consider creating indexes for commonly
known information.

« Ifthe index is solely for occasional or ad hoc queries, consider generating an index at query time instead of
maintaining an index separately on an ongoing basis. When the query is finished, you can delete the index to
recover disk space.

Using indexes in reports

Indexes affect the order in which rows appear in a report. In addition, they can trigger subtotals and totals in a
report (when key values change). To make reports easy to design, consider the following issues:

* What is the order in which users expect to see information in the report? For example, do users want to see a
chronological list of invoices billed? An index can ensure that rows appear in the expected order.

* What kinds of calculations will the report make? For example, a report might show the total number of sales
by salesperson, or the average sale by customer. The word "by" is a clue to an index you might want to
create—in the first example, indexing on the salesperson field and, in the second example, indexing on the

162 dBASE Plus User’s Guide

Creating and maintaining indexes

customer number. Using an index makes it easier to calculate running totals. If a report includes subtotals
within totals, consider using a complex index.

» If the index is solely for occasional or ad hoc reports, consider generating an index at report time instead of
maintaining an index on an ongoing basis. When the report is finished, you can delete the index to recover
disk space.

Using indexes to link multiple tables

Indexes are required for linking related tables together in a multiple-table query. To link tables, consider the
following issues:

» What are the relationships among the tables—one-to-one, one-to-many, many-to-many? For example, an
Orders table and a Lineltem table are in a one-to-many relationship. The Orders table is the parent table and
the Lineltem table is the child table.

* With related tables, which fields are common among them? To link tables together, you must have an index
for the child table on a field that also appears in the parent table. For example, the Orders table and Lineltem
table both have an ORDER NO field, and the Lineltem table has an index on this field.

» Can you use codes instead of long character fields? For example, to link orders in the Orders table to
customers in the Customer table, the application uses the customer number, a short character field that
uniquely identifies each customer.

Creating a simple index

A simple index consists of a single field.

The key of a simple index is just the name of a field. For example, in the Customer table, if you index on the
CUSTOMER N field, the key is the field name, CUSTOMER N.

You can create a simple index using either the Table designer or the Manage Indexes dialog box, as shown in
the next two sections.

Using the Table designer to create a simple index

To create a simple index in the Table designer, choose an index order for the field you want to use—ascending
or descending.

Using the Manage Indexes dialog box to create a simple index

To open the Manage Indexes dialog box, in Table design mode, choose Structure | Manage Indexes. The
Manage Indexes dialog box appears.

To create a simple index,

1 Choose New. The Define Index dialog box appears.

2 Choose fields from the Available Fields list and add them to the Fields Of Index Key list at the right.
3 Choose Ascending or Descending order.

4 Choose Specify From Field List for a simple index.

5 Enter a name for the new index.

You can use letters, numbers, and underscores, but the first character must be a letter. The name you use must be
unique within the index file. For a simple index, use the field name.

Check your vendor documentation for other limitations.

By default, dBASE Plus indexes rows in ascending order. The exact sort order depends on the driver specified in
BDE.

When you choose OK in the Manage Indexes dialog box, dBASE Plus builds any indexes you created or
changed and removes any indexes you deleted.

Creating tables 163

Creating and maintaining indexes

Note You might have to wait while the indexes are created, particularly if the table has many rows or if key
expressions are long and complex.

Selecting an index for a rowset

Depending on the table type, a rowset may be displayed in a form in different default orders. When you first
open a dBASE table, it appears in natural order. When you first open a Paradox table, the natural order is the
primary key order.

For dBASE tables, the production .MDX file opens automatically with the table, but the indexes it contains are
not in effect until you select one.

To order rows that appear in a form in a specific way, select the index you want:

1 Open the form in the Form designer.

2 Select the active Query object.

3 In the Inspector, select the rowset property.

4 Click the rowset property tool button. The Inspector displays the rowset object’s properties.

5 Set the indexName property to one of the available indexes.

Index tasks

In addition to creating and selecting indexes, there are several other index maintenance tasks.

Modifying indexes

You can modify an existing index to make it more useful or efficient. For example, if you create a simple index
for a dBASE table in the Table designer, you might want to make it a complex index by adding fields or
expressions. Or, you might learn after using the index for a while that a different key is more suitable.

To modify an index,

1 Open the table in the Table designer.

2 Choose Structure | Manage Indexes. The Manage Indexes dialog box appears.

3 Select the index you want to modify, and click the Modify button. The Define Index dialog box appears.
4 Make your changes, then choose OK.

Deleting indexes

You can delete an index you no longer need to save space and improve performance. Deleting an index does not
delete any rows in the table—it deletes only the separate index that arranges rows in a particular order.

To delete a simple index, open the table in the Table designer, and choose None as the index type for the field.
To delete any other index,

1 Open the table in the Table designer.

2 Choose Structure | Manage Indexes. The Manage Indexes dialog box appears.

3 Select the index you want to delete, and click the Delete button.

4 Choose OK.

5 Save the table.

The index you deleted is removed from the production index file. If you delete the only index in the file,
the.MDX file is deleted as well.

164 dBASE Plus User’s Guide

Note

Creating and maintaining indexes

Indexing on a subset of rows for dBASE tables

In most cases, indexes include all rows in a table. For special circumstances, however, an index might contain
only some of the rows in a table. Indexing on a subset of rows can make it easier to process information in that
table. For example, you might want to work with budget information that applies to your sales department only.
In this case, you could create an index that includes only those rows whose DEPT ID is SALES.

To create an index that includes only the rows you want, first determine which rows you want to include, then
state this in the form of a valid dBASE expression. For example, if you want to create an index of customers in
your South sales region only, you could use a For condition expression such as SALES REG ="SOUTH" to
create the index. Thereafter, when you use this index, you see and process customers from the South region
only.

Hiding duplicate values

Indexes can contain multiple rows with the same value in an indexed field. For example, a Line item table can
contain multiple entries with the same ORDER_NO or STOCK_NO.

In certain cases, however, you might want to have a unique index, which finds only the first occurrence of a
value in the indexed field and ignores subsequent rows with the same value. This kind of index is useful when
subsequent rows repeat information in the first row.

For example, in a Lineitem table, if all products with the same STOCK_NO were sold at the same price, you
could use a unique index to hide duplicate index values, so that only the first row with the price would appear.

If you check Include Unique Key Values Only in the Define Index dialog box, only the first row with a
duplicate value in the indexed field is included in the index. Subsequent rows with duplicate values in that field
are excluded.

In dBASE and Paradox indexes, if there is a primary or distinct index, rows may not have duplicate values in the
indexed field. Duplicate values cause an error when trying to save. In SQL indexes, uniqueness is required if the
index is defined as a unique index.

Creating complex indexes for dBASE tables

Complex indexes on dBASE tables use a combination of one or more field names, plus valid dBASE
expressions. Use a complex index when no single field uniquely identifies each row, or when you need the
flexibility of an expression to define the index condition.

Indexes on .DB tables also can use multiple fields; such indexes are called composite indexes. However, unlike
complex indexes in dBASE tables, you cannot use functions or operators in the .DB index expression.

Rules for dBASE complex indexes

For complex dBASE indexes, the complexity of the index expression varies according to the way the index is
used. The following rules apply when defining complex indexes:

* An index value can be up to 100 characters long. The text of the key expression can be up to 220 characters
long.

* The complex index must be a valid dBASE expression. Note that a single field name is a valid expression.
* The expression must evaluate to a character, date, numeric, or float value.
It usually, but not always, contains at least one field name.

» For multiple character fields, concatenate, or combine, fields using the plus sign (+), as shown in the
following examples:

LAST NAME + FIRST NAME +M_INITIAL
CUSTOMER + ORDER_NO

* You can concatenate fields of different data types by converting them to a single type. In the following
example, the key expression concatenates the CUSTOMER N field, which is a character field, and
ORDER_DATE, which is a date field. The DTOS() function converts the date value to a character string in
the format YYYYMMDD. This order—year first, then month, then day—ensures accurate indexing.

Creating tables 165

Creating and maintaining indexes

CUSTOMER_N + DTOS(ORDER_DATE)

* For converting number fields, use the STR() function. Include the width and number of decimal places of the
numeric field(s), to ensure accuracy of the index. For example, suppose you are creating an index that
includes a character field LNAME, and a numeric field called AMOUNT that is 10 places wide with 2
decimal places. Use the following syntax:

LNAME+STR(AMOUNT,10,2)

Creating the dBASE complex index

To create a complex index for a dBASE table,

1 With the table open in the Table designer, choose Structure | Manage Indexes. The Manage Indexes dialog
box appears.

2 Choose New in the Manage Indexes dialog box. The Define Index dialog box appears.

3 Select the combination of fields on which you want to index from the Available Fields list and move them to
the Fields Of Index Key list. Or type a key expression, such as STATE+CITY, to create a complex index on
the STATE and CITY fields. The key expression can use multiple field names, functions, and operators.

4 Click OK to exit the dialog box and save the index.

Key expressions

The following table shows several examples of key expressions and the fields used.

Table 13.2 Sample dBASE key expressions

Key expression Fields used Notes

CUSTOMER_N CUSTOMER_N

CUSTOMER N + ORDER_NO CUSTOMER N, ORDER NO

CUSTOMER N + DTOS(SALE_DATE) CUSTOMER N, SALE DATE DTOS converts date field to

character for indexing.

UPPER(LAST NAME)+UPPER(FIRST NAME) LAST NAME, FIRST NAME UPPER changes character field to
all caps.

The first example uses a single field as the key expression. Complex indexes, on the other hand, can use a
combination of one or more fields, plus functions and operators.

*+ CUSTOMER N+ ORDER_NO is a complex key expression using multiple fields and the concatenation
operator (+).

* CUSTOMER N+ DTOS(SALE DATE) is a complex key expression consisting of multiple field names and
a function.

+ UPPER(LAST NAME)+UPPER(FIRST NAME) converts characters to all caps before concatenating them.
The UPPER function prevents sorting problems when capitalized entries are mixed in with lowercase ones.

Primary and secondary indexes

dBASE Plus lets you create primary and secondary indexes for any table type that supports them.

* A primary index is the main index in a table. For DBF tables, only level 7 tables support primary indexes;
any expression index may be created as the primary index. For all other table types, the primary index
consists of one or more consecutive fields, starting with the first field in the table.

* A secondary index is supplemental to the primary index in a table.

Some table types let you specify whether or not a secondary index is case-sensitive. Case sensitivity affects the
sort order and the uniqueness of values. In dBASE Plus, you can create case-sensitive indexes only, although
dBASE Plus maintains case-insensitive indexes when you edit tables that use them.

Each table should have one primary index, although it is not required. In a Paradox table, the primary index is
stored in a file with a .PX extension.

166 dBASE Plus User’s Guide

Referential integrity

Unique keys

Primary indexes require unique values—they do not permit duplicate key values. For example, if a dBASE table
has a primary index on ORDER NO, you cannot add two orders with the same order number—only one can
exist in the table. In a composite index, individual field values can be duplicates, but the combined value of all
key fields must be unique. (Secondary indexes do permit duplicate values.)

When you create the primary index, use a field that will contain a unique value for each row, such as a customer
number field.

A table can have only one blank (empty) value in the keyed field, because subsequent blank values are
considered duplicates. Therefore, key fields usually require entries.

Note Some field types, such as memo, OLE, binary, and logical, are unavailable as key fields.

Secondary indexes, maintained and non-maintained

The dBASE Level 7 and Paradox table types permit two types of secondary indexes:

* Maintained secondary indexes are automatically maintained when data changes in the table. dBASE Plus lets
you create maintained secondary indexes, and it updates maintained indexes automatically when you edit a
table.

* Non-maintained secondary indexes are not automatically updated when the table is open. dBASE Plus does
not let you create non-maintained secondary indexes, but it supports any existing non-maintained indexes.

The dBASE table format lets you create maintained secondary indexes regardless of whether the table has a
primary index. You can create as many single-field (simple) indexes as there are fields in a table, and you can
create up to 255 multiple-field (called complex or composite) indexes per table.

Creating primary indexes

You can create a primary index in the Table designer or the Manage Indexes dialog box. If the table type you are
creating does not support primary indexes, these options are not available. dBASE Level 7 and Paradox table
types both support primary indexes.

To create a primary index,
1 Open the table in the Table designer.
2 Choose Structure | Define Primary Key to display the Define Primary Key dialog box.

3 Choose the Primary Key fields from the Available Fields list. Click the arrow to add (or remove) fields from
the Fields Of Primary Key list box.

Note In the case of Paradox tables only, the first field in the table must be the primary key or part of a composite
primary key. If the field you want to be the primary key is not currently the first one in the table, you have to
move it up in the Table designer to be the first field. The dBASE format does not share this limitation.

Creating secondary indexes

You can create one or more secondary indexes in the Manage Indexes dialog box.
1 Choose Structure | Manage Indexes to display the Manage Indexes dialog box.
2 Click the New button. The Define Index dialog box appears.

3 Select fields from the Additional Fields select box and click the arrow to add each one to the fields Of Index
Key box. The double-right arrow adds all the fields at once.

4 Choose Ascending or Descending order, assign a name to the indextag, and click OK.

Referential integrity

Referential integrity validates and updates the data in the linked key fields of a relational database. In a
relational database, a field or group of fields in one table (the child table) refers to the key of another table (the

Creating tables 167

Referential integrity

Note

parent table). Referential integrity rules ensure that only values that exist in the parent table’s key are valid
values for the specified fields of the child table.

You can establish referential integrity only between like fields that contain matching values. For example, you
can establish referential integrity between two tables that both have a field that holds the customer number. The
field names do not matter as long as the field types and sizes are identical.

dBASE Plus lets you establish referential integrity for any file type that supports it, such as dBASE and Paradox
table types. Some SQL-server tables also offer referential integrity. See your SQL-server database
documentation to determine if your table type supports referential integrity.

The way referential integrity is used depends on the way you have set up indexing for the tables in a relational
database. This section assumes you are familiar with the concepts of index creation and management.

Defining referential integrity

You can establish referential integrity between tables in the current database. If no database is specified, you can
establish referential integrity between tables in the current directory.

To define a referential integrity relationship,

1 In the Navigator, Tables tab, use the Look In box to select a database alias or a directory containing tables
(such as .DBF or .DB type) that support referential integrity.

2 Choose File | Database Administration. The Database Administration dialog box appears (To see SQL
databases listed in this dialog box, you must first have given them a BDE alias.)

3 Specify a Table Type that supports referential integrity, such as dBASE or Paradox, then click Referential
Integrity. The Referential Integrity Rules dialog box appears

4 Choose New. The New Referential Integrity Rule dialog box appears. All tables in the current database or
directory appear in the Parent Table and Child Table drop-down lists

5 Choose a parent table from the Parent Table list. The table’s key fields appear in the Primary Key Fields area
of the dialog box.

6 Choose the child table from the Child Table list. Fields available for referential integrity appear in the
Available Child Fields list.

7 Specify whether the tables are in a one-to-one or one-to-many relationship in the Relationship panel. The
relationship you choose changes the available child fields.

* One-to-one relationships can be defined between the primary key field in the parent and the primary key
field in the child, or any field in the child that has a unique index.

* One-to-many relationships can be defined between an indexed field that is not the primary key in the child
and the primary key field in the parent.

8 Choose the child table’s field in the Available Child Fields list and click the Add Field arrow. The field name
appears in the Related Child Fields area of the References panel.

You can establish referential integrity with a complex (or composite) key. If the parent table has a complex
key, add fields from the Fields list to match all of the fields in the parent’s key.

9 Select the update and delete behavior you want (see below).
10 Optionally change the rule name dBASE Plus provides in the topmost box.
11 Choose OK to save the referential integrity relationship.

If you attempt to define referential integrity on a table that already contains data, some existing values may not
match a value in the parent’s key field. When this happens, the operation fails and you receive an error message.

Update and delete behavior

You can specify the following rules for updating and deleting data in a parent table that has dependent rows in a
child table:

168 dBASE Plus User’s Guide

Referential integrity

* Restrict: You cannot change or delete a value in the parent’s key if there are rows that match the value in the
child table.

For example, if the value 1356 exists in the Customer No field of Orders, you cannot change that value in the
Customer No field of Customer. (You can change it in Customer only if you first delete or change all rows in
Orders that contain it). If, however, the value doesn’t exist in any rows of the child table, you can change the
parent table.

+ Cascade: Any change you make to the value in the key of the parent table is automatically made in the child
table. If you delete a value in the key of the parent table, dependent rows in the child table are also deleted.

The availability of cascading updates and deletes varies according to the table type:

* dBASE Level 7: Cascading updates or deletes permitted

» Paradox: Cascading updates only

* Oracle: Cascading deletes only

» Sybase: No cascading updates or deletes permitted

» InterBase: No cascading updates or deletes permitted

* Microsoft SQL Server: No cascading updates or deletes permitted

Changing or deleting referential integrity

You can choose any referential integrity name from the list of named referential integrity relationships in the
Referential Integrity Rules dialog box to either modify or delete it.

* Choose Edit to open the Edit Referential Integrity Rule dialog box with the selected referential integrity
relationship filled in. You must be able to obtain exclusive access to all tables involved in the referential
integrity when you modify it.

» Choose Drop to delete the selected referential integrity relationship.

Creating tables 169

Chapter

14

Editing table data

To browse, change, or add to data in a table, open the table in Run mode. You can use any of three different
layouts: grid, form, and columnar.

Though the various data sources supported by dBASE Plus (see “Supported table types” on page 153) have
different capabilities, limitations and structures, the same basic procedures for running tables from within
dBASE Plus apply to all.

This section describes how to use dBASE Plus’s built-in data-editing capabilities to

* Scan information

* Find or replace information

* Perform data entry (add information)
Delete and undelete information
Save or abandon changes

Operate on a subset of information
View and edit special field types

A few words of caution

Like any file, tables and the information they contain can be corrupted or destroyed if used improperly.

If, for example, you design an application that prevents entry of a number greater than 10 in a field called
NUMITEMS, and the existing data is contained in an older .DBF table, someone could circumvent your data
constraint of "not greater than 10" by opening the table in Run mode, adding a new row with a value of 11 in the
NUMITEMS field, and saving the table.

Most table types, including the new .DBF7 format, allow the table developer to enforce rules at the table level in
order to prevent such problems from occurring. But even with such safeguards, developers should caution users
who have access to tables that database integrity can be compromised by editing table data directly in dBASE
Plus or in any other application—including spreadsheets and word processors.

Developers can also take other simple precautions, such as placing data in folders at levels casual users may not
venture into, or naming data directories with numbers instead of with tempting titles like "databases."

It also helps to understand exactly when and how your databases can be opened and modified from within
dBASE Plus.

Running a table

170

To view or edit a table, open a table in Run mode using any of the following methods.

* Menu: Choose File | Open (Alt+FO). The Open File dialog box appears. If it’s not already selected, choose
the Tables (*.dbf, *.db) item from the Files Of Type list and locate a table on your local drives, or select an
alias from the Database list. Then choose the View Table Rows option at the bottom of the dialog box. Select
your table, then click Open.

dBASE Plus User’s Guide

Table tools and views

» Project Explorer: Select a table, right-click, and choose "Run" from the context menu.

» Navigator: Choose the Tables tab, then use the Look In drop-down list to choose a local folder or alias (or
use the Browse button to choose an unlisted folder). Then double-click a table icon. You can also open a
selected table by clicking the Run button on the toolbar or by pressing F2.

¢ Command window: type
use <tablename>

where <tablename> is a local table file name or aliased :database:table reference, for
example,:-MSSQL1:mytable. You may include the full path to the file name. Then type

edit

The table appears in a grid of rows and columns. Each column is a field. You can browse or edit all the data in
the table.

Protected tables

When you open a protected table, complete the Group, User, and Password fields in the Login dialog box, and
choose OK. The database administrator assigns groups, users, and passwords for table protection.

Also note that some tables may have read-only protection or other access and editing restrictions.

Search the Help index for "security" for more information about protected tables, access rights, and encryption.

Table tools and views

When you run a table or query, additional items appear on the View menu, and a Table menu becomes
available.

Figure 14.1Table-editing toolbar

MNew Frint Fiun Add Save Find Sart M avigation
table Hi:w Hl:iw Hu:ui--.ls. Azcending buttons
1E8 ¥ DN 2 M| BEE| g e v AL El M4y M| ?
Open Clipboard Diesign Delete Abandon Sart Help
buttans table Fows . Pows Descending

Table and query views

The default view when running tables or queries is a grid view. Other options are a columnar view, which
displays a single row on each page with fields arranged vertically, and a form view.

You can choose your preferred view any time in two ways:
* Choose the desired view from the View menu.
* Click the appropriate button on the toolbar: Grid Layout, Columnar Layout, or Form Layout.

dBASE Plus remembers your last view choice and next time you open a table, it will be in the view you last
chose.

Adjusting the view

In columnar view, fields remain at their default size and cannot be widened. You can, however, enlarge the view
window vertically to see more fields at once.

* In grid view, you have other options:

Editing table data 171

Table navigation

* You can resize columns and rows by pointing to a column or row border, then dragging when the pointer
changes to a double-headed arrow.

* You can move columns by dragging field titles to new positions.

Figure 14.2Columnar view

= :SAMPLES:custom... g@|@

Customers

Field name

Cusl uerNu _ Field value

Category |Residential
Lasthame |Manznne

Firstiame |Jaime

Address [512 Main Ave To select the next
field, press Tab.

City |glen Cove
Stata [N‘F To zelect the

; previous field,
Zip |10370 press Shift+T ab.
FirstPurchazeDa 122001 =

TotalPurchasesy 4332.00 =
CurrentBalDua 23400 =

Viewing only selected table data

To open a table with only specified rows available for viewing or editing, create and run a query—an SQL
statement that requests specified information from one or more tables.

To view or edit data selected by a query, open the query in Run mode using any of the following methods.

* Menu: Choose File | Open (Alt+FO). The Open File dialog box appears. If it’s not already selected, choose
the SQL (*.sql) item from the Files Of Type list and locate a query on your local drives. Then choose the Run
SQL option at the bottom of the dialog box. Select your query, then click Open.

* Project Explorer: Select the query you want to run, right-click it, and choose Run from the context menu.

* Navigator: Choose the SQL tab, then use the Look In drop-down list to choose a local folder (or use the
Browse button to choose an unlisted folder). Then double-click a query icon. You can also open a selected
query by clicking the Run button on the toolbar or by pressing F2.

The query results appear in a grid of rows and columns. What you edit here is reflected in the table or tables that
contain the data.

For more information on creating, modifying and running queries, search for "SQL" or "queries" in the Help
index.

Table navigation

dBASE Plus uses a row pointer to identify the current row. Use the following methods to move the row pointer
in a table:

Table 14.1 Navigating rows using the menu, mouse or keyboard

Move to Menu Mouse Keyboard
Next row Table | Next Row Click next row PgDn (columnar)
Previous row Table | Previous Row Click previous row PgUp (columnar)

172 dBASE Plus User’s Guide

Data entry considerations

Table 14.1 Navigating rows using the menu, mouse or keyboard

Move to Menu Mouse Keyboard

First row Table | First Row Scroll to top of table, if necessary, and click ~ Ctrl+Home
first row

Last row Table | Last Row Scroll to bottom of table, if necessary, and Ctrl+End
click last row

Specific row Table | Find Rows Click row Ctrl+F

Previous page Table | Previous Page Click in the scroll bar PgUp (grid)

Next page Table | Next Page Click in the scroll bar PgDn (grid)

In addition, you can use the navigation toolbar buttons.

Figure 14.3Navigating rows using the toolbar

Top Mext
| Rulzuw
4 4 » P

Previous Bottom
Ry

Note Your Desktop Properties settings might cause the exclusion of certain rows in a table. For example, if Deleted is
selected on the Table page in the Desktop Properties dialog box, the row pointer skips deleted rows. Similarly, if
you’ve specified a scope in the Table Rows Properties dialog box, the row pointer ignores rows outside the
scope. If you’ve specified a filter for the table, rows not meeting the filter condition are ignored. For details on
these and other Table Property settings, see Help (search for "table properties").

Data entry considerations

When you’re faced with day-to-day data entry tasks, consider the following:

Should I run a table or use a form? Running a table offers quick direct access to tables from within dBASE
Plus. This is handy for occasional editing, data entry, and maintenance. However, forms offer more control over
the data-entry process, including the ability to edit multiple linked tables in the same window and to
programmatically enforce entry validation and data integrity. If a data-entry form doesn’t already exist, you can
use the Form wizard to quickly create one. For ongoing data entry and maintenance, consider designing a form.

Editing all rows or selecting only the information you need. You sometimes want to work with only a subset
of rows in a table, especially if the table has a large number of rows. For example, you might want to change
orders for the current month only. Consider the following approaches:

» Use queries to select the rows you need to change and ignore the rows that don’t apply to the task at hand.
One advantage to using queries is that they allow you to store the conditions you specify and use them with
multiple tables.

» Use a conditional or unique index that includes only the rows you want.

Working with parent and child tables. Deleting rows or changing the values in linked fields or key fields can
cause dBASE Plus to lose track of data. For example, if you delete an order in the Orders table but not in the
associated rows in the Lineltem table, you end up with orphaned rows that could skew calculations. Similarly,
you might inadvertently change the order number in the Orders table but not in the Lineltem table, which also
results in orphaned rows.

If the table you are editing is part of a parent-child relation, consider using a query to link the parent and child
table, rather than editing the single table. The query helps you see and preserve connections between related
rows in the tables.

Ordering rows. During data entry, you can use the natural order of the table or you can use an index. When
searching for rows to update, using an index could be the most efficient means, particularly in a table with many
rOWS.

Editing table data 173

Finding and replacing data

Selecting a view for entering data. When you run a table, three views are available: grid (default), form and
columnar. Choose the one that best suits your data entry task.

Repeated values. If you are entering the same value repeatedly, consider using the Replace option to update a
number of rows with the same value quickly.

Note The Data Entry page of the Desktop Properties dialog box offers a number of data entry configuration options,
including Bell, Confirm, Delimiters, and Type-ahead. For details on these options, click the Help button on the
Data Entry page.

Finding and replacing data

dBASE Plus provides tools that let you search for information in a table and update rows with new information.

Searching tables

In addition to scrolling through rows, you can quickly find the row you want by searching for a value in a field
you select. For example, you could quickly find a specific customer order by selecting the ORDER NO field
and typing the number of the order you want to find. You can search character, numeric, float, date, and memo
fields.

%= To begin a search, click the Find Rows button, or choose Table | Find Rows.

The Find Rows dialog box provides options you can use to focus and speed up your search. The options you use
depend on the search value you specify, the way information is organized in the table, how specific the search
needs to be, and how much of the table you want to search.

Figure 14.4Find Rows dialog box

customers.dbf - Find Rows @ Match the length

_ aof the zearch text.
Enter the value you | Find what Search rues

vaant to find ||:||,.,-.3r i+ Partial lepgth

Located in field: (" Exact length Close |
{0 MEch _ teo |

Select the figld you
want ta zearch

katch the caze of
the search best.

* Find What In your search text, you can specify any printable character, including spaces. The search string
can be as long as the width of the search field. In general, the longer the search string, the greater the
precision required. If you can’t find a match with the current search string, shorten it to increase your chances
of finding a match.

* Located in Field You can search for text in any field, whether or not it has been indexed. Searching is fastest
when you search on an indexed field. Before you start your search, select the index you want to use as the
master index.

* You can also search non-indexed fields, such as memo fields. Doing so might be slower than an indexed
search, particularly in tables with many rows.

« Partial Length There is no requirement that the length of the search string be identical to the field value.
This rule is checked by default.

» Exact Length To be a match, the search string must appear in the field just as you type it.

» Match Case Match Case requires that the field value match the search string exactly, including uppercase
and lowercase letters.

174 dBASE Plus User’s Guide

Important

Finding and replacing data

Once you have selected the options you want, click Find Next. If a match is found, the row pointer moves to the
matching row and the row appears highlighted. If no match is found, a message appears.

If you don’t find the match on the first try, shorten the search string or adjust other search options as needed and
try again.

Replacing data in rows

You can find text in a table and replace it with different text. For example, if you change the name of a product,
you can search a table and replace the old name with the new one. The replacement can occur in a different field
than the find string is in.

For example, suppose you assign a salesperson to a different sales territory and want to update the
SALESPERSON field for all customers in that territory. Rather than update each customer row individually,
you could simply select all the customer rows in that territory, then replace the SALESPERSON field in those
rows only.

Updating indexed fields in the master index can yield unpredictable results because changing the key value
changes the row position—as well as the row pointer—in the index. Use a different master index instead. In
addition, changing key values in related tables can result in orphaned rows in the child table. Therefore,
carefully consider the implications of updating rows, and make a backup copy of your tables before proceeding.

Figure 14.5Replace Rows dialog box

customers.dbf - Replace Rows @

: : Enter the replacement
Enter the data you Find what: Replace vath: | | data.
want ta find, —& | |
Located in field Located in fisld —l
CugtomaiMo ~ CugtomerNo A |
Select the field pou Eiﬁug:ﬁe E;?ﬂ:'ﬁe
want to search, —- U;’“l
Addiess Addiess
i o _ tee |
Slate Shate
Zip Zip Select the field where
FrstPuichaseDate ™| |FistPuichaseDate ¥ the replacemnent is to
Search rules [see Search riles OECUL
abave, "Searchind & | & Patial lengih
tables"). C Esoctlength
[~ Mabch case

To replace rows,
1 Select the table, then choose Table | Replace Rows. The Replace Rows dialog box appears.
2 Complete the dialog box.

* The replacement value you specify must match the data type of the selected replace field. Make sure that
the value fits in the field.

* In character fields, if the text is too long for the field, it is truncated.
* In number fields, if the value exceeds the field size, the fields fill with asterisks.

* In memo fields, the existing memo text is overwritten with the replacement text. The replacement text
must be in character format.

3 Once you’ve specified the replacement text, do one of the following:

* Choose Find to find the next occurrence of the search text. Then choose Replace to replace it, or choose
Find to leave it alone and go to the next occurrence.

» Choose Replace All to replace all occurrences of the search text.

Editing table data 175

Adding rows to a table

Adding rows to a table

= When you add rows to a table, they are appended to the end of the table. An empty row is added at the end of the
table where you can enter data. If a table contains 100 rows before you append, the new row becomes row
number 101 and the current row for editing.

To append a row, do one of the following:

* Choose Table | Add Row.

* Click the Add row button on the tool bar.

* In grid view, go to the last row, and then press the Down arrow.

An empty row appears. Now you can enter data. See “Data entry considerations” on page 173 and “Viewing and
editing special field types” on page 179.

Note If you’re adding rows to a table with an active index, each row appears at the end of the table. When you finish
entering data in the row, dBASE Plus updates the index and moves the row to its correct position as indexed.
The last row you added remains the current row for editing.

Deleting rows

- To delete a row in grid view, select the row by clicking the button at the left of the row, then press Ctrl+U. In
= columnar view, navigate to the row and press Ctrl+U.

1 You can also delete rows through the Delete Rows dialog box:

2 Find the row in the columnar view or select the row in the grid view.Choose Table | Delete Rows, or click the
Delete button on the toolbar. The Delete Rows dialog box appears

3 Click OK to delete the currently selected row, or specify a particular row number, or choose all to delete all
rows. Click OK.

Figure 14.6Delete Rows dialog box

customers.dbf - Delete Rows @

Rowes to delste

I 0K | Cancel | Help |
Saving or abandoning changes

| dBASE Plus saves changes to a row automatically whenever you do one of the following:

* Move the row pointer to another row.
k-

= * Toggle the table view between grid and columnar view.

Note If Autosave is selected in the Table page of the Desktop Properties dialog box, dBASE Plus writes changes to
disk automatically. Otherwise, it accumulates changes and saves them to disk periodically.

* To save a row manually, do one of the following,
* Close the Table window, or
¢ Click the Save Row button

To abandon changes to a row, click the Abandon Row button.

176 dBASE Plus User’s Guide

Performing operations on a subset of rows

Performing operations on a subset of rows

Sometimes you need to work with only a subset of the rows in a table. You can save time by selecting only the
rows you want to work with, and avoid processing rows that don’t apply.

This group of topics explains how to

» Select sets of rows to process

« Count rows that meet a given set of criteria

* Perform calculations on multiple rows

* All of these features are found in the Table menu.

Many of the operations described in this section—including aggregate operations for calculating data, finding
rows, filtering conditions, and linking parent and child tables—can also be performed by creating queries. For
information, search the Help index for "SQL" or "queries."

Selecting rows by setting criteria

To select a subset of rows from your table, you have to identify the criteria by which rows qualify for selection.

For example, if you want to calculate the average sales volume of customers in Texas, your criteria might be
that the STATE PROV field in the Customer table contain the value "TX". Rows that fail to meet this criteria
are ignored.

Another row selection technique is to specify a condition by writing an expression in the Command window that
defines which rows qualify for processing.

Setting For conditions

Use the For condition to select rows that appear throughout a table rather than in a contiguous group. For
conditions, check all rows in the table when determining which rows qualify for processing. Processing starts at
the top of the table and goes to the bottom (unless you limit it using one of the options discussed in the previous
section).

dBASE Plus compares each row with the condition you specify to determine whether to process a row. For
example, to count the number of customer orders that exceed $10,000, you might specify the following For
condition: TOT _INV > 10000.

Setting While conditions

Use the While condition to select a series of rows that appear consecutively in a table. While conditions check
only the current row and subsequent rows when determining which rows qualify for processing. Processing
starts at the current row rather than at the top of the table. Therefore, the row pointer must be at the first
qualified row before processing; otherwise, no rows can be selected.

This method works best when you use an index whose key matches fields in the condition. That way, you can
quickly find the first row in the series, then process rows sequentially. Processing ends when the key no longer
matches the condition.

For example, to do a calculation only on rows of customers in Texas, it would speed up processing to apply an
index on STATE PROV, which would group all the TX rows together. Search for the first TX row, and then
enter STATE PROV="TX" in the While field to process from the current row through the last TX row.

You can also create or modify an index to include a subset of rows. In this case enter a For condition that
specifies STATE PROV="TX". When that index is active, only TX rows are selected.

Counting rows

You can count rows to determine how many rows meet a given set of criteria. For example, you might want to
know how many customers fall within a certain zip code range, or how many orders were taken on Tuesday.

To count rows:

Editing table data 177

Performing operations on a subset of rows

1 Choose Table | Count Rows. The Count Rows dialog box appears.
Figure 14.7Count Rows dialog box

customers.dbf - Count R... @

Lirrk foius veheie:

2 Specify the rows to include in the count, then choose OK.

dBASE Plus counts the number of rows that meet the criteria, then displays that number in a message box.

Performing calculations on a selection of rows

You can perform calculations on number fields to obtain useful information from a selection of rows. For
example, you might calculate the total sales for a given month, the largest sale, the smallest sale, or the average
sale amount.

You can perform the calculations shown here

Table 14.2 Types of calculations

Calculation type Result

Average Average field value in selected rows
Minimum Minimum field value in selected rows
Maximum Maximum field value in selected rows
Sum Sum total of field values in selected rows

Most calculations work on numeric and float fields only, but Maximum and Minimum can also be used with
date and character fields.

To calculate values:
1 Select the table, then choose Table | Calculate Aggregates. The Calculate Aggregates dialog box appears.
Figure 14.8Calculate Aggregates dialog box

customers.dbf - Calculat... [X]

Caloudation Avadable fekds: Select the type of calculation.
(F Aosiage ol Select ber fields ta calculate. (U
Mk T otaPurchasesr T0 elect one or more number fields to calculate. (Use
= CunentB e —Shift+click to zelect a group of fields, ar Chri+click for
O W awimm multiple fields not grouped together.
 Sum
Limk rows where:
| CurentB Al e 1000 —Type an expression to select a group of rows on which
b perform the calculation.
0k | Cancel Help

2 Choose the type of calculation you want to perform, then select one or more of the listed fields. (Use
Shift+click to select several contiguous fields, or Ctrl+click to select several noncontiguous fields.)

Optionally, you can type an expression in the Where box to select a group of rows on which to perform the
calculation

178 dBASE Plus User’s Guide

Viewing and editing special field types

3 Click OK.
dBASE Plus performs the calculation and displays the results in the Calculation Results message box.
Figure 14.9Calculation Results dialog box

Calculation Results @

Espeession: Result
— Calculated values

Calculation expression

Viewing and editing special field types

Supported field types and field-editing rules can differ greatly from database to database. In many cases,
entering and editing data is intuitive enough: select a field and type in characters or numbers, depending on the
field type. If you enter a value that doesn’t match the basic field type rules (like entering a character in a
numeric field), you’ll receive an error message.

Most databases also offer a number of non-character field types, however, and viewing and modifying data in
these types is a bit different.

This group of topics examines binary (image or sound), OLE, and memo field types, all of which are available
in both the older .DBF and the new .DBF 7 table formats. Other table formats may offer other ways to edit
similar field types.

Viewing the contents of special field types

Memo, image, sound, and OLE fields are represented in a table by icons. You can view the contents of these
types of fields in three ways:

* Select the field and press F9.

* Double-click the field.

» Select the field and choose View | Field Contents.

To select a field with the keyboard, use the following keys.

Table 14.3 Field selection keyboard shortcuts

Go to All views
Next field Tab
Previous field Shift+Tab
Beginning of field Home

End of field End

Memo fields

Memo fields open in a text editor. When the text editor is open, the Format toolbar becomes available, and you
can format text in the memo field.

Binary fields

Your tables can contain any supported sound and image data, and the data can be stored, viewed (or played, in
the case of sound files), added, or replaced any time you run a table.

Editing table data 179

Viewing and editing special field types

.DBF and .DBF 7 tables support most popular image formats (for a complete list, see the Image page in the
Navigator). The supported sound format is .\WAV.

Importing an image or sound into a binary field

To add an image or sound to a binary field,
1 Double-click a binary field. The Specify Binary Field Subtype dialog box appears.

2 Choose the binary type (Image or Sound). If you choose Sound, the built-in Sound Player appears. If you
choose Image, the built-in Image Viewer appears.

3 Right-click on the viewer or player. A file import dialog box opens. Select a file of the appropriate type, then
click OK.

4 Save the row.

If the field already contains a binary image or sound, you can export the image or sound to disk by calling the
player or viewer as instructed above, then choosing Export from the right-click menu.

OLE fields

Object linking and embedding (OLE) lets you use objects from other Windows applications in your tables.

You can either link objects to or embed objects into OLE fields. Linking inserts a reference to the file from
which the object originated, which means that in order to keep the object updated, both the source file and
source application must remain available. If the linked object is updated, your OLE field is updated as well.

Embedding places an entire object into the OLE field. Embedding is a more portable solution, but still requires
that the application that created the source be available. It can also cause significant enlargement of your table
file sizes, which grow by the size of each object you embed plus some OLE reference code for each. And unlike
links, embedded objects are not updated when the source object changes. Instead, they become separately
editable (in the source application) objects of their own.

An OLE object can be a graphic image, a sound, a document created by a word processor, or any other object or
document that can be created by an OLE-compliant server application. For example, Microsoft Word is an OLE
server, and any document created in Word can be linked or embedded into an OLE field.

In any OLE exchange, dBASE Plus then becomes the client application.

Whether you choose to link or embed an object into your OLE field, you can launch the server application and
load the object for editing by simply double-clicking the OLE field in your running table.

Adding an OLE object to an OLE field
To add an object to an OLE field

1 Start the server application and open a file or create an object.

2 If you want only a portion of the object data, select it and copy it to the Clipboard using the application’s
Copy command or Ctrl+C.

3 Start or switch to dBASE Plus, and run the table containing an OLE field.

4 Click the Add Row button or choose Table | Add to open a new row. If the OLE field is represented by an
icon, double-click the icon to open the OLE viewer.

5 Do one of the following:
» To link the object, right-click the OLE viewer and choose Paste Link from the popup menu.
* To embed the object, right-click the OLE viewer and choose Paste (Ctrl+V) from the popup menu.

The linked or embedded object appears in your OLE viewer. You may need the scroll bars to scan the entire
object.

A linked object is automatically updated by default, so if the source object is edited, the OLE field will reflect
the changes. You can modify link attributes, however—as well as view information on the link, open the source

180 dBASE Plus User’s Guide

Viewing and editing special field types
file, change the link (useful if the source file is moved) or even break the link—by right-clicking the OLE
viewer and choosing Links from the popup menu.

To edit an embedded object, double-click the OLE viewer containing the object. The server application opens
with the object loaded for editing. When you’re finished with your edits, update the OLE field by choosing
Update from the server application’s Edit menu.

You can also link or embed OLE objects by right-clicking an OLE viewer window and choosing Insert Object
from the popup menu. The Insert Object dialog box lets you choose from among the OLE object types
registered on your system. You can then either create a new object in the server application (for embedding) or
create an object from an existing file (for embedding or linking).

Removing an OLE object from an OLE field
To remove an OLE object from a table,

1 Locate the OLE field that contains the data you want to remove.
2 Double-click to open the OLE viewer (if it’s not already open).

3 Select the viewer window and choose Edit | Delete.

Editing table data 181

Chapter

15

Setting up security

dBASE Plus provides built-in levels of security against unauthorized access to encrypted databases and tables.
This table-level security depends on data encryption.

Sensitive tables should always be encrypted by using the database vendor’s administration software. dBASE
Plus’s password dialog is presented whenever a user tries to access a form linked to an encrypted table or
database. The user’s response to the password dialog is passed to the encrypted table or database for verification
before dBASE Plus will display the form. See your database vendor’s documentation about security
administration for SQL, ODBC, or non-Standard systems.

The DBF and DB tables you create within dBASE Plus have built-in encryption. dBASE Plus provides direct
database administration security access to set passwords for BDE-Standard DB and DBF tables, as well as the
extensive user-access and privilege-level security features of DBF tables.

Setting up security strategies

182

dBASE Plus offers two general strategies to handle access to encrypted tables of any type: individual login and
preset access.

* Individual login via automatic password dialogs
In this approach, each user is required to login every time he or she tries to access a form linked to an
encrypted table or database. dBASE Plus automatically displays a password dialog for the appropriate table
type, requiring the user to enter a password or other information required by the table. Users might get
different access levels, depending on their user name and password, and depending on the security features
supported by the table type. The user must submit the correct information (which is passed to the encrypted
database system for verification) before the user can access the dBASE Plus form.

» Preset access via Session and Database objects
Preset access involves hard-coding passwords or user names in dBASE Plus forms and reports. Preset access
provides an automatic, pre-determined level of access without login procedures for certain groups of users. It
can be used in conjunction with individual login to provide easy read-only access for the public and login-
protected access for authorized company personnel.

* Preset access for Standard table types
Sessions objects provide unique connections between a user and a DBF or DB table. You can add
methods to these objects to restrict access to certain features of a Standard table, or to make the table read-
only for certain login-levels.

» Preset access for SQL and other table types
Database objects link dBASE Plus forms to SQL databases or table sets. You can set the Database object’s
loginString property for particular user names or passwords to limit users of a specific login-level to read
but not write the data in an SQL database.

» Table-level security for DBF tables
dBASE Plus supports direct access to the extended security features of DBF tables, including administrator
security, up to 8 user access levels, and three-level privilege security for DBF tables and individual fields. If

dBASE Plus User’s Guide

Setting up security strategies
you intend to create tables within dBASE Plus, DBF tables offer the most extensive and versatile security
features.

» Table-level security for DB tables
dBASE Plus provides direct access to master password security for each DB table. However, you must use
Borland’s Paradox or Database Desktop to set auxiliary passwords.

Individual login via automatic password dialogs

dBASE Plus’s password dialogs are activated only by encrypted tables. Password protection alone is inadequate
to protect a sensitive table unless the table is encrypted, because an intruder, having gained access to the
machine or server on which the application is running, could use another application to read the data from the
hard disk.

Once an authorized user gains access to your application by providing the correct password, the user might be
offered a restricted choice of a variety of tables, with different access privileges, depending on the login level

used to access the application. dBASE Plus supports the full range of table- and row-level security features for
DBEF tables, so you can create up to 8 user access levels and 3 privilege levels, precisely controlling access by
different classes of users to specific tables and even to specific rowsets in those tables.

To link any encrypted table to a form (and thereby enable automatic password protection), you need only create
a Query object for that table on your form. To do this, simply drag the table icon of the encrypted table from the
Navigator’s Tables tab to your form surface in Form designer. (At this time, while in Design mode, you will
have to supply access information to the encrypted table.) This is all you need to do to ensure that dBASE Plus
will activate the automatic password dialog. See Form Designer for guidance on adding Query objects to forms.

After your form is run and the user activates some event (a button click, for example) to access a restricted table,
the Borland Database Engine (BDE) attempts to open that table. Because the table is encrypted, dBASE Plus
automatically displays the appropriate password dialog with fields for the input required by that table type. The
type of security available varies according to table type.

The original dBASE Plus form is temporarily displaced and the user is presented with a password dialog. To
gain access to your application (and its underlying encrypted table), the user must provide the particular security
information required by that table or database.

Preset access via Database and Session objects

Setting preset access levels is another approach to restricting access to your data.

To set levels, you have to hard-code passwords or user names in dBASE Plus forms and reports, thus restricting
access only to individuals within specified groups.

Preset access can be useful in combination with the individual login approach to provide easy read-only access
for general users, and login-protected access for authorized personnel. For example, you might have employee
information managed through an application that allows updating by Human Resources personnel, but permits
read-only access to other employees.

To implement this strategy, you would need a full-access (read/write) password that the HR staffers would have
to enter manually every time they start the application. You would then code into the form a read-only password
that would admit everyone else at a limited level.

How you encode preset access levels depends on the table type, as described in the next two topics.

Preset access for Standard table types

For DBF and DB tables, security is session-based. The Session object has a login(_) method for DBF table
security and a addPassword(_) method for DB table security. The appropriate method (or both if you’re using
both types of encrypted tables) must be called with the correct user name and password before attempting to
activate a query that accesses the table.

Where this must occur depends on whether all users are sharing the same session. If everyone accessing dBASE
Plus gets exactly the same access for every application by using the same user name and password, then they

Setting up security 183

Table-level security for DBF tables
can share the default session. You would need only call the session’s methods once through an administrative
program or form.

All the forms would thus require a Query object to access the DBF or DB tables, but no Database object or
Session object, because everyone uses the default database in the default session.

On the other hand, if any two applications use different user names or passwords, then every form must have its
own Session object, so that each form runs in its own session and the security is localized.

No Database object is needed because the form uses the default database of its own session. Then users must log
into each session before the query is activated.

Use the Query object’s canOpen event to call the session’s security methods.

Preset access for SQL and other table types

Table and database types other than DBF or DB tables accessed via the directory require modification of the
Database object’s loginString property. This applies to all non-Standard applications, including SQL servers
such as Borland InterBase, Oracle, Sybase, Informix, IBM DB2, and MS SQL Server; and ODBC connections
such as Access and Btrieve. It also applies to remote DBF and DB tables accessed through a Borland Database
Engine (BDE) alias.

A BDE alias always identifies a database. Therefore all non-Standard table security is through the Database
object that provides access to that database. In some cases, logins are required to access tables in a database.

The Database object’s loginString property is a character string that contains the name and password in this
form:

name/password

You can set this property in the Inspector in the Form designer. By setting the name and password in the form’s
Database object, all users attempting to open that form will get whatever level of access that name and password
provides.

Although possible, it’s more trouble than it’s worth to share a Database object among multiple forms. Each form
should have its own Database object, with whatever the appropriate loginString is for that particular form.

Table-level security for DBF tables

The security features of DBF tables are extensive. If you intend to create private tables within dBASE Plus for
which you want to set elaborate or varied access levels, the DBF table type is your best choice.

Table-level security relies on data encryption. Data encryption scrambles data so that it can’t be read until it is
unscrambled. An encrypted file contains data that has been translated from source data to another form that
makes the content unreadable. If your database system is protected, dBASE Plus automatically encrypts and
decrypts tables and their associated index and memo files when a user supplies the required passwords or other
login information.

In addition, DBF tables allow you to define which fields within tables users can access, and the level of access,
read, read/write, or full.

The first parts of this section describe how to plan your security scheme for DBF tables. Topics include
* The various levels of security

* An overview of the various aspects of the DBF security

* Planning group access for each table

* Planning each user’s login and user access level

* Planning user access to tables and fields within tables

At the end of this section are procedures for setting up your DBF security scheme:

 Enter the database administrator’s password

* Create user profiles

184 dBASE Plus User’s Guide

About groups and user access

» Set user privileges for table access

» Set user privileges for fields within tables

About groups and user access

You can control access to individual DBF tables (and to fields within those tables) by carefully defining groups
of users according to

* Which tables each group can access
* Which privilege levels (read, update, extend, delete) each group has at the table-level
e Which fields within tables each group can access

* Which privilege levels (none, read-only, full) each group has at the field-level

Table access

First, you’ll need to define user groups and determine which group has access to which table. Try to organize
users and tables into groups that reflect application use (for example, by department or sales area).

» A table can be assigned to only one group. If the user group and table group don’t match, the user can’t
access the table.

* Typically, each group is associated with a set of tables. By associating each application with its own group,
you can use the group to control data access.

* A user can belong to more than one group. However, each group that a user belongs to must be logged-in
separately.

» Ifauser needs to access tables from two different groups in the same session, the user must log out of one
group, then log in to the second. A user may have separate logins into different groups in separate sessions to
access files in different groups.

User profiles and user access levels

You’ll need to develop a user profile for each user in each group. As part of each profile, you’ll assign to the
user an access level. Each user’s access level is matched with the table’s privilege scheme (see the next section)
to determine what access the user has to the table and, within each table, to each field. For example, if you
establish a read privilege of 5 for a table, users with a level from 1 to 5 can read that table. Users with a level of
6 or higher can’t read the table.

By establishing access levels within a group, you can give different users different kinds of access to the table
and to fields within the table.

» Access levels can range from 1 to 8 (the default is 1). Low numbers give the user greater access; high
numbers limit the user’s access. The access value is a relative one—it has no intrinsic meaning.

» The less restrictive levels (1, 2, 3) are typically assigned to the fewest people. To limit access to data, the
more privileges a level has, the fewer users you should assign to that level.

* You can assign any number of users to each access level.

» Ifyou don’t need to vary the access level of the users within a group, there is no need to change each user’s
default level.

About privilege schemes

Once you’ve established each user's access level, you set up a privilege scheme for each table. A DBF table’s
privilege scheme controls three things:

* Which group can access the table. (The user’s group name is matched with the table’s group name to allow
table access.)

Setting up security 185

About data encryption

* Which user access levels can read, update, extend and/or delete the table (table privileges).
* Which user access levels can modify and/or view each field within the table (field privileges).

After a user logs in, dBASE Plus determines what access the user has to that DBF table and its fields by
matching the user’s access level with the rights you specified in the table’s privilege scheme.

For example, if you assigned a user an access level of 2, that user’s access to the table, and to various fields
within the table, are determined by the privileges you assigned to Level 2 in the table privilege scheme.

In building a table privilege scheme, note the following:

* A user’s ability to access a table is a function of both the access level of the group and the user’s individual
access level. However, only the user’s access level determines what the user can do with a table once it is
opened.

+ Ifyou do not create a privilege scheme for a table, all users of the group can read and write to all fields in the
table.

* Access rights cannot override a read-only attribute established for the table at the operating system level.

Table privileges

At the table level, you can control which operations each user access level (1-8) can do:
* View records in a table (read privilege)

* Change table record contents (update privilege)

* Append new records to a table (extend privilege)

* Delete records from a table (delete privilege)

When you create a table privilege scheme, all four table privileges are granted initially. That is, all table access
levels are 1 by default (1 being the least restrictive level).

Field privileges

At the field level, you can control which operations each user access level (1-8) can do:
* Read and write to the field in the table (FULL privilege). This is the initial default.
* Read but not write to the field (READ ONLY privilege).

* Neither read nor write the field (NONE privilege). NONE blocks a user from writing to fields and from
seeing fields you do not want to display.

About data encryption

A DBEF table is not encrypted until you select it, edit the access levels, and save the privilege scheme.

When a DBF table’s privilege scheme is saved, dBASE Plus encrypts the table, including the production index
(MDX) file and the memo (DBT) file, if any. dBASE Plus also creates a backup copy of the original,
unencrypted table. To ensure proper security, the backup files should be archived, then deleted from the system.

Even after a database system has been protected, the database administrator and application programmer
maintain control over encryption of copied files.

Planning your security system

This section describes how to plan out your security system for DBF table security. It’s a good idea to think
through user access and table/field rights before you start creating security profiles.

Follow these general steps to set up a protected database system for DBF tables:

1 Plan your user groups.

186 dBASE Plus User’s Guide

Planning your security system

2 Plan each user’s access level.
3 Plan each table’s privilege scheme, including both table privileges and field privileges.

4 TImplement your security scheme (see Setting up your DBF table security system).

Planning user groups

Take time to think through the various groupings into which you can divide your users, based on who needs
access to which tables. For example, an administrative staff might need to access tables that a sales staff does
not, or vice versa. Other groups may overlap; for example a marketing group might need to see some of the
administrative tables and some of the sales tables.

It helps to develop a worksheet, to map group access needs in advance. The following table shows one way of
organizing this information; use whatever method works best for you.

Table 15.1 Setting user groups

Table Group User name

CUSTOMER SALES AMORRIS
BBISSING

PRODUCT ALL AMORRIS

Planning user access levels

Next, think about how much access each user needs to the table.

Although there are 8§ access levels, you might choose to standardize on just 3 levels; one for full access, one for
typical use, and one for minimal access. The next table shows the sample worksheet, expanded to show user
access levels.

Table 15.2 Setting user access levels

Level 1 Level 4 Level 8

Table Group User name (full access) (typical access) (minimal access)
CUSTOMER SALES AMORRIS X

BBISSING X

LJACUS X

FFINE X
PRODUCT ALL AMORRIS X

BANDERS X

BBISSING X

CDORFFI X

LJACUS X

FFINE X

Planning DBF table privileges

Next, plan each DBF table’s privilege scheme.

For each table operation, determine the most restricted access level that can perform the operation. All levels
less restricted than the specified one can perform that operation; all levels more restricted than the specified
level cannot.

The following worksheet illustrates one way to plan which user access levels grant which table rights.

Setting up security 187

Setting up your DBF table security system

Table 15.3 Setting table privileges

Table Read Update Extend Delete
CUSTOMER 8 4 4 1
PRODUCT 8 4 4 1
ORDERS 8 4 4 1

Planning field privileges

The last planning step is to determine which user access levels can read and/or write to fields. Consider
developing a worksheet similar to the following one.

Table 15.4 Setting field privileges

Field name Full access Read only No access
PAYRATE Levels 1-2 Levels 3-6 Levels 7-8
FIRSTNAME Levels 1-6 Levels 7-8

LASTNAME Levels 1-6 Levels 7-8

SSN Levels 1-2 Levels 3-6 Levels 7-8

Setting up your DBF table security system

Warning!

Once you’ve planned out your security scheme for DBF tables, you’re ready to set it all up. Follow these steps
to implement the security scheme:

1 In dBASE Plus, define the database administrator password.

Define the user profiles, including group membership and access level.
Define table privileges.

Define field privileges.

a b WODN

Set the login security scheme.
6 Save the security information.

This section describes how to set the database administrator password, how to enter and edit user profiles, and
how to set up table privilege schemes.

Defining the database administrator password

Before setting passwords, make sure any open tables have been closed. Follow these steps to enter the database
administrator password:

1 Choose File | Database Administration. The Database Administration dialog box appears.

2 In the Database Administration dialog box, make sure that the Current Database field is set to <None> and
the Table Type field is set for dBASE (DBF) tables.

3 Click the Security button. The Administrator Password dialog box appears.

4 In the Administrator Password dialog box, enter a password of up to 16 alphanumeric characters. You can
enter characters in upper- or lowercase. The password does not appear onscreen.

The first time you set the administrator password you are prompted to reenter the password to confirm.
(Thereafter, the system gives you three chances to enter the password correctly before the login terminates.)
The Security dialog box appears.

Once established, the security system can be changed only if the administrator password is supplied. Keep a
hard copy of this password in a secure place. There is no way to retrieve this password from the system.

188 dBASE Plus User’s Guide

Establishing DBF table privileges

Creating user profiles

The Security Administrator dialog box is where you create user profiles and establish an access level for each
user.

Follow these steps to add a user profile:
1 In the Security dialog box, select the Users tab and click the New button.

2 Enter a user login name (1-8 alphanumeric characters) in the User field. The entry is converted to uppercase.
Required.

3 Enter a group name (1-8 alphanumeric characters) in the Group field. The entry is converted to uppercase.
Required.

4 Enter a password for this user (1-16 alphanumeric characters). Required.

5 Select an access level for this user (from 1 through 8; see About groups and user access). Lower numbers
give the greatest access; higher numbers are the most restricted.

6 Enter the user’s full name (1-24 alphanumeric characters). This entry is optional. Because this item is not
used in validating a login, you can use it any way you want. Frequently, the full name is used to add a more
complete user identification. Alphabetic characters you enter in the Full Name option are not converted to
uppercase.

7 Click OK to save the user profile.
8 The Security dialog box reappears with your new user info added to the list on the Users tab.

9 Repeat the preceding steps for each user.

Changing user profiles

To change a user’s profile,
1 Open the Users tab of the Security dialog box.
2 Select the user name of the user you want to change, and click the Modify button.

3 Make the desired changes, then click OK.

Warning! Be careful when editing the group name, deleting the group, or deleting all users from a group. If you edit the
group name, there is no way for its users to access tables associated with the original group. And if you delete
the group or all users from a group before all tables associated with the group are copied out in a decrypted
form, no one can access the tables. In that case, you must create a new user for the group.

Deleting user profiles

To delete a user profile,
1 Open the Users tab of the Security dialog box.
2 Select the user name of the user you want to delete, then click the Delete button.

3 To confirm the deletion, click the Yes button.

Establishing DBF table privileges

Follow these steps to define table and field privileges for a table:
1 Open the Tables tab of the Security dialog box.

2 Seclect a table.

3 Assign the table to a group.

4 Establish the most restrictive access level for each table privilege.

Setting up security 189

Establishing DBF table privileges

Note

5 Select field privileges for each user access level.

In general, for DBF tables you can use the Tables tab of the Security dialog box to
» Assign a table to a specific group.

» Set table access privileges.

» Set field access privileges for each user access level.

The sections that follow describe these steps in detail.

Selecting a table

To select a table,

1 Open the Tables tab of the Security dialog box. You use the Tables tab of the Security dialog box to create
and modify DBF table privilege schemes. The DBF table privilege schemes are saved in the table structure.

2 In the Table field, type the name of the desired table. (Or click the Tools button and select the table.)
3 Click the Modify Table button. The Edit Table Privileges dialog box opens.

Assigning the table to a group

A DBF table can be assigned to only one group. The group name is matched with a user group name to enable
data access.

To select a group for the DBF table, click on the down arrow to display a list of the available groups from the
Group list in the dialog box. (These groups were created when you created user profiles.)

Setting DBF table privileges

For each type of table operation (see the table below), specify the most restricted access level that can perform
that operation.

Table 15.5 Setting DBF table privileges

Privilege Access granted

READ View the table contents
UPDATE Edit existing records in the table
EXTEND Add records to the table
DELETE Delete records from the table

To set table privileges, select a value (1-8) for each operation (Read, Update, Extend and Delete) in the dialog
box. Remember that lower access numbers indicate the greatest access; higher numbers indicate the greatest
restriction.

You cannot specify access levels that are logically incompatible. For example, you cannot prohibit Level 6 from
having read access, and also permit Level 6 to have update access. To have update access, Level 6 also needs
read access.

Setting field privileges

With DBF tables you can establish access for each field by user access level. The following table describes the
available field privileges.

190 dBASE Plus User’s Guide

Note

Warning!

Setting the security enforcement scheme

Table 15.6 Setting field privileges

Privilege Access granted

FULL View and modify the field. This is the default.

READ-ONLY View the field only (no update capability).

NONE No access. The user can neither read nor update the field, and the field does not appear.

Table privileges take precedence over field privileges. For example, if a table privilege is set for Read but not
Update, the only meaningful field privileges are Read-Only or None. You must restrict fable privileges to
protect your data against table-oriented commands like DELETE and ZAP. Restricting field privileges to Read-
Only or None without restricting table privileges doesn’t protect data against these commands.

The Fields list in the dialog box lists all of the fields in the current table. The Rights buttons display the field
privileges for the selected field for access levels 1 through 8. Initially, all field privileges are set to Full.

Follow this procedure to change a field privilege:

1 Select the field.

2 Click the Rights buttons that correspond to the privileges you want to grant for the field for each access level.
3 Repeat the process for each of the other fields in the table.

4 Click OK to save the field access privileges.

Never change the access rights of the DBASELOCK field of any table. The rights to this field must remain
Full for all access levels.

Setting the security enforcement scheme

You can choose one of two enforcement schemes:
» Force a login when a user attempts to load dBASE Plus itself.

» Force a login when a user tries to view a form linked to an encrypted DBF table. In this scheme, anyone may
use unencrypted tables, but unauthorized users are prevented from accessing protected tables.

To change the security enforcement scheme, follow these steps:

1 Open the Enforcement tab of the Security dialog box. The two radio buttons on the Enforcement page
indicate the security enforcement scheme currently in effect.

2 Select the enforcement scheme you want: whether to display a password dialog when loading dBASE Plus or
only when accessing an encrypted table.

3 Click Close.

Table-level security for DB tables

Note

Although DB tables do not offer the extensive user the access-level and privilege- level security system
available to DBF tables, DB tables (unlike DBF tables) support passwords.

You can use dBASE Plus to assign master passwords to DB (Paradox) tables. Once you have assigned a master
password assigned to a DB table, it cannot be opened without supplying the password, either by you locally or
by users over the Internet.

You may choose to create a single master password that opens all DB tables. A user with this password need see
only one password dialog to gain access to all DB tables. Or you may set unique passwords for particularly
sensitive DB tables.

In addition, auxiliary passwords are supported by DB tables, but you cannot access this feature from dBASE
Plus. Auxiliary passwords allow you to create multiple individual passwords for each DB table, so that you can
restrict access to certain tables and certain fields. Different users can be given different passwords that will open

Setting up security 191

Removing passwords from DB tables
only a specific set of DB tables or allow read/write access to only certain fields within those tables. However, to
set auxiliary passwords for field rights to a DB table you must use Paradox.

The process of assigning passwords is initially very similar to that described previously for DBF tables. To
assign a master password to a DB table, follow these steps:

1 Make sure the DB table you want to secure is closed.
2 From the File menu, select Database Administration. The Database Administration dialog box appears.

3 Make sure that the Current Database field is set to <None> and the Table Type field is set for Paradox (DB)
tables.

4 Click the Security button to open the Security dialog box.

5 Select the name of the table in the Table list. If the table is not in the current directory, use the Folder button
to select the directory.

6 Click the Edit Table button to open the Master Password dialog box.

7 Enter the new password for the table in the Master Password field. The password can be up to 31 characters
long and can contain spaces. Paradox passwords are case-sensitive.

8 Enter the password again in the Confirm password field.

9 Click the Set button to save the password.

Removing passwords from DB tables

To remove an existing password from a DB table, follow Steps 1 through 6 in the previous section. When
prompted, enter the existing master password for the table. Then click the Delete button to remove the password
from the table.

192 dBASE Plus User’s Guide

Chapter

16

Character sets and Language
drivers

dBASE Plus is an international software tool which can accommodate many languages. Each language or
language category uses its own character set, and each has its own way of sorting and relating its characters.
dBASE Plus provides comprehensive language and character set support with multiple language drivers and
automatic OEM—ANSI conversion as needed.

Users new to the Windows environment need to understand the difference between the OEM and ANSI
character sets. Users who exchange data across national or linguistic boundaries need to understand how dBASE
Plus uses language drivers to handle data in different languages.

This section explains how dBASE Plus uses the OEM and ANSI character sets and discusses techniques for
working with language drivers.

Determining the language displayed by the User Interface

Language resources are files containing human-readable text strings that are displayed in the User Interface. In
dBASE Plus, these files are identified, according to language, by a two-letter code at the end of the file name.
The online documentation (such as the Help files) are identified in the same way. The codes are:

* en = English

* de = German

* es = Spanish

o it=Italian

* ja=Japanese

While most users install dBASE Plus for a single language, it is possible to select multiple languages during
installation. You may also re-run the Installer at any time to install additional languages.

As with other dBASE Plus settings, you may indicate a specific preference. If you do not indicate a specific
preference, dBASE Plus will follow the settings of the operating system (see Windows | Control Panel |
Regional Settings). This is done on an as-available basis, dropping back to English when a target language
resource cannot be found. For example, if the Windows Regional Setting is set to German and the "de" (German
language) version of a resource is available, that language resource will be used. A similar protocol is used for
loading the Online Help.

You can indicate a specific dBASE Plus language preference by making a selection from the Desktop Properties
dialog. From the Desktop Properties | Country tab, you can access the User Interface Language picker. When
you make a selection from the Country tab, your explicit preference will be written in the PLUS.ini file. It will
not take effect, however, until you re-start dBASE Plus. Once restarted, dBASE Plus will use the new language
preference when possible.

Character sets and Language drivers 193

About character sets

At startup, locate the desired core-product language resource file. This file is identified as PLUS xx.dll - where
the "xx" is the two-letter language code. dBASE Plus then attempts to load a language resource file by checking
the following locations:

1 The PLUS.ini file
2 The operating system's Regional Setting.

If a language resource file was not found at either location, dBASE Plus will default to English and attempt to
load any language resource file it finds. The language resource file that is successfully loaded determines the
value of the _app. object’s language property. The value of the _app.language property is the two-letter
language code mentioned above.

The app.language setting will be used for the first attempt at locating relevant files when other language-specific
resources and documentation files are needed. For example, when _app.language is set to "it", Italian, and a user
invokes the Online Help system, dBASE Plus will attempt to locate and load a file called "dBASE it.hlp". If this
cannot be found, the system will attempt to load the file’s English version.

About character sets

In the early 1980s, the developers of the IBM PC created an ordered list of symbols known as the /BM extended
character set. This list contained all the classic ASCII 7-bit characters, together with various mathematical
symbols, line and box drawing characters, and some accented characters.

While this was adequate for certain English-speaking countries, it was insufficient for most other countries. For
example, there are accented characters in various European languages that are not included in the IBM extended
character set. Therefore, a number of other character sets were developed. Each character set, including the
original IBM extended character set, is contained in a code page. Each code page is designed for a particular
country or group of countries, and each is identified by a three-digit number.

Some examples of the code pages supported by MS-DOS are:
* 437 English and some Western European languages

* 850 Most Western European languages

* 852 Many Eastern European languages

* 860 Portuguese

» 863 Canadian French

* 865 Nordic languages

These are known as OEM code pages (for Original Equipment Manufacturer). The classic IBM extended
character set is contained in OEM code page 437 and is the default code page for the United States. DOS
considers code page 850 to be the default for most European countries. Code page 850 contains all the letters
(but not all the symbols) of code pages 437, 860, 863, and 865; consequently, many of the box-drawing and
line-drawing characters contained in these code pages are omitted to make room for accented characters in code
page 850.

Each character in a code page is identified with a number; this number (which can be decimal or hexadecimal) is
known as a code point. For example, the code point of the numeric character "4" is 52 (decimal) or 34
(hexadecimal) in code pages 437 and 850.

The Windows environment uses its own character set, which is generally known as the ANSI character set.
Although this character set shares many characters in common with the OEM code pages, it omits most of the
line-drawing characters and mathematical symbols that these code pages offer. Furthermore, even characters
shared in common between an OEM code page and the ANSI character set often have different code point
numbers.

The global language driver determines the character set used by dBASE Plus. If you have another product
already installed on your system that uses the Borland Database Engine (BDE), your current language driver is
unchanged when you install dBASE Plus. If no BDE language driver setting is detected, however, dBASE Plus
installs the ANSI language driver by default.

194 dBASE Plus User’s Guide

About language drivers

About language drivers

dBASE Plus uses language drivers to specify which character set to use and which language rules apply to that
character set. For example, the Canadian French language driver uses a character set that is identical to code
page 863, while the default driver for the United States uses a character set that is identical to code page 437. It
is important to understand that dBASE Plus uses these internal code pages instead of the code pages supplied by
the operating system.

dBASE Plus language drivers contain tables that define or control the following for a particular character set:
* Alphabetic characters

* Rules for upper- and lowercase

+ Collation (sort order) used in sorting or indexing

* String comparisons (=, <, >, <=, >=)

* Soundex values (values that represent phonetic matches when exact spellings are not known)

* Rules for translation between OEM and ANSI character sets

dBASE Plus identifies each driver with a character string known as an internal name. For example, the internal
name of the German driver for code page 850 is DB850DEQ, and the internal name of the Finnish language
driver is DB437FI0. The following table lists some of the European language drivers available in dBASE Plus.

Table 16.1 European language drivers available in dBASE Plus

Language or country Code page Internal name
Portuguese/Brazil 850 DBS850PTO
Portuguese/Portugal 860 DB860PTO
Danish 865 DB865DA0
Finnish 437 DB437FI0
French/Canada 850 DBS850CFO0
French/Canada 863 DB863CF1
German 437 DB437DEO
Italian 437 DB437IT0
Netherlands 437 DB437NLO
Norway 865 DB865NO0
Spanish 437 DB437ES1
Spanish ANSI DBWINESO
Swedish 437 DB437SV0
English/UK 437 DB437UK0
English/UK 850 DB850UKO
English/USA 437 DB437US0
English/USA ANSI DBWINUSO
W. European ANSI DBWINWEO

When dBASE Plus converts data from OEM to ANSI, and vice versa, most alphabetic characters exist in both an
OEM code page and the ANSI character set and are converted without problem. Most of the extended graphic
symbols in an OEM code page cannot be represented in the ANSI character set at all. When such a discrepancy
exists, dBASE Plus, like other standard Windows applications, makes a guess at the nearest character, but data
loss can occur.

Performing exact and inexact matches

When dBASE Plus compares two characters, either an exact match (also known as a primary match), or an
inexact match (also known as a secondary match) can be performed. An exact match is performed when SET
EXACT is set to ON, and in inexact match is performed if EXACT is set OFF.

Character sets and Language drivers 195

Using global language drivers

An exact match requires that the characters be exactly the same. For example, although the characters O and O
are similar, they don’t satisfy the requirement for an exact match, and a SEEK or a FIND expression treats them
as different characters. In contrast, an inexact match requires only that the characters belong in the same general
category. For example, since the characters O and O are similar in several languages, they satisfy the
requirement for an inexact match with many language drivers; a SEEK or a FIND expression treats them as
identical characters.

Exact and inexact matches are performed using primary weights and secondary weights, which are assigned by
a language driver to each character. Exact matches use primary and secondary weights, while inexact matches
use only the primary weights and ignore the secondary weights. For example, the SET EXACT command
controls whether characters with umlauts match their respective characters without umlauts. The following
commands open a table named VOLK.DBF and search for a record with a key value that satisfies an exact
match criterion:

set exact on
use VOLK order NAMEN)
seek "KONIG" // Will NOT find "KONIG".

EXACT is ON and the secondary weights of O and O are different, so they are evaluated as different characters.
The following commands open VOLK.DBF and search for a record with a key value that satisfies an inexact
match criterion:

set exact off
use VOLK order NAMEN .
seek "KONIG" // Can find "KONIG".

EXACT is OFF and the primary weights of O and 6 are the same, so they are evaluated as identical characters.

Using global language drivers

Each time you start dBASE Plus, a language driver is activated automatically. This is known as the global
language driver. This setting applies to reading and writing of files, table creation, table-independent character
operations and the output of commands and functions. For example, the global language driver governs FOR
and WHILE expression evaluations.

dBASE Plus normally chooses the global language driver from the dBASE Language Driver setting in the
BDEADMIN.EXE Utility. Optionally, you can also specify a global driver in your PLUS.ini file with an Idriver
key. When there is no PLUS.ini entry for a language driver, the setting in the BDEADMIN Utility determines
the global language driver. When you place a valid driver entry in PLUS.ini it overrides the setting in the
BDEADMIN Utility except when creating tables. dBASE Plus will always set the new table’s language
according to the global language driver specified in the BDE Administrator Utility.

To set the Idriver option in PLUS.ini:

1 Close dBASE Plus if it is running.

2 Open the PLUS.ini file (normally located in your dBASE\BIN directory) and enter one of the following in
the [CommandSettings] section:

ldriver = WINDOWS
or
Idriver = <internal driver name>

For example, the internal name of a European Spanish language driver for code page 437 is DB437ES1; to
install this driver, insert the following setting:

Idriver = DB437ES1

196 dBASE Plus User’s Guide

Using table language drivers

Figure 16.1Setting LDRIVER in the PLUS.ini

& pPLUS.ini - Notepad M=]E3

File Edit Search Help Command zettingz in the

PLUS. ini

[CommandSettings] =l ORIvER |
LORIVER=DB437U50 —— 3 PANRSnebans
PATH=
ALTERMATE=
SEPARATOR= |
POIMT =,
CLURREMCY =%
DATE=MDCY
MAaRK =/
REFRESH=0

[l

3 Save your changes and restart dBASE Plus.
Use ldriver = WINDOWS to maximize compatibility with the operating system locale.

Use ldriver = <internal driver name> to specify a Borland language driver and maximize compatibility with
legacy applications. For legacy applications matching the global language driver to the one previously in effect
will help ensure compatible character handling and processing of data in the legacy tables.

Using table language drivers

dBASE Plus assigns a language driver to a table automatically when you create it. This assignment is recorded
in the LDID, a 1-byte identifier in the file header region. When you create a table from scratch, dBASE Plus
always assigns the current global language driver to the LDID. When you create a table file from another table
file, either the global language driver or the language driver of the original table is assigned to the LDID of the
new table. Which language driver is assigned depends on the command you use to create the file, as shown in
the following table:

Table 16.2 Automatic assignment of language drivers by dBASE Plus

Assigns global driver to the Assigns original table driver to LDID of
LDID of new table new table
CREATE COPY FILE
CREATE...FROM COPY STRUCTURE
CREATE...STRUCTURE EXTENDED COPY...STRUCTURE EXTENDED
COPY TABLE

For example, the following commands open a table file and create a new one with the LDID set to the current
global language driver:

use CLIENTS // LDID specifies a language driver other than global language driver

copy to CLIENTS?2 structure extended // LDID of CLIENTS2.DBF matches the language
// driver of CLIENTS.DBF

use CLIENTS?2 exclusive

create NEWCLIENT from CLIENTS2 // Create a new table with the global LDID

The following commands open a table file and create a sorted table file with an LDID set to the original table
language driver:

use CLIENTS // LDID specifies a nonglobal language driver
sort on LASTNAME to CUSTOMER // LDID of CUSTOMER the same driver as with CLIENTS

Character sets and Language drivers 197

Identifying a table language driver and code page

Identifying a table language driver and code page

Because some commands behave differently than others when a table language driver differs from the current
global language driver, it is often necessary to detect which language driver is assigned to the LDID region of
the table file or determine which code page the language driver uses. For example, file and field names may be
valid in one language but not in another, or a key field may have characters that are not shared in common
between the code pages of the language drivers.

When you use a command to open a table, and that table has a language driver that differs from the global
language driver dBASE Plus displays a warning dialog box only if LDCHECK is set to ON (installation default
is OFF).

To determine which language driver is recorded in a table LDID region and which code page the driver uses,
use the LDRIVER() and CHARSET() functions:

set Idcheck off ~ // Turns off automatic language driver compatibility checking.
use CLIENTS exclusive
index on COMPANY tag COMPANY
if Idriver() == "DB437DEQ" // If this is the German language driver...
seek "Shonberg Systems" // Searches are OK
else
if charset() == "DOS:437" // If the driver uses Code Page 437...
warnl.open() // Opens a custom warning dialog box.
else /' If the driver doesn't use Code Page 437...
warn2.open() // Opens a different warning dialog box.
endif
endif

Non-English Character Display Issues

There are two parts to this issue:

 First, we must make sure dBASE Plus uses the correct code page when interpreting text encoded in source
files (.prg, .wfm, etc.), or text encoded in an incoming byte stream from a dBASE Plus Web App.

* Second, we must make sure dBASE Plus uses a display font that contains the characters we wish to display.
For font specification, see Selecting Specialized Product Fonts.

dBASE Plus interprets text according to the code page associated with the language driver you specify. You can
set the language driver in the PLUS.ini file through the CommandSettings section as follows:

[CommandSettings]
ldriver=<internal Name>

For a complete list of Language Drivers and their internal names, please see the topic "About language drivers".
Select the language driver that best matches the language you wish to display.

In addition to using the ldriver setting, you can also use the BDE to designate a desired language driver. In the
absence of an ldriver setting in the PLUS.ini, dBASE Plus uses the default language driver from the BDE
configuration. This BDE setting can be used to designate alternative language drivers in much the same fashion
as an ldriver setting. Please note that an ldriver setting takes precedence and will therefore override any
subsequent change to the BDE configuration.

Selecting Specialized Product Fonts

In order to use TrueType fonts which do no use the Western Europe code page (1252), you must specify the
language (also referred to as the "script"). Since dBASE Plus does not list available language scripts for
TrueType fonts, you must specify it in the fontName property--either in code or through The Inspector--using
the exact TrueType font name. If you use The Inspector, choose a text component, it’s fontName Property and,
instead of choosing from the fonts list, type in the name of a desired language script. We recommend all
languages be entered in English, e.g.:

* Times New Roman Greek

198 dBASE Plus User’s Guide

Table language drivers versus global language drivers

* Verdana Turkish

* Arial Baltic

* MS Gothic Cyrillic

e Courier New Central Europe

The following PLUS.ini file settings ensure that the initial font created for a new control uses the language you
want:

[DefaultFonts]
Application=<strFontName>,<intPointSize>
Controls=<strFontName>,<intPointSize>

The Application setting specifies the font used for the Navigator and Inspector, while the Controls setting
specifies the default font used for forms and controls. You can also create your own custom controls to specify
the font and language you want to use.

Table language drivers versus global language drivers

When the language driver of a table differs from the current global language driver, the table language driver is
loaded into memory automatically when you open the table. Thereafter, the table language driver is respected by
some commands, while the global language driver is respected by others.

All commands that have nothing to do with a table use the global language drivers. The following table shows
the general rules when operations are performed on table data where the table language driver differs from the
global language driver.

Table 16.3 Language drivers: Table versus Global

Table driver Global driver

INDEX ON command expressions SET FILTER command expression

FOR scope expression of INDEX ON command FOR and WHILE expressions for every command except INDEX
ON

SET KEY range checking expression SET RELATION TO expression

SORT command expressions

Secondary matches for expressions in LOOKUP(), FIND,
SEEK, and SEEK() with EXACT set OFF

Secondary matches for SET RELATION TO expression
with EXACT set OFF (uses the driver of the child table)

For example, when you create a table file with the German language driver, an LDID identifier is written to the
header region of the file. If the global language driver is set to English and you open the table in dBASE Plus,
dBASE Plus notes the discrepancy between the table’s and system’s language rules. If you create an index with
INDEX ON, the logical order of the index obeys the language driver of the table:

use VOLK // Created with the German language driver
index on NAMEN tag DIENAMEN // Orders records in the German way

By contrast, if you create a filter with SET FILTER, the filtering condition obeys the global language driver:

use VOLK)
set filter to NAMEN = "KONIG" // Excludes records with "KONIG" in NAMEN

Handling character incompatibilities in field names

When you use a table file that was created with a different language driver from the current global language
driver, some characters in the table file might not be recognized. This can lead to problems.

For example, the German language driver DB437DEO has the same code page and character set as the US
language driver DB437US0. However, the German language driver recognizes extended characters like 6 and U
as alphabetic characters, while the U.S. language driver doesn’t. Consequently, when a field name contains such

Character sets and Language drivers 199

Converting between OEM and ANSI Text

characters (as with UNAMEN in the example below) problems arise when you try to reference the field in when
using the U.S. language driver.

When such conditions exist, the following command generates an error condition:
replace UNAMEN with "Schiller"

You can solve this problem by surrounding the field name with the : delimiter, which treats the field name as an
identifier regardless of the rules contained in the current language driver:

replace :UNAMEN: with "Schiller"

When you use this command, each element in the field name UNAMEN, including U, is treated as an identifier
and the command executes successfully.

Converting between OEM and ANSI Text

Warning!

The Source Editor Properties dialog box lets you specify whether to view the text, in an editor, in the DOS (also
called OEM or ASCII) character set or the Windows (also called ANSI) character set. Only the way you view
the source changes, not the actual code points.

You can also convert between character sets. For example, you may want to convert from the OEM character set
to the ANSI character set if you are changing to an ANSI language driver, and your program uses extended
characters.

Converting your program to a different character set changes the code points of values in your program. You
may lose information if a character you convert does not exist in both character sets.

You should carefully review extended characters in your code if you convert between character sets.

Converting from OEM to ANSI

The encoding is changed when you convert between character sets. For example, if your program was written in
the OEM character set and it uses the A character (OEM 142), the actual numeric value of the character is
changed to 0196 when you convert the program to ANSI, because 0196 is the numeric value of A in the ANSI
character set.

Alphanumeric characters usually do not cause problems when you convert from an OEM character set to the
ANSI character set. Characters that typically do not convert include:

* Greek characters other than B (ANSI 0223) and p (ANSI 0181)

* Line-drawing and box characters

Converting from ANSI to OEM

Lowercase alphanumeric characters in the ANSI character set exist in all OEM character sets and are converted
without problems. Uppercase extended alphabetic characters exist in some OEM character sets (such as OEM
code page 850) but not in others (such as OEM code page 437). Following are the rules dBASE Plus uses for
conversion:

« Extended characters in the ANSI set th?lt do not exist in the OEM character set are converted to "similar"
characters. For example, the accented A (ANSI 0192) is converted to the capital A in OEM code page 437.

How to convert and view your source code

To convert between character sets:
1 Open your program or text file in the editor.
2 Select the section you want to convert or Select | All

3 Choose Edit | Convert | To DOS Text to convert your source to OEM, or Edit | Convert | To Windows Text to
convert your source to ANSI.

200 dBASE Plus User’s Guide

Converting between OEM and ANSI Text

Note Converting between character sets does not change the character set you are using to view your text or program.
To change the way you view your text or program:
1 Choose Properties | Source Editor Properties.

2 Specify either DOS Text or Windows Text for Interpret text as.

Character sets and Language drivers 201

Note

Chapter

17

Converting prior version dBASE
Applications to dBASE Plus

How you go about migrating your dBASE applications to dBASE Plus will depend on which prior version you
are currently using.

dBASE llI+/IV

To convert your application to Visual dBASE 5.7, see the section titled, "Converting a dBASE IV Application
to Visual dBASE 5.7.", on this page.

For dBASE III+ users: This procedure will only work for .PRG and .FMT files.

Once this has been completed, you need to convert the Visual dBASE 5.7 application to dBASE Plus. See the
section titled, “Converting Visual dBASE 5.7 Applications to dBASE Plus” on page 214.

dBASE 5.0 for DOS

Convert your reports and labels in the same fashion as with a dBASE IV application. See the section titled,
"Converting a dBASE IV Application to Visual dBASE 5.7", on this page.

Object-based forms and menus, created using the DEFINE syntax, can be converted directly to dBASE Plus. See
the section titled, “Converting dBASE 5.0 for DOS Screens/Menus to dBASE Plus” on page 212.

dBASE 5.0 for Windows through Visual dBASE 5.7
See the section titled, “Converting Visual dBASE 5.7 Applications to dBASE Plus” on page 214.

Converting a dBASE llI+/IV Application to Visual dBASE 5.7

202

Note

For dBASE I1I+, this procedure will only work for .PRG and .FMT files.

Installing Visual dBASE 5.7

The conversion process requires you to have Visual dBASE 5.7.

If you do not have Visual dBASE 5.7 installed:
1 Insert the dBASE Plus CD.
2 Ifamenu displays on your screen, click the "Exit" button.

3 Using Windows Explorer, navigate to the CD drive and double-click on the folder named:
<cd drive>:\vdb_57\<language choice>\vdb\Disk1

dBASE Plus User’s Guide

Note

Converting a dBASE III+/1V Application to Visual dBASE 5.7

4 Choose an install language from among the five listed in the "Visual dBASE 5.7" folder:
* DE = German
* EN = English
* ES = Spanish
* FR =French
o IT =Italian
5 Double click the desired language folder.
6 Double click the "vdb" folder.
7 Open the "Disk 1" folder and double click the “Setup.exe” file to begin the installation process.

If you are unfamiliar with Visual dBASE 5.7 you should use the "default" install, which installs the program
according to a set of pre-determined defaults.

Overview

The following is designed to help you convert an existing application to Visual dBASE 5.7, and is not a
programming guide for the language. Most of what you read here concerns how to convert your screens, reports
and labels to Visual dBASE 5.7. If you have other questions, please check the online help for Visual dBASE
5.7, as well as the Knowledgebase for dBASE Plus (which includes a Visual dBASE 5.7 section).

Suggested Steps

An application, the "Component Builder", is provided with Visual dBASE 5.7 which can be used to convert
some of your code directly from DOS code to Windows code. Create a folder to use for the new code as well as
copies of your tables. Make sure you copy all .DBF, .MDX, and .DBT files.

Start Visual dBASE 5.7. Click the “Current Directory” folder in the Navigator window and select the folder you
will use to store the Windows version of your application.

Most applications are quite diverse, however the following steps assume a relatively basic application. When
converting your DOS application to Windows you need to do the following:

1 Create or Convert your Menus

Convert your Screens to Visual dBASE Forms

Fine tune the forms

Convert your Report and/or Label files to Crystal Reports
Fine tune the reports and/or labels

Create any queries necessary for your reports or labels

Create any code needed to communicate with your forms, reports, and labels

0o N o g~ WODN

Modify the menu so it calls the appropriate programs.

It may be possible to run your code in Visual dBASE 5.7 without doing a conversion, but doing so will cause it
to look like a DOS Screen, not a Windows application.

Sample

There will be a few screen shots for a very simple address-book style application, but for the most part there are
other chapters of the User's Guide that detail how to use the different design surfaces.

The sample is very simple and is only used to get you started.

Converting prior version dBASE Applications to dBASE Plus 203

Converting a dBASE III+/IV Application to Visual dBASE 5.7

Note

Recreating Menus

The "Component Builder" that ships with Visual dBASE 5.7 can be used to convert screens and reports,
however you will need to manually reproduce your menus.

Create a sample menu in Visual dBASE 5.7

Click the “Forms” icon in the Navigator. Four untitled icons will appear in the window to the right. “Right-
click” the icons to locate the one called “New menu”. Double-click (left mouse button) the "New Menu" icon to
open the menu designer.

Figure 17.1 Sample Menu
Addreszs Book Exit

Add Hew Data
Edit Data

Print List
Print Labels

The menu designer in dBASE Plus has not changed much from the one used in Visual dBASE 5.7. For
additional information, see Chapter 7, “Creating menus and toolbars”.

The menu designer will have two windows open, "Untitled - Menu Designer", which is the design surface, and
"Untitled - Inspector”. If the Inspector does not appear, select it from the View menu. The Inspector is used to
set or change properties, and other aspects, of the menu being designed. You should be able to reproduce the
menu shown in Figure 17.1 with little effort. For the time being, we're only going to visually design the menu. A
little latter, we’ll come back to tell the menu what to do when the user selects the items.

Click in the design surface window and an entrybox with a pulsating cursor will appear.

* Type the word “File”, for the first menu option, and press the down arrow key to get a “Sub menu” entrybox.
Sub menus appear beneath the main menu heading and offer it's associated options.

* Type "Add New Data” and press the down arrow key.
* Type "Edit Data" and press the down arrow key again.

For the final sub-menu option add an "Exit" option preceded by a separator. In the Inspector, click the separator
property and use the drop-down list to change it's value from F to T. Click in the design surface. Press the down arrow
key, and type "Exit". The "File" menu option is now complete.

To add a second main menu option, move the cursor back up to "File" and press the tab key. Type the word
"Reports" and press the down arrow key. Continue in this fashion, adding menu options for “Print List” and
“Print Labels”.

Save the menu and exit the designer. The easiest way to save the menu is by pressing Ctrl+W (Save and Exit)
simultaneously. You could also use Ctrl+S to save the menu, and then close the window with the X' in the
titlebar. When asked for a filename, call this "Address". If you look in the Navigator you should now see
"Address.mnu" listed.

Converting .VUE Files

There is no direct conversion to the Visual dBASE .QBE file format for .VUE files. To convert a Screen or
Report/Label file, select a .VUE file and the Component Builder will attempt to convert it. Once it’s converted,
open the .QBE in the Visual dBASE 5.7 Query designer and modify it as needed.

204 dBASE Plus User’s Guide

Converting a dBASE III+/1V Application to Visual dBASE 5.7

Converting Forms

To convert a screen to a Windows form, use the Component Builder installed with Visual dBASE 5.7. To run
the Component Builder, you will need to change the current folder to point to the folder containing the
Component Builder.

To do this:
Click the “folder” pushbutton in the Navigator Window's "Current Directory" area

Select "Visualdb\utils\", the utils folder, and click "OK" (make sure you use the actual path for your installation
of Visual dBASE 5.7).

In the Command Window, type:
do cb
and press the Enter key. This will start the Component Builder program.
In the Command Window, type:
do cb
and press the Enter key. This will start the Component Builder program.
Figure 17.2 Sample Form

Ken'=s Addre=ss Book

Mame =
Address:

Phone: Birthday:

[[]1] Family? [||]1 Chrizstmas Card?

Note When the Component Builder window appears, you’ll see it’s "Help" menu. If you need assistance, this is a
good place to go.

Figure 17.3 The Component Builder

[= Vi=sual dBASE Component Builder =]
File Preterences Help

1 Select the "File" menu

2 Select "FMT to WFM ..."

3 Select the folder that has your DOS application and the .FMT file to be converted

4 Click "OK"

5 Select a "Database" -- select the table or view (.VUE or .QBE) you need for the screen

Converting prior version dBASE Applications to dBASE Plus 205

Converting a dBASE III+/IV Application to Visual dBASE 5.7

6 Click "OK"

7 You will be asked where to save the new form. Select the folder where you wish to put your Windows
application. Click "OK"

A screen will appear showing the progress of the conversion. This will show the different types of objects, the
lines, etc. Unless there is a serious error, the Component Builder will attempt to convert everything on this
screen to a Windows object. If you have complex code, some of it may converted in which case you will need
to make modifications.

When the screen is done being converted, click "OK" on the screen showing the progress bar, and exit the
Component Builder.

Use the Navigator to go back to the folder with your Windows application. If you click on "Forms" in the Navigator you
should see "Address.wfm" in the list on the right.

You will most likely need to fine-tune the job done by the Component Builder. There are some very good
instructions on using the Form Designer in Chapter 6, “Using the Form and Report designers”. While the User’s
Guide is aimed at dBASE Plus, most of what is said can be applied to the Visual dBASE 5.7 form designer.

Using The Component Builder to Convert a Form from a .PRG

The Component Builder menu contains an option to convert a .PRG to a:
* WFM (Windows Form)

or
*« .MNU (Menu) file.

We’ve had little success with this option, however it’s included for those of you who would like to try. The
process is similar to using the Component Builder to convert a.FMT to a .WFM file, with the exception that you
need to highlight the source code you want to convert.

Figure 17.4 Component Builder window with displayed source code

{= Form Builder - EMPLOYEE.PRG B =]

=3 External procedure file used = Library.prg -

a3 =

= Main procedure
PROCEDURE Employee

Link to external procedure file of '"tool" procedures
SET PROCEDURE TO Library

= Set up database environment
DO Set_env

SET COLOR TO &c_standard.

=* Declare variabhlesz used:

= Database memory variables

STORE ' TO lastname, firstname, initial, addressl. addressZ.
city, state =

Highlight dBASE 1¥ form structure. Click [Build Form] to create form file.

Build Form X Cancel ? Help

The difficulty with using the Component Builder is that it does not understand a lot of the setup, contained in the
program file, that most dBASE/DOS programs use to display screens. All it is looking for are the @/SAY, @/
SAY/GET, and READ statements in the program.

If you choose this option:
1 Use the Navigator to go to the Visualdb\UTILS folder
2 Run the program CB.PRG

206 dBASE Plus User’s Guide

Note

Converting a dBASE III+/1V Application to Visual dBASE 5.7

Select the folder with the source code

Select the program file you wish to convert, and click OK.
A new window is displayed (See Figure 17.4)

Highlight the parts of the code you wish to convert

Click the "Build Form" button

0 N oo g b~ W

At this point we get an error message stating: "Marked text block required". If no error message displays, the
Component Builder will continue to run.

If you receive an error message, our only suggestion would be to copy the code to another file, rename it as an
FMT file, and retry.

Fine-Tuning The Form

Once you have a converted .WFM it will probably not display exactly as the DOS program. This is simply due
to differences between Windows and DOS. To correct this, you will need to open your new .WFM in the form
designer and manipulate it.

To do this:

1 Start Visual dBASE 5.7 if it is not already open.

Use the Navigator to navigate to the folder for your Windows application.
Click on the "Forms" icon on the left of the Navigator.

The new .WFM file will appear on the list in the Navigator window.

a b WODN

Highlight it (give it “focus”) by single clicking, then right click, selecting "Design Form" from the context
menu.

To understand all the different palettes in the design surface, you should read Chapter 6, “Using the Form and
Report designers”. While the form designer in Visual dBASE 5.7 is different from the one in dBASE Plus, they
are similar enough for you to use.

With the form in the designer, you can not resize it and adjust the controls to correct the form’s display. "Lasso"
the controls, and move, them by holding down the Ctrl key, clicking the mouse, and dragging until all the
controls you wish to affect are selected. Click on a single control and drag all of the “lassoed” controls to a
desired location. Resize the form by clicking on the border (the edge), and dragging it in and up, etc.

You can now use the Inspector to change colors, fonts, font sizes, and other properties of the controls.

Notes about Memo and Logical fields

Memo fields: A memo field, by default, is placed on a form as an Entryfield displaying the word "Memo".
The control used to handle memo fields is called an Editor.

To change the Entryfield to an Editor control:

1 Delete the entryfield that says "Memo"

Click the Control Palette window

Move the mouse over the controls until you find one that says "Editor" in the small "speedtip" window.
Click and drag the Editor control to your form. Move and size it appropriately.

Click the Inspector window, and select the "DataLink" property.

Click the tool button (the "wrench")

Click the tool button in the new window

Select the field and click "OK".

Click "OK" again

© 0o N o a b~ ODN

Logical fields: In Windows applications, logical fields are normally displayed as Checkboxes, checked
meaning "true" and unchecked meaning "false". The Component Builder wil place Checkboxes onto a form,

Converting prior version dBASE Applications to dBASE Plus 207

Converting a dBASE III+/IV Application to Visual dBASE 5.7

however, as the dBASE/DOS software did not have Checkboxes, they are not really created quite right. You can
delete these controls and use the Inspector to set the text property of the Checkbox "object" instead. Since the
Checkbox object defaults to a short width, and at first the text doesn't show up, widen it using the Inspector. It
will look better and allow you to manipulate a single control rather than several.

Click directly on the form's surface, to give it focus, and click the Inspector. Find the mdi property (it's under the
"Windows Properties" heading), and change it from T to F. "MDI" stands for "Multiple Document Interface".
DOS applications were generally not "MDI", and while it was possible to write MDI applications in DOS, doing
so was quite complex.

If you set the form's autoCenter property to .T., the form will be centered on the screen. If not, the form’s display is
determined by it’s fop and left properties.

With a little work, your form could resemble Figure 17.5:
Figure 17.5 A Running Form

= ADDRESS - Form Designer [_ O] x|

Ken's Address Book

Hame: [lohn | Hobbes |
Address: [1234 Proust St. |

enice [Ca] [99999-99549]

Phane: Birthday: [7 7]
™ Family? ¥ Christmas Card?

Notes: ([Test Thiz seems o wark, inally! YIFEE! =
Cool i
E wer coles.

We could modify this form all day, but we're only going to add one more item - a button that allows the user to
close the form.

Visual dBASE 5.7 comes with a selection of custom controls. These are simply common controls the developers
designed to save us the trouble. Click on the Control Palette and click the tab marked "Custom" at the bottom of
the page.

You can view the name of any one of the resulting series of pushbuttons by moving the cursor over it. Find the
one named "Closebutton", and drag it to the bottom of your form. This button already has code defined that will
close the form when clicked.

Running the Form

You should run the form to see how it looks, and acts. To do this, save it and click the "Run" button at the top of
the screen of

You can navigate through records in your table using the arrow buttons at the top of the screen (the toolbar), and
you can close the form using the close button at the bottom of the form.

To make further modifications to the form, check the Knowledgebase is installed with dBASE Plus. Among the
vast amount of information available, there is a section for Visual dBASE 5.x, which includes HOW TO
documents for working with Object-Oriented Programming.

Repeat the process of converting your forms for each screen you use.

208 dBASE Plus User’s Guide

Converting a dBASE III+/1V Application to Visual dBASE 5.7

Using ACCEPT or INPUT?

Some items won't convert directly using the Component Builder. For example, the commands "ACCEPT" or
"INPUT" will not work in dBASE Plus. If you were to leave them in your programs, they would not look ,or act,
like a Windows application.

Suppose you wanted to use code to find a person in an address book, and view or edit their data. You would use
code similar to:

public cSearch && make it public so that the search form can find
&& it in memory
use address order name

do while .t. && loop until told to exit
cSearch = space(15) && initialize it
accept "Last Name to find: " to cSearch

*-- when the form is closed, the memvar will either
*-- have a name, or it will be empty ...
if isblank(cSearch)
exit
endif

*-- if here, we have a value, let's try to find it!
10K = .f. && initialize flag
if seek(upper(trim(cSearch))) && if we found a match

do while trim(upper(cSearch)) $ trim(upper(last))
accept trim(first)+" "+trim(last)+;
" -- is this the name [Y/N]? " to cYN
if upper(left(cYN,1)) ="Y" && found a match

10K = .t.
exit
else
10K = .f.
skip
endif
enddo
else && match not found
10K = .f.

endif
if .not. IOK && we didn't find it, let user know
2

? "*** No match found ***"
N

else && we DID find it, display the form
do address.fmt
endif
enddo
use

This code would need to be modified so:
¢ the ACCEPT command was not used
* the code displays the address form, not the old DOS .FMT file.

To start with, you want a form that prompts the user for the name of the person in the address book. Click on the
"Forms" icon in the Navigator, and double-click on the first "Untitled" icon on the right side. This will bring up
a new form in the designer.

Drag a text control from the Control Palette to the design surface, and place it toward the top of the form. Widen
it by dragging the right edge to the right. Click the Inspector and in the fext property field, type: "Last Name to
find:". Adjust the size of the text by changing the fontSize property to a larger value, such as 10 or 12 (you may
need to readjust the Text object’s height and width properties as well).

Drag an Entryfield object next to the text object. Widen it, and set the fontSize property to the same size used for
the Text object. Adjust the height and width as needed. Move it so it aligns the way you want. Set the dataLink
property to "cSearch" (type that in the Inspector without the quotes).

Converting prior version dBASE Applications to dBASE Plus 209

Converting a dBASE III+/IV Application to Visual dBASE 5.7

Set the form's mdi property to false. Click on the Form. Bring up the Inspector and change the mdi property to F.
Set the form's autoCenter property to T to center the Form, and press Ctrl+S to save. Name the file "search".

You should now have a pushbutton the user will click to perform the search. Click on the "Component Palette",
select the "Custom Tab", drag the "Closebutton" to the form, and center it under the controls. Resize the form,
and it's done.

You should have a form resembling Figure 17.6

Figure 17.6 Form with PushButton

= Form H=l

Last Narme to find: | |

E Eiutul

Modify the above code by replacing the "ACCEPT" command line with:

do search.wfm with .t.

This line will run the form, and the "with .t." ensures it runs as a modal form (details on "modal" versus "non-
Modal" can also be found in the Knowledgebase).

The section,

accept trim(first)+" "+trim(last)+;
" -- is this the name [Y/N]? " to cYN
if upper(left(cYN,1)) ="Y" && found a match

can be changed to use a built-in Visual dBASE dialog box that prompts for yes/no answers. This is called a
Message Box, and it's called using the msgbox() function.

Change both of these lines to:

if msgbox(trim(first)+" "+trim(last)+;
" -- is this the name?", "Confirm", 4) = 6

If a match is found, this will prompt the user to confirm that the find was correct using "Yes" or the "No"
buttons. (More details on the msgbox() function can be found in Help.)

To replace the code displaying the message that no match was found:

9

? "¥** No match found ***"
N

call the msgbox() function once again:
msgbox("We did not find it.","No Match Found")
This will display only the message, and an "OK" button.
To replace the code that calls the screen (FMT file):
do address.fmt
use
do address.wfm with .t.

At this point, your search program is ready.

210 dBASE Plus User’s Guide

Converting a dBASE III+/1V Application to Visual dBASE 5.7

Reports and Labels

Visual dBASE 5.7 uses a special version of Crystal Reports 3.0., which does not understand the dBASE 1V, or
dBASE 5.0 for DOS, report and label files. However, the Component Builder installed with Visual dBASE 5.7
can convert these files to Crystal Reports.

Use the following steps to convert the report, shown below in the dBASE IV for DOS report designer, to a
Crystal Reports version

Figure 17.7 The dBASE |V for DOS Report designer

Lnynut
-¥- -¥1-¥-]
Dage .H_eade.r Band

Report Intro
Detail : :
HH\HFKH"IHFHHHHFHHHHKHH"-"IHHHH"IH i S
I"EH HK.‘?.EHH'{}EHHH'{X?'HHHKFHH
REARARRRHEER LA H R AR LR HR

_' _Phnnc. ("3“3?"* 999-9999 irthday: iHH-DD.~ ; :
S Family? SXNKiEiChe mas Caprd? WKl i
'-’UIJIJULIUUUUUUUUUUU JUIJIJUUUUUl.ll.lUUIJUULIUUl.ll.lUUUUUUUUUL"JUU-. e

Report Eummar-y Eantl
Page T e - T s —

T T" [Band 15 |[File:Address || Ins|
Add field:FS elect:F6 Move:Fy Copy:F8 SHize:sshirt-FY

1 Using the Visual dBASE 5.7 Navigator, change your current directory to the UTILs folder containing the
Component Builder.

2 Run the program CB.PRG

3 When the Component Builder screen comes up, select the File menu, and "FRM to RPT ...". The .RPT
extension is the Crystal Reports report filename extension.

4 Seclect the folder, and then the report you wish to convert

5 Select the table needed for the report. If you are using multiple tables in a .VUE, select that file and the
designer will attempt to create a .QBE file.

6 Select the folder in which to place the report.

7 A screen much like Figure 17.7 is displayed.

8 When done, click "OK". You can convert another, or close the Component Builder.

Open the report in Crystal Reports. You may need to modify the report somewhat (change the fonts, etc.).
To do this:

1 After closing the Component BuilderChange, use the Navigator to change the folder you are working in, to
the folder that will contain the Windows version of your application.

2 In the Navigator, select the "Reports" icon.
3 Click on your new report
4 Right click and select the option, "Design Report".

You should see something similar to Figure 17.8

Converting prior version dBASE Applications to dBASE Plus 211

Converting dBASE 5.0 for DOS Screens/Menus to dBASE Plus

You can change the font for all items, or change each one individually. To change the font for all of items, use
the Ctrl key along with the mouse. While holding down the Ctrl key, click each text control you want to change.
Then Right click, and select "Change Font ...". You can select a font, a font size, and attributes.

Once you've changed the font, especially if you use a Windows "True-Type" style font, you may need to change
the widths of some controls, and possibly re-locate a few.

Figure 17.8 Crystal Reports for dBASE

[Crystal Reports For dBASE Hi= E
F_le ﬁﬂl Insert Format Em:e E,emrt w'ﬁr Helkp

B cwmergu-1\dbazed-1window-1address.rpt

Page header]
Ken's Address Beocok
Date: 12/31/1%9
Details Fa o B B B R R R B B o b
Address: HHARKHAKAHNAAHAHKAKANKAKAKAEHARNAH
A S A B B S R S R R R S S
Phone: HEHEHHHMNENE Birthday: 12/31/19
Family? HXH | Christmas Card? KR
Notes @ HEH R R R R W R R A A RN KT
P
Page footer Page: 55
FiE | o
" pref=ires

With two execptions, you can use the same steps for Label files as were used for Reports
* When you select the "File" menu in the Component Builder, select "LBL to RPL ..."
* Use the "Labels" icon when you return to Visual dBASE to modify the label file.

Converting dBASE 5.0 for DOS Screens/Menus to dBASE Plus

dBASE 5.0 for DOS has a different form designer which uses objects not available in dBASE IV for DOS.
Upgrading dBASE 5.0 for DOS applications to dBASE Plus, therefore requires a slightly different approach
than those from dBASE IV for DOS.

Setting up for Conversion

Before starting the conversion:

* Create a folder containing your dBASE 5.0 for DOS application, including tables, forms, menus, reports,
labels, programs, and other files you may have generated.

* Create a folder to be used for the converted Windows application. If you want duplicate copies or your
tables, copy them, as well as the .DBF, .MDX, and .DBT files, to the Windows folder.

Converting screens or menus to dBASE Plus

1 Start dBASE Plus

212 dBASE Plus User’s Guide

Converting dBASE 5.0 for DOS Screens/Menus to dBASE Plus

2 If the Command Window is not already visible, select it from the View menu.

Click in the upper pane of the Command Window and type the following:
do :DOS5Conv:Dos5Conv.wim

This runs the Converter Wizard, which will guide you through the conversion process.

4 Read the instructions on the first screen and click the "Forward" button.

During this step, you’ll identify the folder containing the files to be converted, and the folder in which to
place the converted files. Click on the "Tool" button to the right of the entry areas to select the folders. Once
these folders have been selected, click the "Forward" button.

Click the "Convert" button. The Wizard lists each source file as it’s converted and, when finished, displays
the list of newly created files.

Click the "Close" button and use the Navigator in dBASE Plus to locate the folder, specified earlier,
containing the converted files.

In the folder you’ll see the files with the extensions .wfm and .mnu. These are the extensions for dBASE Plus
form and menu files. To open them in the Designer, right-click and choose the "Design (form or menu)"
option. Forms can be run from the Navigator by double-clicking on a selected form.

Conversion considerations

A few things to note when the converter has finished:

This converter was designed to create dBASE Plus compatible objects from your screen and menu layouts. In
doing so, our priority was to insure the layouts converted correctly. Still, your form or menu’s design will
most likely require some modification (changing the widths of some objects, possibly moving some objects a
small amount).

Some of your source code may not have been converted correctly. Lacking a huge language translation
utility, it simply isn’t possible to insure the correct conversion of all source code. Use the Source Editor to
correct any conversion errors.

The converter creates forms that use the OODML (Object Oriented Database Manipulation Language) of
dBASE Plus, which is not necessarily going to be familiar to you. When tables are opened, they are opened
using Query objects, rather than the USE command, and datalinks to fields in the tables refer to the
appropriate Field objects. To become acquainted with OODML.:

* Read through other parts of this User’s Guide
* Check the dBASE Knowledgebase at www.dBase.com, or from the Help menu

+ Subscribe to, and participate in, a few of the many dBASE newsgroups available at news://
news.dBase.com. They’re free!

When the converter runs, it reads all the form and menu definitions in the .DFM, .MNU and .PRG files, and
creates individual files for each one. This means you end up with more files than you started with. For
example, if you have a .DFM with two form definitions, you’ll end up with two .WFM (Windows Form)
files. The resulting filenames may look a bit strange, but this is only because the converter combines the
names of the object and source files: The ACCT_REC.DFM file from the dBASE 5.0 for DOS CUA
Samples folder is converted to ACCT_REC_ACCT_REC.WFM.

When the converter creates a menu file, it checks to see if there is a form's menuFile property set to point to
it, and if so, attempts to set that property in the new .WFM file. Therefore, the menus should be correctly
associated with the forms.

Properties of a form that were defined programmatically, using expressions or variables, will be converted to
their default values. For example, a .DFM may have defined the top property based on a value relative to
another form. In this case, the top property is likely to be set to zero when the .\WFM is created by the
converter. This is necessary because there is no good way for the converter to know the relative value these
values refer to.

Procedures in your forms and menus may be converted to the .wfm or .mnu file with the code itself placed
inside of a "comment block". This is a block of text that appears between the comment block symbols /* and
*/. For example:

Converting prior version dBASE Applications to dBASE Plus 213

Converting Visual dBASE 5.7 Applications to dBASE Plus

procedure PUSHBUTTON1 ONCLICK
/ *

select acct_rec
*/

The code is present and hooked up to the pushbutton, but will not execute until you have a chance to make
sure it’s correct. If the procedure involves data manipulation, it will most likely fail and you’ll need to
replace it with OODML syntax. If the code looks correct, you can remove the comment blocks, keeping in
mind that tables are not opened with the old dBASE for DOS syntax. They are opened in the new dBASE
Plus (dBL) syntax, using Query objects. The converter wizard will attempt to put referenced procedures,
from a procedure file, into the form or menu.

If you have any "#INCLUDE" statements, make sure you copy the include files to the new source location.

If your programs, or forms, require the use of .BIN or other external binary files, chances are they will not
work in dBASE Plus. You’ll need to come up with a dBL way to perform their function, or find another
solution (i.e., ActiveX, or other third-party tools).

Some menu keystrokes do not work in Windows (Ctrl-Ins, for example). Opening these menus in the
Designer may result in errors pointing to these statements. The simplest way to deal with this would be to
comment that line of code out (or delete it) by placing a * or // in front of the line of code. Open the menu in
the Designer, and in the error dialog, click "Fix" and place the * or // characters in front of the line of code.

If your form produces the error message, "Unallowed phrase or keyword: .oBForm", click the "Fix" button
and place either a * or // in front of the statement;

RELEASE CmdWindow.oBForm
to comment this line out. Then Save and Exit (Ctrl+W) the editor.

Remember, the converter is here to help bring the screen and/or menu layouts into dBASE Plus. Expect to do
some modification to the results.

An Option

1

a ~h WODN

6

Copy just the screen and/or menu code from files that involve the layout. Do not copy any actual code that
manipulates the data. Basically, copy the screen design code, the "constructor code", to a new .DFM, and
save it in a new folder.

Run the converter to bring over the definitions of your screens and menus.
Run dQuery to create a dataModule.
Open the new dBASE Plus form in the form designer.

Place the dataModule object on the form surface, and change all the datalinks to the dataModule (if you have
multiple tables, make sure you get the right ones).

Delete the query objects that are on the form.

In the dataModule, you can place a lot of your validation, and other code, create links between tables, and so on.
This places everything in the one, re-usable, file.

Converting dBASE 5.0 for DOS Reports and Labels

To convert Reports and Labels, follow the steps in the dBASE IV to Visual dBASE 5.7 section of the User's
Guide. Once you have converted your reports and labels to Crystal Reports, follow the instructions in this
chapter to convert them to dBASE Plus.

Converting Visual dBASE 5.7 Applications to dBASE Plus

Once you have your application converted to (or written in) Visual dBASE 5.7, there are three different things
you need to do to convert it for dBASE Plus

Convert your Forms

214 dBASE Plus User’s Guide

Note

Important

Converting Visual dBASE 5.7 Applications to dBASE Plus

» Convert any QBE files to dataModules
» Convert your Crystal Reports format to the dBASE Plus report format.

There are tools designed to help you do each of these conversions.

Converting Forms

To convert forms from Visual dBASE 5.x (5.5, 5.6, 5.7) to dBASE Plus, you need to use Visual dBASE 5.7. The
converter program needs to be run in Visual dBASE 5.7 to perform the conversion.

In Visual dBASE 5.7, use the Navigator to point to this folder
C:\Program Files\dBASE\Plus (version)\Converters\FormConverter5x
This path may differ depending on where you installed dBASE Plus, and what language you are using.

You will need a folder containing your Visual dBASE 5.7 source code, and one in which to store your dBL
source code.

To perform a form conversion:
1 In the Command Window, type:
set procedure to Conv1632.cc additive
Using the Navigator, select the folder containing your Visual dBASE 5.7 source code.
Open the form to be converted in the form designer.
Click on the Control Palette
Click the 'Custom' tab of the Control Palette

o g~ ODN

There should be a control with the letter "A" for the icon. When you move the mouse over the control it will
display a speedTip that says "Conv1632". Drag this to the form.

7 Click the "Forward" button

8 Click the "Wrench" button next to the Entryfield that says "Select 5.x input file:"
9 Select the same form you have in the designer

10 Click the "Forward" button

11 Click the "Convert" button

12 Click the "Close" button

Close the form in the designer, but do not save changes. If you select "Yes" to save the changes, the converter’s
custom control will be saved as part of the original form.

You now have a new form in the same folder as your 5.x source code, but the file has "_fcv" added to the
filename. For example, if you converted "Customer.wfm", you would have a new file "Customer fcv.wfm".

This form file should contain the dBASE Plus version of your 5.x form. You should try testing the form in
dBASE Plus and, once you are satisfied with it, copy or move it to your dBASE Plus applications source folder.

If you use Custom Forms, convert all of them before converting your other forms.

The form converter does NOT change the source code to dBL, dBASE Plus’s Object-Oriented Database
Manipulation Language (OODML). A converted form will continue to use XBase Database Manipulation
Language (XDML). If you wish to update to OODML, read the Knowledgebase which has several articles
designed to assist.

Converting Reports and Labels

dBASE Plus does not have the ability to run your Crystal Reports report and label files. However, a conversion
tool exists to convert these to the dBASE Plus report format.

To convert a report or label file the dBASE Plus format, you need to start dBASE Plus and, using the Navigator's
"Look In" option, change to this folder:

Converting prior version dBASE Applications to dBASE Plus 215

Converting Visual dBASE 5.7 Applications to dBASE Plus

Note

Note

C:\Program Files\dBASE\Plus\Converters

This path may differ depending on where you installed dBASE Plus, and what language you are using.
When you are there:

1 Click on the "Programs" tab

Double-click on the file "Rpttorep.prg"

Select "Report" or Label" at the bottom of the wizard

Click "Next"

Use the "Wrench" button next to the Entryfield with the text of "Source Crystal Report or Label File"
Select the path and report (or label) filename

N o a0 A WODN

Select the path and report (or label) filename you wish to convert to. Note that the conversion wizard
assumes the same location even with the different file extension (.REP for report, and .LAB for label).

8 Click the "Next" button

9 Click "Finish" to actually perform the conversion.

10 A list will appear with any warnings that were generated.
11 Click the "Close" button.

You can now open the new report in dBASE Plus. Navigate to the location of the .REP file, and run it, or open it
in the designer. You can also open the file in the source editor to examine the code.

To learn how to use the report designer in dBASE Plus, please see Chapter 11, “Designing reports”.

Converting QBE Files to Datamodules

Why should you want to convert your QBE files to Datamodules, if your forms work fine using the QBE files?
The answer is, you may want to update your forms to dBASE Plus OODML methods, or you may want to create
reports or labels based on a dBASE Plus query. The report engine does not understand XDML methods of
opening and manipulating data, and therefore does not understand the QBE file format.

To convert a Visual dBASE 5.7 QBE file to a dBASE Plus dataModule, open dBASE Plus and, using the
Navigator, point to:

C:\Program Files\dBASE\Plus\Converters

As noted elsewhere, this path may differ depending on where you installed dBASE Plus, and what language you
are using.

Click the "Programs" tab and you will see the program "Qbe2dmd.prg". Double-click this file to start the
converter.

In the first dialog to appear, select the folder containing your QBE files and select the file you wish to convert.
Click "OK".

A new dataModule (.DMD) of the same name will be placed in the folder with the QBE file. For example, if you
converted the Visual dBASE 5.7 Sample gbe "Animals.qbe", a file named "Animals.dmd" would appear in the
Visualdb\Samples folder. To keep your new dBL code separate from your Visual dBASE code, you should copy
or move this file to the new location.

If you move this file to a new location, you may need to open the .DMD file in the source editor and edit any
path statements it contains. Using the Animals.dmd example mentioned above:

sql ='select * from "C:\VISUALDB\SAMPLES\ANIMALS.DBF"
Will need to be changed to:
sql = 'select * from "ANIMALS.DBF"
OR you could put the actual current path in the statement.

To edit the dataModule further, click the "Datamodule" tab in the Navigator, and then double-click it. This starts
the dQuery/Web dataModule designer.

216 dBASE Plus User’s Guide

Converting Visual dBASE 5.7 Applications to dBASE Plus

Updating Forms to Use Datamodules

This can be a bit tricky:

1 Open the form in the form designer.

Drag the dataModule to the form design surface.
In the Inspector, make sure the form is selected.
Find the view property.

Delete what is there.

Click on the Command Window.

Type: CLOSE TABLES

Select the "Window" menu, and then the name of your form.
All the datalinked controls will be blank.

For each control that was datalinked to a field:

1 Click the control

0o N o g ~h WODN

2 Click the dataLink property in the Inspector,

3 Click on the Tool (Wrench) button in the Inspector

4 Select the field from the dataModule in the dialog that appears,
For Images, use the dataSource property instead of dataLink.

This may take some time if your form is complex. If you have multiple tables, be careful you get the correct
field from the correct table. When using multiple tables, consider opening the form in the designer and, before
performing any other steps:

1 Click on a control that is datalinked

2 Select the Inspector

3 Click on the dataLink property

4 Write down the datalink for that control. Repeat these steps for all datalinked controls.

You can refer to your list when reassigning datalinks.

Converting prior version dBASE Applications to dBASE Plus 217

Chapter

18

dQuery/Web Server Side
Components

The dQuery/Web Server Side Components™ and dQuery/Web™ deliver capabilities very similar to dQuery on
the desktop, but deliver them in your browser, securely over the Web. You can get live data on-the-fly, run an
existing dataModule, run reports created in dBASE Plus™, even run One-Click Web™ and Web Wizard data-
entry applications created in dQuery.

Installation and Configuration

Requirements

1 The dQuery/Web Server Side Components run only on 32-bit Windows operating systems including
Windows 95, 98, NT, 2000, and XP.

2 You must have Web Server software installed that supports CGI (Common Gateway Interface) for web
applications. dBASE Plus ships with a copy of the Apache Web Server which supports CGI. Other Web
Servers supporting CGI include Microsoft IIS, Microsoft Personal Web Server, O'Reilly's WebSite,
Netscape FastTrack, and Sambar.

3 You must install the BDE and the dBASE Plus Runtime on the same server you’ll use to run the dQuery/Web
Server Side Components.

4 Each simultaneous user requires approximately 15 MB of memory on the server, however dBASE Plus may
grab more if it’s available. Since typical dQuery/Web Server Side Components processes run on the server
only for a fraction of a second, the amount of memory recommended by their manufacturers, for the web
server and operating system combined, will usually be sufficient.

Installing the dBASE Plus Runtime

The dBASE Plus CD includes a Runtime Only install (which includes the BDE). This should be installed the on
servers which will host the dQuery/Web Server Side Components.

To install:

1 Log on to the server console as "administrator".

2 Insert the dBASE Plus CD and run "setup.exe" if the install launcher does not start automatically.
3 Select "Install Runtime Only" from the menu and continue the installation process.

If the server already has a full, licensed copy of dBASE Plus properly installed, installation of the runtime is
unnecessary.

218 dBASE Plus User’s Guide

Installation and Configuration

Installing the dQuery/Web Server Side Components

To install the dQuery/Web Server Side Components:
1 Insert the dBASE Plus CD and run "setup.exe" if the install launcher does not start automatically

2 Select "Install dQuery/Web Server Components" from the menu and continue the installation process.
Create, or select, a target folder that will be reserved for the dQuery/Web Server Side Components. The
target folder need not, and should not, be your web server’s default CGI applications folder.

3 Install all components initially. Should individual components prove unnecessary, they may be manually
uninstalled at a later date.

Web Server Configuration

Your Web Server must be properly configured to handle the dQuery/Web Server Side Components.
Configuration can vary considerably from server to server. Configuration suggestions for Apache and IIS are
listed below. Consult your Web Server software's manuals or online help for more detailed instructions.
Informative articles on web server configuration may also be found in the dBASE KnowledgeBase on your
dBASE Plus CD, or online at http://www.dBASE.com/KnowledgeBase/.

Apache

Assuming the dQuery/Web Server Side Components have now been successfully installed to a folder, you
might configure Apache by inserting this segment into the Apache configuration file (httpd.conf):

Creates an alias in webspace for the folder containing

the dQuery/Web Server Side Components. ‘dQWeb’ is only a
suggestion, you may specify any name.

Alias /dQWeb/ "F:/dQWebServerSideComponents/"

<Directory "F:/dQWebServerSideComponents">
Options FollowSymLinks ExecCGI
AllowOverride None
Order allow,deny
Allow from all
Specifies dQWeb.exe as the default index document.
DirectoryIndex dQWeb.exe
Enable .exes for CGIL.
AddHandler cgi-script .exe
</Directory>

See the Apache documentation for detailed information concerning configuration file directives.

After completing the modifications to the Apache configuration file, restart Apache to implement them. With
the above configuration file addition, the URL from which to launch the dQuery/Web Server Side Components
would be something like:

http://www.MySite.com/dQWeb/
or if installed on a local machine for testing:

http://127.0.0.1/dQWeb/
http://localhost/dQWeb/

Security

Anonymous access via the web to the dQuery/Web Server Side Components is NOT recommended. A dQuery/
Web replication component is included which might pose security problems when accessed anonymously. If
anonymous access is required, disable replication by deleting the file "qFT.exe" from the dQuery/Web Server
Side Components folder.

Consult your Web Server’s documentation for information regarding the implementation of user authentication
and authorization.

dQuery/Web Server Side Components 219

Using the dQuery/Web Server Side Components

Configuring the dQuery/Web Server Side Components

There is only one user, ADMIN, defined in the default system tables. Use these credentials for the initial login:

User name: ADMIN
Password: dQAdmin

The system administrator should change the password for the ADMIN account before adding user accounts to
the system, or notifying users of the availability of the application. See “Modify User” on page 224.

The pre-defined Access Groups have no BDE aliases assigned. The system administrator must assign BDE
aliases to Access Groups, as appropriate, before the system can be used by anyone other than ADMIN. See
“Add Access Group,” and “Modify User” on page 224.

Using the dQuery/Web Server Side Components

The dQuery/Web Server Side Components are accessed via the Web using your browser. Access them as you
would any web page by entering the appropriate address in your browser’s address window. When the home
page of the dQuery/Web Server Side Components is displayed, select the desired language, enter your
credentials, and select the desired menu option:

dQuery/Web Query(dataModule)

The dataModule page is the core of dQuery/Web. This is where the design of your web dataModule takes place.
Almost every option selected from this page will allow you to perform "some action", and return. When you
first arrive on the dataModule page from the main menu, you will be presented with a blank dataModule named
"UNTITLED".

A dataModule consists of:
» databases (BDE aliases that give you access to your tables)
* queries

» aview (a list of the fields).

dataModule Menu Bar

The dataModule Menu Bar contains all of the options associated with the dataModule.
They include:
* Add Database

Takes you to the "Database Object" screen, which displays all available BDE aliases. A BDE alias can point
to local tables (ABASE, Paradox, Foxpro, etc.), or client-server tables via SQL Links drivers or ODBC.

A database gives you access to tables. If the tables are local, a database will simply point to a directory
available to the web server. If the database is for client-server tables, you’ll be given access to tables in that
database.

The three login fields, UserID, Password and Group, can be left blank for local tables not protected with
security. For encrypted dBASE tables, all three login fields must be entered. For client-server tables, or
protected Paradox tables, both UserID and Password must be entered. Contact your database administrator to
find out specific security requirements for the databases you need to access via dQuery/Web.

e Test

This option executes the current dataModule to determine if all currently selected options are valid. An
attempt is made to open all database and query objects of the current dataModule. If a database or query
object cannot be activated, an error screen will point to the source of the problem. For example, if you added
a client-server database but forgot to fill in the security fields, the error "Activation of datamodule has failed"
will be displayed along with the actual line of dBL code where the problem occurred.

e Save

220 dBASE Plus User’s Guide

Warning

Using the dQuery/Web Server Side Components

If the current dataModule has been saved previously, the Save button will overwrite the existing .dmw file,
incorporating any changes made since the dataModule was last opened. Otherwise, the Save button will open
the "Save dataModule to Disk File" page described below.

Save As
Opens the "Save dataModule to Disk File" page. This page contains two options:

» Option 1, "Overwrite an existing .dmw file", contains a drop-down of all saved .dmw files. The current
dataModule will be saved as, and consequently overwrite, the file selected from the drop-down.

* Option 2, "Create a new .dmw file", prompts you to supply a name for the new dataModule. Once entered,
click the "Submit" button to save. It is important to give the file a .dmw file extension, otherwise it will
not appear among the available selections when you later attempt to load an existing dataModule file.

Open

Opens the "Open dataModule from Disk File" page, which displays a listbox containing all available
dataModule (.dmw) files. After selecting the dataModule you wish to load, click the "Submit" button to
return to the dataModule page. The dataModule will be loaded from disk, and displayed.

New

Clears the current dataModule, and all of it's objects, from the page. This option reverts the dataModule page
to an empty, untitled state.

The "New" option does not give you an opportunity to save your work! It is used to abandon your current
work when you wish to start over.

Delete

Opens the "Delete DMW Disk File on Server" page, which displays a listbox containing all available
dataModule (.dmw) files. After selecting the dataModule you wish to delete, click the "Submit" button to
permanently remove it from the server's hard drive.

Database Menu Bar

The Database menu bar contains all options associated with a database object.

These include:

Remove
Removes the current database object, and all of it's query objects, from the dataModule page.
Add Query

Opens the "Create Query Object” page. Query objects give you access to particular tables contained in the
current database and are based on an SQL (Structure Query Language) statement. This page contains two
options for creating a query object.

+ Option 1 automatically builds a simple SQL statement, such as "select * from customer.dbf", that returns
all fields, and rows from a selected table. All tables contained in the current database are displayed in the
Select Table listbox.

* Option 2 allows you to type an SQL statement manually. You can also build an SQL statement using the
"SQL Statement Builder". This option is available by clicking the SQL button on any existing query
object.

Log In

To activate a query object based on a security protected table, it is necessary to enter the requisite
information in the login fields. If you initially neglect to do so, you can still login to the table by accessing
the login fields via the "Log In" button. The same holds true when you open a previously saved dataModule
that contains protected databases. After loading the .dmw from disk, click the "Log In" button for each
database that requires you to log in.

Query Menu Bar

The Query Menu Bar contains all options associated with a query object.

dQuery/Web Server Side Components 221

Using the dQuery/Web Server Side Components

These include:

Remove

Removes the current query from the current dataModule.

View Fields

Opens the List Fields page which displays a list of fields names and their data type.
View Indexes (Keys)

Opens the List of Indexes (Keys) page which displays a list of index names and their associated fields. The
expression is displayed for dBASE expression indexes.

Edit

Opens the Edit Row page, where a primary key field and primary key value will be specified to locate the
row to edit.

Append

Opens the Append Row page, where a primary key field will be specified to ensure that the primary key
value of the appended row is unique.

Delete

Opens the Delete Row page, where a primary key field and primary key value will be specified to locate the
row to delete.

About Editing, Appending, and Deleting Rows

The primary key of a table uniquely identifies each record in the table. It can either be a normal attribute that
is guaranteed to be unique (such as Social Security Number in a table with no more than one record per
person) or it can be generated by the DBMS (such as a globally unique identifier, or GUID, in Microsoft
SQL Server). To append, edit, or delete a row of a table, you must specify the field that serves as primary key
for the table, and the value of the primary key that uniquely identifies that row. A field will be pre-selected as
primary key if so indicated by the table's meta-data, or if you have already specified the primary key in this
session.

To edit or append a row, complete the edit/append form, then click 'Submit'. Enter dates in ' MM/DD/YYYY'
format. Enter logical values as 'true' or 'false'. Enter DateTime values in ' MM/DD/YYYY HH:MM:SS'
format. The primary key field (highlighted in bold) may not be changed when in edit mode.

Query Options

The buttons in the query object under the Query Menu Bar.

SQL

The SQL button opens a page providing two ways to edit the SQL statement on which the current query
object is based.

* Option lallows you to edit the SQL statement directly.

* Option 2 is used to build an SQL statement using the SQL Statement Builder.

= Step 1 of the SQL Statement Builder is used to build the fields list portion of the SQL statement. Move
individual fields to the "Selected" listbox, or check "All Fields" to include all the table’s fields.

= Step 2 is used to build the WHERE portion of the select statement. This is the optimal way to filter client-
server data since only records matching the WHERE condition are returned by the server. Filtering in this
manner will work for any table type.

The Expression Builder is used to build individual filter conditions by selecting values from several
dropdown menus. Once a condition has been built, add it to the condition list by clicking the Add button on
the right. The other dropdowns will update to show only those options valid for the data type of the currently
selected field. For example, a date field will list choices for "Today", "This Week", etc.

Once one or more expressions are listed in the conditions list, you can set the expressions scope by choosing
to meet "Any of the Conditions", "All of the Conditions", or "None of the Conditions".

222 dBASE Plus User’s Guide

Using the dQuery/Web Server Side Components

Click "Build SQL Select Statement" to build the new expression.
* Index (Key)

The Index button opens the "Select Index (Key)" page, which displays a listbox containing all index keys
created for the current table. After selecting an index (select "Natural Order" when no index is to be used),
apply it by clicking "Submit". The next time the data is viewed, it will appear in the order of the newly
applied index. This is also the first step in creating an index based parent-child relationship between two
tables (for dBASE/Paradox tables), since the active index of a child table is the index used when a parent-
child relationship is created.

* Child Of / Clear Link

The "Child Of" button opens the "Set Parent of" page, which allows you to create a relationship between the
current query object and another query object. An indexed relationship will be created if your child table’s
index is active, and the queries are based on local tables. If no index is active, or the tables are non-local, a
parameterized query is created.

Parent/child relationships can be either one-to-one (lookups) or one-to-many. You can have any number of
relationships between tables in the dataModule. The "Clear Link" button clears the relationship between the
current query object and an existing parent query object.

¢ Filter / Clear Filters

Since the WHERE clause of an SQL statement may return only a portion of the entire dataset, subsequent
filters will be applied on only those rows returned. The Filter button opens the "Filter Rowset of Query
Object" page, which provides three different options for applying filters on rows returned by the query’s
SQL statement. These three filtering options are based on the different ways dBASE Plus can filter data. All
three filtering options can be created manually using either SQL or dBL code.

Option 1: Set a SQL-Style Rowset Filter

This option uses the rowset’s filfer property and accepts basic SQL filter statements. It is the easiest type
of filter to set, but only supports basic expressions like field = value. The drop-downs in the expression
builder show the types of statements valid for this type of filter.

Option 2: Set a dBASE Plus Indexed Rowset Filter

This option makes use of an active index, and is the fastest, albeit least flexible, way to filter local tables.
This method allows for partial string matches that start from the beginning of the indexed field. Exact
string matches are also supported as long as the complete search string is entered, and then the search
string is padded with enough spaces to make up the entire field length. Ranges can also be set with this
method, by entering starting and ending values separated with a comma. Some example filter expressions
are provided.

Option 3: Set a dBASE Plus Non-Indexed

This is the most flexible of the three search methods, however it can be a bit slow on large datasets. It uses
it he rowset’s canGetRow method to create the filter and is valid for any table type. It accepts dBL
expressions and all dBL operators and functions. It references fields the same way a query object is
referenced in dBL:

this.fields["MyField"].value
Using the expression builder is the best way to learn the dBL syntax required for this type of filter.
The Clear Filter button will clear all filters that have been applied to the current query.

Custom View

Adding several query objects to the design surface creates the potential for a large number of fields being
displayed (even a single table can have 50 or more fields) and the resulting clutter can make analysis of your
data difficult. This view displays only selected fields from each query object in the current dataModule.

* Change

The "Change" button opens the Custom View page, which in turn contains two list boxes. The listbox on the
left displays all available fields from all queries in the dataModule. Click on the desired field and move it to
the right listbox by using the right arrow button. Fields can be deselected, moved out of the right listbox, by
using the left arrow button.

dQuery/Web Server Side Components 223

Using the dQuery/Web Server Side Components

There are oftentimes more than one top-level query present (a query that is not the child of another query).
When this occurs, use the "Query Controlling Navigation" drop-down to select which top-level query should
be used when displaying results in a Report or a View. Set the view by clicking the "Submit" button.

* Get Results as Report

The "Get Results as Report" button displays a report of the data from the current dataModule. You must first
create a Custom View, as described above, and the resulting report will only show the selected fields. Field
names are displayed as titles across the top of the report, and fields from the Controlling Navigation Query
are displayed with a darker background than fields from child queries. All parent-child relationships are
traversed by the report, with parent rows printed once and child rows printed below respectively.

¢ Get Results as View

The "Get Results as View" button displays the a view of the date from the current dataModule. Parent rows
are displayed along with each child row, not on their own line. This format also traverses all parent-child
relationships, and report titles are displayed as they are in the report format.

Run Data-Entry Application

This menu selection opens the "Run Data-Entry Application" page, which allows you to select any html pages
that have been deployed into the dQuery/Web home directory on the web server. For example, if you create a
"One-Click-Web" application in dQuery/Web on your desktop, and place the resulting files into the dQuery/
Web directory on your server, you can use this option to run the web application. Select the starting page for the
application from the drop-down and click the "Submit" button.

Run Report

This menu selection opens the "Run Report" page, which allows you to select any dBASE Plus reports that have
been deployed to the web server. dBASE Plus reports may be deployed manually, or via dQuery/Web on the
desktop. Select the report from the drop-down and click the "Submit" button.

Administration

This menu selection opens the "Administration menu", which includes all global and security settings for
dQuery/Web. Administration functions are available only to system administrators.

¢ Add User

The Add User button opens the "Add User" page, which the administrator will use to add new users to the
dQuery/Web security system. After filling in the fields, and assigning an Access Group, click the "Submit"
button to save the new user.

* Modify User

The Modify User button opens the "Modify User" page, which the administrator will use to edit users
previously added to the dQuery/Web security system. After selecting an existing user from the listbox, click
the "Submit" button to display the user's current information in editable fields. The user name cannot be
changed. Click the "Submit" button to save the changes.

¢ Delete User

The Delete User button opens the "Delete User", which displays a listbox of all users who have been added to
the dQuery/Web security system. Select a user, and click the "Submit" button, to remove that user from the
system. The administrator user account cannot be deleted.

* Add Access Group

The Add Access Group button opens the "Add Access Group", which the administrator will use to create a
new Access Group (each user is assigned to an Access Group). After naming the new Access Group,
specifying the access rights of it’s users and which BDE aliases they will have access to, click the "Submit"
button to save the new Access Group definition.

* Modify Access Group

224 dBASE Plus User’s Guide

Customizing the dQuery/Web Server Side Components

The Modify Access Group opens the "Modify Access Group", which the administrator will use to edit
Access Groups previously added to the dQuery/Web security system. After selecting an existing Access
Group from the listbox, click "Select Access Group" to display the Access Group's definition for editing. An
Access Group name cannot be changed. When editing is complete, click the "Submit" button to save the
changes.

* Delete Access Group

The Delete Access Group button brings up the Delete Access Group page. This page displays a listbox of all
defined Access Groups (except Administrators, which cannot be deleted). Select an Access Group, and click
the Submit button to remove them from the system. Note: If a user belongs to an Access Group, that Group
cannot be deleted.

e Set Default Language

The Set Default Language button opens the "Set Default Language" page, which lists all available languages
installed on the web server. Changing this setting will default all text in dQuery/Web to the selected
language. A new language may be installed on the server by translating the "English.Sif" file, and copying it
to a new file in the dQuery/Web folder with the appropriate name, such as "Deutsch.Sif" or "Francais.Sif".

e User List

The User List button displays a list of all users added to the security system. Information displayed includes
User Name, Password, Name, E-Mail and Access Level.

* Log Report

The Log Report button displays a list of all local logins to dQuery/Web. The report includes User Name,
Time (when they accessed dQuery/Web), Remote (IP) Address, and if they were authenticated.

Customizing the dQuery/Web Server Side Components

The text and display color specifications for the dQuery/Web Server Side Components screens are contained in
text files with a special format (similar to .INI files), and a .SIF extension. The default is "English.Sif.". dQuery/
Web Server Side Components SIFs may be edited to change the text, or colors, displayed. When editing .SIFs,
take care not to remove any lines or alter in any way the codes that identify each line. For more information
on.SIF files, see "class Sif" contained in the source file dQWeb.Prg.

dQuery/Web Server Side Components 225

Symbols

NI files 48
.MNU file 98
.POP file 98
.PRG files 109
editing 109
WFM file 61

Numerics
437 (code page) 200

A

abandon-data button 86
abandoning changes (Table designer) 157
accessing
data (table of components) 86
databases 70, 73, 76
databases (automatically) 75
databases (manually) 75
databases (overview) 74
tables 70
tables (master-detail relationships) 77,
78
ActiveX controls
setting up 87
adding
columns (fields) to reports 141
components to reports 144
dollar sign (reports) 142
fields 156
fields (to a query) 128
rows 176
selection criteria (SQL designer) 129
tables (in SQL designer) 128
tables (SQL designer) 127
adding files to a project 43
aggregate calculations (reports) 145
aliases
creating 34
AND 131
ANSI
about character sets 194
character incompatibilities in field
names 199
converting between OEM and ANSI
text 200
Identifying table language driver and
code page 198
Table language drivers vs global
language drivers 199
using global language drivers 196
Append mode 71
append-data button 86
applications
choosing a user interface 37
creating (basic steps) 41
creating (introduction) 41
debugging 115, 116, 119
event driven 37, 38, 40
how event driven programs work 38
ASCII 194, 200
Autolncrement 151

Index

average 145
finding in reports 145

B

background

color in reports 145

image in reports 145
background (setting scheme) 95
BDE

configuring 34

default session 76
BDE Administrator 34
BDE Settings tab (Inno) 56
binary fields 179
bookmark() method 71
breakpoints

defined 120

using 121
Browse mode 71
bugs 115

Debugger 115

types 115
Building 101
building the executable (Project Explorer)

48

button components 86

C

calculations (reports) 145
calculations on rows 178
call stack 122
changes
Overview of dBASE Plus version 2.0 9
Overview of dBASE Plus version 2.2
10
Overview of dBASE Plus version 2.5
11
Overview of dBASE Plus version 2.6
13
Overview of dBASE Plus version 2.61
15
Overview of dBASE Plus version
2.61.123
Overview of dBASE Plus version
2.61.223
Overview of dBASE Plus version
2.61.324
Overview of dBASE Plus version
2.61.425
Overview of dBASE Plus version
2.61.527
Visual dBASE 5.x through Visual
dBASE 7.0 2
changing
table structure 158
Character field type 151
character incompatibilities 199
character sets
about 194
and exact matches 195
code page 198
converting between OEM and ANSI
text 200

global language drivers 196
incompatibilities in field names 199
table language driver 198
table language drivers vs global
language drivers 199
child tables
and referential integrity 167
defining referential integrity 168
class definition 62
code block builder
defined 111
from the Inspector’s Events page 90
code blocks
defined 111
editing 111
selecting (results pane) 113
The Command Window 113
code editor 109
code pages
and global language drivers 196
character incompatibilities in field
names 199
examples 194
identifying 198
OEM and ANSI 200
table language drivers vs global
language drivers 199
code point 194
color
in reports 145
colors (setting scheme) 95
columns
moving and resizing (Table designer)
156
combining group criteria 134
Command window
clearing the panes 112
copying to 113
defined 112
editing 113
loading functions 112
opening 112
commands
copying 112
editing in Command window 113
executing 113
executing blocks 113
history 112
issuing 112
multiline 113
printing 112
reusing 113
saving to programs 113
The Command Window 112
Component palette
adding components 68
creating custom components 67
defined 83
removing components 68
components
aligning 93
container components 92
copying 93
custom
adding to palette 68

Index I-1

creating 67
removing from palette 68
cutting 93
data access 86
deleting 93
field 88
layout 93, 95
moving 93
pasting 93
placing 92
placing in containers 92
reports 144
reports (table) 87
resizing 93
selecting 92
selecting multiple 92
spacing 95
table access 86
The Component palette 83
user interface standard components
(table) 84
configuring BDE 34
connecting to databases 34
container components 92
control types (field components) 88
controls 84
user interface standard controls (table)
84
converting
Converting a dBASE IV Application to
Visual dBASE 5.7. 202
Converting dBASE 5.0 for DOS
Screens/Menus to dBASE Plus 212
Converting Visual dBASE 5.7
Applications to dBASE Plus 214
OEM and ANSI text 200
Converting to dBASE Plus 202
count
finding in reports 145
counting rows 177
creating
applications (basic steps) 41
custom classes 66
custom components 67
dataModules 79
drill-down reports 143
forms 60
forms (in Designer) 60
forms (with Wizard) 60
indexes 161, 163, 165, 166, 167
joins (queries) 136
menus 101, 102
methods 111
printed labels 146
projects 42
report borders 144
reports 140
reports (in Designer) 140
reports (with wizard) 137
tables (in designer) 154
tables (with wizard) 154
using the Form designer 60
creating a DEO Application (Project
Explorer) 47
creating a project installer 49
creating an application (Project Explorer)
46
Criteria Page (SQL designer) 129

I-2 dBASE Plus User’s Guide

cursor position

using to stop debugger 122
custom class designers 81
custom classes

creating 66

using 66
custom components

adding to palette 68

creating 67

removing from palette 68
custom components (Component palette)

87

Customer support options 28

D

data
accessing (table of components) 86
importing 176
data entry
automatic 159
constraints 159
indexing for 162
rules for updating or deleting 168
validity checks 159
data model 70
Database objects 73
DataModRef objects 74
Field objects 72
Query objects 70
Rowset objects 71
Session objects 73
StoredProc objects 74
Database objects 73
database-level security 73
databaseName property 73
default 73
loginString property 73
database-level methods 73
databases 76
accessing 70, 76
accessing (overview) 74
accessing (table of components) 86
accessing automatically 75
accessing manually 75
connecting to 34
dataLink property 73
and Field palette 88
DataModRef objects 74
filename property 74
dataModules
creating 79
DataModRef object 74
defined 78
using in a Form or Report 80
dBASE field types 151
dBASE Plus 1
documentation 27
DBASETEMP alias 30
dBL programming language 37
DBSYSTEM.DB file 49
debugging
bug types 115
Call Stack 122
docking tool windows 118
event handlers 122
general procedures 116
methods of controlling execution 119
overview 115

programs 115
stepping 120
The Debugger 115
The Source Window 117
using breakpoints 120
using watchpoints 123
variables 118
decimals
defining 155
default BDE session 76
Default tab (Inno) 50
default values (reports) 142
defaults
setting field defaults 158
delete-data button 86
deleting
columns (fields) from reports 141
components from palette 68
fields 156
OLE object 181
rows 176
DEO Folders 47
Design mode 82
designers
Design and Run modes 82
Form designer 60
Report 140
Table designer 154
tools 81
undoing 93
windows 81
designing
forms and reports (introduction) 81
tables
determining relationships 149
field types 151
hints 148
individual fields 150
minimizing redundancy 150
overview 147
structure concepts 151
tables (in Designer) 154
tables (with wizard) 154
Determining the User Interface language
193
developer support 28
displaying default values (reports) 142
DISTINCT 133
docking tool windows (Debugger) 118
documentation
typographical conventions 27
updates 28
dollar sign
adding to reports 142
DOS text 200
dQuery/Web
Query 220
dQuery/Web Server Side Components
Administration menu 224
Apache Web Server 219
Configuration 218
Custom View 223
customizing 225
Database Menu Bar 221
dataModule Menu Bar 220
dQuery/Web 220
Installation 218
Query Menu Bar 221

Run Data-Entry Application 224
Run Report 224
security 219
drill down column (SQL designer) 131
drillDown property 144
drill-down reports 143
duplicate values
hiding 165
duplicates 142
suppressing in reports 142

E

Edit mode 71
edit-data button 86
editing
advantage of using forms 173
code 109
code blocks 111
Command window 113
For condition 177
header and bootstrap 63
in-place (Text object) 96
memo fields 179
OLE objects 180
performing calculations 178
special field types 179
subset of rows 177, 178
tables
adding rows 176
counting rows 177
data entry considerations 173
deleting rows 176
OLE fields 180
performing calculations 178
selected table data only 172
selecting rows 177
special field types 179
tools 171
tables vs queries 173
Text object 96
tips 173
using an index to limit rows 173
WEFM files 62, 63
While condition 177
editor 109
embedding
in OLE fields 180
encrypted tables 49
errors
debugging 115
event handlers
debugging 122
event-driven applications
advantages 37
developing 40
how they work 38
events
programming (using Inspector) 90
exact matches 195
excluding variable types (Debugger) 118
executing
commands 113
programs in the Debugger 119, 120,
122
queries 126, 127
Exists clause
Criteria Page (SQL designer) 129
example 130

Group criteria page (SQL designer) 134
selection criteria 129

exporting table data 160

expressions (key) 166

F

features 1
field components 88
field names
and character incompatibilities 199
Field objects
dataLink property 72
defined 72
value property 72
field order (queries) 128
Field palette
and dataLink property 88
displaying fields 88
opening 88
using 88
fields
adding 156
adding to reports 141
binary 179
choosing type 151
custom attributes 158
data entry constraints 159
dBASE types 151
default values 159
defining 150, 155
deleting (Table designer) 156
deleting from reports 141
image 179
memo 179
moving (Table designer) 156
naming 155
OLE 180, 181
parent/child values 167
selecting (Table designer) 156
selecting in queries 133
setting defaults 158
sound 179
validity checks 159
viewing special types 179
fields array 72
File Details Page (Project Explorer) 46
files
adding .SQL to forms and reports 127
multiple index (MDX) 160, 161
Files tab (Inno) 50
Filter mode 71
filter-data button 86
find and replace 175
finding rows 174, 175
Flags Parameter (Inno) 51
Float field type 151
Form class definition 62
Form designer 81
Form wizard 60
Format toolbar 96
forms
creating
basic steps 60
The Form Designer 60
The Form Wizard 60
creating custom class 66
design guidelines 58
global page 65

master-detail relationships 78
creating 76
masterSource property 78
navigateByMaster property 71
navigateMaster property 71
SQL JOIN statement 77
synchronizing cursor movement 71

multi-page 65

multi-page navigation 65

opening in Run mode 96

printing 96

saving 96

selecting indexes 164

setting colors and fonts 95

using SQL files 127

functions
using in command window 112

G

getting started

Connecting to an SQL database server

34

Installation 30

What you need to run dBASE Plus 29
global language drivers

defined 196

vs table language drivers 199
global page (forms) 65
group criteria page (SQL designer) 134
group selection criteria (queries) 134
Group tab (Inno) 54
grouped query 133
Grouping Page (SQL designer) 133
grouping selection criteria 131

H

handlers
event debugging 122
Having clause (SQL designer) 134

image fields 179
images
report background 145
importing data 176
incompatibilities
character 199
indexes
assigning 155
complex 165, 166
complex (rules) 165
concepts (ABASE tables) 161
creating 163, 167
deleting 164
hiding duplicate values 165
key expressions 166
modifying 164
planning 162
choosing fields 150
indexes in data entry 162
linking multiple tables 163
selecting 164
subset 165
indexing
planning 162
tables 159

Index I-3

vs sorting 160
indexing tables 159
inexact matches 195
INI tab (Inno) 56
Inno (Project Explorer) 49
BDE Settings tab 56
Defaults tab 50
Files tab 50
Flags Parameter 51
Group tab 54
INI tab 56
License tab 55
Runtime tab 55
Script tab 57
Inno Script Generator 49
input pane 112
insert mode 113
inserting
fields 156
Inspector
Events page 90
listing properties alphabetically 88
Methods page 91
Properties page 89
using 88
yellow highlighting 88
installation
Howto .. 30
uninstalling dBASE Plus 34
What happens during . . . 30
internal name 200
International issues
specifying a language resource file 193
international issues
character incompatibilities in field
names 199
character sets 194
converting between OEM and ANSI
text 200
exact matches 195
identifying code pages and language
drivers 198
table vs global language drivers 199

J

joins 136
Joins Page (SQL designer) 135

K

key expressions 166

knowledgebase
Documentation updates 28
Whatisit.. 1
www.dbase.com 28

L

Label designer 81
Label wizard 146
labels
creating printed 146
language drivers
and Character sets 194
and exact matches 195
character incompatibilities in field
names 199
converting OEM to ANSI 200

I-4 dBASE Plus User’s Guide

global 196, 199

identifying 198

table 198, 199
language resource files 193
Idriver 196
License tab (Inno) 55
line length

configuring 113
linking 180

in OLE fields 180

methods to events 111

to databases 34
local tables

using with remote 76
Locate mode 71
locate-data button 86
login name 75
Long 151

manifest file 13
master-detail relationships
creating
with masterRowset and masterFields
78
with masterSource 78
with SQL JOIN 76
in local .DBF tables 78
masterSource property 78
navigateByMaster property 71
navigateMaster property 71
SQL JOIN statement 77
synchronizing cursor movement 71
maximum
finding in reports 145
lines in the input pane 113
performing aggregate calculations 145
maximum line length
code 113
configuring 113
MDX files 160
memo fields 179
MenuFile property 98
menus
and toolbars 98
attaching a pulldown menu to a form 98
attaching popup menus to a form 98
changing properties on the fly 105
creating 101, 102
creating with designers 101
events 105
example 103
features demonstration 102
file code 103
keyboard shortcuts 101
menuFile property 98
methods 105
popup 98
properties 105
methods 91
built-in 91
creating 111
deleting 91
editing 91, 109, 110
linking 91
linking to events 111
Method menu 91
programming (using Inspector) 91

unlinking 91
verifying 91
minimum
finding in reports 145
performing aggregate calculations 145
monitor execution in Debugger 115
moving
fields 156
multiline commands 113
multi-page forms 65
multiple index (MDX) files
dBASE index concepts 161
defined 160
multiple queries 71
multiple selection (Inspector) 88
multiple streamFrames 146

N

naming conventions
fields 155
tables 157
navigating
in tables 71
Table designer 156
navigation buttons
Data Buttons page 86
image-style 86
multi-page forms 65
standard-style 86
VCR-style 86
Navigator
listing SQL tables 35
new features 1
Numeric field type 151

(0

ODBC databases
connecting to 34
OEM 196, 198, 200
code pages 194
OLE fields 180, 181
opening
a file named in code 110
Form or Report in Run mode 96
SQL designer 125
tables 170
opening a project 46
operators
in queries 132
OR 131
ordering fields (queries) 128
outer joins 135
output column name (SQL designer) 133
overwrite mode 113

P

page numbers
reports 142
pageTemplate 140
palettes
Component 83
Field 88
parent tables
master-detail relationships 78
referential integrity 167
passwords

loginString property 75
table access 158
PLUSRun command line 8
popup menu 98
primary indexes
creating 167
printed labels 146
printing
Form or Report 96
table structure 158
procedures
debugging 116
Product registration 28
production index 161
program files
editing 109
programming
dBL 37
programs
breakpoints 120
debugging 115, 116, 119
executing in Debugger
breakpoints 120
controlling program execution 119
monitoring execution 115
running at full speed 122
Project Explorer 42
NI files 48
adding files 43
building the executable 48
converting project files from earlier
versions 45
creating a DEO Application 47
creating an application 46
opening a project 46
Project Page 42
starting a new project 42
The File Details Page 46
using Inno 49
Project files
converting project files from earlier
versions 45
project files
Project Explorer 42
Project Page 42
projects
creating 42
overview of project files 42
properties
setting (Inspector) 89
protected tables 171

Q

queries

and rowsets 71

combining selection criteria (SQL
designer) 131

Group Criteria page 134

grouping criteria 131

including unmatched records 135

multiple 71

operators 132

outer joins 135

sorting 135

SQL designer 125

SQL designer (entering data) 126

summary data 133

with indexes 162

Query objects
defined 70
rowset property 70
SQL property 70
Query Results window 126, 127

R

referential integrity
changing 169
defining 168
What isit... 167
remote tables 76
replacing data 175
Report designer 81
elements 140
overview 81
reports
adding columns (fields) 141
adding standard components 144
aggregate (summary) calculations 145
appearance 145
background color 145
background image 145
components (table) 87
creating 137, 140
creating borders 144
deleting columns (fields) 141
detailBand (Report designer) 140
displaying default values 142
drillDown property 143, 144
Drill-down reports 143
floating dollar sign 142
headerBand (Report designer) 140
indexing for 162
introduction 137
layout 142, 143
master-detail relationships 78
creating 76
masterSource property 78
navigateByMaster property 71
navigateMaster property 71
SQL JOIN statement 77
synchronizing cursor movement 71
multiple streamFrames 146
opening in Run mode 96
page numbers 142
pageTemplate (Report designer) 140
printed labels 146
printing 96
Report designer 140
Report wizard 137
Reports page of the Component palette
87
saving 96
streamFrame (Report designer) 140
summary calculations 145
summary information at top 143
suppressing duplicates 142
using SQL files 127
requirements 29
resizing
columns (Table designer) 156
resources 28
restructuring tables 157, 158
results pane 112
row buffer 71
row cursor 71
row info (SQL designer) 131

TOWS
adding to tables 176
counting subset 177
deleting 176
editing subset 177, 178
moving (Table designer) 156
sorting 160
rowset
events 71
modes 71
navigation 71
streamSource property 146
Rowset objects
Data Buttons page of the Component
palette 86
events 71
fields property 71
overview 71
state property 71
state-property button 86
Run mode
opening in 96
using Design and Run modes 82
running files 82
running tables 170
runtime applications
debugging 117
runtime errors
debugging 115
types of bugs 115
Runtime tab (Inno) 55

S

Sample files 5
sample viewer 5
save-data button 86
saving
forms and reports 96
table structure 157
scheme (Form designer) 95
Script tab (Inno) 57
search and replace 175
searching
tables 174, 175
secondary indexes 167
security
access
groups 185
levels 185
table 185
user 185
user profiles 185
data encryption 186
DB tables passwords 192
DBF tables 184
encryption 186
field privileges 186
planning 186
field privileges 188
planning access levels 187
table privileges 187
user groups 187
preset access 183
other tables 184
SQL 184
standard tables 183
privilege schemes 185
removing passwords 192

Index I-5

setting up
DB tables 191
DBF table privileges 189
DBEF tables 188
enforcement scheme 191
field privileges 190
passwords 188
table privileges 190
user profiles 189
table privileges 186
table-level 184
tables assigning 190
tables DB 191
tables selecting 190
user profiles
changing 189
creating 189
deleting 189
overview 185
selecting fields (in SQL designer) 128
Selecting Specialized Product Fonts 198
selection criteria
adding 129
combining (SQL designer) 131
Criteria Page (SQL designer) 129
Selection Page (SQL designer) 133
Session objects
adding 76
default 73
onProgress() event 73
tables 73
sessions
BDE default 76
setting
custom classes 66
properties 88
Properties Page (Inspector) 89
simple expression (queries) 129
simple Having expression 134
sorting
and language issues
character incompatibilities 199
character sets 194
exact match 195
query results (SQL designer) 135
Sorting Page (SQL designer) 135
tables 159, 160
Sorting Page (SQL designer) 135
sound fields 179
Source Aliasing 6
Source editor
miscellaneous notes 110
opening 109
setting preferences 109
using 109
source window (debugger) 117
SQL 125
designer elements 125
learning 125
queries visual 125
SQL databases
connecting to 34
listing tables in Navigator 35
SQL designer 126
adding tables 128
entering data 126
removing tables 128
renaming tables 128

I-6 dBASE Plus User’s Guide

Source editor and 126
SQL files
using in forms and reports 127
SQL Links 34
SQL property 70
SQL Property Builder dialog box 127
SQL queries
combining selection criteria (SQL
designer) 131
group criteria 134
grouping criteria 131
including unmatched records 135
inner and outer joins 135
Joins Page (SQL designer) 135
operators 132
Selection Page (SQL designer) 133
sorting 135
summary data 133
SQL tables
using with local 76
stack
call 122
standard deviation
aggregate calculations 145
finding in reports 145
Standard tables
local SQL and 147
starting a new project 42
Startup optimizations for Web applications
8
stepping 120
stopping execution (debugger) 122
stored procedures 76
StoredProc objects
and Database objects 74
defined 74
params array 74
rowset property 74
using 76
vs. Query objects 74
streamFrames
multiple 146
streamSource property 146
subscripts
See also array elements
summary calculations (reports) 145
summary data in queries 133
suppressing duplicates (in reports) 142
syntactical errors 115
system requirements 29

T

tabbing order
changing 59
guidelines 59
Table design guidelines 148
Table designer 156
abandoning changes 157
deleting fields 156
moving fields 156
navigating 156
resizing columns 156
saving table structure 157
tips 154
user interface 155
using 154
table language drivers 198, 199
table pane (SQL designer) 127

Table wizard 154
tables
abandoning changes (Table designer)
157
accessing 70
accessing (table of components) 86
adding fields 156
assigning field attributes 158
Binary fields 179
child 167
choosing type 151
complex indexes 165, 166
creating (in designer) 154
creating (with wizard) 154
creating indexes 167
creating secondary indexes 167
Data Access page 86
defining fields 155
deleting fields 156
deleting indexes 164
designing
defining fields 150
Helpful hints 148
minimizing redundancy 150
overview 147
relationships among tables 149
structure concepts 151
terms and concepts 147
editing
add rows 176
counting rows 177
data entry considerations 173
delete rows 176
performing calculations 178
precautions 170
selected data only 172
setting criteria 177
special field types 179
toolbar descriptions 171
exporting data 160
field types 151
hiding duplicate values 165
index concepts (AIBASE) 161
indexes 163
indexing 159, 162
indexing (vs sorting) 160
indexing subset 165
linking 163
linking a form or report 74
listing in Navigator 74
master-detail relationships 78
creating 76
navigateByMaster property 71
navigateMaster property 71
SQL JOIN statement 77
synchronizing cursor movement 71
masterSource property 78
Memo fields 179
modifying indexes 164
naming 151
navigating fields (Table designer) 156
OLE fields 180
opening 170
parent 167
printing structure 158
protected 171
referential integrity 168, 169
relationships 149

restructuring 157, 158
restructuring guidelines 157
running 170
saving structure 157
searching 174, 175
security (d(BASE and Paradox) 73
seeing in Navigator 35
selecting indexes 164
setting type 154
sorting 159, 160
SQL JOIN statement 77
terms and concepts 147
using local and remote together 76
technical support 28
Text objects
editing 96
tool windows
docking in Debugger 118
tool windows (debugger) 118
toolbars 105
adding, editing and navigating 102
and menus 98
attaching to forms 99
changing properties "on the fly" 105
creating custom 100
defining custom 100
events 107
methods 107
properties 107
sample code 103
Two Summary Expression 134

U

undoing (in designers) 93
un-installation 34

user interface 60
creating forms 60
event-driven 37, 38, 40
form design 58
multi-page forms 65
specifying a language resource file 193
standard components (table) 84
tabbing order 59
Table designer 155

using
ActiveX controls 87
Code Block Builder 111
custom classes 66
data modules 80
The Inspector 88

\'

validity checks 159
value property 72
values
displaying default (reports) 142
variable types 118
in the Debugger 118
variance 145
finding in reports 145
viewing 127
query results 126, 127
special field types 179
vista
HELP Files 34
Manifest files 31
privilege Level setting 33
requestedExecutionLevel setting 31
Running a deployed .exe in Vista 33
Running dBASE Plus IDE in Vista 31

Vista compatibility for dBASE Plus 31
Visual dBASE
changes from VdB 7.5 through dBASE
Plus 5
visual designers 81

watchpoints 123
Web address (IBASE) 28
Web applications

PlusRun command line 8

startup optimizations 8
WFM files 62, 63

class definition 62

editing 62, 63

sample code 61

structure 61
Where clause 129
windows

designers 81

tool (debugger) 118
windows language setting 196
Windows text 200
Windows XP styles 13
wizards

Form 60

Label 146

Report 137

Table wizard 154

Y4

z-order 59

Index I-7

	User's Guide
	Table of Contents
	Table of Tables
	Table of Figures
	1-Introduction to dBASE Plus
	Welcome to dBASE Plus !
	What is dBASE Plus?
	dBASE Newsgroups
	The dBASE Plus Knowledgebase:

	Changes from earlier versions
	Visual dBase 5.x through Visual dBase 7.0
	Changes since Visual dBASE 7.0
	Overview of dBASE Plus version 2.0
	Overview of dBASE Plus version 2.2
	Overview of dBASE Plus version 2.5
	Overview of dBASE Plus version 2.6
	Overview of dBASE Plus version 2.61
	Overview of dBASE Plus version 2.61.1
	Overview of dBASE Plus version 2.61.2
	Overview of dBASE Plus version 2.61.3
	Overview of dBASE Plus version 2.61.4
	Overview of dBASE Plus version 2.61.5

	dBASE Plus documentation
	Typographical conventions
	Documentation updates and additional information resources
	Software registration

	2-Installing dBASE Plus and connecting to an SQL database server
	What you need to run dBASE Plus
	Products and programs in your dBASE Plus package
	Installing dBASE Plus
	What happens during installation
	Vista compatibility for dBASE Plus
	Vista Security modes and Manifest files
	Running dBASE Plus IDE in Vista
	Windows XP SP2 compatibility mode
	Running a deployed .exe in Vista
	Running a deployed .exe in Vista across a network
	HELP Files

	Un-installing dBASE Plus
	How to connect to an SQL database server
	Install and configure the server software
	Configure the Borland Database Engine (BDE)
	Listing SQL tables in the Navigator

	3-Introduction to programming in dBL
	"Hard coding" vs. visual programming
	Advantages of event-driven programs
	How event-driven programs work
	Developing event-driven programs

	4-Creating an application
	Creating an application (basic steps)
	The Project Explorer
	Starting a New Project
	Opening a Project
	Creating an Application
	Creating a DEO Application
	Building the Executable
	.INI files
	Encrypted Tables
	OCX and DLL controls
	Using Inno

	Building the user interface
	Form design guidelines
	Goal of form design
	Purpose of a form
	Some guidelines for data entry forms
	Guidelines for using the z-order

	Creating a form
	Using the Form wizard
	Using the Form designer
	.WFM file structure
	Form class definition
	How the contents are generated

	Editing a .WFM file
	Editing the header and bootstrap
	Editing properties in the .WFM file

	Types of form windows
	MDI and SDI applications
	Modal and modeless windows
	Customizing the MDI form window

	Using multi-page forms
	Global page (forms)
	Navigation buttons (form pages)

	Creating a custom form, report, or data module class
	Using a custom class
	Creating custom components
	Creating custom components
	Adding custom components to the Component palette
	Removing custom components from the Component palette

	5-Accessing and linking tables
	The dBASE data model
	Query objects
	Rowset objects
	Field objects
	Database objects
	Session objects
	StoredProc objects
	DataModRef objects

	Linking a form or report to tables
	Linking to a table automatically
	Linking to a table manually
	Procedure for using a Session object
	Calling a stored procedure

	Using local and remote tables together
	Creating master-detail relationships (overview)
	What is a DataModule?
	Creating a DataModule
	Using a DataModule

	6-Using Form and Report Designers
	The designer windows
	Design and Run modes
	The Form Design Window
	The Report Design window
	The visual design is reflected in your code

	Component palette
	Standard page
	Data Access page
	Data Buttons page (forms)
	Report page
	Custom page
	Using ActiveX (*.OCX) controls

	The Field palette
	The Inspector
	Properties page of the Inspector
	Events page of the Inspector
	Methods page of the Inspector
	The Method menu

	Manipulating components
	Placing components on a form or report
	Special case: container components
	Selecting components
	Moving components
	Cutting, copying, pasting, deleting components
	Undoing and redoing in the designers
	Aligning components
	Resizing components
	Spacing components

	Setting a scheme (Form designer)
	Editing a Text object
	Saving, running, and printing forms and reports
	Opening a form or report in Run mode
	Printing a form or report

	7-Creating menus and toolbars
	Attaching pulldown menus to forms
	Attaching popup menus to forms
	Creating toolbars and attaching them to forms
	Creating a reusable toolbar
	Attaching a reusable toolbar
	Creating a custom toolbar

	Creating menus with the designers
	The designer menu
	Building blocks
	Adding, editing and navigating
	Features demonstration

	Examining menu file code
	Changing menu properties on the fly

	Menu and menu item properties, events and methods
	Toolbar and toolbutton properties, events and methods

	8-Using the Source editor and other code tools
	Using the Source editor
	Two-pane window with tree view
	Notes on the Source editor

	Creating a new method
	The Code Block Builder for editing code blocks
	To create or edit a codeblock

	The Command window
	Typing and executing commands
	Editing in the Command window

	9-Debugging applications
	Types of bugs
	Using the Debugger to monitor execution
	General debugging procedure
	Debugging runtime applications
	The Source window
	The Debugger tool windows

	Controlling program execution
	Stepping in the Debugger
	Using breakpoints
	Running a program at full speed from the Debugger
	Stopping program execution
	Debugging event handlers

	Viewing and using the Call Stack
	Watching expressions
	Adding watchpoints

	10-SQL designer
	Opening the SQL designer
	For new queries

	SQL designer elements
	Interacting with the Source editor
	Entering data in the SQL designer
	Running a query from the SQL designer
	Putting your queries to work
	Using your .SQL files with the SQL Property Builder

	Looking at the table pane
	About the table boxes

	Adding tables in the SQL designer
	Renaming a table
	Removing a table

	Selecting fields in the SQL designer
	Selecting all fields in a table
	Selecting individual fields in a table
	Reordering selected fields

	Criteria page (SQL designer)
	Deleting a row

	Adding selection criteria in the SQL designer
	Specifying selection criteria
	Simple Equation
	SQL Expression
	EXISTS Clause

	Combining selection criteria
	Row info
	Criteria combo box

	Grouping selection criteria in the SQL designer
	Drill-down column

	Query operators
	Selection page of the SQL designer
	Selecting a field
	Specifying an output name
	Producing summary data
	Removing duplicate rows
	Deleting a row

	Grouping page of the SQL designer
	Creating a grouped query

	Group criteria page of the SQL designer
	Adding group selection criteria
	Combining group criteria
	Deleting a row

	Sorting page of the SQL designer
	Joins page of the SQL designer
	Including Unmatched Rows
	Join list box
	Joins grid

	Creating joins in the SQL designer

	11-Designing reports
	Report wizard
	To use the Report wizard

	Example of a report created with the Report wizard
	Wizard-generated Summary Report

	Report designer elements
	The Report and Group panes

	Modifying report in the Report designer
	Deleting columns (fields) from a report
	Adding columns (fields) to a report
	Suppressing duplicate field values
	Displaying default values in a blank report field
	Adding a floating dollar sign to field values in reports
	Adding page numbers
	Drill-down reports
	Adding standard components to a report
	Changing the report’s appearance

	Performing aggregate (summary) calculations
	Designing a report with multiple streamFrames
	Creating printed labels

	12-Introduction to designing tables in dBASE Plus
	Terms and concepts
	Table design guidelines
	Identifying the information to store
	Classifying information
	Determining relationships among tables
	Minimizing redundancy
	Choosing index fields
	Defining individual fields

	Table structure concepts
	Table names
	Table types
	Field types

	13-Creating tables
	Supported table types
	Using the Table wizard
	Using the Table designer
	User- interface elements in the Table designer
	Resizing columns
	Getting around in the Table designer
	Adding and inserting fields
	Moving fields
	Deleting fields
	Saving the table structure
	Abandoning changes

	Restructuring tables (overview)
	Important guidelines for restructuring
	Changing the structure
	Printing the table structure

	Table access passwords
	Creating custom field attributes
	Specifying data-entry constraints
	Creating and maintaining indexes
	Indexing versus sorting
	Sorting or exporting rows
	dBASE index concepts
	Planning indexes
	Creating a simple index
	Selecting an index for a rowset
	Index tasks
	Creating complex indexes for dBASE tables
	Primary and secondary indexes

	Referential integrity
	Defining referential integrity
	Update and delete behavior
	Changing or deleting referential integrity

	14-Editing table data
	A few words of caution
	Running a table
	Protected tables

	Table tools and views
	Table and query views

	Table navigation
	Data entry considerations
	Finding and replacing data
	Searching tables
	Replacing data in rows

	Adding rows to a table
	Deleting rows
	Saving or abandoning changes
	Performing operations on a subset of rows
	Selecting rows by setting criteria
	Counting rows
	Performing calculations on a selection of rows

	Viewing and editing special field types
	Viewing the contents of special field types
	Memo fields
	Binary fields
	OLE fields

	15-Setting up security
	Setting up security strategies
	Individual login via automatic password dialogs
	Preset access via Database and Session objects
	Preset access for Standard table types
	Preset access for SQL and other table types

	Table-level security for DBF tables
	About groups and user access
	Table access
	User profiles and user access levels

	About privilege schemes
	Table privileges
	Field privileges

	About data encryption
	Planning your security system
	Planning user groups
	Planning user access levels
	Planning DBF table privileges
	Planning field privileges

	Setting up your DBF table security system
	Defining the database administrator password
	Creating user profiles
	Changing user profiles
	Deleting user profiles

	Establishing DBF table privileges
	Selecting a table
	Assigning the table to a group
	Setting DBF table privileges
	Setting field privileges

	Setting the security enforcement scheme
	Table-level security for DB tables
	Removing passwords from DB tables

	16-Character sets and Language drivers
	Determining the language displayed by the User Interface
	About character sets
	About language drivers
	Performing exact and inexact matches
	Using global language drivers
	To set the ldriver option in PLUS.ini:

	Using table language drivers
	Identifying a table language driver and code page
	Non-English Character Display Issues
	Selecting Specialized Product Fonts
	Table language drivers versus global language drivers
	Handling character incompatibilities in field names
	Converting between OEM and ANSI Text
	Converting from OEM to ANSI
	Converting from ANSI to OEM
	How to convert and view your source code

	17-Converting prior version dBASE Applications to dBASE Plus
	Converting a dBASE III+/IV Application to Visual dBASE 5.7
	Installing Visual dBASE 5.7
	Overview
	Suggested Steps
	Recreating Menus
	Converting .VUE Files
	Converting Forms
	Fine-Tuning The Form
	Running the Form
	Using ACCEPT or INPUT?
	Reports and Labels

	Converting dBASE 5.0 for DOS Screens/Menus to dBASE Plus
	Setting up for Conversion
	Converting screens or menus to dBASE Plus
	Conversion considerations
	Converting dBASE 5.0 for DOS Reports and Labels

	Converting Visual dBASE 5.7 Applications to dBASE Plus
	Converting Forms
	Converting Reports and Labels
	Converting QBE Files to Datamodules
	Updating Forms to Use Datamodules

	18-dQuery/Web Server Side Components
	Installation and Configuration
	Requirements
	Installing the dBASE Plus Runtime
	Installing the dQuery/Web Server Side Components
	Web Server Configuration
	Configuring the dQuery/Web Server Side Components

	Using the dQuery/Web Server Side Components
	dQuery/Web Query(dataModule)
	Run Data-Entry Application
	Run Report
	Administration

	Customizing the dQuery/Web Server Side Components
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Index

