
dBASE on The Web

The dBASE Web Wizards
The dBASE Web Classes

By A. A. Katz
CEO, dBASE Inc.
Vestal, New York

dBASE Inc. may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 2000 A. A. Katz, dBASE Inc. All rights reserved. All dBASE product names are
trademarks or registered trademarks of dBASE Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Printed in the U.S.A.

i

Part 1

The Web 1
Introduction . 2

Intranet and Internet 3
What is a Web Application? 5
How Do Web Applications Work? 7

Remote Control . 7
Persistence And Not 7
HTML. 8
 Communication . 9
The Response Page 11
How Does The Server Recognize an

Application? . 11
Calling Your Web Applets 12

Part 2

dBASE on The Web 15
How Do Visual dBASE Web Applications

Work? . 15
Complexity . 15
The Non-dBASE Parts of a dBASE Web

Application . 17
On The "Back Side" of The Web Server . 18

1. Retrieve the Incoming Data 18
2. Format the Incoming Data 18
3. Validate, Manipulate the Data 19
4. Store or Retrieve the Data 20
5. Build and Send a Response Page 20
6. Clean Up and Quit 22

Learning To Code dBASE
Web Applications 23

How CGI Works . 24
How the Web Server Talks to a

Server-Side Application 25
Command Line Method 25
Environment Method 25
StdIn/StdOut Method 25

HTML and The CGI Header. 28
The Language . 28
Sections of an HTML Page 30

The HTML Header 30
The HTML Body 30

HTML Forms . 30
The Action Attribute 31
The Method Attribute 31

The CGI Header 32
Reading The Data You Get

From The Web 33
Input . 33
Output . 34

Mapping and URLs 35
VdBFast . 38

Part 3

Installation and Setup 41
Requirements . 41

Setting Up . 42
Where Do I Put My Files? 42
How To Install dBASE on a

Web Server . 42
Anonymous Install 43
Runtime Install 43
Configuring the Web Server 44

Deploying Web Applications 45
Design For Portability 45

Where Does This Stuff Start?. 45
Where Does This Stuff Run? 46

Build in Portable URLs 47
Deploying dBASE 48
Hosting . 49

Performance . 50
Reports . 50
Run the First Applet

of the Day Yourself 51

Table of Contents

ii

Part 4

The dBASE Web Wizards 53
What The Wizards Do 53
Using The Web Wizards 55

Paths and URLs 55
Windows Folder for

Starting HTML page 56
Windows Folder for CGI-Bin 56
Filename for .htm, .prg and .exe 56
URL to CGI . 56

DataModules and Queries 58
Paths . 58

Reports . 60
SQL Select Statements with Queries . . 60
Reusing Existing Reports 60
Using Paths in Reports 61
Superclasses in Reports 61
Report Layout . 61
Report Length . 61
DataModules in Reports 62

The Data Entry Wizard 63
How is the Data-Entry

Application Built? 63
The Query and Response Web Wizard . . 65

Query Input . 65
Response Reports 66

The Publish Web Wizard 67
Static Reports . 67
Live Reports . 67
Advantages and Disadvantages 67

Images . 69

Part 5

The dBASE Web Classes 71
What Are The dBASE Web Classes? 71
How Do The dBASE Web Classes Work? 73

AssocArray . 73
The Rule . 74
Validating And Manipulating Data 75

Subclassing For Fun And Profit 77
Class CGISession 77

Class signupCGISession 78

Class Signup 79
The dBASE Web Classes and Reports . . 81
Sending Mail . 84

Text File Interface 84
Database Interface 86

MailCGISession() 86

Part 6

Methods and Classes 89
The Methods of The dBASE

Web Classes . 89
Input Methods . 89
Data Methods . 89
Output methods 89
Error Recovery . 90
Password Clearing 90
eMail for Microsoft IIS 90

The connect() Method 91
The loadArrayFromCGI() Method 92
The loadArrayFromFields() Method 93
The LoadFieldsFromArray() Method 95
The loadDataModuleFromArray()

Method . 98
The passDataThrough() Method 100
The sorryPage() Method 104
The errorPage() Method 106
The setWebMasterAddress() Method . . 108
The Streaming Methods 109

streamHeader() 109
streamBody() . 109
streamFooter() .110

The WebPWClass 111
Where to Put the Data112

Part 7

Sample Applications 115
The dBASE Web Class Samples115

The Source .115
SignupCGIClass.cc115
Signup.htm .116
Signup.prg .116

iii

SignupBrowse.prg 116
SignupReport.prg 116
SignupReport.rep 116

The Data . 117
Building . 117

Installing The dBASE Web Class
Samples . 118

The SignUp Application 118
Quick Install . 118
The dBASE Message Server 119

The dBASE Message Server
Application . 120

Appendix A

Source Code A-1
Signup.prg . A-1
The SignUp Sample HTML Page A-4
Signup Sample CGI Response Code . . . A-8
SignupCGISession Subclass A-11

Appendix B

Equivalents B-1

Appendix C

Glossary C-1
Applet .C-1
Application .C-1
CGI .C-1
CGI Header .C-1
HTML .C-2
HTTP .C-2
Mapping .C-2
Response PageC-3
URL .C-4

Index I-1

iv

dBASE on The Web

Part 1: The Web

Sometimes even those of us who should know better get seduced by the
siren song of Conventional Wisdom. So it was, in my case, when I first
considered using dBASE for Web applications. After all (I thought), Visual
dBASE doesn't create DLLs and it's not a native-code compiler, it ain't C++
and it's not even Java. Thus it was with rather limited expectations that I
embarked on creating my first "live" Web page using Visual dBASE.

Fortunately, both Conventional Wisdom and I were really, really wrong.
dBASE turns out to be a killer Web database development platform with a
flexibility far beyond most of the other, more popular languages, with per-
formance that'll knock your socks off. Ironically, some of the very features
for which dBASE has been bashed over the years are the self-same fea-
tures that make it an ideal engine for live applications over the Web.

The dBASE runtime Virtual Machine, external database engine, built-in
report classes - even the humble .DBF - all contribute to making dBASE
one of the best platforms for Web e-Commerce and Intranet development.

◆ dBASE produces tiny little executables The common size range for
Web-based dBASE Applets is 80-120K. These tiny server-based exe-
cutables load in milliseconds. Other languages, with their huge native-
code executables, require ISAPI, NSAPI or other .DLL-based architec-
tures to pre-load their multi-threaded applets. dBASE does not.

◆ dBASE runs code amazingly fast without the overhead of the Win-
dows graphic interface to hold it back

◆ dBASE's Object-Oriented Language supplies super-high productiv-
ity and re-usability across a given Web site, and across all your Web
development projects.

◆ dBASE is compatible with almost any major back-end database
engine.

◆ dBASE's Web Wizards produce complete, ready-to-run Web applets
without writing a single line of code.

◆ dBASE's traditional transaction-based bias (row-oriented instead
of set-oriented) is perfectly suited to the requirements of modern trans-
action-based e-Commerce and Intranet applications (It behooves us to
note that the dBASE Object-Oriented Data Classes also make dBASE
a terrific RDBMS front-end development tool).

2

dBASE on The Web

Introduction
The Web

◆ dBASE's built-in Report Classes run lightning fast, and talk directly
to your Web Server. No other applications are required.

I'm glad I didn't let my meager expectations deter me or I would have
missed out on the opportunity to build killer, high-performance Web appli-
cations in record time. In fact, it made my career for a couple of years.
Which just goes to show that dBASE has, as always, come through in an
unexpected, wonderful way that belies the Conventional Wisdom. Now I
know better!

And you will too. I welcome you to dBASE on the Web!

AAK

Introduction

3

dBASE on The Web

Intranet and Internet
The Web

Intranet and Internet

dBASE Web applications probably shouldn't be called Web applications.
The more accurate name might be "http applications" or "CGI applica-
tions", since dBASE applets are at least as suitable on a local Intranet as
they are out on the World Wide Web. We recommend, in fact, that you
develop your applications on a Local Area Network (or even on your own
stand-alone machine) before deploying to a site on the Web.

What best defines these "Web" applications is that their user-interface is
the Browser, not the operating system. That's an important distinction. Vir-
tually any application that you'd normally write for Windows can be devel-
oped to run in the Browser instead. This is the so-called "thin-client"
architecture. It offers a number of advantages:

Cross-Platform The dBASE Web Client (the user-interface) is the
Browser. That makes dBASE Web applications platform-independent. Any
user can enter or retrieve data from a computer running Windows, Unix,
MacIntosh, Linux or any other operating system that supports a Browser.
Currently, dBASE Web Server-side applets only run on Windows Web
Servers, but they support remote data on any operating system and
remote clients on any operating system.

Thin Client Being Browser-based, the dBASE applet user-interface runs
fine on older computers with fewer resources. dBASE Web applets allow
data to be entered and retrieved on such diverse clients as WebTV®, most
PCs, and a growing assortment of portable devices.

Mobile Computing The same dBASE applet can be run on your local
Intranet for internal use and surfaced externally to a field sales force or
telecommuters, or even made available to your customers.

Remote Computing I often use dBASE Web applets to manage data and
applications on my client's networks.

Open System I have one client for whom I developed a complex Visual
dBASE 5.6 application. Their company needs to generate new reports
without re-compiling the original 16-bit code. Easy solution. Using Visual
dBASE, my client designs their own reports against the same tables used
in the 5.6 app and delivers them - real-time - to their employees over the
Intranet and their customers over the Web.

Overview

4

dBASE on The Web

Overview
The Web

Low Cost of Ownership Web applets are entirely server-based. Which
means you don't have to sit on every workstation to perform upgrades and
updates. Simply replace the relevant applet on the Server, and all users
get the new features or fixes the next time they run the applet.

© 1998-2000 Carik Services Inc. Carik is a TM of Carik Services Inc.

On the Carik Web site, above, the options on the right are available to reg-
istered members only. The options on the left are available to the general
public.

5

dBASE on The Web

What is a Web Application?
The Web

What is a Web Application?

If we start with the assumption that the Internet is just a big network based
on a simple client/server architecture (it is) with the ability to hook up to a
database and a simple client-side user-interface (the Browser), then we
might conclude that Web applications aren't so very different from Win-
dows applications. And we'd be right. That's not to say that there aren't
significant areas in which the two diverge: the page-based Browser is
nothing like the Windows desktop; the protocols for sending information
and instructions back and forth on the Web are designed specifically to
meet the challenges of the Internet; and most networks don't require soft-
ware to "serve up" applications (though we're starting to see similar "appli-
cation" servers in the LAN environment, too).

Though Web and Windows apps provide the same basic functionality
(entering, processing, retrieving and reporting data), they differ in two sig-
nificant ways:

◆ Windows apps track states. A state is an abstract concept that's
easier to describe than define. For example, a Windows app maintains
stacks so that the application knows exactly where the user is and
where he or she has come from. It keeps variables, property settings,
source files loaded into memory - a whole collection of meaningful
information about the user and the "state" of the application. Most Web
applications don't keep states (some Web development tools do, such
as NetObjects™ and Cold Fusion™, but they're notable exceptions
and very resource-hungry), since keeping live information and long-
term connections for each user on a Web site eats up resources like
there's no tomorrow. The ultimate performance goal of a Web site is to
connect the user only as long as is necessary to receive a request and
return a page. Any longer than that and the server is likely to bog
down.

◆ The Browser's not the desktop (regardless of Microsoft's attempts to
fuse the two). They use radically different approaches to displaying
information. The Browser is page-oriented, most its formatting accom-
plished automatically and on-the-fly. The Windows desktop is pixel-ori-
ented, redrawing only the section of a screen in which something has
been changed. Though, at first glance, this may look like a piddling
detail, it is, in fact, the most significant difference between the two:
While Windows may repaint one field, the Browser will deliver a whole
new page.

6

dBASE on The Web

Overview
The Web

Note: Which brings up an interesting question: why is the Browser interface so
much clumsier than the Windows interface? Because the Browser is, at its
core, a multi-platform client device. The same page that's viewed in
800/600 on a Windows notebook may be viewed in an entirely different
resolution (and possibly an entirely different aspect ratio) on a UNIX PC or
MacIntosh. The Browser reformats on-the-fly. Windows is much less flexi-
ble (have you tried to scale a Windows graphic application recently for dif-
ferent resolutions?), which is OK, since Windows knows all its parameters
as soon as it loads - and they're not supposed to change while the applica-
tion is running.

Because the Browser has to paint an entirely new page each time it
"refreshes" its data, Web applications are even more form-based than
Windows applications. To conserve connections and to achieve accept-
able performance, the Web page doesn't communicate with the server at
all until the user submits the page. Then, all the information on the page is
sent back over the wire to the server in one fell swoop. The Server moves
on to the next user and the next request. You're history. If nothing else,
that's very economical. In most dBASE server-side applets you're only
connected for a fraction of a second. Windows applications are persistent.
Web applications are not.

In order to maintain "states", that is to remember data that needs to be
available throughout an application (such as UserID or Customer Code or
any such), Web pages must be chained together, passing the data from
page to page. Fortunately that's easy using the dBASE Web classes. The
built-in method: PassDataThrough() automatically sends all the data
received by the current page out to the next page in the form of "Hiddens",
the HTML equivalent of memory variables. It just stores the text in an input
control and then hides it. Elegant, no?

7

dBASE on The Web

How Do Web Applications Work?
The Web

How Do Web Applications Work?

Remote Control

A Web Application is a program that runs by remote control. A user
invokes an application by typing a URL (Internet address) in the Web
Browser, clicking a "Submit" button, or clicking a link on a Web page. The
application invoked runs on a remote server and returns a page of results
or acknowledgement (in both cases called a Response Page) to the user's
Browser. Web applications are truly client/server. The executable part of
the application runs on a remote server while the navigation, data-entry
and results occur on the local user's machine.

Windows applications give the impression of movement by repainting. A
window doesn't really go away, Windows repaints whatever lies beneath
the Window being removed. The Browser, on the other hand, doesn't
repaint the same page over and over as data changes and results are
received. Instead, it paints a new page. Thus, Web applications navigate
by going forward from page to page, a process also known as "chaining".
Therefore, one of the basic and most important rules of Web application
design is that every page submitted returns a Response Page - without
fail. Another suggestion is that pages should contain links (such as HOME)
that close the loop and get the user back to where he or she started.

Web applications may consist of any number of static pages (pages that
are pre-designed and pre-generated) and dynamic pages (pages that are
created on-the-fly by the Web application). Your application's home page,
for instance, is likely to be static. Data-entry pages may also be static.
However, the applications that post the entered data, the pages that return
results and pages that acknowledge data entry will all be dynamic.

Persistence And Not

Windows applications are persistent. The operating system and the
runtime environment retain all kinds of stacks and pointers and tables,
including row pointers, variables, open files and windows. Web applica-
tions are not persistent. They are said to be "stateless". The server run-
ning the executable only knows who you are and where you are for as long

8

dBASE on The Web

HTML
The Web

as it takes the executable to run. After that, you're history. Therefore, a
large part of developing Web applications is designing methods to pass
data on from page to page. You need to manage any dependencies your-
self.

For example, if a customer logs into your site, you've got to ensure that the
customer's code is passed along to every subsequent server-side applica-
tion that requires that information. The dBASE Classes have a special
built-in method to pass data from page to page automatically

HTML

The Browser is your application's user-interface. It's also the "Client" that
transmits data to the "Server" to be processed. It's based on HTML, a
common (supposedly) Browser formatting language which can be aug-
mented with JavaScript, the programming language of HTML. HTML is a
Page Description Language (PDL), supporting text formatting, image
placement, table formatting, data entry forms and, most recently, cascad-
ing style sheets (Microsoft IE only). A text-based language, it employs tags
to embed instructions in a page. Most tags have an "end" tag and nest the
data, control, text or image within a start and end boundary.

<HTML>

<HEAD>
<TITLE>dBASE Web App</TITLE>

</HEAD>

<BODY>
<I>Welcome to a dBASE Web App</I>

</BODY>

</HTML>

Note that "end" tags start with a "/" and that tags are nested.

9

dBASE on The Web

How Do Web Applications Work?
The Web

To submit data to a Web application on a remote server, HTML provides a
special tag called <FORM>

<FORM METHOD="POST" ACTION="MYAPP.EXE">

<INPUT TYPE="TEXT" NAME="FIRSTNAME" WIDTH="24" SIZE="24>
<INPUT TYPE="SUBMIT" NAME="SUBMIT DATA">

</FORM>

HTML allows you to have multiple forms on any given page, each with its
own Submit button, data and target applet. Neat feature. Multiple forms
allow you to call more than one application from a single HTML page.

Note: As I noted earlier, JavaScript is the programming language of HTML. If
you're familiar with JavaScript, you may have noticed some similarities to
the dBASE OOP language. That's not coincidental. Some of the same
people designed both languages.

Tip! The supposedly common language, HTML, is anything but. Both
Microsoft's Internet Explorer and Netscape's Navigator can make hash out
of HTML that runs just fine in the other. Be careful to test on both Browsers
before deploying an app. In fact, you might want to be sure to test on some
of the older Browsers if you're going out on the Web - you never know
what antique your most valuable customer may be running!

 Communication

In order for Web applications to work across many incompatible environ-
ments, a common protocol had to be established that supports the same
operations on all platforms. CGI (Common Gateway Interface) is that pro-
tocol. It consists of both data formats and sequences of operation that are
respected by all Web Browsers supporting CGI - which is almost all Web
Browsers. Think of CGI as the ASCII or ANSI of the Web.

Under the CGI protocol, a Web application performs the following steps:

1. A URL that calls your server-side application is typed into a Browser, or a URL
is sent by clicking a "Submit" button, linked text or graphic on a Web page.
The Web Browser contacts the Web Server at the IP address or Domain
Name specified, and sends it any data from the "submitting" page.

10

dBASE on The Web

Communication
The Web

2. The Web Server recognizes that the requested address is an application, not
a page, so it calls the application and waits for it to terminate.

3. Your Visual dBASE application runs on the Server, posting data or retrieving
data through reports.

4. When its work is completed, your application sends a dynamic HTML
"response page" (Thank you for your order..., Data has been entered success-
fully, etc.), a formatted report or another interactive page back to the Web
Server.

5. The Web Server returns this dynamically-created HTML page to the Browser.

11

dBASE on The Web

How Do Web Applications Work?
The Web

The Response Page

Although the page returned by you to the Web Server (and by the Web
Server, in turn to the Browser) looks very much like any other HTML page,
it does have one important additional feature: the CGI header.

The CGI header is a generally a single line of code that tells the Web
Server what to do with the information being fed back to it. For example, to
send an HTML page back to the Browser, the very first line of text that you
send back to the Web Server will be:

Content-type: text/html

This line never makes it back to the Browser. The Web Server strips it off.
However, without this line, the Web Server will think you're trying to down-
load a file, or, more likely, it will just choke with an "Incomplete CGI Head-
ers" or "Misbehaved Application" error message. The dBASE Web Class
streamHeader() method sends this CGI header automatically to the Web
Server.

How Does The Server Recognize an Application?

It depends on the Web Server software installed. Microsoft's Internet Infor-
mation Server (IIS) recognizes an application by its “.exe” extension.
Apache and O'Reilly's™ differentiate between a page and an application
by the mapped folder in which it sits.

For example, in Apache, you'll find a folder called "CGI-bin" Any files in this
folder will be run instead of "returned to the Browser". If you check the con-
figuration file for Apache, you'll note that this folder is assigned as the
"CGI" remote application folder. Server configuration files and utilities
allow you to define the purpose and location of various folders by
mapping. Mapping is the process of assigning an actual folder to a "virtual"
folder using simple substitution.

Example: If I map the following path:

c:\MyWebSite\DataGathering\OrderEntry

12

dBASE on The Web

Calling Your Web Applets
The Web

to a new "virtual" folder:

/Orders/

every time the server sees "/orders/" it will automatically substitute:

c:\MyWebSite\DataGathering\OrderEntry

Tip! Remember to use slash (/) instead of backslash (\) when defining or
addressing "virtual" folders. Web addresses use the Unix conventions, not
the DOS/Windows conventions for folder notation.

When you set up your Web Server, you'll assign or map a folder to be the
“CGI-bin” folder (most Web Servers come pre-setup, so you may opt to
use the default mappings). Whenever the Web Server encounters your
"CGI-bin" folder in an address (URL), it will know to execute the file speci-
fied in the URL as an application rather than trying to return it as a Web
page.

The traditional server mapping for the CGI-Bin folder is either /cgi-bin/ or
/cgi/. However, you may use any real or virtual folder you wish as long as it
is mapped and accessible to your Web Server. Consult the help files and
manuals of whichever Web Server you use.

Calling Your Web Applets

Web applets are launched the same way you used to launch DOS apps,
by issuing a path to an executable file (c:\myfolder\myfile.exe).
The big difference is that Web apps may reside on the local machine, the
LAN or across the world. The Domain Name (or IP address) is used to find
the right server. Once the server is found, the rest of the "path" is passed
along. Of course, it's not called a "path" on the Web, it's a URL. Ultimately,
there's not much difference.

 A Web-page URL may look something like this:

http://www.dBASE.com/vdb.htm

A Web application URL may look something like this:

http://www.dBASE.com/cgi-bin/myapplication.exe

13

dBASE on The Web

How Do Web Applications Work?
The Web

CGI URLs can also take a command-line parameter (used by the Visual
dBASE Drill-down Query and Response Wizard):

http://www.dBASE.com/cgi-bin/myapplication.exe?myparam

Just to confuse the issue further, you can have your user's HTML form call
your application automatically when it's "submitted", call the applet your-
self using the "Address" or "Location" field of your Browser, or assign the
URL that fires your program to a text link or image link on an HTML page.
Which method you use to launch your program depends on the purpose of
your application and its relation to other pages and servlets. Again, this is
not much different from DOS. You could call an app from the command
line, a batch file, a menu shell, or from within another program.

As you gain experience working with Web applications, you'll find the best
(or at least the most convenient way) to launch your server-side app. Just
remember that what "feels" best to you may leave your users in the dust. I
often launch Web applications from the Browser's URL field while building
and testing. But I never deploy an application that requires that of the user.
I always provide a menu or "starting" page.

Tip! The paragraph above may seem obvious - as it should. But just think of all
the Web sites you've been to that require a guidebook to find what you’re
looking for. Like all good application design, make your Web applications
easy to navigate through the generous use of images, links, menus and
the like. This could mean quite a bit of extra work on your part, adding all
those cool navigation controls to the response pages you return from your
dBASE apps. Trust me, it will be well worth it. I don't know about other
people, but if I have trouble navigating an eCommerce site, I'm gone. After
all, there's usually hundreds of sites around that sell the same thing with-
out the aggravation!

For more on launching dBASE Web applications, see "How Do Visual
dBASE Web Applications Work", "How CGI Works" and "Mapping and
URLs"

14

dBASE on The Web

Calling Your Web Applets
The Web

dBASE on The Web

Part 2: dBASE on The Web

How Do Visual dBASE Web Applications Work?

Complexity

On its face, designing and building dBASE Web applications appears to be
exceedingly complex. Appearances can be deceiving. The Visual dBASE
Web Classes hide most of the complexity beneath their easy-to-use and
easy-to-learn methods. The Web Wizards are even simpler - they bury all
the difficult stuff beneath a simple step-by-step interface.

Nonetheless, it's important for you to understand exactly how dBASE
applications work (and particularly how they interact with the other compo-
nents involved in Web applications) or you might find yourself without the
basic tools required to extract you from sticky situations when things go
awry - as they have been known to do on occasion.

16

dBASE on The Web

Complexity
dBASE on The Web

The relationship between the Browser, the Web Server and your dBASE
applet is very delicate. If any part of the chain is not set up or working right,
the entire application fails. Fortunately, once you've got all the pieces up
and running, you'll find dBASE Web applications to be remarkably stable
over time. That's because dBASE relies entirely on standard Internet pro-
tocols and tools: Browsers, Web Servers, HTTP, TCP/IP, StdOut, CGl and
HTML, not to mention dBASE code and a wide range of databases. Don't
let this plethora of applications, protocols and code daunt you. dBASE
makes it all pretty simple.

17

dBASE on The Web

How Do Visual dBASE Web Applications Work?
dBASE on The Web

The Non-dBASE Parts of a dBASE Web Application

Let's start with the outside parts: the Browser and the Web Server. They
communicate with each other using http (HyperText Transfer Protocol),
the protocol that powers your Browser and powers the Web. Fortunately,
you don't need to know much about http or TCP/IP (the networking proto-
col of the Internet). Most of your work is on the back side of the server, act-
ing as the interface between the Web Server and the data being queried or
updated.

The only notable exceptions are the HTML page that starts your applica-
tion and the response pages that chain your applets together. Most often,
your application will start with a static HTML page. That page has a form
on it, and that form has "form components", such as Text controls (similar
to dBASE Entryfields), Selects (Comboboxes), Lists (Listboxes), Check-
boxes, Radiobuttons, Text Areas (Editors) and Buttons (Pushbuttons).
There are no Grid, Notebook or container controls.

These HTML controls have name and value properties, just as dBASE
components do.

<INPUT TYPE="TEXT" NAME="FirstName" Value="Alan">

How fortuitous! Fields have names and values. Field objects have names
and values. Associative Arrays have names (keys) and values. This
almost-universal implementation of Name/Value pairs allows the Visual
dBASE Web Classes to black-box the process of retrieving, processing
and storing data - dramatically simplifying the development of Web appli-
cations.

Tip! When you design an HTML startup or data-entry form, apply the same
standards you'd apply to a dBASE Windows application: Name your con-
trols appropriately, size them correctly for the data to be entered, default
them to obvious values and position them for ease-of-use and clarity of
data-entry.

18

dBASE on The Web

On The "Back Side" of The Web Server
dBASE on The Web

On The "Back Side" of The Web Server

This is where dBASE shines. As it should. It is, after all, one of the most
sophisticated database development tools, and most Web applications are
database applications. Once your dBASE applet is launched and the
user's data passed along by the Web Server, there are six things you need
to do and four of them are things you'd do in any good database app:

1. Retrieve the Incoming Data

When the Web Server launches your server-side dBASE application
(sometimes called an Applet or Servlet), it runs it as a child process, pass-
ing along a copy of its environment plus the data it picked up from the
user's HTML form. It sends its data either through the environment block, a
command-line parameter or as a data stream. A data stream is a relatively
new concept to dBASE users. As of Visual dBASE 7.5, dBASE applica-
tions can now read or write a stream of bytes to and from another applica-
tion. A byte stream is just like a text file except that the text flows in real
time and doesn't get saved to disk. You can send data through a pipe from
parent to child and child to parent without the overhead of creating, finding,
reading and writing disk files.

The dBASE Web Classes automatically determine how the data was sent,
how it's supposed to be received and then goes out and gets it.

2. Format the Incoming Data

The data that gets read into your application is received in a garbled form
of Name/Value pairs similar to “.ini“ files, dBASE "SET" commands or
DOS environment commands (PATH=). These pairs must be parsed by
your application and converted to dBASE-readable data.

The incoming data stream may look something like this:

FIRSTNAME=Alan&LASTNAME=Katz&ADDRESS=102+Main+St%21

In the line above, the ampersand is the delimiter between pairs, the plus
signs are keyboard "spaces", the “%” indicates punctuation or special
characters in Hex format. The left side of the equal sign is the name of the
control on the HTML page, the right side is the data the user typed into the
control.

19

dBASE on The Web

How Do Visual dBASE Web Applications Work?
dBASE on The Web

Fortunately, this is one more operation that you can safely ignore. A sim-
ple dBASE Web Class method, oemFormat(), automatically converts this
ANSI string into dBASE OEM data and stores it to an Associative Array:

oCGI["FIRSTNAME"]="Alan"
oCGI["LASTNAME"]="Katz"
oCGI["ADDRESS"]="101 Main St."

Note: The Visual dBASE Web Classes consist primarily of the array in which the
incoming data is stored. Derived from the built-in dBASE AssocArray
class, the Web Classes conveniently allow us to store both the data and
the methods that act on that data in the same object!

3. Validate, Manipulate the Data

OK, now you've got this data retrieved from the Browser, stored in your
AssocArray as text, sitting there waiting for you to do something with it.
What do you do first? The same thing you do in any decent database
application: validate the data!

In the simplest cases, this might mean looking for missing data:

If empty(oCGI["LastName"]
 aData.sorryPage("Last name is required!")
endif

or performing more elaborate operations, such as checking a user's ID
and password, or a customer's CustNo:

if not q.rowset.findKey(aData["Custno"])
 oCGI.sorryPage("Customer number is not valid!")
endif

or performing calculations or other data manipulation:

oCGI["FullName"] = trim(oCGI["LastName"]) + ', ' ;
 + oCGI["FirstName"]

Tip! One of the nice features of the Visual dBASE Web Classes is that they let
you pass an array instead of a string to sorryPage() (the HTML equivalent
of MsgBox() in dBASE, or Alert() in other languages). You can batch all the
errors instead of requiring your user to submit a page for one error at a
time until he or she finally gets the darned thing right!

20

dBASE on The Web

On The "Back Side" of The Web Server
dBASE on The Web

Another
Tip!

For years I've been trying to convince dBASE developers to do form-level
validation instead of field-level validation. The Web has made my case.
Although you can do rudimentary validation using client-side JavaScript,
all your serious validation happens on the server after the form has been
submitted.

4. Store or Retrieve the Data

Here is where dBASE and the Visual dBASE Web Classes really shine.
The methods of the Web Classes let you store your incoming data to a
table or send table data back to the user with almost no code. Well, you do
have to instantiate a dBASE Query object, but aside from that, reading
data and writing data should take only a single line of code each.

This automated, black-box data access only works if you name the form
controls on your HTML page with names identical to the table fields they're
going to or coming from. And that includes matching case. The
AssocArray class is case-sensitive.

Tip! You'll also be amazed to see the speed of opening queries and saving
rows in dBASE when there's no Windows GUI to slow dBASE down.

5. Build and Send a Response Page

This is the hard part. For virtually every dBASE applet you write, you'll
have to write an HTML page as well. This response page gets sent back to
the user to either allow forward motion through your application or at least
give the courtesy of acknowledging their kindness in sending you data! If
you don't send a page, the Web Server chokes. And your user will know
that you blew it by virtue of an unkind message sent to the Browser.

Streaming is the process of generating code instead of text. Just as the
dBASE Form and Report Designers stream out dBASE code, you'll be
streaming HTML as the last act of your dBASE applet.

Tip! I usually design my response page using Symantec's Visual Page™ and
then use the new Visual dBASE utility HTMLtoPRG to convert my HTML
into dBASE code and have it poked right into my applet's source file. Very
fast, very helpful.

21

dBASE on The Web

How Do Visual dBASE Web Applications Work?
dBASE on The Web

Here are some typical Response pages:

• Thank You page
• Confirmation of Order
• Acknowledgement of Data Received
• Another data-entry page (multi-page applications)
• A second copy of the page that launched your applet
• A menu page to continue surfing the site
• The "Checkout" page for an Online Store

Some of the pages above are pretty simple (such as the "Thank You"
page). Others require that you build a whole new "launch" page for the
next phase of the application.

Confirmation of Order Response Page

22

dBASE on The Web

On The "Back Side" of The Web Server
dBASE on The Web

Regardless of what you return to the user, it behooves you to personalize
your response. And that's very easy to do in dBASE. You can just insert
the values from your array into the HTML you stream back to the Web
Server:

this.fOut.Puts('Thank you, '+oCGI["FullName"] + ;
 ', for your order!')

Sending your data back to the Web Server is as simple as using the Puts()
method of the built-in dBASE File Class.

6. Clean Up and Quit

Like all good dBASE programmers, I'm sure you're always careful to clean
up behind yourself when you close an application. Even though the
dBASE Quit command should, theoretically, close down everything and
restore your resources, I've never been 100% confident of that. Mostly
because this is Windows, and there always seem to be resource problems
of one type or another. It's just good form to clean up your classes and
queries:

q.active = false
q = null
d.active = false
d = null
oCGI = null
Quit

Tip! Cleanup is particularly important in Web applications. Losing a small
amount of resources on one workstation run by one user is probably not
catastrophic. On the other hand, a Web applet may be run literally thou-
sands of times a day. Chewed-up resources can have a drastic impact on
your Web Server.

23

dBASE on The Web

How Do Visual dBASE Web Applications Work?
dBASE on The Web

Learning To Code dBASE Web Applications.

If you're new to Web development, we strongly recommend that you gen-
erate a few Visual dBASE applets using the Web Wizards and inspect the
resulting HTML and dBASE code. The code generated by the Wizards can
serve as an invaluable guide to creating interactive Web sites using Visual
dBASE.

We also recommend that you take some time to look over the Visual
dBASE Web Classes, which will help you dramatically improve your pro-
ductivity in developing hand-coded, superfast Web applets.

24

dBASE on The Web

Learning To Code dBASE Web Applications.
dBASE on The Web

How CGI Works

Server-side applications involve more than one simultaneous process.
The Web Server software (which is running at all times) calls your dBASE
application to perform all the wondrous tasks that you designed it to do
and then grabs back control when your program completes execution.

While your dBASE server-side application is loaded, it's running as a child
process of the Web Server. Since there's going to be more than one appli-
cation running at the same time and these applications have to talk back
and forth pretty intimately, a set of rules and regulations for interprocess
communication is required. Those rules and their implementation on the
Web Server go under the acronym of CGI, Common Gateway Interface.

The CGI Protocol defines the capability of your server to pass and regain
control from a child application, and the circumstances under which it
sends data to the child application and retrieves its output. All major Web
Servers support CGI in one or more of its flavors. Win-CGI was specifically
designed for Windows Web apps, but is supported only in O'Reilly's Web-
Site on Win 95/98 (and it's terribly slow!).

Most servers support CGI-bin (also known as standard CGI), which uses a
direct connection at the operating system level between the Web Server
and your server-side applet.

Tip! Standards exist so that everything will work together smoothly (theoreti-
cally). But open standards don't give much of a competitive edge, so both
Netscape and Microsoft have come up with proprietary alternatives, ISAPI
and NSAPI, respectively. The only advantage of these single-vendor pro-
tocols is that they don't require a child process - they use a DLL to put your
app in the same process as the Web Server itself. Sounds great, right?
No. Our benchmarks show no real-world performance advantage to
NSAPI or ISAPI over dBASE running in straight CGI (following the open
standards, as it were). Furthermore, proprietary standards are proprietary,
not standard, which leaves you at the mercy of the vendor and its own
strategic purposes.

25

dBASE on The Web

How CGI Works
dBASE on The Web

How the Web Server Talks to a Server-Side Application

Because you want your dBASE applets to be able to communicate with all
possible servers, you'll use CGI-Bin, the "other" (actually the original) CGI
protocol for all your server-side applications. CGI Bin communicates in
one or more of three ways:

Command Line Method

In the Command Line method, the Web Server sends the data as a string
parameter to the server-side application. The Web address we used ear-
lier in this chapter is an example of Command Line interprocess communi-
cation:

http://www.ksoftinc.com/cgi-bin/myprog.exe
?firstname=Alan%&lastname=Katz

Environment Method

Since your dBASE application is a child process of the Web Server soft-
ware, the Web Server determines what environment will be available to
your application. We're talking a real DOS-style environment block. Name/
Value pairs sent back from an HTML form are stored in an environment
variable called QUERY_STRING. However, it does so only if the HTML
form uses a "GET" method to send the page back to the server. We don't
recommend using the GET method, so forget the "environment" option for
the moment.

StdIn/StdOut Method

The third method of communication between Web Server and server-side
applet is StdIn/StdOut. Until now, StdIn and StdOut have been generally
unknown quantities to Visual dBASE developers, but UNIX developers
know them well and DOS developers have used these two for years. StdIn
and StdOut are streams - a pipeline of moving data that can be identified
and grabbed with a file handle. It's not a real file, written to disk, but is
treated as such by DOS. You've used them many, many times, though
perhaps unwittingly. When you "TYPE" a file in DOS, you're streaming its

26

dBASE on The Web

How the Web Server Talks to a Server-Side Application
dBASE on The Web

contents to the screen using StdOut. Every time you type on a keyboard, a
character is sent to the computer through StdIn.

As of Visual dBASE 7.5, dBASE Web applications can, for the first time,
access StdIn and StdOut using the built-in File class. Here's some typical
syntax for opening StdIn and StdOut (you'll see similar code in the dBASE
Web Classes):

fIn = new file()
fIn.open('StdIn')
fOut = new file()
fOut.open('StdOut')

Note: You don't create() a file object when using StdIn or StdOut. They are a
pipe over which data will be streamed, meaning that the Web Server
already opened these pipes from its side. You're the child process - you're
just connecting to an existing pipe.

Another
Note:

The surfacing of StdIn and StdOut was quite a coup for dBASE Inc. and its
talented engineering team. According to Microsoft's developer-level tech
support, it couldn't be done. Well, it certainly can be done in dBASE! The
difficulty is that the "conversation" that happens over the StdIn and StdOut
pipes happens at the console level (remember SET CONSOLE TO?),
meaning that essentially, they are DOS routines. Windows doesn't like to
let Windows apps talk to the DOS layer. Something about a loss of control.
No matter, we got it working and it dramatically improved the already-fast
performance of dBASE on the Web.

We recommend that you use the read() method of the File class to get
your data from the Web Server. The Web Server will conveniently drop
some information in your applet's environment block that tells it how the
data was submitted and how much there is, as shown in the following
code:

cPostType = getEnv('REQUEST_METHOD') ==> "GET" or "POST"
nLen = getEnv('CONTENT_LENGTH') ==> length of data stream
if cPostType = 'POST'
 cInputStream = fIn.read(nLen)
endif

When you're sending data back to the Web Server, we recommend you
use the puts() method of the File class, rather then the write() method.
Puts() was designed specifically to send strings rather than streams. It
adds carriage returns and line-feeds to the end of every string. Since the
data you'll be sending back to the Web Server is in the form of HTML
(which is very line-oriented), puts() will make your life much easier. You

27

dBASE on The Web

How CGI Works
dBASE on The Web

won't have to deal with terminating characters, dBASE will take care of
that for you.

fOut.puts('<HTML>)
fOut.puts('<HEAD>')
fOut.puts('<TITLE>Welcome to dBASE/Web</TITLE>')
fOut.puts('</HEAD>')
etc.

(See WebClass.cc for more detailed and documented code).

The best thing about dBASE is that you don't have to know all this stuff.
Although it certainly can't hurt to understand what you're doing (especially
when something goes wrong), the dBASE Web Class's connect() method
does all this stuff for you transparently. Aren't classes great?

28

dBASE on The Web

The Language
dBASE on The Web

HTML and The CGI Header

Whether you plan to use the dBASE Web Classes or the dBASE Web Wiz-
ards, you should know at least the basics of HTML. The Wizards will gen-
erate HTML for you, but part of the joy of Web development is the high-
level of individuality the Web lets you express. The code generated by the
Wizards is meant to be changed as you gain experience, confidence and
push the envelope of Web development. HTML is your opportunity to
design your application's user-interface without the rigid limitations of the
Windows GUI. Go ahead, get creative!

HTML is used at both ends of a Web application. Home pages and data-
entry forms are written in HTML (even if they're written by your dBASE
application), and CGI response pages are essentially HTML pages with a
minor addition called the CGI Header (more later).

The Language

HTML is a Page Description Language (PDL), not a programming lan-
guage. It uses tags to define formatting, placement, colors, attributes, to
put data-entry controls on a page and to design forms.

Most HTML commands consist of pairs of tags - a start tag and an end tag.
At least all tags that cover real estate use start and end tags. For example,
text formatting is done with pairs of tags. Sections of the HTML page are
defined with pairs of tags. Tables and rows are done with pairs of tags.

Hello dBASE

But HTML input controls do not use paired tags. They are objects. And, as
we know, objects have neither a beginning or an end. They are self-con-
tained.

<INPUT TYPE="TEXT" NAME="FirstName" VALUE="Alan">

HTML tags are nested, both horizontally and vertically. Let's take the
FONT example above and enhance it with Bold and Italic tags:

<I>Hello dBASE</I>

29

dBASE on The Web

HTML and The CGI Header
dBASE on The Web

Check out the following code to see how the rows and data of an HTML
table are nested vertically:

Tip! Tables are internal structures used to lay out complex Web pages. Most
HTML pages with input controls use them. There doesn't seem to be any
other way of getting them under control. Without a table to set proportional
or absolute borders (percent or pixels are allowed), your eMail address
field may end up five inches beyond the Browser on a Mac, centered on a
Win 95 screen and totally off the map in a 640/480 16-color notebook.

<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0">
<TR>

<TD WIDTH="83" HEIGHT="77" BGCOLOR="silver"> </TD>
<TD WIDTH="21" HEIGHT="77" BGCOLOR="silver"> </TD>
<TD WIDTH="35" HEIGHT="77" BGCOLOR="silver"> </TD>
<TD WIDTH="70" HEIGHT="77" BGCOLOR="white"> </TD>
<TD HEIGHT="77" COLSPAN="3" BGCOLOR="white">

<H1>

Conference Sign-Up
</H1>

</TD>
</TR>

</TABLE>

As you might have guessed from the previous code snippets, end tags are
identified with a slash (/) before the tag name, and all tags are enclosed in
angle brackets <>.

Tags may also have attributes (properties). The FONT tag above shows
attributes for FACE and SIZE (it also does color and alignment), much like
the FontName and FontSize properties of the dBASE Text object. Para-
graph tags <P> start new sections of the page on a new line (they have
neat attributes not available on any other tag except <DIV>) and they too
require a closing tag, but for some unknown reason, nobody seems to use
them.

<BLOCKQUOTE> is an important tag because tabs don't work in HTML.
Indenting without using a table to define each "tabstop" is almost impossi-
ble because HTML abhors spaces. If you leave two spaces between a first
name and a last name, the Browser will eat the second space and display
only one. So, <BLOCKQUOTE>s are used to emulate tab tops. These defi-
nitely need a closing tag at the end of the indented block or your page may
list more and more to the right until it runs right off the Browser.

30

dBASE on The Web

Sections of an HTML Page
dBASE on The Web

Sections of an HTML Page

HTML pages are divided into sections - sections that you must adhere to
rigidly. The Browser is looking for them, the Web Server is looking for
them, and any omission (or creative formatting) will result in an unreadable
or undeliverable Web page.

The main sections of an HTML page are the Header and the Body. They
must be separated by a blank line and both enclosed in a pair of start and
end HTML tags.

The HTML Header

The HTML Header contains "meta" information about the page, such as
page title, margins, etc.

The HTML Body

The HTML Body contains the page layout to be displayed by the Browser,
graphic references to images, links, as well as any forms or "hiddens" (hid-
den controls used to emulate variables). Any given HTML page may con-
tain any number of HTML forms within it.

<HTML> // defines the PDL
<HEAD> // start header

<TITLE>Hello dBASE</TITLE> //title tag
</HEAD> // end head

// must leave blank line!
<BODY> // start body

<FORM> // start form
</FORM>// end form

</BODY> // end body
</HTML> // end HTML page

HTML Forms

There couldn't be Web applications if there were no HTML forms. These
forms are sections of an HTML page that provide the ability to enter or

31

dBASE on The Web

HTML and The CGI Header
dBASE on The Web

view data, rather than text and images. They are inextricably linked to CGI.
The form defines the data that gets sent back to the server, the <FORM>
tag defines the action to take when it gets back there.

Forms always appear in the BODY of an HTML page. There may be more
than one, each with its own unique "Submit" and "Reset" buttons. These
are two stock HTML objects that perform the core operations of the HTML
form. The "Submit" fires the form's action and the "Reset" clears the data
from an existing HTML page. Let's take another quick look at the FORM
tag (for more see How Do Visual dBASE Web Applications Work?)

Forms take two main attributes, ACTION and METHOD.

The Action Attribute

The ACTION attribute tells the Web Server what it's supposed to do when
the page is submitted. In almost all cases, this involves calling a CGI script
or executable (why submit data if you're not going to do anything with it?).

The Method Attribute

The METHOD attribute tells the Web Server how to handle the data it's
sending back. There are only two options, "GET" or "POST". We don't
need to go into great detail about these methods, but if you don't want your
users to see all their data echoed to the Address field in the Browser, use
POST. In fact, you should always use the POST method. I can't think of a
single advantage of using GET with a dBASE Web application (though the
Web Classes support both).

<FORM Action="Myprog.exe"
 Method="POST"
 ENCTYPE="application/x-www-form-urlencoded">

Tip! I prototype almost all of my applications using Symantec's Visual Page™. I
let it generate HTML code and then I convert the code to dBASE. That's
really easy now with HTMLtoPRG.wfm , the new utility that converts HTML
to dBASE output code. That was the most annoying part of writing Web
stuff in dBASE: hand-writing all those dBASE "puts" and parens and delim-
iters. What used to take me hours now takes about ten seconds. A very
valuable tool indeed!

32

dBASE on The Web

The CGI Header
dBASE on The Web

Tip! Need to edit HTML as source code? If you haven't, you will, once you get
up and running using the dBASE Web Classes. I've got a great HTML
source editor for you: dBASE. Probably a remnant of the now-defunct
IntraBuilder, the Brief editor in dBASE provides full support for HTML edit-
ing, including color-coding and error trapping. One more little dBASE
goodie.

The CGI Header

As I mentioned earlier, there is a minor, but very important difference
between the HTML pages you'll write to start your Web applications and
the HTML you'll write to send back to the Web Server. That difference is
the CGI Header.

The CGI Header (which must be the very first line streamed back through
StdOut) tells the Web Server what you want it to do. The most common
CGI header looks like this:

Content-type: text/html

This single, all-important line of code tells the Web Server that you're
sending back an HTML page that it is to pass along to the Browser. With-
out that line, the Server will likely throw an error along the line of "Incom-
plete or missing CGI header".

Tip! If your Browser tries to save your CGI response page as a file, you know
you screwed up the CGI header. Be really careful here! You can spend
hours trying to figure out what went wrong! Use the Web Class's stream-
Header() method to ensure that it gets sent right every time.

Other header options, such as "Location" tell the Web Server to go look for
an existing page somewhere and send that back to the Browser. This type
of header saves you a lot of code if you don't need to customize the
response page on-the-fly.

33

dBASE on The Web

Reading The Data You Get From The Web
dBASE on The Web

Reading The Data You Get From The Web

Input

Perhaps nothing else in history has reminded us so forcefully that we live
in a world, not a country than the Internet has. The Internet is not an
English-Language communications medium. It supports all languages.
And alphabets. And communicates using a world-standard alpha protocol
called ANSI.

dBASE on the other hand, speaks "OEM" (Original Equipment Manufac-
turer). OEM refers to the internal language which itself supports many lan-
guages through its language drivers and resource .DLLs.

In order to use the data sent back over CGI, you need to parse it first and
convert it to dBASE-usable code. A typical data string (also known as
QUERY_STRING) sent to your dBASE application over StdIn looks some-
thing like the following:

Name=A%46+.A%46+Katz&Address=101+Main+Street&City=Vestal

The string above consists of three Name/Value pairs separated by an
ampersand (&):

Name =
Address =
City =

The period (like most punctuation) is represented by the hexadecimal

value of the character preceded by the percent sign (%). That's to prevent
conflicts between real characters and delimiters.

Spaces are represented by the plus signs (+).

Once again, you don't really have to worry about this if you're using the
dBASE Web Classes or Wizards. The loadArrayFromCGI() method gets
the data from the Web Server, parses and reformats it, converts from OEM
to ANSI and stores it in the main Web Class AssocArray in a perfect reflec-
tion of the Name/Value pairs:

this["Name"] = 'A. A. Katz'

34

dBASE on The Web

Output
dBASE on The Web

this["Address"] = '101 Main Street'
this["City"] = 'Vestal'

Output

Here's another nice touch in dBASE. You don't need to be concerned
about OEM, Double-Byte, Unicode, ANSI or any other protocol or standard
when you output data through the dBASE File class. It's converted auto-
matically.

Mapping and URLs

35

dBASE on The Web

Mapping and URLs
dBASE on The Web

Mapping and URLs

You'll note we used the word "mapped" several times in earlier topics.
Mapping probably deserves a moment's special attention - especially if
you're going to set up your own Web Server. Like drive mapping in Win-
dows, the Web Server maps "real" folders to "virtual" folders. Why bother?
Because you don't want the whole world to know the directory structure of
your server and because you can move stuff around a lot more easily if
your path isn't hard-wired. Like a BDE alias, mapping gives your Web site
and Web applications portability.

In all Web Servers, one folder on the Web Server's hard drive is mapped
as the root of the Web site.

In Web Servers that support server-side applications (most, some call
them scripts), the applications reside in a folder mapped as "CGI" or "cgi-
bin" or something like that. Even though it may not be a child of the root
folder on the hard disk, it is a logical child of the root of the Web site.

Apache's default installation is a good example:

Program Files
Apache Group

Apache
htdocs
cgi-bin

You'll note in the list above that "htdocs" and "cgi-bin" are both on the
same level of the directory tree. Nonetheless, Apache's configuration file
sets up "htdocs" as the root. All other folders are beneath "htdocs" logi-
cally.

Here's some URL examples:

A Web-page URL may look something like this:

http://www.dBASE.com/vdb.htm

A Web application URL may look something like this:

http://www.dBASE.com/cgi-bin/myapplication.exe

36

dBASE on The Web

Mapping and URLs
dBASE on The Web

CGI URLs can also take a command-line parameter (as is the case in the
Visual dBASE Query and Response Wizard drill-down reports):

http://www.dBASE.com/cgi-bin/myapplication.exe?myparam

Web Servers support relative URLs, just as Windows and Unix computers
support relative paths. Think back to your DOS days. If you were typing a
path and you were sitting on drive C:, you didn't have to type the "C:", it
was assumed. Web Browsers and Servers do the same thing with URLs,
based on the current or calling page's address:

For example. Let's assume that, using Apache as your Web Server, you
called a static page using the following URL:

http://www.dbase.com/mypage.htm

The fact that you have no additional folders after "dbase.com" indicates
that you are in the "root" of the Web Site (just as "C:\" might be the root of
your hard drive). You can call an application that resides in /cgi-bin without
specifying a domain if you call it from a "current" page that's already "sit-
ting" on the root:

<FORM METHOD="POST" ACTION='/CGI/Myapp.exe'>

Warning! If you use http:// in your URL, you must use the entire, fully-qualified URL.
That's because http:// reasserts the "root", just as typing "C:\" does in a
Windows or DOS path.

A little bit of experimentation with your own applications will quickly give
you a good idea of where you can and cannot use abbreviated relative
URLs. On the other hand, if you use the fully-qualified longhand URL,
you'll never suffer a pathing error.

Note: Web Servers use the Unix conventions for drives and folders. "//" follows
the drive, "/" sits between folders. Note that we're using "slash", not "back-
slash". That's also Unix.

Another
Note:

You probably won't be mapping Web site folders with syntax like that
shown above. Many of today's Windows Web Servers support mapping
through a visual interface (see following figure).

37

dBASE on The Web

Mapping and URLs
dBASE on The Web

38

dBASE on The Web

VdBFast
dBASE on The Web

Apache Web Server, on the other hand, maps folders the old-fashioned
(read that as Unix) way, with a text configuration file. Guess which one is
more reliable and ultimately easier to configure? Of course, Apache.

VdBFast

39

dBASE on The Web

VdbFast.exe
dBASE on The Web

VdbFast.exe

dBASE is really, really fast on the Web. Part of the reason that dBASE is
so fast is that its engines are external and don't have to load from scratch
each time a tiny little executable runs.

Well, that's not quite accurate. The engines will load from scratch each
time an applet is called unless you pre-load them. dBASE Inc. has pro-
vided a program called VdBFast.exe which does exactly that, and it should
be running on your Web Server at all times.

Unfortunately, for a number of architectural reasons, VdBFast.exe is not a
Windows NT service, so it won't load automatically at your Web Server's
startup (that's coming soon according to current plans). It can be made
into a service, but it sometimes causes unexpected problems, so we don't
recommend it at this time.

Use either a log-on script or a Startup folder to load VdBFast on your
server. You won't believe the improvement in performance. Last time I
benchmarked it, with VdBFast loaded, my applets ran more than 1400%
faster than they did without.

VdBFast is a must.

40

dBASE on The Web

VdBFast
dBASE on The Web

dBASE on The Web

Part 3: Installation and Setup

Requirements

1. Web Wizard applications run only on 32-bit Windows operating sys-
tems and Web Servers including Windows 95, 98, NT and 2000.

2. You must have Web Server software installed that supports the CGI-
Bin protocol. Visual dBASE ships with a copy of Apache Web Server.
Apache is an open source Web Server (© Apache Group) that is
extremely easy to install. Other Web Servers we've tested these Wiz-
ards on are: O'Reilly's WebSite™, Netscape FastTrack™, Microsoft®
IIS and Microsoft Personal Web Server.

3. You must install the BDE and the Visual dBASE Runtime on the same
server that will run your Web applications.

4. Each simultaneous user requires approximately 10-12 MB of memory
on the server. dBASE may grab more if is available. This is not nor-
mally a problem since dBASE data-entry and simple query applica-
tions only run on the server for a fraction of a second. This depends, of
course, on your application design.

5. You do NOT need an Internet connection to build or test dBASE Web
applications. They may be written, compiled and run on a stand-alone
machine.

42

dBASE on The Web

Where Do I Put My Files?
Installation and Setup

Setting Up

Where Do I Put My Files?

One of the challenges of developing Web applications is that you almost
never develop where you're going to run. Testing complex database appli-
cations on a live Web Server is a bad idea. One crash and your entire Web
site may be offline. Also, you may not have your own Web Server and will
need to deploy applications to a remote location or ISP Host.

dBASE makes this easy by virtue of its BDE Alias. Once you've installed
dBASE, you can run any application, regardless of where the data resides
(as long as it's accessible, of course), without rewriting your code. Always
use a BDE Alias when developing Web applications.

dBASE ships the Apache Web Server, the most popular (and open-
source) Web Server. It runs more than 61% of the Internet's Web sites. It
is also extraordinarily easy to install using folder and configuration
defaults.

When using Apache:

Your dBASE executable (.EXE) applets deploy to the Apache \cgi-bin
folder. Static HTML Web pages deploy to the Apache \htdocs folder.

When using Microsoft IIS:

Your dBASE executable (.EXE) applets and static HTML pages
deploy into any folder you specify. Just make sure, when you set up
your Web site that you turn "execute scripts" on or your applets won't
run. IIS identifies an app by its extension, not its location.

How To Install dBASE on a Web Server

Servers are not like stand-alone computers or workstations. They boot up
and work with no user logged in to the local console. In fact, that's the best
and most secure server protocol - don't allow anyone to log on to the
server console.

43

dBASE on The Web

Setting Up
Installation and Setup

However, any user coming in to your Web or Intranet host machine will be
logged on as a remote user. In most cases, this will be an "anonymous"

user. The anonymous user allows all those strangers accessing your Web
site to access this server with whatever privileges and policies you assign
to the Anonymous user.

Because Windows computers support "profiles", you have to be very care-
ful how you install dBASE on your Web Server. If you install in the wrong
profile, users may not even see dBASE, let alone be able to run Web
applications that require the dBASE login. To help simplify the installation
process, I've come up with two basic options:

Anonymous Install

Log onto your server console as the Anonymous User. Install dBASE from
the CD-ROM (or install a custom application with a dBASE InstallShield
Express deployment).

Warning! Installing dBASE on your server probably constitutes a new dBASE user,
which means you need an additional license to run it both on the server
and on your development machine at the same time. You do not need a
license to deploy the runtime anywhere. Please respect the terms of the
Visual dBASE License.

Runtime Install

Copy the following files to the same folder from which you plan to run your
dBASE executables:

VdB7run.exe

VdB7000n.dll (where "n" is your local dBASE language code)

The BDE must be installed in order for this "runtime" installation to work.
One legal way of installing manually is to install dBASE on your server,
then do an Uninstall. When asked about removing the shared BDE folders,
click No. That will leave a BDE install on your machine without requiring
another dBASE license.

Of course, there's a simple and elegant way of deploying the BDE without
going through the contortions of installing and uninstalling, and that's writ-

44

dBASE on The Web

How To Install dBASE on a Web Server
Installation and Setup

ing your own little InstallShield Express deployment, but don't include pro-
gram files. Just be aware that it will probably copy VdB7Run.exe into your
\Windows\System (or WinNT\System32) folder. You'll want to move it back
to your deployment folder before running your Web apps.

Future versions of dBASE will have a Web Runtime installer available on
the dBASE CD.

Configuring the Web Server

You'll need to set up a Web Site and a CGI folder in order to deploy and
run dBASE Web apps. Consult your Web Server software's manuals or
online help for instructions. Setups can vary considerably from server to
server.

45

dBASE on The Web

Deploying Web Applications
Installation and Setup

Deploying Web Applications

Design For Portability

The best way to develop, test, and upgrade Web applications is to build
them on one machine (preferably a local machine) and deploy them to
their final home on a server when done.

Considering that there are several parts to a Web application, including
HTML, dBASE executables, images and data, building and running on two
different machines can be a bit of a pain. There's nothing worse than get-
ting an application completely debugged only to find out that drive "H:"
doesn't exist on the Web Server. It's mapped to "X:" there.

But there are very simple solutions. dBASE is really excellent at portability.
And it will be even better in future versions.

Start with a BDE Alias. Use the BDE Administrator to "point" to the location
of your data. If you do, you can move the application anywhere, and as
long as the server's BDE is configured with that Alias pointing to the right
folder, you'll never have a problem finding data.

Note: Never, ever use an explicit path to images or other external objects in Web
applets. If you must, move the stuff you need. On the other hand, the
paths you have that point to source code and object code files, such as
"set procedure to <path+filename>" don't matter. dBASE strips them out
when you build your executables.

Where Does This Stuff Start?

Almost all Web applications start with an HTML page (Reports alone don't
have to. You may call them directly by .EXE filename if you like). The star-
tup page can be an existing page on your Web site, one generated by the
dBASE Web Wizards, or one you write yourself. In any case, it goes into
either the root folder of your Web site, or a subfolder beneath the root.

If we assume that f:\MySite is the root folder of our Web Site, that's where
you put your startup HTML page and run it:

http://www.mysite.com/startup.htm

46

dBASE on The Web

Design For Portability
Installation and Setup

If we assume that the HTML startup page is in a subfolder (\mypages) of
the root, you put your HTML there and run it from:

http://www.mysite.com/mypages/startup.htm

If your startup page is also the homepage of your root (It's perfectly OK to
use a homepage as a "menu" to various Web apps. Not just OK, it's advis-
able.), it's probably called Index.htm or Index.html or Homepage.htm or
Default.html or something like those. Consult your Web Server's manual or
online help for the appropriate page name, or for the place where you can
set the default homepage name. If your startup page is the default page in
the root:

http://www.mysite.com
// everything else is defaults!!

We can't (and won't) tell you how to organize your Web site and your
server's folders. However, we can (and do) strongly suggest that you
never mix executables, data and HTML in the same folder. Each to its pur-
pose.

Where Does This Stuff Run?

Good question. So much depends on how you set up your Web Server
and how you design your URLs (relative or fully qualified) that it's hard to
say where your applets should reside in order to be found at runtime.

In the default installation of Apache, it's pretty simple: executables are
deployed to and run from Apache's \cgi-bin folder. Apache has explicit
mappings that tell it to look there for executables. You can place your
applets in that folder along with tables and even the dBASE runtime with a
pretty good confidence that the applet will find all of its pieces.

That doesn't necessarily apply to Microsoft Internet Information Server. I
have most of my applets sitting in a \CGI folder under the Web Site root -
but a lot depends on whether you're using a virtual folder, a share or a real
folder. Unfortunately, this is not the right place for a Windows NT tutorial
(that's a book of its own), so your best bet is to experiment. All I can vouch
for is that my dBASE applets run beautifully from a real subfolder of the
Web root.

Note: If you can't get an applet to run after copying it to your Web Server - espe-
cially if you get a message saying it can't find something, delete the exe-
cutable's .INI file and let it create a new one the next time it runs. There is

47

dBASE on The Web

Deploying Web Applications
Installation and Setup

both the possibility and likelihood that it contains some explicit paths that
may not work in the deployment environment. In fact, I recommend that
you don't copy .INI files back and forth unless they're .INI files that you cre-
ated explicitly to configure your applet. In that case, make sure no paths
are inadvertently written into it.

Build in Portable URLs

Because every page submitted requires a response, almost every page
you stream out of the dBASE Web Wizards and Classes will contain at
least one URL embedded in a form or link. These URLs can also be
explicit or portable.

An explicit URL starts with "http:", which sets the 'path' back to the Web
site root.

However, once you've arrived somewhere on your Web site, all further
URLs can, and probably should be relative.

For instance, if you have an HTML page running in your Web Site root and
you want to specify where it should find images, and those images are in
the same folder, all you need is:

The same applies for running an applet from an HTML page, though it's
highly unlikely that an HTML page will be in the same folder as the applet
(it shouldn't be!).

Therefore, you might want to use only one level of nesting:

<FORM ACTION="/cgi-bin/myapp.exe" METHOD="POST">

Now the example above applies only to the first HTML page, which is
launched from the HTML folder, not the CGI applet folder.

If we assume that the applet we just called (myapp.exe) includes a URL to
call another applet, then both the calling page and the applet will be run-
ning from the same folder! In that case, all you need is:

<FORM ACTION="myapp.exe" METHOD="POST">

48

dBASE on The Web

Deploying dBASE
Installation and Setup

This stuff is sometimes more confusing than helpful, but you simply will not
achieve portability of your dBASE Web code without it. If you use relative
URLs in all your applets and your deployment environment is logically sim-
ilar to your development environment, your code should port from "Local-
host" to a real Internet or Intranet host without a problem.

Tip! The key word here is logical . The relationship between folders is not nec-
essarily physical. In fact, in Apache it's not. The htdocs (HTML) and cgi-bin
(executables) folders are exactly at the same level. Neither one is physi-
cally nested or contained within the other. However, logically, htdocs is the
root and cgi-bin is a subdirectory of that Web Site root. So remember, think
logical, not physical!

Another
Tip!

Can't figure out exactly how to path out correct relative URLs? No big deal,
it happens to me all the time. A few years ago when I was delivering a
paper on dBASE at a conference, Ken Chan (one of the truly long-time
and expert dBASE developers in the world) confessed that he uses his fin-
gers to count how many ".parents" to type in an OODML expression. Fol-
low his lead. If fingers don't work, just experiment. There are bound to be
quirks from server to server and mapping to mapping. Try the darned
things out until they work. I usually build a tiny HTML file and use dBASE
to type in experimental URLs. Works great for me.

Deploying dBASE

There is great news about deploying the dBASE runtime, especially for
those of you who have ISPs who are reticent to install dBASE on their
servers. You don't have to tell them dBASE is there!! Well, you wouldn't
except for the BDE. If you use Advantage Database Server™ when we
release our native dBASE/Advantage driver, you won't even need that.
And almost any ISP will install the BDE for you.

Why don't they need to know you've installed dBASE? Because the
dBASE runtime can be installed without any registry entries whatever.
There is a search path that dBASE goes through in looking for its parts as
follows:

1. Look in the current folder
2. Look in the executable's home folder
3. Look in the Windows System (WinNT System32) folder

and only if all three of those fail:
4. Look in the Windows registry.

49

dBASE on The Web

Deploying Web Applications
Installation and Setup

According to my tests on a virgin machine, you only need three files to run
dBASE Web applications:

VdB7run.exe
VdB7000n.dll (where "n" is your local dBASE language code)

You can copy these files right into your runtime (CGI) folder and never
install dBASE itself on your server. You'll also save the cost of one addi-
tional license.

Hosting

Check the dBASE newsgroups and Web Site for the contact information
on ISPs who host dBASE Web applications. In addition, dBASE Inc. will be
sponsoring low-cost application hosting and maintenance for dBASE
applications only. We will host for both you and your clients. Check the
dBASE Inc. Web Site for details at:

www.dbase2000.com

50

dBASE on The Web

Installation and Setup

Performance

Web applications are not generally noted for their performance. After all,
not only is there a lot of work to be done, most of that work is communi-
cated over relatively slow connections. Even a T1 Internet connection is
dramatically slower than even the most modest LANs.

Nonetheless, Visual dBASE Web applications can be surprisingly quick. In
a recent test using Microsoft's Internet Information Server on Windows NT
4 and a 56K dialup connection over the Internet, a report consisting of 80
rows was returned to the Browser in less than a second and a half.

This was accomplished by running VdBFast.exe on the Web Server. VdB-
Fast is a minimized form whose only purpose is to load the dBASE
engines into memory. Any subsequent Visual dBASE applets loaded will
use the already-open copies. This results in dramatic performance
improvements on the Web Server.

The Visual dBASE Web Wizards automatically copy VdBFast.exe to your
server's CGI folder when you generate your first Wizard application. We
highly recommend that you launch VdBFast.exe on your server and leave
it running as long as you offer users access to a Visual dBASE Web appli-
cation.

There is virtually no overhead penalty for VdBFast.exe since the engines
would be loaded, in any case, whenever your application is called.

Reports

Reports require some common sense. There are limitations to what the
Web Browser will handle realistically, and even greater limitations to what
a user will sit still for. Reports that return 20,000 rows definitely fall into the
category of unrealistic. In fact, anything that takes more than about 45 sec-
onds will send the user clicking and re-clicking.

The same is true of Queries. If a SQL query takes twenty minutes to run,
don't even think of putting it out on the Web. Perhaps on the Intranet (with
sufficient warning), but you simply can't expect the user to take coffee
breaks while surfing through your site.

Redesign for performance!

51

dBASE on The Web

Performance
Installation and Setup

Run the First Applet of the Day Yourself

There is this marvelous performance-enhancement built into every operat-
ing system, Browser and dBASE itself, called cacheing. Try this experi-
ment. Open dBASE on your Win 95/98 machine for the first time after a
boot or reboot. Close it. Open it again. Incredible, isn't it, how much faster
it loads the second time? That's OS cacheing. If you've just rebooted your
Web or Intranet server, run the first dBASE applet yourself and spare your
users the single instance in which performance might be less than stellar.

52

dBASE on The Web

Installation and Setup

dBASE on The Web

Part 4: The dBASE Web Wizards

The three Visual dBASE Web Wizards, packaged as a single multi-option
Wizard-style program (WebWizard.prg) , help you write Web applications
using the powerful new capabilities of Visual dBASE. The Wizards walk
you, step-by-step, through the process of selecting the data, folders and
design elements you'll need to create highly interactive Web applications.
When you click "finish", the Wizards automatically generate the source
code, HTML pages and compiled.EXEs required to complete your project.
The only items you need to provide outside of the Wizards are the tables,
reports, images or datamodules that are to be included in your final appli-
cation.

What The Wizards Do

There are three Visual dBASE Web Wizards:

◆ The Data-Entry Web Wizard

Helps you create an application in which a remote user can enter data
into your tables using a Browser.

Some possible uses of the Data Entry Wizard:

Salespersons reporting from the field
Order Gathering
Name and Address Gathering
Help Desk
Online Store
Bug Reporting

◆ The Query and Response Web Wizard

Helps you create an application wherein the user enters or selects cri-
teria from a Web Page and receives a report in response. The Visual
dBASE Web Wizards support a drill-down query - the user may refine
his or her query by selecting an item on the first report, which "drills
down" into detail in a second report. You may, for example, start with a

54

dBASE on The Web

What The Wizards Do
The dBASE Web Wizards

report of categories. The user clicks on the category, which is dis-
played as a link (automatically embedded by the dBASE Web Wiz-
ards), which in turn calls a new report that lists the inventory items in
that category.

Some possible uses of the Query and Response Wizard:

Customer Account Queries
Inventory Lookups
Product Line Lookups
Remote Sales Queries
Shipping Status Queries

◆ The Publish Web Wizard

Helps you post static and live Visual dBASE reports on your Web site
or Intranet. Static reports are run and saved each time you run the
Wizard. An HTML page is generated on your Web site that doesn't
change until you run the Wizard again. Live reports, on the other hand,
are run on your Web Server each time the user accesses the report,
returning live, up-to-the-minute data to the Browser.

Typical uses for the Publish Wizard might be:

Price Lists
Product Lists
Customer Lists
Schedules of Events
To-Do Lists

55

dBASE on The Web

Using The Web Wizards
The dBASE Web Wizards

Using The Web Wizards

Paths and URLs

When you use any of the Web Wizards that generate either HTML pages
or live Web applications (they all do except for the Publish Wizard in
"static" mode), you'll be asked to enter a varying number of paths and
URLs.

Before you start using the Wizards, you'll need to gather the information
required below:

56

dBASE on The Web

Paths and URLs
The dBASE Web Wizards

Windows Folder for Starting HTML page

Where do you want the Wizards to put your starting HTML page? This is
usually in the root directory of your Web site or in a subdirectory dedicated
to this particular application. All data-entry and query Wizards produce a
starting HTML page to gather data required by the Web application. This
page is generated by dBASE.

Windows Folder for CGI-Bin

Where do you want to put executable applications generated by the Web
Wizards? This is the physical location from which you want to run your
application, not its Web address. This is usually the folder set aside when
you configured your Web Server to run scripts and programs. The dBASE
Web Wizards will also copy your source code (.prgs) to this location.

Filename for .htm, .prg and .exe

The dBASE Web Wizards use a single name to identify all the parts of any
given Web application it generates. Using the example above, the Wizards
will generate SignUp.htm, SignUp.prg and SignUp.exe

Warning! The dBASE Web Wizards "remember" many of your settings from session
to session so you won't have to enter the same information over and over
as you regenerate applets to improve and test them. Please be careful to
change the Filename field to a new name each time you start a new
applet. If you don't, the new applet will overwrite your previous one. It will
ask. But you will probably click "Yes" and there goes last week's work!.

URL to CGI

The dBASE Wizards generate pages that call applications and, in the case
of the drill-down query, applications that return pages that call applica-
tions. Therefore, the Wizards must know, up front, what address to use to
call your applications. In most cases, just use the fully-qualified URL you'd
use to call the application (not the HTML page) from the Browser.

57

dBASE on The Web

Using The Web Wizards
The dBASE Web Wizards

In the example above, "Localhost" is a standard Windows domain that rep-
resents the same machine the Browser is on. That's only used for testing
(and to view the dBASE Web samples). You'll want to use your own com-
putername, IP address or Domain name:

http://myWebServer/cgi-bin

http://203.55.67.10/cgi-bin

http://mydomain.com/cgi-bin

You may also use relative URLs, but we suggest you hold off on that until
you become really familiar with all the subtleties of calling complex Web
applications.

58

dBASE on The Web

Paths
The dBASE Web Wizards

DataModules and Queries

Paths

The Visual dBASE Data-Entry Web Wizards are based, in large part, on
DataModule and Query objects. If you use a table as a datasource, the
Data-Entry Wizard creates its own Query object for opening and updating
the table. The Visual dBASE Query-and-Response and Publish Wizards
use reports (.rep files), which also contain either Query or DataModule
objects.

The Web Wizards will automatically compile and build your Query and
DataModule objects into the generated application. However, you should
keep in mind that the finished application may not be running from the
same drive, folder, or even computer on which they were developed. In
which case, you'll have to pay special attention to the paths used in the
SQL statements of your Query objects. The Web application generated by
the Visual dBASE Web Wizards must be able to find all data sources from
the Web Server's CGI folder!

For example, assume you develop your Web app on a workstation. The
data is on the same Server from which the application will run.

From your workstation, the appropriate SQL statement may be something
like:

Select * from "F:\Mydata\Mytable.dbf"

However, drive "F" on your workstation may actually be drive "C" on the
Server, in which case the SQL statement needs to be:

Select * from "C:\Mydata\Mytable.dbf"

There are three ways in which you can ensure the correct paths:

◆ Set up a temporary folder on your development machine with the
same tables you'll be using on the Server and the same path. Using
our example above, you'll set up a C:\Mydata\Mytable folder on your
workstation.

59

dBASE on The Web

DataModules and Queries
The dBASE Web Wizards

◆ Hand recode your .Rep or .DMD files after the wizard is done and then
recompile and regenerate the application.

◆ Use only DataModules for all reports and Wizards and include a
Database object in each that points to an Alias in the Borland
Database Engine . You won't have to be concerned about paths either
in development or at runtime.

Tip! The current version of the Visual dBASE 7.5 Web Wizards does not sup-
port subclassed DataModules (DataModules which are inherited from
other data modules).

60

dBASE on The Web

SQL Select Statements with Queries
The dBASE Web Wizards

Reports

The Visual dBASE Web Wizards use Visual dBASE report classes (.rep
files) in the Query and Response Wizard and the Publish Wizard. The fact
that these reports will be run remotely and automatically presents certain
challenges

SQL Select Statements with Queries

Reports used with the Query and Response Report Wizard must have
special SQL Select statements in order to respond to the search criteria
typed in or selected by your users.

The Visual dBASE Query Web Wizard creates a public variable "cSearch"
at runtime in which it stores the query request typed into the Browser by
your user. Therefore, reports that respond to queries need a SQL state-
ment along the lines of:

Query1.SQL = 'Select * from "c:/Orders/Customer.dbf" ;
 WHERE Customer."CustName" = ' + '"' + cSearch + "'"

You are responsible for the output and formatting of all reports used with
the Web Wizards. The Visual dBASE Web Wizards will not alter your
reports in any way with the exception of drill-down reports. In that singular
case, the first report generated automatically adds an <A HREF> HTML
tag to one of your report's text objects. The "HREF" allows the user to click
on a row and launch the second, drill-down report.

Reusing Existing Reports.

It is probably advisable to create new reports from scratch for use in the
Web Wizards. Reports created for use in applications may have depen-
dencies including (among others) relative paths, parameters, shared que-
ries or global variables. These may present problems to your server-side
application since the report will be run from the Server's CGI-Bin folder
and the CGI application knows nothing about any dependencies you may
have designed into your application.

61

dBASE on The Web

Reports
The dBASE Web Wizards

Using Paths in Reports

Your Visual dBASE Web application will most likely be addressing tables
located in some folder other than the one in which it's running. To ensure
that the server-side executable application can find your data, make sure
you do not include paths to all databases and tables when creating your
Data Modules and Queries. Use a BDE Alias instead.

Superclasses in Reports

The Visual dBASE Web Wizards will respect a single level of superclass
for reports. If your report is based on more than one parent report class, it
will not be rendered properly and may crash your server-side CGI applica-
tion.

Report Layout

The Browser's window has entirely different metrics from your printer,
which can result in unexpected and unaesthetic results when your report is
rendered as HTML. It is recommended that you try outputting your report
as HTML from Visual dBASE and test it in the Browser before including it
in a Web Wizard application. Don't concern yourself with setting the proper
Output type for CGI Response (5). The Visual dBASE Web Wizards will
reset the Output property automatically at runtime.

Report Length

Design your queries carefully. Performance on a Browser over the wire is
very different from performance to a text file, window or printer. In fact,
each Browser its own unique limitation on data. Currently, the Visual
dBASE Report Wizards generates each report as a single HTML page. If
your report yields too many records, it could, conceivably, generate a
Browser error instead of a page of query results. Keep your queries limited
to the number of rows that can be comfortably accommodated by a single
HTML page.

62

dBASE on The Web

DataModules in Reports
The dBASE Web Wizards

DataModules in Reports

Your Web application may run from within your CGI-Bin folder (on most
Servers), not the native folder in which the report or Data Module was cre-
ated. On other Web Servers, applications may be run from the Web Site
root. Wherever it runs, it probably will not be running from where you
developed it (most of us do not develop on a live Web Server!). That being
the case, it stands to reason that you should always, without fail, use a
BDE Alias with datamodules. In fact, use one whether your data source is
tables or dataModules!

Note: The Visual dBASE 7.5 Web Wizards do not currently support sub-
classed data modules.

63

dBASE on The Web

The Data Entry Wizard
The dBASE Web Wizards

The Data Entry Wizard

The Data-Entry Web Wizard helps you build information-gathering sites.

It automatically generates a data-entry HTML page that's posted to your
Web Site or Intranet and called from your Home Page or any other page
you designate. It may also be called by typing the page's URL called
directly into the Browser's Address (or Location) field.

In addition, the Data Entry Wizard creates an executable (.EXE) Visual
dBASE application that's called from your HTML page using CGI-BIN.

If the program executes properly and the data is entered, a response page
(which you also design within the Wizard') is returned to the Browser.

If the program encounters any problem while executing, it returns an Error
page to the Browser.

How is the Data-Entry Application Built?

The application is built in the Wizard from a table or data module you spec-
ify. The Wizard walks you through the selection of fields, field order, labels
(to display next to the entry controls), text, logo, mail and homepage links.

64

dBASE on The Web

How is the Data-Entry Application Built?
The dBASE Web Wizards

When you click "Finish", the Visual dBASE Data-Entry Wizard will gener-
ate:

◆ An HTML starting page in a folder on your Web site. (X.htm)

◆ A modifiable source code file in your CGI-Bin folder. (X.prg)

◆ An Executable file in your CGI-Bin folder (X.EXE)

Tip! This application will run from your Web Site and your CGI-Bin folder. Make
absolutely sure that any tables referenced in a SQL Select statement are
located in the same folder or use a BDE Alias to find them. The lack of a
path can cause your Web application to crash, or worse, hang up.

This Wizard is useful for basic e-Commerce. You may want to enhance
the Wizard-generated files to accommodate secure transactions.

65

dBASE on The Web

The Query and Response Web Wizard
The dBASE Web Wizards

The Query and Response Web Wizard

The Visual dBASE Query and Response Web Wizard helps you develop a
Web or Intranet applet wherein your user may enter or select a search cri-
teria and obtain a listing of the results in the Browser.

This Wizard supports two-level drill-down reports. For example, you might
let the user select "category" from the first query page. Then click on any
item in the resultant report to get descriptions and prices.

The drill-down capability is provided by two separate report files running
from within two separate server-side executable programs. Each one
streams a Visual dBASE report back to the user.

Query Input

The Visual dBASE Query and Response Wizard provides two options for
gathering search criteria from the user:

1. An HTML Text object (similar to an Entryfield) in which the user can
type his or her search criteria.

2. An HTML Select object (similar to a Combobox) in which the user may
click on one of your pre-defined search strings.

The Wizard generates:

◆ A customized HTML query page in your specified Web Site folder.

◆ A modifiable .PRG for each level of query in your CGI-Bin folder.

◆ One executable (.EXE) for each level of query in your CGI-Bin folder.

66

dBASE on The Web

Response Reports
The dBASE Web Wizards

Response Reports

The Query and Response Wizard gathers the query criteria typed in or
selected by your user and stores it in a public variable (cSearch) for use in
your query's SQL statement, findKey() or setRange() methods. For more
information on setting up the SQL statement, see Reports. You are
responsible for designing your SQL statements to respond appropriately to
the user's search criteria.

This Wizard is used for creating:

◆ Inventory Lists

◆ Price Lists

◆ Customer Lists

◆ Remote Data Lookup of any kind.

67

dBASE on The Web

The Publish Web Wizard
The dBASE Web Wizards

The Publish Web Wizard

The dBASE Publish Web Wizard helps you create applications that will
display Visual dBASE reports (.rep) on the Browser.

Static Reports

Static reports are run from within the Wizard. The resultant HTML output is
saved in a folder on your Web site or Intranet. To access the report, just
put a link to the generated page in any other page on your site. Static
reports remain the same until you run the Wizard again.

Live Reports

Live reports are generated at runtime using a CGI executable application
on your Web Server. Unlike static reports, these reports are as up-to-date
as the moment they're run.

Advantages and Disadvantages

Static reports yield very high Browser performance. No application needs
to be run, no data generated. However, they maybe inappropriate on a site
where live data is required or where data changes rapidly.

Live reports always show the most current data. If you're posting a price
list and you have daily or hourly changes, a live report is undoubtedly pref-
erable. If, however, your price list changes only once a month or once a
quarter, you can save traffic on your site by using static reports.

For static reports, the Visual dBASE Publish Wizard generates only a sin-
gle HTML file in a folder on your Web site.

68

dBASE on The Web

Advantages and Disadvantages
The dBASE Web Wizards

For live reports, the Visual dBASE Publish Wizard generates:

◆ A modifiable .prg source code file in your CGI-Bin folder

◆ An executable (.EXE) file in your CGI-Bin folder

There is no calling page for the Publish Wizard. You call the wizard by
embedding a link in one of your own Web site HTML pages. An example of
the URL you'll need to use:

http://www.mydomain.com/cgi-bin/myreport.exe

When you click "finish" on the last page of the Wizard, you will be given a
list of the paths and files used and created in generating your application.

69

dBASE on The Web

Images
The dBASE Web Wizards

Images

The Visual dBASE Web Wizards support a wide variety of graphic types,
including animated GIFs.

However, the most common Web graphic formats are .GIF and .JPG.

You may use any of the images shipped with the Wizards freely.

Warning! The Browser Palette and the Visual dBASE Palette use different methods
of reconciling palettes when displaying 256 color images. To get the best
idea of what your colors, backgrounds and images will look like on the
Browser, you should set your Windows Display for 65,000 colors or
higher. Otherwise, colors and images may appear distorted when working
in the Web Wizards.

On the other hand, it makes sense to occasionally test your HTML output
in a Browser while your video is set to 256 colors if you're going to publish
your applets on the Web. Remember, the users out there have a wide vari-
ety of hardware and software. Not everyone is set up to view more than
256 colors (and .GIFs are only 256 colors, anyway).

As for people using 16 color video cards. Well, it's time to upgrade. That's
certainly below the threshold of minimum standards you should support.

70

dBASE on The Web

The dBASE Web Wizards

dBASE on The Web

Part 5: The dBASE Web Classes

What Are The dBASE Web Classes?

The dBASE Web Classes are a collection of classes written in the dBASE
language and based on the dBASE AssocArray class that:

◆ Connect to the Web Server

◆ Retrieve data from the Web Server

◆ Format the data received and store it in the AssocArray

◆ Read data from tables into the AssocArray

◆ Save data from the AssocArray back to tables or DataModules

◆ Stream the response page back to the Web Server

◆ Pass through data for "chained applications"

◆ Report back user and data errors (Sorry!) to the Web Server

◆ Report back system errors (An Error Occurred...) to the Web Server

◆ Clear UserID and Password access.

◆ Send Mail Through Windows NT

By employing and subclassing the Web Classes, you can build hand-
coded Web sites, including e-Commerce sites, in record time. The
errorPage() and sorryPage() methods provide serious Browser-based
debugging aids.

The Web Classes are located in the following folders:

Overview

72

dBASE on The Web

Overview
The dBASE Web Classes

\Program Files
dBASE

Visual dBASE 75
Web

Classes // the class code is here
Samples

Source // sample source is here
cgi-bin // sample executables are here
htdocs // sample HTML is here
data // sample data is here

The dBASE Web Wizards include three main source files:

WebClass.cc Main Class
WebPWClass.cc Password-Enabled Subclass
WebIISMailClass.cc Send Mail Through Windows NT

They also include a utility that converts HTML code generated by the pop-
ular HTML authoring tools to dBASE source code:

HTMLtoPRG.wfm

Tip! The newly updated dBASE Web Wizards employ the dBASE Web Classes
to generate data-entry, query and publishing applications without writing
code. We recommend that you build a few apps with the Wizards. They
generate HTML, dBASE source code and dBASE executables. They pro-
vide an excellent example of how to use the dBASE Web Classes with var-
ious kinds of applications.

73

dBASE on The Web

How Do The dBASE Web Classes Work?
The dBASE Web Classes

How Do The dBASE Web Classes Work?

AssocArray

Very few languages have array classes. Normally, an array is a primitive -
a basic data type, not a class. The disadvantage of a primitive is that you
can't define the properties and behaviors of a primitive internally. You have
to act on it from outside. Conversely, the dBASE array classes offer enor-
mous object-oriented power for the asking. Any array class created in
dBASE may contain all the data and all the methods it needs to achieve its
purpose.

The AssocArray class is wonderfully powerful. Instead of accessing its ele-
ments with a numeric index (as you do in a normal Array class), you
access its elements using a text string.

Remember the Name/Value pairs we mentioned in earlier topics?

Think about the following for a minute:

CGI: FirstName = "Alan"
Table: fields["FirstName"] = "Alan"
AssocArray: this["FirstName"] = "Alan"

Lo and behold, we have exactly the same pairs and exactly the same
behavior in CGI, dBASE tables and the remarkable AssocArray class.

This fortunate congruence of Name/Value pairs plus the ability of an Asso-
cArray to embed its data and manage itself, led to the dBASE Web
Classes. To make it a bit simpler, the fact that all three elements (CGI,
tables and AssocArrays) are essentially different implementations of the
same basic data structure inspired the design of totally black-box Web
Classes wrapped up in a subclass of AssocArray. That custom AssocAr-
ray subclass is named CGISession. It is the heart of the dBASE Web
Classes.

74

dBASE on The Web

The Rule
The dBASE Web Classes

The Rule

Here's how it works. If you name your HTML controls exactly the same as
the fieldnames of your table (including case, please!) the dBASE CGISes-
sion AssocArray will import your data from the Web Server, import your
data from a database table, export your data to a database table, and
export your data to a CGI response page. In short, the CGISession will act
as an automatic intermediary between the Web and your tables without
your interference.

And it does a lot more than data manipulation. It manages the connection
to the Web Server, handles both input and output data streams, clears
passwords, sends mail, streams HTML and passes data through from
page to page. Not bad for a humble AssocArray!

That doesn't leave a lot for you to do. Validate the incoming data, specify
the HTML you want sent back in response. That's it. The dBASE Web
Classes handle all the rest for you.

75

dBASE on The Web

How Do The dBASE Web Classes Work?
The dBASE Web Classes

Validating And Manipulating Data

The only real work you have to do is to play with the data. And there's
really no limit to what you can do when you get accustomed to working
with the AssocArray.

Here's a few examples:

// Instantiate CGISession Object

Set procedure to WebClass.cc additive
oCGI = new CGISession()

oCGI.connect() // Connect to Web Server and get data.

// Check for missing LastName
if empty(oCGI["LastName"]) // See if last name is empty
 oCGI.sorryPage("Last name required!") // error and quit
endif

// See if already registered

d = new Database() // Instantiate database object
with (d)
 databaseName = 'Signup'
 active = true
endwith

c = new Query() // Instantiate new query object
with (c)
 database = d

sql = 'select * from "attendees.dbf"'
active = true

endwith

c.rowset.indexName = Name

// see if that name is already registered
if c.rowset.findKey(oCGI["LastName"]
 // if it is, say sorry and quit
 oCGI.SorryPage('Name already on file!')
endif

// Append row and store data to row from array

76

dBASE on The Web

Validating And Manipulating Data
The dBASE Web Classes

oCGI.LoadFieldsFromArray(c.rowset.fields,true)

// Send CGI response page
oCGI.streamHeader('Thank You') // send CGI header back
oCGI.streamBody('Data updated successfully!') // Stream body
oCGI.streamFooter() // close HTML

Quit

Of course, in your code, you'll make sure to wrap everything in a
"Try...Catch" to trap errors and you'll want to release all your objects
before quitting. That code was omitted here, but after all, this is just an
example. To see the real thing, generate an application with the Data-
Entry Web Wizard or view the various source code files for the Signup
sample Web application.

77

dBASE on The Web

Subclassing For Fun And Profit
The dBASE Web Classes

Subclassing For Fun And Profit

The single most powerful feature of dBASE, without any doubt whatever,
is its fully Object-Oriented Language. Classes deliver such amazing pro-
ductivity and quality improvements that you're spinning your wheels (and
reinventing a few) if you don't take full advantage of what they offer.

The most productive feature of classes is inheritance. Inheritance gives
you all the tested and debugged functionality of the base class - plus the
improvements and customizations you add to your own subclass. dBASE
has delivered a lot of useful and clean functionality in the core Web
Classes. Now it's up to you to make them your own through subclassing.

Tip! Don't touch the original classes shipped with dBASE! One of the other
advantages of inheritance is the ability to inherit fixes and improvements
from the base class. dBASE Inc. has promised to enhance these classes
over the next few years of the dBASE Subscription. In fact, it's likely that
these classes will become open-source, updated by the very developers
using them. If you fix, modify or delete code from the base class, you'll
have to do the same to each new version shipped with dBASE. Of course,
if you should find a really nasty bug...

In my humble opinion, you should always subclass the Web Classes when
implementing them in your Web applications. Certainly, each of you will at
least want to customize the response page. For that reason, the default
streamBody() method has been designed without bells, whistles or notable
graphic design. It's decidedly vanilla. The way to customize your response
pages is to declare a subclass of CGISession in your source file and over-
ride the streamBody() method with your own.

The dBASE "Conference Signup" Web sample actually inherits three
classes deep:

Class 1 CGISession The default Web Class

Class 2 signupCGISession Customizes errorPage()/sorryPage()

Class 3 signup Customizes streamBody()

Class CGISession

78

dBASE on The Web

Class CGISession
The dBASE Web Classes

Class CGISession

This is the base dBASE Web Class. It's in WebClass.cc and it is the super-
class from which all the other Web Classes are inherited.

Class signupCGISession

This is a custom class built specifically to be used to derive every applet in
this application. It includes general customizations that apply to all applets,
such as errorPage() and sorryPage(). This first-level subclass of CGISes-
sion gives a uniform "look and feel" to all the applets using it. Think of it as
a template or schema, if you'd like. Just don't forget it's truly an inherited
and inheritable class.

Base Class sorryPage()

79

dBASE on The Web

Subclassing For Fun And Profit
The dBASE Web Classes

Subclass signupCGISession sorryPage()

Class Signup

This is the lowest-level class in the Conference Signup sample. Inherited
from signUpCGISession, it's used strictly to customize the response page
for each individual applet. This one never gets subclassed, so feel free to
declare a new subclass with the same name at the bottom of each and
every applet source file.

The "Signup" class returns the CGI response page for the particular
applet. That's accomplished by overriding the streamBody() method inher-
ited from signUpCGISession. Just declare a method (function) with the
same name as the original, and your new one will automatically replace
the inherited version. Using this three-level hierarchy will allow you to
deliver consistent apps without writing a heck of a lot of hand-code.

Class Signup

80

dBASE on The Web

Class Signup
The dBASE Web Classes

The code that generates this response page was created visually, using
Symantec's Visual Page 2™ (one of the best visual HTML editors). Then I
used the dBASE utility, HTMLtoPRG.wfm to poke the code generated by
Visual Page into my dBASE app.

If you subclass some generation of CGISession somewhere in your applet
source, HTMLtoPRG will produce the exact syntax required when you
override streamBody().

Use it. It will save you tons of time!

81

dBASE on The Web

The dBASE Web Classes and Reports
The dBASE Web Classes

The dBASE Web Classes and Reports

dBASE sports a set of classes unknown in any other development pack-
age: the Report Classes. Though they may seem clumsy to work with at
times (they're very powerful), they are superb for the Web.

A dBASE report can be run directly from a Browser! You don't have to gen-
erate a single line of hand-code to put your data on the web - literally in
seconds. That's due to a new option in the Output property of the Report
Class:

output = 5 // CGI Response

Set the response property as indicated in the line of dBASE code above
(or just set it in the Inspector) to run directly on the Web. To test the report
in Windows, just set the FileName property to whatever you like and the
report will be streamed out to a file of that name in HTML format. There is
no StdIn pipe set up when you're running in the dBASE design environ-
ment, so dBASE knows to output to a file instead.

Compile and build the report:

Compile myReport.rep
Build myReport.reo to \Webserver\cgi-bin\myReport.exe

That's all. Its ready to call from the Browser:

http://www.mydomain.com/cgi-bin/myReport.exe

When the report renders, it will connect via StdOut to the Web Server,
stream out its own CGI header, output its text objects as HTML and quit
when done. Instant report, just add Web!

There are some cautions, however, when running reports:

◆ Reports must find their data. Use a BDE alias and a Database object
with every report.

◆ Reports must find their Datamodules and Superclasses (if you sub-
classed the report). Make sure to build them in or the Web report may
hold up your Browser forever.

Overview

82

dBASE on The Web

Overview
The dBASE Web Classes

◆ Images must be available to the Report. Make sure there are no
explicit paths to images if you use them in reports. Copy them to the
cgi-bin folder before running the report in the Browser.

◆ Even though you don't need it, you might want to write a WebClass
program (.PRG) to serve as a wrapper for your report. The Report
class does everything you need to run the report over the wire except
for one thing: recover from errors. There is no "sorryPage",
"errorPage" or Try...Catch built into the report classes. You might want
to make them available by calling the report from a startup program
that renders the report from within a Try... Catch. Or, to make matters
even simpler, you might want to embed code above the "End Header-
Do Not Remove" line of the Report file.

In the following example, let's assume a report called "Inventory.rep".
You'll want to insert code something like the following before the header of
the file:

////// Instantiate and connect the Web Class
Set procedure to WebClass.cc additive
oCGI = new CGISession()
oCGI.connect()

////// Instantiate and run report from within a
////// Try...Catch
Try

r = new InventoryReport()
r.render()

Catch (exception e)
oCGI.errorPage(e) // Throws error page to Browser

endTry

////// Clean up and get off
oCGI = null
Quit

// End Header - Do not remove this line

Don't forget to include WebClass.co when you build your executable:

Build Inventory.reo, WebClass.co to;
\Webserver\cgi-bin\Inventory.exe

83

dBASE on The Web

The dBASE Web Classes and Reports
The dBASE Web Classes

Warning! When "wrapping" a report, make sure you don't call any of the other Web-
Class methods, such as streamHeader() or streamBody(). The Report
Class already does that automatically. You really don't want to see how
ugly a response page looks when there are two headers or two bodies!

84

dBASE on The Web

The dBASE Web Classes

Sending Mail

There are any number of ways to send mail from dBASE applets. Com-
mercial OCXs, DLLs and the ubiquitous SendMail are available for free (or
almost free) download from the Web. Any of these that work with dBASE
and don't require or spawn any GUI screens is perfectly usable.

Most of them, however, generate consequences that can be unfortunate,
impacting the performance or reliability of your dBASE application. It
should be obvious that the less you do during the execution of an applet,
the faster it finishes. As a corollary to that, the sooner your applet finishes,
the less connection time per user, the greater number of users can access
your site before exhausting your resources. To state it simply, the tinier
and more efficient your dBASE applets are, the better your performance
and scalability will be.

We all know from personal experience that the performance of eMail serv-
ers is normally less than instantaneous. That's almost entirely the result of
traffic, and therefore unpredictable and beyond your control.

I found it unbearable to build superfast dBASE applets that slowed to a
crawl when they had to access a busy eMail server. As a result, all my mail
solutions are designed to run outside of the applet. That way, the applica-
tion still gives the performance and resulting scalability that makes dBASE
so good on the Web. The eMail operation can crawl at its own pace,
entirely separate from anything going on between the Browser, the Web
Server and the dBASE applet.

There are two solutions that we've found work really well:

Text File Interface

Bowen Moursund, the dBASE Inc. Online Manager wrote CGIIISMail-
Class.cc, a file housing a custom class that uses the built-in NT mail capa-
bilities to send mail from dBASE apps. That's the interface he's currently
using to send eMail confirmations to customers and orders back to Corpo-
rate Headquarters from our Online Store.

It's by far the easiest way to send mail from a dBASE mail applet. Just
drop a properly formatted text file in the appropriate folder and Internet
Information Server sends the mail for you.

85

dBASE on The Web

Sending Mail
The dBASE Web Classes

Bowen's class, mailCGISession subclasses CGISession and adds Win-
dows NT eMail capabilities.

Usage:

Try // Always use a try...catch

// Define Carriage Return/linefeed
#define CRLF chr(13)+chr(10)

 // Create new mailCGISession object
 // Pass the full Windows path to the pickup
 // folder as a parameter

 oCGI = new MailCGISession('c:\mymailfolder')

 // Send sender address
 oCGI.From := "webmaster@mycompany.com"

 // Send recipient information
 oCGI.To.add(cEmailAddress) // Add data to oCGI "to" array
 oCGI.Cc.add(cCCAddress1)
 oCGI.Cc.add(cCCAddress2)

 // Send subject
 oCGI.Subject := "Thank You!" // Set Subject

 // The Body property contains the entire text
 // of the message, and must be pre-formatted
 // You'll need to control the line length and add
 // end-of-line markers as appropriate

 oCGI.Body = "Dear Mr. " + cLastName + CRLF + CRLF
 oCGI.Body += "Thank you very much for your comments." + CRLF
 oCGI.Body += "We will take the appropriate action." + CRLF + CRLF
 oCGI.Body += "Jane Doe" + CRLF
 oCGI.Body += "webmaster@mycompany.com"

 oCGI.postForPickup() // Send mail message to text file

catch (exception e)

 oCGI.errorPage(e)

endtry

86

dBASE on The Web

MailCGISession()
The dBASE Web Classes

There are two drawbacks to this method of posting mail. First, you must be
using Windows NT Server and running Microsoft Internet Information
Server as your Web Server.

Second, there is no feedback (except, of course for the NT logs) to confirm
or report an error in the mail send. You don't know if the mail has or has
not been sent until you check the logs.

Database Interface

The other alternative is the one that I used in the Message Server included
in the Web Samples on the dBASE CD. This is a full-time, 24/7 dBASE
application that runs on either your Web Server, or preferably, on another
dedicated computer. It runs just fine even as a background task on a Win-
dows 98 computer as long as it has access to your tables over the net-
work.

This is a polling application that continually re-queries your table to see if
any new orders, attendees, or requests for information have been added.
It then uses the information in the new row to compose and send an eMail
wherever you want it to go. The Message Server shipped with dBASE is
set up to use the Attendees table used in the Signup Web sample. Each
time a new attendee registers, the Message Server sends out an eMail
confirming the registration.

This application uses the wonderful Mail library from MarshallSoft. This
powerful DLL adds direct mail-server connection, control, download and
mailbox management to your dBASE applications. I've had it in production
on a high-volume site for more than a year and it has performed beauti-
fully.

This is a much more complex solution than Bowen's, but it generates its
own HTML logs that can be accessed remotely, is almost infinitely scal-
able (high transaction volume? Just add one more computer on the net-
work running the Message Server), and it updates your table to confirm
when eMail was sent. And it doesn't require Windows NT or IIS.

MailCGISession()

87

dBASE on The Web

Sending Mail
The dBASE Web Classes

For more detail on how the Message Server works, see the Readme.txt in
the Visual dBASE 75\Web\MessageServer folder. dBASE ships only the
demo version of the MarshallSoft library. It works, but pops up an "alert"
that requires a mouse click to clear each time it sends mail. Check the
dBASE Online store for information on ordering a fully-licensed copy.

88

dBASE on The Web

The dBASE Web Classes

dBASE on The Web

Part 6: Methods and Classes

The Methods of The dBASE Web Classes

Input Methods

Connect() WebClass.cc Connects to Web Server
and gets data

LoadArrayFromCGI() WebClass.cc Internal - Loads CGI data,
converts to Name/Value pairs

OEMFormat() WebClass.cc Internal - Converts ANSI to OEM

Data Methods

LoadArrayFromFields() WebClass.cc Loads table data into array

LoadFieldsFromArray() WebClass.cc Loads array data into table row

LoadDataModuleFrom Array() WebClass.cc Loads array data into dataModule

Output methods

StreamHeader() WebClass.cc Streams out CGIHeader code

StreamBody() WebClass.cc Streams out HTML body code

StreamFooter() WebClass.cc Streams out HTML closing

PassDataThrough() WebClass.cc Embeds all data in new page as
Hiddens

90

dBASE on The Web

Error Recovery
Methods and Classes

Error Recovery

SorryPage() WebClass.cc Streams out user
error response page

ErrorPage() WebClass.cc Streams out system
error response page

SetWebMasterAddress() WebClass.cc Sets a mailto: address
used in error response page

Password Clearing

ValidatePassword() WebPWClass.cc Validates UserID and Password

eMail for Microsoft IIS

PostForPickup() WebIISMailClass.ccSends mail via Windows NT

91

dBASE on The Web

The connect() Method
Methods and Classes

The connect() Method

Method: connect()

Class: CGISession

File: WebClass.cc

Params: None

Description: The connect() method establishes a StdIn and StdOut connection
with the Web Server. It uses a dBASE file object for each, named
fIn and fOut respectively. This method also calls the
loadArrayFromCGI() internal method that downloads the data
stream from the server and parses it out into name/value pairs.
Once parsed, the name/value pairs are added to the main
CGISession() array object.

Connect()
Usage: set procedure to WebClass.cc additive

oCGI = new CGISession()

// Connect, get data, parse and convert it
// and store it in the CGISession array

oCGI.connect()

Errors: If you can't connect, there's no way to report any errors, so the
connect() method just gives up and your applet just goes away.
Therefore, there is no recovery from connect() errors.

92

dBASE on The Web

LoadArrayFromCGI()
Methods and Classes

The loadArrayFromCGI() Method

Method: loadArrayFromCGI()

Class: CGISession

File: WebClass.cc

Params: None

LoadArrayFromCGI()
Description: LoadArrayFromCGI() performs most of the core operations that

acquire the data entered into an HTML form from your Web
server.

Usage: None. This is a protected method, called by connect().

Implementation: To call loadArrayFromCGI, invoke the connect() method of
CGISession, which establishes two-way communication between
your dBASE applet and the Web Server.

When called by connect(), loadArrayFromCGI() will:

◆ Gather the input stream from StdIn

◆ Parse the data received into name/value pairs

◆ Convert the data received from CGI ANSI to dBASE strings

◆ Add elements to the CGISession array for each pair it finds

Errors: LoadArrayFromCGI may encounter a number of errors, which pro-
voke different responses depending on their nature. Most internal
errors will throw an error to a try...catch, if one exists.

93

dBASE on The Web

The loadArrayFromFields() Method
Methods and Classes

The loadArrayFromFields() Method

Method: loadArrayFromFields()

Class: CGISession

File: WebClass.cc

Params: (rowsetFields) a Fields Array Object

LoadArrayFromFields()
Description: LoadArrayFromFields() adds one element to the CGISession

array for each field in a specified rowset. The data in the array can
then be used for validation, calculation, inclusion in a response
page, or chained to the next page using the passDataThrough()
method.

Usage: // Create CGISession object
set procedure to WebClass.cc additive
oCGI = new CGISession()
oCGI.connect()

// Create Database object
d = new DATABASE()
d.databasename = 'SIGNUP'
d.active = true

// Create Query object
q = new QUERY()
q.database = d
q.sql = 'select * from "attendees.dbf"'
q.active = true
q.rowset.indexname = 'Name'

// Find row requested in
// calling HTML form. If
// not found, send back a "sorry" page.
if not q.rowset.findKey(oCGI["LastName"])
 oCGI.sorryPage('Sorry, query not found')
endif

94

dBASE on The Web

LoadArrayFromFields()
Methods and Classes

// Copy row field data into
// this CGISession Array
oCGI.loadArrayFromFields(q.rowset.fields)

Implementation
Notes:

Field types not supported by HTML are ignored by
loadArrayFromFields(). Types excluded are:

◆ Binary

◆ OLE

◆ TimeStamp

All other types (including Autoincrement and Date) are converted
to string format when stored in the CGISession array. HTML treats
all data as strings. Therefore, you'll particularly want to use this
when echoing data back in a CGI response page. It saves all that
conversion code and time.

Errors: All errors encountered by loadArrayFromFields() should throw an
exception to Try...Catch, which you should report using the
errorPage() method of CGISession.

95

dBASE on The Web

The LoadFieldsFromArray() Method
Methods and Classes

The LoadFieldsFromArray() Method

Method: loadFieldsFromArray()

Class: CGISession

File: WebClass.cc

Params: (rowsetFields, bAppend)

LoadFieldsFromArray()
Description: LoadFieldsFromArray() updates the fields of a table to match the

data received from an HTML form. It will update either existing
rows or new rows, similar to "Replace Automem" and "Append
Automem" in earlier versions of dBASE. It 's entirely based on the
assumption that the array element "Names" (indexes, actually)
match the table's field "Names". You ensure this by naming the
controls on your HTML forms with the exact same names as the
table fields they represent. Think of this as "datalinking" your
HTML forms to your tables.

Usage: // Create CGISession object
set procedure to WebClass.cc additive
oCGI = new CGISession()
oCGI.connect()

// Create Database object
d = new DATABASE()
d.databasename = 'SIGNUP'
d.active = true

// Create Query object
q = new QUERY()
q.database = d
q.sql = 'select * from "attendees.dbf"'
q.active = true

// Load the CGI data into your table
oCGI.loadFieldsFromArray(q.rowset.fields, true)

96

dBASE on The Web

LoadFieldsFromArray()
Methods and Classes

Implementation
Notes:

To specify the row to be updated, pass a reference to its fields[]
array as the first argument: queryRowset.

If you wish to append a new row, pass "true" as the second argu-
ment: bAppend.

All CGI data is received as strings and stored in elements of the
CGISession array. You should do all your validation, calculation
and reformatting using these elements. You won't go too far wrong
if you treat them as string variables for purposes of data manipula-
tion. LoadFieldsFromArray() will convert them back to the appro-
priate type, length and decimals when it updates the value of your
table's fields.

You can also create your own "calculated fields" in the array
before storing your CGI data to a table: In the example below, let's
assume that you have "LastName", "FirstName" and "FullName"
fields in your table. "FullName" is used for alphabetic lookups, so
you want to store its data in the format: "LastName, FirstName":

// Concatenate the data received from the HTML form
oCGI["FullName"] = trim(oCGI["LastName"]+', '+;
 oCGI["FirstName"])

// Update table from CGISession array
oCGI.loadFieldsFromArray(q.rowset.fields, true)

Warning! This is a very elegant, black-box method requiring little input or
code on your part. However, it does require some care in manag-
ing the data in the CGISession array. In particular, you must be
very careful about case. This method is not as sensitive as some,
but you must remember at all times that Associative Arrays are
case sensitive. If you query oCGI["firstname"] in the example
above, you'll throw an error message. I make it my policy to
always match case on fieldnames and HTML control names.

You may call loadFieldsFromArray() over and over again, passing
references to different queries and rows. Only fieldnames that
match the CGISession array indexes will be updated. For exam-
ple, if you have a CustNo field in both your invoice and customer

97

dBASE on The Web

The LoadFieldsFromArray() Method
Methods and Classes

tables and a CustNo control on your HTML form, you may call
loadFieldsFromArray() for each of them:

oCGI.loadFieldsFromArray(Customer1.rowset.fields, true)
oCGI.loadFieldsFromArray(Invoice1.rowset.fields, true)

LoadFieldsFromArray() will update the value of CustNo in both of
the tables.

However, if you need to update more than one table and don't
want fields of the same name updated in both, use
loadDataModuleFromArray() instead.

Since they are not compatible with HTML, loadFieldsFromArray()
does not support the following types:

◆ Binary

◆ OLE

◆ TimeStamp

◆ Autoincrement is automatically updated when a new row is
appended.

Errors: You don't need to be concerned about accidentally trying to
update a field that doesn't exist. loadFieldsFromArray() works by
matching. It doesn't attempt to update unless a fieldname matches
an index in the CGISession array. If either one is missing, no
update is attempted.

The most common error you're likely to experience using this
method is a BDE database engine error. These are all trapped by
Try...Catch, which you can report back to the user by calling the
errorPage() method.

98

dBASE on The Web

LoadDataModuleFromArray()
Methods and Classes

The loadDataModuleFromArray() Method

Method: loadDataModuleFromArray()

Class: CGISession

File: WebClass.cc

Params: (oDataMod, bAppend)

LoadDataModuleFromArray()
Description: LoadDataModuleFromArray() allows you to "datalink" individual

controls on your HTML form to specific fields in specific queries.
Pass a reference to a query's rowset fields array as the first argu-
ment: oDataMod. If you wish to append a new row to any rowset
that gets updated, pass True as the second argument: bAppend.

LoadDataModuleFromArray() requires a dBASE datamodule that
contains the queries you want to update with incoming CGI data.
This method is similar to loadFieldsFromArray(), but is more
closely targeted. It updates only specific fields in specific queries,
regardless of how many times it's called. Therefore it's unneces-
sary to call it more than once.

LoadDataModuleFromArray() links to your table fields by virtue of
matching names. Your HTML form controls must be named using
the following convention in order for this method to work:

<INPUT TYPE="TEXT" NAME="Customer1*@CustNo">

Where Customer1 is the query name and CustNo is the field-
name. The "*@" acts as an "alias" operator, similar to:

Customer1->CustNo

LoadDataModuleFromArray() will only update exact name
matches, and it's case sensitive, so be sure to take great care in
naming your HTML controls.

99

dBASE on The Web

The loadDataModuleFromArray() Method
Methods and Classes

Usage: // Create CGISession object
set procedure to WebClass.cc additive
oCGI = new CGISession()
oCGI.connect()

// Create dataModule object
set procedure to MyCustomers.dmd additive
d = new MyCustomersDataModule()

oCGI.loadDataModuleFromArray(d,true)

Implementation
Notes:

Because they are not supported in HTML,the following types are
also not supported by loadDataModuleFromArray():

◆ Binary

◆ OLE

◆ TimeStamp

Errors: Don't forget to include your datamodule object code (.DMO) when
you build your executable.

Datamodule errors and loadDataModuleFromArray() errors should
all throw exceptions to your Try...Catch, which you can then return
to the user by invoking errorPage().

100

dBASE on The Web

PassDataThrough()
Methods and Classes

The passDataThrough() Method

Method: passDataThrough()

Class: CGISession

File: WebClass.cc

Params: None

PassDataThrough()
Description: PassDataThrough() allows you to automatically "chain" pages

together. There is no "return" in the Web Browser, so you have to
emulate Windows repaints by generating brand new pages in
sequence that reflect the changes that have occurred along the
way.

For example, let's assume we plan to deploy an e-Commerce
sales site that requires the user to fill out some kind of an invoice.
Let's further assume that somewhere along the way, you'll want to
allow them to click an image or link and do an inventory lookup.
This can only be done in HTML, at this moment, with chaining.

The process is relatively simple:

1. User clicks "Lookup" button. Page comes back to the server
along with all the data the user has typed in.

2. Your dBASE applet reads the data into its CGISession array,
streams out the HTML code for a lookup page and passes
along the original data received from the user in the form of
"hiddens" on the lookup page.

3. The user "Submits" the lookup page, which brings with it their
inventory selection.

4. Your second dBASE applet (the one that's called from the
lookup page), reads in the CGI data which now includes the
hidden data we stored on the lookup page plus the lookup
selection.

101

dBASE on The Web

The passDataThrough() Method
Methods and Classes

5. Your dBASE applet streams out a brand new copy of the orig-
inal Invoice page, only now the data controls are filled in with
the original typed-in data plus the lookup selection.

The passDataThrough() method makes it easy and automatic to
pass the data along from page to page as required in step 2
above. You could certainly hand-code all the HTML required to
pass the data through, but why bother? Instead, call
passDataThrough(), which simply streams all the data in your
CGISession array out to the new form as HTML.

102

dBASE on The Web

PassDataThrough()
Methods and Classes

Usage: PassDataThrough() is always used in a subclass of CGISession
or one of its descendants. That's because the "hiddens" it streams
must be part of the BODY of the HTML page.

// Create CGISession Subclass object

oCGI = new SignUpCGISession()
oCGI.connect()

// Do whatever you need to do here

// Start streaming response page
oCGI.streamHeader('Lookup')
oCGI.streamBody() // see code below
oCGI.streamFooter()

quit

////// Subclass CGISession to customize
////// streamBody() method

Class SignUpCGISession of CGISession from "WebClass.cc"

// Method to customize HTML response page

function StreamBody()

 with (this.fOut)

// Stream out lookup form
puts('<BODY>')
puts(' <FORM> METHOD="POST" ACTION="lookup.exe">
puts(' Enter Lookup')
puts(' <INPUT TYPE="TEXT" NAME="ItemNo" SIZE=10>')
puts(' <INPUT TYPE="SUBMIT" NAME="SUBMIT">
puts(' </FORM>')

// embed all data as Hiddens in this page
// This must be called after the start BODY tag and
// before the closing BODY tag.
oCGI.passDataThrough()

103

dBASE on The Web

The passDataThrough() Method
Methods and Classes

// Close body tag
puts('/BODY')

endwith

return

endclass

Errors: There should be no errors using the passDataThrough() method.
It reads the array and streams out code. However, if something
should break down, Try...Catch will trap it.

104

dBASE on The Web

SorryPage()
Methods and Classes

The sorryPage() Method

Method: sorryPage()

Class: CGISession

File: WebClass.cc

Params: (cMsg, cSubTtl, cRcvr)

SorryPage()
Description: SorryPage() streams out a highly customizable HTML error report-

ing page. SorryPage() should be used to trap user-errors such as:

Sorry, Last Name is required!

Usage:

// Create CGISession object
set procedure to WebClass.cc additive
oCGI = new CGISession()
oCGI.connect()

if empty(oCGI["LastName"])
oCGI.sorryPage('Last Name is required!','Data is missing',;

 'Please press the Back button and try again,')
endif

...

Implementation: The sorryPage() method returns either one or a list of errors. It
operates in single or batch mode. I generally prefer batch mode
for validating data. That way, I can give the user a list of all the
missing or incorrect data, rather than having them resubmit each
time, which tries their patience and puts an unnecessary load on
my server.

The cMsg argument may take either a character string or array of
character strings. These strings represent the error messages
themselves.

105

dBASE on The Web

The sorryPage() Method
Methods and Classes

The cSubTtl argument allows you to send a subtitle to the Sorry
page, such as: "Data Missing".

The cRcvr argument passes along instructions as to what the user
should do to recover from the problem. It could be "Press the back
button" or "Try again later", or even the message supported in
errorPage(), which includes a link to the Webmaster's eMail
address.

SorryPage() also serves as the base for errorPage(), which han-
dles system errors.

Note: This method just begs for subclassing! You'll certainly want to use
your own colors, logo, background and layout for your own error
and sorry pages. Therefore, we recommend highly that you sub-
class CGISession() for each application and use it to ensure a
consistent look and feel across applets.

Errors: This is a simple HTML streaming method. Any errors should be
trapped by Try...Catch.

106

dBASE on The Web

ErrorPage()
Methods and Classes

The errorPage() Method

Method: errorPage()

Class: CGISession

File: WebClass.cc

Params: (e) An error object

ErrorPage()
Description: This method is a preparation method, used to format dBASE error

messages before calling sorryPage() to return them to the user.
Unlike sorryPage(), it's not intended to report user errors, but
rather, to report system errors. It takes as its only parameter the
error object thrown by a Try...Catch...EndTry structure. It inter-
prets that message and streams it out, along with the filename and
line number on which the error ocurred. It is an invaluable aid in
debugging Web applications developed under dBASE.

Usage: // Create CGISession Subclass object
Try // Always wrap your applet in a Try...Catch

oCGI = new SignUpCGISession()
oCGI.connect()
...
...

Catch (exception e) // if an error is thrown

oCGI.errorPage(e) // call errorPage()

endtry

Implementation: If you subclass CGISession to customize your sorry page,
errorPage() will automatically use the identical HTML response
page layout.

107

dBASE on The Web

The errorPage() Method
Methods and Classes

Errors: There is one potentially huge error problem associated with
errorPage(). If there is an error in errorPage(), your applet will go
into an infinite loop. Each time it breaks, it will throw an error,
which will call errorPage(), which will throw an error... well, you
can take it from there. I suggest you test sorryPage() and
errorPage() thoroughly before you link it into a real-live application
so you don't get any ugly surprises.

108

dBASE on The Web

SetWebMasterAddress()
Methods and Classes

The setWebMasterAddress() Method

Method: setWebMasterAddress()

Class: CGISession

File: WebClass.cc

Params: (cWebMastereMailAddress)

SetWebMasterAddress()
Description: This is a trivial method which, when used in conjunction with the

default errorPage() method of CGISession, provides an eMail link
at the bottom of the response page similar to:

Contact WebMaster for assistance.

Usage: // Create CGISession object
set procedure to WebClass.cc additive
oCGI = new CGISession()
oCGI.connect()

oCGI.setWebMasterAddress(janedoe@mydomain.com)

Errors: There should be no errors. SetWebMasterAddress() simply stores
a string to a property of the CGISession array object. However,
make sure you send a string, not any other data type, or the
default errorPage() may choke at runtime.

109

dBASE on The Web

The Streaming Methods
Methods and Classes

The Streaming Methods

The streaming methods of the CGISession class and its descen-
dants ensure correct CGI and HTML formatting of your CGI
response pages. They're also used internally by errorPage() and
sorryPage().

streamHeader()

Description: StreamHeader() sends the CGI header, the opening <HTML> tag
and the <HEAD> tags of your response page out to the Web server
over StdOut. Always use this method to guarantee that your CGI
header is sent correctly. If you want to send a CGI header other
than the standard "text/HTML", use a subclass of CGISession.

streamBody(cText)

Description: This method streams out the <BODY> tags and the core HTML
code of your response page. There are two ways it can be utilized:

1. Send the body text you wish to display as the argument cText
when calling streamBody(). If you use this approach, you'll
need to preformat your entire HTML page as a single string
with explicit line breaks (chr(13)+chr(10)). This approach is
useful for small amounts of text. "Thank you" or other simple
responses will give you no difficulty.
However, for more complex HTML, such as a lookup, query or
data-entry response page, we recommend that you:

2. Subclass CGISession and override the streamBody() method.
Embed your HTML code after the puts('<BODY>') line. The
streamFooter() method closes the <BODY> tag. One advan-
tage of this method is that you can use HTMLtoPRG.wfm , the
dBASE conversion applet to bring in complex HTML from
visual design tools or other sources.

110

dBASE on The Web

StreamFooter()
Methods and Classes

streamFooter()

Description: This is a relatively trivial method that simply closes your open
<HTML> and <BODY> tags. Trivial, but absolutely required. If you
forget to call streamFooter(), you may get strange results when
the page is viewed in the browser.

StreamFooter()
Usage: (Includes all three Streaming Methods)

Try // always use a try...catch
// Create CGISession object

 set procedure to WebClass.cc additive
 oCGI = new CGISession()

 // do processing stuff here

 // Send response page
 oCGI.streamHeader()
 oCGI.streamBody("Thank you, your profile has been updated!")
 oCGI.streamFooter()

catch(exception e) // trap errors

 oCGI.errorPage(e)

endtry

// Clean up and quit
oCGI = null
Quit

Implementation
Notes:

The streaming methods should probably be the last calls you
make before terminating your applet.

111

dBASE on The Web

The WebPWClass
Methods and Classes

The WebPWClass

Class: CGIPWSession

File: WebPWClass.cc

WebPWClass.cc
Description: The WebPWClass is a subclass of WebClass.cc that adds pass-

word validation to the core class functionality. This is particularly
useful for private Internet/Intranet sites, membership sites or busi-
ness-to-business e-Commerce sites.

Usage: // Create CGIPWSession Object
set procedure to WebPWClass.cc additive
oCGI = new CGIPWSession()

// Connect to Web Server and get data
oCGI.connect()

// Confirm UserID and password. If
// It fails, it returns a sorryPage()
// and quits.
oCGI.validatePassword(cMyAlias)

/* Important Note: This method will only work if
used in an applet called from an HTML page with
two TEXT controls or HIDDENS using the following
naming convention:

<INPUT TYPE="TEXT" NAME="XPD"> // password
<INPUT TYPE="TEXT" NAME="UserID"> // User ID

Both are case sensitive.
However, this method will not crash if the data
missing. The XPD and UserID elements are pre-
defined as "blank" in the constructor of the
class. */

112

dBASE on The Web

WebPWClass.cc
Methods and Classes

Implementation
Notes:

This class requires a table: users.dbf
With two fields:

UserID Char Len: 30
Password Char Len: 30

and one index:

UserKey: upper(UserID)

Upper() is used to ensure that the UserID is not case-sensitive (at
the explicit request of users, who are often annoyed at having to
remember case along with password). In this custom subclass,
neither UserID nor Password is case-sensitive.

Where to Put the Data

You have two options for placing the Users table or database:

1. In the cgi-bin folder so that it can be accessed by your applet
without the need of a path, or;

2. Anywhere on the network where it can be accessed by way of
a BDE Alias. This class supports password lookups with and
without a database object.

The validatePassword() method's sole argument (cDatabase-
Name) is the name of a BDE Alias. If the method receives the
parameter, it creates both Database and Query objects, other-
wise, it creates just the query.

Security Warning: The Password and UserID validated in this class are not in any
way secure. If you're chaining the password from applet to applet,
unless you're using https:// (Secure Sockets Layer) security, your
passwords are being sent in plain text to the server and echoed
back in the source of your HTML pages. That is not recom-
mended.

113

dBASE on The Web

The WebPWClass
Methods and Classes

The HTML text control for password is named "XPD" for no partic-
ular reason other than making it just slightly harder for anyone to
figure out what the data represents. At least it's better than naming
it "PASSWORD".

Don't forget to include WebClass.co when you build your execut-
able.

114

dBASE on The Web

Methods and Classes

dBASE on The Web

Part 7: Sample Applications

The dBASE Web Class Samples

The dBASE "SignUp" Sample application is only a very basic implementa-
tion of the dBASE Web Classes. Use them as a starting place and learning
tool. Once you've mastered them, your own Web and Intranet applications
will be limited only by your imagination.

The Three Applets:

Signup.prg Data-Entry Processing
SignupBrowse.prg Data Browse emulation
SignupReport.prg dBASE Report

The Source

The source code for the dBASE Web Class samples may all be found in:

Visual dBASE 75\Web\Samples\Source

You'll find six dBASE and HTML source files in this folder that are included
in the Signup application:

SignupCGIClass.cc

A Subclass of CGISession, the primary purpose of this custom class is
to provide a uniform look-and-feel to Error and Sorry pages throughout
the application.

The Source

116

dBASE on The Web

The Source
Sample Applications

Signup.htm

This is the starting HTML page for the registration applet.

Signup.prg

This is the main data-processing applet. It receives the data from the
browser, validates it, appends a new row to the table and updates its
fields.

SignupBrowse.prg

This is the applet that provides a rudimentary "Listbox" browse capa-
bility for viewing the Conference Attendee data.

SignupReport.prg

This is a "wrapper" to manage signupReport.rep. Its primary purpose
is to provide error recovery to the dBASE report.

SignupReport.rep

This is the dBASE report that runs real-time in the Browser.

The Signup application also uses WebClass.cc, the core dBASE Web
Class, which it pulls from the \Web\Classes folder at build time.

117

dBASE on The Web

The dBASE Web Class Samples
Sample Applications

The Data

There is only one table used in the Signup application: Attendees.dbf. It
normally resides in the Visual dBASE 75\Web\Samples\Source folder.
When Visual dBASE 7.5 ships, it should merge a new BDE Alias,
SIGNUP, which points to this folder on your machine. You should not have
to adjust this Alias if you've done a "typical" install of dBASE into its default
folders.

Building

There are two .prg files in the Samples\Source folder designed strictly to
automate the compile and build process:

1. BuildAllToApache.prg compiles, builds and deploys executables
directly to Apache's cgi-bin folder.

2. BuildAllToSamples.prg compiles, builds and deploys executables to
the \Visual dBASE 75\Samples\cgi-bin folder.

To build new versions of the sample applets, just click on either of these
program files in the dBASE Navigator.

Building

118

dBASE on The Web

The SignUp Application
Sample Applications

Installing The dBASE Web Class Samples

The SignUp Application

The dBASE Web Class samples consist of a small suite of three applets
designed for use as a remote registration application for some kind of con-
ference.

This application (called SignUp), consists of three applets:

The SignUp Page (Data Entry)
The Browse Page (HTML List)
The List Page (dBASE report)

that demonstrate the basic capabilities of the dBASE Web Classes. They
are shipped as both source and binary files. We encourage you to both run
the applets and browse the source code. The SignUp application graphi-
cally demonstrates how simple it is to build impressive Web applications
with dBASE.

Quick Install

To view the SignUp application on your local computer, you need to first
install the Apache Web Server that comes on the dBASE CD. That's
assuming, of course, that you don't already have one installed on your
local machine.

Then, go to Windows Explorer and:

1. Copy the contents of the Visual dBASE 75\Web\Samples\htdocs
folder to Apache's \htdocs folder

2. Copy the contents of the Visual dBASE 75\Web\Samples\cgi-bin
folder to Apache's \cgi-bin folder

3. Run VDBFast.exe from either \cgi-bin or the Web Wizards folder
4. Start Apache
5. Start up your Web browser and type the following URL:

http://Localhost/signup.htm

119

dBASE on The Web

Installing The dBASE Web Class Samples
Sample Applications

The SignUp data-entry page should pop up in your browser. Try submitting
without filling out the fields and see how the ErrorPage reports back in
batch mode. Then enter your contact information into the main form and
Submit it.

To confirm your data, go back to the SignUp page and click on the
"Browse Attendees" link. After viewing your data, press the browser's Back
button, return to the SignUp page and click on the "Attendee Report" link
to spawn a real-time dBASE report.

I trust you'll be impressed with the speed, crispness, richness and simplic-
ity of the dBASE Web Classes and the Sample applets derived from them.
If you're running on Windows 95/98, you can look forward to a perfor-
mance improvement of 200-500% when you run this application on a Win-
dows NT Server.

The dBASE Message Server

120

dBASE on The Web

The dBASE Message Server
Sample Applications

The dBASE Message Server Application

This dBASE application was originally written for Carik Services Inc. of Denver Colo-
rado. Carik is a floral wire service, connecting florist-to-florist across the country and
the world. When you place an order with your local florist for delivery in another state,
there's a good possibility that your order is being handled by Carik Services.

Carik is also the first floral wire-service with a Web-based transmission network. Its
competitors are still on older technologies based on direct dial-up modems or out-
dated terminals. The entire Carik Web site (www.carikonline.com) is powered by
Visual dBASE.

This Message Server application polls incoming orders in the database and sends
mail notifications whenever it encounters a new row. This is used by Carik to forward
orders. Think of it not just as a mail/message system, but as a data-transfer system.

Do you have a remote server hosted outside of your network? Use the dBASE Mes-
sage server to send each transaction to a dedicated mail account. Then, write a quick-
and dirty (Carik's is a long-and fancy one) mail client application that checks for key-
worded incoming mail, parses out the text and stores it in your local tables. Almost
instant, hands-free long-distance data transfer. We're even using the Carik Mail Client
to import data from florists' Web sites.

The dBASE Message server is offered only as a sample of where you might go in a
combination of dBASE/Web and dBASE/Windows. You could always just use Win-
dows NT mail or another simple messaging solution, but this one is tied to your tables,
updates a field when sent (if you desire) and keeps a full HTML log of its activities,
including any error messages sent through Try...Catch.

121

dBASE on The Web

The dBASE Message Server Application
Sample Applications

The dBASE Message Server is powered by the MarshallSoft® SMTP/POP3 library
and handles its own Mail Server connection, queries and downloads. It does not
require a Windows NT mail server. In fact, it runs just fine on any Win 95/98 machine.
You can scale this application easily just by adding new installations on different com-
puters, each of them querying the same database.

122

dBASE on The Web

Sample Applications

dBASE on The Web

Appendix A: Source Code

In the following source code, the symbol appears wherever a line is broken to fit
on the printed page. In programs, these lines would not be broken.

Signup.prg

/* Signup.prg A sample program that demonstrates how to build
dBASE Web applications.

Signup.prg
Author: A. A. Katz
A
Version: 1.0 01/12/2000

Description: This .prg receives input from "Signup.htm" over the
Web Browser and updates a table with rudimentary
validation. It subclasses the Visual dBASE
CGISession (WebClass.cc) to customize the response
page sent back to the user's Browser.

Copyright 2000, dBASE Inc.
You have the right to use, modify, and freely
redistribute this source code and any binaries
associated with it or derived from it.

Build: Build signup.pro, Webclass.co to Signup.exe

*/

Try // Always wrap application in a Try/Catch/Endtry

oCGI = new signUp() // create instance of Web subclass.

oCGI.Connect() // connect to the Web Server and
 // load in the CGI data received.

oCGI.setWebMasterAddress('webmaster@mysite.com')
 // Set the Web Master eMail address in
 // case of error

A-2

dBASE on The Web

Signup.prg
Source Code

 // Validate data received in batch mode
aErrorList = new array() // create an array to store possible

 // errors

//Validate required fields

if empty(oCGI["FirstName"])

aErrorList.Add('First name is missing!')
endif

if empty(oCGI["LastName"])
aErrorList.Add('Last name is missing!')

endif

if empty(oCGI["Address"])
aErrorList.Add('Address is missing!')

endif

if empty(oCGI["City"])
aErrorList.Add('City is missing!')

endif

if empty(oCGI["State"])
aErrorList.add('State is missing')

endif

if empty(oCGI["Zip"])
aErrorList.add('Zip code is missing!')

endif

if aErrorList.size > 0 // if there is an error
oCGI.sorryPage(aErrorList) // Send error page and quit.

endif

// Create database object to point to tables

d = new database()
d.databaseName = 'Signup'
d.active = true

A-3

dBASE on The Web

Signup.prg
Source Code

// Create query to open Attendees.dbf

/* Important note: in real life, always use a BDE Aliasand a
database object to ensure portability!

*/

Attendees1 = new query()
with (Attendees1)

database = d
sql = 'Select * from "Attendees.dbf"'
active = true

endWith

// Copy data from the oCGI array into the table row.
// Second param tells it to create a new row.
// Changes are saved automatically.

oCGI.LoadFieldsFromArray(Attendees1.rowset.fields, true)

// all data is done, now stream back a response to the user

oCGI.StreamHeader() // Send out CGI and HTML Headers
oCGI.StreamBody() // send the page itself (see below)
oCGI.StreamFooter() // Close HMTL tags

catch(Exception e)

oCGI.Errorpage(e) // send error page if program fails

endTry

Attendees1.active = false // clean up the leftovers
Attendees1 = null // just as insurance to guarantee
oCGI = null // resources are never lost!

Quit // All done, close down.

A-4

dBASE on The Web

SignUp Sample HTML
Source Code

The SignUp Sample HTML Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
SignUp Sample HTML
<HEAD>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html;
 CHARSET=iso-8859-1">

<META NAME="GENERATOR" Content="Visual dBASE">
<TITLE>Conference Signup</TITLE>

</HEAD>

<BODY LINK="#009999" VLINK="#009999">

<FORM ACTION="/cgi-bin/Signup.exe"
 METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">

<P>
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0">

<TR>
<TD WIDTH="83" HEIGHT="77" BGCOLOR="silver"> </TD>
<TD WIDTH="21" HEIGHT="77" BGCOLOR="silver"> </TD>
<TD WIDTH="35" HEIGHT="77" BGCOLOR="silver"> </TD>
<TD WIDTH="70" HEIGHT="77" BGCOLOR="white"> </TD>
<TD HEIGHT="77" COLSPAN="3" BGCOLOR="white">

<H1>
Conference Sign-Up</TD>

</TR>
<TR>

<TD WIDTH="83" BGCOLOR="silver"> </TD>
<TD WIDTH="21" BGCOLOR="#CECECE"> </TD>
<TD WIDTH="35" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="70" BGCOLOR="#E4E4E4"> </TD>
<TD COLSPAN="3" BGCOLOR="#E4E4E4"> </TD>

</TR>
<TR>

<TD WIDTH="83" BGCOLOR="silver"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70"> </TD>
<TD COLSPAN="3"><I>

A-5

dBASE on The Web

The SignUp Sample HTML Page
Source Code

Please enter your personal information below.
</I></TD>

</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70"> </TD>
<TD COLSPAN="2"> </TD>
<TD> </TD>

</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70">

First Name</TD>

<TD WIDTH="164">
<INPUT TYPE="TEXT" NAME="FirstName" SIZE="18"

MAXLENGTH="15"></TD>
<TD WIDTH="48">

<P ALIGN="RIGHT">

Last</TD>

<TD>
<INPUT TYPE="TEXT" NAME="LastName" SIZE="20"

MAXLENGTH="20"></TD>
</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70">

Address</TD>
<TD COLSPAN="2">

<INPUT TYPE="TEXT" NAME="Address" SIZE="25"
MAXLENGTH="35"></TD>

<TD> </TD>
</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>

A-6

dBASE on The Web

SignUp Sample HTML
Source Code

<TD WIDTH="70">
City</TD>

<TD WIDTH="164">
<INPUT TYPE="TEXT" NAME="City" SIZE="18" MAXLENGTH="20"></TD>

<TD WIDTH="48">
<P ALIGN="RIGHT">
State</TD>

<TD>
<INPUT TYPE="TEXT" NAME="State" SIZE="2" MAXLENGTH="2"></TD>

</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70">

Zip</TD>
<TD WIDTH="164">

<INPUT TYPE="TEXT" NAME="Zip" SIZE="10" MAXLENGTH="10"></TD>
<TD WIDTH="48"> </TD>
<TD> </TD>

<TR>
<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70">

eMail</TD>
<TD COLSPAN="2">

<INPUT TYPE="TEXT" NAME="eMailAddress" SIZE="25"
MAXLENGTH="35"></TD>

<TD> </TD>
</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70"> </TD>
<TD WIDTH="164"> </TD>
<TD WIDTH="48"> </TD>
<TD> </TD>

</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21" BGCOLOR="#E4E4E4"> </TD>
<TD WIDTH="35"> </TD>
<TD WIDTH="70"> </TD>

A-7

dBASE on The Web

The SignUp Sample HTML Page
Source Code

<TD COLSPAN="2">
<DIV ALIGN="RIGHT">

<P>
<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Submit">
<INPUT TYPE="RESET" NAME="Reset" VALUE="Reset">

</DIV>
</TD>
<TD> </TD>

</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21"> </TD>
<TD WIDTH="35"> </TD>
<TD COLSPAN="4">

<P ALIGN="CENTER">

Browse Attendees

</TD>
</TR>
<TR>

<TD WIDTH="83"> </TD>
<TD WIDTH="21"> </TD>
<TD WIDTH="35"> </TD>
<TD COLSPAN="4">

<P ALIGN="CENTER">

Attendee Report

</TD>
</TR>

</TABLE>

</FORM>

</BODY>

</HTML>

A-8

dBASE on The Web

Signup Sample CGI Response
Source Code

Signup Sample CGI Response Code

////// Class: SignUp //////////////////////////////////////
////// Purpose: Customize class CGISession (Webclass.cc) ////
////// by subclassing //////////////////////////////
Signup Sample CGI Response
/* Note: the only change in this subclass is the following method,

StreamBody, which streams out the bulk of the code that
is returned to the user.

*/

Class signUp of signUpCGISession from "signUpCGI.cc"

 // This HTML was generated using Symantec's Visual Page ™
 // and then copied and pasted. Use the VdB untility
 // "HTMLtoPRG.wfm" in the \Web Classes folder to copy generated
 // pages in automatically with parens and delimiters.
 // Symantec and Visual Page are trademarks of Symantec Corp.

 Function streamBody

 this.fOut.Puts('<BODY LINK="#009999" VLINK="#009999">')
 this.fOut.Puts('<P>')
 this.fOut.Puts('<TABLE BORDER="0" CELLPADDING="0"

 CELLSPACING="0" WIDTH="100%">')
 this.fOut.Puts('<TR>')
 this.fOut.Puts(' <TD WIDTH="13%" HEIGHT="77"

 BGCOLOR="silver"> </TD>')
 this.fOut.Puts(' <TD WIDTH="3%" HEIGHT="77"

 BGCOLOR="silver"> </TD>')
 this.fOut.Puts(' <TD WIDTH="4%" HEIGHT="77"

 BGCOLOR="silver"> </TD>')
 this.fOut.Puts(' <TD WIDTH="7%" HEIGHT="77"

 BGCOLOR="white"> </TD>')
 this.fOut.Puts(' <TD WIDTH="73%" HEIGHT="77" BGCOLOR="white">')
 this.fOut.Puts(' <H1><FONT COLOR="#009999"

FACE="Arial, Helvetica">
Thank You')

 this.fOut.Puts('</TD>')
 this.fOut.Puts('</TR>')
 this.fOut.Puts('<TR>')

A-9

dBASE on The Web

Signup Sample CGI Response Code
Source Code

 this.fOut.Puts('<TD WIDTH="13%" BGCOLOR="silver"> </TD>')
 this.fOut.Puts('<TD WIDTH="3%" BGCOLOR="#CECECE"> </TD>')
 this.fOut.Puts('<TD WIDTH="4%" BGCOLOR="#E4E4E4"> </TD>')
 this.fOut.Puts('<TD WIDTH="7%" BGCOLOR="#E4E4E4"> </TD>')
 this.fOut.Puts('<TD WIDTH="73%" BGCOLOR="#E4E4E4"> </TD>')
 this.fOut.Puts('</TR>')
 this.fOut.Puts('<TR>')
 this.fOut.Puts('<TD WIDTH="13%" BGCOLOR="silver"> </TD>')
 this.fOut.Puts('<TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
 this.fOut.Puts('<TD WIDTH="4%"> </TD>')
 this.fOut.Puts('<TD WIDTH="7%"> </TD>')

 // Here I've inserted live data into the response page...
 this.fOut.Puts('<TD WIDTH="73%"><I><FONT COLOR="#009999"

FACE="Arial, Helvetica">' + ;
this["FirstName"] + ' ' + ;
this["LastName"] + '</I></TD>')

 this.fOut.Puts('</TR>')
 this.fOut.Puts('<TR>')
 this.fOut.Puts('<TD WIDTH="13%"> </TD>')
 this.fOut.Puts('<TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
 this.fOut.Puts('<TD WIDTH="4%"> </TD>')
 this.fOut.Puts('<TD WIDTH="7%"> </TD>')
 this.fOut.Puts('<TD WIDTH="73%"><I><FONT COLOR="#009999"

FACE="Arial, Helvetica">
You are now registered.</I> </TD>')

 this.fOut.Puts('</TR>')

 for n = 1 to 7 // repeat blank lines
 this.fOut.Puts('<TR>')
 this.fOut.Puts('<TD WIDTH="13%"> </TD>')
 this.fOut.Puts('<TD WIDTH="3%"

 BGCOLOR="#E4E4E4"> </TD>')
 this.fOut.Puts('<TD WIDTH="4%"> </TD>')
 this.fOut.Puts('<TD WIDTH="7%"> </TD>')
 this.fOut.Puts('<TD WIDTH="73%"> </TD>')
 this.fOut.Puts('</TR>')
 next

 this.fOut.Puts('<TR>')
 this.fOut.Puts('<TD WIDTH="13%"> </TD>')
 this.fOut.Puts('<TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
 this.fOut.Puts('<TD WIDTH="4%"> </TD>')
 this.fOut.Puts('<TD WIDTH="7%"> </TD>')

A-10

dBASE on The Web

Signup Sample CGI Response
Source Code

 this.fOut.Puts('<TD WIDTH="73%">
<FONT COLOR="#009999"
 FACE="Arial, Helvetica" SIZE="2">
Home</TD>')

 this.fOut.Puts('</TR>')

 this.fOut.Puts('</TABLE>')
 this.fOut.Puts('</BODY>')

return true

endClass

A-11

dBASE on The Web

SignupCGISession Subclass
Source Code

SignupCGISession Subclass

/* signupCGI.cc This is a subclass of CGISession.cc, the dBASE Web
Class. It adds custom formatting to the "Sorry"
page to match the Visual dBASE 7.5 Conference
Signup sample application.

Usage oCGI = new sampleCGISession()

Author: A. A. Katz 01/17/2000 dBASE Inc.

*/
SignupCGI.cc

Class SignupCGISession of CGISession from "..\..\Webclass.cc"

////// Method: SorryPage //
////// Purpose: Returns Sorry page in response to user ///////////
////// Param: cMsg = Error Message /////////////////////////////
////// Accepts a char string or array of messages
////// cSubTtl = Subtitle, such as "An error has ocurred" //
//// or "data missing" ///////////////////////////////
cRecover = Suggestion for recovery /////////////////////such as "Press
the browser's back button" ///////or contact Web master..

Function SorryPage(cMsg,cSubTtl,cRcvr)

// This code is the same as CGISession
cMess = iif(empty(cMsg),'',cMsg)

if type('cMess') = 'C' // if message is not array,
cMess = new array() // convert to a one-element array

 cMess.add(cMsg)
endif

 // Make private versions for type()
cRecover = iif(empty(cRcvr),'',cRcvr)
cSubtitle = iif(empty(cSubTtl),'',cSubTtl)

/////// Stream out header
this.StreamHeader('Sorry!')

A-12

dBASE on The Web

SignupCGI.cc
Source Code

//------------- This is the customized code ---------\\

with (this.fOut)

////// Body tag (starts body of page)
puts('<BODY LINK="#009999" VLINK="#009999">')

////// Table is used to format color and text

////// First row of table with "Sorry" display.
puts('<P>')
puts('<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0"

 WIDTH="100%">')
puts(' <TR>')
puts(' <TD WIDTH="13%" HEIGHT="77"

 BGCOLOR="silver"> </TD>')
puts(' <TD WIDTH="3%" HEIGHT="77"

 BGCOLOR="silver"> </TD>')
puts(' <TD WIDTH="4%" HEIGHT="77"

 BGCOLOR="silver"> </TD>')
puts(' <TD WIDTH="7%" HEIGHT="77"

 BGCOLOR="white"> </TD>')
puts(' <TD WIDTH="73%" HEIGHT="77" BGCOLOR="white">')
puts(' <H1><FONT COLOR="#009999"

 FACE="Arial, Helvetica">Sorry!')
puts(' </TD>')
puts('</TR>')

////// Narrow gray horizontal stripe
puts('<TR>')
puts(' <TD WIDTH="13%" BGCOLOR="silver"> </TD>')
puts(' <TD WIDTH="3%" BGCOLOR="#CECECE"> </TD>')
puts(' <TD WIDTH="4%" BGCOLOR="#E4E4E4"> </TD>')
puts(' <TD WIDTH="7%" BGCOLOR="#E4E4E4"> </TD>')
puts(' <TD WIDTH="73%" BGCOLOR="#E4E4E4"> </TD>')
puts('</TR>')

////// If there is a "Subtitle", such as
////// "An error has ocurred on the Server!"
if len(cSubtitle) > 0

///// Page subtitle
puts('<TR>')
puts(' <TD WIDTH="13%" BGCOLOR="silver"> </TD>')
puts(' <TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
puts(' <TD WIDTH="4%"> </TD>')

A-13

dBASE on The Web

SignupCGISession Subclass
Source Code

puts(' <TD WIDTH="7%"> </TD>')
puts(' <TD WIDTH="73%"><I><FONT COLOR="#009999"

 FACE="Arial, Helvetica">' ;
+ cSubtitle + '</I></TD>')

puts('</TR>')
endif

////// Empty row for spacing
puts('<TR>')
puts(' <TD WIDTH="13%" BGCOLOR="silver"> </TD>')
puts(' <TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
puts(' <TD WIDTH="4%"> </TD>')
puts(' <TD WIDTH="7%"> </TD>')
puts(' <TD WIDTH="73%"> </TD>')
puts('</TR>')

for n = 1 to cMess.size

puts('<TR>')
puts(' <TD WIDTH="13%"> </TD>')
puts(' <TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
puts(' <TD WIDTH="4%"> </TD>')
puts(' <TD WIDTH="7%"> </TD>')
puts(' <TD WIDTH="73%">'+cMess[n]+'</TD>')
puts('</TR>')

next

////// Empty row for spacing
puts('<TR>')
puts(' <TD WIDTH="13%"> </TD>')
puts(' <TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
puts(' <TD WIDTH="4%"> </TD>')
puts(' <TD WIDTH="7%"> </TD>')
puts(' <TD WIDTH="73%"> </TD>')
puts('</TR>')

////// Stream out recovery instructions
cRecover = iif(empty(cRecover), ;

"Press Browser's Back Button and try again.", ;
 cRecover)

puts('<TR>')
puts(' <TD WIDTH="13%"> </TD>')
puts(' <TD WIDTH="3%" BGCOLOR="#E4E4E4"> </TD>')
puts(' <TD WIDTH="4%"> </TD>')
puts(' <TD WIDTH="7%"> </TD>')

A-14

dBASE on The Web

SignupCGI.cc
Source Code

puts(' <TD WIDTH="73%"><I><FONT COLOR="#009999"
FACE="Arial, Helvetica">' ;
+ cRecover + '</I></TD>')

puts('</TR>')

////// Close table
puts('</Table>')

endwith

////// Close out HTML structure
this.StreamFooter()

quit

endClass

dBASE on The Web

Appendix B: Equivalents
B

HTML Controls and dBASE Equivalents

HTML dBASE

TEXT Entryfield

TEXT AREA Editor

<SELECT>
<Option >One</Option>
<Option>Two</Option>
</SELECT>

Combobox

<LIST>
<Option> One </Option >
<Option> Two </Option>
</LIST>

Listbox

RADIOBUTTON Radiobutton

BUTTON PushButton

SUBMIT Default Pushbutton

RESET Clear Pushbutton

PASSWORD Asterisk Entryfield

B-2

dBASE on The Web

dBASE on The Web

Appendix C: Glossary
C

The following is a short glossary of terms that will be useful to know when
developing Web applications with the Visual dBASE Web Wizards.

Applet

A single-purpose small Web executable. Similar to a single form or module
in Windows applications. Web applications are developed using small pro-
grams that generate and read single HTML pages at a time.

Application

A collection of HTML pages, applets, data and images that are chained
together to perform complex business tasks.

CGI

Standards had to be established In order for various Web Servers to be
able to respond to requests from Browsers by running an application. CGI
is the protocol that describes how the Web Server will receive data from
the Browser, call the application, send the data to the application and then
return an HTML response page to the Browser. There are two major
implementations of CGI: CGI-Win and CGI-Bin. CGI-Win is optimized for
Windows but is not available on all servers and is very small. CGI-Bin is
the more general standard and is supported by most popular Web Serv-
ers. dBASE supports only CGI-Bin.

CGI Header

The CGI header is normally a single line of instructions returned from your
Web application that tells the server what to do when the application is
complete:

C-2

dBASE on The Web

HTML
Glossary

This is the CGI header used when an application returns a dynamically
generated HTML page:

Content-type: text/HTML

This is the CGI header used when an application wants the server to
return an already-existing page:

Location: Myfile.htm

HTML

HTML (Hypertext Markup Language) is the page-description language
used by most Web Servers and Browsers. It's an international standard for
commands (called tags), symbols and conventions used to create and dis-
play Web pages. HTML is designed specifically to generate readable for-
matted text and graphics regardless of the platform on which the Browser
is run. As such, HTML is resolution-independent (will reformat text to fit
any size Browser running on any video resolution) and platform-indepen-
dent (it runs on any computer that runs a Browser).

HTTP

HTTP (Hypertext Transfer Protocol) is the protocol used for communicat-
ing HTML Web pages over a TCP/IP network. Just as Xmodem and Zmo-
dem are protocols used for moving data across phone lines, HTTP is a set
of data-transfer conventions (protocols) dedicated to moving HTML pages
across the Internet or Intranet.

Mapping

Web Servers use virtual folders (as opposed to real subdirectories) in
order to locate pages and programs. By using virtual folders, locations in a
Web site can be relative to the home folder instead of hard-wired to the
directories on your hard disk. That way, you can have any number of sites,
each with its own home folder on a single server, or across multiple serv-
ers. When you map a folder, you're just telling the Web Server: this virtual
folder is assigned to this hard-disk directory on this LAN server.

C-3

dBASE on The Web

Response Page
Glossary

Let's use our CGI folder as an example. On your hard drive, that folder
may be:

C:\WebStuff\Home\Applications\Vdb\CGI\myprog.exe

The path above is much to complex to use in a URL. So, instead, we map
this path to a virtual folder: /CGI/

So, instead of using the real address:

http://www.dBASE.com/C://webstuff/home/applications/vdb/cgi/myprog.exe

we can use:

http://www.dBASE.com/cgi/myprog.exe

Not only is the above address infinitely simpler, it is also portable. You can
move the files that comprise this address to another folder or another
server without altering the address just by changing the mapping in the
Web Server to point to the new location.

One other purpose of mapping is that Web Servers allow you to define
functionality when you create a new virtual folder. That's important to our
purposes. When you map your CGI folder for your Visual dBASE Web
Wizard applications, you will tell it to "run" rather than "read" the files in this
folder. Files called from your CGI folder will be executed instead of down-
loaded.

Response Page

The response page (or CGI response page) is HTML that your dBASE
applet sends back to the Web Server for display in the Browser. It may be
as simple as a "Thank you" page or as complex as a chained data-entry
page. Every call to a Web application requires that a CGI response page
be returned to the Browser. If you omit the CGI response page, the
Browser will display an error.

C-4

dBASE on The Web

URL
Glossary

URL

A URL (Universal Resource Locator) is the Internet address of a specific
page or folder on a Web Site. It consists of the following parts:

Example:

Protocol Host Path

http: www.dBASE2000.com /vdb/vdb7.htm

The URL: http://www.dBASE2000.com/vdb/vdb7.htm

The Visual dBASE Web Wizards will ask for both a CGI folder and a CGI
URL. The folder is the actual location on your network to which the Web
Wizards will copy your files. The URL is the Internet address that should
be used to call the Web application.

Example:

Folder: F:\Site\CGI

URL: http://www.=dBASE.com/cgi

Note that URLs use the "/" convention of UNIX rather than the "\" symbol
used in DOS and Windows paths.

I n d e x I-1

Symbols

% 18, 33
& 33
+ 18, 33
/ 36
// 36
. [period] 33

Numerics

256 color images 69

A

Addresses C-3
portable C-3

anonymous 43
install 43
user 43

ANSI 33–34
Apache Web Server

configuration file 38
default folders 35
mapping folders 38

Applets 18
See also Web Applications
dBASE, characteristics of 1
defined C-1
explicit paths in 45
improving performance of 39
sending mail from 84
terminating 110

Application
defined C-1

Array classes 73
AssocArray 73–76

CGISession subclass 73
dBASE tables and 73
Name/Value pairs and 73
Web Classes and 71

Associative Arrays 17

B

BDE 42
alias 42
installing 43
standalone install 43

black-box 17, 20
Browsers 3, 5–6

and Web Servers 17
color palettes in 69
data echoed to Address

field 31
old versions 9
running dBASE reports in 81

BuildAllToApache.prg 117
BuildAllToSamples.prg 117
byte stream 18

C

Carik 120
CGI 9–13, 24–27

defined C-1
Header 11, 28, 32
Header, defined C-1
protocol 9

CGI-Bin 11, 35, C-1
CGIIISMailClass.cc 84
CGISession 73–76

example of data
manipulation 75

CGI-Win C-1
chaining 6–7

PassDataThrough() 100
child process 18
Classes

CGIIISMailClass 84
CGISession 78
MailCGISession 85
Signup 79
signupCGISession 78

client/server 7
Colors

display setting for Web

Wizards 69
palettes 69
Windows display 69

Common Gateway Interface 24
Common Gateway Interface,

See CGI
Configuration files 11
cSearch variable 66

D

Data
AssocArray and 75
CGISession example 75
Formatting 18
Incoming 18
parsing 18
Retrieving 18
storing 20
validating 19

and manipulating 75
Data streams 18

ANSI to OEM conversion 19
delimiters in 18
Name/Value pairs in 18
special characters in 18

data strings 33
DataModules

in reports 62
Limitations 59
Paths in 58
subclassed 59
Web Wizards and 58

dBASE
as Web platform 1
deploying to Web Servers 48
for e-Commerce 1
object equivalents to HTML

Form controls B-1
Report classes 81
Web Class Samples, See

Sample Applications
dBASE Message Server 86–87
dBASE runtime 45

Index

I-2 d B A S E o n T h e W e b

debugging
with Web Classes 71

delimiters 18
Deploying 45

dBASE on Web Servers 45
Web Applications 45

Display settings 69
Double-Byte 34
drill-down 65

E

e-Commerce 1
Editor, dBASE 32
eMail 84

Database Interface 86
library, MarshallSoft 86
Sample Application 120
Servers 84
Text File Interface 84
Text File method,

limitations 86
Windows NT 84–85

errors
applet pathing on Web

Server 45
batching messages 19
CGI Header 32
ErrorPage() for system 106
SorryPage() for user 104
Web Server 32

explicit path 45

F

File class 34
puts() Method 26
using StdIn/StdOut 26
write() Method 26

Folders 35, 55
CGI-Bin 12, 35
default for Web Classes 71
mapping C-2
names, specifying in the

Wizards 55
notation conventions 12
virtual 11, C-2

Forms
Action Attribute 31
components in HTML 17
HTML 30

CGI and 31
Method Attribute 31

G

GET 31
and QUERY_STRING 25

GIF 69
graphics 69

H

Header, CGI 32
Hiddens 6

PassDataThrough() 100
Hosting 45, 49
HTML 8–9, 28–32

Body section 30
commands 28
controls 28
defined C-2
described 8
Form components 17
Form controls, dBASE

equivalents to B-1
Forms 9, 30
Header section 30
naming Form controls 17, 20
objects 28
page sections 30
source editor 32
spaces in 29
tables 29
tags 8

HTMLtoPRG.wfm 20, 31, 72,
80, 109

HTTP 17
defined C-2

http:// 36
Hypertext Markup Language,

See HTML
Hypertext Transfer Protocol, See

HTTP

I

Images 69
Inheritance 77
Input 33
Install 42

Anonymous 43
dBASE Runtime 43
Runtime 43

Installing 42
Apache Web Server 42
BDE 43
dBASE on Web Servers 42
Microsoft IIS 42
Web Servers 42

Internet address C-4
Internet protocols 16
Interprocess Communication 24

Command Line Method 25
Environment Method 25
StdIn/StdOut Method 25

ISAPI 1
ISP 42, 45

deploying applications to
host 42

Hosting 49

J

JavaScript 9
JPG 69

L

Live Reports 67

M

Mail, See eMail
Mapping 11, 35–38

defined C-2
MarshallSoft Mail library 84, 86–

87, 120
Message Server 86–87, 120

I n d e x I-3

Method Attribute 31
GET 31
POST 31

Microsoft Internet Information
Server 45, 86

N

Name/Value pairs 17
Connect() Method and 91
dBASE tables and 73
in data streams 18
in QUERY_STRING 25, 33

Notation
pathing conventions C-4
UNIX C-4

NSAPI 1

O

O’Reilly’s WebSite™
Win-CGI and 24

Object-Oriented 77
OEM 33–34
Open System 3
Open-Source 77
OS cacheing 50
Output 34

P

Page Description Language,
See HTML

Palettes 69
Browser 69
dBASE 69

parsing
Connect() Method and 91
data streams 18

passwords 111
security warning 111
validation 111

Paths 35, 45, C-3
entering in Web Wizards 55
explicit 45

in DataModules and
Queries 58

Performance 39, 50
cacheing and 50
dBASE Web applications 50
Reports 50, 67
Web Applications 50
Web Servers 50

persistence 6–7
pipes

StdIn/StdOut 26
platform 3

dependencies 3
Portability 35, 45
Portable URLs 45
POST 31
primitive data type 73
Puts() 26

Q

Queries 50
Paths in 58
performance 50
user criteria 66
Web Wizards and 58

QUERY_STRING 33

R

remote control 7
repainting 7
Report Class

Output property 81
Report Classes, dBASE 81
Reports 60–62

Classes 81
DataModules in 62
drill-down 65
error recovery 82
finding data 81
layout 61
length 61
Live 67
Live vs Static 67
Static 67
streaming output 81

superclasses in 61
Visual dBASE Report

Wizards limitation 61
Web Classes and 81–83
wrapper warning 83
wrappers for 82

resources 22
Response Page 7, 11, 20

defined C-3
root folder 35
Runtime

install 43

S

Sample Applications 115–121
building and deployment 117
Data used by 117
Installing 118
Message Server 120
Quick Install 118
Running 118–119
SignUp application 115
Signup.htm 116
Signup.prg 116
Signup.prg, source code A-1
SignupBrowse.prg 116
SignupCGIClass.cc 115
SignupReport.prg 116
SignupReport.rep 116
Source code default

location 115
SendMail 84
Servlet 18
Source Code A-1–A-14

Signup Sample CGI
Response Code A-8

SignUp Sample HTML
Page A-4

Signup.prg A-1
SignupCGISession

Subclass A-11
SQL

Paths in 58
standards

ISAPI/NSAPI 24
open 24
proprietary 24

I-4 d B A S E o n T h e W e b

startup HTML page 45
states 5–7
Static Reports 67
StdIn/StdOut 25, 32-33, 81

accessing with File class 26
Connect() Method and 91
Web Servers and 26

streamBody() 109
streamFooter() 109
streamHeader() 109
Streaming 20
Subclassing 77–80

benefits of 77
superclasses

in reports 61
Symantec Visual Page™ 20,

31, 80
system errors

ErrorPage() method for 106

T

T1 Internet connection 50
Tables

data transport by
CGISession 74

HTML 29
tags 28-29

attributes 29
HTML 8
nesting 28

TCP/IP 17
HTTP and C-2

terminating characters 27
thin-client 3
Try...Catch 76

in report classes 82

U

Unicode 34
Universal Resource Locator,

See URL
URL 35

caution using http:// 36
command-line parameters

in 36

defined C-4
explicit 45
notation convention C-4
portable C-3
relative 36
Web application 35
Web Wizards and 55
Web-page 35

user errors
SorryPage() Method for 104

V

ValidatePassword(), See
WebPWClass

validation, types of 20
VdB7000n.dll 43, 45
VdB7run.exe 43, 45
VdBFast.exe 39, 50

loading 39
performance improvement

using 39
Windows NT service 39

Video, palettes and display
settings 69

Virtual Folders 11, C-2
Visual Page™ 20, 31, 80

W

Web
graphics formats 69

Web applets 12
calling 12
URL 12

Web Applications 3–13, 17–22
Browsers 3
closing and cleanup 22
color palettes in 69
communicating with Web

Server 24
compared to Windows

apps 5
database 18
dBASE 3
defined 5
deploying 42, 45–48

designing 15
eMail 84–87
explicit paths in 45
Glossary of Terms C-1
how they work 15
improving performance on

Web Servers 39
installing dBASE for 42
Performance 50
portability 35
protocols 9
relationships 16
resources and 22
Samples, See Sample

Applications
server-side 18
setting up 42–44
testing 9
Visual dBASE 15–23

Web Classes 19, 71–87
AssocArray class 71
folder locations 71
Methods 89–113

Connect() 91
ErrorPage() 106
LoadArrayFromCGI() 92
LoadArrayFromFields() 93
LoadDataModuleFromArray()

98
LoadFieldsFromArray() 95
PassDataThrough() 100
SetWebMasterAddress()

108
SorryPage() 104

open-source 77
Reports and 81–83
Samples, See Sample

Applications
Streaming Methods 109–110

StreamBody() 109
StreamFooter() 110
StreamHeader() 109

subclassing 77
WebPWClass 111

Web pages
dynamic 7
static 7

Web Servers 24, 42, 45
address notation 36
and Browsers 17
anonymous user 43
CGI-Bin folder for 12

I n d e x I-5

communication with
applets 25

configuration files 11
configuring 42
deploying dBASE to 48
errors 32
folder mappings 35
improving performance

on 39
installing dBASE on 42, 45
installing locally 42
pipes 26
resource problems 22
root folder 35
sending data to 22

using slashes in
addresses 36

where to put Web apps 45
Web Wizards 53–69

applications, requirements for
running 41

class files used by 72
code generated by 23
complexity and 15
Data-Entry Wizard 63–64
entering paths in 55
Limitation 59
Publish Wizard 67–68
Query and Response

Wizard 65–66

setting Windows display
for 69

Starting, with WebWizard.prg
53

Using 55
WebClass.cc

AssocArray and 73
WebPWClass 111

ValidatePassword() 111
Win-CGI 24
Windows

display settings 69
Windows NT Server 86
write() 26

	dBASE on The Web
	Table of Contents
	Part 1: The Web
	Introduction
	Intranet and Internet
	What is a Web Application?
	How Do Web Applications Work?
	Remote Control
	Persistence And Not
	HTML
	Communication
	The Response Page
	How Does The Server Recognize an Application?
	Calling Your Web Applets

	Part 2: dBASE on The Web
	How Do Visual dBASE Web Applications Work?
	Complexity
	The Non-dBASE Parts of a dBASE Web Application
	On The "Back Side" of The Web Server
	1. Retrieve the Incoming Data
	2. Format the Incoming Data
	3. Validate, Manipulate the Data
	4. Store or Retrieve the Data
	5. Build and Send a Response Page
	6. Clean Up and Quit

	Learning To Code dBASE Web Applications.

	How CGI Works
	How the Web Server Talks to a Server-Side Application
	Command Line Method
	Environment Method
	StdIn/StdOut Method

	HTML and The CGI Header
	The Language
	Sections of an HTML Page
	The HTML Header
	The HTML Body

	HTML Forms
	The Action Attribute
	The Method Attribute

	The CGI Header

	Reading The Data You Get From The Web
	Input
	Output

	Mapping and URLs
	VdbFast.exe

	Part 3: Installation and Setup
	Requirements
	Setting Up
	Where Do I Put My Files?
	How To Install dBASE on a Web Server
	Anonymous Install
	Runtime Install
	Configuring the Web Server

	Deploying Web Applications
	Design For Portability
	Where Does This Stuff Start?
	Where Does This Stuff Run?

	Build in Portable URLs
	Deploying dBASE
	Hosting

	Performance
	Reports
	Run the First Applet of the Day Yourself

	Part 4: The dBASE Web Wizards
	What The Wizards Do
	Using The Web Wizards
	Paths and URLs
	Windows Folder for Starting HTML page
	Windows Folder for CGI-Bin
	Filename for .htm, .prg and .exe
	URL to CGI

	DataModules and Queries
	Paths

	Reports
	SQL Select Statements with Queries
	Reusing Existing Reports.
	Using Paths in Reports
	Superclasses in Reports
	Report Layout
	Report Length
	DataModules in Reports

	The Data Entry Wizard
	How is the Data-Entry Application Built?

	The Query and Response Web Wizard
	Query Input
	Response Reports

	The Publish Web Wizard
	Static Reports
	Live Reports
	Advantages and Disadvantages

	Images

	Part 5: The dBASE Web Classes
	What Are The dBASE Web Classes?
	How Do The dBASE Web Classes Work?
	AssocArray
	The Rule
	Validating And Manipulating Data

	Subclassing For Fun And Profit
	Class CGISession
	Class signupCGISession
	Class Signup

	The dBASE Web Classes and Reports
	Sending Mail
	Text File Interface
	Database Interface

	Part 6: Methods and Classes
	The Methods of The dBASE Web Classes
	Input Methods
	Data Methods
	Output methods
	Error Recovery
	Password Clearing
	eMail for Microsoft IIS

	The connect() Method
	The loadArrayFromCGI() Method
	The loadArrayFromFields() Method
	The LoadFieldsFromArray() Method
	The loadDataModuleFromArray() Method
	The passDataThrough() Method
	The sorryPage() Method
	The errorPage() Method
	The setWebMasterAddress() Method
	The Streaming Methods
	streamHeader()
	streamBody()
	streamFooter()

	The WebPWClass
	Where to Put the Data

	Part 7: Sample Applications
	The dBASE Web Class Samples
	The Source
	SignupCGIClass.cc
	Signup.htm
	Signup.prg
	SignupBrowse.prg
	SignupReport.prg
	SignupReport.rep

	The Data
	Building

	Installing The dBASE Web Class Samples
	The SignUp Application
	Quick Install

	The dBASE Message Server Application

	Appendix A: Source Code
	Signup.prg
	The SignUp Sample HTML Page
	Signup Sample CGI Response Code
	SignupCGISession Subclass

	Appendix B: Equivalents
	Appendix C: Glossary
	Applet
	Application
	CGI
	CGI Header
	HTML
	HTTP
	Mapping
	Response Page
	URL

	Index

